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Abstract

The principal submatrix localization problem deals with recovering a K×K principal sub-
matrix of elevated mean µ in a large n× n symmetric matrix subject to additive standard
Gaussian noise, or more generally, mean zero, variance one, subgaussian noise. This prob-
lem serves as a prototypical example for community detection, in which the community
corresponds to the support of the submatrix. The main result of this paper is that in
the regime Ω(

√
n) ≤ K ≤ o(n), the support of the submatrix can be weakly recovered

(with o(K) misclassification errors on average) by an optimized message passing algorithm
if λ = µ2K2/n, the signal-to-noise ratio, exceeds 1/e. This extends a result by Deshpande
and Montanari previously obtained for K = Θ(

√
n) and µ = Θ(1). In addition, the algo-

rithm can be combined with a voting procedure to achieve the information-theoretic limit
of exact recovery with sharp constants for all K ≥ n

logn ( 1
8e + o(1)). The total running time

of the algorithm is O(n2 log n).

Another version of the submatrix localization problem, known as noisy biclustering,
aims to recover a K1 × K2 submatrix of elevated mean µ in a large n1 × n2 Gaussian
matrix. The optimized message passing algorithm and its analysis are adapted to the
bicluster problem assuming Ω(

√
ni) ≤ Ki ≤ o(ni) and K1 � K2. A sharp information-

theoretic condition for the weak recovery of both clusters is also identified.

Keywords: Submatrix localization, biclustering, message passing, spectral algorithms
computational complexity, high-dimensional statistics

1. Introduction

The problem of submatrix detection and localization, also known as noisy biclustering (Har-
tigan, 1972; Shabalin et al., 2009; Kolar et al., 2011; Butucea and Ingster, 2013; Butucea
et al., 2015; Ma and Wu, 2015; Chen and Xu, 2014; Cai et al., 2017), deals with finding
a submatrix with an elevated mean in a large noisy matrix, which arises in many applica-
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tions such as social network analysis and gene expression data analysis. A widely studied
statistical model is the following:

W = µ1C∗1 1>C∗2 + Z, (1)

where µ > 0, 1C∗1 and 1C∗2 are indicator vectors of the row and column support sets C∗1 ⊂ [n1]
and C∗2 ⊂ [n2] of cardinality K1 and K2, respectively, and Z is an n1×n2 matrix consisting
of independent standard normal entries. The objective is to accurately locate the submatrix
by estimating the row and column support based on the large matrix W .

For simplicity we start by considering the symmetric version of this problem, namely,
locating a principal submatrix, and later extend our theoretic and algorithmic findings to
the asymmetric case. To this end, consider

W = µ1C∗1
>
C∗ + Z, (2)

where C∗ ⊂ [n] has cardinality K and Z is an n × n symmetric matrix with {Zij}1≤i≤j≤n
being mutually independent standard normal. Given the data matrix W , the problem of
interest is to recover C∗. This problem has been investigated in (Deshpande and Montanari,
2015; Montanari et al., 2015; Hajek et al., 2017) as a prototypical example of the hidden
community problem,1 because the distribution of the entries exhibits a community structure,
namely, Wi,j ∼ N (µ, 1) if both i and j belong to C∗ and Wi,j ∼ N (0, 1) if otherwise.

Assuming that C∗ is drawn from all subsets of [n] of cardinality K uniformly at random,
we focus on the following two types of recovery guarantees.2 Let ξ = 1C∗ ∈ {0, 1}n denote
the indicator of the community. Let ξ̂ = ξ̂(A) ∈ {0, 1}n be an estimator.

• We say that ξ̂ exactly recovers ξ if, as n→∞, P[ξ 6= ξ̂]→ 0.

• We say that ξ̂ weakly recovers ξ if, as n→∞, d(ξ, ξ̂)/K → 0 in probability, where d
denotes the Hamming distance.

The weak recovery guarantee is phrased in terms of convergence in probability, which turns
out to be equivalent to convergence in mean. Indeed, the existence of an estimator satisfying
d(ξ, ξ̂)/K → 0 is equivalent to the existence of an estimator such that E[d(ξ, ξ̂)] = o(K)
(see (Hajek et al., 2017, Appendix A) for a proof). Clearly, any estimator achieving exact
recovery also achieves weak recovery; for bounded K, these two criteria are equivalent.

Intuitively, for a fixed matrix size n, as either the submatrix size K or the signal strength
µ decreases, it becomes more difficult to locate the submatrix. A key role is played by the
parameter

λ =
µ2K2

n
,

which is the signal-to-noise ratio for classifying an index i according to the statistic
∑

jWi,j ,
which is distributed according to N (µK, n) if i ∈ C∗ and N (0, n) if i 6∈ C∗. As shown in

1. A slight variation of the model in (Deshpande and Montanari, 2015; Hajek et al., 2017) is that the data
matrix therein is assumed to have zero diagonal. As shown in (Hajek et al., 2017), the absence of the
diagonal has no impact on the statistical limit of the problem as long as K → ∞, which is the case
considered in the present paper.

2. Exact and weak recovery are called strong consistency and weak consistency in (Amini et al., 2013;
Mossel et al., 2015), respectively.
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Appendix A, it turns out that if the submatrix size K grows linearly with n, the information-
theoretic limits3 of both weak and exact recovery are easily attainable via thresholding. To
see this, note that in the case of K � n simply thresholding the row sums can provide weak
recovery in O(n2) time provided that λ→∞, which coincides with the information-theoretic
conditions of weak recovery as proved in (Hajek et al., 2017). Moreover, in this case, one can
show that this thresholding algorithm followed by a linear-time voting procedure achieves
exact recovery whenever information-theoretically possible. Thus, this paper concentrates
on weak and exact recovery in the sublinear regime of

Ω(
√
n) ≤ K ≤ o(n). (3)

We show that an optimized message passing algorithm provides weak recovery in nearly
linear – O(n2 log n) – time if λ > 1/e. This extends the sufficient conditions obtained
in (Deshpande and Montanari, 2015) for the regime K = Θ(

√
n) and µ = Θ(1).4 Our

algorithm is the same as the message passing algorithm proposed in (Deshpande and Mon-
tanari, 2015), except that we find the polynomial that maximizes the signal-to-noise ratio
via Hermite polynomials instead of using the truncated Taylor series as in (Deshpande and
Montanari, 2015). The proofs follow closely those in (Deshpande and Montanari, 2015),
with the most essential differences described at the end of Section 2.

We observe that λ > 1/e is much more stringent than λ > 4K
n log n

K , the information-
theoretic weak recovery threshold established in (Hajek et al., 2017). It is an open problem
whether any polynomial-time algorithm can provide weak recovery for λ ≤ 1/e. In addition,
we show that if λ > 1/e, the message passing algorithm followed by a linear-time voting
procedure can provide exact recovery whenever information-theoretically possible. This
procedure achieves the optimal exact recovery threshold determined in (Hajek et al., 2017)
with sharp constants if K ≥ ( 1

8e + o(1)) n
logn . See Section 3.1 for a detailed comparison with

information-theoretic limits.

The message passing algorithm is simpler to formulate and analyze for the principal
submatrix recovery problem; nevertheless, we show in Section 5 how to adapt the message
passing algorithm and its analysis to the biclustering problem. Sharp conditions for exact
recovery for the biclustering problem was obtained in (Butucea et al., 2015). We show that
calculations in (Butucea et al., 2015) with minor adjustments provide information-theoretic
conditions for weak recovery as well. The connection between weak and exact recovery
via the voting procedure described in (Hajek et al., 2017) carries over to the biclustering
problem.

The analysis of the message passing algorithm is based on the moment method adopted
in (Deshpande and Montanari, 2015). When the noise matrix Z is Gaussian, an alternative
technique to analyze message passing algorithms is introduced in (Bayati and Montanari,
2011) and generalized by (Javanmard and Montanari, 2013). A distinct advantage of the

3. In this paper, by information-theoretic limits, we mean the sufficient and necessary conditions for at-
taining weak or exact recovery by any estimator, regardless of its computational cost.

4. The main results (Theorems 1 and 3) of (Deshpande and Montanari, 2015) assume µ = Θ(1) but not
K = Ω(

√
n)). This is because, as pointed out at the end of the proof of (Deshpande and Montanari,

2015, Theorem 3), if K = ω(
√
N), then the spectral method and its proof in (Alon et al., 1998) already

work. However, the state evolution analysis of message passing algorithm still assumes K = Θ(
√
n) as

stated in (Deshpande and Montanari, 2015, Lemma 2.2).
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moment method in our context is that the Gaussian assumption can be relaxed to a sub-
gaussian assumption. Accordingly, we introduce the following assumption.

Assumption 1 Given C∗ ∈ [n] and µ > 0, the following holds. W is an n× n symmetric
matrix with {Wij}1≤i≤j≤n being mutually independent random variables. Let Zij = Wij −
µI{i,j∈C∗}. Then E [Zij ] = 0 for all i, j, and var(Zij) = 1 for (i, j) 6∈ C∗ ×C∗. Finally, there

is a constant γ > 0 that does not depend on n such that E
[
esZij

]
≤ eγs

2/2 for s ∈ R, i.e.
the W ’s and Z’s are subgaussian with proxy variance γ.

The variance of a subgaussian random variable is less than or equal to its proxy variance,
so Assumption 1 implies γ ≥ 1, and var(Zij) ≤ γ for all i, j ∈ [n] and all n ≥ 1. Of course,
Assumption 1 holds in the Gaussian case such that the Zij are all N (0, 1) random variables.

Notation For any positive integer n, let [n] = {1, . . . , n}. For any set T ⊂ [n], let
|T | denote its cardinality and T c denote its complement. For two sets S, T , let S∆T =
(S \ T ) ∪ (T \ S) denote the set difference. For an m × n matrix M , let ‖M‖ and ‖M‖F
denote its spectral and Frobenius norm, respectively. Let σi(M) denote its singular values
ordered decreasingly. For any S ⊂ [m], T ⊂ [n], let MST ∈ R|S|×|T | denote (Mij)i∈S,j∈T
and for m = n abbreviate MS = MSS . For a vector x, let ‖x‖ denote its Euclidean
norm. We use standard big O notations, e.g., for any sequences {an} and {bn}, an =
Θ(bn) or an � bn if there is an absolute constant c > 0 such that 1/c ≤ an/bn ≤ c. All
logarithms are natural and we use the convention 0 log 0 = 0. Let Φ and Q denote the
cumulative distribution function (CDF) and complementary CDF of the standard normal
distribution, respectively. For ε ∈ [0, 1], define the binary entropy function h(ε) , ε log 1

ε +
(1 − ε) log 1

1−ε . We say a sequence of events En holds with high probability, if P {En} → 1
as n → ∞. Denote the Kolmogorov-Smirnov (KS) distance between distributions µ and ν
by dKS(µ, ν) , supx∈R |µ((−∞, x])− ν((−∞, x])|.

2. Algorithms and main results

To avoid a plethora of factors 1√
n

in the notation, we describe the message-passing algorithm

using the scaled version

A =
1√
n
W. (4)

Under Assumption 1, the entries Aij are subgaussian with proxy variance γ
n , mean 0 or µ√

n
,

and variance 1
n for (i, j) 6∈ C∗ × C∗. This section presents algorithms and theoretical guar-

antees for the symmetric model (2). Extensions to the asymmetric case for the biclustering
problem (1) are given in Section 5.2.

Let f(·, t) : R→ R be a scalar function for each iteration t. Let θt+1
i→j denote the message

transmitted from index i to index j at iteration t+ 1, which is given by

θt+1
i→j =

∑
`∈[n]\ {i,j}

A`if(θt`→i, t), ∀j 6= i ∈ [n]. (5)
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with the initial conditions θ0
i→j ≡ 0. Moreover, let θt+1

i denote index i’s belief at iteration
t+ 1, which is given by

θt+1
i =

∑
`∈[n]\{i}

A`if(θt`→i, t). (6)

The form of (5) is inspired by belief propagation algorithms, which have the natural non-
backtracking property: the message sent from i to j at time t + 1 does not depend on the
message sent from j to i at time t, thereby reducing the effect of echoes of messages sent
by j.

To present an informal derivation of the state evolution equations, which track the
asymptotic distributions of the messages, let us postulate the following assumptions: Sup-
pose that for each fixed t, as n→∞: (a) the empirical distribution of (θti : i ∈ C∗) converges
to N (µt, τ

2
t ) and the empirical distribution of (θti : i ∈ [n]\C∗) converges to N (0, τ2

t ); (b)
{θti→j} are independent of A; (c) θti→j ≈ θti . Then it follows from (6) and K = o(n) that for
any i ∈ C∗,

E
[
θt+1
i | {θt`→i : ` 6= i}

] (b)
=

∑
`∈[n]\{i}

E [A`i] f(θt`→i, t)

=
µ√
n

∑
`∈C∗\{i}

f(θt`→i, t)

(a),(c)−−−−→
n→∞

√
λ E [f(µt + τtZ, t)] ,

and for any i ∈ [n],

var
(
θt+1
i | {θt`→i : ` 6= i}

) (b)
=

∑
`∈[n]\{i}

var (A`i) f(θt`→i, t)
2

=
1

n

∑
`∈[n]\(C∗∪{i})

f(θt`→i, t)
2 + o(1)

(a),(c)−−−−→
n→∞

E
[
f(τtZ, t)

2
]
,

where Z represents a generic standard normal random variable. Since the conditional means
and variances have deterministic limits, those are also the limits of the unconditional means
and variances. Therefore, we get the following recursive equations for t ≥ 0:

µt+1 =
√
λE [f(µt + τtZ, t)] , (7)

τt+1 = E
[
f(τtZ, t)

2
]
, (8)

where the initial conditions are µ0 = τ0 = 0. Following (Deshpande and Montanari, 2015),
we call (7) and (8) the state evolution equations. The heuristic derivation of state evolution
equations given above is certainly not rigorous mainly due to the dependency between θti→j ’s
and A. In Section 6, we present a rigorous justification of state evolution equations via the
moment method following (Deshpande and Montanari, 2015). A crucial fact that we exploit
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is the non-backtracking property of the message passing rule (5), which has the effect of
reducing the dependency between θti→j ’s and A.

Suppose, for the time being, that message distributions are Gaussian with parameters
accurately tracked by the state evolution equations. Then it is reasonable to estimate C∗

by selecting those indices i such that θt+1
i exceeds a given threshold. More specifically,

classifying an index i based on θt+1
i boils down to testing two Gaussian hypotheses with

signal-to-noise ratio µt+1

τt+1
. This gives guidance for selecting the functions f(·, t) based on µt

and τt to maximize µt+1

τt+1
. For t = 0 any choice of f is equivalent, so long as f(0, 0) > 0.

Without loss of generality, for t ≥ 1, we can assume that the variances are normalized,
namely, τt = 1 (e.g., we take f(0, 0) = 1 to make τ1 = 1) and choose f(·, t) to be the
maximizer of

max
g
{E[g(µt + Z)] : E[g(Z)2] = 1} (9)

where Z ∼ N (0, 1). By change of measure, E[g(µt + Z)] = E[g(Z)ρ(Z)], where

ρ(x) =
dN (µt, 1)

dN (0, 1)
(x) = exµt−µ

2
t /2. (10)

Clearly, the best g aligns with ρ and we obtain

f(x, t) =
ρ(x)√
E[ρ2(Z)]

= exµt−µ
2
t . (11)

With this optimized f , we have τt ≡ 1 and the state evolution (7) reduces to

µt+1 =
√
λE [f(µt + Z, t)] =

√
λe

µ2t
2 ,

or, equivalently,

µ2
t+1 = λeµ

2
t . (12)

Therefore if λ > 1/e, then (12) has no fixed point and hence µt →∞ as t→∞.

Directly carrying out the above heuristic program, however, seems challenging. To
rigorously justify the state evolution equations in Section 6, we rely on the the method of
moments, requiring f to be a polynomial, which prompts us to look for the best polynomial
of a given degree that maximizes the signal-to-noise ratio. Denoting the corresponding state
evolution by (µ̂t, τ̂t), we aim to solve the following finite-degree version of (9):

max{E[g(µ̂t + Z)] : E[g(Z)2] = 1, deg(g) ≤ d}. (13)

As shown in Lemma 7, this problem can be easily solved via Hermite polynomials, which
form an orthogonal basis with respect to the Gaussian measure, and the optimal choice,
denoted by fd(·, t), is the best degree-d L2-approximation of the the likelihood ratio (10),
which can be obtained by normalizing the first d + 1 terms in the orthogonal expansion
of (10). Compared to (Deshpande and Montanari, 2015, Lemma 2.3) which shows the
existence of a good choice of polynomial that approximates the ideal state evolution (12)
based on Taylor expansions, our approach is to find the best message-passing rule of a given
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degree which results in the following state evolution that is optimal among all polynomial
f of degree d:

µ̂2
t+1 = λ

d∑
k=0

µ̂2k
t

k!
. (14)

For any λ > 1/e, there is an explicit choice of the degree d depending only on λ denoted
by d∗(λ),5 so that µ̂t → ∞ as t → ∞ and the state evolution (14) for fixed t correctly
predicts the asymptotic behavior of the messages when n → ∞. Therefore, as discussed
above, C̃ produced by thresholding messages θti , is likely to contain a large portion of C∗,
but since K = o(n), it may (and most likely will) also contain a large number of indices not
in C∗. Following (Deshpande and Montanari, 2015, Lemma 2.4), we show that the power
iteration6 (a standard spectral method) in Algorithm 1 can remove a large portion of the
outlier vertices in C̃.

Combining message passing plus spectral cleanup yields Algorithm 1 for estimating C∗

based on the messages θti , with theoretical guarantees given in Theorem 1.

