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Abstract

1-norm support vector machine (SVM) generally has competitive performance compared
to standard 2-norm support vector machine in classification problems, with the advantage
of automatically selecting relevant features. We propose a divide-and-conquer approach in
the large sample size and high-dimensional setting by splitting the data set across multiple
machines, and then averaging the debiased estimators. Extension of existing theoretical
studies to SVM is challenging in estimation of the inverse Hessian matrix that requires
approximating the Dirac delta function via smoothing. We show that under appropriate
conditions the aggregated estimator can obtain the same convergence rate as the central
estimator utilizing all observations.

Keywords: classification, debiased estimator, distributed estimator, divide and conquer,
sparsity

1. Introduction

The support vector machine (SVM) is a widely used tool for classification (Vapnik, 2013;
Scholkopf and Smola, 2001; Cristianini and Shawe-Taylor, 2000). Although the original mo-
tivation of Cortes and Vapnik (1995) is in terms of finding a maximum-margin hyperplane,
its equivalent formulation as a regularized functional optimization problem is perhaps more
easily understood by statisticians and more amenable for statistical asymptotic analysis.
In the standard formulation the penalized functional is a sum of the hinge loss plus an
l2-norm regularization term. Statistical properties of the SVM, especially its nonlinear ver-
sion using general kernels, has been studied in a lot of works recently including but not
limited to Bartlett et al. (2006); Blanchard et al. (2008); Lin (2000, 2004); Steinwart and
Scovel (2007); Steinwart (2005); Zhang (2004). In this work, we focus on penalized linear
SVM with large sample size and large dimension, with particular emphasis on dealing with
distributed estimation in such contexts.

Data sets with thousands of features have become increasingly common recently in many
real-world applications. For example, a microarray data set typically contains more than
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10,000 genes. A drawback of standard SVM based on l2-norm penalty is that it can be
adversely affected if many redundant variables are included in building the decision rule.
A modern approach to feature selection is based on the idea of shrinkage. This approach
involves fitting a model involving all p predictors. However, the estimated coefficients are
shrunk towards zero. In particular with appropriate choice of penalty some of the coeffi-
cients may be estimated to be exactly zero. Automatic variable selection using penalized
estimation that can shrink some coefficients to be exactly zero was pioneered in Tibshirani
(1996) using an l1-norm penalty (or called lasso penalty). Other penalties proposed include
those in Fan and Li (2001), Zou (2006) and Zhang (2010).

The idea of using l1 norm to automatically select variables has been extended to clas-
sification problems. van de Geer (2008) analyzed lasso penalized estimator for generalized
linear models which include logistic regression as a special case. Zhu et al. (2003) proposed
the l1-norm support vector machine and oracle properties of SCAD-penalized support vec-
tor machines were established in Park et al. (2012), based on the Bahadur representation of
Koo et al. (2008). See also the earlier work of Bradley and Mangasarjan (1998); Song et al.
(2002). When feature dimension is larger than the sample size, Peng et al. (2016); Zhang
et al. (2016) obtained the convergence rate of the SCAD and lasso-penalized estimators for
SVM, respectively. Our work follows the lead of these works on understanding the statisti-
cal properties of the estimated SVM coefficients, instead of on generalization error rates or
empirical risk.

In this paper, we focus on distributed estimation of l1 penalized linear SVM coefficients
using multiple computing machines. The simplest and most popular approach in data par-
allelism is averaging: each machine uses a part of the data and obtains a local estimator
using the standard estimation methods and sends it back to the master machine which
combines the local estimators by simple averaging into an aggregated estimator. In the
classical regime concerning fixed dimensional problems, this has been advocated in Mc-
Donald et al. (2009), and was also studied by Zinkevich et al. (2010); Zhang et al. (2013,
2015); Balcan et al. (2015); Zhao et al. (2016). In all these studies, the typical outcome of
asymptotic analysis is that under suitable assumptions, in particular that the number of
machines are not excessive compared to the sample size, the aggregated estimator enjoys
the same or similar statistical properties as the centralized estimator obtained by a single
machine using all observations (if the centralized estimator can be feasibly obtained). Such
results convincingly illustrate that the divide-and-conquer strategy works in the big data
world. In the high dimensional regime, for lasso penalized estimators, there is a well-known
bias-variance trade-off. When the tuning parameter in the penalty is chosen optimally in
each local machine, the size of bias and standard deviation are of the same order. Aggrega-
tion can decrease the variance thanks to the magic of central limit theorem or some related
finite-sample bounds for averages of mean zero random variables, but it cannot decrease the
bias in general. Thus debiasing becomes crucial to reduce the bias to a smaller order before
aggregation. This is done for sparse linear regression in Lee et al. (2017), which shows the
debiased estimator in van de Geer et al. (2014) works satisfactorily for parameter inferences.
Lee et al. (2017) studied both the least squares estimator and the more general M-estimator
with smooth loss functions using an l1 (LASSO) penalty and applied it to distributed es-
timation. Our study of linear SVM coefficients differs significantly from Lee et al. (2017)
due to the unsmooth nature of the hinge loss function. In particular, estimation of the
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Hessian matrix which involves Dirac delta function requires a smoothing procedure, which
is nontrivial to analyze.

The rest of the paper is organized as follow. After a brief introduction of some notations
below, we consider debiased l1-norm SVM in Section 2.1. Although the main focus is on
distributed estimation, we need to first consider statistical properties of debiased estimator
on a single machine, which requires a lengthy and detailed analysis. Once this is done,
properties of the aggregated estimator are relatively easy to establish, as is done in Section
2.2. In terms of l∞ norm, the aggregated estimator has the convergence rate Op(

√
log p/N)

when the number of features is p and the total sample size is N under appropriate as-
sumptions. However, its convergence rate in l1 or l2 norm is unacceptably larger, which
motivated a further thresholding step in Section 2.3. Section 3 report some numerical re-
sults to demonstrate the finite sample performance of the proposed estimators. Finally, we
conclude this paper with a discussion in Section 4.

Notations. For a vector a = (a1, . . . , an)T, ‖a‖∞ = maxj |aj |, ‖a‖1 =
∑

j |aj |, ‖a‖ =

(
∑

j a
2
j )

1/2 and ‖a‖0 is the number of nonzero components of a. For a matrix A = {aij}ni,j=1,
‖A‖∞ = maxi,j |aij |, ‖A‖1 =

∑
i,j |aij | and ‖A‖L1 = maxi

∑
j |aij |. Throughout the paper,

C denotes a generic constant that may assume different values even on the same line.

2. Divide-and-conquer for l1-SVM

2.1 Debiased l1-SVM

We begin with the basic setup of SVM for binary classification. We observe a simple random
sample (xi, yi), i = 1, . . . , N , from an unknown distribution P (x, y). Here yi ∈ {−1, 1} is
the class label and xi = (xi1, . . . , xip)

T is the p-dimensional features. For simplicity of
presentation, we do not use any special treatment for the intercept, although the intercept
term is typically not shrunk in l1-SVM. The standard linear SVM estimates the parameters
by solving

min
β∈Rp

N−1
N∑
i=1

L(yi,x
T
i β) + λ‖β‖2,

where L is the hinge loss function L(y, t) = max{0, 1 − yt} and λ is the regularization
parameter which changes with N (typically converging to zero as N goes to infinity), but
we suppress its dependence on N in our notation. Throughout the paper we make the mild
assumption that

logN = O(log p).

