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Abstract

In this paper we study the convergence of online gradient descent algorithms in reproducing
kernel Hilbert spaces (RKHSs) without regularization. We establish a sufficient condition
and a necessary condition for the convergence of excess generalization errors in expectation.
A sufficient condition for the almost sure convergence is also given. With high probability,
we provide explicit convergence rates of the excess generalization errors for both averaged
iterates and the last iterate, which in turn also imply convergence rates with probability
one. To our best knowledge, this is the first high-probability convergence rate for the last
iterate of online gradient descent algorithms in the general convex setting. Without any
boundedness assumptions on iterates, our results are derived by a novel use of two measures
of the algorithm’s one-step progress, respectively by generalization errors and by distances
in RKHSs, where the variances of the involved martingales are cancelled out by the descent
property of the algorithm.

Keywords: Learning theory, Online learning, Convergence analysis, Reproducing kernel
Hilbert space

1. Introduction

Online gradient descent is a scalable method able to tackle large-scale data arriving in a
sequential manner (Zhang, 2004; Kivinen et al., 2004; Duchi and Singer, 2009; Dieuleveut
and Bach, 2016), which is becoming ubiquitous within the big data era. As a first-order
method, it iteratively builds an unbiased estimate of the true gradient upon the arrival of
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a new example and uses this information to guide the learning process (Zinkevich, 2003;
Zhang, 2004). As verified by theoretical and empirical analysis, online gradient descent en-
joys comparable performance as compared to its batch counterpart such as gradient descent
(Zhang, 2004; Yao, 2010; Shalev-Shwartz et al., 2011), while attaining a great computational
speed-up since its gradient calculation involves only a single example. As a comparison, the
gradient calculation in gradient descent requires to traverse all training examples. Recently,
online gradient descent has received renewed attention due to the wide applications of its
stochastic analogue, i.e., stochastic gradient descent, in training deep neural networks (Bot-
tou, 1991; Ngiam et al., 2011; Sutskever et al., 2013).

In this paper, we are interested in the setting that training examples {zt = (xt, yt)}t∈N
are sequentially and identically drawn from a probability measure ρ defined in the sample
space Z = X×Y, where X ⊂ Rd is the input space and Y ⊂ R is the output space. We focus
on the nonparametric setting, where the learning process is implemented in a reproducing
kernel Hilbert space (RKHS) HK associated with a Mercer kernel K : X ×X → R which is
assumed to be continuous, symmetric and positive semi-definite. The space HK is defined
as the completion of the linear span of the set of functions {Kx(·) := K(x, ·) : x ∈ X}
with the inner producing satisfying the reproducing property f(x) = 〈f,Kx〉 for any x ∈ X
and f ∈ HK . In this setting, the use of Mercer kernels provides a unifying way to measure
similarities between pairs of objects (Cortes and Vapnik, 1995; Müller et al., 2001; Steinwart,
2001; Schölkopf and Smola, 2001), which turns out to be a key to the great success of kernel
methods in many practical learning problems. We wish to build a prediction rule f ∈ HK

after seeing a sequence of training examples, the performance of which at an example (x, y)
can be quantitatively measured by a loss function φ : Y × R → R+ as φ(y, f(x)). With a
sequence {ηt}t∈N of positive step sizes and f1 = 0, online gradient descent is a realization
of learning schemes by keeping a sequence of iterates as follows

ft+1 = ft − ηtφ′(yt, ft(xt))Kxt , ∀t ∈ N, (1.1)

where φ′ denotes the derivative of φ with respect to the second argument. Although our
focus is on the nonparametric setting, it should be mentioned that the above algorithm
also recovers the parametric case in which the kernel is taken to be the linear kernel with
Kx(x′) = 〈x, x′〉, ∀x, x′ ∈ X , to which our results also apply.

Despite its widespread applications, the theoretical understanding of the online gra-
dient descent algorithms is still not satisfactory in the following three aspects. Firstly,
boundedness assumptions on the iterates are often imposed in the literature, which may be
violated in practical implementations if the underlying domain is not bounded. Although
a projection of iterates onto a bounded domain guarantees the boundedness assumption,
the projection operator may be time-consuming and this introduces an additional challeng-
ing problem of tuning the size of the domain. Secondly, most of the theoretical results
are stated in expectation, while we are sometimes more interested in either almost sure
convergence or convergence rates with high probability. Indeed, an algorithm may suffer
from a high variability and should be used with caution if neither almost sure convergence
nor high-probability bounds hold (Shamir and Zhang, 2013). In particular, an almost sure
convergence is still lacking for online gradient descent algorithms applied to general convex
problems (Ying and Zhou, 2017). Lastly, most existing convergence rates are stated for
some average of iterates. Though taking average of iterates can improve the robustness
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of the solution (Nemirovski et al., 2009), it can either destroy the sparsity of the solution
which is crucial for a proper interpretation of models in many applications, or slow down
the training speed in practical implementations (Rakhlin et al., 2012).

In this paper, we aim to take a further step to tackle the above mentioned problems.
We establish a general sufficient condition and a necessary condition on the step sizes
for the convergence of online gradient descent algorithms in expectation. With Doob’s
martingale convergence theorem and the Borel-Cantelli lemma, a sufficient condition for
the almost sure convergence and explicit convergence rates with probability one are also
established. Furthermore, we present high-probability bounds for both averaged iterates
and the last iterate of online gradient descent algorithms. To our best knowledge, this is
the first high-probability convergence rate for the last iterate of online gradient descent
algorithms in the general convex setting. Our analysis does not impose any boundedness
assumptions on the iterates. Indeed, we show that, although implemented in an unbounded
domain, the iterates produced by (1.1) fall into a bounded domain with high probability
(up to logarithmic factors). Our analysis is performed by viewing the one-step progress of
online gradient descent algorithms from different yet unified perspectives: one in terms of
generalization errors and one in terms of RKHS distances. For both viewpoints, we relate
the one-step progress to a martingale difference sequence and a negative term due to the
descent nature of the algorithm. Our novelty is to show that the dominant variance term
appearing in the application of a Bernstein-type inequality to these martingales can be
cancelled out by the negative terms in the one-step progress inequalities. Both viewpoints
of the one-step progress are indispensable in our analysis.

The remaining parts of this paper are organized as follows. We present main results
in Section 2. Discussions and comparisons with related work are given in Section 3. The
proofs of main results are given in Section 4.

2. Main Results

Our convergence rates are stated for generalization errors, which, for a prediction rule
f : X → R, are defined as the expected error E(f) =

∫
Z φ(y, f(x))dρ incurred from using

f to perform prediction. Our analysis requires to impose mild assumptions on the loss
functions.

Assumption 1 We assume the loss function φ : Y × R→ R+ is convex and differentiable
with respect to the second argument. Let α ∈ (0, 1] and L > 0 be two constants. We assume
that the gradients of φ are (α,L)-Hölder continuous in the sense

|φ′(y, s)− φ′(y, s̃)| ≤ L|s− s̃|α, ∀s, s̃ ∈ R,∀y ∈ Y. (2.1)

We say φ is smooth if it satisfies (2.1) with α = 1. Loss functions satisfying Assumption
1 are wildly used in machine learning. Smooth loss functions include the least squares loss
φ(y, a) = 1

2(y−a)2 and the Huber loss φ(y, a) = 1
2(y−a)2 if |y−a| ≤ 1 and |y−a|−1

2 otherwise
for regression, as well as the logistic loss φ(y, a) = log(1 + exp(−ya)) and the quadratically
smoothed hinge loss φ(y, a) = max{0, 1− ya}2 for classification (Zhang, 2004). If p ∈ (1, 2],
both the p-norm hinge loss φ(y, a) = max{0, 1− ya}p for classification and the p-th power
absolute distance φ(y, a) = |y − a|p for regression satisfy (2.1) with α = p− 1 (Chen et al.,
2004; Steinwart and Christmann, 2008).
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Throughout this paper, we assume that a minimizer fH = arg minf∈HK E(f) exists in
HK . We also assume

max
{

sup
y∈Y

φ(y, 0), sup
z∈Z

φ(y, fH(x))
}
<∞ and κ := sup

x∈X

√
K(x, x) <∞,

which is satisfied if the sample space Z is bounded. Denote ‖ · ‖ as the norm in HK . We
always use the notation At = E[E(ft)]− E(fH) and Ât = E(ft)− E(fH), ∀t ∈ N for brevity,
which are referred to as the expected excess generalization errors and excess generalization
errors, respectively.

In the following, we present the main results of this paper. We consider three types of
convergence: convergence in expectation, almost sure convergence and convergence rates
with high probability.

2.1 Convergence in Expectation

The first part of our main results to be proved in Section 4.1 establishes a general sufficient
condition (Theorem 1) and a necessary condition (Theorem 2) on the step size sequence
{ηt}t∈N for the convergence of At to zero.

Theorem 1 Let {ft}t∈N be the sequence produced by (1.1) and suppose Assumption 1 holds
with α ∈ (0, 1]. If

∞∑
t=1

ηt =∞ and lim
t→∞

ηαt

t∑
k=1

η2
k = 0, (2.2)

then limt→∞ E[E(ft)]− E(fH) = 0.

Theorem 2 Let {ft}t∈N be the sequence produced by (1.1). Suppose that for any y ∈ Y, the
function φ(y, ·) : R → R+ is convex and its derivative φ′(y, ·) is (1, L)-Hölder continuous.
Assume that the step size sequence satisfies ηt ≤ 1/(6Lκ2),∀t ∈ N and E(f1) 6= E(fH). If
limt→∞ E[E(ft)] = E(fH), then

∑∞
t=1 ηt =∞.

Remark 3 We now illustrate the above theorems by considering the polynomially decaying
step sizes ηt = η1t

−θ, t ∈ N, θ ≥ 0. The condition
∑∞

t=1 ηt = ∞ requires θ ≤ 1, while
the condition limt→∞ η

α
t

∑t
k=1 η

2
k = 0 requires θ > 1

2+α . Therefore, Theorem 1 shows that

the iteration scheme (1.1) with ηt = η1t
−θ and θ ∈

(
1

2+α , 1
]

guarantees the convergence of
{At}t∈N. Theorem 2 shows that the condition θ ≤ 1 is also necessary for the convergence.

2.2 Almost Sure Convergence

The second part of our main results focuses on a sufficient condition (Theorem 4) for
the almost sure convergence of {Ât}t∈N to zero and convergence rates with probability 1
(Theorem 6). The proofs of results in this section can be found in Section 4.2.

Theorem 4 Let {ft}t∈N be the sequence given by (1.1). If Assumption 1 holds with α ∈
(0, 1] and the step size sequence satisfies

∞∑
t=1

ηt =∞ and

∞∑
t=1

η1+α
t <∞, (2.3)
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then limt→∞ E(ft) = E(fH) almost surely.

Remark 5 According to Theorem 4, we know that {Ât}t∈N would converge almost surely
to 0 if we consider either the step sizes ηt = η1t

−θ with θ ∈ ( 1
1+α , 1] or the step sizes

ηt = η1(t logβ t)−
1

1+α with β > 1. Specifically, if the loss function is smooth, then we can

choose either ηt = η1t
−θ with θ ∈ (1

2 , 1] or ηt = η1

(
t logβ t

)− 1
2 with β > 1 to guarantee the

convergence of the algorithm (1.1) almost surely in the sense of generalization errors.

