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Abstract
Given matrices X ,Y ∈Rn×K and S∈RK×K with positive elements, this paper proposes an algorithm
fastRG to sample a sparse matrix A with low rank expectation E(A) =XSY T and independent Pois-
son elements. This allows for quickly sampling from a broad class of stochastic blockmodel graphs
(degree-corrected, mixed membership, overlapping) all of which are specific parameterizations of
the generalized random product graph model defined in Section 2.2. The basic idea of fastRG is to
first sample the number of edges m and then sample each edge. The key insight is that because of
the the low rank expectation, it is easy to sample individual edges. The naive “element-wise” algo-
rithm requires O(n2) operations to generate the n×n adjacency matrix A. In sparse graphs, where
m = O(n), ignoring log terms, fastRG runs in time O(n). An implementation in R is available on
github. A computational experiment in Section 2.4 simulates graphs up to n = 10,000,000 nodes
with m = 100,000,000 edges. For example, on a graph with n = 500,000 and m = 5,000,000,
fastRG runs in less than one second on a 3.5 GHz Intel i5.

Keywords: Random Dot Product Graph, Edge exchangeable, Simulation

1. Introduction

The random dot product graph (RDPG) model serves as a test bed for various types of clustering
and statistical inference algorithms. This model generalizes the Stochastic Blockmodel (SBM), the
Overlapping SBM, the Mixed Membership SBM, and the Degree-Corrected SBM (Holland et al.,
1983; Latouche and Ambroise, 2011; Airoldi et al., 2008; Karrer and Newman, 2011). Under the
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RDPG, each node i has a (latent) node feature xi ∈ RK and the probability that node i and j share
an edge is parameterized by 〈xi,x j〉 (Young and Scheinerman, 2007).

While many network analysis algorithms only require O(m) operations, where m is the number
of edges in the graph, sampling RDPGs with the naive “element-wise” algorithm takes O(n2) op-
erations, where n is the number of nodes. In particular, sparse eigensolvers compute the leading k
eigenvectors of such graphs in O(km) operations (e.g. in ARPACK Lehoucq et al. 1995). As such,
sampling an RDPG is a computational bottleneck in simulations to examine many network analysis
algorithms.

The organization of this paper is as follows. Section 2 gives fastRG. Section 2.1 relates fastRG
to xlr, a new class of edge-exchangeable random graphs with low-rank expectation. Section 2.2
presents a generalization of the random dot product graph. Theorem 4 shows that fastRG samples
Poisson-edge graphs from this model. Then, Theorem 7 in Section 2.3 shows how fastRG can
be used to approximate a certain class of Bernoulli-edge graphs. Section 2.4 describes our imple-
mentation of fastRG (available at https://github.com/karlrohe/fastRG) and assesses the
empirical run time of the algorithm.

1.1. Notation

Let G = (V,E) be a graph with the node set V = {1, . . . , n} and the edge set E contains edge (i, j) if
node i is connected to node j. In a directed graph, each edge is an ordered pair of nodes while in an
undirected graph, each edge is an unordered pair of nodes. A multi-edge graph allows for repeated
edges. In any graph, a self-loop is an edge that connects a node to itself. Let the adjacency matrix
A∈Rn×n contain the number of edges from i to j in element Ai j. For column vectors x∈Ra, z∈Rb

and S ∈Ra×b, define 〈x,z〉S = xT Sz; this function is not necessarily a proper inner product because
it does not require that S is non-negative definite. We use standard big-O and little-o notations, i.e.
for sequence xn, yn; xn = o(yn) when yn is nonzero implies limn→∞ xn/yn = 0; xn = O(yn) implies
there exists a positive real number M and an integer N such that |xn| ≤M|yn|, ∀n≥ N.

2. fastRG

fastRG is motivated by the wide variety of low rank graph models that specify the expectation of
the adjacency matrix as E(A) = XSXT for some matrix (or vector) X and some matrix (or value) S.

Types of low rank models X ∈ In each row...
SBM {0,1}n×K a single one
Degree-Corrected SBM Rn×K a single non-zero positive entry
Mixed Membership SBM Rn×K non-negative and sum to one
Overlapping SBM {0,1}n×K a mix of 1s and 0s
Erdős-Rényi {1}n a single one
Chung-Lu Rn a single value

Table 1: Restrictions on the matrix X create different types of well known low rank models. There
are further differences between these models that are not emphasized by this table.
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Given X ∈ Rn×Kx , Y ∈ Rd×Ky and S ∈ RKx×Ky , fastRG samples a random graph. Define A
as the n× d matrix where Ai j counts the number of times edge (I,J) was sampled by fastRG. In
expectation A is XSY T . Importantly, fastRG requires that the elements of X ,Y, and S are non-
negative. This condition holds for all of the low rank models in the above table. Each of those
models set Y = X and enforce different restrictions on the matrix X .

