
Journal of Machine Learning Research 18 (2018) 1-29 Submitted 11/17; Revised 3/18; Published 4/18

Maximum Principle Based Algorithms for Deep Learning

Qianxiao Li liqix@ihpc.a-star.edu.sg
Institute of High Performance Computing
Agency for Science, Technology and Research
1 Fusionopolis Way, Connexis North, Singapore 138632

Long Chen xidonglc@pku.edu.cn
Peking University
Beijing, China, 100080

Cheng Tai chengtai@pku.edu.cn
Beijing Institute of Big Data Research
and Peking University
Beijing, China, 100080

Weinan E weinan@math.princeton.edu

Princeton University

Princeton, NJ 08544, USA,

Beijing Institute of Big Data Research

and Peking University

Beijing, China, 100080

Editor: Yoshua Bengio

Abstract

The continuous dynamical system approach to deep learning is explored in order to devise
alternative frameworks for training algorithms. Training is recast as a control problem
and this allows us to formulate necessary optimality conditions in continuous time using
the Pontryagin’s maximum principle (PMP). A modification of the method of successive
approximations is then used to solve the PMP, giving rise to an alternative training algo-
rithm for deep learning. This approach has the advantage that rigorous error estimates
and convergence results can be established. We also show that it may avoid some pit-
falls of gradient-based methods, such as slow convergence on flat landscapes near saddle
points. Furthermore, we demonstrate that it obtains favorable initial convergence rate per-
iteration, provided Hamiltonian maximization can be efficiently carried out - a step which
is still in need of improvement. Overall, the approach opens up new avenues to attack prob-
lems associated with deep learning, such as trapping in slow manifolds and inapplicability
of gradient-based methods for discrete trainable variables.

Keywords: deep learning, optimal control, Pontryagin’s maximum principle, method of
successive approximations

1. Introduction

Supervised learning using deep neural networks has become an increasingly successful tool
in modern machine learning applications (Bengio, 2009; Schmidhuber, 2015; LeCun et al.,

c©2018 Qianxiao Li, Long Chen, Cheng Tai, Weinan E.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/17-653.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/17-653.html

Li, Chen, Tai and E

2015; Goodfellow et al., 2016). Efficient training methods of very deep neural networks,
however, remain an active area of research. The most commonly applied training method is
stochastic gradient descent (Robbins and Monro, 1951; Bottou, 2010) and its variants (Duchi
et al., 2011; Zeiler, 2012; Kingma and Ba, 2014; Johnson and Zhang, 2013), where incremen-
tal updates to the trainable parameters are performed using gradient information computed
via back-propagation (Kelley, 1960; Bryson, 1975). While efficient to implement, the in-
cremental updates to the parameter tend to be slow, especially in the initial stages of the
training. Moreover, other than the computation of gradients through back-propagation,
the specific structure of deep neural networks is not exploited. These observations point to
the question of whether there exists alternative training methods tailored to deep neural
networks.

In a series of papers, we introduce an alternative approach by exploring the optimal con-
trol viewpoint of deep learning (E, 2017). Our focus will be on ideas and algorithms derived
from the powerful Pontryagin’s maximum principle (Boltyanskii et al., 1960; Pontryagin,
1987), which has two major components: the Hamiltonian dynamics and the condition that
at each time the optimal parameters maximize the Hamiltonian. The second component
suggests that optimization can be performed independently at different layers. One can also
derive an explicit error control estimate based on the maximum principle (see Lemma 2 be-
low).

In this first paper, we will consider the simplest context in which the deep neural net-
works are replaced by continuous (or discretized) dynamical systems, and devise numerical
algorithms that are based on the optimality conditions in the Pontryagin’s maximum prin-
ciple. This leads to a new approach for training deep learning models that have certain
advantages, such as fast initial descent and resilience to stalling in flat landscapes. An
additional advantage is that one has a good control of the error through explicit estimates.

The rest of the paper is organized as follows. In Section 2, we present a dynamical
systems viewpoint of function approximation and deep learning. We then discuss the nec-
essary optimality conditions, which is the well-known Pontryagin’s maximum principle. In
Section 3 and 4, we discuss numerical methods to solve the necessary conditions and ob-
tain error estimates and convergence guarantees. Using benchmarking examples, we then
compare our method with traditional gradient-descent based methods for optimizing deep
neural networks in Section 5. In Section 6, we discuss and compare our work with existing
literature. Conclusion and outlook are given in Section 7.

2. Function Approximation by Dynamical Systems

We start with a description of the (continuous) dynamical systems approach to machine
learning (see E 2017). The essential task of supervised learning is to approximate some
function

F : X → Y

which maps inputs in X ⊂ Rd (e.g. images, time-series) to labels in Y (categories, numerical
predictions). Given a collection of K sample input-label pairs {xi, yi = F (xi)}Ki=1, one
aims to approximate F using these data points. In the dynamical systems framework, we
consider the inputs x = (x1, . . . , xK) ∈ Rd×K as the initial condition of a system of ordinary

2

Maximum Principle Based Algorithms for Deep Learning

differential equations

Ẋi
t = f(t,Xi

t , θt), Xi
0 = xi, 0 ≤ t ≤ T, (1)

where θ : [0, T] → Θ ⊂ Rp, represents the control (training) parameters and Xt =
(X1

t , . . . , X
K
t) ∈ Rd×K for all t ∈ [0, T]. The form of f is chosen as part of the machine

learning model. For example, in deep learning, f is typically the composition (in either
order) of a linear transformation and a component-wise nonlinear function (the activation
function). For the solution to (1) to exist for any θ, we shall assume hereafter that f and
∇xf are continuous in t, x, θ. Note that weaker but more complicated conditions can be
considered (Clarke, 2005). For the ith input sample, the prediction of the “network” is a
deterministic transformation of the terminal state g(Xi

T) for some g : Rd → Y, which we
can view collectively as a function of the initial state (input) xi and the control parameters
(weights) θ. The dynamics (1) are decoupled across samples except for the dependence on
the control θ. We shall consider quite a general space of controls

U := {θ : [0, T]→ Θ : θ is Lebesgue measurable}.

The aim is to select θ from U so that g(Xi
T) most closely resembles yi for i = 1, . . . ,K. To

this end, we define a loss function Φ : Y × Y → R which is minimized when its arguments
are equal, and we consider minimizing

∑
i Φ(g(xiT), yi). Since g is fixed, we shall absorb it

into the definition of the loss function by defining Φi(·) := Φ(·, yi). Then, the supervised
learning problem in our framework is

min
θ∈U

K∑
i=1

Φi(X
i
T) +

∫ T

0
L(θt)dt,

Ẋi
t = f(t,Xi

t , θt), Xi
0 = xi, 0 ≤ t ≤ T, i = 1, . . . ,K, (2)

where L : Θ→ R is a running cost, or the regularizer1. We note here that alternatively, we
can formulate the supervised learning problem more generally in terms of optimal control
in function spaces, see Appendix A.

Problem (2) is a special case of a class of general optimal control problem for ordinary
differential equations (Bertsekas, 1995; Athans and Falb, 2013). The advantage of this
formulation is that we can write down and study the optimality conditions of (2) entirely
in continuous time and derive numerical algorithms that can subsequently be discretized.
In other words, we optimize, then discretize, as opposed to the traditional reverse approach
in deep learning.

As was suggested in E (2017), deep residual networks (He et al., 2016) can be considered
as the forward Euler discretization of the continuous approach described above. In this
connection, the algorithms presented in this paper can also be formulated in the context of
deep residual networks. For general deep neural networks, although one can also formulate
similar algorithms, it is not clear at this moment that PMP holds and these algorithms are
valid (e.g. converge to the right solution) in the general setting. This issue will be studied
in future work.

1. We can also make L depend on Xt, but for simplicity of presentation and the fact that most current
machine learning models do not regularize the states, we shall omit this general case.

3

Li, Chen, Tai and E

The optimization problem (2) can be solved by first discretizing it into a discrete problem
(a feed-forward neural network) and then applying back propagation and gradient descent
approaches commonly used in deep learning. However, here we will present an alternative
approach. Hereafter, for simplicity of notation we shall set K = 1 drop the scripts i on
all functions, noting that analogous results can be obtained in the general case since the
dynamics and loss functions are decoupled across samples. Equivalently, we can think of
this as effectively concatenating all K sample inputs into a single input vector of dimension
d×K and redefine our dynamics accordingly. Hence, all results remain valid if we perform
full-batch training. The case of mini-batch training is discussed in Section 4.3.

2.1 Pontryagin’s Maximum Principle

In this section, we introduce a set of necessary conditions for optimal solutions of (2), known
as the Pontryagin’s Maximum Principle (PMP) (Boltyanskii et al., 1960; Pontryagin, 1987).
This shall pave way for an alternative numerical algorithm to train (2) and its discrete-time
counter-part.

To begin with, we define the Hamiltonian H : [0, T]× Rd × Rd ×Θ→ R given by

H(t, x, p, θ) := p · f(t, x, θ)− L(θ).