This does not mean p ≥ N , but exclude the case that p is fixed. This restriction is mainly
to make the notation slightly simpler. Without this restriction, Theorem 1 below still
hold with log p replaced by log(max{p,N}), and the probability 1 − p−C replaced by 1 −
(max{p,N})−C .

Variable selection is of particular interest when p is large compared to N , due to its
ability to avoid overfitting as well as to enhance interpretation. The l1-SVM (Zhu et al.,
2003) estimates the parameter by solving

min
β∈Rp

N−1
N∑
i=1

L(yi,x
T
i β) + λ‖β‖1. (1)
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The l1 penalty here encourages sparsity of the solution (Tibshirani, 1996, 1997).
Let β0 = (β01, . . . , β0p)

T be the true parameter, which is defined as the minimizer of
the population hinge loss,

β0 = arg min
β

E[L(y,xTβ)]. (2)

We assume β0 exists and is unique. Koo et al. (2008) provided some regularity conditions
under which β0 is unique and β0 6= 0. Towards variable selection in SVM, it is natural to
assume β0 is sparse. Let A = {1 ≤ j ≤ p : β0j 6= 0} be the support set of β0 with s = |A|
the cardinality of A.

As calculated rigorously in Koo et al. (2008), the gradient vector and the Hessian matrix
of the population hinge loss in Equation 2 is given by

S(β) = −E[I{yxTβ ≤ 1}xy]

and

H(β) = E[δ(1− yxTβ)xxT],

respectively, where δ(.) is the Dirac delta function. Let f and g be the conditional density
of x given y = 1 and y = −1, respectively.

(A1) The densities f and g are bounded and continuously differentiable with bounded par-
tial derivatives, with compact support. xj ’s are bounded random variables. Without
loss of generality, we assume the distribution of x has a support contained in [0, 1]p.

Under assumption (A1), H(β) is well-defined and continuous in β.
Due to the penalty term, the penalized estimator is generally biased (i.e. shrunk towards

zero). Conceptually, λ controls the trade-off between bias and standard deviation of the
estimator. While averaging will reduce the standard deviation of the estimator, it generally
cannot reduce the bias. Thus it is important to apply a debiasing mechanism before we
aggregate estimators from different machines. For simplicity of presentation, for now we
focus on the properties of the debiased estimator using all observations and later we will
argue (almost trivially) these properties hold for the local estimates, uniformly over M
machines. In this subsection, with M = 1, we have N = n where n is the sample size on a
single machine.

Let β̂ be the penalized estimator obtained from Equation 1. It is known that β̂ satisfies
the Karush-Kuhn-Tucker (KKT) conditions:

1

N

N∑
i=1

xiLt(yi,x
T
i β̂) + λκ = 0 (3)

where Lt(y, t) is a sub-derivative of L(y, t) with respect to t, and κ = (κ1, . . . , κp)
T with

κj = sign(β̂j) if β̂j 6= 0 and κj ∈ [−1, 1] if β̂j = 0.
When the loss is twice differentiable, a simple Taylor’s expansion can be used to expand

Lt(yi,x
T
i β̂) at β0 as in van de Geer et al. (2014). For the nonsmooth loss function here, we
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need to use empirical processes techniques. Let Gn =
√
n(Pn−P ) be the empirical process,

where P is the population distribution of (x, y) and Pn is the empirical distribution of the
observations. Informally, when β̂ is close to β0, Gn(x{Lt(y,xTβ̂)−Lt(y,xTβ0)}) is small,
and thus

1

N

N∑
i=1

xiLt(yi,x
T
i β̂)

≈ 1

N

N∑
i=1

xiLt(yi,x
T
i β0) + ExLt(y,x

Tβ̂)− ExLt(y,x
Tβ0

≈ 1

N

N∑
i=1

xiLt(yi,x
T
i β0) + H(β0)(β̂ − β0). (4)

Then

0 =
1

N

N∑
i=1

xiLt(yi,x
T
i β̂) + λκ

≈ 1

N

N∑
i=1

xiLt(yi,x
T
i β0) + H(β0)(β̂ − β0) + λκ

=
1

N

N∑
i=1

xiLt(yi,x
T
i β0) + H(β0)(β̂ − β0)−

1

N

N∑
i=1

xiLt(yi,x
T
i β̂),

where we used Equation 3 in both the first and the last inequality, and this leads to

β̂ ≈ β0 + [H(β0)]
−1 1

N

N∑
i=1

xiLt(yi,x
T
i β̂)− [H(β0)]

−1 1

N

N∑
i=1

xiLt(yi,x
T
i β0),

if H(β0) is invertible. Since the last term in the right hand side above has mean zero, we
are motivated to define the debiased estimator as

β̃ = β̂ − [H(β0)]
−1 1

N

N∑
i=1

xiLt(yi,x
T
i β̂), (5)

and we set Lt(y, t) = −yI{yt ≤ 1}. However, H(β0) is unknown in two aspects. On
one hand, the true parameter β0 is unknown and should be replaced by its estimator, say
β̂. On the other hand, H(β) = E[δ(1 − yxTβ)xxT] is an expectation which should be
approximated by samples. Although expectations are usually easily estimated by a simple
moment estimator, this is not the case here, since there may not even be a single sample that
satisfies exactly yix

T
i β = 1 and δ(.) as a generalized function should be treated carefully.

Finally, after H(β) is approximated by samples, high-dimensionality means that the usual
algebraic inverse of the estimator may not be well-defined and some approximate inverse
must be used.

Thus it seems one major component of the estimation is the approximation of [H(β0)]
−1

and we deal with this problem first. To motivate an estimator of H(β), we can start from
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its antiderivative S(β) = E[−I{yxTβ ≤ 1}xy]. For any given β, S(β) can be approx-
imated by −N−1

∑N
i=1 I{yixT

i β ≤ 1}xiyi. If this were differentiable, we could use its
derivative as an estimator of H(β). This observation motivates us to smooth the indicator
function using some cumulative distribution function, say Q, and approximates S(β) by
−N−1

∑N
i=1Q((1− yixT

i β)/h)xiyi. When the bandwidth parameter h is sufficiently small,
Q(./h) will approximate I{. ≥ 0} well. Assuming Q is differentiable, then it is natural to
approximate H(β) by

Ĥ(β) = N−1
N∑
i=1

(1/h)q((1− yixT
i β)/h)xix

T
i ,

where q(.) is the density of the distribution Q (derivative of Q), and thus H(β0) is estimated
by Ĥ(β̂) where β̂ is the l1-SVM estimator.

Since the rank of Ĥ(β̂) is at most N , Ĥ(β̂) is singular when p is larger than N . Even
when p is smaller than N and Ĥ(β̂) is non-singular, the standard inverse [Ĥ(β̂)]−1 is often
not a good estimator of H(β0) when p is diverging with N . An approximate inverse of
H(β0) can be found via an approach similar to that used in Cai et al. (2011) as

Θ̂ = arg min ‖Θ‖1
subject to ‖ΘĤ(β̂)− I‖∞ ≤ CbN , (6)

for some tuning parameter bN → 0. Note that Cai et al. (2011) would use a slightly different
constraint on ‖Ĥ(β̂)Θ−I‖∞, while our constraint is more convenient in the current context
since we pre-multiply the gradient of the loss by [H(β0)]

−1 in Equation 5. We note that the
constraint ‖ΘĤ(β̂) − I‖∞ ≤ CbN is obviously the same as ‖Θj.Ĥ(β̂) − eTj ‖∞ ≤ CbN , ∀j,
where Θj. is the j-th row of Θ (as a row vector) and ej is the unit vector with j-th
componenet 1. Thus the optimization problem can be solved row by row. This actually was
noted in Cai et al. (2011) in their Lemma 1 (since their constraint is ‖Ĥ(β̂)Θ−I‖∞ ≤ CbN ,
their problem can be solved column by column).

