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Abstract

We consider the kernel partial least squares algorithm for non-parametric regression with
stationary dependent data. Probabilistic convergence rates of the kernel partial least
squares estimator to the true regression function are established under a source and an
effective dimensionality condition. It is shown both theoretically and in simulations that
long range dependence results in slower convergence rates. A protein dynamics example
shows high predictive power of kernel partial least squares.

Keywords: effective dimensionality, long range dependence, nonparametric regression,
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1. Introduction

Partial least squares (PLS) is a regularized regression technique developed by Wold et al.
(1984) to deal with collinearities in the regressor matrix. It is an iterative algorithm where
the covariance between response and regressor is maximized at each step, see Helland (1988)
for a detailed description. Regularization in the PLS algorithm is obtained by stopping the
iteration process early.

Several studies showed that partial least squares algorithm is competitive with other
regression methods such as ridge regression and principal component regression, needing
generally fewer iterations than the latter to achieve comparable estimation and prediction,
see, e.g., Frank and Friedman (1993), Krämer and Braun (2007) and Singer et al. (2016).
For an overview of further properties of PLS we refer to Rosipall and Krämer (2006).

Reproducing kernel Hilbert spaces (RKHS) have a long history in probability and statis-
tics (see, e.g., Berlinet and Thomas-Agnan, 2004). Here we focus on the supervised kernel
based learning approach for the solution of non-parametric regression problems. RKHS
methods are both computationally and theoretically attractive, due to the kernel trick
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(Schölkopf et al., 1998) and the representer theorem (Wahba, 1999), as well as its gener-
alization (Schölkopf et al., 2001). Within the reproducing kernel Hilbert space framework
one can adapt linear regularized regression techniques like ridge regression and principal
component regression to a non-parametric setting, see Saunders et al. (1998) and Rosipal
et al. (2000), respectively. We refer to Schölkopf and Smola (2001) for more details on the
kernel based learning approach.

Kernel PLS (KPLS) was introduced in Rosipal and Trejo (2001) by using the reformu-
lation of the PLS algorithm of Lindgren et al. (1993). The relationship to kernel conjugate
gradient (KCG) methods was highlighted in Blanchard and Krämer (2010a). It can be
seen in Hanke (1995) that conjugate gradient methods are well suited for handling ill-posed
problems, as they arise in kernel learning, see, e.g., De Vito et al. (2006).

Rosipal (2003) investigated the performance of kernel partial least squares for non-linear
discriminant analysis. Blanchard and Krämer (2010a) proved the consistency of KPLS when
the algorithm is stopped early without giving convergence rates.

Caponnetto and de Vito (2007) showed that kernel ridge regression (KRR) attains op-
timal probabilistic rates of convergence for independent and identically distributed data,
using a source and a polynomial effective dimensionality condition. A generalization of
these results to a wider class of effective dimensionality conditions and extension to kernel
principal component regression can be found in Dicker et al. (2017).

For independent identically distributed data Blanchard and Krämer (2010b) obtained
probabilistic convergence rates for a certain kernel conjugate gradient estimator under early
stopping, while Lin and Zhou (2017) considered kernel partial least squares estimators with
the cross-validation stopping rule.

In contrast to existing works, we derive probabilistic convergence rates of the kernel
partial least squares estimator to the true regression function when the input data are
not independent and identically distributed, but rather stationary time series. To the
best of our knowledge, none of the kernel regression methods have been considered for the
dependent data so far. Our results can be applied to stationary dependence structures, given
that certain concentration inequalities for these data hold. The derived convergence rates
depend not only on the complexity of the target function and of the data mapped into the
kernel space, but also on the persistence of the dependence in the data. For measuring the
complexity of the data we consider general effective dimensionality conditions. In a Gaussian
setting we prove that the short range dependence still leads to optimal rates, but if the
dependence is more persistent, the rates become slower. We illustrate the good predictive
performance of KPLS by an application to the molecular dynamics of a bacteriophage
protein.

2. Kernel Partial Least Squares

Consider the non-parametric regression problem

yt = f∗(Xt) + εt, t ∈ Z. (1)

Here {Xt}t∈Z is a d-dimensional, d ∈ N, stationary time series on a probability space
(Ω,A,P) and {εt}t∈Z is an independent and identically distributed sequence of real valued
random variables with expectation zero and variance σ2 > 0 that is independent of {Xt}t∈Z.
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Let X be a random vector that is independent of {Xt}t∈Z and {εt}t∈Z with the same
distribution as X0. The target function we seek to estimate is f∗ ∈ L2

(
PX
)
.

For the purpose of supervised learning assume that we have a training sample
{(Xt, yt)}nt=1 for some n ∈ N. In the following we introduce some basic notation for the
kernel based learning approach.

Define with (H, 〈·, ·〉H) the RKHS of functions on Rd with reproducing kernel k : Rd ×
Rd → R, i.e., it holds

g(x) = 〈g, k(·, x)〉H, x ∈ Rd, g ∈ H. (2)

The corresponding inner product and norm in H is denoted by 〈·, ·〉H and ‖ · ‖H, respec-
tively. We refer to Berlinet and Thomas-Agnan (2004) for examples of Hilbert spaces and
their reproducing kernels. In the following we deal with reproducing kernel Hilbert spaces
which fulfill the following, rather standard, conditions:

(K1) H is separable,

(K2) There exists a κ > 0 such that |k(x, y)| ≤ κ for all x, y ∈ Rd and k is measurable.

Under (K1) the Hilbert-Schmidt norm ‖ · ‖HS for operators mapping from H to H is well
defined. If condition (K2) holds, all functions in H are bounded, see Berlinet and Thomas-
Agnan (2004), chapter 2. The conditions are satisfied for a variety of popular kernels, e.g.,
Gaussian or triangular.

The main principle of RKHS methods is the mapping of the data Xt into H via the
feature maps φt = k(·, Xt), t = 1, . . . , n. This mapping can be done implicitly by using
the kernel trick 〈φt, φs〉H = k(Xt, Xs) and thus only the n × n dimensional kernel matrix
Kn = n−1[k(Xt, Xs)]

n
t,s=1 is needed in the computations. Then the task for RKHS methods

is to find coefficients α1, . . . , αn such that fα =
∑n

t=1 αtφt is an adequate approximation of
f∗ in H, measured in the L2

(
PX
)

norm ‖ · ‖2.
There are a variety of different approaches to estimate the coefficients α1, . . . , αn, in-

cluding kernel ridge regression, kernel principal component regression and, of course, kernel
partial least squares. The latter method was introduced by Rosipal and Trejo (2001) and
is the focus of the current work.

It was shown by Krämer and Braun (2007) that the KPLS algorithm solves

α̂i = arg min
v∈Ki(Kn,y)

n−1‖y −Knv‖2, i = 1, . . . , n, (3)

with y = (y1, . . . , yn)T. Here Ki(Kn, y) = span
{
y,Kny,K

2
ny, . . . ,K

i−1
n y

}
, i = 1, . . . , n, is

the ith order Krylov space with respect to Kn and y and ‖ · ‖ denotes the Euclidean norm.
The dimension i of the Krylov space is the regularization parameter for KPLS.

We will introduce several operators that will be crucial for our further analysis. Define
two integral operators: the kernel integral operator T ∗ : L2

(
PX
)
→ H, g 7→ E{k(·, X)g(X)}

and the change of space operator T : H → L2
(
PX
)
, g 7→ g, which is well defined if (K2)

holds. It is easy to see that T, T ∗ are adjoint, i.e., for u ∈ H and v ∈ L2
(
PX
)

it holds
〈T ∗v, u〉H = 〈v, Tu〉2 with 〈·, ·〉2 being the inner product in L2

(
PX
)
.

The sample analogues of T, T ∗ are Tn : H → Rn, g 7→ {g(X1), . . . , g(Xn)}T and T ∗n :
Rn → H, (v1, . . . , vn)T 7→ n−1

∑n
t=1 vtk(·, Xt), respectively. Both operators are adjoint with

respect to the rescaled Euclidean product n−1uTv, u, v ∈ Rd
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Finally, we define the sample kernel covariance operator Sn = T ∗nTn : H → H and the
population kernel covariance operator S = T ∗T : H → H. Note that it holds Kn = TnT

∗
n .

Under (K1) and (K2) S is a self-adjoint compact operator with operator norm ‖S‖L ≤ κ,
see Caponnetto and de Vito (2007).

With this notation we can restate (3) for the function fα

fα̂i = arg min
g∈Ki(Sn,T ∗

ny)
n−1‖y−{g(X1), . . . , g(Xn)}T‖2 = arg min

g∈Ki(Sn,T ∗
ny)

n−1‖y−Tng‖2. (4)

Hence, we are looking for functions that minimize the squared distance to y constrained to
a sequence of Krylov spaces.

In the literature of ill-posed problems it is well known that without further conditions
on the target function f∗ the convergence rate of the conjugate gradient algorithm can be
arbitrarily slow, see Hanke (1995), chapter 3.2. One common a-priori assumption on the
regression function f∗ is a source condition:

(S) There exist r ≥ 0, R > 0 and u ∈ L2
(
PX
)

such that f∗ = (TT ∗)ru and ‖u‖2 ≤ R.

If r ≥ 1/2, then the target function f∗ ∈ L2
(
PX
)

coincides almost surely with a
function f ∈ H and we can write f∗ = Tf , see Cucker and Smale (2002). With this the
kernel partial least squares estimator fα̂i estimates the correct target function, not only its
best approximation in H. This case is known as the inner case.

The situation with r < 1/2 is referred to as the outer case. Under additional assump-
tions, e.g., the availability of additional unlabeled data, it is still possible that an estimator
of f∗ converges to the true target function in L2

(
PX
)

norm with optimal rates (with re-
spect to the number n of labeled data points). See De Vito et al. (2006) for a detailed
description of this semi-supervised approach for kernel ridge regression in the independent
and identically distributed case. We do not treat the case r < 1/2 in this work.

A source condition is often interpreted as an abstract smootheness condition, see, e.g.,
Bissantz et al. (2007) for several examples. This can be seen as follows. Let η1 ≥ η2 ≥ . . . be
the eigenvalues and ψ1, ψ2, . . . the corresponding eigenfunctions of the compact operator S.
Then it is easy to see that the source condition (S) is equivalent to f =

∑∞
j=1 bjψj ∈ L2

(
PX
)

with bj such that
∑∞

j=1 η
−2(r+1/2)
j b2j < ∞. Hence, the higher r is chosen the faster the

sequence {bj}∞j=1 must converge to zero. Therefore, the sets of functions for which source
conditions hold are nested, i.e., the larger r is the smaller the corresponding set will be.
The set with r = 1/2 is the largest one and corresponds to a zero smoothness condition,
i.e.,

∑∞
j=1 η

−2
j b2j < ∞, which is equivalent to f ∈ H. For more details we refer to Dicker

et al. (2017).

3. Consistency of Kernel Partial Least Squares

The KCG algorithm as described by Blanchard and Krämer (2010b) is consistent when
stopped early and convergence rates can be obtained when a source condition (S) holds.
Here we will proof the same property for KPLS. Early stopping in this context means that
we stop the algorithm at some a = a(n) ≤ n and consider the estimator fα̂a for f∗.

The difference between KCG and KPLS is the norm which is optimized. The kernel
conjugate gradient algorithm studied in Blanchard and Krämer (2010b) estimates the co-
efficients α ∈ Rn of fα via α̂CGi = arg minv∈Ki(Kn,y)〈y −Knv,Kn(y −Knv)〉. It is easy to
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see that this optimization problem can be rewritten for the function fα as

min
g∈Ki(Sn,T ∗

ny)
n−1‖T ∗ny − Sng‖2H = min

g∈Ki(Sn,T ∗
ny)

n−1‖T ∗n (y − Tng) ‖2H,

compared to (4) for KPLS. Thus, KCG obtains the least squares approximation g in the
H-norm for the normal equation T ∗ny = T ∗nTng and KPLS finds a function that minimizes
the residual sum of squares. In both methods the solutions are restricted to functions
g ∈ Ki(Sn, T ∗ny).

An advantage of the kernel conjugate gradient estimator is that concentration inequali-
ties can be established for both T ∗ny and Sn and applied directly as the optimization function
contains both quantities. The stopping index for the regularization can be chosen by a dis-
crepancy principle as a∗ = min{1 ≤ i ≤ n : ‖Snfα̂CGi − T ∗ny‖ ≤ Λn} with Λn being a
threshold sequence that goes to zero as n increases.

On the other hand, the function to be optimized for KPLS contains only y and Tng =
{g(X1), . . . , g(Xn)}T for which statistical properties are not readily available. Thus, we
need to find a way to apply the concentration inequalities for T ∗ny and Sn to this slightly
different problem. This leads to complications in the proof of consistency and a rather
different and more technical stopping rule for choosing the optimal regularization parame-
ter a∗ is used, as can be seen in Theorem 1. This stopping rule has its origin in Hanke (1995).

In the following ‖ · ‖L denotes the operator norm and ‖ · ‖HS is the Hilbert-Schmidt
norm.