Algorithm 1 Message passing

1: Input: n,K ∈ N, µ > 0, A ∈ Rn×n, d∗, t∗ ∈ N, and s∗ > 0.
2: Initialize: θ0

i→j = 0 for all i, j ∈ [n] with i 6= j and θ0
i = 0. For t ≥ 0, define the sequence

of degree-d∗ polynomials fd∗(·, t) as per Lemma 7 and µ̂t in (14).
3: Run t∗ − 1 iterations of message passing as in (5) with f = fd∗ and compute θt

∗
i for all

i ∈ [n] as per (6).
4: Find the set C̃ = {i ∈ [n] : θt

∗
i ≥ µ̂t∗/2}.

5: (Cleanup via power method) Recall that A
C̃

denotes the restriction of A to the rows

and columns with index in C̃. Sample u0 uniformly from the unit sphere in R|C̃| and
compute ut+1 = A

C̃
ut/‖A

C̃
ut‖ for 0 ≤ t ≤ ds∗ log ne − 1. Let û = uds

∗ logne. Return Ĉ,

the set of K indices i in C̃ with the largest values of |ûi|.

Theorem 1 Fix λ > 1/e. Let K and µ depend on n in such a way that µ2K2/n → λ
and Ω(

√
n) ≤ K ≤ o(n) as n → ∞. Suppose either C∗ is deterministic with |C∗| ≡ K,

or C∗ is random such that |C∗|/K → 1 in probability as n → ∞. Suppose Assumption 1
holds for some γ > 0. Let d = d∗(λ) as in (28). For every η ∈ (0, 1), there exist explicit
positive constants t∗, s∗, c depending on λ, η and γ such that Algorithm 1 returns Ĉ satisfying
|Ĉ∆C∗| ≤ ηK, with probability converging to one as n→∞, and the total time complexity
is bounded by c(η, λ, γ)n2 log n, where c(η, λ, γ)→∞ as either η → 0 or λ→ 1/e.

Remark 2 Algorithm 1 requires the knowledge of the parameter λ to define the sequence of
polynomials fd∗(·, t) and µ̂t, and the knowledge of the parameter K in the spectral cleanup

5. See (28) and Remark 9 for the expression.
6. As far as statistical utility is concerned, we could replace û produced by the power iteration by the

leading singular vector of AC̃ , but that would incur a higher time complexity because singular value
decomposition in general takes O(n3) time to compute.
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step. To avoid the need to know K, we can simply replace the last step of the spectral clean-
up (involving choosing the K coordinates of the largest magnitude of û) by applying k-means
with k = 2 on the set {|ûi| : i ∈ C̃}. See Appendix C for details. With this modification,
Theorem 1 continues to hold as long as λ (or a lower bound thereof) is known in order to
set the degree d∗ and the iteration number t∗.

Remark 3 As pointed out in (Deshpande and Montanari, 2015, Remeark 2.5), the effective
signal-to-noise ratio λ can be potentially improved by a suitable entrywise pre-processing of
the observed matrix W . In particular, in (4) we let Aij = g(Wij) for some transformation
function g : R→ R. The optimal transformation g in the Gaussian case for which γ = 1 is
given by the maximizer of

max
g

{
E [g(µ+ Z)]− E [g(Z)] : E

[
g(Z)2

]
=

1

n

}
.

In view of (9) and (10), the optimal transformation is the scaled likelihood ratio:

Aij =
1√

n(eµ2 − 1)

(
dN (µ, 1)

dN (0, 1)
(Wij)− 1

)
=

1√
n(eµ2 − 1)

(
eWijµ−µ2/2 − 1

)
and the signal-to-noise ratio λ is increased to

λ̃ =
K2

n

(
eµ

2 − 1
)
.

If the resulting Aij is subgaussian with scale O(1/n), then Theorem 1 still applies. However,
even if the results extend, in the regime of K � √n which we are mostly interested in, we
have µ → 0 and λ̃ = λ(1 + o(1)), and thus pre-processing cannot boost the signal-to-noise
ratio asymptotically.

After the message passing algorithm and spectral cleanup are applied in Algorithm 1,
a final linear-time voting procedure is deployed to obtain weak or exact recovery, leading
to Algorithm 2 next. As in (Deshpande and Montanari, 2015), we consider a threshold
estimator for each vertex i based on a sum over Ĉ given by ri =

∑
j∈Ĉ Aij . Intuitively, ri

can be viewed as the aggregated “votes” received by the index i in Ĉ, and the algorithm
picks the set of K indices with the most significant “votes”. To show that this voting
procedure succeeds in weak recovery, a key step is to prove that ri is close to

∑
j∈C∗ Aij .

If µ = Θ(1) as in (Deshpande and Montanari, 2015), given that |Ĉ4C∗| = o(K), the error
incurred by summing over Ĉ instead of over C∗ could be bounded by truncating Aij to a
large magnitude. However, for µ→ 0 that approach fails. Our approach is to introduce the
clean-up procedure in Algorithm 2 based on the successive withholding method described
in (Hajek et al., 2017) (see also (Condon and Karp, 2001; Mossel et al., 2014) for variants
of this method). In particular, we randomly partition the set of vertices into 1/δ subsets.
One at a time, one subset, say S, is withheld to produce a reduced set of vertices Sc, on
which we apply Algorithm 1. The estimate obtained from Sc is then used by the voting
procedure to classify the vertices in S. The analysis of the two stages is decoupled because
conditioned on C∗, the outcome of Algorithm 1 depends only on ASc , which is independent
of ASSc used in the voting.
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Algorithm 2 Message passing plus voting

1: Input: n,K ∈ N, µ > 0, A ∈ Rn×n, δ ∈ (0, 1) with 1/δ, nδ ∈ N, d∗, t∗ ∈ N, and s∗ > 0.
2: Partition [n] into 1/δ subsets Sk of size nδ randomly.
3: (Approximate recovery) For each k = 1, . . . , 1/δ, run Algorithm 1 (message passing for

approximate recovery) with input
(
n(1− δ), dK(1− δ)e, µ,ASck , d

∗, t∗, s∗
)

which outputs

Ĉk.
4: (Clean up) For each k = 1, . . . , 1/δ compute ri =

∑
j∈Ĉk Aij for all i ∈ Sk and return

C ′, the set of K indices in [n] with the largest values of ri.

The following theorem provides a sufficient condition for the message passing plus voting
cleanup procedure (Algorithm 2) to achieve weak recovery, and, if an additional sufficient
condition is also satisfied, exact recovery.

Theorem 4 Suppose K and µ depend on n in such a way that µ2K2

n → λ for some fixed
λ > 1/e, and Ω(

√
n) ≤ K ≤ o(n) as n → ∞. Suppose Assumption 1 holds for some γ > 0

and |C∗| = K. Let δ > 0 be such that λe(1− δ) > 1. Define d∗ = d∗(λ(1− δ)) as per (28).
Then there exist positive constants t∗, s∗, c determined explicitly by δ, λ and γ, such that

1. (Weak recovery) Algorithm 2 returns C ′ with |C ′∆C∗|/K → 0 in probability as n →
∞.

2. (Exact recovery) Furthermore, assume that

lim inf
n→∞

√
Kµ√

2 logK +
√

2 log n
>
√
γ. (15)

Let δ > 0 be chosen such that for all sufficiently large n,

min

{
λe(1− δ), Kµ(1− 2δ)√

2Kγ logK +
√

2Kγ log(n−K) + δ
√
K

}
> 1.

Then Algorithm 2 returns C ′ with P{C ′ 6= C∗} → 0 as n→∞.

The total time complexity is bounded by c(δ, λ, γ)n2 log n, where c(δ, λ, γ)→∞ as δ → 0 or
λ→ 1/e.

Remark 5 Theorem 4 ensures Algorithm 2 achieves exact recovery if both (15) and λ > 1/e
hold; it is of interest to compare these two conditions. Note that

√
Kµ√

2 logK +
√

2 log n
=
√
λe×

√
n

8eK log n

2

(1 +
√

logK/ log n)
.

Hence, if lim infn→∞K log n/n ≥ 1/(8eγ), then lim infn→∞ logK/ log n = 1; thus (15)
implies λ > 1/e and hence (15) alone is sufficient for Algorithm 2 to succeed. If instead
lim supn→∞K log n/n ≤ 1/(8eγ), then λ > 1/e implies (15) and thus λ > 1/e alone is
sufficient for Algorithm 2 to succeed. The asymptotic regime considered in (Deshpande and

9
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Montanari, 2015) entails K = Θ(
√
n), in which case the condition λ > 1/e is sufficient for

exact recovery, as shown in (Deshpande and Montanari, 2015). The idea of upgrading weak
recovery to exact recovery via a local voting procedure has also appeared in (Abbe et al.,
2016; Mossel et al., 2015; Abbe and Sandon, 2015; Yun and Proutiere, 2015) under the
context of stochastic block models with community sizes scaling linearly in n. As shown in
(Hajek et al., 2017, Corollary 4) in the Gaussian case for which γ = 1, the condition (15),
with strict inequality replaced by greater than or equal, is necessary for exact recovery.

We finish this section by discussing the connections and distinctions to the previous work
(Deshpande and Montanari, 2015). Versions of Theorems 1 and 4 are given in (Deshpande
and Montanari, 2015) for the case K = Θ(

√
n) and µ = Θ(1). We extend the range of

K to Ω(
√
n) ≤ K ≤ o(n), showing that the message passing plus a cleanup procedure

achieves the optimal exact recovery threshold in the Gaussian case with sharp constants if
K ≥ ( 1

8e + o(1)) n
logn . The algorithms and proofs are nearly the same; we comment here on

the main difficulties we encountered when allowing K/
√
n→∞ and µ→ 0.

First, a key ingredient in the proof of Theorem 1 is Lemma 6. Its proof is based on
the moment method and a larger K requires modification of bounds from (Deshpande and

Montanari, 2015) used in calculating the moments of messages, i.e., E
[
(θti→j)

m
]

for fixed

m ∈ N, by a more careful counting argument. We refer the interested readers to Remark 31
right after the proof of Lemma 6 for more details.

Secondly, after the message passing algorithm and spectral cleanup are applied in Al-
gorithm 1, a final cleanup procedure is applied to obtain weak recovery or exact recovery
(when possible). As in (Deshpande and Montanari, 2015), we consider a threshold estima-
tor for each vertex i based on a sum over Ĉ. If K = Θ(

√
n) as assumed in (Deshpande and

Montanari, 2015), then λ being a constant implies that the mean µ is bounded away from
zero. In this case if |Ĉ4C∗| = o(K), the error incurred by summing over Ĉ instead of over
C∗ could be bounded by truncating Aij to a large magnitude ρ̄ and bounding the difference

of sums by ρ̄
∣∣C∗4Ĉ∣∣ = o(K)� µK. However, for K � √n with vanishing µ this approach

fails. Instead, we rely on the cleanup procedure in Algorithm 2 which entails running Al-
gorithm 1 for 1/δ times on subsampled vertices. A related difference we encounter is that
if K is large enough then the condition λ > 1/e alone is not sufficient for exact recovery,
but adding the information-theoretic condition (15) suffices.

Lastly, the method of moments requires f(·, t) to be a polynomial so that the exponential
function (11), which results in the ideal state evolution (12), cannot be directly applied. It
is shown in (Deshpande and Montanari, 2015, Lemma 2.3) that for any λ > 1/e and any
threshold M there exists d∗ = d∗(λ,M) so that taking f to be the truncated Taylor series of
(11) up to degree d∗ results in the state evolution µ̂t which exceeds M after some finite time
t∗(λ,M); however, no explicit formula of d∗, which is needed to instantiate Algorithm 1,
is provided. Although in principle this does not pose any algorithmic problem as d∗ can
be found by an exhaustive search in O(1) time independent of n, it is more satisfactory to
find the best polynomial message passing rule explicitly which maximizes the signal-to-noise
ratio for a given degree (Lemma 7) and provides an explicit formula of d∗ as a function of
λ only (Remark 9).

10
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3. Statistical optimality and computational considerations

3.1 Comparison with information-theoretic limits in the Gaussian case

As noted in the introduction, in the regime K = Θ(n), a thresholding algorithm based on
row sums provides weak and, if a voting procedure is also used, exact recovery whenever
it is informationally possible in the Gaussian case. In this subsection, we compare the
performance of the message passing algorithms to the information-theoretic limits on the
recovery problem in the regime (3). Throughout this section we restrict attention to the
Gaussian case, such that Zij ∼ N (0, 1) and γ = 1. Also, for converse results, we assume
the true community C∗ is a subset of [n] of cardinality K selected uniformly at random.
Notice that the comparison here takes into account the sharp constant factors. Information-
theoretic limits for the biclustering problem are discussed in Section 5.1.

Weak recovery The information-theoretic threshold for weak recovery has been deter-
mined in (Hajek et al., 2017, Theorem 2), which, in the regime of (3), boils down to the
following: If

lim inf
n→∞

Kµ2

4 log n
K

> 1, (16)

then weak recovery is possible; conversely, if weak recovery is possible, then

lim inf
n→∞

Kµ2

4 log n
K

≥ 1. (17)

This implies that the minimal signal-to-noise ratio for weak recovery is

λ ≥ (4 + ε)
K

n
log

n

K

for any ε > 0, which vanishes in the sublinear regime of K = o(n). In contrast, in the regime
of (3), message passing (Algorithm 1) demands a non-vanishing signal-to-noise ratio, namely,
λ > 1/e, to achieve weak recovery. No polynomial-time algorithm is known to succeed if
λ ≤ 1/e, suggesting that computational complexity might incur a severe penalty on the
statistical optimality when K = o(n).

Exact recovery When the submatrix size satisfies (3), if (15) with γ = 1 holds, then
exact recovery is possible; conversely, if exact recovery is possible, then

lim inf
n→∞

√
Kµ√

2 logK +
√

2 log n
≥ 1. (18)

See (Hajek et al., 2017, Corollary 4). This implies that the minimal signal-to-noise ratio
for exact recovery is

λ ≥ (2 + ε)
K

n

(√
log n+

√
logK

)2
(19)

for any ε > 0. Consequently, we find that the critical submatrix size for which message
passing (plus cleanup) can achieve optimal exact recovery is n

logn . Specifically,

11
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• K = ω
(

n
logn

)
. In this regime, the right hand side of (19) goes to ∞ and hence

the minimal signal-to-noise ratio for exact recovery is much higher than that of weak
recovery via message passing, namely, 1/e. Thus, exact recovery can be attainable in
polynomial-time by message-passing plus voting clean-up (Algorithm 2).

• K = Θ( n
logn). In this regime, if we let K = ρn

logn , the right hand side of (19) is at least

1/e if ρ ≥ 1
8e and strictly less than 1/e otherwise. In view of Theorem 4, we conclude

that message passing plus voting cleanup (Algorithm 2) achieves the sharp threshold
of exact recovery if

K ≥
(

1

8e
+ o(1)

)
n

log n
. (20)

• K = o
(

n
logn

)
. In this regime, the right hand side of (19) is o(1). No polynomial-

time algorithm (including semidefinite programming relaxation (Hajek et al., 2016))
is known to achieve weak, let alone exact, recovery, when λ = o(1).

A counterpart of this conclusion for the biclustering problem is obtained in Remark 20
in terms of the submatrix sizes.

3.2 Comparison with the spectral limit

It is reasonable to conjecture that λ > 1 is the spectral limit for recoverability by spectral
estimation methods. This conjecture is rather vague, because it is difficult to define what
constitutes spectral methods. Nevertheless, some evidence for this conjecture is provided
by (Deshpande and Montanari, 2015, Proposition 1.1), which, in turn, is based on results
on the spectrum of a random matrix perturbed by adding a rank-one deterministic matrix
(Knowles and Yin, 2013, Theorem 2.7).

The message passing framework used in this paper itself provides some evidence for
the conjecture. Indeed, if f(x, 0) ≡ 1 and f(x, t) = x for all t ≥ 1, the iterates θt are
close to what is obtained by iterated multiplication by the matrix A, beginning with the all
one vector, which is the power method for computation of the eigenvector corresponding
to the principal eigenvalue of A.7 To be more precise, with this linear f the message
passing equation (5) can be expressed in terms of powers of the non-backtracking matrix

B ∈ R(n2)×(n2) associated with the matrix A, defined by Bef = Ae1,e21{e2=f1}1{e1 6=f2}, where

e = (e1, e2) and f = (f1, f2) are directed pairs of indices. Let Θt ∈ Rn(n−1) denote the
messages on directed edges with Θt

e = θte1→e2 . Then, (5) simply becomes Θt = Bt1. To
evaluate the performance of this method, we turn to the state evolution equations (7) and
(8), which yield µt = λt/2 and τt = 1 for all t ≥ 1. Therefore, by a simple variation of
Algorithm 1 and Theorem 1, if λ > 1, the linear message passing algorithm can provide
weak recovery.

For the submatrix detection problem, namely, testing µ = 0 (pure noise) versus µ > 0,
as opposed to support recovery, if λ is fixed with λ > 1, a simple thresholding test based

7. If we included i, j in the summation in (5) and (6), then we would have θt = At1 exactly. Since the
entries of A are OP (1/

√
n), we expect this only incurs a small difference to the sum for finite number of

iterations.

12
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on the largest eigenvalue of the matrix A provides detection error probability converging to
zero (Féral and Péché, 2007), while if λ < 1 no test based solely on the eigenvalues of A
can achieve vanishing probability of error (Montanari et al., 2015). It remains, however, to
establish a solid connection between the detection and estimation problem for submatrix
localization for spectral methods.