Theorem 1 (Pontryagin’s Maximum Principle) Let θ∗ ∈ U be an essentially bounded
optimal control, i.e. a solution to (2) with ess supt∈[0,T]‖θ∗t ‖∞ < ∞ (ess sup denotes the
essential supremum). Denote by X∗ the corresponding optimally controlled state process.
Then, there exists an absolutely continuous co-state process P ∗ : [0, T] → Rd such that the
Hamilton’s equations

Ẋ∗t = ∇pH(t,X∗t , P
∗
t , θ
∗
t), X∗0 = x, (3)

Ṗ ∗t = −∇xH(t,X∗t , P
∗
t , θ
∗
t), P ∗T = −∇Φ(X∗T), (4)

are satisfied. Moreover, for each t ∈ [0, T], we have the Hamiltonian maximization condition

H(t,X∗t , P
∗
t , θ
∗
t) ≥ H(t,X∗t , P

∗
t , θ) for all θ ∈ Θ. (5)

The proof of the PMP and its variants can be found in any optimal control theory
reference, e.g. Athans and Falb (2013); Bertsekas (1995); Liberzon (2012). Some gener-
alizations can be found in Clarke (2005) and references therein. For example, the re-
quirement of the continuity of f with respect to t can be replaced by a much weaker
measurability requirement if one assumes more conditions on ∇xf . In the statement of
Theorem 1, we omitted a technicality involving an abnormal multiplier: the terminal con-
dition for P ∗ should be P ∗T = −λ∇Φ(X∗T) and the Hamiltonian should be defined as
H(t, x, p, θ) = p · f(t, x, θ) − λL(θ) for some λ ≥ 0 (abnormal multiplier) that we can
choose. When we are forced to always take λ = 0, the problem is singular and in a sense
ill-posed (Athans and Falb, 2013). On the contrary, if we can take a positive λ, we can then
rescale the equation for P ∗ so that we can take λ = 1 without loss of generality. We shall
hereafter assume that this is the case.

4

Maximum Principle Based Algorithms for Deep Learning

A few remarks are in order. First, Equation 3, 4 and 5 allow us to solve for the unknowns
X∗, P ∗, θ∗ simultaneously as a function of t. In this sense, the resulting optimal control θ∗

is open-loop and is not in a feed-back form θ∗t = θ∗(X∗t). The latter is of closed-loop type
and are typically obtained from dynamic programming and the Hamilton-Jacobi-Bellman
formalism (Bellman, 2013). In this sense, the PMP gives a weaker control. However, open-
loop solutions are sufficient for neural network applications, where the trained weights and
biases are fixed and only depend on the layer number and not the inputs.

PMP can be regarded as a (highly non-trivial) generalization of the calculus of variations
to non-smooth settings (since we only assume θ∗ to be measurable). Perhaps more familiar
to the optimization community, the PMP is related to the Karush-Kuhn-Tucker (KKT)
conditions for non-linear constrained optimization. Indeed, we can view (2) as a non-
linear program over the function space U where the constraint is the ODE (1). In this
sense, the co-state process P ∗ plays the role of a continuous-time analogue of Lagrange
multipliers. The key difference between the PMP and the KKT conditions (besides the lack
of inequality constraints on the state) is the Hamiltonian maximization condition (5), which
is stronger than a typical first-order condition that assumes smoothness with respect to θ
(e.g. ∇θH = 0). In particular, the PMP says that H is not only stationary, but globally
maximized at an optimal control - which is a much stronger statement if H is not concave.
Moreover, the PMP makes minimal assumptions on the parameter space Θ; the PMP holds
even when f is non-smooth with respect to θ, or worse, when Θ is a discrete subset of Rp.

Last, we emphasize that the PMP is only a necessary condition, hence there can be
cases where solutions to the PMP is not actually globally optimal for (2). Nevertheless, in
practice the PMP is often strong enough to give good solution candidates, and when certain
convexity assumptions are satisfied the PMP becomes sufficient (Bressan and Piccoli, 2007).
In the next section, we will discuss numerical methods that can be used to solve the PMP.

3. Method of Successive Approximations

Now, our strategy is to devise numerical algorithms for training (2) via solving the PMP
(Equation 3, 4 and 5). We derive and analyze algorithms entirely in continuous time, which
allows us to characterize errors estimates and convergence in a more transparent fashion.

There are many methods for the numerical solution of the PMP, including two-point
boundary value problem method (Bryson, 1975; Roberts and Shipman, 1972), and colloca-
tion methods (Betts, 1998) coupled with general non-linear programming techniques (Bert-
sekas, 1999; Bazaraa et al., 2013). See (Rao, 2009) for a more recent review. However,
many of these methods concern small-scale problems typically encountered in control appli-
cations (e.g. trajectory optimization of spacecrafts) and do not scale well to modern machine
learning problems with a large number of state and control variables. One exception is the
method of successive approximations (MSA) (Chernousko and Lyubushin, 1982), which is
an iterative method based on alternating propagation and optimization steps. We first
introduce the simplest form of the MSA.

5

Li, Chen, Tai and E

3.1 Basic MSA

Observe that (3) is simply the equation

Ẋ∗t = f(t,X∗t , θ
∗
t),

and is independent of the co-state P ∗. Therefore, we may proceed in the following manner.
First, we make an initial guess of the optimal control θ0 ∈ U . For each k = 0, 1, 2, . . . , we
first solve (3)

Ẋθk

t = f(t,Xθk

t , θ
k
t), Xθk

0 = x. (6)

for Xθk , which then allows us to solve (4)

Ṗ θ
k

t = −∇xH(t,Xθk

t , P
θk

t , θkt), P θ
k

T = −∇Φ(Xθk

T), (7)

to get P θ
k
. Finally, we use the maximization condition (5) to set

θk+1
t = arg max

θ∈Θ
H(t,Xθk

t , P
θk

t , θ),

for t ∈ [0, T]. The algorithm is summarized in Algorithm 1.

Algorithm 1: Basic MSA

1 Initialize: θ0 ∈ U ;
2 for k = 0 to #Iterations do

3 Solve Ẋθk
t = f(t,Xθk

t , θ
k
t), Xθk

0 = x;

4 Solve Ṗ θ
k

t = −∇xH(t,Xθk
t , P

θk
t , θkt), P θ

k

T = −∇Φ(Xθk

T);

5 Set θk+1
t = arg maxθ∈ΘH(t,Xθk

t , P
θk
t , θ) for each t ∈ [0, T];

6 end

As is the case with the maximum principle, MSA consists of two major components:
the forward-backward Hamiltonian dynamics and the maximization for the optimal param-
eters at each time. An important feature of MSA is that the Hamiltonian maximization
step is decoupled for each t ∈ [0, T]. In the language of deep learning, the optimization
step is decoupled for different network layers and only the Hamiltonian ODEs (Step 3,4 of
Algorithm 1) involve propagation through the layers. This allows the parallelization of the
maximization step, which is typically the most time-consuming step.

It has been shown that the basic MSA converges for a restricted class of linear quadratic
regulators (Aleksandrov, 1968). However, in general it tends to diverge, especially if a
bad initial θ0 is chosen (Aleksandrov, 1968; Chernousko and Lyubushin, 1982). Our goal
now is to modify the basic MSA to control its divergent behavior. Before we do so, it is
important to understand why the MSA diverges, and in particular, the relationship between
the maximization step in Algorithm 1 and the optimization problem (2).

6

Maximum Principle Based Algorithms for Deep Learning

3.2 Error Estimate for the Basic MSA

For each θ ∈ U , let us denote

J(θ) := Φ(Xθ
T) +

∫ T

0
L(θt)dt,

where Xθ satisfies (6). Our goal is to minimize J(θ). We show in the following Lemma the
relationship between the values of J and the Hamiltonian maximization step. We start by
making the following assumptions.

(A1) Φ is twice continuously differentiable, with Φ and ∇Φ satisfying a Lipschitz condition,
i.e. there exists K > 0 such that

|Φ(x)− Φ(x′)|+ ‖∇Φ(x)−∇Φ(x′)‖ ≤ K‖x− x′‖,
for all x, x′ ∈ Rd.

(A2) f(t, ·, θ) is twice continuously differentiable in x, with f,∇xf satisfying a Lipschitz
condition in x uniformly in θ and t, i.e. there exists K > 0 such that

‖f(t, x, θ)− f(t, x′, θ)‖+ ‖∇xf(t, x, θ)−∇xf(t, x′, θ)‖2 ≤ K‖x− x′‖,
for all x, x′ ∈ Rd and t ∈ [0, T]. Note that ‖ · ‖2 denotes the induced 2-norm.

With these assumptions, we have the following estimate:

Lemma 2 Suppose (A1)-(A2) holds. Then, there exists a constant C > 0 such that for
any θ, φ ∈ U ,

J(φ) ≤J(θ)−
∫ T

0
∆φ,θH(t)dt

+ C

∫ T

0
‖f(t,Xθ

t , φt)− f(t,Xθ
t , θt)‖2dt

+ C

∫ T

0
‖∇xH(t,Xθ

t , P
θ
t , φt)−∇xH(t,Xθ

t , P
θ
t , θt)‖2dt,

where Xθ, P θ satisfy Equations 6, 7 respectively and ∆Hφ,θ denotes the change in Hamil-
tonian

∆Hφ,θ(t) := H(t,Xθ
t , P

θ
t , φt)−H(t,Xθ

t , P
θ
t , θt).

Proof See Appendix B for the proof and discussion on relaxing the assumptions.