Before proceeding, we impose some additional assumptions.

(A2) β0 6= 0 and without loss of generality we assume β01 = max1≤j≤p |β0j |.

(A3) ‖Θ0‖L1 ≤ CN , where Θ0 = [H(β0)]
−1.

(A4) ‖β̂−β0‖1 ≤ Cs
√

log p
N with probability at least 1− p−C , where s = |supp{β0}| is the

number of nonzero entries in β0.

(A5) The density q is an even function, twice continuously differentiable, with
∫
x2q(x)dx <

∞,
∫
q2(x)dx <∞,

∫
(q′)2(x)dx <∞, supx q

′(x) <∞, supx q
′′(x) <∞, where q′ and

q′′ are the first two derivatives of q.

(A6) ‖β̂‖0 ≤ K with probability at least 1− p−C .

Assumption (A2) is mild. Koo et al. (2008) gives sufficient conditions that guarantee β0 6= 0.
To simplify the bounds below one can think of β01 as bounded away from zero so that it
will disappear from the bounds. Note that β01 is the largest nonzero coefficient. In the
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literature of sparse regression, it is often assumed that the smallest nonzero coefficient is
large enough so that it can be distinguished from zero coefficients, which is a totally different
assumption. Cai et al. (2011) assumed that their inverse Hessian matrix has a bounded L1

norm (such an assumption is obviously related to sparsity of the matrix), which motivated
our assumption (A3). We allow CN in (A3) to be diverging for slightly greater generality.
In particular, this mean we need to have a control on the l1 norm of the rows of the inverse
Hessian matrix. Due to that l1 norm is a convex relaxation of the l0 norm, we call such
matrix as approximately sparse. Again, it is probably easier for the reader to regard CN
as a fixed constant. We further discuss (A3) in detail in Appendix B. Theorem 4 of Peng
et al. (2016) showed ‖β̂−β0‖ = Op(

√
s log p/N) which together with their Lemma 2 implies

‖β̂−β0‖1 = Op(s
√

log p/N) as in (A4). It is also easy to choose a density that satisfies (A5),
such as the standard normal density, which will be used in our numerical studies. In (A6),
we assume the estimator is sufficiently sparse. This can be guaranteed in several different
ways. First, we conjecture it could be proved that ‖β̂‖0 = Op(s) for SVM coefficient using a
similar strategy as for Theorem 3 of Belloni and Chernozhukov (2011), although the details
looks quite lengthy. Second, one could add a thresholding step similar to what we will use in
subsection 2.3 later to get a sparse estimator. Finally, we could add an constraint ‖β‖ ≤ K
to the lasso problem. Such a constrained penalized problem was also proposed in Fan and
Lv (2013); Zheng et al. (2014). In any case, one could expect that K is of the same order
as s, the sparsity of β0.

We first state several propositions whose proof is left to Appendix A. The first proposi-
tion considers the accuracy bound of Θ̂ as an approximation of the inverse of H(β0). The
second proposition shows that the first approximation in Equation 4 is sufficiently accu-
rate based on the empirical processes results. Finally, the third proposition establishes a
Lipschitz property of the Hessian matrix which implies that the second approximation in
Equation 4 is sufficiently accurate.

Proposition 1 Under assumptions (A1)-(A5), with probability at least 1− p−C ,

‖Θ̂Ĥ(β̂)− I‖∞ ≤ CbN ,
‖Θ̂H(β0)− I‖∞ ≤ CbN ,

and

‖Θ̂‖L1 ≤ CN ,

when we set bN = CN

((
1
β01

+
√

log p
Nh3β01

+ log p
Nh2

)
s
√

log p
N + s2 log p

Nh3
+ h

β2
01

+
√

log p
Nhβ01

)
.

Proposition 2 Under assumptions (A1)-(A6), with probability at least 1− p−C ,∥∥∥∥∥ 1

N

∑
i

yixi(I{yixT
i β̂ ≤ 1} − I{yixT

i β0 ≤ 1})− Eyx(I{yxTβ̂ ≤ 1} − I{yxTβ0 ≤ 1})

∥∥∥∥∥
∞

≤ CaN ,

where aN =

((
s
β01

√
log p
N

)1/2√
K log p
N + K log p

N

)
.
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Proposition 3 (Local Lipschitz property of H(β)) Under assumptions (A1) and (A2) and
in addition 2‖β − β0‖1 ≤ β01 := maxj |β0j |, we have

‖H(β)−H(β0)‖∞ ≤
C

β301
‖β0‖1‖β − β0‖1.

Now we derive a finite-sample bound for ‖β̃ − β0‖∞.

Theorem 1 Under assumptions (A1)-(A6) and that s
√

log p/N = o(β01), we have

‖β̃ − β0‖∞ ≤ C

(
CN

(
aN +

√
log p

N
+
‖β0‖1
β301

s2 log p

N

)
+ bNs

√
log p

N

)

with probability at least 1− p−C .

Proof of Theorem 1. We have

β̃ − β0

= β̂ − β0 + Θ̂

{
1

N

∑
i

yixiI{yixT
i β̂ ≤ 1}

}

= (I− Θ̂H(β0))(β̂ − β0) + Θ̂H(β0)(β̂ − β0) + Θ̂

{
1

N

∑
i

yixiI{yixT
i β̂ ≤ 1}

}
= (I− Θ̂H(β0))(β̂ − β0)

+Θ̂
{ 1

N

∑
i

yixiI{yixT
i β0 ≤ 1}+ E[yxI{yxTβ̂ ≤ 1}]− E[yxI{yxTβ0 ≤ 1}]

+aN + H(β0)(β̂ − β0)
}
, (7)

where aN = 1
N

∑
i yixi(I{yixT

i β̂ ≤ 1}−I{yixT
i β0 ≤ 1})−Eyx(I{yxTβ̂ ≤ 1}−I{yixT

i β0 ≤ 1})
with ‖aN‖∞ ≤ aN with probability 1− p−C .

Using Proposition 1, the first term above is bounded by ‖I − Θ̂H(β0)‖∞‖β̂ − β0‖1 ≤
bNs

√
log p/N with probability at least 1− p−C . We also have∥∥∥E[yxI{yxTβ̂ ≤ 1}]− E[yxI{yxTβ0 ≤ 1}] + H(β0)(β̂ − β0)

∥∥∥
∞

= ‖(H(β∗)−H(β0))(β̂ − β0)‖∞
≤ ‖H(β∗)−H(β0)‖∞‖β̂ − β0‖1

≤ C

β301
‖β0‖1‖β̂ − β0‖21,

where β∗ lies between β0 and β̂. Furthermore, using Hoeffding’s inequality and the union
bound,

P

(∥∥∥∥∥ 1

N

∑
i

yixiI{yixT
i β0 ≤ 1}

∥∥∥∥∥
∞

> t

)
≤ 2p exp{−CNt2}.