3.3 Computational barriers in the Gaussian case

A recent line of work (Kolar et al., 2011; Ma and Wu, 2015; Chen and Xu, 2014; Cai
et al., 2017) has uncovered a fascinating interplay between statistical optimality and com-
putational efficiency for the recovery problem and the related detection and estimation
problem.8 Assuming the hardness of the planted clique problem, rigorous computational
lower bounds have been obtained in (Ma and Wu, 2015; Cai et al., 2017) through reduction
arguments in the Gaussian case. In particular, it is shown in (Ma and Wu, 2015) that
when K = nα for 0 < α < 2/3, merely achieving the information-theoretic limits of de-
tection within any constant factor (let alone sharp constants) is as hard as detecting the
planted clique; the same hardness also carries over to exact recovery in the same regime.
Furthermore, it is shown that the hardness of estimating this type of matrix, which is both
low-rank and sparse, highly depends on the loss function (Ma and Wu, 2015, Section 5.2).
For example, for K = Θ(

√
n), entry-wise thresholding attains an O(log n) factor of the

minimax mean-square error; however, if the error is gauged in squared operator norm in-
stead of Frobenius norm, attaining an O(

√
n/ log n) factor of the minimax risk is as hard

as solving planted clique. Similar reductions have been shown in (Cai et al., 2017) for exact
recovering of the submatrix of size K = nα and the planted clique recovery problem for any
0 < α < 1.

The results in (Ma and Wu, 2015; Cai et al., 2017) revealed that the difficulty of sub-
matrix localization crucially depends on the size and planted clique hardness kicks in if
K = n1−Θ(1). In search of the exact phase transition point where statistical and computa-
tional limits depart, we further zoom into the regime of K = n1−o(1). We showed in (Hajek
et al., 2016) no computational gap exists in the regime K = ω(n/ log n), since a semidefinite
programming relaxation of the maximum likelihood estimator can achieve the information
limit for exact recovery with sharp constants. The current paper further pushes the bound-
ary to K ≥ n

logn( 1
8e + o(1)), in which case the sharp information limits can be attained in

nearly linear-time via message passing plus clean-up. However, as soon as K ≤ n
logn( 1

8e − ε)
for any ε > 0, a gap emerges between the statistical limits and the sufficient condition of
message passing plus clean-up, given by λ > 1/e.

4. Proofs of algorithm correctness

We first justify the state evolution equations via the following key lemma, which establishes
the asymptotic normality of the empirical distribution of messages with mean and variance
given by (7) and (8). A version of this lemma is proved in (Deshpande and Montanari,

8. The papers (Kolar et al., 2011; Ma and Wu, 2015; Chen and Xu, 2014; Cai et al., 2017) considered the
biclustering version of the submatrix localization problem (1).
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2015) by assuming µ = Θ(1) and K = Θ(
√
n). The proof is given in Section 6 using the

method of moments, closely following (Deshpande and Montanari, 2015).

Lemma 6 Let f(·, t) be a finite-degree polynomial for each t ≥ 0. Let K and µ depend on

n such that K2µ2

n ≡ λ for some λ > 0 and Ω(
√
n) ≤ K ≤ o(n). Suppose Assumption 1 holds

for some γ > 0, and suppose either C∗ is deterministic with |C∗| ≡ K, or C∗ is random
such that |C∗|/K → 1 in probability as n→∞. Let A = W/

√
n and set θ0

i→j = 0. Consider
the message passing algorithm defined by (5) and (6). Then for each fixed t, as n→∞,

dKS

(
1

|C∗|
∑
i∈C∗

δθti , N (µt, τ
2
t )

)
p→ 0,

dKS

(
1

n− |C∗|
∑
i/∈C∗

δθti , N (0, τ2
t )

)
p→ 0,

where µt and τt are defined in (7) and (8), respectively; 1
|C∗|

∑
i∈C∗ δθti and 1

n−|C∗|
∑

i/∈C∗ δθti
are the empirical distributions of θti for i ∈ C∗ and i /∈ C∗, respectively.

Next we prove Theorems 1-4. Lemma 6 implies that if i ∈ C∗, then θti ∼ N (µt, τ
2
t ); if

i /∈ C∗, then θti ∼ N (0, τ2
t ). Ideally, one would pick the optimal f(x, t) = eµt(x−µt) which

result in the optimal state evolution µt+1 =
√
λeµ

2
t /2 and τt = 1 for all t ≥ 1. Furthermore,

if λ > 1/e, then µt →∞ as t→∞, and thus we can hope to estimate C∗ by selecting the
indices i such that θti exceeds a certain threshold. The caveat is that Lemma 6 needs f to
be a polynomial of finite degree. Next we proceed to find the best degree-d polynomial for
iteration t, denoted by fd(·, t), which maximizes the signal to noise ratio.

Recall that the Hermite polynomials {Hk : k ≥ 0} are the orthogonal polynomials with
respect to the standard normal distribution (cf. (Szegö, 1975, Section 5.5)), given by

Hk(x) = (−1)k
ϕ(k)(x)

ϕ(x)
=

bk/2c∑
i=0

(−1)i(2i− 1)!!

(
k

2i

)
xk−2i, (21)

where ϕ denotes the standard normal density and ϕ(k)(x) is its k-th derivative; in particular,
H0(x) = 1, H1(x) = x,H2(x) = x2 − 1. Furthermore, deg(Hk) = k and {H0, . . . ,Hd} span
all polynomials of degree at most d. For Z ∼ N (0, 1), E[Hm(Z)Hn(Z)] = m!δm=n and

E[Hk(µ + Z)] = µk for all µ ∈ R; hence the relative density dN (µ,1)
dN (0,1) (x) = eµx−µ

2/2 admits
the following expansion:

eµx−µ
2/2 =

∞∑
k=0

Hk(x)
µk

k!
. (22)

Truncating and normalizing the series at the first d+1 terms immediately yields the solution
to (13) as the best degree-d L2-approximation to the relative density, described as follows:

Lemma 7 Fix d ∈ N and define µ̂t according to the iteration (14) with µ̂0 = 0, namely,

µ̂2
t+1 = λGd(µ̂

2
t ), Gd(µ) =

d∑
k=0

µk

k!
. (23)
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Define

fd(x, t) =
d∑

k=0

akHk(x), (24)

where ak , µ̂kt
k! (
∑d

k=0
µ̂2kt
k! )−1/2. Then fd(·, t) is the unique maximizer of (13) and the state

evolution (7) and (8) with f = fd coincides with τt = 1 and µt = µ̂t. Furthermore, for any
d ≥ 2 the equation

Gd(a) = aGd−1(a) (25)

has a unique positive solution, denoted by a∗d. Let

λ∗d =
1

Gd−1(a∗d)
(26)

and define λ∗1 = 1. Then

1. for any d ∈ N and any λ > λ∗d, µ̂t →∞ as t→∞ and hence for any M > 0,

t∗(λ,M) = inf{t : µ̂t > M} (27)

is finite;

2. λ∗d ↓ 1/e monotonically as d→∞ according to λ∗d = 1/e+ 1/e2+o(1)
(d+1)! .

Remark 8 The best affine update gives λ∗1 = 1; for the best quadratic update, a∗2 =
√

2 and
hence λ∗2 = 1

1+
√

2
≈ 0.414. More values of the threshold are given below, which converges to

1/e ≈ 0.368 rapidly.

d 1 2 3 4 5

λ∗d 1 0.414 0.376 0.369 0.368

Remark 9 Let
d∗(λ) = inf{d ∈ N : λ∗d < λ}, (28)

which is finite for any λ > 1/e. Then for any d ≥ d∗, µ̂t →∞ as t→∞. As λ approaches
the critical value 1/e, the degree d∗(λ) blows up according to d∗(λ) = Θ(log 1

λe−1/ log log 1
λe−1),

as a consequence of the last part of Lemma 7.

Remark 10 (Best affine message passing) For d = 1, the best state evolution is given
by

µ̂2
t+1 = λ(1 + µ̂2

t )

and the corresponding optimal update rule is

f1(x, t) =
1 + µ̂tx√

1 + µ̂2
t

.

This is strictly better than f(x, t) = x described in Section 3.2 which gives µ̂2
t+1 = λµ̂2

t ;
nevertheless, in order to have µ̂t →∞ we still need to assume the spectral limit λ ≥ 1.
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Proof [Proof of Lemma 7] Note that any degree-d polynomial g can be written in terms of
the linear combination:

fd(x, t) =
d∑

k=0

ckHk(x),

where the coefficients {ck} satisfy E[g2(Z)] =
∑d

k=0 k!c2
k = 1. By a change of measure,

E[g(µ̂t + Z)] = E[g(Z)eµ̂tZ−µ̂
2
t /2] =

∑d
k=0 ckµ̂

k
t , in view of the orthogonal expansion (22).

Thus, to solve the maximization problem (13), it is equivalent to solving

max
ck

{
d∑

k=0

ckµ̂
k
t :

d∑
k=0

k!c2
k = 1

}
.

By Cauchy-Schwarz inequality, the optimal coefficients and the optimal polynomial fd(·, t)
are given by (24), resulting in the following state evolution

µ̂t+1 =
√
λmax{E[g(µ̂t + Z)] : E[g(Z)2] = 1,deg(g) ≤ d} =

(
λ

d∑
k=0

µ̂2k
t

k!

)1/2

,

which is equivalent to (23).
Next we analyze the behavior of the iteration (23). The case of d = 1 follows from the

obvious fact that µ̂2
t+1 = λ(µ̂2

t + 1) diverges if and only if λ ≥ 1. For d ≥ 2, note that Gd
is a strictly convex function with Gd(0) = 1 and G′d = Gd−1. Also, (Gd(a)− aGd−1(a))′ =
−aG′′d(a) < 0. Thus, Gd(a)−aGd−1(a) is strictly decreasing on a > 0 with value 1

d! at a = 1
and limit −∞ as a → ∞, so (25) has a unique positive solution a∗d and it satisfies a∗d > 1.

Furthermore, (Gd(a)− aGd−1(a))′
∣∣
a=1

= −∑d−2
k=0

1
k! , so by Taylor’s theorem,

Gd(a)− aGd−1(a) =
1

d!
− (a− 1)

d−2∑
k=0

1

k!
+O((a− 1)2),

yielding

a∗d = 1 +
1

d!
∑d−2

k=0
1
k!

+O(1/(d!)2).

Consider next the values of λ such that µ̂t diverges. For very large λ, Gd(a) dominates a/λ
pointwise and µ̂t diverges. The critical value of λ is when Gd(a) and a/λ meet tangentially,
namely,

λGd−1(a) = 1, λGd(a) = a,

whose solution is given by a = a∗d and λ = λ∗d, where

λ∗d ,
1

Gd−1(a∗d)
=

1

Gd−1(1) +G′d−1(1)(a∗d − 1) +O((a∗d − 1)2)

=
1∑d

k=0
1
k! +O(1/(d!)2)

= 1/e+

∑∞
k=d+1 1/k! +O(1/(d!)2)

e
∑d

k=0 1/k!

= 1/e+
1/e2 + o(1)

(d+ 1)!
.

16



Submatrix localization via message passing

Thus, λ∗d is the minimum value such that for all λ > λ∗d, λGd(a) > a for all a > 0, so that
starting from any µ̂t ≥ 0 we have µ̂t → ∞ monotonically. The fact λ∗d is decreasing in d
follows from the fact Gd is pointwise increasing in d.

Lemmas 6 and 7 immediately imply the following partial recovery results.

Lemma 11 Assume that λ > 1/e and Ω(
√
n) ≤ K ≤ o(n). Fix any ε ∈ (0, 1). Let

M =
√

8 log(1/ε) and run the message passing algorithm for t iterations with f = fd∗,

d∗ = d∗(λ) as in (28), and t = t∗(λ,M) as in (27). Let C̃ = {i : θt
∗
i ≥ µ̂t∗/2}. Then with

probability converging to one as n→∞,
1

K
|C̃ ∩ C∗| ≥ 1− ε (29)

K(1− ε) ≤ |C̃| ≤ nε. (30)

Proof Notice that

|C̃ ∩ C∗| =
∑
i∈C∗

1{θt∗i ≥µ̂t∗/2}.

By the choice of f = fd in (24), we have τt = 1 for all t ≥ 1. It follows from Lemma 6 that

lim
n→∞

1

K
|C̃ ∩ C∗| = P {µ̂t∗ + Z ≥ µ̂t∗/2} , (31)

where the convergence is in probability. Notice that we have used d = d∗(λ) and t = t∗(λ,M)
defined by (28) and (27) in Lemma 7. Thus µ̂t∗ ≥M =

√
8 log(1/ε) and

P {µ̂t∗ + Z ≤ µ̂t∗/2} = Q(µ̂t∗/2) ≤ e−µ̂2t∗/8 ≤ ε,

which, in view of (31), implies (29) with probability converging to one as n→∞. Similarly,
Lemma 6 implies that in probability

lim
n→∞

1

n
|C̃\C∗| = P {Z ≥ µ̂t∗/2} = Q(µ̂t∗/2) ≤ ε. (32)

Since K = o(n), we have P{K(1− ε) ≤ |C̃| ≤ nε} → 1.

Although C̃ contains a large portion of C∗, since |C̃| is linear in n with high probability,
i.e., |C̃|/n→ Q(µ̂t∗/2) by Lemma 6, it is bound to contain a large number of outlier indices.
The next lemma, closely following (Deshpande and Montanari, 2015, Lemma 2.4), shows
that given the conclusion of Lemma 11, the power iteration in Algorithm 1 can remove most
of the outlier indices in C̃. Its proof is presented in Appendix B.

Lemma 12 Suppose λ = µ2K2

n ≥ 1/e, K → ∞, |C∗|/K → 1 in probability, and C̃ is
a set (possibly depending on A) such that (29) – (30) hold for some 0 < ε < ε0, where
0 < ε0 ≤ 1/2 is determined by 1− ε0 = 8e

√
4γh(ε0) + 10γε0. Let

s∗ =
2

log(
√
λ(1− ε)/(8

√
4eγh(ε) + 10eγε))

, (33)
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where h(ε) , ε log 1
ε + (1− ε) log 1

1−ε is the binary entropy function. Then Ĉ with |Ĉ| ≡ K

produced by Algorithm 1 returns |Ĉ∆C∗| ≤ η(ε, λ, γ)K, with probability converging to one
as n→∞, where

η(ε, λ, γ) = 2ε+ eγ
4608h(ε) + 11520ε

λ(1− ε)2
. (34)

Proof [Proof of Theorem 1] Given η ∈ (0, 1), choose an arbitrary ε ∈ (0, ε0) such that
η(ε, λ, γ) defined in (34) is at most η. With t∗ specified in Lemma 11 and s∗ specified in
Lemma 12, the probabilistic performance guarantee in Theorem 1 readily follows by com-
bining Lemmas 11 and 12. The time complexity of Algorithm 1 follows from the fact that
for both the BP algorithm and the power method each iteration has complexity O(n2) and
Algorithm 1 entails running BP and the power method for t∗ and ds∗ log ne iterations re-
spectively; both t∗ and s∗ are constants depending only on η, λ, and γ.

Proof [Proof of Theorem 4] (Weak recovery) Fix k ∈ [1/δ] and let C∗k = C∗∩Sck. Define the
n(1−δ)×n(1−δ) matrix Ak , ASck , which corresponds to the submatrix localization problem
for a planted community C∗k whose size has a hypergeometric distribution, resulting from
sampling without replacement, with parameters (n,K, (1− δ)n) and mean (1− δ)K. By a
result of (Hoeffding, 1963), the distribution of |C∗k | is convex order dominated by the distri-
bution that would result from sampling with replacement, namely, the Binom

(
n(1− δ), Kn

)
distribution. In particular, Chernoff bounds for Binom(n(1 − δ), Kn ) also hold for |C∗k |, so

|C∗k |/((1 − δ)K) → 1 in probability as n → ∞. Note that ((1−δ)K)2µ2

n(1−δ) → λ(1 − δ) and

λ(1− δ)e > 1 by the choice of δ. Let d∗(λ(1− δ)) be given in (28), i.e.,

d∗(λ(1− δ)) = inf{d ∈ N : λ∗d < λ(1− δ)}.

Choose an arbitrary ε ∈ (0, ε0) to satisfy η(ε, λ(1− δ), γ) ≤ δ, i.e.,

2ε+ eγ
4608h(ε) + 11520ε

λ(1− δ)(1− ε)2
≤ δ.

Define µ̂t recursively according to (14) with λ replaced by λ(1− δ) and µ̂0 = 0, i.e.,

µ̂2
t+1 = λ(1− δ)

d∑
k=0

µ̂2k
t

k!
.

Define t∗(δ, λ, γ) according to (27) with M = 8 log(1/ε), and s∗(δ, λ, γ) according to (33)
with λ replaced by λ(1 − δ). Then Theorem 1 with n and K replaced by n(1 − δ) and
dK(1− δ)e implies that as n→∞,

P
{
|Ĉk4C∗k | ≤ δK for 1 ≤ k ≤ 1/δ

}
→ 1.

Given (C∗k , Ĉk), each of the random variables ri
√
n for i ∈ Sk is conditionally subgaussian

with proxy variance at most Kγ. Furthermore, on the event, Ek = {|Ĉk4C∗k | ≤ δK},

|Ĉk ∩ C∗k | ≥ |Ĉk| − |Ĉk4C∗k | = dK(1− δ)e − |Ĉk4C∗k | ≥ K(1− 2δ).

18



Submatrix localization via message passing

Therefore, on the event Ek, for i ∈ Sk ∩ C∗, ri
√
n has mean greater than or equal to

K(1− 2δ)µ, and for i ∈ Sk\C∗, ri has mean zero.

Define the following set by thresholding

C ′o = {i ∈ [n] : ri ≥ (1− 2δ)
√
λ/2}

The number of indices in Sk incorrectly classified by C ′o ∩ Sk satisfies (use |Sk| = δn):

E
[∣∣(C ′o ∩ Sk)∆(C∗ ∩ Sk)

∣∣] ≤ δne−Ω(n/K),

where the last inequality follows because ri is subgaussian with proxy variance at most
γK/n. Summing over k ∈ [1/δ] yields E [|C ′o∆C∗|] ≤ ne−Ω(n/K). By Markov’s inequality,

P
{
|C ′o∆C∗| ≥ K2/n

}
≤ n2

K2
e−Ω(n/K) K=o(n)

= o(1).