In essence, Lemma 2 says that the Hamiltonian maximization step in MSA (step 5 in
Algorithm 1) is in some sense the optimal descent direction for J . However, the last two
terms on the right hand side indicates that this descent can be nullified if substituting φ
for θ incurs too much error in the Hamiltonian dynamics (step 3,4 in Algorithm 1). In
other words, the last two integrals measure the degree of satisfaction of the Hamiltonian
dynamics (3), (4), which can be viewed as a feasibility condition, when one replaces θ by
φ. Hence, we shall hereafter refer to these errors as feasibility errors. The divergence of the
basic MSA happens when the feasibility errors blow up. Armed with this understanding,
we can then modify the basic MSA to ensure convergence.

7

Li, Chen, Tai and E

3.3 Extended PMP and Extended MSA

As discussed previously in Lemma 2, the decrement of J is ensured if we can control the
feasibility errors in the Hamiltonian dynamics in steps 3,4 of Algorithm 1. To this end, we
employ a similar idea to augmented Lagrangians (Hestenes, 1969). Fix some ρ > 0 and
introduce the augmented Hamiltonian

H̃(t, x, p, θ, v, q) :=H(t, x, p, θ)− 1

2
ρ‖v − f(t, x, θ)‖2

− 1

2
ρ‖q +∇xH(t, x, p, θ)‖2. (8)

Then, we have the following set of alternative necessary conditions for optimality:

Proposition 3 (Extended PMP) Suppose that θ∗ is an essentially bounded solution to
the optimal control problem (2). Then, there exists an absolutely continuous co-state process
P ∗ such that the tuple (X∗t , P

∗
t , θ
∗
t) satisfies the necessary conditions

Ẋ∗t = ∇pH̃(t,X∗t , P
∗
t , θ
∗
t , Ẋ

∗
t , Ṗ

∗
t), X∗0 = x, (9)

Ṗ ∗t = −∇xH̃(t,X∗t , P
∗
t , θ
∗
t , Ẋ

∗
t , Ṗ

∗
t), P ∗T = −∇xΦ(X∗T), (10)

H̃(t,X∗t , P
∗
t , θ
∗
t , Ẋ

∗
t , Ṗ

∗
t) ≥ H̃(t,X∗t , P

∗
t , θ, Ẋ

∗
t , Ṗ

∗
t), θ ∈ Θ, t ∈ [0, T]. (11)

Proof If θ∗ is optimal, then by the PMP there exists a co-state process P ∗ such that (3), (4)
and (5) are satisfied. Then, for all t ∈ [0, T] and θ ∈ Θ we have

∇xH̃(t,X∗t , P
∗
t , θ, Ẋ

∗
t , Ṗ

∗
t) =∇xH(t,X∗t , P

∗
t , θ),

∇pH̃(t,X∗t , P
∗
t , θ, Ẋ

∗
t , Ṗ

∗
t) =∇pH(t,X∗t , P

∗
t , θ),

which implies that (9) and (10) are satisfied. Lastly, we can write

H̃(t,X∗t , P
∗
t , θ, Ẋ

∗
t , Ṗ

∗
t)

=H(t,X∗t , P
∗
t , θ)−

1

2
ρ‖Ẋ∗t − f(t,X∗t , θ)‖2 −

1

2
ρ‖Ṗ ∗t +∇xH(t,X∗t , P

∗
t , θ)‖2.

For each t, θ∗ maximizes all three terms on the RHS simultaneously, and hence (11) is also
satisfied.

Compared with the usual PMP, the extended PMP is a weaker necessary condition. How-
ever, the advantage is that maximization of H̃ naturally penalizes errors in the Hamiltonian
dynamical equations, and hence we should expect MSA applied to the extended PMP to
converge for large enough ρ. Note that the Hamiltonian equation steps do not change
(since the added terms have no effect on optimal solutions) and the only change is the
maximization step. The extended MSA (E-MSA) algorithm is summarized in Algorithm 2.

To establish convergence, define

µk :=

∫ T

0
∆Hθk+1,θk(t)dt ≥ 0.

If µk = 0, then from the Hamiltonian maximization step (11) we must have

8

Maximum Principle Based Algorithms for Deep Learning

0 =− µk ≤ −
1

2
ρ

∫ T

0
‖f(t,Xθk

t , θ
k+1
t)− f(t,Xθk

t , θ
k
t)‖2dt

− 1

2
ρ

∫ T

0
‖∇xH(t,Xθk

t , P
θk

t , θk+1
t)−∇xH(t,Xθk

t , P
θk

t , θkt)‖2dt. ≤ 0.

and so
max
θ
H̃(Xθk

t , P
θk

t , θ, Ẋθk

t , Ṗ
θk

t) = H̃(Xθk

t , P
θk

t , θk, Ẋ
θk

t , Ṗ
θk

t),

i.e. (Xθk , P θ
k
, θk) satisfy the extended PMP. In other words, the quantity µk ≥ 0 measures

the distance from a solution of the extended PMP, and if it equals 0, then we have a solution.
We now prove the following result that guarantees the convergence of the extended MSA
(Algorithm 2).

Theorem 4 Let (A1)-(A2) be satisfied and θ0 ∈ U be any initial measurable control with
J(θ0) < +∞. Suppose also that infθ∈U J(θ) > −∞. Then, for ρ large enough, we have
under Algorithm 2,

J(θk+1)− J(θk) ≤ −Dµk.

for some constant D > 0 and
lim
k→0

µk = 0,

i.e. the extended MSA algorithm converges to the set of solutions of the extended PMP.

Proof Using Lemma 2 with θ ≡ θk, φ ≡ θk+1, we have

J(θk+1)− J(θk) ≤− µk + C

∫ T

0
‖f(t,Xθk

t , θ
k+1
t)− f(t,Xθk

t , θ
k
t)‖2dt

+ C

∫ T

0
‖∇xH(t,Xθk

t , P
θk

t , θk+1
t)−∇xH(t,Xθk

t , P
θk

t , θkt)‖2dt.

From the Hamiltonian maximization step in Algorithm 2, we know that

H(t,Xθk

t , P
θk

t , θkt) ≤H(t,Xθk

t , P
θk

t , θk+1
t)

− 1

2
ρ‖f(t,Xθk

t , θ
k+1
t)− f(t,Xθk

t , θ
k
t)‖2

− 1

2
ρ‖∇xH(t,Xθk

t , P
θk

t , θk+1
t)−∇xH(t,Xθk

t , P
θk

t , θkt)‖2.

Hence, we have

J(θk+1)− J(θk) ≤ −(1− 2C

ρ
)µk.

Pick ρ > 2C, then we indeed have J(θk+1) − J(θk) ≤ −Dµk with D = (1 − 2C
ρ) > 0.

Moreover, we can rearrange and sum the above expression to get

M∑
k=0

µk ≤ D−1(J(θ0)− J(θM+1)) ≤ D−1(J(θ0)− inf
θ∈U

J(θ)),

9

Li, Chen, Tai and E

and hence
∑∞

k=0 µk < +∞, which implies µk → 0 and the extended MSA converges to a
solution of the extended PMP.

Algorithm 2: Extended MSA

1 Initialize: θ0 ∈ U . Hyper-parameter: ρ ;
2 for k = 0 to #Iterations do

3 Solve Ẋθk
t = f(t,Xθk

t , θ
k
t), Xθk

0 = x;

4 Solve Ṗ θ
k

t = −∇xH(t,Xθk
t , P

θk
t , θkt), P θ

k

T = −∇Φ(Xθk

T);

5 Set θk+1
t = arg maxθ∈Θ H̃(t,Xθk

t , P
θk
t , θ, Ẋθk

t , Ṗ
θk
t) for each t ∈ [0, T];

6 end

4. Discrete-Time Formulation

In the previous section, we discussed the PMP and MSA in the continuous-time setting,
where we showed that an appropriately extended version (E-MSA) converges to a solution
of an extended PMP. Here, we shall discuss the discretized versions of PMP, MSA and
E-MSA, as well as their connections to deep residual networks and back-propagation.

4.1 Discrete-Time PMP and Discrete-Time MSA

Applying Euler-discretization to Equation 1, we get

xn+1 = xn + δfn(xn, ϑn), x0 = x,

for n = 0, . . . , N − 1, with δ = T/N (step-size), xn := Xnδ, ϑn := θnδ and fn(·) := f(nδ, ·).
Then, the discrete-time analogue of the control problem (2) is

min
{ϑ0,...,ϑN−1}∈ΘN

Φ(xN) + δ
N−1∑
n=0

L(ϑn),

xn+1 = xn + δfn(xn, ϑn), x0 = x, 0 ≤ n ≤ N − 1. (12)

Observe that barring the constant δ, this is exactly the supervised learning problem for
deep residual networks2. Therefore, when suitably discretized, one expects that the E-MSA
provides a means to train residual neural networks via the solution of the extended PMP.

We now write down formally the discretized form of the PMP. Let us use the shorthand
gn(xn, ϑn) := xn + δfn(xn, ϑn). Define the scaled discrete Hamiltonian

Hn(x, p, ϑ) = p · gn(x, ϑ)− δL(ϑ).

Then, a discrete-time PMP is the following set of conditions:

x∗n+1 = gn(x∗n, ϑ
∗
n), x∗0 = x,

p∗n = ∇xHn(x∗n, p
∗
n+1, ϑn), p∗N = −∇xΦ(x∗N),

Hn(x∗n, p
∗
n+1, ϑ

∗
n) ≥ Hn(x∗n, p

∗
n+1, ϑ), ϑ ∈ Θ, n = 0, . . . , N − 1.