As stated below, fastRG samples a (i) directed graph with (ii) multiple edges and (iii) self-loops.
After sampling, these properties can be modified to create a simple graph (undirected, no repeated
edges, and no self-loops); see Remarks 5 and 6 in Section 2.2 and Theorem 7 in Section 2.3.

Algorithm 1 fastRG(X ,S,Y )
Require: X ∈Rn×Kx , S∈RKx×Ky , and Y ∈Rd×Ky with all matrices containing non-negative entries.

Compute diagonal matrix CX ∈RKx×Kx with CX = diag(∑i Xi1 , . . . , ∑i XiKx).
Compute diagonal matrix CY ∈RKy×Ky with CY = diag(∑iYi1 , . . . , ∑iYiKy).
Define X̃ = XC−1

X , S̃ =CX SCY , and Ỹ = YC−1
Y .

Sample the number of edges m∼ Poisson(∑u,v S̃uv).
for `= 1 : m do

Sample U ∈ {1, . . . , Kx},V ∈ {1, . . . , Ky} with P(U = u,V = v) ∝ S̃uv.
Sample I ∈ {1, . . . , n} with P(I = i) = X̃iU .
Sample J ∈ {1, . . . , d} with P(J = j) = ỸjV .
Add edge (I,J) to the graph, allowing for multiple edges (I,J).

end for

An implementation in R is available at https://github.com/karlrohe/fastRG. As dis-
cussed in Section 2.4, in order to make the algorithm more efficient, the implementation is slightly
different from the statement of the algorithm above.

There are two model classes that can help to interpret the graphs generated from fastRG and
those model classes are explored in the next two subsections. Throughout all of the discussion, the
key fact that is exploited by fastRG is given in the next Theorem.

Theorem 1 Suppose that X ∈Rn×Kx , Y ∈Rd×Ky and S ∈RKx×Ky all contain non-negative entries.
Define xi ∈RKx as the ith row of X. Define y j ∈RKy as the jth row of Y . Let (I,J) be a single edge
sampled inside the for loop in fastRG(X ,S,Y ), then

P((I,J) = (i, j)) ∝ 〈xi,y j〉S.

Proof

P
(
(I,J) = (i, j)

)
= ∑

u,v
P((I,J) = (i, j)|(U,V ) = (u,v)) P((U,V ) = (u,v)))

=
∑u,v X̃iuỸjvS̃uv

∑u,v S̃u,v
=

∑u,v XiuYjvSuv

∑u,v S̃u,v
=

xT
i Sy j

∑a,b xT
a Syb
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2.1. fastRG samples from xlr: a class of edge-exchangeable random graphs

There has been recent interest in edge exchangeable graph models with blockmodel structure (e.g.
Crane and Dempsey 2016; Cai et al. 2016; Herlau et al. 2016; Todeschini and Caron 2016). To
characterize a broad class of such models, we propose xlr. For notational simplicity, the rest of the
paper will suppose that Y = X ∈Rn×K and fastRG(X ,S) = fastRG(X ,S,X).

Definition 2 [xlr] An xlr graph on n nodes and K dimensions is generated as follows,

1. Sample (X ,S) ∈Rn×K×RK×K from some distribution and define xi as the ith row of X.

2. Initialize the graph to be empty.

3. Add independent edges e1,e2, . . . to the graph, where

P(e` = (i, j)) =
〈xi,x j〉S

∑a,b〈xa,xb〉S
.

From Theorem 1, fastRG samples the edges in xlr.
An xlr graph is both (i) edge-exchangeable as defined by Crane and Dempsey (2016) and (ii)

conditional on X and S, its expected adjacency matrix is low rank. By sampling X to satisfy one set
of restrictions specified in Table 1, xlr provides a way to sample edge exchangeable blockmodels.
xlr stands for edge-exchangeable and low rank because it characterizes all edge-exchangeable and
low rank random graph models on a finite number of nodes. In particular, by Theorem 4.2 in
Crane and Dempsey (2016) if a random undirected graph with an infinite number of edges is edge
exchangeable, then the edges are drawn iid from some randomly chosen distribution on edges f .
Moreover, let B be the adjacency matrix of a single edge drawn from f . Under the assumption that
E(B| f ) is rank K, there exist matrices X ∈Rn×K and S ∈RK×K that are a function of f and give the
eigendecomposition E(B| f ) = XSXT . This implies that P(e1 = (i, j)| f ) ∝ 〈xi,x j〉S, where xi is the
ith row of X .