Instead of C ′o, Algorithm 2 outputs C ′ which selects the K indices in [n] with the largest
values of ri. Applying the same argument as that at the end of the proof of Lemma 12, we
get |C∗4C ′| ≤ 2|C∗4C ′o|+ ||C∗| −K|, and hence |C∗4C ′|/K → 0 in probability.

(Exact recovery) By the union bound and Chernoff’s bound for subgaussian random
variables, the maximum of m subgaussian random variables Xi with zero mean and proxy
variance at most γ satisfies that

P
{

max
1≤i≤m

Xi ≥
√
γ
(√

2 logm+ t
)}
≤ m exp

(
−
(√

2 logm+ t
)2
/2

)
= exp

(
−t
√

2 logm− t2/2
)
.

It follows that max1≤i≤mXi is at most
√

2γ logm + oP (1) as m → ∞. Also, for k ∈ [1/δ],
|Sk ∩ C∗| ≤ |C∗| = K and |Sk\C∗| ≤ |[n]\C∗| = n−K. Therefore,

min
i∈Sk∩C∗

ri
√
n ≥ K(1− 2δ)µ−

√
2Kγ logK + oP (

√
K) (35)

max
j∈Sk\C∗

ri
√
n ≤

√
2Kγ log(n−K) + oP (

√
K). (36)

Since k ranges over a finite number of values, namely, [1/δ], (35) and (36) continue to hold
with left-hand sides replaced by mini∈C∗ ri

√
n and maxj /∈C∗ ri

√
n, respectively. Therefore,

by the choice of δ, mini∈C∗ ri
√
n > maxj∈[n]\C∗ ri

√
n with probability converging to one as

n→∞ and so C ′ = C∗ with probability converging to one as well.

(Time complexity) The running time of Algorithm 2 is dominated by invoking Algorithm
1 for a constant number, 1/δ, of times, and the number of iterations within Algorithm 1
is (t∗ + s∗ log n)n2, with both t∗ and s∗ → ∞ as either δ → 0 or λ → 1/e. In particular,
the threshold comparisons require O(n2) computations. Thus, the total complexity of Al-
gorithm 2 is as stated in the theorem.
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5. The Gaussian biclustering problem

We return to the biclustering problem where the goal is to locate a submatrix whose
row and column support need not coincide. Consider the model (1) parameterized by
(n1, n2,K1,K2, µ) indexed by a common n with n → ∞. In Section 5.1 we present the
information limits for weak and exact recovery for the Gaussian bicluster model. The sharp
conditions given for exact recovery are from (Butucea et al., 2015), and calculations from
(Butucea et al., 2015) with minor adjustment provide conditions for weak recovery as well.
Section 5.2 shows how the optimized message passing algorithm and its analysis can be
extended from the symmetric case to the asymmetric case for biclustering and compares
its performance to the fundamental limits. As originally observed in (Hajek et al., 2017)
for recovering the principal submatrix, the connection between weak and exact recovery via
the voting procedure extends to the biclustering problem as well. Note that for the sake
of simplicity, we focus on Gaussian biclustering where the noise matrix Z is Gaussian; the
results can be readily extended to the case where Z has subguassian entries as we did in
the symmetric case.

5.1 Information-theoretic limits for Gaussian biclustering

Information-theoretic conditions ensuring exact recovery of both C∗1 and C∗2 by the maxi-
mum likelihood estimator (MLE), i.e.,

(ĈMLE
1 , ĈMLE

2 ) = arg max
|C1|=K1

|C2|=K2

∑
i∈C1
j∈C2

Wij

are obtained in (Butucea et al., 2015). While (Butucea et al., 2015) does not focus on
conditions for weak recovery, the calculations therein combined with the voting procedure
for exact recovery described in (Hajek et al., 2017) in fact resolve the information limits for
both weak and exact recovery in the bicluster Gaussian model. Throughout this section we
assume that Ki = o(ni) for i = 1, 2. For the converse results we assume C∗i is a subset of
[ni] of cardinality Ki selected uniformly at random for i = 1, 2, with C∗1 independent of C∗2 .
Let

λi =
K2
i µ

2

ni
, for i = 1, 2.

Theorem 13 (Weak recovery thresholds for Gaussian biclustering)
If

lim inf
n→∞

µ
√
K1K2√

2(K1 log(n1/K1) +K2 log(n2/K2))
> 1, (37)

then both C∗1 and C∗2 can be weakly recovered by the MLE. Conversely, if both C∗1 and C∗2
can be weakly recovered by some estimator, then

lim inf
n→∞

µ
√
K1K2√

2(K1 log(n1/K1) +K2 log(n2/K2)
≥ 1. (38)
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If C∗2 (C∗1 ) can be weakly recovered, one can further obtain exact recovery of C∗1 (C∗2 )
via a voting cleanup procedure similar to Algorithm 2; it uses the method of successive
withholding. We give the voting procedure in Algorithm 3 for exact recovery of C∗1 based
on weak recovery of C∗2 ; exact recovery of C∗2 based on weak recovery of C∗1 is analogous.

Algorithm 3 Weak recovery of C∗2 plus cleanup for exact recovery of C∗1

1: Input: n1, n2,K1,K2 ∈ N, µ > 0, A ∈ Rn1×n2 , δ ∈ (0, 1) with 1/δ, n1δ ∈ N.
2: (Partition) Partition [n1] into 1/δ subsets Sk of size n1δ randomly.
3: (Approximate recovery) For each k = 1, . . . , 1/δ, let Ak denote the restriction of A to

the rows with index in Sck, run an estimator capable of weak recovery of C∗2 with input

(n1(1− δ), n2, dK1(1− δ)e,K2, µ,Ak) which outputs Ĉ2k.
4: (Clean up) For each k = 1, . . . , 1/δ compute ri =

∑
j∈Ĉ2k

Aij for all i ∈ Sk and return

C ′1, the set of K indices in [n1] with the largest values of ri.

Theorem 14 (Exact recovery thresholds for Gaussian biclustering)
If for some small δ > 0, C∗2 can be weakly recovered even if a fraction δ of the rows of the
matrix are hidden, and if

lim inf
n→∞

√
K2µ√

2 logK1 +
√

2 log n1
> 1, (39)

then C∗1 can be exactly recovered by the voting procedure. Conversely, if C∗1 can be exactly
recovered by some estimator, then

lim inf
n→∞

√
K2µ√

2 logK1 +
√

2 log n1
≥ 1. (40)

Similarly, if for some small δ > 0, C∗1 can be weakly recovered even if a fraction δ of the
columns of the matrix are hidden, and if

lim inf
n→∞

√
K1µ√

2 logK2 +
√

2 log n2
> 1, (41)

then C∗2 can be exactly recovered by the voting procedure. Conversely, if C∗2 can be exactly
recovered by some estimator, then

lim inf
n→∞

√
K1µ√

2 logK2 +
√

2 log n2
≥ 1. (42)

The proofs of Theorems 13 and 14 are given in Appendix D. The sufficient conditions
involving δ in Theorem 14 require a certain robustness of the estimator for weak recovery.
If the rows indexed by a set S, with S ⊂ [n1] and |S| = δn1, are hidden, then the observed
matrix has dimensions n1(1−δ)×n2 and the planted submatrix has K1−|S∩C∗1 | ≈ K1(1−δ)
rows and K2 columns. It is shown in (Hajek et al., 2017, Section IV.B) that the MLE has
this robustness property for weak recovery of a principal submatrix, and a similar extension
can be established for weak recovery for biclustering. The estimator used is the MLE based
on the assumption that the submatrix to be found has shape K1(1 − δ) × K2. With that
extension in hand, the following corollary is a consequence of the two theorems, and it
recovers the main result of (Butucea et al., 2015).
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Corollary 15 If (37), (39), and (41) hold, then C∗1 and C∗2 can both be exactly recovered
by the MLE. Conversely, if exact recovery is possible, then (38), (40), and (42) hold.

We conclude this subsection with a few remarks on Theorems 13 and 14:

1. If n1 = n2 and K1 = K2, the sufficient conditions and the necessary conditions for
weak and for exact recovery, respectively, are identical to those in (Hajek et al., 2017)
for the recovery of a K ×K principal submatrix with elevated mean, in a symmetric
n × n Gaussian matrix. Basically, in the bicluster problem the data matrix provides
roughly twice the information (because the matrix is not symmetric) and there is
twice the information to be learned, namely C∗1 and C∗2 instead of only C∗, and the
factors of two cancel to yield the same conditions. It therefore follows from (Hajek

et al., 2017, Remark 7), that if n1 = n2 and K1 = K2 ≤ n
1/9
1 , then (37) implies (39)

and (41); in this regime, (37) alone is the sharp condition for both weak and exact
recovery.

2. If λi =
K2
i µ

2

ni
are two fixed positive constants and if K1 � K2, then (37) holds for all

sufficiently large n, so weak recovery is information theoretically possible. In contrast,
our proof that the optimized message passing algorithm provides weak recovery in this
regime requires (λ1, λ2) ∈ G, where G is defined in (52) in the next subsection.

5.2 Message passing algorithm for the Gaussian biclustering model

Suppose ni →∞ and Ω(
√
ni) ≤ Ki ≤ o(ni) for i ∈ {0, 1}, as n→∞. The belief propagation

algorithm and our analysis of it for recovery of a single set of indices can be naturally adapted
to the biclustering model.

Let f(·, t) : R → R be a scalar function for each iteration t. To be definite, we shall
describe the algorithm such that at each iteration, the messages are passed either from the
row indices to the column indices, or vice-versa, but not both. The messages are defined as
follows for t ≥ 0 :

(t even) θt+1
i→j =

1√
n2

∑
`∈[n2]\{j}

Wi`f(θt`→i, t), ∀i ∈ [n1], j ∈ [n2] (43)

(t odd) θt+1
j→i =

1√
n1

∑
`∈[n1]\{i}

W`jf(θt`→j , t), ∀j ∈ [n2], i ∈ [n1], (44)

with the initial condition θ0
`→i = 0 for (`, i) ∈ [n2] × [n1]. Moreover, let the aggregated

beliefs be given by

(t even) θt+1
i =

1√
n2

∑
`∈[n2]

Wi`f(θt`→i, t), ∀i ∈ [n1] (45)

(t odd) θt+1
j =

1√
n1

∑
`∈[n1]

W`jf(θt`→j , t), ∀j ∈ [n2]. (46)

Recall λi =
K2
i µ

2

ni
for i = 1, 2. Suppose as n→∞, for t even (odd), θti is approximately

N (µt, τt) for i ∈ C∗1 (i ∈ C∗2 ) and N (0, τt) for i ∈ [n1]\C∗1 (i ∈ [n2]\C∗2 ). Then similar to
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the symmetric case, the update equations of message passing and the fact that θti→j ≈ θti
for all i, j suggest the following state evolution equations for t ≥ 0:

µt+1 =

{√
λ2E [f(µt + τtZ, t)] t even√
λ1E [f(µt + τtZ, t)] t odd

(47)

τt+1 = E
[
f(τtZ, t)

2
]
. (48)

The optimal choice of f for maximizing the signal-to-noise ratio µt+1

τt+1
is again f(x, t) =

exµt−µ
2
t . With this optimized f , we have τt+1 = 1 and the state evolution equations reduce

to

µ2
t+1 =

{
λ2e

µ2t t even

λ1e
µ2t t odd

(49)

with µ0 = 0.
To justify the state evolution equations, we rely on the method of moments, requiring

f to be polynomial. Thus, we choose f = fd(·, t) as per Lemma 7, which maximizes the
signal-to-noise ratio among all polynomials with degree up to d. With f = fd, we have
τt+1 = 1 and the state evolution equations reduce to

µ̂2
t+1 =

{
λ2Gd(µ̂

2
t ) t even

λ1Gd(µ̂
2
t ) t odd

(50)

where Gd(µ) =
∑d

k=0
µk

k! .
Combining message passing with spectral cleanup, we obtain the following algorithm for

estimating C∗1 and C∗2 .

Algorithm 4 Message passing for biclustering

1: Input: n1, n2,K1,K2 ∈ N, µ > 0, W ∈ Rn1×n2 , d∗ ∈ N, t∗ ∈ 2N, and s∗ > 0.
2: Initialize: θ0

`→i = 0 for (`, i) ∈ [n2] × [n1]. For t ≥ 0, define the sequence of degree-d∗

polynomials fd∗(·, t) as per Lemma 7 and µ̂t according to (50).
3: Run t∗ iterations of message passing as in (43) and (44) with f = fd∗ and compute θt

∗
i

for all i ∈ [n1] as per (45) and θt
∗+1
j for all j ∈ [n2] as per (46).

4: Find the sets C̃1 = {i ∈ [n1] : θt
∗
i ≥ µ̂t∗/2} and C̃2 = {j ∈ [n2] : θt

∗+1
j ≥ µ̂t∗+1/2}.

5: (Cleanup via power method) Denote the restricted matrix W
C̃1C̃2

by W̃ . Sample u0

uniformly from the unit sphere in R|C̃1| and compute ut+2 = W̃W̃>ut/‖W̃W̃>ut‖, for t
even and 0 ≤ t ≤ 2ds∗ log(n1n2)e − 2. Let û = u2ds∗ log(n1n2)e. Return Ĉ1, the set of K1

indices i in C̃1 with the largest values of |ûi|. Compute the power iteration with W̃>W̃
for odd values of t and return Ĉ2 similarly.

We now turn to the performance of Algorithm 4. Let

G = {(λ1, λ2) : µt →∞}, (51)

Gd = {(λ1, λ2) : µ̂t →∞}. (52)
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As d→∞, Gd(µ)→ eµ uniformly over bounded intervals. It suggests that if (λ1, λ2) ∈ G,
then there exists a d∗(λ1, λ2) such that (λ1, λ2) ∈ Gd∗ and hence µ̂t → ∞ as t → ∞. The
following lemma confirms this intuition.

Lemma 16 For d ≥ 1, Gd ⊂ Gd+1 with G1 = {(λ1, λ2) : λ1λ2 ≥ 1}, and ∪∞d=1Gd = G.

Proof By definition, G1(x) = 1 + x and thus for t even, µ̂2
t+2 = λ1(1 + λ2(1 + µ̂2

t )).
As a consequence, µ̂t → ∞ if and only if λ1λ2 ≥ 1, proving the claim for G1. Let
φd(x) , λ1Gd(λ2Gd(x)) so that µ̂2

t+2 = φd(µ̂
2
t ) for t even . The fact Gd ⊂ Gd+1 ⊂ G

follows from the fact φd(x) is increasing in d and φd(x) < φ(x), where φ is defined in Re-
mark 17. To prove ∪∞d=1Gd = G, fix (λ1, λ2) ∈ G. It suffices to show that (λ1, λ2) ∈ Gd for d
sufficiently large. Since φ2(x)/x2 →∞ as x→∞, there exists an absolute constant x0 > 1
such that φd(x) ≥ x2 whenever x ≥ x0 and d ≥ 2. Let t0 be an even number such that
µ2
t0 > x0. Since φd(x) converges to φ(x) uniformly on bounded intervals, it follows that the

first t0/2 iterates using φd converge to the corresponding iterates using φ. So, for d large
enough, µ̂2

t0 > x0, and hence, for such d, µ̂2
t →∞ as t→∞, so (λ1, λ2) ∈ Gd.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(1/e, 1/e)

G

λ1

λ2

Figure 1: Required signal-to-noise ratios by Algorithm 4 for biclustering.

Remark 17 Clearly G is an open subset of R2
+ and G is an upper closed set. Let ∂G

denote its boundary and let φ(x) , λ1e
λ2ex, so that µ2

t+2 = φ(µ2
t ) for t even. Note that

(λ1, λ2) ∈ ∂G if and only if the function is such that for some x > 0, φ(x) = x and
φ′(x) = 1. Since φ′(x) = φ(x)y, where y = λ2e

x, it follows that xy = 1 where x = λ1e
y.

Therefore, it is convenient to express the boundary of G in the parametric form

∂G = {(xe−1/x, x−1e−x) : x > 0}.

It follows that (1/e, 1/e) ∈ ∂G and {(λ1, λ2) ∈ R2
+ : λ1λ2 ≥ e−2}\{(1/e, 1/e)} ⊂ G (see

Fig. 1 for an illustration). Boundaries of Gd can be determined similar to (25) (see Fig. 2
for plots).
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Figure 2: Boundaries of the regions Gd for d = 1, 2, 3; as d increases, Gd converges to G in
Fig. 1.

The correctness proof for the spectral clean-up procedure in Algorithm 4 is given by
Lemma 18 below with s∗ defined by (56); it is similar to Lemma 12 used in Theorem 1 but
applies to rectangular matrices and uses singular value decomposition.

Lemma 18 Suppose
µ
√
K1K2√

n1 +
√
n2
≥ 1

c0
(53)

for some c0 > 0. For i = 1, 2, suppose that
|C∗i |
Ki
→ 1 in probability and C̃i is a set (possibly

depending on W ) such that

1

Ki
|C̃i ∩ C∗i | ≥ 1− ε (54)

Ki(1− ε) ≤ |C̃i| ≤ niε (55)

hold for some 0 < ε < ε0, where ε0 depends only on c0. Let

s∗ =

(
log

1− ε− 3c0

√
h(ε) + ε

3c0

√
h(ε) + ε

)−1

(56)

where h(ε) , ε log 1
ε + (1 − ε) log 1

1−ε is the binary entropy function. Then Ĉi returned by

Algorithm 4 satisfies |Ĉi∆C∗i | ≤ η(ε)Ki for i = 1, 2, with probability converging to one as
n→∞, where

η(ε) = 2ε+ 650c2
0

h(ε) + ε

(1− ε)2
. (57)

With Lemma 18, we are ready to show that the bicluster message passing algorithm
(Algorithm 4) approximately recovers C∗1 and C∗2 , provided that (λ1, λ2) ∈ G.
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Theorem 19 Fix λ1, λ2 > 0. Suppose
K2
i µ

2

ni
→ λi, K1 � K2, and Ω(

√
ni) ≤ Ki ≤ o(ni)

as n → ∞, for i = 1, 2. Consider the model (1) with |C∗i |/Ki → 1 in probability as
n → ∞. Suppose (λ1, λ2) ∈ G and define d∗(λ1, λ2) as in (59). For every η ∈ (0, 1), there
exist explicit positive constants t∗, s∗ depending on (λ1, λ2, η) such that Algorithm 4 returns
|Ĉi ∩ C∗i | ≥ (1− η)Ki for i = 1, 2 with probability converging to 1 as n→∞, and the total
running time is bounded by c(η, λ1, λ2)n1n2 log(n1n2), where c(η, λ1, λ2) → ∞ as either
η → 0 or (λ1, λ2) approaches ∂G.