2. If we pick ReLU activations (Hahnloser et al., 2000), then δ can be absorbed into ϑ

10

Maximum Principle Based Algorithms for Deep Learning

The issue of whether the PMP holds for discrete time dynamical systems is a delicate one
and there are known counterexamples (Butkovsky, 1963; Jackson and Horn, 1965; Nahorski
et al., 1984). Nevertheless, they must hold approximately for small time step size and
this is the situation we will consider in the current paper. We expect Lemma 2, which
implies monotonicity of the E-MSA algorithm, to hold in the discrete-time case under
appropriate conditions. We leave a rigorous analysis of these statements to future work.
For numerical experiments presented in the next section, we shall almost always work with
residual networks that can be regarded as discretizations of continuous networks so that
the PMP holds approximately at least (Halkin, 1966).

For completeness, we summarize the discrete-time version of E-MSA in Algorithm 3.
Note that for residual networks (gn = xn + δfn), this is equivalent to a forward Euler
discretization on the state equation and a backward Euler discretization on the co-state
equation in Algorithm 2. As before, the Hamiltonian maximization step is decoupled across
layers and can be carried out in parallel.

Algorithm 3: Discrete-time E-MSA

1 Initialize: Initialize: ϑ0
n ∈ Θn, n = 0, . . . , N − 1. Hyper-parameter: ρ ;

2 for k = 0 to #Iterations do

3 Set xθ
k

0 = x ;
4 for n = 0 to N − 1 do

5 xϑ
k

n+1 = gn(xϑ
k

n , ϑ
k
n) ;

6 end

7 Set pϑ
k

N = −∇Φ(xϑ
k

N) ;
8 for n = N − 1 to 0 do

9 pϑ
k

n = ∇xHn(xϑ
k

n , p
ϑk
n+1, ϑ

k
n) ;

10 end
11 for n = 0 to N − 1 do

12 Set ϑk+1
n = arg maxϑ∈Θn

Hn(xϑ
k

n , p
ϑk
n+1, ϑ)− 1

2ρ‖x
ϑk
n+1 − gn(xϑ

k

n , ϑ)‖22 −
1
2ρ‖p

ϑk
n −∇xHn(xϑ

k

n , p
ϑk
n+1, ϑ)‖22;

13 end

14 end

4.2 Relationship to Gradient Descent with Back-propagation

We note an interesting relationship of the MSA with classical gradient descent with back-
propagation (Kelley, 1960; Bryson, 1975; LeCun et al., 1998). We have shown in Lemma 2
that the divergence of MSA can be attributed to the large errors in the Hamiltonian dy-
namics terms caused by the maximization step, which involve drastic changes in parameter
values. Assuming each Θn is a continuum and gn, L are differentiable in ϑn, a simple fix is
to make the maximization step “soft”: we replace step 12 in Algorithm 3 with a gradient
ascent step:

ϑk+1
n = ϑkn + η∇ϑHn(xϑ

k

n , p
ϑk

n+1, ϑ
k
n), (13)

11

Li, Chen, Tai and E

for some small learning rate η. We now show that in the discrete-time setting, this is
equivalent to the classical gradient descent with back-propagation.

Proposition 5 The basic MSA in discrete-time (Algorithm 3 with ρ = 0) with step 12
replaced by (13) is equivalent to gradient descent with back-propagation.

Proof Recall that the Hamiltonian is

Hn := pn+1 · gn(xn, ϑn)− δL(ϑn),

and the total loss function is J(ϑ) = Φ(xN) + δ
∑N−1

n=0 L(ϑn). It is easy to see that pn =
−∇xnΦ(xN) by working backwards from n = N and the fact that ∇xnxn+1 = ∇xgn(xn, ϑn).
Then,

∇ϑnJ(ϑ) =∇xn+1Φ(xN) · ∇ϑnxn+1 + δ∇ϑnL(ϑn)

=− pn+1 · ∇ϑngn(xn, ϑn) + δ∇ϑnL(ϑn)

=−∇ϑnHn.

Hence, (13) is simply the gradient descent step

ϑk+1
n = ϑkn − η∇ϑnJ(ϑk).

As the proposition shows, gradient descent with back-propagation can be seen as a modifi-
cation of the basic MSA by replacing the Hamiltonian maximization step with a gradient
ascent step. However, we note that the PMP (and MSA convergence) holds, at least in
continuous-time, even when differentiability with respect to ϑ is not satisfied, and hence is
more general than the classical back-propagation. In fact, the PMP formalism shows that
the back-propagation of information through a deep network is handled by the co-state
equation and there is no requirement or relationship to the gradients with respect to the
trainable parameters. In other words, optimization is performed at each layer separately
(with or without gradient information), and propagation is independent of optimization.

4.3 A Remark on Mini-batch Algorithms

So far, our discussion has focused on full-batch algorithms, where the input x represents
the full set of training inputs. As modern supervised learning tasks typically involve a
large number of training samples, usually the optimization problem has to be solved in
mini-batches, where at each iteration we sub-sample m input-label pairs and optimize the
parameters θ (or ϑ in discrete time) based on losses evaluated on these pairs. In the context
of continuous-time PMP, we can write the batch version of the three necessary conditions
as

Ẋi,∗
t = ∇pH(t,Xi,∗

t , P i,∗t , θ∗t), Xi,∗
0 = xi,

Ṗ i,∗t = −∇xH(t,Xi,∗
t , P i,∗t , θ∗t), P i,∗T = −∇Φi(Xi,∗

T),

θ∗t = arg max
θ∈Θ

M∑
i=1

H(t,Xi,∗
t , P i,∗t , θ), t ∈ [0, T],

12

Maximum Principle Based Algorithms for Deep Learning

for samples i = 1, . . . ,M . We omit for brevity the equivalent expressions for discrete-time.
In particular, notice that the propagation steps are decoupled across samples, and hence
can be carried out independently. The only difference is the maximization step, where in a
mini-batch setting we would evaluate instead

arg max
θ∈Θ

m∑
i=1

H(t,Xi,∗
t , P i,∗t , θ).

If m is large enough and the samples are independently and identically drawn, then uniform
law of large numbers (Jennrich, 1969) holds under fairly general conditions and ensures that
the mini-batch mean of Hamiltonians converges uniformly in θ to the full-batch sum. Hence,
maximization performed on the mini-batch sum should be close to the actual maximization
on the full Hamiltonian. Rigorous error estimates for the mini-batch version of our algorithm
is out of the scope of the current work, and we use instead numerical results in Section 5
to demonstrate that the algorithm can also be carried out in a mini-batch fashion.

5. Numerical Experiments

In this section, we investigate the performance of E-MSA compared with the usual gradient-
based approaches, namely stochastic gradient descent and its variants: Adagrad (Duchi
et al., 2011) and Adam (Kingma and Ba, 2014). To illustrate key properties of E-MSA,
we shall begin by investigating some synthetic examples. First, we consider a simple one-
dimensional function approximation problem where we want to approximate F (x) = sin(x)
for x ∈ [−π, π] using a continuous time dynamical system. Let T = 5 and consider

Ẋt = f(Xt, θt) = tanh(WtXt + bt),

where θt = (Wt, bt) ∈ R5×5×R5, i.e. a continuous analogue of a fully connected feed forward
neural networks with 5 nodes per layer. To match dimensions, we shall concatenate the
input x to form a five dimensional vector of identical components, which is now the initial
condition to the dynamical system on Rd. The output of the network is

∑5
i=1X

i
T . and

we define the loss function due to one sample to be Φ(XT) = (
∑5

i=1X
i
T − sin(x))2. For

multiple samples, we average the loss function over all samples in the usual way. We apply
E-MSA with discretization size δ = 0.25 (giving 20 layers) and compute the Hamiltonian
maximization step using 10 iterations of limited memory BFGS method (L-BFGS) (Liu
and Nocedal, 1989). In Figure 1(a), we compare the results with gradient descent based
optimization approaches, where we observe that E-MSA has favorable convergence rate
per-iteration. More interestingly, it is well-known that gradient descent may suffer slow
convergence at flat regions or near saddle-points, where the gradients become very small
and optimization may stall for a long time. This often occurs as a result of poor initialization
of weights and biases (Sutskever et al., 2013). Here, we simulate this scenario by initializing
all weights and biases (Wt, bt) to be 0 and observe the optimization process. We see from
Figure 1(b) that gradient descent based methods are more easily stalled at flat regions. We
calculated numerically the eigenvalues of the Hessian at this region, which confirms that this
is indeed very close to a saddle point. On the other hand, the Hamiltonian maximization
in E-MSA can quickly escape the locally flat regions. One possible reason is that second-

13

Li, Chen, Tai and E

order information employed by L-BFGS can off-set the small gradients and provide larger
updates.