Theorem 6 Suppose that Assumption 1 holds with α ∈ (0, 1]. Let {ft}t∈N be the sequence
given by (1.1) with ηt = η1t

−θ, θ ∈ ( 1
α+1 , 1) and η1 ≤ 1

Aκ2
(A is defined in (4.27)). Then

for any ε > 0,
lim
t→∞

tmin{(1−θ),(α+1)θ−1}−εÂt = 0 almost surely. (2.4)

Specifically, if we choose θ = 2
2+α , then limt→∞ t

α
2+α
−εÂt = 0 almost surely.

2.3 Convergence Rates with High Probability

The last part of our main results is on high-probability bounds for the excess generalization
errors, the proof of which is given in Section 4.3. With high probability, Theorem 7 estab-
lishes the boundedness (up to logarithmic factors) of the weighted summation

∑T
t=1 ηtÂt,

from which the decay rate of the excess generalization error E(f̄ηT )− E(fH) associated to a

weighted average of the iterates f̄ηT :=
∑T
t=1 ηtft∑T
t=1 ηt

follows directly.

Theorem 7 Let {ft}t∈N be the sequence given by (1.1). Suppose that Assumption 1 holds
with α ∈ (0, 1]. Assume the step size sequence satisfies ηt ≤ 1

Aκ2
, ηt+1 ≤ ηt for all t ∈ N

and
∑∞

t=1 η
2
t < ∞. Then, there exists a constant C̃ independent of T (explicitly given in

the proof) such that for any δ ∈ (0, 1) the following inequality holds with probability at least
1− δ

T∑
t=1

ηt
[
E(ft)− E(fH)

]
≤ C̃ log

3
2

2T

δ
and E(f̄ηT )− E(fH) ≤

C̃ log
3
2

2T
δ∑T

t=1 ηt
. (2.5)

Remark 8 For the step size sequence ηt = η1t
−θ, θ > 1

2 , Theorem 7 implies that E(f̄ηT ) −
E(fH) = O

(
T θ−1 log

3
2
T
δ

)
with probability at least 1−δ. If we consider ηt = η1

(
t logβ(et)

)− 1
2

with β > 1, then with probability 1− δ we have E(f̄ηT )− E(fH) = O
(
T−

1
2 log

3+β
2

T
δ

)
.

A key feature of Theorem 7 distinguishing it from the existing results is that it avoids
boundedness assumptions on the iterates, which are always imposed in the literature (Ne-
mirovski et al., 2009; Duchi et al., 2010). Indeed, an essential ingredient in proving Theorem
7 is to show that {ft}t∈N produced by (1.1) would fall into a bounded ball of HK (up to
logarithmic factors) with high probability, as shown in the following proposition.

Proposition 9 Suppose assumptions in Theorem 7 hold. Then, there exists a constant
C̄ ≥ 1 independent of T (explicitly given in the proof) such that for any δ ∈ (0, 1) the
following inequality holds with probability at least 1− δ

max
1≤t≤T

‖ft − fH‖2 ≤ C̄ log
T

δ
.
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A key ingredient to prove Proposition 9 is to establish the following one-step progress
inequality in terms of the RKHS distances (see (4.37))

‖ft+1 − fH‖2 ≤ ‖ft − fH‖2 + Cη2
t + 2ηt

(
E(fH)− E(ft)

)
+ ξt,

where C is a constant and {ξt}t∈N is a Martingale difference sequence. Our novelty in
applying a Bernstein-type inequality to control the martingale

∑T
t=1 ξt is to show that the

associated variances can be cancelled out by the negative term 2
∑T

t=1 ηt
(
E(fH)−E(ft)

)
(see

(4.38) and the last inequality of Proposition 23). Although Theorem 7 only considers the
behavior of the weighted average f̄ηT of iterates, it is possible to establish similar convergence

rates for the uniform average of iterates f̄T := 1
T

∑T
t=1 ft (Proposition 24).

Theorem 10 establishes a general high-probability bound for the excess generalization
error of the last iterate in terms of the step size sequence.

Theorem 10 Suppose that the assumptions in Theorem 7 hold. Then, there exists a con-
stant C̃ ′ independent of T (explicitly given in the proof) such that for any δ ∈ (0, 1) the
following inequality holds with probability at least 1− δ

E(fT+1)− E(fH) ≤ C̃ ′max
{[ T∑

t=bT
2
c

ηt
]−1

, ηbT
2
c,

T∑
t=bT

2
c

η1+α
t

}
log2 3T

δ
, (2.6)

where bT2 c denotes the largest integer not greater than T
2 .

To establish high-probability error bounds for the last iterate of online gradient descent
algorithm is an interesting problem which is not well studied, to our best knowledge, in the
general convex setting. The key ingredient in our analysis is the following one-step progress
inequality in terms of generalization errors (see (4.47))

Ât+1 ≤ Ât − ηt‖∇E(ft)‖2 + ξ̄t + Cη1+α
t ,

where C is a constant and {ξ̄t} is a martingale difference sequence. A key observation of our
analysis is that the variance of the martingale

∑T
t=1 ξ̄t can be cancelled out by the negative

term −
∑T

t=1 ηt‖∇E(ft)‖2 in the above one-step progress inequality (see (4.48) and (4.52)),
paving the way for the application of a Bernstein-type inequality for martingales.

We can derive explicit convergence rates in Corollary 11 by considering polynomially
decaying step sizes in Theorem 10.

Corollary 11 Let {ft}t∈N be the sequence given by (1.1) with ηt = η1t
−θ, θ ∈ (1

2 , 1) and
η1 ≤ 1

Aκ2
If Assumption 1 holds and δ ∈ (0, 1), then the following inequality holds with

probability 1− δ

E(fT+1)− E(fH) = O
(
Tmax

{
θ−1,1−(1+α)θ

}
log2 T

δ

)
.

If we choose θ = 2
2+α , then with probability at least 1 − δ we derive E(fT+1) − E(fH) =

O
(
T−

α
2+α log2 T

δ

)
.
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Remark 12 It should be mentioned that, unlike Theorem 7, the convergence rates in Corol-
lary 11 depend on the smoothness parameter α and are not able to attain the minimax op-
timal convergence rate O(T−

1
2 ) (Agarwal et al., 2009). Indeed, for smooth loss functions,

Corollary 11 establishes the convergence rate O
(
T−

1
3 log2 T

δ

)
with high probability, which

matches the bounds in-expectation AT = O(T−
1
3 ) up to logarithmic factors established in

Moulines and Bach (2011); Ying and Zhou (2017). It remains a challenging problem to
further improve the high-probability bounds for ÂT .

3. Discussions

In this section, we discuss related work on convergence of online/stochastic gradient descent
algorithms from three viewpoints: convergence in expectation, almost sure convergence and
convergence rates with high probability.

3.1 Related Work on Convergence in Expectation

Most studies of online gradient descent algorithms focus on convergence in expectation
(Zhang, 2004; Ying and Zhou, 2006; Duchi and Singer, 2009; Shamir and Zhang, 2013; Lin

et al., 2016; Hardt et al., 2016; Ying and Zhou, 2017). Convergence rates O(T−
1
2 ) were

established for some averaged iterates produced by (1.1) in a parametric setting with the
linear kernel Kx = x (Zhang, 2004). These results were extended to online gradient descent
algorithms in RKHSs with the specific least squares loss function (Ying and Pontil, 2008;
Dieuleveut and Bach, 2016; Guo and Shi, 2017), and online mirror descent algorithms per-
forming updates in Banach spaces (Duchi et al., 2010). Under boundedness assumptions on

the iterates and (sub)gradients, the convergence rate O(T−
1
2 log T ) was established for the

expected excess generalization error of the last iterate (Shamir and Zhang, 2013). Recently,
a general condition on the step sizes as (2.3) was established for the convergence of the algo-
rithm (1.1), in the sense limt→∞At = 0, with loss functions satisfying Assumption 1 (Ying
and Zhou, 2017). This sufficient condition is stricter than our condition (2.2). To see this
clearly, we consider the polynomially decaying step sizes ηt = η1t

−θ, for which the condition
(2.3) requires θ ∈ ( 1

1+α , 1] while our condition (2.2) requires θ ∈ ( 1
2+α , 1]. Furthermore, our

discussion also implies a necessary condition for the convergence in expectation.

Implemented in either a parametric or a nonparametric setting, regularized online learn-
ing algorithms have also received considerable attention (Kivinen et al., 2004; Smale and
Yao, 2006; Ying and Zhou, 2006; Smale and Zhou, 2009), which differ from (1.1) by intro-
ducing a regularization term to avoid overfitting. This algorithm updates iterates as follows

ft+1 = (1− ληt)ft − ηtφ′(yt, ft(xt))Kxt , (3.1)

where λ > 0 is a regularization parameter and the term λft + φ′(yt, ft(xt))Kxt is used
as an unbiased estimator of the gradient for the regularized generalization error Eλ(f) :=
E(f) + λ

2‖f‖
2 at f = ft. Convergence rates in expectation can be stated for either the

excess regularized generalization error Eλ(fT ) − Eλ(fλ) (Shamir and Zhang, 2013) or the
RKHS distance ‖fT − fλ‖ (Smale and Yao, 2006; Ying and Zhou, 2006; Yao, 2010), where
fλ = arg minf∈HK Eλ(f) is the minimizer of the regularized generalization error. When the
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loss function is smooth, a sufficient and necessary condition as

lim
t→∞

ηt = 0 and
∞∑
t=1

ηt =∞ (3.2)

was recently established for the convergence of {E[‖ft− fλ‖2]}t∈N to zero in the parametric
case (Lei and Zhou, 2017). A disadvantage of the regularization scheme (3.1) is that it
requires to tune two sequences of hyper-parameters: a regularization parameter and the
step sizes. As a comparison, an implicit regularization can be attained in the unregularized
scheme (1.1) by tuning only the step sizes.

3.2 Related Work on Almost Sure Convergence

Existing almost sure convergence of online learning algorithm is mainly stated for the RKHS
distances, which requires to impose some type of strong convexity assumption on the ob-
jective function E(f). In the parametric setting with the learning scheme (1.1), a sufficient
condition as

∞∑
t=1

ηt =∞ and

∞∑
t=1

η2
t <∞

was established for the almost sure convergence of ‖ft − fH‖2 if the objective function
attains a unique minimizer and satisfies (Bottou, 1998)

inf
‖f−fH‖2>ε

〈f − fH ,∇E(f)〉 > 0, ∀ε > 0,

EZ
[
‖φ′(Y, f(X))KX‖2

]
≤ Ã+ B̃‖f − fH‖2, ∀f ∈ HK ,

where Ã and B̃ are two constants. This result was extended to the online mirror descent
setting under some convexity assumption on the objective function measured by Bregman
distances induced by the associated mirror map (Lei and Zhou, 2017). For polynomially
decaying step sizes ηt = η1t

−θ with θ ∈ (0, 1), almost sure convergence of ‖ft − fλ‖ was
shown for regularized online learning algorithms (3.1) specified to the least squares loss
function (Yao, 2010). The analysis in Yao (2010) roots its foundation on the martingale
decompositions of the reminders ft − fλ, which only holds in the least squares regulariza-
tion setting. Almost sure convergence was recently studied for the randomized Kaczmarz
algorithm (Lin and Zhou, 2015), which is an instantiation of (1.1) with φ(y, a) = 1

2(y− a)2

and Kx = x. The analysis there heavily depends on a restricted strong convexity of the
objective function in a linear subspace where the learning takes place, which can not apply
to general loss functions. As compared to the above mentioned results, our almost sure
convergence is stated for the excess generalization errors with general loss functions and
requires no assumptions on the strong convexity of the objective function E(f).