8



Divide-and-conquer for SVM

and thus ∥∥∥∥∥ 1

N

∑
i

yixiI{yixT
i β0 ≤ 1}

∥∥∥∥∥
∞

≤ C
√

log p

N
,

with probability at least 1− p−C .

Finally, combining the various bounds above and using that for any vector a, ‖Θ̂a‖∞ ≤
‖Θ̂‖L1‖a‖∞, we can get that the second term of Equation 7 is bounded by a constant

multiple of Cn

(
aN +

√
log p
N +

‖β0‖1
β3
01

s2 log p
N

)
with probability at least 1− p−C . �

In l∞ norm, based on Theorem 1, we can see that under reasonable assumptions (see for
example corollary 1) the debiased estimator has the convergence rate

√
log p/N , which is

the dominating term in the bound. However, in terms of l1 or l2 norm, since β̃ is non-sparse,
we generally have ‖β̃ − β0‖1 = Op(p

√
log p/N) and ‖β̃ − β0‖ = Op(

√
p log p/N), which

is much larger than the bounds for the centralized estimator ‖β̂ − β0‖1 = Op(s
√

log p/N)

and ‖β̂ − β0‖ = Op(
√
s log p/N) (Peng et al., 2016), where s is the number of nonzero

components in β0. Post-processing using thresholding can be used to address this problem,
which we will consider after we discuss distributed estimation next.

2.2 Distributed estimation

We now consider distributed estimation, in which the whole data set is evenly distributed to
M machines, with M possibly diverging with N . The size of the data at each local machine
is n = N/M , assumed to be an integer for simplicity. On each machine m, 1 ≤ m ≤ M ,

we use the local data to obtain β̂
(m)

, Θ̂
(m)

, and the debiased estimator β̃
(m)

. Finally, the
aggregated estimator is defined by

β̄ =
1

M

M∑
m=1

β̃
(m)

.

Theorem 2 Under assumptions (A1)-(A6) (with N replaced by n, and in (A4) and (A6)

β̂ replaced by β̂
(m)

, m = 1, . . . ,M), and that s
√

log p/n = o(β01), we have

‖β̄ − β0‖∞ ≤ C

(
Cn

(
an +

√
log p

N
+
‖β0‖1
β301

s2 log p

n

)
+ bns

√
log p

n

)
,

with probability at least 1−p−C , where an =

((
s
β01

√
log p
n

)1/2√
K log p
n + K log p

n

)
and bn =

Cn

((
1
β01

+
√

log p
nh3β01

+ log p
nh2

)
s
√

log p
n + s2 log p

nh3
+ h

β2
01

+
√

log p
nhβ01

)
9
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Proof of Theorem 2. Let Dm ⊂ {1, . . . , N} with cardinality |Dm| = n be the indices of
the sub-data-set distributed to machine m. We have

β̄ − β0

=
1

M

M∑
m=1

(I− Θ̂
(m)

H(β0))(β̂
(m)
− β0)

+
1

M

M∑
m=1

Θ̂
(m)

{
1

n

∑
i∈Dm

yixiI{yixT
i β ≤ 1}

}

− 1

M

M∑
m=1

Θ̂
(m)
{
E
[
yx
(
I{yxTβ̂

(m)
≤ 1} − I{yxTβ0 ≤ 1}

)]
+ H(β0)(β̂

(m)
− β0)

}
− 1

M

M∑
m=1

Θ̂
(m)

a(m)
n ,

where a
(m)
n = 1

n

∑
i∈Dm

yixi(I{yixT
i β̂ ≤ 1}−I{yixT

i β0 ≤ 1})−Eyx(I{yxTβ̂ ≤ 1}−I{yxTβ0 ≤ 1})
with ‖an‖∞ ≤ an with probability at least 1− p−C .

For terms other than the second one above, the proof is exactly the same as for the
proof of Theorem 1. Note that for each machine m, all derived inequalities hold with
probability at least 1 − p−C (note C can be chosen to be arbitrarily large) and thus they
hold with probability at least 1 − Mp−C simultaneously for all M machines. Since we
assumed logM ≤ logN = O(log p), 1 −Mp−C can again be written as 1 − p−C (with a
different C). For the second term above, the difference from the calculations in Theorem 1

is that here Θ̂
(m)

is different for different m. Let ej ∈ Rp be the unit vector with a single

one for the j-th entry and let aij = yie
T
j Θ̂

(m)
xi if i ∈ Dm. Note |aij | = |eTj Θ̂

(m)
xi| ≤

‖ej‖∞‖Θ̂
(m)
‖L1‖xi‖∞ ≤ CCn with probability at least 1− p−C . By Hoeffding’s inequality,

we have

P

(∣∣∣∣∣ 1

M

M∑
m=1

eTj Θ̂
(m)

{
1

n

∑
i∈Dm

yixiI{yixT
i β0 ≤ 1}

}∣∣∣∣∣ > t

)

= P

∣∣∣∣∣∣ 1

N

∑
m≤M,i∈Dm

aijI{yixT
i β0 ≤ 1}

∣∣∣∣∣∣ > t


≤ 2 exp

{
−CC−2n Nt2

}
. (8)

Thus ∥∥∥∥∥ 1

M

M∑
m=1

Θ̂
(m)

{
1

n

∑
i∈Dm

yixiI{yixT
i β0≤1}

}∥∥∥∥∥
∞

≤ CCn

√
log p

N
,

with probability at least 1− p−C . �
Under reasonable assumptions, the dominating term in the bounds in Theorem 2 is√

log p/N . One version of such assumptions is presented below without proof, since it is
based on simple algebra.
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Corollary 1 Assume the same conditions as in Theorem 2. In addition, we assume s,K, ‖β0‖
are bounded, β01 is bounded away from zero, h ∼ n−1/5, log p/n2/5 → 0 and M3 =
O(N/ log p), then

‖β̄ − β0‖∞ ≤ C
√

log p

N
,

with probability at least 1− p−C .

Remark 1 In our case, M can scale like (N/ log p)1/3 while for the smooth loss consider in
Lee et al. (2017), M can scale as (N/ log p)1/2. This is mainly due to that for the unsmooth
loss function, the empirical process as in Proposition 2 has a slower rate. In particular, in
Proposition 2 the derived bound in terms of N scales as N−3/4. For smooth loss, this term
would have been N−1, which eventually leads to the constraint that M should scale like N1/3

instead of N1/2. Although we are not claiming the bound of Proposition 2 is optimal, it is
common to see that for unsmooth functions the empirical process converges slower than that
for smooth functions (Belloni and Chernozhukov, 2011).

2.3 Thresholding aggregated estimator

As mentioned in subsection 2.1, the l2 norm of β̄−β0 is generally unfavorably large compared
to the centralized estimator using all observations. This is also illustrated in our simulations.
To improve performance, thresholding can be used as a post-processing step which produced
a sparse aggregate estimator. Let c be a threshold level. We define β̄

c
= (β̄c1, . . . , β̄

c
p)

T where
β̄cj = β̄jI{|β̄j | > c}. Here for illustration we used hard thresholding and similar results hold
for soft thresholding. Under appropriate choice of the threshold, the thresholded estimator
has the same convergence rate as the centralized estimator in l1 and l2 norm, when choosing
c �

√
log p/N .