Theorem 1 Assume that conditions (K1), (K2), (S) hold with r ≥ 3/2 and there are
constants Cδ(ν), Cε(ν) > 0 and a sequence {γn}n∈N ⊂ [0,∞), γn → 0, such that we have
for ν ∈ (0, 1]

P (‖Sn − S‖L ≤ Cδ(ν)γn) ≥ 1− ν/2,
P (‖T ∗ny − Sf‖H ≤ Cε(ν)γn) ≥ 1− ν/2.

Define the stopping index a∗ by

a∗ = min

{
1 ≤ a ≤ n :

a∑
i=0

‖Snfα̂i − T
∗
ny‖−2H ≥ (Cγn)−2

}
, (5)

with C = Cε(ν) + κr−1/2(r + 1/2)R{1 + Cδ(ν)}.
Then it holds with probability at least 1− ν that

‖fα̂a∗ − f
∗‖2 = O

{
γ2r/(2r+1)
n

}
,

‖fα̂a∗ − f‖H = O
{
γ(2r−1)/(2r+1)
n

}
,

with f∗ = Tf .

It can be shown that the stopping rule (5) always determines a finite index, i.e., the set
the minimum is taken over is not empty, see Hanke (1995), chapter 4.3.
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The theorem yields two convergence results, one in the H-norm and one in the L2
(
PX
)
-

norm. It holds that ‖v‖2 = ‖S1/2v‖H. These are the endpoints of a continuum of norms
‖v‖β = ‖Sβv‖H, β ∈ [0, 1/2] that were considered in Nemirovskii (1986) for the derivation
of convergence rates for KCG algorithms in a deterministic setting.

The convergence rate of the kernel partial least squares estimator depends crucially on
the sequence γn and the source parameter r. If γn = O(n−1/2), this yields the same conver-
gence rate as Theorem 2.1 of Blanchard and Krämer (2010b) for kernel conjugate gradient
or de Vito et al. (2005) for kernel ridge regression with independent and identically dis-
tributed data. For stationary Gaussian time series we will derive concentration inequalities
in the next section and obtain convergence rates depending on the source parameter r and
the range of dependence. Note that Theorem 1 is rather general and it can be applied to
any kind of dependence structure, as long as the necessary concentration inequalities can
be established.

The next theorem derives faster convergence rates under assumptions on the effective
dimensionality of operator S, which is defined as dλ = tr{(S + λ)−1S}. The concept of
effective dimensionality was introduced in Zhang (2003) to get sharp error bounds for general
learning problems considered there. IfH is a finite dimensional space, it was shown in Zhang
(2003) that dλ ≤ dim(H). For infinite dimensional spaces it describes the complexity of the
interactions between data and reproducing kernel.

If dλ = O(λ−s) for some s ∈ (0, 1], Caponnetto and de Vito (2007) showed that the
order optimal convergence rates n−r/(2r+s) are attained for KRR with independent and
identically distributed data.

The effective dimensionality clearly depends on the behaviour of eigenvalues of S. If
these converge sufficiently fast to zero, nearly parametric rates of convergence can be
achieved for reproducing kernel Hilbert space methods, see, e.g., Dicker et al. (2017). In par-
ticular, the behaviour of dλ around zero is of interest, since it determines how ill-conditioned
the operator (S + λ)−1 becomes. In the following theorem we set λ = λn for a sequence
{λn}n∈N ⊂ (0,∞) that converges to zero.

Theorem 2 Assume that conditions (K1), (K2), (S) hold with r ≥ 1/2 and that the effec-
tive dimensionality dλ is known. Additionally, there are constants Cδ(ν), Cε(ν), Cψ > 0 and
a sequence {γn}n∈N ⊂ [0,∞), γn → 0, such that for ν ∈ (0, 1] and n sufficiently large

P {‖Sn − S‖L ≤ Cδ(ν)γn} ≥ 1− ν/3,

P
{
‖(S + λn)−1/2(T ∗ny − Sf)‖H ≤ Cε(ν)

√
dλnγn

}
≥ 1− ν/3,

P
{
‖(S + λn)1/2(Sn + λn)−1/2‖L ≤ Cψ

}
≥ 1− ν/3,

Here {λn}n∈N ⊂ (0,∞) is a sequence converging to zero such that for n large enough

γn ≤ λr−1/2n . (6)

Take ζn = max{
√
λndλnγn, λ

r+1/2
n } Define the stopping index a∗ by

a∗ = min

{
1 ≤ a ≤ n :

a∑
i=0

‖Snfα̂i − T
∗
ny‖−2H ≥ (Cζn)−2

}
, (7)
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with C = 4Rmax{1, C2
ψ, (r − 1/2)κr−3/2Cδ(ν), 2−1/2R−1CψCε(ν)}.

Then it holds with probability at least 1− ν that

‖fα̂a∗ − f
∗‖2 = O

{
λ−1/2n ζn

}
,

‖fα̂a∗ − f‖H = O
{
λ−1n ζn

}
,

with f∗ = Tf .

The condition (6) holds trivially for r = 1/2 as γn converges to zero. For r > 1/2 the
sequence λn must not converge to zero arbitrarily fast.

In its general form Theorem 2 does not give immediate insight in the probabilistic
convergence rates of the kernel partial least squares estimator. Therefore, we state two
corollaries, where the function dλ is specified. In both corollaries we explicitly state the
choice of the sequence λn that yield the corresponding rates.

Corollary 3 Assume that there exists s ∈ (0, 1] such that dλ = O(λ−s) for λ → 0. Then

under conditions of Theorem 2 with λn = γ
2/(2r+s)
n it holds with probability at least 1 − ν

that

‖fα̂a∗ − f
∗‖2 = O

{
γ2r/(2r+s)n

}
.

Polynomial decay of the effective dimensionality dλ = tr{(S + λ)−1S} occurs if the eigen-
values of S also decay polynomially fast, that is, µi = csi

−1/s for s ∈ (0, 1], since in this

case dλ =
∞∑
i=1
{1 + λ/csi

1/s}−1 = O(λ−s). This holds, for example, for the Sobolev ker-

nel k(x, y) = min(x, y), x, y ∈ [0, 1] and data that are uniformly distributed on [0, 1], see
Raskutti et al. (2014).

If γn = n−1/2, then the KPLS estimator converges in the L2
(
PX
)
-norm with a rate of

n−r/(2r+s). This rate is shown to be optimal in Caponnetto and de Vito (2007) for KRR
with independent identically distributed data.

Note that the rate obtained in Theorem 1 corresponds to γ
−2r/(2r+s)
n with s = 1, i.e.,

the worst case rate with respect to the parameter s ∈ (0, 1].
In the next corollary to Theorem 2 we assume that the effective dimensionality behaves

in a logarithmic fashion.

Corollary 4 Let dλ = O{log(1 + a/λ)} for λ → 0 and a > 0. Then under the conditions
of Theorem 2 with λn = γ2n log{γ−2n } and r = 1/2 it holds with probability at least 1− ν that

‖fα̂a∗ − f
∗‖2 = O

{
γn log(1/2γ−2n )

}
.

The effective dimensionality takes the special form considered in this corollary, for example,
when the eigenvalues of S decay exponentially fast. This holds, for example, if the data
are Gaussian and the Gaussian kernel is used, see Section A. If γn = O(n−1/2), then the
convergence rate is of order O{n−1 log(n)}, which is nearly parametric. It is noteworthy
that the source condition only impacts the choice of the sequence λn, not the convergence
rates of the estimator in the L2

(
PX
)
-norm. Therefore, we stated the corollary for r = 1/2,
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which is a minimal smoothness condition on f∗, i.e., that f∗ = Tf almost surely for an
f ∈ H.

The rates obtained in Corollaries 3 and 4 for γn = n−1/2 were derived in Dicker et al.
(2017) for kernel ridge regression and kernel principal component regression under the as-
sumption of independent and identically distributed data.

4. Concentration Inequalities for Gaussian Time Series

Crucial assumptions of Theorem 1 and 2 are the concentration inequalities for Sn and
T ∗ny and convergence of the sequence {γn}n∈N. Here we establish such inequalities in a
Gaussian setting for stationary time series. At the end of this section we will state explicit
convergence rates for fα̂a∗ that depend not only on the source parameter r ≥ 1/2 and the
effective dimensionality dλ, but also on the persistence of the dependence in the data.

The Gaussian setting is summarized in the following assumptions

(D1) (Xh, X0)
T ∼ N2d(0,Σh), h = 1, . . . , n− 1, with

Σh =

[
τ0 τh
τh τ0

]
⊗ Σ.

Here Σ ∈ Rd×d and V = [τ|i−j|]
n
i,j=1 ∈ Rn×n are positive definite, symmetric ma-

trices and ⊗ denotes the Kronecker product between matrices. Furthermore X0 ∼
Nd(0, τ0Σ).

(D2) For the autocorrelation function ρh = τ−10 τh there exists a q > 0 such that |ρh| ≤
(h+ 1)−q for h = 0, . . . , n− 1.

Condition (D1) is a separability condition for the covariance matrices Σh, h = 0, . . . , n− 1.
Due to (D1) the effects (on the covariance) over time and between the different variables
can be treated separately. Under condition (D2) it is easy to see that from q > 1 follows the
absolute summability of the autocorrelation function ρ and thus {Xt}t∈Z is a short memory
process. Stationary short memory processes keep many of the properties of independent
and identically distributed data, see, e.g., Brockwell and Davis (1991).

On the other hand q ∈ (0, 1] yields a long memory process, see, e.g., Definition 3.1.2
in Giraitis et al. (2012). Examples of long memory processes are the fractional Gaussian
noise with an autocorrelation function that behaves like (h + 1)−2(1−H), with H ∈ [0, 1)
being the Hurst coefficient. Stationary long memory processes exhibit dependencies between
observations that are more persistent, and many statistical results that hold for independent
and identically distributed data, turn out to be false. See Samorodnitsky (2007) for more
details.

The next theorem gives concentration inequalities for both estimators Sn and T ∗ny in
a Gaussian setting with convergence rates depending on the parameter q > 0. These
inequalities are the ones needed in Theorem 1 and Theorem 2. Recall that dλ = tr{(S +
λ)−1S} denotes the effective dimensionality of S.
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Theorem 5 (i) Define dµh(x, y) = dPXh,X0(x, y)− dPX0(x)dPX0(y). Under Assumptions
(K1) and (K2) it holds for ν ∈ (0, 1] with probability at least 1− ν that

‖Sn − S‖2L ≤
2ν−1

n2

n−1∑
h=1

(n− h)

∫
R2d

k2(x, y)dµh(x, y) +
ν−1

n

[
E{k2(X0, X0)} − ‖S‖2HS

]
,

‖T ∗ny − Sf‖2H ≤
2ν−1

n2

n−1∑
h=1

(n− h)

∫
R2d

k(x, y)f(x)f(y)dµh(x, y)

+
ν−1

n

[
E
{
k(X0, X0)f

2(X0)
}
− ‖Sf‖2H + σ2E{k2(X0, X0)}

]
.

(ii) Assume that additionally to (K1), (K2) also (D1), (D2) for q > 0 are fulfilled.
Denote M = supx∈Rd |f(x)|.

Then there exists a constant C(q) > 0 such that

‖Sn − S‖L ≤ ν−1/2{γ2n(q)κCγ + n−1(κ2 − ‖S‖2HS)}1/2,

‖T ∗ny − Sf‖H ≤ ν−1/2
[
γ2n(q)MCγ + n−1

{
κ(M + σ2)− ‖Sf‖2H

}]1/2
,

for Cγ = C(q){(2π)ddet(Σ)}−1/2κd1/2(1 − 4−q)−1/4(d+2). The function γn(q), q > 0, is
defined as

γn(q) =


n−1/2 , q > 1

n−1/2 log(1/2n) , q = 1

n−q/2 , q ∈ (0, 1).

(iii) Let (K1), (K2) and (S) hold. Let γn(q) be the function as defined in (ii). Then
there exists a constant C̃ε > 0 such that it holds with probability at least 1−ν for λ > 0 that

‖(S + λ)−1/2(T ∗ny − Snf‖H ≤ ν−1/2C̃εσ
√
dλγn(q).

(iv) Let (K1), (K2), (S), (D1) and (D2) hold. Let λ
−1/2
n d

1/2
λn
γn(q) → 0 for a sequence

λn → 0 and γn(q) the function defined in (ii). Then there exists an n0 = n0(ν, q) ∈ N such
that with probability at least 1− ν we have for all n ≥ n0

‖(S + λn)1/2(Sn + λn)−1/2‖L ≤
√

2.

The first part of the theorem is general and can be used to derive concentration inequal-
ities not only in the Gaussian setting and is of interest in itself. The convergence rate is
controlled by the sums appearing on the right hand side. If these sums are of O(n), then
the mean squared error of both Sn and T ∗ny will converge to zero with a rate of n−1. On the
other hand, if the sums are of order O(n2−q) for some q ∈ (0, 1), the mean squared errors
will converge with the reduced rate n−q.

The second part derives explicit concentration inequalities in the Gaussian setting de-
scribed by (D1) and (D2) with rates depending on the range of the dependence measured
by q > 0. These inequalities appear in Theorem 1.

Parts (iii) and (iv) give the additional probabilistic bounds needed to apply Theorem 2.