3.3 Related Work on Convergence Rates with High Probability

In this section, we survey related work on convergence rates with high probability. We
divide our discussions into two parts according to the convexity of the objective function.

As far as we know, all existing high-probability convergence rates of online gradient
descent algorithms with general convex functions focus on some average of iterates (here we

8



Convergence of Unregularized Online Learning Algorithms

are not interested in probabilistic bounds with a polynomial dependence on 1/δ). The fol-
lowing online projected gradient descent algorithm with Kx = x was studied in Nemirovski
et al. (2009); Duchi et al. (2010)

ft+1 = Proj
H̃

[
ft − ηtφ′(yt, ft(xt))Kxt

]
, (3.3)

where H̃ is a compact subset of HK and Proj
H̃

(f) = arg min
f̃∈H̃ ‖f − f̃‖ is the projection

of f onto H̃. Under the boundedness assumption

E
[

exp
[
‖φ′(y, f(x))Kx‖2/G2

]]
≤ exp(1) ∀f ∈ H̃,

it was shown that the weighted average f̄ηT =
∑T
t=1 ηtft∑T
t=1 ηt

of iterates produced by (3.3) with a

constant step size satisfies the following inequality with probability 1− δ

E(f̄ηT )− E(fH) = O
(
GDT−

1
2 log δ−1

)
,

where D = sup
f,f̃∈H̃ ‖f−f̃‖ is the diameter of the subspace H̃. Under a stronger assumption

‖φ′(y, f(x))Kx‖ ≤ G for all (x, y) ∈ Z, f ∈ H̃, the uniform average f̄T = 1
T

∑T
t=1 ft

of iterates produced by (3.3) with step sizes ηt = η1t
− 1

2 was shown to enjoy the bound

E(f̄T ) − E(fH) = O(DGT−
1
2 log

1
2

1
δ ) with probability at least 1 − δ. In comparison with

these results, the convergence rates in Theorem 7 are derived without the projection step
and any boundedness assumption on the gradients. Indeed, most of the efforts in proving
Theorem 7 is to show ‖ft−fH‖2 = O(log T

δ ) with probability at least 1−δ. It is implied that
the possibly computationally expensive projection step can be removed without harming
the behavior of the online gradient descent algorithms. Furthermore, Theorem 10 gives, to
our best knowledge, the first high-probability bounds for the last iterate of online gradient
descent algorithms in the general convex setting. A framework to transfer regret bounds
of online learning algorithms to high-probability bounds for the uniform average of iterates
was established by Cesa-Bianchi et al. (2004).

Now we review some high-probability studies for online gradient descent algorithms in
the strongly convex setting, for which some results for the last iterate can be found in the
literature. For the online regularized algorithm (3.1) with the least squares loss function
and ηt = η1t

−θ, θ ∈ [0, 1), the following inequality was derived with probability at least
1− δ (Yao, 2010)

‖fT − fλ‖2 = O
(
λ−2+ 1

1−θT−θ log
1

δ

)
.

The analysis in Yao (2010) is based on an integral operator approach, which can not be ex-
tended to general loss functions. Under almost sure boundedness assumption ‖(φ′(yt, ft(xt))+
λ)Kxt‖ ≤ G for all t ∈ N, the following improved bound for the last iterate of (3.1) with
general loss functions and step sizes ηt = η1(tλ)−1 was established with probability at least
1− δ (Rakhlin et al., 2012)

‖fT − fλ‖2 = O
(
G2λ−2T−1 log

log T

δ

)
. (3.4)

9
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Although this bound enjoys a tight dependence on T , its dependence on the regularization
parameter λ is suboptimal. To make a clear comparison between this result and ours, we
consider here the specific least squares loss function and assume that the regression function
fρ(x) := E[Y |X = x] belongs to HK . In this case, Lemma 13 translates (3.4) to the following
high-probability bounds on excess generalization errors

E(fT ) +
λ

2
‖fT ‖2 = E(fλ) +

λ

2
‖fλ‖2 +O

(
G2λ−2T−1 log

log T

δ

)
. (3.5)

The assumption fρ ∈ HK implies D(λ) := E(fλ) − E(fρ) + λ
2‖fλ‖

2 = O(λ) (Cucker and
Zhou, 2007) and therefore (3.5) reads as

E(fT )− E(fρ) =
(
E(fT )− E(fλ)− λ

2
‖fλ‖2

)
+
(
E(fλ)− E(fρ) +

λ

2
‖fλ‖2

)
= O

(
G2λ−2T−1 log

log T

δ

)
+O(λ).

If we choose λ = c
(
G2T−1 log log T

δ

) 1
3 for a constant c > 0, then the above inequality trans-

lates to E(fT )−E(fρ) = O
((
G2T−1 log log T

δ

) 1
3

)
, which matches our convergence rates up to

logarithmic factors. Note that the regularization parameter λ needs to be tuned according
to T to balance the bias and variance in (3.5), which may not be accessible in practical
implementations. To deal with this issue, a class of fully online regularized algorithms
was proposed and investigated by allowing the regularization parameters to vary along the
learning process (Ye and Zhou, 2007; Tarres and Yao, 2014). As a comparison, without a
regularization parameter to tune, the unregularized online learning algorithm (1.1) achieves
a bias-variance balance by tuning only the step sizes. Furthermore, the convergence rates
(3.4) require to impose the non-intuitive boundedness assumptions on the gradients en-
countered during the iterations, which may be violated in practical implementations. This
boundedness assumption is removed in our analysis.

4. Proofs

In this section, we present the proofs for the results given in Section 2. Our discussions
require to use a property established in the following lemma on functions with (α,L)-Hölder
continuous gradients. This lemma is motivated by similar results in the literature (see, e.g.,
Ying and Zhou, 2017) and we present the proof in Section A for completeness.

Lemma 13 Let H be a Hilbert space associated with the inner product 〈·, ·〉. Let G : H → R
be a convex and differentiable functional satisfying

‖∇G(f)−∇G(f̃)‖ ≤ L‖f − f̃‖α, ∀f, f̃ ∈ H,

where L > 0, α ∈ (0, 1],∇ is the gradient operator and ‖ · ‖ is the norm induced by the inner
product. Then, the following inequality holds for any f, f̃ ∈ H

α‖∇G(f)−∇G(f̃)‖
1+α
α

(1 + α)L
1
α

≤ G(f)−
[
G(f̃) + 〈f − f̃ ,∇G(f̃)〉

]
≤ L‖f − f̃‖1+α

1 + α
. (4.1)

10
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With Lemma 13, we can derive the following lemma on gradients of loss functions at
iterates of the algorithm (1.1). Its power consists in bounding the gradients for the possibly
unbounded iterates {ft}t∈N by the gradients for fH and the excess generalization errors,
the first of which can be considered as a constant while the second of which are exactly the
terms we are interested in. For a random variable z, we use Ez[·] to denote the conditional
expectation with respect to z.

Lemma 14 Suppose Assumption 1 holds and β ∈ (0, 1]. Then,

Ezt
[
|φ′(yt, ft(xt))|1+β

]
≤ 2βL

1
α (1 + β)

[
E(ft)− E(fH)

]
+

2β(1− αβ)

1 + α
+ 2βEzt

[
|φ′(yt, fH(xt))|1+β

]
, ∀t ∈ N. (4.2)

Proof With the elementary inequality |u + v|1+β ≤ 2β[|u|1+β + |v|1+β] and the Young’s
inequality

uv ≤ p−1|u|p + q−1|v|q, ∀u, v ∈ R, p−1 + q−1 = 1, p ≥ 0, (4.3)

the term |φ′(yt, ft(xt))|1+β can be controlled by

|φ′(yt, ft(xt))|1+β ≤
[
|φ′(yt, ft(xt))− φ′(yt, fH(xt))|+ |φ′(yt, fH(xt))|

]1+β

≤ 2β|φ′(yt, ft(xt))− φ′(yt, fH(xt))|1+β + 2β|φ′(yt, fH(xt))|1+β

≤ 2βα(1 + β)

1 + α
|φ′(yt, ft(xt))− φ′(yt, fH(xt))|

1+α
α +

2β(1− αβ)

1 + α
+ 2β|φ′(yt, fH(xt))|1+β.

(4.4)

It follows from the first inequality of (4.1) that

α

1 + α
|φ′(yt, ft(xt))− φ′(yt, fH(xt))|

1+α
α ≤

L
1
α

[
φ(yt, ft(xt))− φ(yt, fH(xt))− φ′(yt, fH(xt))(ft(xt)− fH(xt))

]
.

Plugging the above inequality into (4.4) and taking expectations with respect to zt (note ft
is independent of zt), we get

Ezt
[
|φ′(yt, ft(xt))|1+β

]
≤ 2βL

1
α (1 + β)

[
E(ft)− E(fH)−

〈
ft − fH ,Ezt

[
φ′(yt, fH(xt))Kxt

]〉]
+

2β(1− αβ)

1 + α
+ 2βEzt

[
|φ′(yt, fH(xt))|1+β

]
= 2βL

1
α (1 + β)

[
E(ft)− E(fH)

]
+

2β(1− αβ)

1 + α
+ 2βEzt

[
|φ′(yt, fH(xt))|1+β

]
.

Here the last identity holds since

∇E(fH) = Ez
[
φ′(y, fH(x))Kx

]
= 0.

The proof is complete.

11
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4.1 Proofs for Convergence in Expectation

Before proving Theorem 1 and Theorem 2 on convergence in expectation, we first present
some preparatory results. Our first preliminary result is a weak result on convergence in
expectation under a weak condition on the step size sequence (4.5). Eq. (4.6) implies the
existence of a sub-index sequence {it}t∈N satisfying limt→∞Ait = 0, while (4.7) shows the
convergence of a weighted average of the expected excess generalization errors. This result is
derived based on a one-step progress inequality in terms of distances in RKHSs (see (4.10)).

Proposition 15 Let {ft}t∈N be the sequence given by (1.1) and suppose Assumption 1
holds. If

lim
t→∞

ηt = 0 and

∞∑
t=1

ηt =∞, (4.5)

then

lim inf
t→∞

E[E(ft)− E(fH)] = 0 (4.6)

and

lim
T→∞

[ T∑
t=1

ηt
]−1

T∑
t=1

ηtE[E(ft)− E(fH)] = 0. (4.7)

Lemma 16 Let {ηt}t∈N be a sequence of positive numbers. If limt→∞ ηt = 0 and
∑∞

t=1 ηt =

∞, then limt→∞
[∑t

k=1 ηk
]−1∑t

k=1 η
2
k = 0.

Proof of Proposition 15 According to the iteration strategy (1.1), we derive

‖ft+1 − fH‖2 = ‖ft − ηtφ′(yt, ft(xt))Kxt − fH‖2

≤ ‖ft − fH‖2 + η2
t |φ′(yt, ft(xt))|2κ2 − 2ηt〈ft − fH , φ′(yt, ft(xt))Kxt〉 (4.8)

≤ ‖ft − fH‖2 + η2
t |φ′(yt, ft(xt))|2κ2 + 2ηt

[
φ(yt, fH(xt))− φ(yt, ft(xt))

]
.
(4.9)

Note that ft is independent of zt. Taking expectations with respect to zt on both sides and
using (4.2) with β = 1, we derive

Ezt
[
‖ft+1 − fH‖2

]
≤ ‖ft − fH‖2 + η2

t κ
2Ezt

[
|φ′(yt, ft(xt))|2

]
+ 2ηt[E(fH)− E(ft)]

≤ ‖ft − fH‖2 + 4η2
t κ

2L
1
α [E(ft)− E(fH)] +

2(1− α)η2
t κ

2

1 + α
+ 2η2

t κ
2Ezt

[
|φ′(yt, fH(xt))|2

]
+ 2ηt[E(fH)− E(ft)]

= ‖ft − fH‖2 + 2ηt
(
1− 2ηtκ

2L
1
α
)
[E(fH)− E(ft)] + 2η2

t κ
2
(
Ezt
[
|φ′(yt, fH(xt))|2

]
+

1− α
1 + α

)
.