Theorem 3 On the event c > ‖β̄ − β0‖∞, we have ‖β̄c − β0‖∞ ≤ 2c, ‖β̄c − β0‖1 ≤ 2sc
and ‖β̄c − β0‖ ≤ 2

√
sc.

Proof of Theorem 3. Using ‖β̄c − β0‖∞ ≤ ‖β̄
c − β̄‖∞ + ‖β̄ − β0‖∞ ≤ 2c giving the

first result. Since c > ‖β̄ − β0‖∞, we have β̄
c
j = 0 if β0j = 0 and thus the support

of β̄
c

is contained in that of β0. This implies ‖β̄c − β0‖1 ≤ s‖β̄c − β0‖∞ ≤ 2sc and
‖β̄c − β0‖ ≤

√
s‖β̄c − β0‖∞ ≤ 2

√
sc. �

3. Simulations

We illustrate the performances of the distributed estimators of the linear SVM coeffi-
cients via simulations. We generate the data from the following model. First yi, i =
1, . . . , N are generated from the binary distribution P (yi = 1) = P (yi = −1) = 0.5.
Given yi = 1, xi is generated from a multivariate normal distribution with mean µ =
(0.2,−0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T and covariance matrix Σ = (σjj′) with σjj = 1 for all j,
σjj′ = 0.2 if j ≤ 5, j′ ≤ 5, j 6= j′, σjj′ = 0 otherwise. Given yi = −1, xi is generated
from a multivariate normal distribution with mean −µ and covariance matrix Σ. By the
calculations in Appendix B of Peng et al. (2016), the true parameter can be found to be
β0 = (0.217,−0.503, 0.397, 0.573, 0.750, 0, . . . , 0)T.

11
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The tuning parameters λ in the penalty and the bound Cbn used in finding the matrix
inverse are selected by 5-fold cross-validation in each local machine. For the threshhold c,
we choose c such that the number of nonzero components of β̄ is equal to the maximum
number of nonzero components in the M local estimates. The bandwidth h is another
tuning parameter. Kato (2012) has derived the optimal bandwidth for quantile regression,
but it is hard to see whether similar results can be obtained in the current setting. Thus
we have used Silverman’s rule of thumb for kernel density estimation h = 1.06σ̂n−1/5 where
σ̂ is the sample standard deviation of 1− yixT

i β̂. In our context this rule of thumb has no
theoretical support, but seems to work well in practice. In our case, it seems we do not
need to estimate the Hessian optimally since our purpose is not to perform inferences of β.
Finally, we use standard normal density as the smoothing kernel q.

We compute the centralized estimator (CE), the naive aggregated estimator without
using bias correction (NAE), the aggregated estimator after debiasing (AE), and the final
thresholded estimator (TE). The accuracy of the estimators are assessed by the l∞ error
(‖β−β0‖∞), the l2 error (‖β−β0‖), as well as the prediction error based on independently
generated 50, 000 observations.

First, we set N = 20, 000, M = 1, 5, 10, 15, 20, 25, 30 (M = 1 is the centralized estimator)
and p = 5000. Figure 1 shows errors of the estimators that change with M , based on 100
data sets generated in each scenario. The performances generally deteriorate with the
increase of M . In terms of l∞ error the effect of thresholding is very small if any, and both
TE and AE (almost identical) are better than NAE. In terms of l2 error, AE is much worse
than NAE. This is due to that AE is non-sparse and the summation of small errors over p
variables can be very large. On the other hand, although NAE may have large errors on
the nonzero coefficients due to the large bias, the error is small on many zero coefficients
which are estimated exactly as zero (NAE is sparse). Thresholding is effective in reducing
the l2 error as well as prediction error.

In the second set of simulations, we still use p = 5000 and consider different sample
sizes N = 10000, 20000, 30000, 40000, 50000, and fix the number of samples in each local
machine to be n = 5000 (and thus the number of machines M increases with N from 2
to 10). For this simulation, as suggested by a reviewer, we also compute the thresholded
estimator (after debiasing and aggregation) using the true Hessian (the true Hessian can
be computed as explained in Appendix B). From the reported results in Figure 2, it is
seen that the proposed estimator TE has errors decreasing with total sample size, while the
errors of the naive aggregated estimator are much larger. For AE which is non-sparse, its
performance in terms of l2 and prediction error is the worst among different estimators. It
is also seen that the thresholded estimator using the true Hessian has similar performances
as TE.

The simulations are carried out on the computational cluster Katana in the University
of New South Wales. For the second set of simulations for example, the central estimators
require from 4 to 29 hours to compute depending on the sample size, to finish all 100
repetitions, while the distributed estimator requires about 2 hours for all sample sizes.

12



Divide-and-conquer for SVM

0 5 10 15 20 25 30

−
3

.5
−

3
.0

−
2

.5
−

2
.0

−
1

.5
−

1
.0

M

lo
g

1
0

 li
n

f 
e

rr
o

r

0 5 10 15 20 25 30
−

3
.0

−
2

.5
−

2
.0

−
1

.5
−

1
.0

−
0

.5
0

.0
M

lo
g

1
0

 l2
 e

rr
o

r

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

M

p
re

d
ic

tio
n

 e
rr

o
r

Figure 1: The l∞, l2 and prediction errors of estimates with M ∈ {1, 5, 10, 15, 20, 25, 30}
(M = 1 represents the centralized estimator). 4(red): naive aggregated estimator
(NAE); +(green): the aggregated estimator after debiasing (AE); ×(blue): the
thresholded estimator (TE). The l∞ and l2 errors are in the logarithmic scale with
base 10. The dotted lines are computed based on the 100 repetitions showing 2
standard deviations of the estimated error.
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Figure 2: The l∞ and l2 errors of estimates with p = 5000 and N ∈
{10000, 20000, 30000, 40000, 50000}. ◦(black): centralized estimator (CE);
4(red): naive aggregated estimator (NAE); +(green): the aggregated estima-
tor after debiasing (AE); ×(blue): the thresholded estimator (TE). O(purple):
the thresholded estimator when the true Hessian is used in debiasing. The l∞
and l2 errors are in the logarithmic scale with base 10. The dotted lines are com-
puted based on the 100 repetitions showing 2 standard deviations of the estimated
error.
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4. Conclusion

In this paper, we consider distributed estimation of l1-penalized linear SVM. As long as the
number of machines is not too large, the distributed estimator has the same convergence
rate as the centralized estimator in l∞, l1 and l2 norms, if the estimator is thresholded to
retain sparsity.

We note that the optimization problem of Equation 6 can be solved row by row, and
thus can also be done in a distributed way. Using local data, each local machine can obtain
estimates for p/M rows of Θ and then these estimates can be combined to obtain a single
estimate of Θ that satisfies ‖Θ̂H(β0)− I‖∞ ≤ Cbn with probability at least 1−p−C , where

bn = Cn

((
1
β01

+
√

log p
nh3β01

+ log p
nh2

)
s
√

log p
n + s2 log p

nh3
+ h

β2
01

+
√

log p
nhβ01

)
and the same bound

as in Theorem 2 for ‖β̄ − β0‖∞ hold with minor modifications of the proofs. For ease of
implementation, we do not investigate this alternative in our numerical studies.

Once an aggregated estimator of β is obtained, one can use this estimator in the evalu-
ation of the inverse of H(β̂) in each local machine. This iterative approach requires further
communications among the central machine and local machines, and we do not observe
improved performances of the iterative estimator empirically.