The condition λ
−1/2
n d

1/2
λn
γn(q)→ 0 in Theorem 5 (iv) is fulfilled in the settings of Corollary

3 and Corollary 4.
Theorem 1, Corollary 3, Corollary 4 and Theorem 5 together imply

9
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Corollary 6 Let the conditions of Theorem 2 and (D1), (D2) hold.

(i) Assume that there exists s ∈ (0, 1] such that dλ = O(λ−s) for λ → 0. Then with
probability at least 1− ν

‖fα̂a∗ − f
∗‖2 =

{
O{n−r/(2r+s)}, q > 1,

O{n−qr/(2r+s)}, q ∈ (0, 1).

If instead of conditions of Theorem 2, conditions of Theorem 1 are assumed, then the
convergence rates above have s = 1.

(ii) Assume that there exists a > 0 such that dλ = O{log(1 + a/λ)} for λ → 0 and
r = 1/2. Then with probability at least 1− ν

‖fα̂a∗ − f
∗‖2 =

{
O{n−1/2 log(1/2n)}, q > 1,

O{n−q/2 log(1/2nq)}, q ∈ (0, 1).

Hence, for q > 1 the kernel partial least squares algorithm achieves the same rates as if
the data were independent and identically distributed. For q ∈ (0, 1) the convergence rates
become substantially slower, highlighting that dependence structures that persist over a
long time can influence the convergence rates of the algorithm.

5. Simulations

To validate the theoretical results of the previous sections, we conducted a simulation
study. The reproducing kernel Hilbert space is chosen to correspond to the Gaussian kernel
k(x, y) = exp(−l‖x − y‖2), x, y ∈ Rd, l = 2, for d = 1. Our data will also be normally
distributed. We refer to Proposition 7 in Appendix A for the derivation of functions that
fulfill the source condition in this setting. Proposition 8 shows that the the eigenvalues of
S decay exponentially fast. Hence the effective dimensionality dλ behaves as in Corollary 4
and thus we expect convergence rates as given by Corollary 6 (ii).

The source parameter is taken to be r = 4.5 and we consider the function

f(x) = 4.37−1{3L4(x,−4)− 2L4(x, 3) + 1.5L4(x, 9)}, x ∈ R.

The normalization constant is chosen such that f takes values in [−0.35, 0.65] and L4 is the
exponential function given in Proposition 7. The function f is shown in Figure 1.

In condition (D1) we set σ2x = Σ = 4 (recall that d = 1). For the matrix V =
[τ|i−j|]

n
i,j=1 ∈ Rn×n we choose three different structures for n ∈ {200, 400, 1000}. In the

first setting τh = I(h = 0), which corresponds to independent data. The second setting
with τh = 0.9−h implies an autoregressive process of order one. Finally, the third setting
with τh = (1 + h)−q, q = 1/4, h = 0, . . . , n− 1 leads to the long range dependent case.

In a Monte Carlo simulation with M = 1000 repetitions the time series {X(j)
t }nt=1 are

generated via X(j) = V N (j) with N (j) ∼ Nn(0, σ2In), j = 1, . . . ,M , where In is the n× n-
dimensional identity matrix.

The residuals ε
(j)
1 , . . . , ε

(j)
n are generated as independent standard normally distributed

random variables and independent of {X(j)
t }nt=1 . The response is defined as y

(j)
t = f(X

(j)
t )+

η ε
(j)
t , t = 1, . . . , n, j = 1, . . . ,M , with η = 1/16.

10
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Figure 1: The function f evaluated on [−7.5, 7.5] (black) and one realisation of the noisy
data y = f(x) + ε (grey).

The kernel partial least squares and kernel conjugate gradient algorithms are run for each

sample {(X(j)
t , y

(j)
t )T}nt=1, j = 1, . . . ,M , with a maximum of 40 iteration steps. We denote

the estimated coefficients with α̂
(j,m)
1 , . . . , α̂

(j,m)
40 , j = 1, . . . ,M , with m = CG meaning that

the kernel conjugate gradient algorithm was employed and m = PLS that kernel partial
least squares was used to estimate α1, . . . , αn.

The squared error in the L2
(
PX
)
-norm is calculated via

ê(j,m)
n,τ = min

a=1,...,40

 1√
2πσ2x

∞∫
−∞

{
f
α̂
(j,m)
a

(x)− f(x)
}2

exp

(
− 1

2σ2x
x2
)

dx

 ,
for j = 1, . . . ,M , n = 200, 400, . . . , 1000 and m ∈ {CG,PLS}.

The results of the Monte-Carlo simulations are depicted in the boxplots of Figure 2. For
kernel partial least squares (left panels) one observes that independent and autoregressive
dependent data have roughly the same convergence rates, although the latter have a some-
what higher error. In contrast, the long range dependent data show slower convergence
with the larger interquartile range, supporting the theoretical results of Corollary 6.

The L2
(
PX
)
-error of kernel conjugate gradient estimators is generally slightly higher

than that of kernel partial least squares. Nonetheless, both of them have a similar behaviour.

We also investigated the the stopping indices a = 1, . . . , 40 for which the errors ê
(j,m)
n,τ

were attained. These are shown in Figure 3 for independent and identically distributed
data. It can be seen that the optimal indices for both algorithms have a rather similar
behaviour. Kernel conjugate gradient stops slightly later, but overall the differences seem
negligible.
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Figure 2: Boxplots of the L2
(
PX
)
-errors {ê(j,m)

n,τ }Mj=1 of kernel partial least squares (left side
of each panel) and kernel conjugate gradient (right side of each panel) for different
autocovariance functions τ and n = 200, 400, 1000. On the left is τh = I(h = 0),
in the middle τh = 0.9−h and on the right τh = (h+ 1)−1/4.
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Figure 3: Boxplots of the optimal indices a ∈ {1, . . . , 40} for which the L2
(
PX
)
-errors

{ê(j,m)
n,τ }Mj=1 were attained. Kernel partial least squares is on the left of each panel

and kernel conjugate gradient on the right. On the left is n = 200, on the right
n = 1000. The data were assumed to be independent and identically distributed.
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Figure 4: Mean of the L2
(
PX
)
-errors {ê(j,m)

n,τ }Mj=1 of kernel partial least squares (left)
and kernel conjugate gradient (right) for n = 200, 400, . . . , 1000 multiplied by
n/ log(n). The solid black line is for τh = I(h = 0), the grey line for τh = 0.9−h

and the dashed black line for τh = (h+ 1)−1/4.

Figure 4 shows the mean (over j) of the estimated L2
(
PX
)

errors {ê(j,m)
n,τ }Mj=1 for dif-

ferent n, τ and m ∈ {CG,PLS}. The errors were multiplied by n/ log(n) to illustrate the
convergence rates. According to Proposition 8 and Corollary 6 (ii) we expect the rates for
the independent and autoregressive cases to be n−1 log(n), which is verified by the fact that
the solid black and grey lines are roughly constant. For the long range dependent case we
expect worse convergence rates which are also illustrated by the divergence of the dashed
black line.

6. Application to Molecular Dynamics Simulations

The collective motions of protein atoms are responsible for its biological function and molec-
ular dynamics simulations is a popular tool to explore this (Henzler-Wildman and Kern,
2007).

Typically, the p ∈ N backbone atoms of a protein are considered for the analysis with
the relevant dynamics happening in time frames of nanoseconds. Although the dynamics
are available exactly, the high dimensionality of the data and large number of observations
can be cumbersome for regression analysis, e.g., due to the high collinearity in the columns
of the covariates matrix. Many function-dynamic relationships are also non-linear (Hub and
de Groot, 2009). A further complication is the fact that the motions of different backbone
atoms are highly correlated, making additive non-parametric models for the target function
f∗ less suitable.

We consider T4 Lysozyme (T4L) of the bacteriophage T4, a protein responsible for the
hydrolisis of 1,4-beta-linkages in peptidoglycans and chitodextrins from bacterial cell walls.
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Figure 5: Time series of Xt,1, i.e., the first coordinate of the first atom T4L consists of (left)
and the root mean squared deviation yt between the protein configuration at time
t and the (apo) crystal structure.

The number of available observations is n = 4601 and T4L consists of p = 486 backbone
atoms.

Denote with At,i ∈ R3 the ith atom, i = 1, . . . , p, at time t = 1, . . . , n and ci ∈ R3 the
ith atom in the (apo) crystal structure of T4L. A usual representation of the protein in a
regression setting is the Cartesian one, i.e., we take as the covariate Xt = (AT

1,t, . . . , A
T
p,t)

T,
t = 1, . . . , n, see Brooks and Karplus (1983). The functional quantity to predict is the root
mean square deviation of the protein configuration Xt at time t = 1, . . . , n from the (apo)
crystal structure C = (cT1 , . . . , c

T
d )T, i.e.,

yt =

{
p−1

p∑
i=1

‖Xi,t − Ci‖2
}1/2

.

This nonlinear function was previously considered in Hub and de Groot (2009), where it
was established that linear models are insufficient for the prediction.

Figure 5 shows the time series corresponding to Xt,1 (i.e., the first coordinate of the first
atom of T4L) on the left and the functional quantity yt on the right. These plots reveal
certain persistent dependence over time.

Fitting autoregressive moving average models of order (3, 2) (ARMA(3, 2)) to yt and
ARMA(5, 2) to Xt,1 shows that the smallest root of their respective characteristic polyno-
mial is close to one (1.009 for yt and 1.003 for Xt,1), highlighting that we are on the border
of stationarity, see, e.g., Brockwell and Davis (1991).

Next, we performed an augmented Dickey Fuller test for the null hypothesis of non-
stationarity against stationarity. Calculating the test statistics with 16 lags yields a p-value
smaller than 0.01 for yt and 0.0122 for Xt,1. Hence, both time series are likely stationary.
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Figure 6: Autocorrelation plots of Xt,1 (left) and yt (right). The estimated autocorrelation
function is grey, the theoretical one of a fitted ARMA(3, 2) process is solid black
and ρh ∝ (h+ 1)−q for a suitable choice of q > 0 is dashed black.

Finally, to test for long range dependence, we employed the rescaled variance test of
Giraitis et al. (2003). The null hypothesis of this test is the short range dependence in the
data, while the alternative is the long range dependence. Calculating the test statistics with
16 lags gives the p-value for both yt and Xt,1 smaller than 0.01, suggesting the long range
dependence.

Figure 6 depicts the autocorrelation functions of Xt,1 and yt, the theoretical autocorrela-
tion function of the corresponding autoregressive moving average process and ρh ∝ (h+1)−q

for q = 0.134 for Xt,1 and q = 0.066 for yt. The latter, as highlighted in Section 4, is an au-
tocorrelation function for a stationary long range dependent process. These plots together
with the above findings suggest that Xt,1 and yt are stationary, long range dependent pro-
cesses.

We apply kernel partial least squares to this data set with the Gaussian kernel k(x, y) =
exp(−l‖x−y‖2), x, y ∈ R3p, l > 0. The function f we aim to estimate is a distance between
protein configurations, so using a distance based kernel seems reasonable. Moreover, we
also investigated the impact of other bounded kernels such as triangular and Epanechnikov
and obtained similar results. The first 50% of the data form a training set to calculate the
kernel partial least squares estimator and the remaining data are used for testing.

The parameter l > 0 is calculated via cross validation on the training set. In our
evaluation we obtained l = 10.22.

Figure 7 compares the observed response in the test set with the prediction on the test
set obtained by kernel partial least squares, kernel principal component regression and linear
partial least squares. Apparently, kernel partial least squares show the best performance
and the kernel principal components algorithm is able to achieve comparable prediction with
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Figure 7: Correlation (left) and residual sum of squares (right) between predicted values
and the observed response on the test set depending on the number of used
components for kernel partial least squares (solid black), partial least squares
(grey) and kernel principal component regression (dashed black).

more components. Obviously, linear partial least squares can not cope with the non-linearity
of the problem.

This application highlights that kernel partial least squares still deliver a robust predic-
tion even for long range dependent data, if enough observations are available.
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Appendix A. Source Condition and Effective Dimensionality for
Gaussian Kernels

The source condition (S) and the effective dimensionality dλ are of great importance in
the convergence rates derived in Section 3. Here we investigate these conditions for the
reproducing kernel Hilbert space corresponding to the Gaussian kernel k(x, y) = exp(−l‖x−
y‖2), x, y ∈ Rd, l > 0, for d = 1. Hence, the space H is the space of all analytic functions
that decay exponentially fast, see Steinwart et al. (2005).