Since limt→∞ ηt = 0, we can find an integer t1 ∈ N such that ηt ≤ 1

4κ2L
1
α
, ∀t ≥ t1. This

together with E(fH) ≤ E(ft) implies

ηt[E(ft)− E(fH)] ≤ ‖ft − fH‖2 − Ezt
[
‖ft+1 − fH‖2

]
+ γη2

t , ∀t ≥ t1, (4.10)

12



Convergence of Unregularized Online Learning Algorithms

where we introduce γ = 2κ2
(
Ezt
[
|φ′(yt, fH(xt))|2

]
+ 1−α

1+α

)
. Taking expectations followed

with a summation from t = t1 to t = T gives

T∑
t=t1

ηtAt ≤ E[‖ft1 − fH‖2] + γ
T∑
t=t1

η2
t .

It then follows that

lim
T→∞

[ T∑
t=1

ηt
]−1

T∑
t=1

ηtAt = lim
T→∞

[ T∑
t=1

ηt
]−1

t1−1∑
t=1

ηtAt + lim
T→∞

[ T∑
t=1

ηt
]−1

T∑
t=t1

ηtAt

≤ lim
T→∞

[ T∑
t=1

ηt
]−1
[
E[‖ft1 − fH‖2] + γ

T∑
t=t1

η2
t

]
= 0,

where we have used limt→∞
[∑t

k=1 ηk
]−1∑t

k=1 η
2
k = 0 established in Lemma 16. This

establishes (4.7).

We now prove (4.6) by contradiction strategy. Suppose to the contrary that lim inf
t→∞

At =

ã > 0. Then, there exists t̃ ∈ N such that At ≥ 2−1ã,∀t ≥ t̃, from which we derive from
(4.7) that

0 = lim
T→∞

∑T
t=1 ηtAt∑T
t=1 ηt

≥ ã

2
lim
T→∞

∑T
t=t̃+1 ηt∑T
t=1 ηt

=
ã

2
− ã

2
lim
T→∞

∑t̃
t=1 ηt∑T
t=1 ηt

=
ã

2
.

This leads to a contradiction. Therefore, lim inft→∞At = 0 and the proof is complete.

As our second preliminary result, Lemma 17 establishes an upper bound on E[‖ft−fH‖22]
in terms of the step size sequence, as well as a lower bound on E[‖∇E(ft)‖2] in terms of the
step size sequence and the expected excess generalization errors.

Lemma 17 Let {ft}t∈N be the sequence given by (1.1). If Assumption 1 holds and limt→∞ ηt =
0, then there exist constants Ĉ, γ > 0 independent of t such that the following inequalities
hold for any t ∈ N

E[‖ft − fH‖2] ≤ Ĉ + γ
t∑

k=1

η2
k (4.11)

and

E[‖∇E(ft)‖2] ≥
(
E[E(ft)− E(fH)]

)2
Ĉ + γ

∑t
k=1 η

2
k

. (4.12)

Proof Since E(ft) ≥ E(fH) for all t ∈ N, (4.10) implies

E[‖ft+1 − fH‖2] ≤ E[‖ft − fH‖2] + η2
t γ, ∀t ≥ t1,

13
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where γ and t1 are defined in the proof of Proposition 15. Taking a summation of the above
inequality from t = t1 to t = T shows

E[‖fT+1 − fH‖2] ≤ E[‖ft1 − fH‖2] + γ

T∑
t=t1

η2
t ≤ Ĉ + γ

T∑
t=1

η2
t ,

where we introduce Ĉ = E[‖ft1 − fH‖2]. This establishes (4.11).
We now turn to (4.12). According to the convexity of E and Schwartz inequality, we get

E[E(ft)]− E(fH) ≤ E
[〈
∇E(ft), ft − fH

〉]
≤ E[‖∇E(ft)‖‖ft − fH‖]

≤
(
E
[
‖∇E(ft)‖2

]) 1
2
(
E
[
‖ft − fH‖2

]) 1
2 .

The above inequality together with (4.11) gives

E[
∥∥∇E(ft)

∥∥2
] ≥

(
E
[
E(ft)− E(fH)

])2
E[‖ft − fH‖2]

≥
(
E
[
E(ft)− E(fH)

])2
Ĉ + γ

∑t
k=1 η

2
k

.

This establishes (4.12) and completes the proof.

Remark 18 Eq. (4.11) was derived in Ying and Zhou (2017) under an additional assump-
tion

∑∞
k=1 η

1+α
k <∞, which is removed in Lemma 17. For step sizes of the form ηt = η1t

−θ

with 1
2 < θ ≤ 1, it was shown E[‖ft − fH‖2] = O

(
t1−θ

(
E(fH)− inff E(f)

))
(Lin and Zhou,

2018). As compared with the results in Ying and Zhou (2017); Lin and Zhou (2018), our
discussion implies boundedness of E[‖ft‖2] under a milder condition

∑∞
k=1 η

2
k <∞.

We are now in a position to prove Theorem 1 for the convergence in expectation. Let
ε > 0 be an arbitrary small number. Our idea is to use Proposition 15, based on one-
step progress in terms of the distances in RKHSs, to show that {At}t∈N can be smaller
than ε infinitely often. Once At̃ ≤ ε for a sufficiently large t̃, we can use the assumption
limt→∞ η

α
t

∑t
k=1 η

2
k = 0 and the one-step progress inequality (4.15) in terms of generalization

errors to show At ≤ ε for any t ≥ t̃.
Proof of Theorem 1 Since φ′(y, ·) is (α,L)-Hölder continuous, we can apply the second
inequality of (4.1) to show that

φ(y, ft+1(x)) ≤ φ(y, ft(x)) + (ft+1(x)− ft(x))φ′(y, ft(x)) +
L

1 + α
|ft+1(x)− ft(x)|1+α.

According to the reproducing property f(x) = 〈f,Kx〉, ∀f ∈ H and the iteration scheme
(1.1), we know

φ(y, ft+1(x)) ≤ φ(y, ft(x)) + 〈ft+1 − ft, φ′(y, ft(x))Kx〉+
L

1 + α
|〈ft+1 − ft,Kx〉|1+α

≤ φ(y, ft(x))− ηt〈φ′(yt, ft(xt))Kxt , φ
′(y, ft(x))Kx〉+

Lκ1+α

1 + α
‖ft+1 − ft‖1+α

≤ φ(y, ft(x))− ηt〈φ′(yt, ft(xt))Kxt , φ
′(y, ft(x))Kx〉+

Lκ2(1+α)η1+α
t

1 + α
|φ′(yt, ft(xt))|1+α.

(4.13)
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Putting (4.2) with β = α back into (4.13) followed with a conditional expectation with
respect to zt and z yields

Ezt [E(ft+1)] = Ezt,z[φ(y, ft+1(x))] ≤ Ez[φ(y, ft(x))]− ηt
〈
Ezt [φ′(yt, ft(xt))Kxt ],Ez[φ′(y, ft(x))Kx]

〉
+
Lκ2(1+α)η1+α

t

1 + α

[
2αL

1
α (1 + α)(E(ft)− E(fH)) + 2α(1− α) + 2αEz[|φ′(y, fH(x))|1+α]

]
≤ E(ft)−ηt‖∇E(ft)‖2+

Lκ2(1+α)2αη1+α
t

[
L

1
α (1+α)(E(ft)−E(fH))+(1−α)+Ez[|φ′(y, fH(x))|1+α]

]
1+α

.

Subtracting E(fH) from both sides of the above inequality gives

Ezt [E(ft+1)]− E(fH) ≤
[
1 + L1+ 1

ακ2(1+α)2αη1+α
t

]
(E(ft)− E(fH))− ηt‖∇E(ft)‖2

+
Lκ2(1+α)2αη1+α

t

1 + α

[
(1− α) + Ez[|φ′(y, fH(x))|1+α]

]
. (4.14)

Taking expectations over both sides, the above inequality can be written as

At+1 ≤ (1 + aη1+α
t )At + bη1+α

t − ηtE[‖∇E(ft)‖2], (4.15)

where we introduce the notations

a = L1+ 1
ακ2(1+α)2α and b =

Lκ2(1+α)2α

1 + α

[
(1− α) + Ez[|φ′(y, fH(x))|1+α]

]
. (4.16)

Plugging (4.12) into the above inequality gives

At+1 ≤ (1 + aη1+α
t )At + bη1+α

t − ηtA
2
t

Ĉ + γ
∑t

k=1 η
2
k

, (4.17)

where Ĉ and γ are defined in the proof of Lemma 17. The assumption limt→∞ η
α
t

∑t
k=1 η

2
k =

0 implies limt→∞ ηt = 0 and therefore the assumptions of Proposition 15 hold. Let ε ∈ (0, 1)
be an arbitrary number. According to lim inft→∞At = 0 established in Proposition 15, we
can find a t̃ ∈ N (t̃ can be sufficiently large) such that At̃ ≤ ε and

ηαt
(
Ĉ + γ

t∑
k=1

η2
k

)
≤ ε2

4(a+ b)
, η1+α

t ≤ ε

2(a+ b)
∀t ≥ t̃. (4.18)

We now prove by induction that At ≤ ε for all t ≥ t̃. It suffices to show that At+1 ≤ ε under
the assumption At ≤ ε and t ≥ t̃. Since At ≤ 1, we derive from (4.17) that

At+1 ≤ At + (a+ b)η1+α
t − ηtA

2
t

Ĉ + γ
∑t

k=1 η
2
k

.

We now consider two cases. If A2
t ≥ (a+b)ηαt

(
Ĉ+γ

∑t
k=1 η

2
k

)
, then we know At+1 ≤ At ≤ ε.

Otherwise, we derive from (4.18) that

At+1 ≤ At + (a+ b)η1+α
t ≤

√√√√(a+ b)ηαt
(
Ĉ + γ

t∑
k=1

η2
k

)
+ (a+ b)η1+α

t ≤ ε.
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Putting the above two cases together we derive At+1 ≤ ε. That is, At ≤ ε for all t ≥ t̃.
Since ε ∈ (0, 1) is arbitrarily chosen, we get limt→∞At = 0.