2.2. fastRG samples from a generalization of the RDPG

Under the RDPG as described in Young and Scheinerman (2007), the expectation of the adjacency
matrix is XXT for some matrix X ∈Rn×K . This implies that the expected adjacency matrix is always
non-negative definite (i.e. its eigenvalues are non-negative). However, some parameterizations of
the SBM (and other blockmodels) lead to an expected adjacency matrix with negative eigenvalues
(i.e. it is not non-negative definite); for example, if the off-diagonal elements of S are larger than the
diagonal elements, then XSXT could have negative eigenvalues. Moreover, even if the elements of
X and S are positive, as is the case for the low rank models in Table 1 and as is required for fastRG,
it is still possible for XSXT to have negative eigenvalues. By modifying the RDPG to incorporate a
matrix S, the model class below incorporates all types of blockmodels.

Definition 3 [Generalized Random Product Graph (gRPG) model] For n nodes in K dimensions,
the gRPG is parameterized by X ∈Rn×K and S ∈RK×K , where each node i is assigned the ith row
of X, xi = (Xi1, . . . , XiK)

T ∈RK . For i, j ∈V , define

λi j = 〈xi,x j〉S =
K

∑
k

K

∑
l

XikSklX jl.
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Under the gRPG, the adjacency matrix A∈Rn×n contains independent elements and the distribution
of Ai j (i.e. the number of edge from i to j) is fully parameterized by f (λi j), where f is some mean
function.

Below, we will use the fact that the gRPG only requires that the λi js specify the distribution of
Ai j, allowing for Ai j to be non-binary (as in multi-graphs and weighted graphs) or to have edge
probabilities which are a function of λi j.

Theorem 4 For X ∈ Rn×K and S ∈ RK×K , each with non-negative elements, if Ã is the adjacency
matrix of a graph sampled with fastRG(X ,S), then Ã is a Poisson gRPG with Ãi j∼Poisson(〈xi,x j〉S).

The proof is contained in the appendix.

Remark 5 (Simulating an undirected graph) As defined, both the gRPG model and fastRG gen-
erate directed graphs. An “undirected gRPG” should add a constraint to Definition 3 that Ai j = A ji

for all i, j. To sample such a graph with fastRG, input S/2 instead of S, then after sampling a
directed graph with fastRG, symmetrize each edge by removing its direction (this doubles the prob-
ability of an edge, hence the need to input S/2). Theorem 4 can be easily extended to show this is
an undirected gRPG.

Remark 6 (Simulating a graph without self-loops) As defined, both the gRPG model and fastRG
generate graphs with self-loops. A “gRPG without self-loops” should add a constraint to Definition
3 that Aii = 0 for all i. A graph from fastRG can be converted to a gRPG without self-loops by sim-
ply (1) sampling m∼ Poisson(∑u,v S̃uv−∑i〈xi,xi〉S) and (2) resampling any edge that is a self-loop.
The proof of Theorem 4 can be extended to show that this is equivalent.

2.3. Approximate Bernoulli-edges

To create a simple graph with fastRG (i.e. no multiple edges, no self-loops, and undirected), first
sample a graph with fastRG. Then, perform the modifications described in Remarks 5 and 6. Then,
keep an edge between i and j if there is at least one edge in the multiple edge graph; define the
threshold function, t(Ai j) = 1(Ai j > 0), where t(A) applies element-wise.

If Ã is a Poisson gRPG, then t(Ã) is a Bernoulli gRPG with mean function f (λi j) = 1−
exp(−λi j). Let B be distributed as Bernoulli gRPG(X ,S) with identity mean function,

Bi j ∼ Bernoulli(λi j).

Theorem 7 shows that in the sparse setting, there is a coupling between t(Ã) and B such that t(Ã) is
approximately equal to B. The theorem is asymptotic in n; a superscript of n is suppressed on Ã,B
and λ .