A few problems remain open in this study, among possibly many others. First, there is
a gap in theory and simulation in that (A1) assumed that the covariates are bounded while
the simulations are based on a multivariate normal distribution for covariates. We used the
assumption of bounded covariates for at least two reasons. One reason is that we rely on the
results of Peng et al. (2016), who assumed boundedness of predictors. The second reason
is that we have used boundedness in our own derivation in various places, even though
such assumption may be relaxed with more efforts and much messier proof. Another open
question is whether the implied constraint on M mentioned at the end of Section 2.2 is
tight. This appears to be a challenging open question that we are not currently able to
answer.
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Appendix A. Proofs of Propositions.

Proof of Proposition 1. We first show that

‖Θ̂Ĥ(β̂)− I‖∞ ≤ CbN and ‖Θ̂‖L1 ≤ CN . (9)

First, we note these will be implied by that

‖Θ0Ĥ(β̂)− I‖∞ ≤ CbN . (10)

In fact, Equation 10 means the constrained optimization problem is feasible and the feasi-
bility of Θ̂ immediately implies the first equation of Equation 9. For the second equation
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of Equation 9, we only need to note that by Equation 10 and the definition of the con-
strained optimization problem, which can be solved for each row of Θ separately, we have
‖Θ̂‖L1 ≤ ‖Θ0‖L1 .

To establish Equation 10, we bound ‖Θ0Ĥ(β̂) − I‖∞ = ‖Θ0(Ĥ(β̂) − H(β0))‖∞ ≤
‖Θ0‖L1‖Ĥ(β̂)−H(β0)‖∞. Furthermore, we write

‖Ĥ(β̂)−H(β0)‖∞
≤ ‖E[Ĥ(β0)]−H(β0)‖∞ + ‖Ĥ(β0)− E[Ĥ(β0)]‖∞ + ‖Ĥ(β̂)− Ĥ(β0)‖∞
=: I1 + I2 + I3.

First we consider I1 and show that for any bounded function s(x) whose partial derivatives
are also bounded, we have∣∣∣∣E [1

h
q

(
1− yxTβ0

h

)
s(x)

]
− E

[
δ(1− yxTβ0)s(x)

]∣∣∣∣ ≤ Ch/β201,
and we will then obtain I1 ≤ Ch/β201 by setting s(x) = xjxj′ , 1 ≤ j, j′ ≤ p.

In fact, since, for example, E[δ(1 − yxTβ0)s(x)] = P (y = 1)E[δ(1 − yxTβ0)s(x)|y =
1]+P (y = −1)E[δ(1−yxTβ0)s(x)|y = −1], we only need to consider conditional expectation
given y = 1 (conditional expectation given y = −1 is similar). Write β0,−1 = (β02, . . . , β0p)

T

and x−1 = (x2, . . . , xp)
T. Then, by a change of variable (x1, . . . , xp)→ (z1, x2, . . . , xp) with

z1 = xTβ0, we have

E[
1

h
q

(
1− xTβ0

h

)
s(x)|y = 1]

=

∫
1

h
q

(
1− xTβ0

h

)
s(x)f(x)dx

=

∫
1

h
q

(
1− z1
h

)
s

(
z1 − xT

−1β−1
β01

,x−1

)
f

(
z1 − xT

−1β−1
β01

,x−1

)
1

β01
dz1dx−1

u=(1−z1)/h
=

∫
q (u) s

(
1− uh− xT

−1β−1
β01

,x−1

)
f

(
1− uh− xT

−1β−1
β01

,x−1

)
1

β01
dudx−1

=

∫
q(u)(sf)

(
1− xT

−1β−1
β01

,x−1

)
1

β01
dudx−1

−
∫
q(u)(sf)(1)

(
1− ∗ − xT

−1β−1
β01

,x−1

)
1

β201
uhdudx−1,

where (sf)(1) is the partial derivative of (sf)(.) with respect to its first variable and ∗
represents a value between 0 and uh, and

E[δ(1− xTβ0)s(x)|y = 1]

=

∫
δ(1− xTβ0)s(x)f(x)dx

=

∫
s

(
1− xT

−1β−1
β01

,x−1

)
f

(
1− xT

−1β−1
β01

,x−1

)
1

β01
dz1dx−1.
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Using
∫
q(u)du = 1,

∫
|u|q(u)du <∞, and that (sf)(1) is bounded, we get∣∣∣∣E[

1

h
q

(
1− xTβ0

h

)
s(x)|y = 1]− E[δ(1− xTβ0)s(x)|y = 1]

∣∣∣∣
=

∣∣∣∣∣
∫
q(u)(sf)(1)

(
1− ∗ − xT

−1β−1
β01

,x−1

)
1

β201
uhdudx−1

∣∣∣∣∣
≤ Ch/β201,

and thus
I1 ≤ Ch/β201. (11)

Next we deal with I2. Again with a bounded function s, we have
∣∣∣ 1hq (1−xTβ0

h

)
s(x)

∣∣∣ ≤
C/h and

E

[(
1

h
q

(
1− xTβ0

h

)
s(x)

)2

|y = 1]

]

=

∫
1

h2
q2
(

1− z1
h

)
s2

(
z1 − xT

−1β−1
β01

,x−1

)
f

(
z1 − xT

−1β−1
β01

,x−1

)
1

β01
dz1dx−1

=

∫
1

h
q2 (u) (s2f)

(
1− uh− xT

−1β−1
β01

,x−1

)
1

β01
dudx−1

≤ C/(hβ01), (12)

since
∫
q2(u)du <∞. Thus

E

[(
1

h
q

(
1− xTβ0

h

)
s(x)

)r ∣∣∣y = 1

]
≤ (C/h)r−2(1/(hβ01)), r ≥ 2.

By Bernstein’s inequality (Lemma 2.2.11 in van der Vaart and Wellner (1996)),

P

(∣∣∣∣∣ 1

N

∑
i

I{yi=1}
1

h
q

(
1− yixT

i β0

h

)
s(xi)− E

[
I{y=1}

1

h
q

(
1− yxTβ0

h

)
s(x)

]∣∣∣∣∣ > t

)

≤ 2 exp

{
−C Nht2

t+ β−101

}
,

and the same inequality holds with y = 1, yi = 1 replaced by y = −1, yi = −1, and thus∣∣∣∣∣ 1

N

∑
i

1

h
q

(
1− yixT

i β0

h

)
s(xi)− E

[
1

h
q

(
1− yxTβ0

h

)
s(x)

]∣∣∣∣∣ ≤ C
(√

log p

Nhβ01
+

log p

Nh

)
(13)

with probability at least 1−p−C (note C here can be arbitrarily large as long as we are willing
to set the constant C in the display above to be large enough). By choosing s(x) = xjxj′ ,
using the the union bound,

I2 ≤ C

(√
log p

Nhβ01
+

log p

Nh

)
, (14)
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with probability at least 1− p−C .