The necessary condition in Theorem 2 is established by applying the co-coercivity given
in Lemma 13 to bound E(ft+1) in terms of E(ft) from below.
Proof of Theorem 2 Since φ′(y, ·) is (1, L)-Hölder continuous for any y ∈ Y, we have

‖∇E(f)−∇E(f̃)‖ =
∥∥E[φ′(y, f(x))Kx − φ′(y, f̃(x))Kx]

∥∥ ≤ E
[
|φ′(y, f(x))− φ′(y, f̃(x))|‖Kx‖

]
≤ LE

[
|〈f − f̃ ,Kx〉|‖Kx‖

]
≤ Lκ2‖f − f̃‖. (4.19)

That is, ∇E is (1, Lκ2)-Hölder continuous. Lemma 13 with α = 1 and ∇E(fH) = 0 then
yield the following inequality

E(ft) ≥ E(fH) + 〈ft − fH ,∇E(fH)〉+
‖∇E(ft)−∇E(fH)‖2

2Lκ2
= E(fH) +

‖∇E(ft)‖2

2Lκ2
. (4.20)

It follows from the convexity of E and (1.1) that

E(ft+1) ≥ E(ft) + 〈∇E(ft), ft+1 − ft〉 = E(ft)− ηt
〈
∇E(ft), φ

′(yt, ft(xt))Kxt

〉
.

Taking expectations over both sides and using (4.20), we derive the following inequality for
all t ∈ N

E[E(ft+1)] ≥ E[E(ft)]− ηtE[‖∇E(ft)‖2] ≥ E[E(ft)]− 2Lκ2ηtE[E(ft)− E(fH)].

Hence,
At+1 ≥

(
1− 2Lκ2ηt

)
At, ∀t ∈ N.

The assumption ηt ≤ 1/(6Lκ2) and the elementary inequality 1 − η ≥ exp(−2η),∀η ∈
(0, 1/3) (Lin and Zhou, 2015) then show

At+1 ≥ exp
(
− 4Lκ2ηt

)
At ≥

t∏
k=1

exp
(
− 4Lκ2ηk

)
A1 = exp

(
− 4Lκ2

t∑
k=1

ηk

)
A1,

which, together with the condition limt→∞At = 0 and A1 6= 0, then establishes the neces-
sary condition

∑∞
t=1 ηt =∞.

4.2 Proofs for Almost Sure Convergence

We use the following Doob’s martingale convergence theorem (see, e.g., Doob, 1994, page
195) to prove Theorem 4 on almost sure convergence. Specifically, we will use the one-step
progress inequality in terms of generalization errors to construct a supermartingale, whose
almost sure convergence would imply the almost sure convergence of {Ât}t∈N.

Lemma 19 Let {X̃t}t∈N be a sequence of non-negative random variables with E[X̃1] < ∞
and let {Ft}t∈N be a nested sequence of sets of random variables with Ft ⊂ Ft+1 for all
t ∈ N. If E[X̃t+1|Ft] ≤ X̃t for every t ∈ N, then X̃t converges to a nonnegative random
variable X̃ almost surely. Furthermore, X̃ <∞ almost surely.
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Proof of Theorem 4 Eq. (4.14) gives

Ezt [Ât+1] ≤ (1 + aη1+α
t )Ât + bη1+α

t , ∀t ∈ N, (4.21)

with a and b are defined in the proof of Theorem 1. Denote c =
∏∞
k=1(1 + aη1+α

k ), which,
according to the elementary inequality 1 + τ ≤ exp(τ), τ ≥ 0 and (2.3), satisfies

c ≤
∞∏
k=1

exp(aη1+α
k ) = exp

(
a
∞∑
k=1

η1+α
k

)
<∞.

Multiplying both sides of (4.21) by
∏∞
k=t+1(1 + aη1+α

k ), we derive

∞∏
k=t+1

(1 + aη1+α
k )Ezt

[
Ât+1

]
≤
∞∏
k=t

(1 + aη1+α
k )Ât + bη1+α

t

∞∏
k=t+1

(1 + aη1+α
k )

≤
∞∏
k=t

(1 + aη1+α
k )Ât + bcη1+α

t . (4.22)

Introduce the stochastic process

X̂t =

∞∏
k=t

(1 + aη1+α
k )Ât + bc

∞∑
k=t

η1+α
k , t ∈ N (4.23)

According to (2.3), we know E[X̂1] < ∞. Eq. (4.22) implies Ezt [X̂t+1] ≤ X̂t for all
t ∈ N, that is, {X̂t}t∈N is a supermartingale taking non-negative values. Lemma 19 then
implies that limt→∞ X̂t = X̂ for a non-negative random variable X̂ almost surely. Let
Ω = {ω = {zt}t∈N} be the set for which {X̂t(ω)}t converges to X̂(ω) as t → ∞ and
X̂(ω) < ∞. Then, Pr{Ω} = 1, where Pr{Ω} denotes the probability with which the event
Ω happens. Let ω ∈ Ω and ε > 0. Since

∑∞
t=1 η

1+α
t <∞, we can find t̃ ∈ N such that

∞∑
t=t̃

η1+α
t <

ε

3bc
,

∞∏
k=t̃

(1 + aη1+α
k ) < 1 +

ε

3X̂(ω) + ε
and |X̂t(ω)− X̂(ω)| < ε

3
, ∀t ≥ t̃.

It then follows from (4.23) that

Ât(ω) ≤ X̂t(ω) ≤
(

1 +
ε

3X̂(ω) + ε

)
Ât(ω) +

ε

3
≤ Ât(ω) +

εX̂t(ε)

3X̂(ω) + ε
+
ε

3

≤ Ât(ω) +
ε
(
X̂(ω) + ε

3

)
3X̂(ε) + ε

+
ε

3
≤ Ât(ω) +

2ε

3
, ∀t ≥ t̃,

from which we derive

X̂(ω)− ε ≤ X̂t(ω)− 2ε

3
≤ Ât(ω) ≤ X̂(ω) + ε, ∀t ≥ t̃.

That is, limt→∞ Ât(ω) = X̂(ω) for any ω ∈ Ω, i.e., limt→∞ Ât = X̂ almost surely. Since∑∞
t=1 η

1+α
t <∞, we know

∑∞
t=1 η

2
t <∞ and limt→∞ ηt = 0. This further implies

lim
t→∞

ηαt

t∑
k=1

η2
k = 0

17
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and therefore the assumptions in Theorem 1 hold. Theorem 1 shows that limt→∞ E[Ât] = 0.
By Fatou’s lemma, we get

0 ≤ E[X̂] = E
[

lim
t→∞

Ât
]
≤ lim inf

t→∞
E[Ât] = 0,

which implies that E[X̂] = 0 and therefore X̂ = 0 almost surely since X̂ is non-negative.
Combining the above deductions together, we know that limt→∞ Ât = 0 almost surely.

Our proof of Theorem 6 is based on the following lemma which can be found in Lin and
Zhou (2015) as an easy consequence of the Borel-Cantelli Lemma.

Lemma 20 Let {ξt}t∈N be a sequence of non-negative random variables and {εt}t∈N be a
sequence of positive numbers satisfying limt→∞ εt = 0. If

∑∞
t=1 Pr{ξt > εt} < ∞, then ξt

converges to 0 almost surely.

Proof of Theorem 6 Introduce δt = t−2 for all t ∈ N. According to Corollary 11, there
exists a constant C̃1 such that

Pr
{
tmin{1−θ,(α+1)θ−1}−εÂt ≥ C̃1t

−ε log2 t

δt

}
≤ δt.

Since
∑∞

t=1 δt <∞ and limt→∞ t
−ε log2 t

δt
= 0, we can apply Lemma 20 here to show (2.4).

The proof is complete.

4.3 Proofs for Convergence Rates with High Probability

Our discussion on high-probability convergence rates roots its foundation on the follow-
ing concentration inequalities of martingales. Part (a) is the Azuma-Hoeffding inequality
for martingales with bounded differences (Hoeffding, 1963), while Part (b) is a Bernstein-
type inequality which exploits information on variances to derive improved concentration
inequalities for martingales (Zhang, 2005). A remarkable property of this Bernstein-type
inequality is that it involves a conditional variance which itself is a random variable.

Lemma 21 Let z1, . . . , zn be a sequence of random variables such that zk may depend on
the previous random variables z1, . . . , zk−1 for all k = 1, . . . , n. Consider a sequence of
functionals ξk(z1, . . . , zk), k = 1, . . . , n.

(a) Assume that |ξk−Ezk [ξk]| ≤ bk for each k. Let δ ∈ (0, 1). With probability at least 1− δ
we have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤
(

2
n∑
k=1

b2k log
1

δ

) 1
2
. (4.24)

(b) Assume that ξk − Ezk [ξk] ≤ b for each k. Let ρ > 0 and δ ∈ (0, 1). With probability at
least 1− δ we have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤
(eρ − ρ− 1)σ2

n

ρb
+
b log 1

δ

ρ
, (4.25)

where σ2
n =

∑n
k=1 Ezk(ξk − Ezkξk)2 is the conditional variance.
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Since φ′(y, ·) is (α,L)-Hölder continuous, convex and non-negative, Proposition 1 in
Ying and Zhou (2017) shows that φ(y, ·) satisfies the following self-bounding property

|φ′(y, s)|
1+α
α ≤ (1 + α)1+ 1

α

α
L

1
αφ(y, s), ∀y ∈ Y, s ∈ R.

The Young’s inequality (4.3) then implies

|φ′(y, s)|2 ≤ α−
2α
1+α (1 + α)2L

2
1+αφ(y, s)

2α
1+α

≤ α−
2α
1+αL

2
1+α (1 + α)

(
2αφ(y, s) + 1− α

)
= Aφ(y, s) +B, (4.26)

where
A = 2α

1−α
1+αL

2
1+α (1 + α) and B = α−

2α
1+αL

2
1+α (1− α2). (4.27)

Below we will use Part (b) of Lemma 21 to show almost boundedness of {ft}t∈N with
high probability (Proposition 9). To this aim, we first establish a crude bound on the
iterates {ft}t∈N in terms of the step size sequence.

Lemma 22 Let {ft}t∈N be the sequence given by (1.1). Assume ηt ≤ 1
Aκ2

for all t ∈ N.
Then, the following inequalities hold for all t ∈ N

‖ft+1 − fH‖2 ≤ C1

t∑
k=0

ηk and ‖ft+1‖2 ≤ C1

t∑
k=1

ηk, (4.28)

where we introduce for brevity η0 = 1 and

C1 = ‖fH‖22 +A−1B + 2 max
{

sup
y∈Y

φ(y, 0), sup
z∈Z

φ(y, fH(x))
}
. (4.29)

Furthermore, if ηt ≤ 1
Aκ2

and ηt+1 ≤ ηt for all t ∈ N, we have

t∑
k=1

η2
kφ(yk, fk(xk)) ≤ η1‖fH‖2 + C2

t∑
k=1

η2
k, (4.30)

where we introduce
C2 = 2 sup

z∈Z
φ(y, fH(x)) + η1κ

2B. (4.31)

Proof Plugging (4.26) into (4.9) gives

‖ft+1 − fH‖2 ≤ ‖ft − fH‖2 + η2
t κ

2[Aφ(yt, ft(xt)) +B] + 2ηt[φ(yt, fH(xt))− φ(yt, ft(xt))]

= ‖ft − fH‖2 + 2ηtφ(yt, fH(xt)) + η2
t κ

2B + ηt(Aηtκ
2 − 2)φ(yt, ft(xt)) (4.32)

≤ ‖ft − fH‖2 + 2ηtφ(yt, fH(xt)) + η2
t κ

2B ≤ ‖ft − fH‖2 + ηt
(
2φ(yt, fH(xt)) +A−1B

)
,

where the last two inequalities follow from the assumption ηt ≤ 1
Aκ2

. According to the
definitions of C1 in (4.29) and η0, it then follows that

‖ft+1 − fH‖2 = ‖fH‖2 +

t∑
k=1

[
‖fk+1 − fH‖2 − ‖fk − fH‖2

]
≤ C1

t∑
k=0

ηk.
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This establishes the first inequality in (4.28). We now prove the second inequality in (4.28).
Notice that (4.9) also holds if we replace fH with 0. This, together with (4.26) and ηt ≤ 1

Aκ2
,

gives

‖ft+1‖2 ≤ ‖ft‖2 + η2
t κ

2[Aφ(yt, ft(xt)) +B] + 2ηt[φ(yt, 0)− φ(yt, ft(xt))]

= ‖ft‖2 + 2ηtφ(yt, 0) + η2
t κ

2B + ηt(Aηtκ
2 − 2)φ(yt, ft(xt))

≤ ‖ft‖2 + 2ηtφ(yt, 0) + ηtA
−1B.