Theorem 7 Let Ã be a Poisson gRPG and let B be a Bernoulli gRPG using the same set of λi js,
with Ãi j ∼ Poisson(λi j) and Bi j ∼ Bernoulli(λi j). Let t(·) be the thresholding function for Ã.

Let αn be a sequence. If λi j = O(αn/n) for all i, j and there exists some constant c > 0 and
N > 0 such that ∑i j λi j > cαnn for all n > N, then there exists a coupling between t(Ã) and B such
that

E‖t(Ã)−B‖2
F

E‖B‖2
F

= O(αn/n).
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For example, in the sparse graph setting where λi j = O(1/n) and ∑i j λi j = O(n), αn = 1. Under
this setting and the coupling defined in the proof, all of the O(n) edges in t(Ã) are contained in B
and B has an extra O(1) more edges than t(Ã).

The condition αn = o(n) implies that all edge probabilities decay. If one is interested in models
where some λi j’s are constant (e.g. certain models with heavy tailed degree distributions), then there
are three possible paths forward.

1. Segment the pairs i, j into two sets (large and small λi j’s) and use two different sampling
techniques on each set.

2. Use fastRG as a proposal distribution for rejection sampling (if for some ε > 0, λi j < 1− ε

for all i, j, then rejection sampling would still be O(m) operations).

3. Use fastRG and expect edge attenuation (no greater than 37%) for high probability edges.

Regarding the third point, consider the coupling in the proof of Theorem 7 without any condition
on λi j. The coupling ensures that every edge in t(Ã) is also contained in B. Conversely, conditioned
on edge i, j appearing in B, then the probability that this edge is included in t(Ã) is a greater than
1− exp(−λi j)≥ 1− exp(−1)> .63.

2.4. Implementation of fastRG

Code at https://github.com/karlrohe/fastRG gives an implementation of fastRG in R. It
also provides wrappers that simulate the SBM, Degree-Corrected SBM, Overlapping SBM, and
Mixed Membership SBM. The code for these models first generates the appropriate X and then
calls fastRG. In order to help control the edge density of the graph, fastRG and its wrappers can be
given an additional argument avgDeg. If avgDeg is given, then the matrix S is scaled so that fastRG
simulates a graph with expected average degree equal to avgDeg. Without this, parameterizations
can easily produce very dense graphs.

To accelerate the running time of fastRG, the implementation is slightly different than the
statement of the algorithm above. The difference can be thought of as sampling all of the (U,V )
pairs before sampling any of the Is or Js. In particular, the implementation samples ϖ ∈ RK×K

as multinomial(m, S̃/∑u,v S̃uv). Then, for each u ∈ {1, . . .K}, it samples ∑v ϖu,v-many Is from the
distribution X̃·u. Similarly, for each v ∈ {1, . . .K}, it samples ∑u ϖu,v-many Js from the distribution
X̃·v. Finally, the indexes are appropriately arranged so that there are ϖu,v-many edges (I,J) where
I ∼ X·u and J ∼ X·v. Recall that the statement of fastRG above allows for X and Y , where those
matrices can have different numbers of rows and/or columns; the implementation also allows for
this.

Under the SBM, it is possible to use fastRG to sample from the Bernoulli gRPG with the
identity mean function instead of the mean function 1−exp(−〈xi,x j〉S) that is created by the thresh-
olding function t from Section 2.3. The wrapper for the SBM does this by first transforming each
element of S as − ln(1−Si j) and then calling fastRG. The others models are not amenable to this
trick; by default, they sample from the Poisson gRPG with identity mean function.
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3. Experiments

3.1. Running time of fastRG on large and sparse graphs

To examine the running time of fastRG, we simulated a range of different values of n and E(m),
where E(m) is the expected number of edges. In all simulations X =Y and K = 5. The elements of X
are independent Poisson(1) random variables and the elements of S are independent Uni f orm[0,1]
random variables. To specify E(m), the parameter avgDeg is set to E(m)/n. The values of n range
from 10,000 to 10,000,000 and the values of E(m) range from 100,000 to 100,000,000. The graph
was taken to be directed, with self-loops and multiple edges. Moreover, the reported times are only
to generate the edge list of the random graph; the edge list is not converted into a sparse adjacency
matrix, which in some experiments would have more than doubled the running time. Each pair of
n and E(m) is simulated one time; deviations around the trend lines indicate the variability in run
time.