Remark 20 (Exact biclustering via message passing) If the assumptions of Theorem 19
hold and the voting condition (39) (respectively, (41)) holds, then C∗1 (respectively, C∗2) can
be exactly recovered by message passing plus a voting procedure as described in Algorithm 3.
Similar to the analysis in the symmetric case, whenever information-theoretic sufficient
conditions for exact recovery (39)–(41) imply the sufficient condition of message passing for
weak recovery, i.e., (λ1, λ2) ∈ G defined in (52), there is no computational gap for exact
recovery.

To be more precise, consider Ki = ρin
logn for i = 1, 2. Then (39) and (41) are equivalent

to λi > 8ρi. Thus, whenever K1 and K2 are large enough so that (8ρ1, 8ρ2) lies in the
closure cl(G), or more generally,(

lim inf
n→∞

K1 log n1

n1
, lim inf

n→∞

K2 log n2

n2

)
∈ 1

8
cl(G), (58)

then Algorithm 4 plus voting achieves the information-theoretic exact recovery threshold
with optimal constants. This result can be viewed as a two-dimensional counterpart of (20)
obtained for the symmetric case.

Proof [Proof of Theorem 19] The proof follows step-by-step that of Theorem 1; we shall
point out the minor differences. Given λ1 and λ2, define

d∗(λ1, λ2) = inf{d ∈ N : (λ1, λ2) ∈ Gd}. (59)

By the assumptions of Theorem 19, there exists c0 > 0 so that (53) holds. Given any
η ∈ (0, 1), choose an arbitrary ε ∈ (0, ε0) such that η(ε) defined in (57) is at most η. Notice
that ε0 is determined by c0. Let M = 8 log(1/ε) and choose

t∗(λ1, λ2,M) = inf {t : min{µ̂t, µ̂t+1} > M} . (60)

In view of Lemma 16 and the assumption that (λ1, λ2) ∈ G, d∗ is finite. Since (λ1, λ2) ∈ Gd∗ ,
it follows that µ̂t →∞ and thus t∗(λ1, λ2,M) is finite.

The assumptions of Theorem 19 imply that n1 � n2. Lemmas 27 - 29 therefore go
through as before, with n in the upper bounds taken to be min{n1, n2}, so that 1√

ni
≤ 1√

n
.

This modification then implies that Lemma 6, justifying the state evolution equations, goes
through as before. See Section 6.1 for more details.

Finally, the proof is complete by invoking Lemma 18.
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6. Justification of state evolution equations

In this section we prove Lemma 6. Let f(x, t) =
∑d

i=0 q
t
ix
i with |qti | ≤ C for a constant C.

Let {At, t ≥ 1} be i.i.d. matrices distributed as A conditional on C∗ and let A0 = A. We
now define a sequence of vectors {ξt, t ≥ 1} with ξt ∈ Rn given by

ξt+1
i→j =

∑
`∈[n]\ {i,j}

At`if(ξt`→i, t), ∀j 6= i ∈ [n] (61)

ξt+1
i =

∑
`∈[n]\{i}

At`if(ξt`→i, t)

ξ0
i→j = 0. (62)

In the definition of ξt, fresh samples, At, of A are used at each iteration, and thus the
moments of ξt in the asymptotic limit are easier to compute than those of θt. Use of
the fresh samples At does not make the messages (ξti→` : i ∈ [n]\`) independent for fixed
` ∈ [n] and fixed t ≥ 2, because at t = 1 the messages sent by any one vertex to all
other vertices are statistically dependent, so at t = 2 the messages sent by all vertices are
statistically dependent. However, we can take advantage of the fact that the contribution
of each individual message is small in the limit as n → ∞. Hence, we first prove that ξt

and θt have the same moments of all orders as n → ∞, and then prove the lemma using
the method of moments.

The first step is to represent (θti→j , θ
t
i) and (ξti→j , ξ

t
i) as sums over a family of finite

rooted labeled trees as shown by (Deshpande and Montanari, 2015, Lemma 3.3). We next
introduce this family in detail. We shall consider rooted trees T of the following form. All
edges are directed towards the root. The set of vertices and the set of (directed) edges in
a tree T are denoted by V (T ) and E(T ), respectively. Each vertex has at most d children.
The set of leaf vertices of T , denoted by L(T ), is the set of vertices with no children. Every
vertex in the tree has a label which includes the type of the vertex, where the types are
selected from [n]. The label of the root vertex consists of the type of the root vertex, and
for every non-root vertex the label has two arguments, where the first argument in the label
is the type of the vertex (in [n]), and the second one is the mark (in {0, . . . , d}). For a vertex
v in T , let `(v) denote its type, r(v) its mark (if v is not the root), and |v| its distance
from the root in T . For clarity, we restate the definition of family of rooted labeled trees
introduced in (Deshpande and Montanari, 2015, Definition 3.2).

Definition 21 Let T t denote the family of labeled trees T with exactly t generations satis-
fying the conditions:

1. The root of T has degree 1.

2. Any path (v1, v2, . . . , vk) in the tree is non-backtracking, i.e., the types `(vi), `(vi+1), `(vi+2)
are distinct for all i, k.

3. For a vertex u that is not the root or a leaf, the mark r(u) is set to the number of
children of v.

4. Note that t = maxv∈L(T ) |v|. All leaves u with |u| ≤ t− 1 have mark 0.
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Let T ti→j ⊂ T t be the subfamily satisfying the following additional conditions:

1. The type of the root is i.

2. The root has a single child with type distinct from i and j.

Similarly, let T ti ⊂ T t be the subfamily satisfying the following:

1. The type of the root is i.

2. The root has a single child with type distinct from i.

We point out that under the above definition, a vertex of a tree in T t can have siblings of
the same type and mark. Also two trees in T t are considered to be the same if and only if
the labels of all vertices are the same, with the understanding that the order of the children
of any given vertex matters. In addition, the mark of a leaf u with |u| = t is not specified
and can possibly take any value in {0, . . . , d}. The following lemma is proved by induction
on t and the proof can be found in (Deshpande and Montanari, 2015, Lemma 3.3).

Lemma 22

θti→j =
∑

T∈T ti→j

A(T )Γ(T,q, t)θ(T ),

θti =
∑
T∈T ti

A(T )Γ(T,q, t)θ(T ),

where9

A(T ) ,
∏

u→v∈E(T )

A`(u),`(v),

Γ(T,q, t) ,
∏

u→v∈E(T )

q
t−|u|
r(u) ,

θ(T ) ,
∏

u→v∈E(T ):u∈L(T )

(θ0
`(u)→`(v))

r(u).

Similarly,

ξti→j =
∑

T∈T ti→j

Ā(T )Γ(T,q, t)θ(T ),

ξti =
∑
T∈T ti

Ā(T )Γ(T,q, t)θ(T ),

where

Ā(T ) ,
∏

u→v∈E(T )

A
t−|u|
`(u),`(v).

9. Often the initial messages for message passing are taken, with some abuse of notation, to have the form
θ0i→j = θ0i for all j, and then only the n variables θ0i need to be specified. In that case, the expression

for θ(T ) simplifies to θ(T ) ,
∏
u∈L(T )(θ

0
`(u))

r(u).
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Since the initial messages are zero, f(θ0
i→j , 0) = q0

0. Thus, for notational convenience in

what follows, we can assume without loss of generality that f(x, 0) ≡ q0
0, i.e., f(x, 0) is a

degree zero polynomial. With this assumption, it follows that for a labeled tree T ∈ T t,
Γ(T,q, t) = 0 unless the mark of every leaf of T is zero. If the mark of every leaf is zero,
then θ(T ) = 1, because in this case θ(T ) is a product of terms of the form 00, which are
all one, by convention. Therefore, Γ(T,q, t)θ(T ) = Γ(T,q, t) for all T ∈ Tt. Consequently,
the factor θ(T ) can be dropped from the representations of θti→j , θ

t
i , ξ

t
i→j , and ξti given in

Lemma 22. Applying Lemma 22, we can prove that all finite moments of θti and ξti are
asymptotically the same. Before that, we need two key auxiliary lemmas.

Let φ(T )rs denote the number of occurrences of edges (u→ v) in the tree T with types
`(u), `(v) = {r, s}.

Definition 23 For m ≥ 1 and given an m-tuple of trees T1, . . . , Tm, let G denote the undi-
rected graph obtained by identifying the vertices of the same type in the trees and removing
the edge directions. Let E(G) denote the edge set of G. Then an edge (r, s) is in E(G)
if and only if

∑m
`=1 φ(T`)rs ≥ 1, i.e., the number of times covered is at least one. Let G1

denote the restriction of G to the vertices in C∗ and G2 the restriction of G to the vertices
in [n]\C∗. Let E(G1) and E(G2) denote the edge set of G1 and G2, respectively. Let EJ
denote the set of edges in G with one endpoint in G1 and the other endpoint in G2.

Lemma 24 Suppose an m-tuple of trees T1, . . . , Tm ∈ T t has α edges in total, and there
are k different edges (r, s) in E(G1) which are covered exactly once, i.e.,

∑m
`=1 φ(T`)rs = 1.

Then ∣∣∣∣∣E
[
m∏
`=1

A(T`)

] ∣∣∣∣∣ ≤ cµkn−α/2
for a consant c independent of n. The same conclusion also holds when replacing A(T`) by
Ā(T`).

Proof By the definition of A(T ),∣∣∣∣∣E
[
m∏
`=1

A(T`)

] ∣∣∣∣∣ =

∣∣∣∣∣E
∏
j<j′

(Ajj′)
∑m
`=1 φ(T`)jj′

 ∣∣∣∣∣ ≤ ∏
j<j′

∣∣∣∣∣E [(Ajj′)∑m
`=1 φ(T`)jj′

] ∣∣∣∣∣
=

(
µ√
n

)k ∏
j<j′:

∑m
`=1 φ(T`)jj′≥2

∣∣∣∣∣E [(Ajj′)∑m
`=1 φ(T`)jj′

] ∣∣∣∣∣
≤
(
µ√
n

)k ∏
j<j′:

∑m
`=1 φ(T`)jj′≥2

E
[
|Ajj′ |

∑m
`=1 φ(T`)jj′

]

≤ c
(
µ√
n

)k ∏
j<j′:

∑m
`=1 φ(T`)jj′≥2

(
1√
n

)∑m
`=1 φ(T`)jj′

= cµkn−α/2,
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where the last inequality follows because Zij are zero-mean subgaussian random vari-

ables with proxy variance γ and consequently for 1 ≤ p ≤ α, E
[∣∣∣∣Zij√n ∣∣∣∣p] ≤ cn−p/2 and

E
[∣∣∣∣Zij+µ√

n

∣∣∣∣p] ≤ cn−p/2 where c is a finite constant depending on γ, α, and µmax, where µmax

is an upper bound on µ for all n, which is finite10 by the assumptions that K = Ω(
√
n) and

λ = Θ(1).

We next define an equivalence relation on the family of m-tuples of trees in T t, which is
useful for enumerating such m-tuples. Fix a set D ⊂ [n] of distinguished types; the notion
of equivalence depends on D. In this paper when we focus on the messages formed by one
vertex {i} we take D = {i} and when we focus on the covariance of messages formed by
two vertices, i and j, we take D = {i, j}.
Definition 25 For D ⊂ [n], two m-tuples of trees in T t are equivalent (relative to D) if
there is a permutation of the set of types [n] such that i maps to i for each i ∈ D, C∗ maps
to C∗, so also [n]\C∗ maps to [n]\C∗, such that the following is true: the second m-tuple of
trees is obtained by applying the permutation to the types of the vertices of the first m-tuple
of trees.

To clarify, if two m-tuples of trees are equivalent, in particular, the marks of the two m-
tuples must be the same, and the set of vertices with type i ∈ D is the same. Recall that
for trees to be considered equal, the order of children matters. The same is true when
considering trees to be equivalent relative to D. Thus, for example, if (T1, T2) is equivalent
to (T ′1, T

′
2) and if (T1, T2) has the following property: the first child of the first child of

the root in T1 has the same type as the third child of the second child of the root in T2,
then (T ′1, T

′
2) must have the same property. Furthermore, if the common type for those two

vertices in (T1, T2) is some i ∈ D, then those two vertices in (T ′1, T
′
2) must also have type

i. If the common type for those two vertices in (T1, T2) is some k ∈ C∗\D, then those two
vertices in (T ′1, T

′
2) must also have some common type k′ ∈ C∗\D.

Lemma 26 For a given set of distinguished types D, let S denote the set of equivalence
classes on the family of m-tuples of trees in T t. Then |S| ≤ c for a constant c dependent on
only m, t, d, |D| (not on n). Moreover, fix any equivalence class S ∈ S and a representative
m-tuple of trees (T1, . . . , Tm) which has t1 and t2 distinct types in C∗\D and [n]\(C∗ ∪D),
respectively. Then |S| ≤ Kt1nt2 .

Proof The total number of vertices of an m-tuple (T1, . . . , Tm) is bounded by a function of
m, t, d alone and thus independently of n, therefore so are the number of ways to partition
these vertices into subsets of vertices with the same type. For each such subset, we need to
designate whether the type of the vertices in this subset is one of the distinguished types
i ∈ D, or is in C∗\D, or is in [n]\(C∗ ∪D). The total number of distinct such designations
is bounded by a function of m, t, d, |D| independently of n. Finally, we need to assign marks
to the vertices of the trees, and the number of distinct assignments is bounded by a function
of m, t, d alone. Hence, |S| is bounded by a function of m, t, d alone.

10. This is where the assumption K = Ω(
√
n) is used because K2µ2

n
is assumed to be a constant λ.
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Fix a given equivalence class S ∈ S and a representative m-tuple of trees (T1, . . . , Tm)
in S. Consider all the types from [n]\D that appear at least once for some vertex of some
tree in the m-tuple. Then t1 is the number of such types in C∗\D and t2 is the number
of such types in [n]\(C∗ ∪D). The cardinality of S is at most the product of the number
of partial permutations of length t1 of elements chosen from C∗\D, times the number of
partial permutations of length t2 of elements chosen from [n]\(C∗ ∪ D). The conclusion
follows.

Combining Lemmas 22, 24, and 26, we have the following lemma, showing that all finite
moments of θti and ξti are asymptotically close.

Lemma 27 For any t ≥ 1, there exists a constant c independent of n and dependent on
m, t, d, C such that for any i ∈ [n]:∣∣E [(θti)m]− E

[
(ξti)

m
] ∣∣ ≤ cn−1/2.

Proof As explained right after Lemma 22, the assumption that f(x, 0) ≡ q0
0 implies that

the factor θ(T ) can be dropped in the representations given in Lemma 22. Therefore, it
follows from Lemma 22 that for t ≥ 1,

E
[
(θti)

m
]

=
∑

T1,...,Tm∈T ti

m∏
`=1

Γ(T`,q, t)E

[
m∏
`=1

A(T`)

]
,

E
[
(ξti)

m
]

=
∑

T1,...,Tm∈T ti

m∏
`=1

Γ(T`,q, t)E

[
m∏
`=1

Ā(T`)

]
.

Because the coefficients in the polynomial are bounded by C and there are m trees with
each tree containing at most 1+d+· · ·+dt−1 ≤ (d+1)t edges, |∏m

`=1 Γ(T`,q, t)| ≤ Cm(d+1)t .
Therefore, it suffices to show

∑
T1,...,Tm∈T ti

∣∣∣∣∣E
[
m∏
`=1

A(T`)

]
− E

[
m∏
`=1

Ā(T`)

] ∣∣∣∣∣ ≤ cn−1/2.

In the following, let c denote a constant only depending on m, t, d and its value may change
line by line. Recall (G,G1, G2) obtained from a given m-tuple of trees T1, . . . , Tm as defined
in Definition 23. We partition set {(T1, . . . , Tm) : T` ∈ T ti } as a union of four disjoint sets
Q ∪R1 ∪R2 ∪R3, where

1. Q consists of m-tuples of trees (T1, . . . , Tm) such that there exists an edge (r, s) in
E(G2) ∪ EJ which is covered exactly once.

2. R1 consists of m-tuples of trees (T1, . . . , Tm) such that all edges in E(G2) ∪ EJ are
covered at least twice and at least one of them is covered at least 3 times.

3. R2 consists of m-tuples of trees (T1, . . . , Tm) such that each edge in E(G2) ∪ EJ is
covered exactly twice and the graph G contains a cycle.
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4. R3 consists of m-tuples of trees (T1, . . . , Tm) such that each edge in E(G2) ∪ EJ is
covered exactly twice and the graph G is a tree.

Fix any (T1, . . . , Tm) ∈ Q and let (r, s) be an edge in E(G2)∪E(J) which is covered exactly
once. Since E [Ars] = 0 and Ars appears in the product

∏m
`=1A(T`) once, it follows that

E [
∏m
`=1A(T`)] = 0. Similarly, E

[∏m
`=1 Ā(T`)

]
= 0. Therefore, it is sufficient to show that

for j = 1, 2, 3, ∑
(T1,...,Tm)∈Rj

∣∣∣∣∣E
[
m∏
`=1

A(T`)

]
− E

[
m∏
`=1

Ā(T`)

] ∣∣∣∣∣ ≤ cn−1/2.