We also impose the normality conditions (D1) and (D2) on {Xt}t∈Z, where now σ2x =
Σ ∈ R due to d = 1. The following proposition derives a more explicit representation for
f ∈ H.
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Proposition 7 Assume that (K1),(K2) and (S) hold for r ≥ 1/2. Let d = 1, X0 ∼
N (0, σ2x), σ2x > 0 and consider the Gaussian kernel k(x, y) = exp{−l(x− y)2} for x, y ∈ R,
l > 0. Then f can be expressed for µ = r − 1/2 ∈ N via f(x) =

∑∞
i=1 ciLµ(x, zi) for fixed

{zi}∞i=1, {ci}∞i=1 ⊂ R such that
∑∞

i,j=1 cicjk(zi, zj) ≤ R2, R > 0. Here we have for x, z ∈ R

Lµ(x, z) = exp

[
−1/2

{
det(Λ)(x2 + z2)− 2lµ+1xz

det(Λ1:µ)

}]
,

with Λ ∈ R(µ+1)×(µ+1) being a tridiagonal matrix with elements

Λi,j =


σ−2x + 2l , i = j < µ+ 1

l , i = j = µ+ 1
−l , |i− j| = 1
0 , else

for i, j = 1, . . . , µ+ 1 and Λ1:µ is the µ× µ-dimensional sub-matrix of Λ including the first
µ columns and rows.

Conversely any function f∗ = Tf with f of the above form fulfills a source condition
(S) with r = µ+ 1/2, µ ∈ N.

Hence if we fix an r ≥ 1/2 with r − 1/2 ∈ N this theorem gives us a way to construct
functions f ∈ H with f∗ = Tf that fulfill (S).

The next proposition derives the effective dimensionality dλ in this setting:

Proposition 8 Let d = 1, X0 ∼ N (0, σ2x) for some σ2x > 0 and consider the Gaussian
kernel k(x, y) = exp{−l(x− y)2}, x, y ∈ R, l > 0.

Then there is a constant D > 0 such that it holds for any λ ∈ (0, 1]

dλ = tr{(S + λ)−1S} ≤ D log(1 + a/λ),

with a =
√

2(1 + β +
√

1 + β)−1/2, β = 4lσ2x.

With the latter result Corollary 4 is applicable and we expect convergence rates for the
kernel partial least squares algorithm of order O{γn log(1/2γ−2n )} for a sequence {γn}n as
in Theorem 2.

Appendix B. Proofs

B.1 Proof of Theorem 1

The proof of Theorem 1 makes use of the connection between the partial least squares and
the conjugate gradient algorithm. This section is structured as follows: First we will intro-
duce the link between kernel partial least squares and kernel conjugate gradient. We will
state some key facts about orthogonal polynomials and their relationship to the algorithm
in Lemma 9. Then the consistency of kernel partial least squares is shown with the help of
three error bounds that are obtained in Lemmas 11 — 13.

With a slight abuse of notation we define fi = fα̂i for i = 1, . . . , n.
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B.1.1 Orthogonal Polynomials and Some Notation

Denote with Pi the set of polynomials of degree at most i = 0, . . . , n. For functions ψ, φ :
R → R and r ∈ N0 define the inner products [ψ, φ]r = 〈ψ(Sn)T ∗ny, S

r
nφ(Sn)T ∗ny〉H. From

the definition of the Krylov space it is immediate that every element v ∈ Ki(Sn, T ∗ny),
i = 1, . . . , n, can be represented by a polynomial q ∈ Pi−1 via v = q(Sn)T ∗ny.

The following discussion is based on Hanke (1995), chapter 2. There exist two sequences
of polynomials {pi}ni=0, {qi}ni=0 ⊂ Pi, such that fi = qi−1(Sn)T ∗ny with q−1 = 0 and T ∗ny −
Snfi = pi(Sn)T ∗ny. Both sequences are connected by the equation pi(x) = 1 − xqi−1(x),
x ∈ R, and the polynomials {pi}ni=0 are orthogonal with respect to [·, ·]0.

We will also consider other sequences of polynomials, namely {q[r]i }ni=0, {p
[r]
i }ni=0 ⊂ Pi,

q
[r]
−1 = 0, such that p

[r]
i (x) = 1 − xq[r]i−1(x), x ∈ R, and the sequence {p[r]i }ni=0 is orthogonal

with respect to [·, ·]r. This yields for every r ∈ N0 a separate conjugate gradient algorithm

with solution f
[r]
i = q

[r]
i−1(Sn)T ∗ny ∈ Ki(Sn, T ∗ny) and residuals T ∗ny − Snf

[r]
i = p

[r]
i (Sn)T ∗ny,

i = 1, . . . , n. The p
[r]
i , i = 0, . . . , n, r ∈ N0, are called residual polynomials.

As Sn is self-adjoint, positive semi-definite and the kernel is bounded by κ we know that
its spectrum is a subset of [0, κ], see Caponnetto and de Vito (2007). This also implies that

max{‖S‖L, ‖Sn‖L} ≤ κ, with ‖ · ‖L denoting the operator norm. The i distinct roots of p
[r]
i

will be denoted by 0 < x
[r]
1,i < . . . x

[r]
i,i < κ, i = 1, . . . , n.

We will summarize some key facts about the orthogonal polynomials in the next lemma.

Lemma 9 Let r, s ∈ N0 and i = 1, . . . , n. Then we have:

(i) The roots of consecutive orthogonal polynomials interlace, i.e., for j = 1, . . . , i it holds

0 < x
[r]
j,i+1 < x

[r]
j,i < x

[r+1]
j,i < x

[r]
j+1,i+1 < x

[r]
j+1,i < · · · < x

[r+1]
i,i < x

[r]
i+1,i+1 < κ,

(ii) the optimality property [p
[1]
i , p

[1]
i ]

1/2
0 = ‖T ∗ny − Snf

[1]
i ‖H ≤ ‖T ∗ny − Snh‖H holds for all

h ∈ Ki(Sn, T ∗ny),

(iii) on x ∈ [0, x
[r]
1,i] it holds 0 ≤ p[r]i (x) ≤ 1 and q

[r]
i (x) ≤

∣∣∣∣(p[r]i )′ (0)

∣∣∣∣,
(iv) p

[r]
n = p

[s]
n ,

(v)
(
p
[r]
i

)′
(0) = −

∑i
j=1

(
x
[r]
j,i

)−1
,

(vi) for r ≥ 1 define φi(x) = p
[r]
i (x)

(
x
[r]
1,i

)1/2 (
x
[r]
1,i − x

)−1/2
, x ∈ [0, x

[r]
1,i], i = 1, . . . , n.

Then it holds for u ≥ 0 that xuφ2i (x) ≤ uu
∣∣∣∣(p[r]i )′ (0)

∣∣∣∣−u with the convention 00 = 1.

Proof : (i) See Hanke (1995), Corollary 2.7.
(ii) See Hanke (1995), Proposition 2.1.

(iii) Due to part (i) we know that all i roots of the polynomial p
[r]
i are contained in

(0, κ). Furthermore p
[r]
i (0) = 1 − 0q

[r]
i = 1. Thus p

[r]
i is convex and falling in [0, x

[r]
1,i] and

the first assertion follows.
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Because of the convexity of p
[r]
i on [0, x

[r]
1,i] we get q

[r]
i (x) = x−1{1−p[r]i (x)} ≤

∣∣∣∣(p[r]i )′ (0)

∣∣∣∣.
(iv) See the discussion in Hanke (1995) preceding Proposition 2.1 and use the facts that

T ∗ny ∈ range(Sn) and Sn is an operator of rank n.

(v) Write p
[r]
i (x) =

∏i
j=1(1− x/x

[r]
j,i), x ∈ [0, κ], and the result is immediate.

(vi) See equation (3.10) in Hanke (1995). �
We denote for x ≥ 0 by Px the orthogonal projection operator on the eigenspace cor-

responding to the eigenvalues of Sn that are smaller or equal x and P⊥x = IH − Px with
IH : H → H being the identity operator.

B.1.2 Preparation for the Proof

We consider the kernel partial least squares algorithm as an optimization problem

fi = arg min
g∈Ki(Sn,T ∗

ny)
n−1‖y − Tng‖2, i = 1, . . . , n. (8)

This is the conjugate gradient algorithm CGNE discussed in chapter 2.2 of Hanke (1995),
to which we refer for more details. Note that, for example,

n−1〈φ(TnT
∗
n)y, TnT

∗
nψ(TnT

∗
n)y〉 = 〈φ(Sn)T ∗ny, ψ(Sn)T ∗ny〉H = [φ, ψ]0,

for polynomials φ, ψ.
In the upcoming proofs we will make use of the following operator inequality:

Lemma 10 Let B,C : H → H be two positive semi-definite, self-adjoint operators with
max{‖B‖L, ‖C‖L} ≤ κ. Then it holds for any r ≥ 0 with ζ = max{r − 1, 0}

‖Br − Cr‖L ≤ (ζ + 1)κζ‖B − C‖r−ζL .

Proof : See Blanchard and Krämer (2010b), Lemma A.6. �
For the remainder of the proof we assume that we are on the set where it holds with

probability at least 1−ν, ν ∈ (0, 1], that ‖Sn−S‖L ≤ Cδ(ν)γn and ‖T ∗ny−Sf‖H ≤ Cε(ν)γn
for a sequence {γn}n converging to zero and constants Cδ = Cδ(ν), Cε = Cε(ν) > 0.

With Lemma 2.4 in Hanke (1995) we see that the stopping iteration (5) can also be
expressed as

a∗ = min
{

1 ≤ a ≤ n : ‖Snf [1]a − T ∗ny‖H ≤ Cγn
}
, (9)

i.e., we stop the kernel partial least squares algorithm when a discrepancy principle for f
[1]
a

holds.
It is easy to see that from (S) it follows for r ≥ 1/2 that

(SH) There exist µ ≥ 0, R > 0 and u ∈ H such that f = Sµu and ‖u‖H ≤ R.

This condition is known as the Hölder source condition with µ = r − 1/2.
Recall that H ⊆ L2

(
PX
)

and T : H → L2
(
PX
)

is the change of space operator. Using
the fact that T , T ∗ are adjoint operators, fa∗ = Tfa∗ and f∗ = Tf for r ≥ 1/2 we see

‖fa∗ − f∗‖2 = ‖T (fa∗ − f)‖2 = 〈S(fa∗ − f), fa∗ − f〉H = ‖S1/2(fa∗ − f)‖H.
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An application of Lemma 10 yields

‖fa∗ − f∗‖2 = ‖S1/2(fa∗ − f)‖H ≤ ‖S1/2(fa∗ − f [1]a∗ )‖H + ‖S1/2(f
[1]
a∗ − f)‖H

≤ C1/2
δ γ1/2n

(
‖fa∗ − f [1]a∗ ‖H + ‖f [1]a∗ − f‖H

)
+ ‖S1/2

n (fa∗ − f [1]a∗ )‖H + ‖S1/2
n (f

[1]
a∗ − f)‖H.

(10)

The following lemmas will deal with bounding the quantities in (10) in terms of the
source parameter r = µ + 1/2 ≥ 1/2 and the sequence γn. First we will derive upper
bounds for the quantities containing the difference of the KPLS estimator fa∗ and the

estimator f
[1]
a∗ :

Lemma 11 Assume Cx ∈ (0, 1] such that x∗ = (Cxγn)1/(µ+1) < x
[1]
1,a∗−1 and C > Cε +

CxR+ Cδ(µ+ 1)κµR. Under the conditions of the theorem it holds µ ≥ 0

‖fa∗ − f [1]a∗ ‖H ≤ γ
µ/(µ+1)
n

C

C
1/(µ+1)
x [1− C−1{Cε + CxR+ Cδ(µ+ 1)κµR}]2

‖S1/2
n (fa∗ − f [1]a∗ )‖H ≤ γ(2µ+1)/(2µ+2)

n

C

C
1/(2µ+2)
x [1− C−1{Cε + CxR+ Cδ(µ+ 1)κµR}]

.

Proof: If the inner products [·, ·]0 and [·, ·]1 are the same the proof is done because both
polynomial sequences are identical.

We now observe that we have for a∗ = n due to Lemma 9 (iv) qn−1(x) − q[1]n−1(x) =

x−1{p[1]n (x)− pn(x)} = 0, i.e., ‖fa∗ − f [1]a∗ ‖H = 0 and ‖S1/2
n (fa∗ − f [1]a∗ )‖H = 0 and the proof

is done.

If the inner products differ and we have 0 < a∗ < n it holds fa∗ 6= f
[1]
a∗ .

Proposition 2.8 in Hanke (1995) can now be applied for 0 < a∗ < n and yields qa∗−1(x)−
q
[1]
a∗−1(x) = x−1{p[1]a∗(x)− pa∗(x)} = θa∗p

[2]
a∗−1(x), x ≥ 0, with θa∗ = (p

[1]
a∗)′(0)− (p

[0]
a∗)′(0) > 0.

We get fa∗ − f [1]a∗ = qa∗−1(Sn)T ∗ny − q
[1]
a∗−1(Sn)T ∗ny = θa∗p

[2]
a∗−1(Sn)T ∗ny.