0 200 400
k

10 1

100

101
Tr

ai
n

Lo
ss

SGD
Adagrad
Adam
E-MSA

0 200 400
k

10 1

100

101

Te
st

 L
os

s

SGD
Adagrad
Adam
E-MSA

(a)

0 5000 10000
k

10 1

101

Tr
ai

n
Lo

ss

SGD
Adagrad
Adam
E-MSA

0 5000 10000
k

10 1

101
Te

st
 L

os
s

SGD
Adagrad
Adam
E-MSA

(b)

Figure 1: Comparison of E-MSA with gradient-based methods for approximating the sine
function with a continuous, 5-dimensional dynamical system. A training and test set of
1000 samples each are used. (a) Loss function vs iterations for a good initialization, where
weights are initialized with truncated random normal variables with standard deviation
0.1 and biases are initialized as constants equal to 0.1. We see that E-MSA has good
convergence rate per iteration. (b) We use a poor initialization by setting all weights and
biases to 0. We observe that gradient descent based methods tend to become stuck whereas
E-MSA are better at escaping these slow manifolds, provided that ρ is well chosen (=1.0 in
this case).

Next, we consider a familiar supervised learning test problem: the MNIST data set (Le-
Cun, 1998) for handwritten digit recognition, with 55000 training samples and 10000 test
samples. We employ a continuous dynamical system that resembles a (residual) convolution
neural network (LeCun and Bengio, 1995) when discretized. More concretely, at each t we
consider the map f(t, x, θ) = tanh(W ? x + b) where W is a 3 × 3 convolution filter with
32 input and output channels. To match dimensions, we introduce two projection layers
at the input (consisting of convolution, point-wise non-linearities followed by 2 × 2 max-
pooling). We also use a fully-connected classification layer as the final layer, with softmax
cross-entropy loss. Note that the input projection layers and fully-connected output layers

14

Maximum Principle Based Algorithms for Deep Learning

are not of residual form, but we can nevertheless apply Algorithm 3 with the appropriate
g. We use a total of 10 layers (2 projections, 1 fully-connected and 7 residual layers with
δ = 0.5, i.e T = 3.5). The model is trained with mini-batch sizes of 100 using E-MSA and
gradient-descent based methods, namely SGD, Adagrad, and Adam. For E-MSA, we ap-
proximately solve the Hamiltonian maximization step using either 10 iterations of L-BFGS.
Note that since we have decoupled the layers through the PMP, the L-BFGS step used to
maximize H is tractable since it involves much fewer parameters than directly minimizing
J . Figure 2 compares the performance of E-MSA with the other gradient-descent based
methods, where we observe that E-MSA has good performance per-iteration, especially at
early stages of training. However, we also show in Figure 3 that the wall-clock performance
of our methods are not currently competitive, because the Hamiltonian maximization step
is time consuming and the performance gains per iteration is outweighed by the running
time. Note that wall-clock times are compared on the CPU for fairness since we did not
use a GPU implementation of L-BFGS. As a further test, we train the same model on a
different data set, the fashion MNIST data set (Xiao et al., 2017), where we again observe
similar phenomena (see Figure 4). Experiments on more complex data sets such as Ima-
geNet (Deng et al., 2009) with larger residual networks is a direction of future work. In
particular, this may require further improvements to the Hamiltonian maximization step
current handled by direct minimization with L-BFGS, which can be significantly slower (on
a wall-clock basis) for larger networks and data sets.

6. Discussion and Related Work

We commence this section by highlighting the distinguishing features of E-MSA from tradi-
tional gradient-descent based training methods. First, the formulations of PMP and E-MSA
do not involve gradient information with respect to the trainable parameters. In fact, The-
orem 1 and Algorithm 2 remain valid even when the trainable parameters can only take
values in a discrete set. Second, due to a more drastic argmax step taken at each iteration,
E-MSA tends to have better convergence rates at the early steps of training, as observed
in our numerical experiments (Section 5). Third, in the PMP formalism, the Hamiltonian
equations for the state and co-state are the “forward and backward propagations”, whereas
given the state and co-state values, the optimization step is decoupled across layers. This
allows one to potentially parallelize the often time-consuming optimization step. Moreover,
from Lemma 2, we show that as long as the Hamiltonian is sufficiently increased in a layer
without causing too much loss in the Hamiltonian dynamics feasibility conditions, we can
ensure decrement of the loss function. This is the reason why we can use a small number of
iterations of L-BFGS at each step. Moreover, this suggests that the argmax updates need
not happen synchronously, i.e. the optimization in each layer can be a separate thread or
process that computes the argmax and updates that layer’s parameters independent of other
layers. The propagation may also potentially be allowed to happen asynchronously as long
as updates are sufficiently frequent. We leave a rigorous analysis of an asynchronous version
of the current approach to future work. In summary, the main strength of the PMP (over
e.g. solving the KKT conditions using gradient methods) is that PMP says that at the op-
timum, the Hamiltonian is not only stationary (KKT), but globally maximized. This hints
that heuristic global optimization methods can be applied to H to obtain algorithms that

15

Li, Chen, Tai and E

0 1 2 3 4 5 6 7 8 910
Epoch

10 1

100
Tr

ai
n

Lo
ss

SGD
Adagrad
Adam
E-MSA

0 1 2 3 4 5 6 7 8 910
Epoch

10 1

100

Te
st

 L
os

s

SGD
Adagrad
Adam
E-MSA

(a)

0 1 2 3 4 5 6 7 8 910
Epoch

0.80
0.85
0.90
0.95
1.00

Tr
ai

n
Ac

cu
ra

cy

SGD
Adagrad
Adam
E-MSA

0 1 2 3 4 5 6 7 8 910
Epoch

0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

ur
ac

y
SGD
Adagrad
Adam
E-MSA

(b)

Figure 2: Comparison of E-MSA with gradient-based methods for the residual CNN on the
MNIST data set. Mini-batch size of 100 is used so that each epoch of training consists of 550
iterations. (a) Train and test Loss vs epoch. (b) Train and test accuracy vs epoch. For each
case, we tuned the associated hyper-parameters on a coarse grid for optimal performance.
We observe that per-iteration, E-MSA performs favorably, at least at early times. This
shows that if the augmented Hamiltonian can be efficiently maximized, we may obtain
good performance.

are very different in behavior compared with gradient-descent based approaches. Again,
Lemma 2 ensures that such heuristic global maximization need only be approximate.

As it currently stands, our experiments in Section 5 demonstrate that the Hamiltonian
maximization step in E-MSA gives very different behavior compared with gradient-descent
based methods. When the Hamiltonian is sufficiently maximized, we indeed obtain favor-
able performance compared with gradient descent based methods. Furthermore, we saw in
Figure 1 that Hamiltonian maximization may avoid pitfalls such as a very flat landscape.
Overall, the key to whether E-MSA (and other methods based on solving the PMP) will
eventually constitute a replacement for gradient-descent based algorithm lies in the question
of whether efficient Hamiltonian maximization can be performed at reasonable computa-
tional costs. Although this is still a non-convex optimization problem, it is much simpler
than the original training problem because: (1) Optimization in the layers are decoupled and
hence parameter space is greatly reduced; (2) The Hamiltonian is formally similar across

16

Maximum Principle Based Algorithms for Deep Learning

0 20
Seconds

10 1

100

101

Tr
ai

n
Lo

ss

SGD
Adagrad
Adam
E-MSA

0 20
Seconds

10 1

100

101

Te
st

 L
os

s

SGD
Adagrad
Adam
E-MSA

Figure 3: Comparison of E-MSA with gradient-based methods for the residual CNN on the
MNIST data set on a wall-clock basis. We observe that currently, the gains per iteration
is outweighed by the additional computational costs. Note that we did not use a GPU
implementation for the L-BFGS algorithm used to maximize the augmented Hamiltonian,
hence the wall-clock time for E-MSA is expected to be improved. Nevertheless, we expect
that more efficient Hamiltonian maximization algorithms must be developed for E-MSA to
out-perform gradient-based methods in terms of wall-clock efficiency.

different layers, loss functions and models, so specialized algorithms may be designed; (3)
The Hamiltonian does not need to be maximized exactly, thus fast heuristic methods (Lee
and El-Sharkawi, 2008) or learning (Andrychowicz et al., 2016; Jaderberg et al., 2016; Czar-
necki et al., 2017) can potentially be used to perform this. All these are worthy of future
exploration in order to make E-MSA truly competitive.

Next, we put our work in perspective by discussing related work in the optimal control,
optimization and deep learning literature. First, the work on numerical algorithms for the
solution of optimal control problem is abundant (see e.g. Rao 2009 for a survey). Many of
the state-of-the-art techniques in the control theory literature assume a moderately small
problem size, so that conventional non-linear programming techniques (Bertsekas, 1999;
Bazaraa et al., 2013) as well as shooting (Roberts and Shipman, 1972) and collocation
methods (Betts, 1998) produce efficient algorithms. This is usually not the case for large-
scale machine learning problems, where often, the only scalable approach is to rely on
iterative updates to the parameters. This is the reason for our focus on the MSA algo-
rithms (Chernousko and Lyubushin, 1982), as they are straight-forward to implement and
typically have linear scaling in computational complexity with respect to the input and
parameter sizes. The basic MSA is discussed in Krylov and Chernousko (1962), and a num-
ber of improved variants are discussed in Chernousko and Lyubushin (1982) and references
therein. For example, a popular improvement is based on needle-perturbations, where con-
trols are varied on small intervals at each iteration. While convergent, the main issue with
the needle-perturbation approach is the requirement of a sufficiently fine mesh (i.e. many
layers in the discretized network), which impacts computational speed. A possible solution
is the use of adaptive meshes, which is a future direction we plan to investigate. Our vari-
ant of the MSA presented in this work differs from classical approaches (Chernousko and
Lyubushin, 1982) mainly in the sense that we solve a weaker sufficient condition (extended

17

Li, Chen, Tai and E

0 1 2 3 4 5 6 7 8 910
Epoch

100
Tr

ai
n

Lo
ss

SGD
Adagrad
Adam
E-MSA

0 1 2 3 4 5 6 7 8 910
Epoch

100

Te
st

 L
os

s

SGD
Adagrad
Adam
E-MSA

(a)

0 1 2 3 4 5 6 7 8 910
Epoch

0.6

0.7

0.8

0.9

Tr
ai

n
Ac

cu
ra

cy

SGD
Adagrad
Adam
E-MSA

0 1 2 3 4 5 6 7 8 910
Epoch

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y
SGD
Adagrad
Adam
E-MSA

(b)

Figure 4: Comparison of E-MSA with gradient-based methods for the residual CNN on the
fashion MNIST data set. We use the same network structure and mini-batch sizes as in
Figure 2. The hyper-parameters have to be slightly re-tuned. (a) Train and test Loss vs
epoch. (b) Train and test accuracy vs epoch. Again, we observe E-MSA performs favorably
per-iteration.