First consider R1. Further, divide R1 according to the total number of edges in T1, . . . , Tm
and the number of edges in E(G1) which are covered exactly once. In particular, for
α = 1, . . . ,m(d + 1)t and k = 0, 1, . . . , α, let R1,α,k denote the subset of R1 consisting of
m-tuples of trees T1, . . . , Tm such that there are α edges in T1, . . . , Tm and there are k edges
in E(G1) which are covered exactly once. It suffices to show that∑

(T1,...,Tm)∈R1,α,k

∣∣∣∣∣E
[
m∏
`=1

A(T`)

]
− E

[
m∏
`=1

Ā(T`)

] ∣∣∣∣∣ ≤ cn−1/2. (63)

Fix α, k and an m-tuple of trees (T1, . . . , Tm) ∈ R1,α,k. It follows from Lemma 24 that∣∣∣∣∣E
[
m∏
`=1

A(T`)

] ∣∣∣∣∣ ≤ cµkn−α/2. (64)

Throughout the proof of this lemma, let D = {i} be the set of distinguished types for
defining equivalence classes as specified in Definition 25. We consider breaking R1,α,k down
into a large number of smaller sets, where each set is an equivalence class. While large, it
follows from Lemma 26 that the number of these smaller sets depends on m, t, d, but not
on n. Hence, it suffices to upper bound |S| for any given equivalence class S ⊂ R1,α,k. It
follows from Lemma 26 that |S| ≤ Kn1nn2 , where n1 is the number of vertices in G1 with
types in C∗\{i} and n2 is the number of vertices in G2 with types in [n]\(C∗ ∪ {i}).

We further upper bound n1 and n2. The graph G is connected (because all the trees
have a root of type i), so n1 + n2 (the number of vertices of G minus one) is less than or
equal to the number of edges in G. The number of edges in G is at most k+ α−k−1

2 because
there are k edges in G covered once, and the rest are covered at least twice, with one edge
covered at least three times. So n1 + n2 ≤ k + α−k−1

2 . Also, since k of the edges in G have
both endpoints in C∗, and the vertices of G2 have types in [n] − C∗, there are at most
α−k−1

2 edges in G with at least one endpoint in G2. Moreover, since G is connected, each
connected component in G2 is connected by at least one edge to a vertex in G1. Therefore,
n2 ≤ |V (G2)| ≤ α−k−1

2 . The bound Kn1nn2 is maximized subject to n1 + n2 ≤ k + α−k−1
2

and n2 ≤ α−k−1
2 by letting equality hold in both constraints, yielding |S| ≤ Kkn

α−k−1
2 .

Combining with (64) shows that∑
(T1,...,Tm)∈S

∣∣∣∣∣E
[
m∏
`=1

A(T`)

] ∣∣∣∣∣ ≤ cµkn−α/2Kkn
α−k−1

2 = c

(
µK√
n

)k
n−1/2 ≤ cn−1/2, (65)
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where we’ve used the fact that µK√
n

is bounded independently of n. In a similar way, it can

be shown that ∑
(T1,...,Tm)∈S

∣∣∣∣∣E
[
m∏
`=1

Ā(T`)

] ∣∣∣∣∣ ≤ cn−1/2

and thus ∑
(T1,...,Tm)∈S

∣∣∣∣∣E
[
m∏
`=1

A(T`)

]
− E

[
m∏
`=1

Ā(T`)

] ∣∣∣∣∣ ≤ cn−1/2. (66)

Since the number of equivalence classes S does not depend on n, (63) follows.
Next consider R2. The previous argument carries over with a minor adjustment on the

step of upper bounding n1 and n2. In particular, define R2,α,k accordingly as R1,α,k and
then consider an equivalence class S ⊂ R2,α,k corresponding to some representative m-tuple
in R2,α,k. The number of edges in G is at most k + α−k

2 because there are k edges in G
covered once, and the rest are covered at least twice. Since G has n1 + n2 + 1 vertices,
is connected, and has a cycle, n1 + n2 is less than or equal to the number of edges of G
minus one, so n1 + n2 ≤ k + α−k−2

2 . Also, since k of the edges in G have both endpoints

with types in C∗, and V2 has types in [n] − C∗, there are at most α−k
2 edges in G with at

least one endpoint in V2. Moreover, since G is connected, each connected component in G2

is connected by at least one edge to a vertex in G1. Therefore, n2 ≤ |V (G2)| ≤ α−k
2 . The

bound Kn1nn2 is maximized subject to these constraints by letting equality hold in both

constraints, yielding |S| ≤ Kk−1n
α−k
2 . So |S|µkn−α/2 ≤

(
µK√
n

)k
/K ≤ c/K ≤ cn−1/2, and

the reminder of the proof for bounding the contribution of R2 is the same as for R1 above.
Finally, consider R3. It suffices to establish the following claim. The claim is that for

any m-tuple such that G has no cycles, if two directed edges (a → b) and (c → d) map to
the same edge in G, then they are at the same level in their respective trees (their trees
might be the same). Indeed, if the claim is true, then for any m-tuple (T1, . . . , Tm) in R3

and any pair {r, s} ⊂ [n], Atrs appears in
∏m
`=1 Ā(T`) for at most one value of t, so that

E [
∏m
`=1A(T`)] = E

[∏m
`=1 Ā(T`)

]
.

We now prove the claim. Let {r, s} denote the edge in G covered by both (a→ b) and
(c → d), i.e. {`(a), `(b)} = {`(c), `(d)} = {r, s}. First consider the case that `(b) = `(d).
Let u1, . . . , uk denote the directed path in the tree containing b that goes from b to the
root of that tree, so b = u1 and uk is the root of the tree. Since there are no cycles in G,
and hence no cycles in the set of edges {{`(u1), `(u2)}, . . . , {`(uk−1), `(uk)}}, (viewed as a
simple set, i.e. with duplications removed) it follows from the non-backtracking property
that `(u1), . . . , `(uk) are distinct vertices in G. That is, (`(u1), . . . , `(uk)) is a simple path
in G. Similarly, let v1, . . . , vk′ denote the path in the tree containing d that goes from d
to the root of that tree, so d = v1 and vk′ is the root of that tree. As for the first path,
(`(v1), . . . , `(vk′)) is also a simple path inG. Since the roots of allm trees have the same type,
`(uk) and `(vk′) are the same vertex in G. Therefore, (`(u1), . . . , `(uk), `(vk′−1), . . . , `(v1))
is a closed walk in G that is the concatenation of two simple paths. Since G has no cycles
those two paths must be reverses of each other. That is, k = k′ and `(uj) = `(vj) for all j,
and hence (a→ b) and (c→ d) are at the same level in their trees.
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Consider the remaining case, namely, that `(b) = `(c). Let u1, . . . , uk be defined as be-
fore, and let v1, . . . , vk′ denote the path in the tree containing c that goes from c to the
root of that tree, so c = v1, d = v2, and vk′ is the root of that tree. Arguing as before
yields that k = k′ and `(uj) = `(vj) for 1 ≤ j ≤ k. Note that k′ ≥ 2 and so k ≥ 2 and
`(u2) = `(v2) = `(d) = `(a). Thus, the types along the directed path a → u1 → u2 within
one of the trees violates the non-backtracking property, so the case `(b) = `(c) cannot occur.
The claim is proved. This completes the proof of Lemma 27.

The second step is to compute the moments of ξt in the asymptotic limit n → ∞.
We need the following lemma to ensure that all moments of ξt are bounded by a constant
independent of n.

Lemma 28 For any t ≥ 1, there exists a constant c independent of n and dependent on
m, t, d, C, γ such that for any i, j ∈ [n]

|E
[
(ξti→j)

m
]
| ≤ c, |E

[
(ξti)

m
]
| ≤ c.

Proof We prove the claim for ξti ; the claim for ξti→j follows by the similar argument. Since

ξ0
i→j = θ0

i→j = 0 for all i ∈ [n], it follows from Lemma 22 that

E
[
(ξti)

m
]

=
∑

T1,...,Tm∈T ti

m∏
`=1

Γ(T`,q, t)E

[
m∏
`=1

Ā(T`)

]
.

Recalling (G,G1, G2) defined as Definition 23 and following the same argument as used for
proving Lemma 27, we can partition set {(T1, . . . , Tm) : T` ∈ T ti } as a union of four disjoint
sets Q ∪R1 ∪R2 ∪R3, and show that

∑
T1,...,Tm∈Q

m∏
`=1

Γ(T`,q, t)E

[
m∏
`=1

Ā(T`)

]
= 0,

and ∑
T1,...,Tm∈R1∪R2

∣∣∣∣∣
m∏
`=1

Γ(T`,q, t)

∣∣∣∣∣
∣∣∣∣∣E
[
m∏
`=1

Ā(T`)

] ∣∣∣∣∣ ≤ cn−1/2.

Hence, we only need to check R3. Again divide R3 according to the total number of
edges in T1, . . . , Tm and the number of edges in E(G1) which are covered exactly once.
In particular, R3 = ∪1≤α≤m(d+1)t,0≤k≤αR3,α,k, where R3,α,k is defined in the similar way as
R1,α,k. Furthermore, similar to R1,α,k, consider dividing R3,α,k into a number of equivalence
classes (defined relative to D = {i}), the number of which depends only on m, t, d, as shown
in Lemma 26. To prove the lemma, it suffices to show that for any such equivalence class
S,

∑
(T1,...,Tm)∈S

∣∣∣∣∣E
[
m∏
`=1

Ā(T`)

] ∣∣∣∣∣ ≤ c.
34



Submatrix localization via message passing

Invoking Lemma 24, we have that∣∣∣∣∣E
[
m∏
`=1

Ā(T`)

] ∣∣∣∣∣ ≤ cµkn−α/2,
so

∑
(T1,...,Tm)∈S

∣∣∣∣∣E
[
m∏
`=1

Ā(T`)

] ∣∣∣∣∣ ≤ cµkn−α/2|S|.
Fix a representative m-tuple (T1, . . . , Tm) for S. It follows from Lemma 26 that |S| ≤
Kn1nn2 , where n1 is the number of vertices in G1 with types in C∗\{i} and n2 is the
number of vertices in G2 with types in [n]\(C∗ ∪ {i}).

We can further bound n1 and n2 in the similar way as we did for |R1,α,k|, with the only
adjustment being we cannot use the assumption that there exists at least one edge which is
covered at least three times. There are n1 + n2 + 1 vertices in the connected graph G and,
since the m-tuple is in R3,α,k, there are at most k+ α−k

2 edges in G, so n1 + n2 ≤ k+ α−k
2 .

Also, at most α−k
2 edges of G have at least one endpoint in V2 so n2 ≤ α−k

2 . Therefore,

|S| ≤ Kn1nn2 ≤ Kkn
α−k
2 . It follows that

∑
(T1,...,Tm)∈S

∣∣∣∣∣E
[
m∏
`=1

Ā(T`)

] ∣∣∣∣∣ ≤ cµkn−α/2Kkn
α−k
2 = c

(
Kµ√
n

)k
≤ c,

and the proof is complete.

We also need the following lemma to show the convergence of 1
|C∗|

∑
i∈C∗(ξ

t
i)
m in prob-

ability using the Chebyshev inequality.

Lemma 29 For any t ≥ 1, m ≥ 1 and i ∈ [n],

lim
n→∞

var

(
1

K

∑
i∈C∗

(ξti)
m

)
= 0

lim
n→∞

var

 1

K

∑
`∈C∗\{i}

(ξt`→i)
m

 = 0

lim
n→∞

var

 1

n

∑
i∈[n]\C∗

(ξti)
m

 = 0

lim
n→∞

var

 1

n

∑
`∈[n]\(C∗∪{i})

(ξt`→i)
m

 = 0,

where the same also holds when replacing ξt by θt.
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Proof We prove the first claim; the other claim follows by a similar argument. Notice that

var

(
1

K

∑
i∈C∗

(ξti)
m

)
=

1

K2

∑
i,j∈C∗

(
E
[
(ξti)

m(ξtj)
m
]
− E

[
(ξti)

m
]
E
[
(ξtj)

m
])
.

There are K diagonal terms with i = j in the last displayed equation and each diagonal
term is bounded by a constant independent of n in view of Lemma 28. Hence, to prove the
claim, it suffices to consider the cross terms. Since there are

(
K
2

)
cross terms, we only need

to show that for each cross term with i 6= j, E
[
(ξti)

m(ξtj)
m
]
−E

[
(ξti)

m
]
E
[
(ξtj)

m
]

converges

to 0 as n→∞. Using the tree representation as shown by Lemma 22 yields∣∣E [(ξti)m(ξtj)
m
]
− E

[
(ξti)

m
]
E
[
(ξtj)

m
] ∣∣

≤ c
∑

T1,...,Tm∈T ti ,T ′1,...,T ′m∈T tj

∣∣∣∣∣E
[
m∏
`=1

Ā(T`)Ā(T ′`)

]
− E

[
m∏
`=1

Ā(T`)

]
E

[
m∏
`=1

Ā(T ′`)

]∣∣∣∣∣ ,
where c is a constant independent of n and dependent of m, t, d, γ.

Let (G,G1, G2) denote the undirected simple graphs obtained from 2m-tuple of trees
(T1, . . . , Tm, T

′
1, . . . , T

′
m) as defined in Definition 23. Notice that roots of T1, . . . , Tm have

type i and roots of T ′1, . . . , T
′
m have type j, so either G is disconnected with one component

containing i and the other component containing j, or G is connected. In the former case,
there is no edge (r, s) ∈ E(G) which is covered by T1, . . . , Tm and T ′1, . . . , T

′
m simultaneously

and thus E
[∏m

`=1 Ā(T`)Ā(T ′`)
]

= E
[∏m

`=1 Ā(T`)
]
E
[∏m

`=1 Ā(T ′`)
]
. In the latter case, i.e., G

is connected. We partition set {(T1, . . . , Tm, T
′
1, . . . , T

′
m) : T` ∈ T ti , T ′` ∈ T tj } as a union of

two disjoint sets Q ∪R, where

1. Q consists of 2m-tuples of trees such that G is connected and there exists an edge
(r, s) in E(G2) ∪ EJ which is covered exactly once.

2. R consists of 2m-tuples of trees such that G is connected and all edges in E(G2)∪EJ
are covered at least twice.

If (T1, . . . , Tm, T
′
1, . . . , T

′
m) ∈ Q, then

E

[
m∏
`=1

Ā(T`)Ā(T ′`)

]
= 0 and E

[
m∏
`=1

Ā(T`)

]
E

[
m∏
`=1

Ā(T ′`)

]
= 0.

We are left to check R. Following the argument used in Lemma 27, further divide R
according to the total number of edges in trees and the number of edges in E(G1) which is
covered exactly once. In particular, define Rα,k in the similar manner as R1,α,k. Invoking
Lemma 24, it can be shown that for any 2m-tuple in Rα,k∣∣∣∣∣E

[
m∏
`=1

Ā(T`)Ā(T ′`)

] ∣∣∣∣∣ ≤ cµkn−α/2∣∣∣∣∣E
[
m∏
`=1

Ā(T`)

]
E

[
m∏
`=1

Ā(T ′`)

] ∣∣∣∣∣ ≤ cµkn−α/2,
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Furthermore, let D = {i, j} to be the set of distinguished vertices in defining equivalence
classes as specificed in Definition 25, so that Rα,k is divided into a number of equivalence
classes, the number of which depends only onm, t, d, by Lemma 26. For any such equivalence
class S ⊂ Rα,k, it follows from the last displayed equation that

∑
T1,...,Tm,T ′1,...,T

′
m∈S

∣∣∣∣∣E
[
m∏
`=1

Ā(T`)Ā(T ′`)

] ∣∣∣∣∣+

∣∣∣∣∣E
[
m∏
`=1

Ā(T`)

]
E

[
m∏
`=1

Ā(T ′`)

] ∣∣∣∣∣
≤ cµkn−α/2|S|.

There are two distinguished vertices, i and j, in the graph G, corresponding to the
type of the root vertices of the first m trees and the second m trees, respectively. It
follows from Lemma 26 that |S| ≤ Kn1nn2 , where n1 is the number of vertices in G1 with
types in C∗\{i, j} and n2 is the number of vertices in G2 with types in [n]\(C∗ ∪ {i, j}).
There are n1 + n2 + 2 vertices in the connected graph G and at most k + α−k

2 edges, so

n1 + n2 ≤ k − 1 + α−k
2 . At most α−k

2 edges have at least one endpoint in V2 and G is

connected, so n2 ≤ α−k
2 . Thus, |S| ≤ Kn1nn2 ≤ Kk−1n

α−k
2 . Hence,

∑
(T1,...,Tm,T ′1,...,T

′
m)∈S

∣∣∣∣∣E
[
m∏
`=1

Ā(T`)Ā(T ′`)

] ∣∣∣∣∣+

∣∣∣∣∣E
[
m∏
`=1

Ā(T`)

]
E

[
m∏
`=1

Ā(T ′`)

] ∣∣∣∣∣
≤ cµkn−α/2Kk−1n

α−k
2 = c

(
Kµ√
n

)k
/K ≤ c/K.

In conclusion, var
(

1
K

∑
i∈C∗(ξ

t
i)
m
)
≤ c/K and the first claim follows.

With Lemma 28 and Lemma 29 in hand, we are ready to compute the moments of ξt

in the asymptotic limit n→∞.