Proposition 2.9 in Hanke (1995) yields θa∗ =
[
p
[2]
a∗−1, p

[2]
a∗−1

]−1
1

[
p
[1]
a∗ , p

[1]
a∗

]
0
. The optimal-

ity property of f
[1]
a∗ in Lemma 9 (ii) shows that

‖T ∗ny − Snf
[1]
a∗ ‖H = ‖p[1]a∗(Sn)T ∗ny‖H =

[
p
[1]
a∗ , p

[1]
a∗

]1/2
0
≤
[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

. (11)

Combining these results yields

‖fa∗ − f [1]a∗ ‖H =

[
p
[1]
a∗ , p

[1]
a∗

]
0[

p
[2]
a∗−1, p

[2]
a∗−1

]
1

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0
≤

[
p
[2]
a∗−1, p

[2]
a∗−1

]
0[

p
[2]
a∗−1, p

[2]
a∗−1

]
1

‖p[1]a∗(Sn)T ∗ny‖H. (12)
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Recall that x
[2]
1,a∗−1 denotes the first root of p

[2]
a∗−1. It holds for any 0 ≤ x ≤ x[2]1,a∗−1 that

0 ≤ p[2]a∗−1(x) ≤ 1, see Lemma 9 (iii), and thus[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0
≤ ‖Pxp[2]a∗−1(Sn){T ∗ny − Sf + Sf}‖H + ‖P⊥x p

[2]
a∗−1(Sn)T ∗ny‖H

≤ Cεγn + ‖Pxp[2]a∗−1(Sn)Sµ+1u‖H + x−1/2‖P⊥x S1/2
n p

[2]
a∗−1(Sn)T ∗ny‖H

≤ Cεγn + xµ+1R+ ‖Pxp[2]a∗−1(S
µ+1 − Sµ+1

n )u‖H +
1√
x

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

.

In the second inequality (SH) with µ ≥ 0 was applied.

By assumption x∗ = (Cxγ)1/(µ+1) ≤ x[1]1,a∗−1 < x
[2]
1,a∗−1 due to the interlacing property of

the roots of the polynomials p
[r]
i , i = 1, . . . , n, r ∈ N0, see Lemma 9 (i).

Using Lemma 10 we get ‖Sµ+1 − Sµ+1
n ‖L ≤ (µ+ 1)κµCδγn and setting x = x∗ we get[

p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0
≤ Cεγn + xµ+1

∗ R+ Cδγn(µ+ 1)κµR+ x
−1/2
∗

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

= γn {Cε + CxR+ Cδ(µ+ 1)κµR}+ x
−1/2
∗

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

. (13)

Due to (9) and (11) we have additionally Cγn ≤ ‖Snf [1]a∗−1 − T ∗ny‖H = ‖p[1]a∗−1(Sn)T ∗ny‖H ≤[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

.

Plugging this into (13) yields[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0
≤ Cε + CxR+ Cδ(µ+ 1)κµR

C

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

+
1
√
x∗

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

,

or equivalently with x∗ = (Cxγn)1/(µ+1)

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0
≤ γ−1/(2µ+2)

n

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

C
1/(2µ+2)
x [1− C−1{Cε + CxR+ Cδ(µ+ 1)κµR}]

, (14)

where by assumption C > Cε + CxR+ Cδ(µ+ 1)κµR and x∗ = (Cxγ)1/(µ+1).

Combining (12), (14) and ‖p[1]a∗(Sn)T ∗ny‖H ≤ Cγn due to the stopping index (9) yields

‖fa∗ − f [1]a∗ ‖H ≤ γ
−1/(µ+1)
n

‖p[1]a∗(Sn)T ∗ny‖H
C

1/(µ+1)
x [1− C−1{Cε + CxR+ Cδ(µ+ 1)κµR}]2

≤ γµ/(µ+1)
n

C

C
1/(µ+1)
x [1− C−1{Cε + CxR+ Cδ(µ+ 1)κµR}]2

.

For the second part of the proof we derive in the same way as (12)

‖S1/2
n (fa∗ − f [1]a∗ )‖H ≤

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0[

p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

‖p[1]a∗(Sn)T ∗ny‖H.
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Using (14) and ‖p[1]a∗(Sn)T ∗ny‖H ≤ Cγn gives

‖S1/2
n (fa∗ − f [1]a∗ )‖H ≤ γ(2µ+1)/(2µ+2)

n

C

C
1/(2µ+2)
x [1− C−1{Cε + CxR+ Cδ(µ+ 1)κµR}]

,

finishing the proof. �
We now derive an upper bound on the quantities that contain f

[1]
a∗ and f . These contain

‖Snf [1]i − T ∗ny‖H, which can be controlled for i = a∗ by the discrepancy principle (9), and

(p
[1]
i )′(0), for which we have to derive a separate bound later on.

Lemma 12 For any i = 1, . . . , n and any 0 < x ≤ x[1]1,i we have under the conditions of the
theorem for µ ≥ 1

‖f − f [1]i ‖H ≤ R
{
xµ + Cδµκ

µ−1γn
}

+ x−1
{
‖Snf [1]i − T

∗
ny‖H + (Cε + Cδκ

µR)γn

}
+ (Cε + Cδκ

µR)γn|(p[1]i )′(0)|,

‖S1/2
n (f − f [1]i )‖H ≤ R

{
xµ+1/2 + x1/2Cδµκ

µ−1γn

}
+ x−1/2

{
‖Snf [1]i − T

∗
ny‖H + (Cε + Cδκ

µR)γn

}
+ x1/2(Cε + Cδκ

µR)γn|(p[1]i )′(0)|.

Proof: Denote f̄i = q
[1]
i−1(Sn)Snf and consider

‖f − f [1]i ‖H ≤ ‖Px(f − f̄i)‖H + ‖Px(f̄i − f [1]i )‖H + ‖P⊥x (f − f [1]i )‖H. (15)

The first term of (15) can be bound by an application of Lemma 10 and (SH) with µ ≥ 1

‖Px(f − f̄i)‖H = ‖Px{I − q[1]i−1(Sn)Sn}f‖H = ‖Pxp[1]i (Sn)f‖H = ‖Pxp[1]i (Sn)Sµu‖H
≤ ‖Pxp[1]i (Sn)Sµnu‖H + ‖Pxp[1]i (Sn)(Sµ − Sµn)u‖H
≤ R

{
xµ + Cδµκ

µ−1γn
}
.

In the last inequality we used that on 0 ≤ x ≤ x[1]1,i we have 0 ≤ p[1]i (x) ≤ 1.

For the second term of (15) we use Lemma 9 (iii) q
[1]
i (x) ≤ |(p[1]i )′(0)| on x ∈ [0, x

[1]
1,i].

This yields

‖Px(f
[1]
i − f̄i)‖H = ‖Pxq[1]i (Sn)(Snf − T ∗ny)‖H

≤ ‖Pxq[1]i (Sn)(Sf − T ∗ny)‖H + ‖Pxq[1]i (Sn)(Sn − S)f‖H

≤ (Cε + Cδκ
µR)γn

∣∣∣∣(p[1]i )′ (0)

∣∣∣∣ .
Finally, we have

‖P⊥x (f − f [1]i )‖H ≤ x−1‖P⊥x Sn(f − f [1]i )‖H

≤ x−1
{
‖Snf [1]i − T

∗
ny‖H + ‖Px(T ∗ny − Snf)‖H

}
≤ x−1

{
‖Snf [1]i − T

∗
ny‖H + (Cε + Cδκ

µR)γn

}
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and thus the first inequality is proven.
For the second inequality we use

‖S1/2
n (f − f [1]i )‖H ≤ ‖PxS1/2

n (f − f̄i)‖H + ‖PxS1/2
n (f̄i − f [1]i )‖H + ‖P⊥x S1/2

n (f − f [1]i )‖H.

In the same way as before we derive bounds for the three terms:

‖PxS1/2
n (f − f̄i)‖H ≤ x1/2Cδµκµ−1Rγn + xµ+1/2R,

‖PxS1/2
n (f̄i − f [1]i )‖H ≤ x1/2(Cε + CδRκ

µ)γn

∣∣∣∣(p[1]i )′ (0)

∣∣∣∣ ,
‖P⊥x S1/2

n (f − f [1]i )‖H ≤ x−1/2{‖Snf [1]i − T
∗
ny‖H + (Cε + Cδκ

µR)γn},

completing the proof. �
Lemma 12 depends on (p

[1]
i )′(0) and hence an upper bound for this term is needed:

Lemma 13 Assume that Cx ∈ (0, 1] is such that x∗ = (Cxγ)1/(µ+1) < x
[1]
1,a∗−1 and C >

Cε + CxR+ Cδ(µ+ 1)κµR. Under the conditions of the theorem it holds for µ ≥ 0∣∣∣∣(p[1]a∗)′ (0)

∣∣∣∣ ≤ γ−1/(µ+1)
n

[
C−1/(µ+1)
x

{
1− Cε + CxR+ Cδ(µ+ 1)κµR

C

}−2
+

{
(2µ+ 2)µ+1R

C − Cδ(µ+ 1)κµR+ Cε

}1/(µ+1)
]

Proof: The proof is done in two steps by using the inequality

∣∣∣∣(p[1]a∗)′ (0)

∣∣∣∣ ≤ ∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣+∣∣∣∣(p[1]a∗)′ (0)−
(
p
[1]
a∗−1

)′
(0)

∣∣∣∣.
Consider first a∗ > 1.
We will bound ‖Snf [1]a∗−1−T ∗ny‖H from above. Define z = x

[1]
1,a∗−1 and φi(x) = p

[1]
i (x)(z−

x)−1/2z1/2, 0 ≤ x ≤ z. Due to Lemma 9 (vi) it holds that sup0≤x≤z x
νφ2a∗−1(x) ≤

νν |(p[1]a∗−1)′(0)|−ν , ν ≥ 0. The proof of Lemma 3.7 in Hanke (1995) shows that[
p
[1]
a∗−1, p

[1]
a∗−1

]1/2
0
≤ ‖Pzφa∗−1(Sn)T ∗ny‖H.

This yields with (SH)

‖Snf [1]a∗−1 − T
∗
ny‖H =

[
p
[1]
a∗−1, p

[1]
a∗−1

]1/2
0
≤ ‖Pzφa∗−1(Sn)T ∗ny‖H

≤ ‖Pzφa∗−1(Sn)Sf‖H + ‖Pzφa∗−1(Sn)(T ∗ny − Sf)‖H

≤ ‖Pzφa∗−1(Sn)Sf‖H + Cεγn

(
sup

0≤x≤z
φ2a∗−1

)1/2

≤ ‖Pzφa∗−1(Sn)Sµ+1
n u‖H + ‖Pzφa∗−1(Sn)(Sµ+1

n − Sµ+1)u‖H + Cεγn

≤ R

{(
sup

0≤x≤z
x2µ+2φ2a∗−1

)1/2

+ Cδ(µ+ 1)κµγn

(
sup

0≤x≤z
φ2a∗−1

)1/2
}

+ Cεγn

≤
∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−µ−1 (2µ+ 2)µ+1R+ {Cδ(µ+ 1)κµR+ Cε}γn.
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This gives together with Cγn ≤ ‖Snf [1]a∗−1 − T ∗ny‖H

Cγn ≤
∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−µ−1 (2µ+ 2)µ+1R+ {Cδ(µ+ 1)κµR+ Cε} γn.

If C > Cδ(µ+ 1)κµR+ Cε we finally have∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣ ≤ γ−1/(µ+1)
n

{
(2µ+ 2)µ+1R

C − Cδ(µ+ 1)κµR+ Cε

}1/(µ+1)

. (16)

If a∗ = 1 it holds p
[1]
a∗−1 = 1 and thus

∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣ = 0 and the inequality (16) is true as

well.

We will derive an upper bound on

∣∣∣∣(p[1]a∗)′ (0)−
(
p
[1]
a∗−1

)′
(0)

∣∣∣∣ . Due to Corollary 2.6 of

Hanke (1995) we have

∣∣∣∣(p[1]a∗−1)′ (0)−
(
p
[1]
a∗

)′
(0)

∣∣∣∣ ≤
[
p
[1]
a∗−1, p

[1]
a∗−1

]
0[

p
[2]
a∗−1, p

[2]
a∗−1

]
1

. (17)

We have 0 ≤ x ≤ x
[1]
1,a∗−1 < x

[2]
1,a∗−1 due to the interlacing property of the roots in Lemma

9 (i) and thus 0 ≤ p[2]a∗−1(x) ≤ 1 for 0 ≤ x ≤ x[2]1,a∗−1. With that we get with (SH)

‖p[1]a∗−1(Sn)T ∗ny‖H ≤
[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

≤ ‖Pxp[2]a∗−1(Sn)T ∗ny‖H + x−1/2‖P⊥x S1/2
n p

[2]
a∗−1(Sn)T ∗ny‖H

≤ ‖Pxp[2]a∗−1(Sn)(T ∗ny − Sf)‖H + ‖Pxp[2]a∗−1(Sn)Sµ+1u‖H + x−1/2
[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

≤ Cεγn +R
{
Cδ(µ+ 1)κµγn + xµ+1

}
+ x−1/2

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

.

For the choice x∗ = (Cxγ)1/(µ+1) we get[
p
[1]
a∗−1, p

[1]
a∗−1

]1/2
0
≤ γn {Cε + Cδ(µ+ 1)κµR+ Cx}+ x

−1/2
∗

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

.

It holds
[
p
[1]
a∗−1, p

[1]
a∗−1

]1/2
0

= ‖Snf [1]a∗−1 − T ∗ny‖H ≥ Cγn. This yields with C > Cε + CxR +

Cδ(µ+ 1)κµR[
p
[1]
a∗−1, p

[1]
a∗−1

]
0
≤ γ−1/(µ+1)

n C−1/(µ+1)
x

{
1− Cε + CxR+ Cδ(µ+ 1)κµR

C

}−2 [
p
[2]
a∗−1, p

[2]
a∗−1

]
1
.