Finally, we bound I3. By Taylor’s expansion, we have

∣∣∣∣∣ 1

N

∑
i

I{yi=1}xijxij′q((1− xT
i β̂)/h)/h− 1

N

∑
i

I{yi=1}xijxij′q((1− xT
i β0)/h)/h

∣∣∣∣∣
≤

∣∣∣∣∣CN ∑
i

I{yi=1}xijxij′q
′((1− xT

i β0)/h)/h2 · xT
i (β̂ − β0)

∣∣∣∣∣
+

∣∣∣∣∣ C2N ∑
i

I{yi=1}xijxij′q
′′(∗)/h3 · (xT

i (β̂ − β0))
2

∣∣∣∣∣
=: J1 + J2,

where ∗ denotes a value between (1 − xT
i β̂)/h and (1 − xT

i β0)/h. The second term above
is easy to deal with. Since q′′(.) is bounded, we get

J2 ≤
Cs2 log p

Nh3
,

with probability 1 − p−C . Although J1 could be bounded similar to J2, a more careful
calculation will yield a tighter bound. For this we write

∣∣∣∣∣ 1

N

∑
i

I{yi=1}xijxij′q
′(1− xT

i β0/h)/h2

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

∑
i

I{yi=1}xijxij′q
′((1− xT

i β0)/h)/h2 − E[I{y=1}xjxj′q
′(1− xTβ0/h)/h2]

∣∣∣∣∣
+
∣∣E[I{y=1}xjxj′q

′(1− xTβ0/h)/h2]
∣∣ .

Similar to Equation 12, we have |q′((1−xT
i β0)/h)/h2| ≤ C/h2 and E[(q′((1−xTβ0)/h)/h2)2|y =

1] ≤ C/(h3β01), and by the same arguments as those that lead to Equation 13, we get

max
j,j′

∣∣∣∣∣ 1

N

∑
i

I{yi=1}xijxij′q
′((1− xT

i β0)/h)/h2 − E[I{y=1}xjxj′q
′(1− xTβ0/h)/h2]

∣∣∣∣∣
≤ C

(√
log p

Nh3β01
+

log p

Nh2

)
,
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with probability at least 1− p−C . Furthermore, for any bounded s(x) whose partial deriva-
tives are also bounded, we have∣∣E[s(x)q′((1− xTβ0)/h)/h2|y = 1]

∣∣
=

∣∣∣∣∣
∫
q′((1− z1)/h)/h2 · (sf)

(
z1 − xT

−1β−1
β01

,x−1

)
1

β01
dz1dx−1

∣∣∣∣∣
=

∣∣∣∣∣
∫
q′(u) · (sf)

(
1− uh− xT

−1β−1
β01

,x−1

)
1

hβ01
dudx−1

∣∣∣∣∣
=

∣∣∣∣∣
∫

(sf)

(
1− xT

−1β−1
β01

,x−1

)
(

∫
q′(u)du)

1

hβ01
dx−1

∣∣∣∣∣+

∣∣∣∣∫ q′(u)u(sf)(1)(∗) 1

β201
dudx−1

∣∣∣∣
≤ C/β201,

using that
∫
q′(u)du = 0. Thus

J1 ≤ C

(
1

β201
+

√
log p

Nh3β01
+

log p

Nh2

)
· s
√

log p

N

with probability at least 1− p−C and then

I3 ≤ C

((
1

β201
+

√
log p

Nh3β01
+

log p

Nh2

)
· s
√

log p

N
+
s2 log p

Nh3

)
, (15)

with probability at least 1 − p−C . Combining bounds in Equation 11, Equation 14 and
Equation 15, we get

‖Ĥ(β̂)−H(β0)‖∞ ≤ C

((
1

β201
+

√
log p

Nh3β01
+

log p

Nh2

)
· s
√

log p

N
+
s2 log p

Nh3
+

h

β201
+

√
log p

Nhβ01

)
,

and thus
‖Θ0Ĥ(β̂)− I‖∞ ≤ CbN ,

with probability at least 1− p−C .
Finally, we also have

‖Θ̂H(β0)− I‖∞
≤ ‖Θ̂Ĥ(β̂)− I‖∞ + ‖Θ̂(Ĥ(β̂)−H(β0))‖∞
≤ CbN + ‖Θ̂‖L1‖Ĥ(β̂)−H(β0)‖∞
≤ CbN ,

using the bound for ‖Ĥ(β̂)−H(β0)‖∞ above. �

Proof of Proposition 2. We define Ω = {β ∈ Rp : ‖β‖0 ≤ K, ‖β−β0‖1 ≤ Cs
√

log p/N}
and we have β̂ ∈ Ω with probability at least 1− p−C . Define the class of functions

Gj = {yxj(I{yxTβ ≤ 1} − I{yxTβ0 ≤ 1}) : β ∈ Ω},
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with squared integrable envelope function F (x, y) = |xj |.
We decompose Ω as Ω = ∪T⊂{1,...,p},|T |≤KΩ(T ) with Ω(T ) = {β : support of β ⊂ T}∩Ω.

We also define Gj(T ) = {yxj(I{yxTβ ≤ 1} − I{yxTβ0 ≤ 1}) : β ∈ Ω(T )}.
By Lemma 2.6.15, Lemma 2.6.18 (vi) and (viii) (actually by the proof of Lemma 2.6.18

(viii)) in van der Vaart and Wellner (1996), for each fixed T ⊂ {1, . . . , p} with |T | ≤ K,
Gj(T ) is a VC-subgraph with index bounded by K + 2 and by Theorem 2.6.7 of van der
Vaart and Wellner (1996), we have

N(ε,Gj(T ), L2(Pn)) ≤
(
C‖F‖L2(Pn)

ε

)CK
≤
(
C

ε

)CK
.

Since there are at most
(
p
K

)
≤ (ep/K)K different such T , we have

N(ε,Gj , L2(Pn)) ≤
(
C

ε

)CK (ep
K

)K
≤
(
Cp

ε

)CK
,

and thus

N(ε,∪pj=1Gj , L2(Pn)) ≤ p
(
Cp

ε

)CK
.

Let σ2 = supf∈∪jGj Pf
2. Then by Theorem 3.12 of Koltchinskii (2011), we have

E‖Rn‖∪jGj ≤ C

(
σ

√
K log p

N
+
K log p

N

)
,

where ‖Rn‖∪jGj = supf∈∪jGj N
−1∑N

i=1 εif(xi, yi) with εi being i.i.d. Rademacher ran-
dom variables. Using the symmetrization inequality which states that E‖Pn − P‖∪jGj ≤
2E‖Rn‖∪jGj , where ‖Pn − P‖∪jGj = supf∈∪jGj N

−1∑
i f(xi, yi) − Ef(x, y), Talagrand’s

inequality (page 24 of Koltchinskii (2011)) gives

P

(
‖Pn − P‖∪jGj ≥ C

(
σ

√
K log p

N
+
K log p

N
+

√
σ2t

N
+

t

N

))
≤ e−t,

that is, with probability at least 1− p−C ,∥∥∥∥∥ 1

N

∑
i

yixi(I{yixT
i β̂ ≤ 1} − I{yixT

i β0 ≤ 1})− Eyx(I{yxTβ̂ ≤ 1} − I{yxTβ0 ≤ 1})

∥∥∥∥∥
∞

≤ C

(
σ

√
K log p

N
+
K log p

N

)
.