PMP, Proposition 3), which then allows us to control errors in the Hamiltonian dynamical
equations at every iteration without going into finer mesh-sizes. The regularization terms
proportional to ρ is similar to the heuristic modifications suggested in Lyubushin (1982) by
regularizing the distance between θk and θk+1, but we do not have to assume convexity of
Θ or that f is Lipschitz in θ.

In the optimization literature, our work shares some similarity with the recently pro-
posed ADMM methods (Taylor et al., 2016) for training deep neural networks, where the
authors also considered necessary conditions with Lagrange multipliers that can decou-
ple optimization across layers. The main difference in our work is that the PMP gives a
stronger necessary condition (Hamiltonian maximization) that also applies to general pa-
rameter spaces (e.g., discrete, or bounded with non-linear constraints). Our modification
of the basic MSA in terms of the augmented Hamiltonian is inspired by the method of
augmented Lagrangians often applied in constrained optimization (Hestenes, 1969). The
idea of viewing an initially discrete system as the discretization of a continuous-time system

18

Maximum Principle Based Algorithms for Deep Learning

has been explored in Li et al. (2017) in the form of stochastic optimization. Our current
work is also in this flavor, but for neural network models.

In deep learning, there are a few works that share our perspective of deep neural net-
works as a discretization of a dynamical system. We note that the connection between the
PMP and back-propagation has been pointed out qualitatively in LeCun (1988) and in the
development of back-propagation (Bryson, 1975; Baydin et al., 2015), although to the best
of our knowledge, this work is the first attempt to translate numerical algorithms for the
PMP into training algorithms for deep learning that goes beyond gradient descent. The
treatment of machine learning as function approximation via a dynamical system has been
presented in E (2017). The recent work of Haber and Ruthotto (2017); Chang et al. (2017)
also propose the dynamical systems viewpoint, and the authors used continuous-time tools
to address stability issues. In contrast, our work focuses on the optimization aspects cen-
tered around the PMP. We also mention other recent approaches to decouple optimization
in deep neural networks, such as synthetic gradients (Jaderberg et al., 2016; Czarnecki et al.,
2017) and proximal back-propagation (Frerix et al., 2017).

7. Conclusion and Outlook

In this paper, we discuss the viewpoint that deep residual neural networks can be viewed as
discretization of a continuous-time dynamical system, and hence supervised deep learning
can be regarded as solving an optimal control problem in continuous time. We explore a
concrete consequence of this connection, by modifying the classical method of successive
approximations for solving optimal control problems (in particular the PMP) into a method
for solving a weaker sufficient condition (extended PMP). We prove the convergence of the
resulting algorithm (E-MSA) and test it on various benchmark problems, where we observe
that the E-MSA algorithm performs favorably on a per-iteration basis, especially at early
stages of training, compared with gradient-based approaches such as SGD, Adagrad and
Adam.

There are many avenues of future research. On the algorithmic side, it is necessary to
further improve the computational efficiency of the E-MSA, in particular the Hamiltonian
maximization step. Moreover, adaptive selection of ρ depending on iteration number and/or
layer can be explored, e.g. by designing adaptive tuning schemes using control theoretic
tools (Li et al., 2017). Also, it is desirable to formulate and analyze the PMP and E-MSA
from a discrete-time perspective in order to broaden the method’s application. From a
modeling perspective, viewing deep neural networks as continuous-time dynamical systems
is useful in the sense that it allows one to think of neural network architectures as dynamical
objects. Indeed, at each training iteration of the E-MSA, we do not have to use the same
discretization scheme to compute the Hamiltonian dynamical equations. Also, as the PMP
and E-MSA assume little structure on the parameter space Θ, it will also be interesting
to apply the E-MSA to train neural networks that have discrete weights (e.g. those that
can only take on binary values). Such networks have the advantage of fast inference speed
and small memory requirement. However, training such networks is a challenge and most
existing techniques rely on approximating or thresholding the derivatives (Courbariaux
et al., 2015, 2016). With the PMP and MSA, we may be able to directly train discrete
networks in a principled way.

19

Li, Chen, Tai and E

Acknowledgments

The work of W. E is supported in part by Major Program of NNSFC under grant 91130005,
ONR grant N00014-13-1-0338, DOE grants DE-SC0008626 and DE-SC0009248 Q. Li is
supported by the Agency for Science, Technology and Research, Singapore.

Appendix A. Function Space Formulation

In this section, we give an alternative, non-rigorous formulation of the supervised learning
problem as an optimal control problem on function spaces. This provides an alternative
formulation of (continuous-time) deep learning that does not make reference to a specific
set of input-outputs, but rather their conditional distributions. The idea is to consider
the control of a continuity equation that describes the evolution of probability densities.
Hereafter, we proceed formally by assuming all differentiability and integrability conditions
are satisfied.

We would like to approximate, using a dynamical systems approach, some target joint
probability density ρ(x, y), where x ∈ X ⊂ Rd is a sample input and y ∈ Y is the corre-
sponding label. In the case where the labels are deterministically determined by the samples,
i.e. there exists F : X → Y such that y = F (x), we would have ρ(x, y) = ρ(x)δ(F (x)− y).
Here, ρ(x) is the marginal density of ρ(x, y). In general, we can write ρ(x, y) = ρ(y|x)ρ(x).

As before, the idea is to consider passing the inputs through a dynamical system

Ẋt = f(t,Xt, θt), X0 = x. (14)

We begin with a guess of a conditional density ρ0(y|x) of y given x. In the deterministic
case, we may set ρ0(y|x) = δ(y − F0(x)) for some F0 : X → Y (this is like the last layer
of the neural network, be it a regressor or a classifier). Note that F0 is potentially very
different from F , so that ρ0(·|x) is far from our target ρ(·|x).

To improve this approximation, we drive the initial condition by the controllable dy-
namical system (14). That is, we define the approximation at time t of ρ(y|x) to be
ρt(y|x) := 〈ρ0(y|·), ut〉, with ut denoting the probability density of Xt at time t (push-
forward distribution of Xt according to (14)). It is well-known that ut follows the continuity
equation, or Liouville equation (Gibbs, 2014); or forward Kolmogorov equation in stochastic
processes, but with zero noise (Risken, 1996),

d

dt
ut = −div(f(t, ·, θt)ut), u0 = δx, (15)

where divu =
∑

i ∂u/∂xi is the divergence operator and δx(x′) = δ(x− x′) is a point-mass
at x. We shall assume that ut ∈ H ⊂ L2(Rd) for some function space H, for all t ∈ (0, T].

The goal now is to adjust θ ∈ U so that ρt(·|x) is close to ρ(·|x). To this end, we define
a differentiable loss function Φ(ρ1, ρ2) that measures distances between two conditional
densities ρ1, ρ2 (e.g., L2 loss, K-L divergence). Then, the learning problem can be formulated

20

Maximum Principle Based Algorithms for Deep Learning

as the following optimal control problem:

min
θ∈U

Ex∼ρ
[
Φ(ρt(·|x), ρ(·|x)) +

∫ T

0
L(θt)dt

]
,

d

dt
ut = −div(f(t, ·, θt)ut), u0 = δx. (16)

As before, L is a regularizer on the trainable parameters. Now, (16) is an optimal control
problem on the function space H.

We now write down formally a set of necessary conditions for optimality, in the form of
the Pontryagin’s maximum principle, for the present function-space control problem (16).
Define the Hamiltonian functional H : [0, T]×H×H×Θ→ R

H(t, u, v, θ) := −〈v,div(f(t, ·, θ)u)〉 − L(θ)

= −
∫
Rd

v(x)
d∑
i=1

∂

∂xi
(f(t, x, θ)u(x))dx− L(θ).