Together with (17) we have∣∣∣∣(p[1]a∗−1)′ (0)−
(
p
[1]
a∗

)′
(0)

∣∣∣∣ ≤ γ−1/(µ+1)
n C−1/(µ+1)

x

{
1− Cε + CxR+ Cδ(µ+ 1)κµR

C

}−2
.

Combining this with (16) completes the proof. �
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B.1.3 Proof of Theorem 1

The proof is an application of Lemmas 11 — 13 to (10). First note that r ≥ 3/2 implies
µ ≥ 1 and thus this condition in Lemma 12 holds.

Let us choose x∗ = (Cxγn)1/(µ+1). Lemma 9 (v) shows that

∣∣∣∣(p[r]i )′ (0)

∣∣∣∣ =
∑i

j=1(x
[r]
j,i)
−1

for i = 1, . . . , n, r ∈ N0. Thus it holds

∣∣∣∣(p[1]i )′ (0)

∣∣∣∣−1 ≤ x[1]1,i.

Equation (16) thus shows that Cx can be chosen small enough such that

x∗ ≤
∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−1 ≤ x[1]1,a∗−1

and Cx < 1, which makes the first condition in Lemma 11 and 13 hold true. The choice
C = Cε + (µ+ 1)κµR(1 + Cδ) gives the second condition.

Now we need to check the remaining condition of Lemma 12, namely that a Cz can

be chosen such that (Czγn)1/(µ+1) ≤ x
[1]
1,a∗ is true. Lemma 13 yields a Cz > 0 such that

Czγ
1/(µ+1)
n ≤

∣∣∣∣(p[1]a∗)′ (0)

∣∣∣∣−1 ≤ x
[1]
1,a∗ . Denote z∗ = (Czγn)1/(µ+1) and Lemma 12 can be

applied.
To ease notation we will denote everything in the derived bounds that does not depend

on γn as a constant cj , j ∈ N. Thus we get by combining Lemmas 12 and 13 that with
probability at least 1− ν

‖f − f [1]a∗ ‖
2
H ≤ c1γµ/(µ+1)

n + c2γn + c3γ
1−1/(µ+1)
n + c4γn

∣∣∣∣(p[1]a∗)′ (0)

∣∣∣∣
≤ c1γµ/(µ+1)

n + c2γn + c3γ
µ/(µ+1)
n + c5γ

1−1/(µ+1)
n = O{γµ/(µ+1)

n }

and

‖S1/2
n (f − f [1]a∗ )‖2H

≤ c6γ(µ+1/2)/(µ+1)
n + c7γ

1/(2µ+2)
n γn + c8γ

−1/(2µ+2)
n γn + c9γ

1/(2µ+1)
n γn

∣∣∣∣(p[1]a∗)′ (0)

∣∣∣∣
≤ c6γ(µ+1/2)/(µ+1)

n + c7γ
(2µ+3)/(2µ+2)
n + c8γ

(2µ+1)/(2µ+2)
n + c10γ

1+1/(2µ+2)−1/(µ+1)
n

= O{γ(2µ+1)/(2µ+2)
n }.

Finally Lemma 11 gives

‖fa∗ − f [1]a∗ ‖
2
H = O{γµ/(µ+1)

n }, ‖S1/2
n (fa∗ − f [1]a∗ )‖H = O{γ(2µ+1)/(2µ+2)

n }.

Combining the above with (10) yields

‖f − fa∗‖2H = O{γµ/(µ+1)
n },

‖f∗ − fa∗‖22 = O{γ1/2γµ/(µ+1)
n }+O{γ(2µ+1)/(2µ+2)

n } = O{γ(2µ+1)/(2µ+2)
n },

completing the proof with µ = r − 1/2. �
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B.2 Proof of Theorem 2

The overall design of this proof is similar to the one of Theorem 1 and makes heavy use of
results obtained in Blanchard and Krämer (2010b).

B.2.1 Preparation for the Proof

The stopping index (7) can be reformulated with µ = r − 1/2 as

a∗ = min{1 ≤ a ≤ n : ‖Snf [1]a − T ∗ny‖H ≤ Cζn}, (18)

with ζn = max{
√
λndλγn, λ

µ+1
n }.

We will derive the result in a similar way to Theorem 1. First it holds due to (10)

‖fa∗ − f∗‖2 = ‖S1/2(fa∗ − f)‖H ≤ ‖S1/2(fa∗ − f [1]a∗ )‖H + ‖S1/2(f
[1]
a∗ − f)‖H

≤ Cψλ1/2‖fa∗ − f
[1]
a∗ ‖H + Cψ‖S1/2

n (fa∗ − f [1]a∗ )‖H + ‖S1/2(f
[1]
a∗ − f)‖H. (19)

Now we prove the analogue versions of Lemma 11 — 13. The comments regarding those
lemmas also hold here.

Lemma 14 Let x = Cxλn, Cx > 0 such that 0 < x < x
[2]
1,a∗−1. Choose C > c̃2, with

c̃1 = Rmax{1, C2
ψ, µκ

µ−1Cδ} and c̃2 = 2 max{CψCε
√
Cx + 1, c̃1Cx(Cµx + 1)}. Then it holds

‖fa∗ − f [1]a∗ ‖H ≤
C3

Cx(C − c̃2)2
λ−1n ζn,

‖S1/2
n (fa∗ − f [1]a∗ )‖H ≤

C2

C
1/2
x (C − c̃2)

λ−1/2n ζn.

Proof: According to the proof of Lemma 14 we can focus on the case 0 < a∗ < n. Further-
more we have due to (12)

‖fa∗ − f [1]a∗ ‖H ≤

[
p
[2]
a∗−1, p

[2]
a∗−1

]
0[

p
[2]
a∗−1, p

[2]
a∗−1

]
1

‖p[1]a∗(Sn)T ∗ny‖H. (20)

Using Lemma A.3 in Blanchard and Krämer (2010b) (and the first line of its proof) we

have for 0 < x < x
[2]
1,a∗−1 with c̃1 = Rmax{1, C2

ψ, µκ
µ−1Cδ}

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0
≤ CψCε

√
x+ λn

√
dλnγn + c̃1x{xµ + Zµ(λn)}+ x−1/2

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

.

(21)

Here we define Zµ(λ) = λµI(µ ≤ 1) + γnI(µ > 1). Note that under the assumptions of the
theorem it holds Zµ(λn) ≤ λµn.
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Choosing x = Cxλn yields in (21)[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

≤ CψCε
√
Cx + 1

√
λndλnγn + c̃1Cx(Cµx + 1)λµ+1

n + C−1/2x λ−1/2n

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

≤ c̃2 max{
√
λndλnγn, λ

µ+1
n }+ C−1/2x λ−1/2n

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

= c̃2ζn + C−1/2x λ−1/2n

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

,

with c̃2 = 2 max{CψCε
√
Cx + 1, c̃1Cx(Cµx +1)}. Due to the stopping condition (18) we know

that [
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0
≥
[
p
[1]
a∗−1, p

[1]
a∗−1

]1/2
0

= ‖Snf [1]a − T ∗ny‖H ≥ Cζn.

This gives [
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0
≤ C√

Cx(C − c̃2)
λ−1/2n

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

. (22)

Plugging this into (20) yields together with the definition of the stopping index a∗

‖fa∗ − f [1]a∗ ‖H ≤
C3

Cx(C − c̃2)2
λ−1n ζn.

In a similar way we derive for the second case

‖S1/2
n (fa∗ − f [1]a∗ )‖H =

[
p
[1]
a∗ , p

[1]
a∗

]
0[

p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

≤

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0[

p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

[
p
[1]
a∗ , p

[1]
a∗

]
0
.

An application of (22) yields

‖S1/2
n (fa∗ − f [1]a∗ )‖H ≤

C2

√
Cx(C − c̃2)

λ−1/2n ζn.

�

Lemma 15 Denote c̃1 = Rmax{1, C2
ψ, µκ

µ−1Cδ}. For any i = 1, . . . , n and 0 < x < x
[1]
1,i

we have under the conditions of the theorem

‖S1/2(f
[1]
i − f)‖H ≤ Cψ

[
Cδ +

√
2Cε + λn

{
Cδ

∣∣∣∣(p[1]i )′ (0)

∣∣∣∣+
√

2Cεx
−1
}]√

dλnγn

+ c̃1(
√
x+

√
λn)(xµ + λµn) + (1 +

√
x−1λn)x−1/2‖Snf [1]i − T

∗
ny‖H.

Proof: Follow the proof of Lemma A.2 in Blanchard and Krämer (2010b). Note that
Zµ(λn) ≤ λµn. �
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Lemma 16 Let C > max{CψCε, c̃2}, where c̃2 is given in Lemma 14. Choose x = Cxλn

such that 0 < x ≤ x[1]1,a∗−1. Then there exists a constant c∗ > 0 such that∣∣∣∣(p[1]a∗)′ (0)

∣∣∣∣ ≤ c∗λ−1n . (23)

Proof: In analogue to Lemma 13 we will first derive an upper bound on

∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣.
Lemma A.1 in Blanchard and Krämer (2010b) yields

‖Snf [1]a∗−1 − T
∗
ny‖H ≤ R(2µ+ 2)µ+1 max{1, C2µ

ψ }
∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−µ−1
+ 2Rµκµ−1 max{1, Cδ, C2µ

ψ , C2µ
ψ Cδ}

∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−1 Zµ(λn)

+ CεCψ

{∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−1/2 +
√
λn

}√
dλnγn.

Denote c̃3 = R(2µ+ 2)µ+1 max{1, C2µ
ψ } and c̃4 = 2Rµκµ−1 max{1, Cδ, C2µ

ψ , C2µ
ψ Cδ}.

The definition of a∗ gives Cζn ≤ ‖Snf [1]a∗−1−T ∗ny‖H. Combining both inequalities, setting

x = Cxλn and keeping
√
λndλnγn ≤ ζn in mind gives

(C − CψCεCλ)ζn ≤ c̃3
∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−µ−1 + c̃4

∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−1 λµn
+ CεCψ

∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−1/2√dλnγn
≤ 3 max

{
c̃3

∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−µ−1 , c̃4 ∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−1 λµn,
CεCψ

∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣−1/2√dλnγn
}
.

Now we assume that the maximum on the right hand side is attained in each of the three
possible cases ∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣ ≤ {3(C − CεCψ)−1c̃3}1/(µ+1)ζ−1/(µ+1)
n ,∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣ ≤ 3(C − CεCψ)−1c̃4ζ
−1
n λµn,∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣ ≤ 9(C − CεCψ)−2C2
εC

2
ψζ
−2
n dλnγ

2
n.

Take c̃5 = max[{3(C − CεCψ)−1c̃3}1/(µ+1), 3(C − CεCψ)−1c̃4, 9(C − CεCψ)−2C2
εC

2
ψ].
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It is easy to see that ζ
−1/(µ+1)
n , ζ−1n λµn and ζ−2n dλnγ

2
n are all bound from above by λ−1n .

Hence we get ∣∣∣∣(p[1]a∗−1)′ (0)

∣∣∣∣ ≤ c̃5λ−1n . (24)

For the final step in the proof we have due to (17)

∣∣∣∣(p[1]a∗−1)′ (0)−
(
p
[1]
a∗

)′
(0)

∣∣∣∣ ≤
[
p
[1]
a∗−1, p

[1]
a∗−1

]
0[

p
[2]
a∗−1, p

[2]
a∗−1

]
1

.

It holds
[
p
[1]
a∗−1, p

[1]
a∗−1

]
0
≤
[
p
[2]
a∗−1, p

[2]
a∗−1

]
0

and hence (22) yields

∣∣∣∣(p[1]a∗−1)′ (0)−
(
p
[1]
a∗

)′
(0)

∣∣∣∣ ≤ C2

Cx(C − c̃2)2
λ−1n . (25)

The proof is complete by combining (24) and (25). �

B.2.2 Proof of Theorem 2

We first restrict ourselves to the set where all concentration inequalities stated in the the-
orem hold simultaneously with probability at least 1 − ν, ν ∈ (0, 1]. We only proof the
convergence rates in the L2-norm, the corresponding rates in the H-norm are done in the
same way.

The theorem is proven by an application of Lemmas 14—16. To that end we need
to check the conditions of those. Equation (24) and the proof of Theorem 1 show that

we can take Cx = min{1/2, c̃5} to fulfill 0 < x ≤ x
[1]
1,a∗−1. Furthermore we can take

C = 4Rmax{1, C2
ψ(ν), (r − 1/2)κr−3/2Cδ(ν), 2−1/2R−1Cψ(ν)Cε(ν)} and the conditions of

Lemma 14 and 16 hold. Note that x
[1]
1,a∗−1 ≤ x

[2]
1,a∗−1 due to the interlacing property of the

roots, see Lemma 9 (i).