Lemma 30 For any t ≥ 0, m ≥ 1:

lim
n→∞

E
[
(ξti→j)

m
]

= E [(µt + τtZt)
m] , ∀i ∈ C∗, j ∈ [n], j 6= i (67)

lim
n→∞

E
[
(ξti→j)

m
]

= E [(τtZt)
m] , ∀i /∈ C∗, j ∈ [n], j 6= i. (68)

lim
n→∞

E
[
(ξti)

m
]

= E [(µt + τtZt)
m] , ∀i ∈ C∗

lim
n→∞

E
[
(ξti)

m
]

= E [(τtZt)
m] , ∀i /∈ C∗.

Proof Below we shall use the following version of the Berry-Esseen central limit theorem.
There is an absolute constant C0 such that if X1, X2, . . . , Xn are independent mean zero
random variables and Sn = X1 + · · ·+Xn then

sup
x∈R

∣∣∣∣P
{

Sn√
var(Sn)

≤ x
}
− Φ(x)

∣∣∣∣ (a)

≤
C0
∑

i∈[n] E
[
|Xi|3

]
(var(Sn))3/2

(b)

≤
C0n

1/4
(∑

i∈[n] E
[
X4
i

])3/4

(var(Sn))3/2
,

where Φ is the standard normal CDF; (a) is the original result of Esseen (Esseen, 1942);
(b) follows by Jensen’s inequality.
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We prove the first two claims, (67) and (68). The other two follow similarly. The proof
is by induction, so suppose (67) and (68) hold for some t and all n ≥ 1. We aim to show
they also hold for t+ 1. The above identities hold for the base case t = 0, because ξ0

i→j = 0
for all i 6= j and µ0 = τ0 = 0. By the induction hypothesis, Lemma 29, and Chebyshev’s
inequality,

lim
n→∞

1

K

∑
`∈C∗\{i}

(ξt`→i)
m p

= E [(µt + τtZt)
m] , ∀i ∈ [n], (69)

lim
n→∞

1

n

∑
`∈[n]\(C∗∪{i})

(ξt`→i)
m p

= E [(τtZt)
m] , ∀i ∈ [n], (70)

where Zt ∼ N (0, 1).
Fix an i ∈ C∗. Then

lim
n→∞

E
[
ξt+1
i→j |Ft

]
= lim

n→∞
E

 ∑
`∈C∗\{i,j}

At`if(ξt`→i) +
∑

`∈[n]\(C∗∪{j})

At`if(ξt`→i)|Ft


=
√
λ lim
n→∞

1

K

∑
`∈C∗\{i,j}

f(ξt`→i)

p
=
√
λ lim
n→∞

1

K

∑
`∈C∗\{i}

f(ξt`→i)

p
=
√
λE [f(µt + τtZt)] = µt+1, (71)

where the first equality follows from the definition of ξt+1 given by (61); the second equality
holds because E

[
At`i
]

= µ/
√
n if ` ∈ C∗ and E

[
At`i
]

= 0 otherwise; the third equality holds
in view of Lemma 28, the fourth equality holds due to (69) and the fact f is a finite-degree
polynomial; the last equality holds due to the definition of µt+1.

Similarly,

lim
n→∞

var
(
ξt+1
i→j |Ft

)
= lim

n→∞

∑
`∈[n]\{i,j}

var
(
At`if(ξt`→i)|Ft

)
= lim

n→∞

1

n

∑
`∈[n]\{i,j}

f(ξt`→i)
2 (72)

= lim
n→∞

1

n

 ∑
`∈[n]\C∗∪{j}

f(ξt`→i)
2 +

∑
`∈C∗\{i,j}

f(ξt`→i)
2

 (73)

p
= lim

n→∞

1

n

∑
`∈[n]\C∗

f(ξt`→i)
2 (74)

p
= E

[
f(τtZt)

2
]

= τ2
t+1, (75)

where the first equality follows from the conditional independence of At`if(ξt`→i) for ` ∈ [n];
the second equality holds because var(A`i) = 1/n for all `; the third equality is the result
of breaking a sum into two parts, the fourth equality holds in view of Lemma 28 and the
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assumption that K = o(n); the fifth equality holds in view of (70) and the fact f is a
finite-degree polynomial; the last equality holds due to the definition of τt+1.

Conditional on Ft, ξt+1
i→j−E

[
ξt+1
i→j

]
is a sum of independent random variables. Therefore,

by the form of the Berry-Esseen central limit theorem noted above,

sup
x∈R

∣∣∣∣P
ξ

t+1
i→j − E

[
ξt+1
i→j |Ft

]
var(ξt+1

i→j |Ft)
≤ x

∣∣∣∣Ft
− Φ(x)

∣∣∣∣
≤ C0n

1/4(
var(ξt+1

i→j |Ft)
)3/2

 ∑
`∈[n]\{j}

f(ξt`→i)
4E
[
(At`i − E

[
At`i
]
)4
]3/4

≤ C0c
3/4n−1/2(

var(ξt+1
i→j |Ft)

)3/2

 1

n

∑
`∈[n]\{j}

f(ξt`→i)
4

3/4

, (76)

where we used the fact E
[
(At`i − E

[
At`i
]
)4
]
≤ cn−2, for a constant c depending only on the

constant γ appearing in the subgaussian assumption. Taking the limit n→∞ and noticing
that var(ξt+1

i→j |Ft)
p→ τ2

t+1 and 1
n

∑
`∈[n]\{j} f(ξt`→i)

4 p→ E
[
f(τtZt)

4
]

(using the same steps as
in (72)-(75)), we find the righthand side of (76) converges to zero in probability. Thus, in
view of (71), (75), and (76), for any x ∈ R,

lim
n→∞

P
{
ξt+1
i→j ≤ x|Ft

}
p
= P {µt+1 + τt+1Zt+1 ≤ x} .

It follows by the dominated convergence theorem that

lim
n→∞

P
{
ξt+1
i→j ≤ x

}
= P {µt+1 + τt+1Zt+1 ≤ x} .

and, since convergence in distribution is preserved under continuous transformations:

lim
n→∞

P
{(
ξt+1
i→j

)m
≤ x

}
= P {(µt+1 + τt+1Zt+1)m ≤ x} .

Since E
[∣∣ξt+1

i→j
∣∣m+1

]
≤ c for some c independent of n, the family of random variables (ξt+1

i→j)
m

is uniformly integrable, so that convergence in distribution implies convergence of means to
the mean of the limiting distribution. Therefore (67) holds with t replaced by t+ 1.

To complete the proof by induction it remains to show (68) holds with t replaced by
t+ 1, so fix i /∈ C∗. Following the previous argument, one can easily check that

E
[
ξt+1
i→j |Ft

]
= 0

lim
n→∞

var
(
ξt+1
i→j |Ft

)
p
= τ2

t+1,

and that, by the central limit theorem, uniformly bounded m+ 1th moments, and uniform
integrability, (68) holds with t replaced by t+ 1.

39



Hajek, Wu and Xu

Proof [Proof of Lemma 6] We show the first claim; the second one follows analogously.
Fix t ≥ 1. The convergence property to be proved depends only on the sequence of random
empirical distributions of (θti : t ∈ C∗) indexed by n. We may therefore assume without loss
of generality that all the random variables (θti : t ∈ C∗) for different n are defined on a single
underlying probability space; the joint distribution for different values of n can be arbitrary.
To show the convergence in probability, it suffices to show that for any subsequence {nk}
there exists a sub-subsequence {nk`} such that for j 6= i,

lim
`→∞

dKS

(
1

Kk`

∑
i∈C∗

δθti ,N (µt, τ
2
t )

)
= 0, a.s. (77)

Fix a subsequence nk. In view of Lemmas 27 and 30, for any fixed integer m,

lim
k→∞

E
[
(θti)

m
]

= E [(µt + τtZt)
m] .

Combining Lemma 29 with Chebyshev’s inequality,

lim
k→∞

1

Kk

∑
i∈C∗

(
θti
)m p

= E [(µt + τtZt)
m] , (78)

which further implies, by a well-known property of convergence in probability, that there
exists a sub-subsequence such that (78) holds almost surely. Using a standard diagonal
argument, one can construct a sub-subsequence {nk`} such that for all m ≥ 1,

lim
`→∞

1

Kk`

∑
i∈C∗

(
θti
)m

= E [(µt + τtZt)
m] a.s.

Since a Gaussian distribution is determined by its moments, by the method of moments (see,
for example, (Chung, 2001, Theorem 4.5.5)), applied for each outcome ω in the underlying
probability space (excluding some subset of probability zero), it follows that the sequence of
empirical distribution of θti for i ∈ C∗ weakly converges to N (µt, τ

2
t ), which, since Gaussian

density is bounded, is equivalent to convergence in the KS distance,11 proving the desired
(77).

Remark 31 We discuss the difference between the proof of Lemma 6 and that of (Desh-
pande and Montanari, 2015, Lemma 2.2). First, a larger K requires modification of bounds
from (Deshpande and Montanari, 2015) to calculate the moments of messages in Lemmas
27 - 29. In particular, (θti→j)

m can be expanded as a sum of monomials in terms of Ak`
for k, ` ∈ [n]. A larger K implies that in the expansion, there are more monomials con-
taining Ak` for k, ` ∈ C∗. That effect is offset by µ being smaller. Our approach is to
balances these two effects by accounting separately the contributions of those Ak`’s which
appear only once in a monomial. Such Ak`’s correspond to singly covered edges with both
endpoints in C∗. See Lemma 24, as well as R1,α,k in Lemma 27, R3,α,k in Lemma 28, and
Rα,k in Lemma 29. Finally, Lemma 6 is phrased in terms of KS distance while (Deshpande
and Montanari, 2015, Lemma 2.2) is in terms of convergence of expected values of bounded
Lipschitz functions.

11. This follows from the fact that when one of the distributions has bounded density the Lévy distance,
which metrizes weak convergence, is equivalent to the KS distance (see, e.g. (Petrov, 1995, 1.8.32)).
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6.1 Justification of state evolution equations for biclustering

In this subsection, we briefly describe how to generalize the method of moments from
symmetric case to asymmetric biclustering case. Recall f(x, t) =

∑d
r=0 q

t
rx
r with |qtr| ≤ C

for some constant C. Let {W t, t ≥ 1} be i.i.d. matrices distributed as W conditional on
(C∗1 , C

∗
2 ) and let W 0 = W . Similar to (61), we define a sequence of vectors {ξt, t ≥ 1} given

by

(t even) ξt+1
i→j =

1√
n2

∑
`∈[n2]\{j}

W t
i`f(ξt`→i, t), ∀i ∈ [n1], j ∈ [n2] (79)

(t odd) ξt+1
j→i =

1√
n1

∑
`∈[n1]\{i}

W t
`jf(ξt`→j , t), ∀j ∈ [n2], i ∈ [n1], (80)

with the initial condition ξ0
`→i = 0 for (`, i) ∈ [n2]× [n1]. Moreover, let

(t even) ξt+1
i =

1√
n2

∑
`∈[n2]

W t
i`f(ξt`→i, t), ∀i ∈ [n1] (81)

(t odd) ξt+1
j =

1√
n1

∑
`∈[n1]

W t
`jf(ξt`→j , t), ∀j ∈ [n2]. (82)

The first step is to represent (θti→j , θ
t
i) and (ξti→j , ξ

t
i) as sums over a family of finite

rooted labeled trees. Abusing notation slightly, we treat elements from [n1] and [n2] as
distinct elements. We define T t as Definition 21 with an additional constraint: a vertex u
must have type from [n1] if t− |u| is odd and from [n2] if t− |u| is even. In particular, all
leaves u with |u| = t must have type from [n2], and the root has type from [n1] if t is odd
and from [n2] if t is even.

The following lemma similar to Lemma 22 can be proved by induction on t similar to
(Deshpande and Montanari, 2015, Lemma 3.3).

Lemma 32

θti→j =
∑

T∈T ti→j

A(T )Γ(T,q, t),

θti =
∑
T∈T ti

A(T )Γ(T,q, t),

where

A(T ) ,
∏

u→v∈E(T )
`(u)∈[n1]

1√
n1
W`(u),`(v)

∏
u→v∈E(T )
`(u)∈[n2]

1√
n2
W`(v),`(u)

and Γ(T,q, t) is defined as before:

Γ(T,q, t) =
∏

u→v∈E(T )

q
t−|u|
r(u) .
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Similarly,

ξti→j =
∑

T∈T ti→j

Ā(T )Γ(T,q, t),

ξti =
∑
T∈T ti

Ā(T )Γ(T,q, t),

where

Ā(T ) ,
∏

u→v∈E(T )
`(u)∈[n1]

1√
n1
W

t−|u|
`(u),`(v)

∏
u→v∈E(T )
`(u)∈[n2]

1√
n2
W

t−|u|
`(v),`(u) .

Similar to Definition 23, let G denote the undirected bipartite graph obtained by iden-
tifying the vertices of the same type in the tuple of trees T1, . . . , Tm and removing the edge
directions. Note that the vertices of type from [n1] ([n2]) in trees constitute the left (right)
part of G. Let E(G) denote the edge set of G. Let G1 denote the restriction of G to the
vertices in (C∗1 , C

∗
2 ) and G2 the restriction of G to the vertices in ([n1]\C∗1 , [n2]\C∗2 ). Let

E(G1) and E(G2) denote the edge set of G1 and G2, respectively. Let EJ denote the set of
edges in G with one endpoint in G1 and the other endpoint in G2. Then Lemma 24 goes
through as before, with n in the upper bound taken to be min{n1, n2}. Note that in the
definition of A(T ), either Wij is divided by

√
n1 or Wji is divided by

√
n2 depending on

whether i ∈ [n1] or i ∈ [n2]. However, it always holds that 1√
n1
≤ 1√

n
and 1√

n2
≤ 1√

n
.

For a given set of distinguished types D, we can define the equivalence classes on the
family of m-tuples of trees in T t similar to Definition 25 except that we only allow either
permutations of types in [n1] or permutations of types in [n2]. Then Lemma 26 goes throught
as before, with the upper bound in Lemma 26 changes to

|S| ≤ (max{K1,K2})t1 (max{n1, n2})t2 ,

where we assume a representative m-tuple of trees (T1, . . . , Tm) has t1 and t2 distinct types
in C∗1 ∪C∗2\D and [n1]∪ [n2]\(C∗1 ∪C∗2 ∪D), respectively. By assumptions that λ1, λ2 = Θ(1)
and K1 � K2, it follows that n1 � n2 � n. Furthermore, let K = min{K1,K2}. Then
K1 � K2 � K. Hence, |S| ≤ cKt1nt2 for an absolute constant c > 0.

With Lemma 32, modified Lemma 24, and modified Lemma 26, Lemmas 27 - 29 go
through as before. In particular, we still partition set {(T1, . . . , Tm) : T` ∈ T ti } as a union of
four disjoint sets Q∪R1 ∪R2 ∪R3, and introduce R1,α,k, R2,α,k, R3,α,k and Rα,k as before.
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A. Row-wise thresholding

We describe a simple thresholding procedure for recovering C∗. For simplicity and infor-
mation theoretic comparisons, we consider the Gaussian case. Let Ri =

∑
jWi,j for i ∈ [n].

Then Ri ∼ N (Kµ, n) if i ∈ C∗ and Ri ∼ N (0, n) if i /∈ C∗. Let Ĉ =
{
i ∈ [n] : Ri ≥ Kµ

2

}
.

Then E
[
|Ĉ4C∗|

]
= nQ

(
Kµ
2
√
n

)
. Recall that λ = K2µ2

n . Hence, if

λ = ω
(

log
n

K

)
, (83)

then we have E[|Ĉ4C∗|] = o(K) and hence achieved weak recovery. In the regime K � n �
(n−K), λ = ω(log n

K ) is equivalent to λ → ∞, which is also equivalent to Kµ2 → ∞ and
coincides with the necessary and sufficient condition for the information-theoretic possibility
of weak recovery in this regime (Hajek et al., 2017, Corollary 2). (If instead n−K = o(n),
weak recovery is trivially provided by Ĉ = [n].) Thus, row-wise thresholding provides weak
recovery in the regime K � n � (n − K) whenever information theoretically possible.
Under the information-theoretic condition (15), an algorithm attaining exact recovery can
be built using row-wise thresholding for weak recovery followed by voting, as in Algorithm 2
(see (Hajek et al., 2017, Theorem 3) and its proof). In the regime n

K log n
K = o(log n), or

equivalently K = ω(n log logn/ log n), condition (15) implies that λ = ω(log n
K ), and hence

in this regime exact recovery can be attained in linear time O(n2) whenever information
theoretically possible.

B. Proof of Lemma 12

Proof We remind the reader that in this paper we let A = W/
√
n so that var(Aij) = 1/n

for i, j ∈ [n] and E [Aij ] = µ/
√
n for i, j ∈ C∗.

Fix a C̃ that satisfies (29) – (30), i.e., |C̃ ∩ C∗| ≥ K(1 − ε) and K(1 − ε) ≤ |C̃| ≤ nε.

Let m = |C̃| and abbreviate the restricted matrix A
C̃
∈ R|C̃|×|C̃| by Ã. Let 1

C̃∩C∗ ∈ R|C̃|

denote the indicator vector of C̃ ∩ C∗. Then the mean of Ã is the rank-one matrix E[Ã] =
µ√
n
1
C̃∩C∗1

>
C̃∩C∗

, whose largest eigenvalue is µ|C̃∩C∗|√
n

with the corresponding eigenvector

v , 1√
|C̃∩C∗|

1
C̃∩C∗ . Let Z = Ã−E[Ã], and let u denote the principal eigenvector of Ã such

that 〈u, v〉 ≥ 0. Note that ‖u− v‖ =
√

2(1− 〈u, v〉) ≤
√

2(1− 〈u, v〉2) =
√

2 sin θ, where θ
is the angle between u and v. Combining this observation with the sin theorem of (Davis
and Kahan, 1970) yields

‖u− v‖ ≤
√

2 sin θ ≤
√

2 min

{
1,

‖Z‖
µ|C̃ ∩ C|/√n− ‖Z‖

}

≤ 2
√

2‖Z‖
µ|C̃ ∩ C|/√n

≤ 2
√

2‖Z‖√
λ(1− ε)

, (84)

where the last inequality follows from the assumption (29). Observe that Z is a symmetric
matrix such that {Zij}i≤j are independent subgaussian random variables with zero mean
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and proxy variance γ/n. To bound ‖Z‖, we use the following standard concentration
inequality, see e.g.. (Deshpande and Montanari, 2015, Lemma A.3): For any t > 0,

P {‖Z‖ ≥ t} ≤ 2 exp

(
−m

(
t2n

16eγm
− log

5t2n

16γm

))
.