It is now clear

‖ft+1‖2 =

t∑
k=1

[
‖fk+1‖2 − ‖fk‖2

]
≤ C1

t∑
k=1

ηk.

We now show (4.30). Applying ηt ≤ 1
Aκ2

in (4.32) gives

ηtφ(yt, ft(xt)) ≤ ‖ft − fH‖2 − ‖ft+1 − fH‖2 + 2ηtφ(yt, fH(xt)) + η2
t κ

2B. (4.33)

Multiplying both sides of the above inequality by ηt and using ηt+1 ≤ ηt, we derive

η2
t φ(yt, ft(xt)) ≤ ηt

[
‖ft − fH‖2 − ‖ft+1 − fH‖2

]
+ 2η2

t φ(yt, fH(xt)) + η3
t κ

2B

≤ ηt‖ft − fH‖2 − ηt+1‖ft+1 − fH‖2 + 2η2
t φ(yt, fH(xt)) + η3

t κ
2B.

Taking a summation of the above inequality gives (4.30). The proof is complete.

Based on the above lemma, Proposition 23 gives a high-probability bound on ‖ft+1 −
fH‖2 in terms of

∑t
k=1 η

2
k‖fk−fH‖2. Proposition 23 is proved based on a one-step progress

inequality (4.37) in terms of the RKHS distances, where the involved martingale is con-
trolled by a Bernstein-type inequality with the dominant variance term cancelled out by
the negative term −2

∑t
k=1 ηkAk existing in the one-step progress inequality.

Proposition 23 Suppose assumptions in Theorem 7 hold. Let δ ∈ (0, 1) and Cη, C3, C4 be
constants defined by

Cη = sup
k∈N

ηk

k∑
j=0

ηj <∞, (4.34)

C3 = sup
zk∈Z

∥∥φ′(yk, fH(xk))Kxk − Ez[φ′(y, fH(x))Kx]
∥∥, C4 =

2(1− α)κ2

1 + α
+ 2κ2Ez

[
|φ′(y, fH(x))|2

]
.

(4.35)

Then, there exists a constant ρ1 (explicitly given in the proof and independent of t as well
as the step size sequence) such that the following inequality holds with probability at least
1− δ

‖ft+1 − fH‖2 ≤ (η1κ
2A+ 1)‖fH‖2 + (AC2 +B)κ2

t∑
k=1

η2
k +

C4
∑t

k=1

[
η2
k‖fH − fk‖2

]
2C1Cηκ2L

1
α

+

(
2C3C

1
2
1 Cη + 4L(C

1
2
1 κ)α+1Cη

)
log 1

δ

ρ1
. (4.36)
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Proof The assumption
∑∞

t=1 η
2
t < ∞ implies that Cη in (4.34) is well defined since

ηk
∑k

j=1 ηj ≤
∑k

j=1 η
2
j <∞. According to (4.8) and (4.26), we derive

‖fk+1−fH‖2 ≤ ‖fk−fH‖2+η2
kκ

2
(
Aφ(yk, fk(xk))+B

)
+2ηk〈fH−fk,Ezk [φ′(yk, fk(xk))Kxk ]

〉
+ 2ηk

〈
fH − fk, φ′(yk, fk(xk))Kxk − Ezk [φ′(yk, fk(xk))Kxk ]

〉
. (4.37)

Using the convexity of φ followed with a summation from k = 1 to t gives

‖ft+1 − fH‖2 ≤ ‖fH‖2 + κ2
t∑

k=1

η2
k

(
Aφ(yk, fk(xk)) +B

)
+ 2

t∑
k=1

ηk
[
E(fH)− E(fk)

]
+ 2

t∑
k=1

ηk
〈
fH − fk, φ′(yk, fk(xk))Kxk − Ezk

[
φ′(yk, fk(xk))Kxk

]〉
≤ (η1Aκ

2 + 1)‖fH‖2 + (AC2 +B)κ2
t∑

k=1

η2
k + 2

t∑
k=1

ηk
[
E(fH)− E(fk)

]
+ 2

t∑
k=1

ηk
〈
fH − fk, φ′(yk, fk(xk))Kxk − Ezk

[
φ′(yk, fk(xk))Kxk

]〉
, (4.38)

where the last inequality is due to (4.30). We now estimate the last term of the above
inequality with Lemma 21. To this aim, we need to control both the magnitudes and
variances for the martingale difference sequences.

Introduce a sequence of functionals ξk, k ∈ N as follows

ξk = ηk
〈
fH − fk, φ′(yk, fk(xk))Kxk − Ezk

[
φ′(yk, fk(xk))Kxk

]〉
.

It is clear∥∥φ′(yk, fk(xk))Kxk − Ezk [φ′(yk, fk(xk))Kxk ]
∥∥ ≤ ∥∥φ′(yk, fk(xk))Kxk − φ

′(yk, fH(xk))Kxk

∥∥
+
∥∥φ′(yk, fH(xk))Kxk − Ez[φ′(y, fH(x))Kx]

∥∥+ Ez[‖(φ′(y, fH(x))− φ′(y, fk(x)))Kx‖]
≤ sup

zk∈Z

∥∥φ′(yk, fH(xk))Kxk − Ez[φ′(y, fH(x))Kx]
∥∥+ 2Lκ sup

x∈X
|fk(x)− fH(x)|α,

where we have used the Jensen’s inequality in the first step. But

|fk(x)− fH(x)| = |〈fk − fH ,Kx〉| ≤ ‖fk − fH‖κ.

Combining the above two inequalities and using the definition of C3 in (4.35) give∥∥φ′(yk, fk(xk))Kxk − Ezk [φ′(yk, fk(xk))Kxk ]
∥∥ ≤ C3 + 2L‖fk − fH‖ακα+1. (4.39)

It then follows from (4.28) and Ezk [ξk] = 0 that (note η0 = 1)

ξk − Ezk [ξk] = ξk ≤ ηk‖fH − fk‖
∥∥φ′(yk, fk(xk))Kxk − Ezk

[
φ′(yk, fk(xk))Kxk

]∥∥
≤ ηkC3‖fH − fk‖+ 2Lηkκ

α+1‖fH − fk‖1+α (4.40)

≤ ηkC3C
1
2
1

( k−1∑
j=0

ηj
) 1

2 + 2L(C
1
2
1 κ)α+1ηk

( k−1∑
j=0

ηj
) 1+α

2

≤ C3C
1
2
1 Cη + 2L(C

1
2
1 κ)α+1Cη.
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Here we have used the definition of Cη given in (4.34). Furthermore, according to Lemma
14 with β = 1 and the definition of C4 in (4.35), the conditional variances can be controlled
by (note E[(ξ − E[ξ])2] < E[ξ2] for a real-valued random variable ξ)

t∑
k=1

Ezk(ξk − Ezk [ξk])
2 ≤

t∑
k=1

η2
kEzk

[〈
fH − fk, φ′(yk, fk(xk))Kxk

〉2]
≤

t∑
k=1

η2
k‖fH − fk‖2κ2Ezk [|φ′(yk, fk(xk))|2]

≤
t∑

k=1

η2
k‖fH − fk‖2

(
4κ2L

1
α [E(fk)− E(fH)] + C4

)
.

According to (4.28) and the definition of Cη in (4.34), we can further get

t∑
k=1

Ezk(ξk − Ezk [ξk])
2 ≤ 4L

1
αC1κ

2
t∑

k=1

[
η2
k

( k−1∑
j=0

ηj
)(
E(fk)− E(fH)

)]
+ C4

t∑
k=1

η2
k‖fH − fk‖2

≤ 4L
1
αC1Cηκ

2
t∑

k=1

ηk
(
E(fk)− E(fH)

)
+ C4

t∑
k=1

η2
k‖fH − fk‖2.

Let ρ1 be the largest positive constant such that (such ρ1 exists since limρ→0
eρ−ρ−1

ρ = 0)

(eρ1 − ρ1 − 1)L
1
αC

1
2
1 κ

2

C3 + 2LC
α
2

1 κ
α+1

≤ ρ1

4
.

Since C1 and C3 do not depend on the step size sequence, ρ1 is also a constant independent
of the step size sequence. Plugging the above estimates on the magnitudes and variances of
ξk into Part (b) of Lemma 21, we derive the following inequality with probability at least
1− δ
t∑

k=1

ξk ≤
(eρ1 − ρ1 − 1)

ρ1

(
C3C

1
2
1 Cη + 2L(C

1
2
1 κ)α+1Cη

)[4L 1
αC1Cηκ

2
t∑

k=1

ηk
(
E(fk)− E(fH)

)

+ C4

t∑
k=1

η2
k‖fH − fk‖2

]
+

(
C3C

1
2
1 Cη + 2L(C

1
2
1 κ)α+1Cη

)
log 1

δ

ρ1

≤
t∑

k=1

ηk
(
E(fk)− E(fH)

)
+
C4
∑t

k=1

[
η2
k‖fH − fk‖2

]
4C1Cηκ2L

1
α

+

(
C3C

1
2
1 Cη + 2L(C

1
2
1 κ)α+1Cη

)
log 1

δ

ρ1
.

Plugging this inequality into (4.38) gives the stated inequality with probability at least 1−δ.

According to Proposition 9 and the assumption
∑∞

k=1 η
2
k <∞, one can show essentially

that max
1≤t≤T

‖ft−fH‖2 ≤ 1
2 max

1≤t≤T
‖ft−fH‖2 +c log T for a constant c > 0, from which one can

establish the boundedness of the iterates with high probability (up to logarithmic factors).
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Proof of Proposition 9 We define the subset Ω ⊂ ZT by

Ω =
{

(z1, . . . , zT ) : ‖ft+1−fH‖2 ≤ C5+
C4
∑t

k=1

[
η2
k‖fH − fk‖2

]
2C1Cηκ2L

1
α

+C6 log
T

δ
for all t = 1, . . . , T

}
,

where we introduce

C5 = (η1κ
2A+ 1)‖fH‖2 + (AC2 +B)κ2

∞∑
k=1

η2
k, C6 =

2C3C
1
2
1 Cη + 4L(C

1
2
1 κ)α+1Cη

ρ1
. (4.41)

Applying Proposition 23 together with union bounds on probabilities of events, we have
Pr{Ω} ≥ 1− δ. Since

∑∞
t=1 η

2
t <∞, there exists a t2 ∈ N such that

C4

∞∑
k=t2

η2
k ≤ C1Cηκ

2L
1
α .