For Lemma 15 we need to find a 0 < z < x
[1]
1,a∗ . By Lemma 16 there exists a constant

c∗ > 0 such that

(c∗)
−1λn ≤

∣∣∣∣(p[1]a∗)′ (0)

∣∣∣∣−1 ≤ x[1]1,a∗ ,

hence we choose Cz = min{1/2, 1/c∗}. Now, applying Lemmas 14—16 to (19) gives the
result (we again denote any constant that does not depend on n with Ci, i ∈ N)

‖fa∗ − f∗‖2 ≤ Cψλ1/2n ‖fa∗ − f
[1]
a∗ ‖H + Cψ‖S1/2

n (fa∗ − f [1]a∗ )‖H + ‖S1/2(f
[1]
a∗ − f)‖H

≤C1λ
−1/2
n ζn + C2λn

∣∣∣∣(p[1]i )′ (0)

∣∣∣∣√dλnγn + C3λ
µ+1/2
n + C4λ

−1/2
n ‖Snf [1]a∗ − T

∗
ny‖H.

≤C5λ
−1/2
n ζn + C6

√
dλnγn + C4λ

µ+1/2
n ≤ max{C4, C5, C6}λ−1/2n ζn.

The error bound in the H-norm is proven in an analogue fashion. �
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B.3 Proof of Corollary 3

Take λn = γ
2/(2r+s)
n . It is immediate that λ

r−1/2
n = γ

(2r−1)/(2r+s)
n ≥ γn for n sufficiently

large, hence the inequality (6) holds as soon as γn ≤ 1. Then we have by Theorem 2 that

‖fα̂a∗ − f
∗‖2 = O

{
λ−1/2n ζn(λn)

}
= O

{
γ2r/(2r+s)n

}
.

�

B.4 Proof of Corollary 4

Set λn = γ
1/r
n log{1/(2r)γ−2n }. It is immediate that λn → 0 as γn converges to zero. For

r = 1/2 condition (6) holds trivially. Let r > 1/2, then we have

λr−1/2n = γ(r−1)/rn log{(r − 1/2)/(2r)γ−2n } ≥ γn,

This is equivalent to 2r− 1 ≥ 2 exp(γn)γ2n, which holds for n sufficiently large and r > 1/2.
For the convergence rate we first show that dλnγ

2
n ≤ λ2rn . We have

dλnγ
2
n = log

{
1 +

a

γ
1/r
n log1/r(1/2γ−1n )

}
γ2n ≤ log

(
γ−2n

)
γ2n.

Equivalently we need ar ≤ γn(γ−2n − 1)r log(1/2γ−2n ). As γn converges to zero γn(γ−2n − 1)r

goes to infinity for any r > 1/2. Hence for suitably large n it holds λrn ≥
√
dλnγn. Then

the convergence rate is λ
−1/2
n ζn(λn) = λrn = γn log(1/2γ−2).

Because the convergence rate does not depend on r ≥ 1/2 we can set r = 1/2. �

B.5 Proof of Theorem 5

B.5.1 Preparation for the Proof

We denote with tr(A) the trace of a trace class operator A : H → H and the tensor product
(f1 ⊗ f2)h = 〈f1, h〉Hf2 for functions f1, f2, h ∈ H. We use the notation kt = k(·, Xt). Note
that it holds ‖A‖2HS = tr(A∗A) for a Hilbert-Schmidt operator A.

The general structure for the proof is as follows: To derive the concentration inequalities
we need E{‖Sn−S‖2L} as well as E{‖T ∗ny−Sf‖2H} for Markov’s inequality. With the help of
Lemma 17 we derive representations of these expectations as sums by using the stationarity
of Xt. Under normality assumptions Lemma 18 gives upper bounds for the summands in
terms of the autocorrelation function of Xt using (D1). Assuming the special structure
implied by (D2) Corollary 19 shows how these upper bound depend on the long range
dependence coefficient q > 0. To get explicit convergence rates Lemma 20 gives a simple
result stating how sums of these autocorrelation functions depend on q. An analogue result
is given in Lemma 21 for the expectation of a warped norm.

The next technical lemma derives some simple identities for the operator S under the
Hilbert-Schmidt norm, its trace and the kernel k. These will be used to find alternate
representations of E{‖Sn − S‖2L} and E{‖T ∗ny − Sf‖2H} under stationarity.

Lemma 17 Under the assumptions (K1) and (K2) the following hold
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(i) tr{(kt ⊗ kt)(ks ⊗ ks)} = k2(Xt, Xs),

(ii) ‖S‖2HS =
∫
Rd
∫
Rd k

2(x, y)dPX0(x)dPX0(y),

(iii) E[tr{(k0 ⊗ k0)S}] = ‖S‖2HS.

(iv) Let X ′ and X ′′ be independent and identically distributed and denote k′ = k(·, X ′),
k′′ = k(·, X ′′). It holds for ν = 1, 2 and λ > 0

E
[
trν
{

(S + λ)−1k′ ⊗ k′k′′ ⊗ k′′
}]

= trν{(S + λ)−1S2}.

Proof: (i) Let {vi}i∈N denote an orthonormal base of H. Then it holds due to the repro-
ducing property (2)

tr {(kt ⊗ kt)(ks ⊗ ks)} =

∞∑
i=1

〈vi, kt〉H〈vi, ks〉Hk(Xt, Xs) =

〈 ∞∑
i=1

〈vi, ks〉Hvi, kt

〉
H

k(Xt, Xs).

(ii)

‖S‖2HS =

∞∑
i=1

〈Svi, Svi〉H =

∞∑
i=1

∫
Rd

〈Svi, k(·, x)〉H〈vi, k(·, x)〉HdPX(x)

=

∫
Rd

∫
Rd

〈 ∞∑
i=1

〈vi, k(·, x)〉Hvi, k(·, y)

〉
H

k(x, y)dPX(x)dPX(y).

The assertion follows because PX = PX0 .
(iii)

E[tr{(k0 ⊗ k0)S}] = E(〈Sk0, k0〉H) = E

∫
Rd

〈k0, k(·, x)〉2HdPX(x)


=

∫
Rd

∫
Rd

k2(x, y)dPX(x)dPX0(y) = ‖S‖2HS.

(iv) Because S is a compact operator the spectral decomposition S =
∑∞

i=1 µiψi ⊗ ψi
holds (recall that {µi, ψi}∞i=1 is the eigensystem of S). Let k(·, x) =

∑∞
i=1 αi(x)ψi, x ∈ Rd.

For ν = 1 we have

E
[
tr{(S + λ)−1k′ ⊗ k′k′′ ⊗ k′′}

]
= E

{
k(X ′, X ′′)

∞∑
i=1

〈ψi, k′′〉H〈(S + λ)−1k′, ψi〉H

}

=

∞∑
i=1

1

µi + λ
E
{
k(X ′, X ′′)〈ψi, k′′〉H〈ψi, k′〉H

}
=

∞∑
i=1

1

µi + λ

∞∑
j=1

E
{
αj(X

′)αi(X
′)αj(X

′′)αi(X
′′)
}
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On the other hand

tr
{

(S + λ)−1S2
}

= tr
{

(S + λ)−1E(k′ ⊗ k′k′′ ⊗ k′′)
}

=
∞∑
i=1

〈(S + λ)−1E{k(X ′, X ′′)〈ψi, k′′〉Hk′}, ψi〉H

=
∞∑
i=1

1

µi + λ
〈E{k(X ′, X ′′)〈ψi, k′′〉Hk′}, ψi〉H

=
∞∑
i=1

1

µi + λ

∞∑
j=1

E{αj(X ′)αi(X ′)αj(X ′′)αi(X ′′)}

and we are done. The proof for ν = 2 is along the same lines. �
Denote with gh the common density of (Xh, X0)

T and g0 the density of X0. The next
lemma and the subsequent corollary will be used to show that the summands appearing
in Theorem 5 (i) can be linked to the autocorrelation function ρ under the assumptions of
normality (D1):

Lemma 18 Under the assumptions (K1), (K2) and (D1) it holds for h > 0 with ρh = τ−10 τh∫
R2d

k2(x, y){gh(x, y)− g0(x)g0(y)}d(x, y) ≤ κ2

{(4πτ0)d det(Σ)}1/2
θ1/2(ρh),

∫
R2d

k(x, y)f(x)f(y){gh(x, y)− g0(x)g0(y)}d(x, y) ≤ κM

{(4πτ0)d det(Σ)}1/2
θ1/2(ρh),

with θ(ρ) = 1 + (1− ρ2)−d/2 − 2d+1(4− ρ2)−d/2, ρ ∈ [0, 1).

Proof : We will only proof the first inequality, the second one follows in the same way.

By Jensen’s inequality and (K2) we know∫
R2d

k2(x, y){gh(x, y)− g0(x)g0(y)}d(x, y)

≤ κ2
∫
R2d

{
g2h(x, y)− 2gh(x, y)g0(x)g0(y) + g20(x)g20(y)

}
d(x, y)

1/2

.

The first and third integral term can readily be calculated as∫
R2d

g2h(x, y)d(x, y) = [(4π)d(τ20 − τ2h)d/2 det(Σ)]−1


∫
Rd

g20(x)dx


2

= {(4π)dτd0 det(Σ)}−1.

32



Kernel Partial Least Squares for Stationary Data

For the first equality we use det(A⊗ Σ) = det(A)d det(Σ)2 for A ∈ R2×2 and thus∫
R2d

gh(x, y)g0(x)g0(y)d(x, y) =

∫
R2d exp

(
−1/2zTG−1z

)
dz

(2π)2d det(Σ)2τd0 (τ20 − τ2h)d/2
, (26)

with

G−1 =

{(
τ0 τh
τh τ0

)−1
+

(
τ−10 0

0 τ−10

)}
⊗ Σ−1.

It holds det(G) = (4τ20 − τ2h)−d(τ40 − τ20 τ2h)d det(Σ)2. Thus we get with (26)∫
R2d

gh(x, y)g0(x)g0(y)d(x, y) =
(2π)dτd0 (τ20 − τ2h)d/2 det(Σ)

(2π)2d det(Σ)2(4τ20 − τ2h)d/2τd0 (τ20 − τ2h)d/2

=
{

(2π)d(4τ20 − τ2h)d/2 det(Σ)
}−1

,

completing the proof by multiplying all terms with τ−d0 τd0 . �
Using the special structure imposed by (D2) we can link the bounds derived in Lemma

18 to the long range coefficient q > 0:

Corollary 19 Under the assumptions (K1), (K2), (D1) and (D2) it holds for all h > 0
and q > 0∫

R2d

k2(x, y){gh(x, y)− g0(x)g0(y)}d(x, y) ≤ κ2d1/2√
(2π)d det(Σ)

(1− 4−q)−1/4(d−2)|ρh|

∫
R2d

k(x, y)f(x)f(y){gh(x, y)− g0(x)g0(y)}d(x, y) ≤ κMd1/2√
(2π)d det(Σ)

(1− 4−q)−1/4(d−2)|ρh|.

Proof : Recall that θ(ρ) = 1 + {1 − ρ2}−d/2 − 2d+1{4 − ρ2}−d/2 for ρ ∈ [0, 1). We seek to
find bounds on θ and the corollary can be proven by an application of Lemma 18.

By assumption (D2) we know there is a ρ∗ such that ρ2h ≤ ρ2∗ < 1 for all h > 0. Thus
consider ρ ∈ [0, ρ∗]. We start by finding a constant C > 0 with

θ′(ρ) = ρ
{

(1− ρ2)−d/2−1 − 2d+1(4− ρ2)−d/2−1
}
d ≤ Cρ2.

Thus C can be taken as C = d
{

(1− ρ2∗)−d/2−1 − 2d+1(4− ρ2∗)−d/2−1
}

.

Thus we know that the slope of θ is always less than that of Cρ2. Finally it holds that
θ(0) = 0 and thus 0 ≤ θ(ρ) ≤ Cρ2, ρ ∈ [0, ρ∗].

Under condition (D2) it holds {1− ρ2∗}−d/2 ≤ {1− 2−2q}−d/2, completing the proof by
using Lemma 18. �

Having derived bounds for the summands in Theorem 5 (i) in terms of ρ the overall
behavior of the sums is still open. The next simple lemma gives insight into this and shows
how the convergence rate of the sums crucially depends on q > 0:
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Lemma 20 Assume that condition (D2) holds. Then we have

n−2
n−1∑
h=1

(n− h)|ρh| ≤ C(q)


n−1 , q > 1

n−1 log(n) , q = 1
n−q , q ∈ (0, 1).

, (27)

with C(q) = ζ(q)I(q > 1)+{5−log(4)}I(q = 1)+{2(1−q)−1−(2−q)−1+(2−q)−122−q}I{q ∈
(0, 1)}. Here ζ denotes the Riemann zeta function.

Proof : Recall that by condition (D2) we have |ρh| ≤ (h + 1)−q, h = 0, . . . , n − 1 for some
q > 0.

First assume q ∈ (0, 1]. The integral test for series convergence gives lower and upper
bounds for the hyperharmonic series as

(1− q)−1{(n+ 1)1−q − 21−q} ≤
n∑
h=2

h−q ≤ 2−q + (1− q)−1{n1−q − 21−q}.