Finally, we need to decide the size of σ2. For β ∈ Ω, we have that

E[(I{xTβ ≤ 1} − I{xTβ0 ≤ 1})2|y = 1]

≤ P (xTβ ≤ 1,xTβ0 ≥ 1|y = 1) + P (xTβ ≥ 1,xTβ0 ≤ 1|y = 1)

≤ P (1 ≤ xTβ0 ≤ 1 + Cs
√

log p/N |y = 1) + P (1− Cs
√

log p/N ≤ xTβ0 ≤ 1|y = 1)

≤ Cs
√

log p/N/β01,
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where we used in the second inequality the fact that xTβ ≤ 1 ≤ xTβ0 implies xTβ0 ≤
1 + |xT(β − β0)| ≤ 1 +C‖β − β0‖1 and similarly that xTβ0 ≥ 1−C‖β − β0‖1, and in the
last inequality we used that the density of xTβ0 conditional on y = 1 is bounded by 1/β01.
This last observation follows easily from that, by change of variable z1 = xTβ0, the joint
density of (z1,x−1) conditional on y = 1 is given by

f((z1 − xT
−1β−1)/β01,x−1)/β01.

Thus we have σ2 ≤ Cs
√

log p/N/β01 which proved the proposition. �

Proof of Proposition 3. By integrating over x1 first, we have for s(x) = xjxj′ ,∫
δ(1− xTβ)s(x)f(x)dx−

∫
δ(1− xTβ0)s(x)f(x)dx

=

∫
1

β1
(sf)

(
1− xT

−1β−1
β1

,x−1

)
dx−1 −

∫
1

β01
(sf)

(
1− xT

−1β0,−1
β01

,x−1

)
dx−1

=
β01 − β1
β1β01

∫
(sf)

(
1− xT

−1β−1
β1

,x−1

)
dx−1 +

1

β01

∫
(sf)(1) (∗,x−1) xT

−1

(
β0,−1
β01

−
β−1
β1

)
dx−1,

where ∗ represents a value between
1−xT

−1β0,−1

β01
and

1−xT
−1β−1

β1
. Using |β1 − β01| ≤ ‖β −

β0‖1 ≤ β01/2, β1 ≥ β01 − |β1 − β01| ≥ (1/2)β01, and ‖β0,−1

β01
− β−1

β1
‖1 ≤

‖β0‖1·‖β1−β01‖1
|β01β1| ≤

C
β2
01
‖β0‖1‖β1 − β01‖1, the lemma is proved. �

Appendix B. Discussions of Assumption (A3).

First we show that H(β0) can also be expressed as

c1E[xxT|y = 1,xTβ0 = 1] + c2E[xxT|y = −1,xTβ0 = −1], (16)

for two positive constants c1, c2. Indeed, let h(z, x2, . . . , xp) be the joint density of (z =

xTβ0, x2, . . . , xp)
T. We have h(z, x2, . . . , xp) = f(

z−xT
−1β0,−1

β01
, x2, . . . , xp)

1
β01

. Then, for any
function s(x), we have

E[δ(1− xTβ0)s(x)|y = 1]

=

∫
δ(1− xTβ0)s(x)f(x)dx

=

∫
s(

1− xT
−1β0,−1
β01

, x2, . . . , xp)f(
z − xT

−1β0,−1
β01

, x2, . . . , xp)
1

β01
dx−1,

and

E[s(x)|y = 1,xTβ0 = 1]

= E[s(
z − xT

−1β0,−1
β01

, x2, . . . , xp)|y = 1, z = 1]

=

∫
s(

1− xT
−1β0,−1
β01

, x2, . . . , xp)
h(1, x2, . . . , xp)

hz(1)
dx−1,
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where hz is the marginal density of z = xTβ0 conditional on y = 1. Thus we see that

E[δ(1− xTβ0)s(x)|y = 1] = hz(1)E[s(x)|y = 1,xTβ0 = 1],

which implies Equation 16
Let’s further assume that y is independent of x given xTβ0. This is a natural sufficient

dimension reduction type of assumption. This is the case for example if the class label is
generated as in our simulations, or if the data follows the popular logistic regression model.
Also assume x is multivariate normal. Then E[xxT|y = 1,xTβ0 = 1] = E[xxT|xTβ0 = 1]
by the conditional independence. Since x has a symmetric distribution, E[xxT|xTβ0 = 1] =
E[xxT|xTβ0 = −1] and thus the Hessian is equal to a constant multiple of E[xxT|xTβ0 =
1]. Now we examine the inverse of E[xxT|xTβ0 = 1].

Assume E[x] = 0 and Cov(x) = E[xxT] = S. The literature on high-dimensional
precision matrix estimation typically assume that S−1 is sparse or approximately sparse to
make the estimation feasible. We first see how the inverse of E[xxT|xTβ0 = 1] is related to
S under normality. By the normality of x, (xTβ0, x1, . . . , xp) is again (degenerate) normal
with covariance matrix (

βT
0 Sβ0 βT

0 S
Sβ0 S

)
.

Then by the property of multivariate normal distribution,

E[x|xTβ0 = 1] = Sβ0/(β
T
0 Sβ0),

Cov(x|xTβ0 = 1) = S− Sβ0β
T
0 S

βT
0 Sβ0

,

and thus

E[xxT|xTβ0 = 1] = E[x|xTβ0 = 1]ET[x|xTβ0 = 1] + Cov(x|xTβ0 = 1) = S + aSβ0β
T
0 S,

where a is a scalar. By the Sherman-Morrison formula,

(E[xxT|xTβ0 = 1])−1

= S−1 − a

1 + aβT
0 Sβ0

β0β
T
0 .

Thus the Hessian matrix is sparse if both S−1 and β0 are sparse.
Now we consider several popular and concrete cases.
Case 1. Consider the autoregressive correlation matrix where the (i, j) entry of S is

sij = ρ|i−j|, |ρ| < 1. In this case, it is known that

S−1 =
1

1− ρ2



1 −ρ
−ρ 1 + ρ2 −ρ

−ρ . . .
. . .

. . .
. . .

. . .
. . . 1 + ρ2 −ρ

−ρ 1


.
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In particular we can see ‖S−1‖L1 = 1/(1− |ρ|) independent of the size of the matrix.
Case 2. Assume S is a banded matrix with a fixed bandwidth, then by Theorem 2.2

of Demko (1977), the (i, j) entry of S−1 is bounded by Cγ|i−j| for some constants C > 0,
0 < γ < 1. Thus S−1 is approximately sparse in the sense that ‖S−1‖L1 is bounded.

Case 3. Consider the exchangeable correlation matrix where all the non-diagonal entries
of S are equal to ρ. Here we are not able to give theoretical properties of S−1 but will
numerically compute the L1 norm of the inverse of (E[xxT|xTβ0 = 1])−1.

For all three cases, we set β0 = (1, 1, 1, 1, 1, 0, . . . , 0)T and ρ = 0.3 and report the
numerical value of the L1 norm of the inverse of (E[xxT|xTβ0 = 1])−1 in Table 1. We
see that in case 1 and 2 the L1 norm does not change with p. For case 1, this can be
theoretically shown easily. It seems to be an extremely cumbersome exercise to show this
for case 2, however, and thus we do not try to establish this theoretically. For case 3, we
see that numerically the norm increases very slowly with p.

Table 1: L1 norm of the inverse of E[xxT|xTβ0 = 1].

p = 50 p = 100 p = 200 p = 500 p = 1000 p = 5000

case 1 5.578 5.578 5.578 5.578 5.578 5.578
case 2 5.889 5.889 5.889 5.889 5.889 5.889
case 3 7.066 7.230 7.316 7.368 7.385 7.399
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