Then, the Pontryagin’s maximum principle for this system is expected to take the form: let
θ∗ ∈ U be an optimal control, then there exists a co-state process vt ∈ H such that

d

dt
u∗t = DvH(t, u∗t , v

∗
t , θ
∗
t), u∗0 = δx,

d

dt
v∗t = −DuH(t, u∗t , v

∗
t , θ
∗
t), v∗T = −DuΦ(〈ρ0, u

∗
T 〉, ρ(·|x))

Ex∼ρH(t, u∗t , v
∗
t , θ
∗
t) ≥ Ex∼ρH(t, u∗t , v

∗
t , θ), θ ∈ Θ, t ∈ [0, T],

where D denotes the usual Fréchet derivative. Note that by definition, we have DvH =
−div(fu) and DuH = f · ∇xv. Observe that the co-state v∗ satisfies the (time-reversed)
adjoint Liouville’s equation with a specified terminal condition. The PMP for similar func-
tional optimal control problems has been studied in, among others, Pogodaev (2016); Roy
and Borz (2017), albeit without the expectation over initial density.

In summary, the advantage of this formulation is that we make no explicit reference to
the training data or target functions and formulate the entire problem as a control problem
on probability densities. Of course, in practice, to implement an MSA-like algorithm, the
terminal condition of the co-state will depend on the target joint density, which we can
only access through the sampled data. A rigorous analysis of this function space control
formulation and its consequences will be explored in future work.

Appendix B. Proof of Lemma 2

First, observe that assumptions (A1)-(A2) in the main text implies that the second deriva-
tives of f and Φ are bounded by K. Provided that P θt is bounded, they also imply that the
second derivatives of H with respect to x and p are bounded when evaluated on Xθ

t , P
θ
t , θt.

We first establish the boundedness of P θt .

Lemma 6 Assume that (A1)-(A2) hold. Then, there exists a constant K ′ > 0 such that
for any θ,

‖P θt ‖ ≤ K ′,

21

Li, Chen, Tai and E

for all t ∈ [0, T].

Proof Using (7) and setting τ := T − t, P̃ θτ := P θT−τ we get

˙̃P θτ = P̃ θτ · ∇xf(t,Xθ
T−τ , T − τ), P̃ θ0 = −∇Φ(Xθ

T).

Using (A1)-(A2), we have ‖P θT ‖ = ‖∇xΦ(Xθ
T)‖ ≤ K and ‖∇xf(t,Xθ

t , θt)‖2 ≤ K. Hence,

‖ ˙̃P θτ ‖ ≤ K‖P̃ θτ ‖,

and by Gronwall’s inequality,
‖P̃ θτ ‖ ≤ KeKT =: K ′.

This proves the claim since it holds for any τ .

We now prove Lemma 2. The approach here is similar to that employed in Rozonoer
(1959).
Proof [Proof of Lemma 2] From (6) and the definition of the Hamiltonian, we have for any
θ ∈ U ,

I(Xθ, P θ, θ) :=

∫ T

0
P θt · Ẋθ

t −H(t,Xθ
t , P

θ
t , θt)− L(θt)dt ≡ 0.

Denote δXt = Xφ
t −Xθ

t and δPt = P φt − P θt , then we have

0 ≡I(Xφ, P φ, φ)− I(Xθ, P θ, θ)

=

∫ T

0
P θt · δẊt + δPt · Ẋθ

t + δPt · δẊtdt

−
∫ T

0
H(t,Xφ

t , P
φ
t , φt)−H(t,Xθ

t , P
θ
t , θt)dt

−
∫ T

0
L(φt)− L(θt)dt. (17)

Now, by integration by parts∫ T

0
P θt · δẊtdt =P θt · δXt

∣∣∣T
0
−
∫ T

0
Ṗ θt · δXtdt, (18)∫ T

0
δPt · δẊtdt =δPt · δXt

∣∣∣T
0
−
∫ T

0
δṖt · δXtdt. (19)

Using (6), (7) and (18), we have∫ T

0
P θt · δẊt + δPt · Ẋθ

t dt

=P θt · δXt

∣∣∣T
0

+

∫ T

0

(
f(t,Xθ

t ; θt) · δP +∇xH(t,Xθ
t , P

θ
t , θt) · δX

)
dt

=P θt · δXt

∣∣∣T
0

+

∫ T

0

(
∇zH(t, Zθt , θt) · δZ

)
dt. (20)

22

Maximum Principle Based Algorithms for Deep Learning

where in the last line we defined Zθ := (Xθ, P θ). Similarly, from (19) we get∫ T

0
δPt · δẊtdt =

1

2

∫ T

0
δPt · δẊtdt+

1

2

∫ T

0
δPt · δẊtdt

=
1

2
δPt · δXt

∣∣∣T
0

+
1

2

∫ T

0

(
[∇zH(t, Zφt , φt)−∇zH(t, Zθt , θt)] · δZt

)
dt

=
1

2
δPt · δXt

∣∣∣T
0

+
1

2

∫ T

0
[∇zH(t, Zθt , φt)−∇zH(t, Zθt , θt)] · δZtdt

+
1

2

∫ T

0
δZt · ∇2

zH(t, Zθt + r1(t)δZt, φt) · δZtdt. (21)

where we have used Taylor’s theorem in the last step with r1(t) ∈ [0, 1]. We now rewrite
the boundary terms. Since δX0 = 0, we have

(P θt +
1

2
δPt) · δXt

∣∣∣T
0

= (P θT +
1

2
δPT) · δXT

=−∇Φ(Xθ
T) · δXT −

1

2
(∇Φ(Xφ

T)−∇Φ(Xθ
T)) · δXT

=−∇Φ(Xθ
T) · δXT −

1

2
δXT · ∇2Φ(Xθ

T + r2δXT) · δXT

=− (Φ(Xφ
T)− Φ(Xθ

T))− 1

2
δXT · (∇2Φ(Xθ

T + r2δXT) +∇2Φ(Xθ
T + r3δXT)) · δXT , (22)

for some r2, r3 ∈ [0, 1]. Lastly, for each t ∈ [0, T] we have

H(t, Zφt , φt)−H(t, Zθt , θt) =H(t, Zθt , φt)−H(t, Zθt , θt)

+∇zH(t, Zθt , φt) · δZt

+
1

2
δZt · ∇2

zH(t, Zθt + r4(t)δZt, φt) · δZt, (23)

where r4(t) ∈ [0, 1].
Substituting (20), (21), (22), (23) into (17), we obtain[

Φ(Xφ
T) +

∫ T

0
L(φt)

]
−
[
Φ(Xθ

T) +

∫ T

0
L(θt)

]
=

1

2
δXT · (∇2Φ(Xθ

T + r2δXT) +∇2Φ(Xθ
T + r3δXT)) · δXT

−
∫ T

0
∆Hφ,θ(t)dt

+
1

2

∫ T

0
(∇zH(t, Zθt , φt)−∇zH(t, Zθt , θt)) · δZtdt

+
1

2

∫ T

0

(
δZt · [∇2

zH(t, Zθt + r1(t)δZt, φt)−∇2
zH(t, Zθt + r4(t)δZt, φt)] · δZt

)
dt. (24)

23

Li, Chen, Tai and E

The left hand side is simply J(φ)− J(θ), and so it remains to estimate the right hand side
terms. First, let us estimate δX and δP . By definition,

δẊt = f(t,Xφ
t , φt)− f(t,Xθ

t , θt).

Integrating, we get

δXt =

∫ t

0
f(t,Xφ

s , φs)− f(t,Xθ
s , θs)ds,

and so

‖δXt‖ ≤
∫ t

0
‖f(t,Xφ

s , φs)− f(t,Xθ
s , θs)‖ds

≤
∫ t

0
‖f(t,Xφ

s , φs)− f(t,Xθ
s , φs)‖ds

+

∫ t

0
‖f(t,Xθ

s , φs)− f(t,Xθ
s , θs)‖ds

≤
∫ T

0
‖f(t,Xθ

s , φs)− f(t,Xθ
s , θs)‖ds

+K

∫ t

0
‖δXs‖dt. (25)

By Gronwall’s inequality, we have

‖δXt‖ ≤ eKT
∫ T

0
‖f(t,Xθ

s , φs)− f(t,Xθ
s , θs)‖ds. (26)

To estimate δP , we use the same substitution as in Lemma 6 with τ = T − t and ·̃τ = ·T−t.
We get

δP̃τ = δP̃0 +

∫ τ

0
∇xH(t, X̃φ

s , P̃
φ
s , φ̃s)−∇xH(t, X̃θ

s , P̃
θ
s , θ̃s)ds,

and hence using Lemma 6 and assumptions (A1)-(A2),

‖δP̃τ‖ ≤‖δP̃0‖+

∫ τ

0
‖∇xH(t, X̃φ

s , P̃
φ
s , φ̃s)−∇xH(t, X̃θ

s , P̃
θ
s , θ̃s)‖ds

≤K‖δXT ‖+KK ′
∫ T

0
‖δXs‖ds+K

∫ τ

0
‖δP̃s‖ds

+

∫ T

0
‖∇xH(t,Xθ

s , P
θ
s , φs)−∇xH(t,Xθ

s , P
θ
s , θs)‖ds

≤eKTK(‖δXT ‖+K ′
∫ T

0
‖δXs‖ds)

+ eKT
∫ T

0
‖∇xH(t,Xθ

s , P
θ
s , φs)−∇xH(t,Xθ

s , P
θ
s , θs)‖ds. (27)

24

Maximum Principle Based Algorithms for Deep Learning

Using estimate (26), we obtain

‖δPt‖ ≤e2KTK(1 +K ′T)

∫ T

0
‖f(t,Xθ

s , φs)− f(t,Xθ
s , θs)‖ds

+ eKT
∫ T

0
‖∇xH(t,Xθ

s , P
θ
s , φs)−∇xH(t,Xθ

s , P
θ
s , θs)‖ds. (28)