In Figure 1, the vertical axes present the running time in R on a Retina 5K iMac, 27-inch, Late
2014 with 3.5 GHz Intel i5 and 8GB of 1600 MHz DDR3 memory. In the left panel of Figure 1,
each line corresponds to a single value of n and E(m) increases along the horizontal axis. In the
right panel of Figure 1, each line corresponds to a single value of E(m) and n increases along the
horizontal axis. All axes are on the log10 scale. The solid black line has a slope of 1. Because the
data aligns with this black line, this suggests that fastRG runs in linear time.

The computational bottleneck is sampling the Is and Js. The implementation uses Walker’s
Alias Method (Walker, 1977) (via sample in R). To take m samples from a distribution over n
elements, Walker’s Alias Method requires O(m+ ln(n)n) operations (Vose, 1991). However, the
log dependence is not clearly evident in the right plot of Figure 1; perhaps it would be visible for
larger values of n.

3.2. Comparison to a previous technique

Previously, Hagberg and Lemons (2015) studied a fast technique to generate sparse random kernel
graphs. Under the random kernel graph model, nodes i and j connect with probability κ(i/n, j/n),
where the function κ is non-negative, bounded, symmetric, measurable, and almost surely con-
tinuous. This model class includes the SBM and the Degree-Corrected SBM. It is difficult to see
how a more general low rank model could be parameterized as a random kernel graph with an al-
most surely continuous κ . For example, we suspect that Mixed Membership SBMs could not be
parameterized as such.

The algorithm proposed in Hagberg and Lemons (2015) is fast when it is fast to compute (i)
the integral F(y,a,b) =

∫ b
a κ(x,y)dx and (ii) its roots, that is for any y,a,r, solve for F(y,a,b) = r.

Their software, which we will refer to as f ast-κ is in python and generates a NetworkX graph.
For a simple benchmark to compare the running times of fastRG and f ast-κ , Figure 2 repeats

the run time experiment that was performed in Hagberg and Lemons (2015). This simulation is
for an Erdős-Rényi graph with expected degree 10, for n ranging between 5,000 and 5M. Speed
comparisons are troubled by the fact that our code returns an edge list in R and f ast-κ returns a
NetworkX graph in python. Converting from an edge list to other data types takes longer than
sampling the edge list with fastRG. For example, converting the edge list to a sparse matrix (a
type that is convenient for spectral estimators) takes about as long as sampling the edge list with
fastRG. Converting the edge list to an igraph takes about 10x longer than sampling the edge list
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Figure 1: Both plots present the same experimental data. In the left plot, each line corresponds to a
different value of n and they are presented as a function of E(m). In the right plot, each
line corresponds to a different value of E(m) and they are presented as a function of n.
On the right side of both plots, the lines start to align with the solid black line, suggesting
a linear dependence on E(m) and n.

with fastRG. There are three lines in Figure 2 for fastRG, one line for each data type (edge list,
sparse adjacency matrix, and igraph). The speed comparison in Figure 2 corresponds to the average
running time over 10 simulations performed on a 2015 MacBook Pro, 2.8 GHz Intel Core i7, with
16 GB 1600 MHz DDR3 running Python 3.5.2 and R 3.3.2. The slope of the blue line corresponds
to the running time O(n logn). While none of these packages have been optimized for speed, they
are all sufficiently fast for a wide range of purposes.

3.3. Simulating small and dense graphs with fastRG

This section investigates the graph density at which fastRG becomes slower than simulating each
element Ai j as a Bernoulli random variable. In Figure 3, the reported time to compute this naive
(element-wise) algorithm includes both (i) the time it takes to compute the probabilities eA =

X%*%B%*%t(X) and (ii) sample the edges z = rbinom(length(eA), 1, eA). The time for
fastRG is for a directed graph, represented as a sparse matrix. The time to compute fastRG also
includes the time it takes to construct X and B.

Figure 3 compares these two approaches on a set of Stochastic Blockmodels for values K ∈
{2,5,10}, n ∈ {500,1000,5000,10000}, and graph density ρ = n−2E(m) varying between .02 and
.35. In all simulations, the S matrix is proportional to IK + JK ∈ RK×K , where IK is the identity
matrix and JK is the matrix of ones. The scale of S is adjusted to ensure the correct density ρ . For
each model, both fastRG and the naive simulation are used to simulate two graphs. The line is
a quadratic fit with ordinary least squares. In each panel, the vertical line is at ρ = .25, which is
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Running time of fastRG and f ast-κ on Erdős-Rényi graph with expected degree 10
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Figure 2: As the number of nodes increases (horizontal axis), all of the running times increase in
parallel to the solid blue line which gives the rate O(n logn). The bottom three lines all
correspond to fastRG, outputting three different graph types (edge list, sparse adjacency
matrix, and igraph). For example, in roughly 8 seconds, f ast-κ generates a graph with
20k nodes and fastRG generates an igraph with 1M nodes. To generate the random edge
list on 1M nodes with fastRG takes less than 1 second

approximately the crossover point in all simulations. For scale, ρ = .25 corresponds to expected
degrees 125, 250, 1250, and 2,500 respectively for n values 500,1000,5000, and 10000.
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Appendix A. Proofs