Under the event Ω, we know

‖ft+1 − fH‖2 ≤ C5 +
C4
∑t2

k=1

[
η2
k‖fH − fk‖2

]
2C1Cηκ2L

1
α

+
C4
∑t

k=t2+1

[
η2
k‖fH − fk‖2

]
2C1Cηκ2L

1
α

+ C6 log
T

δ

≤ C5 + C7 +
1

2
max
t2<k≤t

‖fk − fH‖2 + C6 log
T

δ

≤ C5 + C7 +
1

2
max

1≤k≤T
‖fk − fH‖2 + C6 log

T

δ
, ∀t = 1, . . . , T.

where we have used the inequality

C4
∑t2

k=1

[
η2
k‖fH − fk‖2

]
2C1Cηκ2L

1
α

≤
C4C1

∑t2
k=1

[
η2
k

∑k−1
j=0 ηj

]
2C1Cηκ2L

1
α

:= C7.

Under the event Ω, it is now clear that

max
1≤t≤T

‖ft − fH‖2 ≤ C5 + C7 +
1

2
max

1≤k≤T
‖fk − fH‖2 + C6 log

T

δ
.

Solving the above linear inequality yields the stated inequality with C̄ = max{2(C5 +C6 +
C7), 1} with probability at least 1− δ.

We are now in a position to prove Theorem 7 on general high-probability convergence
rates for a weighted average of iterates. The underlying idea is to construct a modified
martingale difference sequence by imposing a constraint on the iterates, which is then esti-
mated by applying the Azuma-Hoeffding inequality on martingales. Furthermore, accord-
ing to Proposition 9, this modified martingale difference sequence would be identical to the
original martingale difference sequence with high probability. Let IA denote the indicator
function of an event A.
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Proof of Theorem 7 We now introduce the following sequence of functionals ξ′k, k =
1, . . . , T by

ξ′k = ηk
〈
fH − fk, φ′(yk, fk(xk))Kxk − Ezk

[
φ′(yk, fk(xk))Kxk

]〉
I{‖fk−fH‖2≤C̄ log 2T

δ
},

where C̄ is defined in Proposition 9. Analogous to (4.40), we have

|ξ′k| ≤
[
ηkC3‖fH − fk‖+ 2Lηkκ

α+1‖fH − fk‖1+α
]
I{‖fk−fH‖2≤C̄ log 2T

δ
}

≤
(
C3 + 2Lκα+1

)
ηk max

(
‖fH − fk‖2, 1

)
I{‖fk−fH‖2≤C̄ log 2T

δ
}

≤
(
C3 + 2Lκα+1

)
ηkC̄ log

2T

δ
:= bk. (4.42)

It is clear that Ezk [ξ′k] = 0 and ξ′k only depends on z1, . . . , zk. According to Part (a) of
Lemma 21, there exists a subset Ω′ = {(z1, . . . , zT ) : z1, . . . , zT ∈ Z} ⊂ ZT with probability
measure Pr{Ω′} ≥ 1− δ

2 such that for any (z1, . . . , zT ) ∈ Ω′ the following inequality holds

T∑
k=1

ξ′k ≤
(

2
T∑
k=1

b2k log
2

δ

) 1
2 ≤

(
C3 + 2Lκα+1

)
C̄ log

2T

δ

(
2 log

2

δ

T∑
k=1

η2
k

) 1
2
.

According to Proposition 9, there exists a subset Ω = {(z1, . . . , zT ) : z1, . . . , zT ∈ Z} ⊂ ZT
with probability measure Pr{Ω} ≥ 1 − δ

2 such that for any (z1, . . . , zT ) ∈ Ω the following
inequality holds

max
1≤k≤T

‖fk − fH‖2 ≤ C̄ log
2T

δ
.

Let {ξk}k be the martingale difference sequence defined in the proof of Proposition 23. For
any (z1, . . . , zT ) ∈ Ω ∩ Ω′, we then have

T∑
k=1

ξk =

T∑
k=1

ξ′k ≤
(
C3 + 2Lκα+1

)
C̄ log

2T

δ

(
2 log

2

δ

T∑
k=1

η2
k

) 1
2
.

Under this intersection of these two events, it follows from (4.38) and the definition of C5

given in (4.41) that

2
T∑
k=1

ηk
[
E(fk)− E(fH)

]
≤ (η1Aκ

2 + 1)‖fH‖2 + (AC2 +B)κ2
T∑
k=1

η2
k + 2

T∑
k=1

ξk

≤ C5 + 2
(
C3 + 2Lκα+1

)
C̄ log

2T

δ

(
2 log

2

δ

T∑
k=1

η2
k

) 1
2
.

But Pr{Ω ∩ Ω′} ≥ 1 − δ. Therefore, the first inequality of (2.5) holds with probability at
least 1− δ and

C̃ =
C5

2
+
(
C3 + 2Lκα+1

)
C̄
(

2
∞∑
k=1

η2
k

) 1
2
.

The second inequality of (2.5) follows from the convexity of E(·). The proof is complete.

24



Convergence of Unregularized Online Learning Algorithms

Other than the high-probability bounds for the weighted average of iterates f̄ηT , we can
also derive similar results for the uniform average of iterates f̄T . If we choose the step sizes

ηt = η1(t logβ t)−
1
2 with β > 1, then Proposition 24 implies E(f̄T )−E(fH) = O(T−

1
2 log

3
2
T
δ )

with probability at least 1 − δ. We present the proof in the appendix due to its similarity
to the proof of Theorem 7.

Proposition 24 Suppose assumptions in Theorem 7 hold. Then, for any δ ∈ (0, 1), with
probability at least 1− δ

2 we have

T∑
t=1

[E(ft)−E(fH)]=O
((
T

1
2+

T∑
t=1

ηt
)

log
3
2

2T

δ

)
and E(f̄T )−E(fH)=O

((
T−

1
2+T−1

T∑
t=1

ηt
)

log
3
2

2T

δ

)
.

Theorem 10 is a specific case of Proposition 25 with T̃ = bT2 c. The step-stone in
proving this proposition is the inequality (4.48) following from the one-step progress (4.47)
in terms of generalization errors. The first term on the right hand side of (4.48) can be
tackled by Theorem 7 on a weighted summation of Ât deduced from the one-step analysis
in terms of RKHS distances. The variance of the martingales

∑T
t=t̃ ξ̄t can be controlled by∑T

t=t̃ ηt‖∇E(ft)‖2, which is then cancelled out by the third term −
∑T

t=t̃ ηt‖∇E(ft)‖2. A

notable fact is that the martingale difference ξ̄t − Ezt [ξ̄t] is bounded by O(η
T̃

) for all t ≥ T̃
with high probability, which would be small if T̃ is large. We can balance the three terms
on the right hand side of (4.43) by choosing an appropriate T̃ .

Proposition 25 Suppose that the assumptions in Theorem 7 hold. Let T̃ ∈ N satisfy
1 ≤ T̃ ≤ T . Then, there exists a constant C̃ ′ independent of T and T̃ (explicitly given in
the proof) such that for any δ ∈ (0, 1) the following inequality holds with probability at least
1− δ

E(fT+1)− E(fH) ≤ C̃ ′max
{[ T∑

t=T̃

ηt
]−1

, η
T̃
,

T∑
t=T̃

η1+α
t

}
log2 3T

δ
. (4.43)

Proof Recall that Ât = E(ft)− E(fH). According to the proof of Theorem 7, there exists
a subset Ω = {(z1, . . . , zT ) : z1, . . . , zT ∈ Z} ⊂ ZT with Pr{Ω} ≥ 1 − 2δ

3 such that for any
(z1, . . . , zT ) ∈ Ω, we have

T∑
t=1

ηtÂt ≤ C̃ log
3
2

3T

δ
and max

1≤t≤T
‖ft − fH‖2 ≤ C̄ log

3T

δ
, (4.44)

where C̃ and C̄ are constants independent of T and δ. Under the event of Ω, we have∑T
t=T̃

ηtÂt ≤ C̃ log
3
2

3T
δ . Therefore, there exists a t̃ ∈ N satisfying T̃ ≤ t̃ ≤ T and

Ât̃ ≤
[ T∑
t=T̃

ηt
]−1

C̃ log
3
2

3T

δ
. (4.45)
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Taking expectations only with respect to z over both sides of (4.13) gives

Ât+1 ≤ Ât − ηt
〈
φ′(yt, ft(xt))Kxt ,∇E(ft)

〉
+
Lκ2(1+α)η1+α

t

1 + α
|φ′(yt, ft(xt))|1+α. (4.46)

According to (4.4), the term |φ′(yt, ft(xt))|1+α can be controlled by

|φ′(yt, ft(xt))|1+α ≤ 2α|φ′(yt, ft(xt))− φ′(yt, fH(xt))|1+α + 2α|φ′(yt, fH(xt))|1+α

≤ 2αL1+α|〈ft − fH ,Kxt〉|α(1+α) + 2α|φ′(yt, fH(xt))|1+α

≤ 2αL1+ακα(1+α)‖ft − fH‖α(1+α) + 2α|φ′(yt, fH(xt))|1+α.

Plugging the above bound into (4.46) gives

Ât+1 ≤ Ât − ηt‖∇E(ft)‖2 + ηt
〈
∇E(ft)− φ′(yt, ft(xt))Kxt ,∇E(ft)

〉
+
(
ã‖ft − fH‖α(1+α) + b̃

)
η1+α
t , (4.47)

where we introduce

ã = 2αL2+ακ(2+α)(1+α)(1 + α)−1 and b̃ = 2αLκ2(1+α)(1 + α)−1 sup
z∈Z
|φ′(y, fH(x))|1+α.

Taking a summation from t = t̃ to T yields

ÂT+1 ≤ Ât̃ +
T∑
t=t̃

(
ã‖ft − fH‖α(1+α) + b̃

)
η1+α
t −

T∑
t=t̃

ηt‖∇E(ft)‖2 +
T∑
t=t̃

ξ̄t, (4.48)

where we introduce the following two sequences of functionals

ξ̄t = ηt
〈
∇E(ft)− φ′(yt, ft(xt))Kxt ,∇E(ft)

〉
,

ξ̄′t = ηt
〈
∇E(ft)− φ′(yt, ft(xt))Kxt ,∇E(ft)

〉
I{‖ft−fH‖2≤C̄ log 3T

δ
}.

Under the event Ω, it is clear ξ̄t = ξ̄′t. In the following, we will use Part (b) of Lemma 21
to estimate

∑T
t=t̃ ξ̄

′
t. It is clear that Ezt [ξ̄′t] = 0 for all t ∈ N. Let t̄ be any integer in [T̃ , T ].

It follows from Lemma 14 with β = 1 and the definition of C4 given in (4.35) that (note
E[(ξ − E[ξ])2 < E[ξ2] for a real-valued random variable ξ)

T∑
t=t̄

Ezt
(
ξ̄′t − Ezt [ξ̄′t]

)2 ≤ T∑
t=t̄

η2
tEzt

[〈
φ′(yt, ft(xt))Kxt ,∇E(ft)

〉2]I{‖ft−fH‖2≤C̄ log 3T
δ
}

≤
T∑
t=t̄

η2
t κ

2‖∇E(ft)‖2Ezt
[
|φ′(yt, ft(xt))|2

]
I{‖ft−fH‖2≤C̄ log 3T

δ
}

≤
T∑
t=t̄

η2
t ‖∇E(ft)‖2

(
4κ2L

1
α
[
E(ft)− E(fH)

]
+ C4

)
I{‖ft−fH‖2≤C̄ log 3T

δ
}. (4.49)
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Analyzing analogously to (4.19), one can show that ∇E is (α,Lκ1+α)-Hölder continuous.
Then, Lemma 13 together with ∇E(fH) = 0 shows that

Ât = E(ft)− E(fH) ≤ Lκ1+α‖ft − fH‖1+α

1 + α
. (4.50)

Plugging the above inequality into (4.49) shows

T∑
t=t̄

Ezt
(
ξ̄′t − Ezt [ξ̄′t]

)2 ≤ C8 log
3T

δ

T∑
t=t̄

η2
t ‖∇E(ft)‖2 ≤ ηT̃C8 log

3T

δ

T∑
t=t̄

ηt‖∇E(ft)‖2, (4.51)

where we have used t̄ ≥ T̃ and introduced

C8 =
4κ3+αL1+ 1

α C̄

1 + α
+ C4.