This yields

n−2
n−1∑
h=1

(n− h)(h+ 1)−q = n−2
n∑
h=2

(n+ 1− h)h−q = n−2

{
(n+ 1)

n∑
h=2

h−q −
n∑
h=2

h−(q−1)

}
≤ n−2

[
(n+ 1)

{
2−q + (1− q)−1(n1−q − 21−q

}
− (2− q)−1

{
(n+ 1)2−q − 22−q

}]
. (28)

Now let q ∈ (0, 1), then it holds from (28) and the fact that n−2 ≤ n−1 ≤ n−q

n−2
n−1∑
h=1

(n− h)(h+ 1)−q

≤n+ 1

n2

{
2−q(1− q)− 21−q

1− q

}
+
n+ 1

n1+q
(1− q)−1 − (n+ 1)2−q

n2
(2− q)−1 +

1

n2
22−q

2− q
≤n−q[{2(1− q)−1 − (2− q)−1}+ (2− q)−122−q],

due to 2−q(1− q)− 21−q < 0.

For q = 1 we evaluate the limit

lim
q→1±

n−2
[
(n+ 1)

{
2−q + (1− q)−1(n1−q − 21−q

}
− (2− q)−1

{
(n+ 1)2−q − 22−q

}]
= (2n2)−1[3− log(4)− n{1 + log(4)}] + n−2(n+ 1) log(n)

≤ log(n)

n
[5− log(4)] .

The case q > 1 is clear because the zeta-function ζ(q) is defined as the hyperharmonic series
with coefficient q. �

The final preparatory result is used to derive the probablistic bound in Theorem 5 (iv)
and is similar to Corollary 19:
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Lemma 21 Under the assumptions (K1), (K2), (D1) and (D2) it holds for λ > 0∫
R2d

k(x, y)〈(S + λ)−1k(·, x), k(·, y)〉H {fh(x, y)− f0(x)f0(y)} d(x, y) ≤ c̃|ρh|dλ,

with c̃ =
√
d{1− 4−q}−d−1κ.

Proof: Denote β(x, y) = 〈(S + λ)−1k(·, x), k(·, y)〉H. By the Cauchy-Schwarz inequality

φh =

∫
R2d

k(x, y)β(x, y) {fh(x, y)− f0(x)f0(y)} d(x, y)

≤

∫ k2(x, y)β2(x, y)f0(x)f0(y)d(x, y)

∫ {
fh(x, y)√
f0(x)f0(y)

−
√
f0(x)f0(y)

}2

d(x, y)

1/2

.

(29)

Denote by X ′ and X ′′ two independent copies of X0 and k′ = k(·, X ′), k′′ = k(·, X ′′). We
start by bounding the first integral term in the product:∫

R2d

k2(x, y)β2(x, y)f0(x)f0(y)d(x, y) = E
{
k2(X ′, X ′′)〈(S + λ)−1k′, k′′〉2H

}
= E

[
tr2
{

(S + λ)−1k′ ⊗ k′k′′ ⊗ k′′
}]

≤ κ2tr2{(S + λ)−1S} = κ2d2λ.

In the second to last inequality we used Lemma 17 (iv) and the definition of dλ.
The second integral in the product in (29) is∫

R2d

{
fh(x, y)√
f0(x)f0(y)

−
√
f0(x)f0(y)

}2

d(x, y) =

∫
R2d

fh(x, y)√
f0(x)f0(y)

d(x, y)− 1.

We proceed in the same way as in the proof of Lemma 18 by using properties of the Gaussian
distributions at hand.

First we have

Fh(x, y) =
f2h(x, y)

f0(x)f0(y)
=

(2π)dτd0 det(Σ)

(2π)2ddet(Σh)
exp

[
−1

2
(xT, yT)

{
2Σ−1h −

1

τ0

(
Σ 0
0 Σ

)}−1(
x
y

)]
.

Denote G−1 = 2Σ−1h − τ
−1
0

(
Σ 0
0 Σ

)
. It follows in a similar way as in the proof of Lemma

18 that det(G) = τ2d0 det2(Σ) and det(Σh) = (τ20 − τ2h)ddet2(Σ). Hence we have∫
R2d

Fh(x, y)d(x, y) =
(2π)dτd0 det(Σ)

(2π)2d(τ20 − τ2h)ddet2(Σ)
(2π)dτd0 det(Σ)

=
τ2d0

(τ20 − τ2h)d
=

1

(1− ρ2h)d
.

Under (D2) we have ρh < 1 for all h > 0 and there is a ρ̃ = maxh |ρh| ≤ 2−q < 1 and hence
it holds (1− ρ2h)−d ≤ d(1− 4−q)−d−1ρ2h and we are done. �
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B.5.2 Proof of the Theorem

First note that the the operator norm is dominated by the Hilbert-Schmidt norm. By
Markov’s inequality we have for ν ∈ (0, 1]

P
(
‖Sn − S‖2HS ≤ ν−1E‖Sn − S‖2HS

)
≥ 1− ν,

P
(
‖T ∗ny − Sf‖2H ≤ ν−1E‖T ∗ny − Sf‖2H

)
≥ 1− ν.

(i) It holds due to Sn = n−1
∑n

t=1 kt ⊗ kt

E
(
‖Sn − S‖2HS

)
=

1

n2

n∑
t,s=1

(
E[tr{(kt ⊗ kt)(ks ⊗ ks)}]− 2E[tr{(k0 ⊗ k0)S}] + ‖S‖2HS

)
.

For the first summand we get E[tr{(kt ⊗ kt)(ks ⊗ ks)}] = E{k2(Xt, Xs)}, due to Lemma
17(i). Using the stationarity of {Xt}nt=1 and Lemma 17(iii) we get

E
(
‖Sn − S‖2HS

)
=

1

n

{
E{k2(X0, X0)} − ‖S‖2HS

}
+ 2

n−1∑
h=1

n− h
n2

[
E{k2(Xh, X0)} − ‖S‖2HS

]
,

yielding the first result by an application of Lemma 17 (ii).
For the second equation we see due to the independence of {Xt}nt=1 and {εt}nt=1 that

‖T ∗ny − Sf‖2H = σ2n−1E{k(X0, X0)}+ E
(
‖Snf − Sf‖2H

)
.

The rest follows along the same lines as the first part of the proof.
(ii) An application of part (i) of this theorem, Corollary 19 and Lemma 20 yields this

result.
(iii) Because the {εt}t∈Z are independent and identically distributed and {Xt}t∈Z is

stationary it holds

E

{∥∥∥(S + λ)−1/2(Snf − T ∗ny)
∥∥∥2
H

}
= E

{∥∥∥(S + λ)−1/2T ∗nε
∥∥∥2
H

}
= n−2

n∑
t,s=1

E
{〈
εt(S + λ)−1kt, εsks

〉
H
}

= n−1σ2E
{〈

(S + λ)−1k0, k0
〉
H
}

= n−1σ2E

{∥∥∥(S + λ)−1/2k0

∥∥∥2
H

}
.

By the definition of dλ we get

E{‖(S + λ)−1/2k0‖2H} = E[tr{(S + λ)−1k0 ⊗ k0}] = tr{(S + λ)−1S} = dλ.

Using n−1/2 ≤ γn(q) proves the result.
(iv) Consider first

E
{
‖(S + λ)−1/2(Sn − S)‖2HS

}
= n−2

n∑
t,s=1

E
[
tr{(S + λ)−1(kt ⊗ kt − S)(ks ⊗ ks − S)}

]
= n−1E‖(S + λ)−1/2(k0 ⊗ k0 − S)‖2HS

+

n−1∑
h=1

E
[
tr{(S + λ)−1(k0 ⊗ k0 − S)(kh ⊗ kh − S)}

]
.
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Continuing with the expression inside the sums we expand

φh = E
[
tr{(S + λ)−1(k0 ⊗ k0 − S)(kh ⊗ kh − S)}

]
= E

[
tr{(S + λ)−1k0 ⊗ k0kh ⊗ kh}

]
− tr{(S + λ)−1S2}

= E
{
k(X0, Xh)〈(S + λ)−1k0, kh〉H

}
− tr{(S + λ)−1S2}.

Using Lemma 17 (iv) we see that

tr{(S + λ)−1S2} =

∫
R2d

k(x, y)〈(S + λ)−1k(·, x), k(·, y)〉HdPX(x)dPX(y).

Hence we have

φh =

∫
R2d

k(x, y)〈(S + λ)−1k(·, x), k(·, y)〉H
{

dPX0,Xh(x, y)− dPX0(x)dPX0(y)
}
.

This can be bound by the results of Lemma 21 and together with Lemma 20 there exists a
constant C(q) > 0 such that with probability at least 1− ν

‖(S + λ)−1/2(Sn − S)‖2L ≤ ν−1C2(q)γ2n(q)dλ,

with γ2n(q) =


n−1, q > 1

n−1 log(n), q = 1
n−q, q ∈ (0, 1).

This implies ‖(S+λ)−1/2(Sn−S)(S+λ)−1/2‖L ≤ ν−1/2C(q)λ−1/2
√
dλγn(q). Let λ = λn

be a sequence converging to zero such that λ
−1/2
n

√
dλnγn(q) → 0. Let n be large enough

such that ν−1/2C(q)λ
−1/2
n

√
dλnγn(q) < 1. Using Lemma A.5 in Blanchard and Krämer

(2010b) we obtain

‖(S + λ)1/2(Sn + λ)−1/2‖ ≤ [1− ν−1/2C(q)λ−1/2n

√
dλnγn(q)]−1/2 ≤

√
2.

The latter inequality can be fulfilled for n large enough such that ν−1/2C(q)λ
−1/2
n

√
dλnγn(q)

≤ 1/2. �

B.6 Proof of Proposition 7

Recall that Su = E{u(X0)k(·, X0)} for u ∈ H. Define the independent random variables
Y1, . . . , Yµ that are all distributed as X0.

First consider the following observation for µ ∈ N:

Sµu = S(Sµ−1u) = EY1{(Sµ−1u)(Y1)k(·, Y1)} = EY2EY1{(Sµ−2u)(Y2)k(Y1, Y2)k(·, Y1)}

= EYµ · · ·EY1

{
µ−1∏
ν=1

k(Yν , Yν+1)u(Yµ)k(·, Y1)

}
. (30)

We take u =
∑∞

i=1 cik(·, zi) for {zi}i∈N, {ci}i∈N ⊂ R such that ‖u‖2H =
∑∞

i,j=1 cicjk(zi, zj) ≤
R2. The fact that a function u ∈ H can be represented as a linear combination of kernel
functions is due to the Moore-Aronszajn Theorem, see Berlinet and Thomas-Agnan (2004).
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Define the matrix Γ = [Γi,j ]
µ+2
i,j=1 ∈ R(µ+2)×(µ+2) via

Γi,j =


σ−2x + 2l , i = j = 2, . . . , µ+ 1

l , i = j = 1, µ+ 2
−l , |i− j| = 1
0 , else

.

Then we have via the integration of Gaussian functions and (30)

f(x) =
1

(2πσ2x)µ/2

∞∑
i=1

ci

∫
Rµ

exp {−1/2(x, x1, . . . , xµ, zi)Γ(x, x1, . . . , xµ, zi)
T}d(x1, . . . , xµ)

=
1

σµx det(Γ2:µ+1)1/2

∞∑
i=1

ci exp

[
−1/2

det(Λ1:µ+1)(x
2 + z2i )− 2lµ+1xzi

det(Γ2:µ+1)

]
.

Here we used the symmetry property det(Γ2:µ+2) = det(Γ1:µ+1) as the first and last rows
and columns of Γ are identical. This concludes the proof. �

B.7 Proof of Proposition 8

In Shi et al. (2008) it was shown that the eigenvalues of S have the form µi = abi−1,
i = 1, 2, . . . with

a =
√

2(1 + β +
√

1 + β)−1/2, b = (1 + β +
√

1 + 2β)−1β.

and β = 4lσ2x. It is clear that 0 < b < 1 and hence 0 < µi ≤ a. We have dλ =
∑∞

i=0{1 +
a−1b−iλ}−1. Denote f(x) = {1 + a−1b−xλ}−1. We want to apply the integral test to the
sum. We have

∫∞
0 f(x)dx = log−1(b−1) log(1 + aλ−1). This yields the bounds

log(1 + a/λ)

log(b−1)
≤ dλ ≤

1

1 + λ/a
+

log(1 + a/λ)

log(b−1)
.

On λ ∈ (0, 1] we get dλ ≤ D log(1 + a/λ) for a constant D > 0. This can be seen as follows:
The function g1(λ) = (1 + λ/a)−1 is bounded from above by C1 = 1 and the function
g2(λ) = (b−1) log(1 + a/λ) is lower bounded by c2 = log(1 + a) and has no upper bound.

Hence on the set I = {λ ∈ (0, 1] : g2(λ) ≥ C1} we can choose C = 2. On the set Ic

we have on the other hand Cg2(x) ≥ c2C ≥ g1(x) + g2(x), hence we need C = 2c−12 C1 =
2 log−1(1 + a). The choice D = 2 log−1(b−1) max{1, log−1(1 + a)} is sufficient and we have
dλ ≤ D log(1 + a/λ), λ ∈ (0, 1]. �
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