Note that if

t ≥
√

64eγh(ε) + 160eγm/n,

then

m

(
t2n

16eγm
− log

5t2n

16γm

)
≥ t2n

32eγ
≥ 2nh(ε).

By assumption we have K(1−ε) ≤ m ≤ εn. Therefore, by setting β =
√

64eγh(ε) + 160eγε,

we have for any fixed C̃,

P {‖Z‖ ≥ β} ≤ 2e−2nh(ε). (85)

The number of possible choices of C̃ that fulfills (30) so that |C̃| ≤ εn is at most
∑

k≤nε
(
n
k

)
which is further upper bounded by enh(ε) (see, e.g., (Ash, 1965, Lemma 4.7.2)). In view of
(85), the union bound yields ‖Z‖ ≤ β with high probability as n→∞.

Throughout the reminder of this proof we assume A and C̃ are fixed with ‖Z‖ ≤ β.
Combining with (84), we have,

‖u− v‖ ≤ 2
√

2β√
λ(1− ε)

. (86)

Next, we argue that either û or −û is close to u, and hence, close to v by the triangle
inequality. By the choice of the initial vector u0, we can write u0 = z/‖z‖ for a standard
normal vector z ∈ Rm. By the tail bounds for Chi-squared distributions, it follows that
‖z‖ ≤ 2

√
m with high probability. For any fixed u, the random variable 〈u, z〉 ∼ N (0, 1)

and thus with high probability, |〈u, z〉|2 ≥ 1/ log n, and hence

|〈u, u0〉| = |〈u, z〉|/‖z‖ ≥ (2
√
n log n)−1. (87)

Replacing u0 by −u0 would result in replacing ut by −ut for each t, and since Ĉ returned
by Algorithm 1 only depends on |uti|, replacing u by −u would have no effect on the ouput

Ĉ of the algorithm. Thus, we can assume without loss of generality that 〈u, u0〉 ≥ 0, and
(87) becomes

〈u, u0〉 ≥ (2
√
n log n)−1. (88)

By Weyl’s inequality, the maximal singular value of Ã satisfies σ1(Ã) ≥ µK(1−ε)√
n
− β

and the other singular values are at most β. Let r = σ2
σ1

(Ã). By the assumption that

ε < ε0 and λ ≥ 1/e, we have
√
λ(1 − ε) > 2β. As a consequence, r ≤ 2β√

λ(1−ε) < 1. Since

ut = Ãtu0/‖Ãtu0‖, it follows that

ut =
〈u, u0〉u+ y

‖〈u, u0〉u+ y‖
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for some y ∈ Rm, depending on t, such that ‖y‖ ≤ rt. Hence,

〈ut, u〉 =
〈u, u0〉+ 〈y, u〉
‖〈u, u0〉u+ y‖

≥ 〈u, u
0〉 − rt

〈u, u0〉+ rt

= 1− 2rt

〈u, u0〉+ rt
,

or, equivalently,

‖ut − u‖2 = 2(1− 〈ut, u〉) ≤ 4rt

〈u, u0〉+ rt
. (89)

Recall that û = uds
∗ logne. Thus, choosing s∗ = 2

log(
√
λ(1−ε)/(2β))

as in (33), we obtain

rds
∗ logne ≤ n−2 and consequently in view of (88) and (89),

‖û− u‖2 ≤ 4n−2

(2
√
n log n)−1 + n−2

≤ 1

n
,

for sufficiently large n.
Therefore, by the triangle inequality,

‖û− v‖ ≤ ‖û− u‖+ ‖u− v‖ ≤ n−1/2 +
2
√

2β√
λ(1− ε)

(a)

≤ 3β√
λ(1− ε)

, βo, (90)

where (a) holds for sufficiently large n. Let Ĉo be defined by using a threshold test to
estimate C∗ based on û:

Ĉo = {i ∈ C̃ : |ûi| ≥ τ},

where τ = 1

/(
2

√
|C̃ ∩ C∗|

)
. Note that vi = 2τ1{i∈C̃∩C∗}. For any i ∈ Ĉo\(C̃ ∩ C∗), we

have |ûi| ≥ τ and vi = 0; for any i ∈ (C̃ ∩C∗)\Ĉo, we have |ûi| < τ and vi = 2τ . Therefore
|ûi − vi| ≥ ||ûi| − |vi|| ≥ τ for all i ∈ Ĉo4(C̃ ∩ C∗) and thus

‖û− v‖2 ≥ |Ĉo4(C̃ ∩ C∗)|τ2.

In view of (90), the number of indices in C̃ incorrectly classified by Ĉo satisfies

|Ĉo4(C̃ ∩ C∗)| ≤ 4β2
o |C̃ ∩ C∗| ≤ 4β2

o |C∗|.

Since |C∗\C̃| ≤ εK, we conclude that |C∗4Ĉo| ≤ εK+4β2
o |C∗|. Thus, if the algorithm were

to output Ĉo (instead of Ĉ) the lemma would be proved.
Rather than using a threshold test in the cleanup step, Algorithm 1 selects the K indices

in C̃ with the largest values of |ûi|. Consequently, with probability one, either Ĉo ⊂ Ĉ or
Ĉ ⊂ Ĉo. Therefore, it follows that

|C∗4Ĉ| ≤ 2|C∗4Ĉo|+
∣∣|C∗| −K∣∣.
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By assumption, |C∗|/K converges to one in probability, so that, in probability,

lim sup
n→∞

|C∗4Ĉ|
K

≤ 2ε+ 8β2
o ≤ η(ε, λ), (91)

where η is defined in (34), completing the proof.

C. An adaptive variant of Algorithm 1

Recall that the last step of the spectral clean-up of Algorithm 1 involves choosing the K
coordinates of the largest magnitude of û. In order to be adaptive to the cluster size K, in
this section we show that this step can be simply replaced by applying k-means clustering
with k = 2 to {|ûi|}i∈C̃ so that Theorem 1 continues to hold. Let w denote an optimal

solution, i.e., a minimizer of ‖x − |û|
C̃
‖ over all x in R|C̃| whose coordinates take at most

two distinct values. Since |ûi| is a scalar, w can be easily found by sorting {|ûi|}i∈C̃ in
descending order, and checking all vectors of the form (a, . . . , a, b, . . . , b), where a and b
with a ≥ b ≥ 0 are given by the average of the respective set of |ûi|’s. Thus w can be found
in time O(n log n).

Define Ĉ = {i ∈ C̃ : wi = a}. To show this Ĉ fulfills the same performance guarantee as
in Theorem 1, it suffices to modify the proof of Lemma 12 to show that, for any ε sufficiently

small, if C̃ ⊂ [n] satisfies (29) – (30), then P
{
|C∗∆Ĉ|
K ≤ η

}
→ 1 as n → ∞, where η is a

function of ε and λ such that η → 0 as ε→ 0 for λ fixed. Without loss of generality we may
also assume that

|C̃\C∗| = Ω(K). (92)

This extra condition is fulfilled by the output of the message-passing algorithm with high
probability, because, in view of (32), |C̃\C∗| = Θ(n) with probability tending to one.

Recall that we have shown in (90) that min{‖û − v‖, ‖û + v‖} ≤ βo. By the definition
of w, since v ≥ 0 is binary-valued componentwise, we have

‖|û| − w‖ ≤ ‖|û| − v‖ ≤ min{‖û− v‖, ‖û+ v‖} ≤ βo,

and thus
‖w − v‖ ≤ ‖w − |û|‖+ ‖|û| − v|‖ ≤ 2βo.

Define

S = {i ∈ C̃ :
∣∣wi − vi∣∣ ≥ τ}, τ ,

1

2

√
|C̃ ∩ C∗|

.

Then
|S|τ2 ≤ ‖w − v‖2 ≤ 4β2

0 ,

and consequently, |S| ≤ 16β2
0 |C̃ ∩ C∗|. Since β0 can be made to be sufficiently small by

choosing ε to be small, we have |S| < |C̃ ∩ C∗|. Furthermore, by the assumption that
|C∗|/K → 1 in probability and (92), we have |S| < |C̃\C∗|. Define T1 = (C̃ ∩ C∗)\S and
T0 = (C̃\C∗)\S, both of which are non-empty. For each i ∈ T1 and j ∈ T0, we have

wi − wj ≥ vi − vj − |wi − vi| − |wj − vj | > 2τ − τ − τ = 0,
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that is, wi = a > b = wj . Hence, Ĉ∆(C̃ ∩ C∗) ⊂ S and thus

|Ĉ∆(C̃ ∩ C∗)| ≤ |S| ≤ 16β2
0 |C̃ ∩ C∗| ≤ 16β2

0 |C∗|.

Since |C∗\C̃| ≤ εK, we have that |Ĉ∆C∗| ≤ εK + 16β2
0 |C∗|. Therefore,

lim sup
n→∞

|C∗∆Ĉ|
K

≤ ε+ 16β2
0 .

Since β0 → 0 as ε→ 0, Theorem 1 holds for the adaptive variant of Algorithm 1.

D. Proofs of Theorems 13 and 14

In the proofs below we use the following notation. We write pe(π1, s
2) to denote the minimal

average error probability for testing N (µ1, σ
2) versus N (µ0, σ

2) with priors π1 and 1− π1,

where µ1 ≥ µ0 and s2 = (µ0−µ1)2

σ2 . That is,

pe(π1, s
2) , min

x
{π1Q(s− x) + (1− π1)Q(x)}.

Proof [Proof of Theorem 13] The proof of sufficiency for weak recovery is closely based on
the proof of sufficiency for exact recovery by the MLE given in (Butucea et al., 2015); the
reader is referred to (Butucea et al., 2015) for the notation used in this paragraph. The
proof in (Butucea et al., 2015) is divided into two sections. In our terminology, (Butucea
et al., 2015, Section 3.1) establishes the weak recovery of C∗1 and C∗2 by the MLE under
the assumptions (37), (39), and (41). However, the assumption (39) (and similarly, (41)) is
used in only one place in the proof, namely for bounding the terms T1,km defined therein.
We explain here why (37) alone is sufficient for the proof of weak recovery. Condition (37),
in the notation12 of (Butucea et al., 2015), implies that there exists some sufficiently small
α > 0 such that

a2m

2 log(N/n)
≥ 1 + α.

So (Butucea et al., 2015, (3.4)) can be replaced as: there exist some sufficiently small δ1 > 0
and α1 > 0 such that

(1− δ1)2

2
a2m ≥ (1 + α1) log(N/n) ≥ (1 + α1) log

(
δ(N − n)

n− k

)
,

where we use the assumption 0 ≤ k < (1− δ)n, or n− k > δn. Thus, for large enough n,

T1,km ≤ exp

(
−δnα1

2

(
log

(
N − n
n− k

)))
≤ exp

(
−δnα1

2
log

(
N − n
n

))
= o(1/n),

12. The notation of (Butucea et al., 2015) is mapped to ours as N → n1, M → n2, n → K1, m → K2, and
a→ µ.
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from which the desired conclusion,
∑

k:(n−k)>δn T1,km = o(1), follows. This completes the
proof of sufficiency of (37) for weak recovery of both C∗1 and C∗2 , and marks the end of our
use of notation from (Butucea et al., 2015).

The rate distortion argument used in the proof of (Hajek et al., 2017, Theorem 1) shows
that (38) must hold if C∗1 and C∗2 are both weakly recoverable.

Proof [Proof of Theorem 14] We give the proof for exact recovery of C∗1 ; the proof for exact
recovery of C∗2 is analogous. For the sufficiency part, Recall that in Algorithm 3, the set
[n1] is partitioned into sets, S1, . . . , S1/δ of size n1δ. There are 1/δ rounds of the algorithm,

and indices in Sk are classified in the kth round. For the kth round, by assumption, given
ε > 0, there exists an estimator Ĉ2k based on observation of W with the rows indexed by
Sk hidden such that |Ĉ2k∆C

∗
2 | ≤ εK2 with high probability. Then the voting procedure

estimates whether i ∈ C∗1 for each i ∈ Sk by comparing
∑

j∈Ĉ2k
Wi,j to a threshold. This

sum has approximately the N (K2µ,K2) distribution if i ∈ C∗1 and N (0,K2) distribution
otherwise ; the discrepancy can be made sufficiently small by choosing ε to be small (See
(Hajek et al., 2017, Theorem 3) for a proof). Thus, the mean number of classification errors
is well approximated by n1pe(K1/n1,K2µ

2), which converges to zero under (39), complet-
ing the sufficiency proof for exact recovery of C∗1 . The necessity part is proved in (Butucea
et al., 2015, Section 4.2).

E. Proof of Lemma 18

Proof (Similar to proof of Lemma 12.) We prove the lemma for Ĉ1; the proof for Ĉ2 is
identical. For the first part of the proof we assume that for i = 1, 2, C̃i is fixed, and later
use a union bound over all possible choices of C̃i. Recall that W

C̃1C̃2
, which we abbreviate

henceforth as W̃ , is the matrix W restricted to entries in C̃1× C̃2. Let Z = W̃ −E[W̃ ] and

E[W̃ ] = µ

√
|C̃1 ∩ C∗1 ||C̃2 ∩ C∗2 |v1v

>
2 (93)

is a rank-one matrix, where vi is the unit vector in R|C̃i| obtained by normalizing the
indicator vector of C̃i ∩ C∗i . Thus, thanks to (54), the leading singular value of E[W̃ ] is at
least µ

√
K1K2(1− ε) with left singular vector v1 and right singular vector v2.

It is well-known (see, e.g., (Vershynin, 2010, Corollary 5.35)) that if M is an m1 ×m2

matrix with i.i.d. standard normal entries, then P
{
‖M‖ ≥ √m1 +

√
m2 + t

}
≤ 2e−t

2/2. Ap-

plying this result for mi = |C̃i|, which satisfies mi ≤ εni by (55), and t = 2
√
h(ε)(n1 + n2),

we have for fixed (C̃1, C̃2),

P {‖Z‖ ≥ (
√
n1 +

√
n2)β} ≤ 2e−2(n1+n2)h(ε),

where β , 3
√
ε+ h(ε)). Similar to the proof of Lemma 12, the number of (C̃1, C̃2) that

satisfies (55) is at most e(n1+n2)h(ε). By union bound, if we drop the assumption that C̃i is
fixed for i = 1, 2, we still have that with high probability, ‖Z‖ ≤ (

√
n1 +

√
n2)β.
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Denote by u the leading left singular vector of W
C̃1C̃2

such that 〈u, v1〉 ≥ 0. Then, letting
θ denote the angle between u and v1,

‖u− v1‖ ≤
√

2 sin(θ)
(a)

≤
√

2 min

 ‖Z‖(
σ1

(
W̃
)
− σ2

(
E
[
W̃
]))

+

, 1


(b)

≤ 2
√

2‖Z‖
σ1(E[W̃ ])

,

where (a) follows from Wedin’s sin-θ theorem for SVD (Wedin, 1972), and (b) follows

from σ2

(
E
[
W̃
])

= 0 and Weyl’s inequality σ1(W̃ ) ≥ σ1(E[W̃ ]) − ‖Z‖. In view of (93),

conditioning on the high-probability event that ‖Z‖ ≤ (
√
n1 +

√
n2)β, we have

‖u− v1‖ ≤
2
√

2β(
√
n1 +

√
n2)

µ(1− ε)√K1K2
≤ 2
√

2c0β

1− ε , (94)

where the last inequality follows from the standing assumption (53).

Next, we argue that û or −û is close to u, and hence, close to v1 by the triangle

inequality. By (88), the initial value u0 ∈ R|C̃1| satisfies |〈u, u0〉| ≥ (2
√
n1 log n1)−1 with

high probability, and without loss of generality we can assume as in the proof of Lemma 12
that 〈u, u0〉 ≥ (2

√
n1 log n1)−1. By Weyl’s inequality, the largest singular value of W̃ is at

least µ
√
K1K2(1−ε)−(

√
n1+
√
n2)β, and the other singular values are at most (

√
n1+
√
n2)β.

In view of (53), 1−ε
c0β
− 1 > 1 for all ε < ε0, where ε0 > 0 depends only on c0. Let λ1 and

λ2 denote the first and second eigenvalue of W̃W̃> in absolute value, respectively. Let
r = λ2/λ1. Then r ≤ ( c0β

1−ε−c0β )2. Since for even t, ut = (W̃W̃>)t/2u0/‖(W̃W̃>)t/2u0‖, the
same analysis of power iteration that leads to (89) yields

‖ut − u‖2 = 2(1− 〈ut, u〉) ≤ 4rt/2

〈u, u0〉+ rt/2
.

Since û = u2ds∗ logne and s∗ = (log 1−ε−c0β
c0β

)−1, we have rds
∗ logn1e ≤ n−2

1 and thus |〈û, u〉2| ≥
1− n−1

1 and consequently, ‖uu>− û(û)>‖2F = 2− 2 〈u, û〉2 ≤ n−1
1 . Similar to (90), applying

(94) and the triangle inequality, we obtain

‖û− v‖ ≤ ‖û− u‖+ ‖u− v‖ ≤ n−1/2 +
2
√

2coβ√
λ(1− ε)

<
3coβ√
λ(1− ε)

, βo, (95)

By the same argument that proves (91), we have lim supn→∞ |C∗14Ĉ1|/K1 ≤ 2ε+8β2
0 ≤ η(ε)

with η defined in (57), completing the proof.
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