According to (4.39), there holds

ξ̄′t − Ezt [ξ̄′t] ≤ ηt
∣∣〈φ′(yt, ft(xt))Kxt −∇E(ft),∇E(ft)

〉∣∣I{‖ft−fH‖2≤C̄ log 3T
δ
}

≤ ηt‖∇E(ft)‖
∥∥φ′(yt, ft(xt))Kxt − Ezt [φ′(yt, ft(xt))Kxt ]

∥∥I{‖ft−fH‖2≤C̄ log 3T
δ
}

≤
(
C3 + 2L‖ft − fH‖ακα+1

)
ηt‖∇E(ft)‖I{‖ft−fH‖2≤C̄ log 3T

δ
}, ∀t ≥ t̄.

Due to the (α,Lκ1+α)-Hölder continuity of ∇E

‖∇E(ft)‖ = ‖∇E(ft)−∇E(fH)‖ ≤ Lκ1+α‖ft − fH‖α,

we further get

ξ̄′t − Ezt [ξ̄′t] ≤ ηt
(
C3 + 2Lκα+1

)
max

(
‖ft − fH‖α, 1

)
Lκ1+α‖ft − fH‖αI{‖ft−fH‖2≤C̄ log 3T

δ
}

≤ η
T̃

(
C3 + 2Lκα+1

)
Lκ1+αC̄ log

3T

δ
:= η

T̃
C9 log

3T

δ
, ∀t ≥ t̄.

We can find a ρ2 > 0 independent of T such that (eρ2−ρ2−1)C8 ≤ ρ2C9. Applying Part (b)
of Lemma 21 with the above bounds on variances and magnitudes of ξ̄′k followed with union
bounds on probabilities, we can find a subset Ω′ = {(z1, . . . , zT ) : z1, . . . , zT ∈ Z} ⊂ ZT
with Pr{Ω′} ≥ 1− δ

3 such that for any (z1, . . . , zT ) ∈ Ω′ there holds (note Ezt [ξ̄′t] = 0)

T∑
t=t̄

ξ̄′t ≤
η
T̃

(eρ2 − ρ2 − 1)C8 log 3T
δ

∑T
t=t̄ ηt‖∇E(ft)‖2

η
T̃
ρ2C9 log 3T

δ

+
η
T̃
C9 log2 3T

δ

ρ2

≤
T∑
t=t̄

ηt‖∇E(ft)‖2 +
η
T̃
C9 log2 3T

δ

ρ2
, ∀t̄ ∈ [T̃ , T ]. (4.52)

Under the event Ω∩Ω′, we can plug the above inequality with t̄ = t̃, ξ̄′t = ξ̄t and ‖ft−fH‖2 ≤
C̄ log 3T

δ ,∀t = 1, . . . , T into (4.48) to derive

ÂT+1 ≤ Ât̃ +
(
ãC̄ log

3T

δ
+ b̃
) T∑
t=t̃

η1+α
t +

η
T̃
C9 log2 3T

δ

ρ2

≤
[ T∑
t=T̃

ηt
]−1

C̃ log
3
2

3T

δ
+
(
ãC̄ + b̃

)
log

3T

δ

T∑
t=t̃

η1+α
t +

η
T̃
C9 log2 3T

δ

ρ2
,
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where the last inequality is due to (4.45). This establishes the stated inequality with
probability 1− δ and

C̃ ′ = C̃ + ãC̄ + b̃+ C9ρ
−1
2 .

It is clear that C̃ ′ is independent of T and T̃ . The proof is complete.

Proof of Corollary 11 The polynomially decaying step sizes ηt = η1t
−θ(θ > 1

2) satisfies
the monotonicity and

∑∞
t=1 η

2
t <∞ Furthermore, we have

[ T∑
t=bT

2
c

ηt
]−1 ≤ 2

TηT
= O(T θ−1) and

T∑
t=bT

2
c

η1+α
t ≤

(T + 1)η1+α
bT
2
c

2
= O(T 1−(1+α)θ).

The proof is complete if we plug the above estimates into Theorem 10.
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Appendix A. Some Additional Proofs

Proof of Lemma 16 Let ε > 0 be an arbitrary number. Since limt→∞ ηt = 0 we can find
a t3 ∈ N such that ηt ≤ ε

2 for all t ≥ t3. Since
∑∞

t=1 ηt =∞, we can also find a t4 > t3 such

that
∑t3

k=1 η
2
k ≤

ε
2

∑t4
k=1 ηk. Then, for any t ≥ t4, it holds

[ t∑
k=1

ηk
]−1

t∑
k=1

η2
k =

[ t∑
k=1

ηk
]−1

t3∑
k=1

η2
k +

[ t∑
k=1

ηk
]−1

t∑
k=t3+1

η2
k

≤ ε

2
+
ε

2

[ t∑
k=1

ηk
]−1

t∑
k=t3+1

ηk ≤ ε.

Since ε > 0 is arbitrarily chosen, the proof is complete.
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Proof of Lemma 13 Fix f, f̃ ∈ H. Define a function g : R→ R by g(t) = G(f̃+ t(f− f̃)).
It is clear that g′(t) = 〈f − f̃ ,∇G(f̃ + t(f − f̃))〉 and

|g′(t)− g′(t̃)| =
〈
f − f̃ ,∇G(f̃ + t(f − f̃))−∇G(f̃ + t̃(f − f̃))

〉
≤ ‖f − f̃‖

∥∥∇G(f̃ + t(f − f̃)
)
−∇G

(
f̃ + t̃(f − f̃)

)∥∥
≤ L‖f − f̃‖1+α|t− t̃|α.

It then follows that

g(1)− g(0)− g′(0) =

∫ 1

0
[g′(t)− g′(0)]dt ≤

∫ 1

0
|g′(t)− g′(0)|dt

≤ L‖f − f̃‖1+α

∫ 1

0
tαdt =

L‖f − f̃‖1+α

1 + α
,

which amounts to the second inequality in (4.1)

G(f) ≤ G(f̃) + 〈f − f̃ ,∇G(f̃)〉+
L‖f − f̃‖1+α

1 + α
. (A.1)

We now turn to the first inequality in (4.1). Fix f and f̃ ∈ H. Define a functional
L : H → R by L(f̄) = G(f̄) − 〈f̄ ,∇G(f)〉. It is clear that L is a convex function and
∇L(f) = ∇G(f)−∇G(f) = 0. According to the first-order optimality condition, we know
L attains its minimum at f and

L(f) = min
f̄∈H
L(f̄) = min

f̄∈H

[
G(f̄)− 〈f̄ ,∇G(f)〉

]
≤ min

f̄∈H

[
G(f̃) + 〈f̄ − f̃ ,∇G(f̃)〉+

L‖f̃ − f̄‖1+α

1 + α
− 〈f̄ ,∇G(f)〉

]
= L(f̃) + min

f̄∈H

[
〈f̃ − f̄ ,∇G(f)−∇G(f̃)〉+

L‖f̃ − f̄‖1+α

1 + α

]
= L(f̃) + min

f̄∈H

[
〈f̄ ,∇G(f)−∇G(f̃)〉+

L‖f̄‖1+α

1 + α

]
,

where the inequality follows from (A.1). Taking f̄ = L−
1
α ‖∇G(f̃) − ∇G(f)‖

1−α
α

(
∇G(f̃) −

∇G(f)
)

in the above inequality, we derive

L(f) ≤ L(f̃)− L−
1
α ‖∇G(f̃)−∇G(f)‖

1+α
α +

L−
1
α ‖∇G(f̃)−∇G(f)‖

1+α
α

1 + α

= L(f̃)− αL−
1
α

1 + α
‖∇G(f)−∇G(f̃)‖

1+α
α .

This establishes the first inequality in (4.1). The proof is complete.

Proof of Proposition 24 Consider the following sequence of functionals ξ̃k, k = 1, . . . , T
by

ξ̃k =
〈
fH − fk, φ′(yk, fk(xk))Kxk − Ezk

[
φ′(yk, fk(xk))Kxk

]〉
,
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where C̄ is defined in Proposition 9. Eq. (4.42) implies that

|ξ̃k|I{‖fk−fH‖2≤C̄ log 2T
δ
} ≤

(
C3 + 2Lκα+1

)
C̄ log

2T

δ
.

By Part (a) of Lemma 21, there exists a subset Ω′ = {(z1, . . . , zT ) : z1, . . . , zT ∈ Z} ⊂ ZT
with probability measure Pr{Ω′} ≥ 1 − δ

2 such that for any (z1, . . . , zT ) ∈ Ω′ the following
inequality holds

T∑
k=1

ξ̃kI{‖fk−fH‖2≤C̄ log 2T
δ
} ≤

(
C3 + 2Lκα+1

)
C̄ log

2T

δ

(
2T log

2

δ

) 1
2
.

According to Proposition 9, there exists a subset Ω = {(z1, . . . , zT ) : z1, . . . , zT ∈ Z} ⊂ ZT
with probability measure Pr{Ω} ≥ 1− δ

2 such that for any (z1, . . . , zT ) ∈ Ω there holds the
inequality max1≤k≤T ‖fk − fH‖2 ≤ C̄ log 2T

δ . Under the event Ω ∩ Ω′, we then have

T∑
k=1

ξ̃k ≤
(
C3 + 2Lκα+1

)
C̄ log

2T

δ

(
2T log

2

δ

) 1
2
. (A.2)

Furthermore, it follows from (4.37) that

2[E(fk)− E(fH)] ≤ η−1
k

[
‖fk − fH‖2 − ‖fk+1 − fH‖2

]
+ ηkκ

2
(
Aφ(yk, fk(xk)) +B

)
+ 2ξ̃k.

Taking a summation of the above inequality from k = 1 to T yields the following inequality
under the event Ω ∩ Ω′

2
T∑
k=1

[E(fk)− E(fH)] ≤
T−1∑
k=1

(
η−1
k+1 − η

−1
k

)
‖fk+1 − fH‖2 + η−1

1 ‖f1 − fH‖2

+ κ2
T∑
k=1

ηk
(
Aφ(yk, fk(xk)) +B

)
+ 2

T∑
k=1

ξ̃k. (A.3)

It follows from (4.33) that

T∑
k=1

ηkφ(yk, fk(xk)) ≤ ‖fH‖2 + 2

T∑
k=1

ηkφ(yk, fH(xk)) + κ2B

T∑
k=1

η2
k.

Plugging the above bound into (A.3) and using the monotonicity of ηk together with (A.2),
we derive the following inequality with probability at least 1− δ

2

T∑
k=1

[E(fk)−E(fH)] ≤ (Aκ2 +η−1
1 )‖fH‖2 +κ2

T∑
k=1

(
2Aηk sup

z
φ(y, fH(x))+Bηk+ABκ2η2

k

)
+
(
C3 + 2Lκα+1

)
C̄(8T )

1
2 log

3
2

2T

δ
.

The proof is complete.
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