Now, we substitute estimates (26) and (28) into (24) and rename constants for simplicity.
Note that by assumptions (A1)-(A2) and Lemma 6, all the second derivative terms are
bounded element-wise by some constant K ′′. Hence, we have |δZt ·A · δZt| ≤ K ′′‖δZ‖2 for
each A being a second derivative matrix. Thus we obtain

J(φ)− J(θ) ≤−
∫ T

0
∆Hφ,θ(t)dt

+
1

2
K ′′‖δXT ‖2

+K ′′
∫ T

0
(‖δXt‖2 + ‖δPt‖2)dt

+
1

2

∫ T

0
‖δXt‖‖f(t,Xθ

t , φt)− f(t,Xθ
t , θt)‖dt

+
1

2

∫ T

0
‖δPt‖‖∇xH(t,Xθ

t , P
θ
t , φt)−∇xH(t,Xθ

t , P
θ
t , θt)‖dt

≤−
∫ T

0
∆Hφ,θ(t)dt

+ C

(∫ T

0
‖f(t,Xθ

t , φt)− f(t,Xθ
t , θt)‖dt

)2

+ C

(∫ T

0
‖∇xH(t,Xθ

t , P
θ
t , φt)−∇xH(t,Xθ

t , P
θ
t , θt)‖2dt

)2

(29)

≤−
∫ T

0
∆Hφ,θ(t)dt

+ C

∫ T

0
‖f(t,Xθ

t , φt)− f(t,Xθ
t , θt)‖2dt

+ C

∫ T

0
‖∇xH(t,Xθ

t , P
θ
t , φt)−∇xH(t,Xθ

t , P
θ
t , θt)‖2dt.

Remark 7 For applications, the global Lipschitz condition (A2) w.r.t. x on f may be
restrictive. Note that this can be replaced by a local Lipschitz condition if we can show that
Xt, t ∈ [0, T] is bounded for all θ ∈ U . This is true if the parameter space Θ is bounded,
which we can safely assume in practice, as long as a suitable regularization is used that
prevents the parameters from getting arbitrarily large. Alternatively, a projection step can
be used to restrict the parameters to a bounded set. In either cases, this should not negatively
affect the performance of the model.

25

Li, Chen, Tai and E

References

Vladimir V Aleksandrov. On the accumulation of perturbations in the linear systems with
two coordinates. Vestnik MGU, 3, 1968.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient descent.
In Advances in Neural Information Processing Systems, pages 3981–3989, 2016.

Michael Athans and Peter L Falb. Optimal control: an introduction to the theory and its
applications. Courier Corporation, 2013.

Atilim G Baydin, Barak A Pearlmutter, Alexey A Radul, and Jeffrey M Siskind. Automatic
differentiation in machine learning: a survey. arXiv preprint arXiv:1502.05767, 2015.

Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M Shetty. Nonlinear programming:
theory and algorithms. John Wiley & Sons, 2013.

Richard Bellman. Dynamic programming. Courier Corporation, 2013.

Yoshua Bengio. Learning deep architectures for AI. Foundations and trends in Machine
Learning, 2(1):1–127, 2009.

Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena scientific
Belmont, MA, 1995.

Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

John T Betts. Survey of numerical methods for trajectory optimization. Journal of Guidance
control and dynamics, 21(2):193–207, 1998.

Vladimir Grigor’evich Boltyanskii, Revaz Valer’yanovich Gamkrelidze, and Lev Semenovich
Pontryagin. The theory of optimal processes. i. the maximum principle. Technical report,
TRW SPACE TECHNOLOGY LABS LOS ANGELES CALIF, 1960.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010, pages 177–186. Springer, 2010.

Alberto Bressan and Benedetto Piccoli. Introduction to mathematical control theory. AIMS
series on applied mathematics, Philadelphia, 2007.

Arthur Earl Bryson. Applied optimal control: optimization, estimation and control. CRC
Press, 1975.

Anatolii B Butkovsky. Necessary and sufficient optimality conditions for sampled-data
control systems. Avtomat. i Telemekh, 24(8):1056–1064, 1963.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham.
Reversible architectures for arbitrarily deep residual neural networks. arXiv preprint
arXiv:1709.03698, 2017.

26

Maximum Principle Based Algorithms for Deep Learning

Felix L Chernousko and Alexey A Lyubushin. Method of successive approximations for
solution of optimal control problems. Optimal Control Applications and Methods, 3(2):
101–114, 1982.

Francis Clarke. The maximum principle in optimal control, then and now. Control and
Cybernetics, 34(3):709, 2005.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training
deep neural networks with binary weights during propagations. In Advances in Neural
Information Processing Systems, pages 3123–3131, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep neural networks with weights and activations
constrained to + 1 or - 1. arXiv preprint arXiv:1602.02830, 2016.

Wojciech M Czarnecki, Grzegorz Świrszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals,
and Koray Kavukcuoglu. Understanding synthetic gradients and decoupled neural inter-
faces. arXiv preprint arXiv:1703.00522, 2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):
2121–2159, 2011.

Weinan E. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5(1):1–11, 2017.

Thomas Frerix, Thomas Möllenhoff, Michael Moeller, and Daniel Cremers. Proximal back-
propagation. arXiv preprint arXiv:1706.04638, 2017.

J Willard Gibbs. Elementary principles in statistical mechanics. Courier Corporation, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. arXiv
preprint arXiv:1705.03341, 2017.

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas, and
H Sebastian Seung. Digital selection and analogue amplification coexist in a cortex-
inspired silicon circuit. Nature, 405(6789):947, 2000.

Hubert Halkin. A maximum principle of the pontryagin type for systems described by
nonlinear difference equations. SIAM Journal on control, 4(1):90–111, 1966.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

27

Li, Chen, Tai and E

Magnus R Hestenes. Multiplier and gradient methods. Journal of optimization theory and
applications, 4(5):303–320, 1969.

R Jackson and F Horn. On discrete analogues of pontryagin’s maximum principle. Inter-
national Journal of Control, 1(4):389–395, 1965.

Max Jaderberg, Wojciech M Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, and
Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. arXiv preprint
arXiv:1608.05343, 2016.

Robert I Jennrich. Asymptotic properties of non-linear least squares estimators. The Annals
of Mathematical Statistics, 40(2):633–643, 1969.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in neural information processing systems, pages 315–
323, 2013.

Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–954, 1960.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Ivan A Krylov and Felix L Chernousko. On the method of successive approximations for
solution of optimal control problems. J. Comp. Mathem. and Mathematical Physics, 2
(6), 1962.

Yann LeCun. A theoretical framework for back-propagation. In The Connectionist Models
Summer School, volume 1, pages 21–28, 1988.

Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

Kwang Y Lee and Mohamed A El-Sharkawi. Modern heuristic optimization techniques:
theory and applications to power systems, volume 39. John Wiley & Sons, 2008.

Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and adaptive stochas-
tic gradient algorithms. In International Conference on Machine Learning, pages 2101–
2110, 2017.

Daniel Liberzon. Calculus of variations and optimal control theory: a concise introduction.
Princeton University Press, 2012.

28

Maximum Principle Based Algorithms for Deep Learning

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical programming, 45(1):503–528, 1989.

Alexey A Lyubushin. Modifications of the method of successive approximations for solving
optimal control problems. USSR Computational Mathematics and Mathematical Physics,
22(1):29–34, 1982.

Zbigniew Nahorski, Hans F Ravn, and René Victor Valqui Vidal. The discrete-time maxi-
mum principle: a survey and some new results. International Journal of Control, 40(3):
533–554, 1984.

Nikolay Pogodaev. Optimal control of continuity equations. Nonlinear Differential Equa-
tions and Applications, 23(2):21, 2016.

Lev S Pontryagin. Mathematical theory of optimal processes. CRC Press, 1987.

Anil V Rao. A survey of numerical methods for optimal control. Advances in the Astro-
nautical Sciences, 135(1):497–528, 2009.

Hannes Risken. Fokker-planck equation. In The Fokker-Planck Equation, pages 63–95.
Springer, 1996.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

Sanford M Roberts and Jerome S Shipman. Two-point boundary value problems: shooting
methods. SIAM Rev., 16(2):265266, 1972.

Souvik Roy and Alfio Borz. Numerical investigation of a class of liouville control problems.
J Sci Comput, 73:178, 2017.

Lev I Rozonoer. The maximum principle of L.S. Pontryagin in optimal-system theory.
Automation and Remote Control, 20(10):11, 1959.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:
85–117, 2015.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine
learning, pages 1139–1147, 2013.

Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Gold-
stein. Training neural networks without gradients: A scalable ADMM approach. In
International Conference on Machine Learning, pages 2722–2731, 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

29

	Introduction
	Function Approximation by Dynamical Systems
	Pontryagin's Maximum Principle

	Method of Successive Approximations
	Basic MSA
	Error Estimate for the Basic MSA
	Extended PMP and Extended MSA

	Discrete-Time Formulation
	Discrete-Time PMP and Discrete-Time MSA
	Relationship to Gradient Descent with Back-propagation
	A Remark on Mini-batch Algorithms

	Numerical Experiments
	Discussion and Related Work
	Conclusion and Outlook
	Function Space Formulation
	Proof of Lemma 2