For an integer d, define 1d ∈Rd as a vector of ones. The proof of Theorem 4 requires the following
lemma, which says that a vector (or matrix) of independent Poisson entries becomes multinomial
when you condition on the sum of the vector (or matrix).

Lemma 8 Let A ∈Rn×n be the random matrix whose i, jth element Ai j
i.d.∼ Pois(λi j) i, j = 1, . . . , n.

Then conditioned on ∑i, j Ai j = 1T
n A1n = m,

(A11, A12, . . . , Ann)∼Multinomial(m, λ/∑
i j

λi j)
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Running time for small and dense graphs
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Figure 3: This figure compares the run time of fastRG to the run time of simulating each Ai j as a
Bernoulli random variable (denseRG in the legend). Note that the number of edges grows
quadratically with the edge density. So, as the density of the graph increases (horizontal
axis), the running time of fastRG grows quadratically, whereas the running time of the
naive algorithm does not depend on the density of the graph. In this simulation, the
crossover is around ρ = .25 (black line). This figure shows that even for relatively small
n and in the dense regime, fastRG has potential to be faster than the naive approach.
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where λ = (λ11, λ12, . . . , λnn). That is, let a ∈Rn×n be a fixed matrix of integers with 1T
n a1n = m,

then

P(A = a|1T
n A1n = m) = P(A11 = a11, A12 = a12, . . . , Ann = ann|1T

n A1n = m)

=
m!

∏i, j ai j!
∏
i, j

(
λi j

λ11 +λ12 + · · ·+λnn

)ai j

.

For completeness, a proof of this classical result is given at the end of the paper. The next proof
is a proof of Theorem 4.

Proof Let A come from the Poisson gRPG with X and S and identity mean function. Let Ã be a
sample from fastRG. For any fixed adjacency matrix a, we will show that P(A = a) = P(Ã = a).

Define m = 1T
n a1n and decompose the probabilities,

P(A = a) = P(1T
n A1n = m)P(A = a|1T

n A1n = m) (1)

P(Ã = a) = P(1T
n Ã1n = m)P(Ã = a|1T

n Ã1n = m). (2)

The proof will be divided into two parts. The first part shows that P(1T
n A1n = m) = P(1T

n Ã1n = m)
and the second part will show that P(A = a|1T

n A1n = m) = P(Ã = a|1T
n Ã1n = m).

Part 1: The sum of independent Poisson variables is still Poisson,

∑
i j

Ai j ∼ Poisson(∑
i j

λi j).

So, we must only show that 1T
n A1n and 1T

n Ã1n have the same Poisson parameter:

∑
i j

λi j = 1T
n XSX1n = 1T

n XCC−1SC−1CX1n = 1T
n X̃ S̃X̃1n = 1T

n X̃ S̃X̃1n = 1T
K S̃1K = ∑

u,v
S̃uv.

Part 2: After conditioning on 1T
n A1n = m, Lemma 8 shows that A has the multinomial distribu-

tion. In fastRG, we first sample 1T
n Ã1n and then add edges with the multinomial distribution. So,

we must only show that the multinomial edge probabilities are equal for A and Ã. From Lemma
8, the multinomial edge probabilities for A are λi j/∑a,b λab. To compute the multinomial edge
probabilities for Ã, recall that (I,J) is a single edge added to the graph in fastRG. By Theorem 1,

P(Ãi j = 1|1T
n Ã1n = 1) = P

(
(I,J) = (i, j)

)
=

〈xi,x j〉S
∑a,b〈xa,xb〉S

=
λi j

∑a,b λab

This concludes the proof.

Proof [Proof of Theorem 7] Let Ui j
i.i.d∼ Uni f orm(0,1). Define A and B:

Ai j = 1(Ui j > 1− e−λi j),

Bi j = 1(Ui j > λi j).

11
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Note that A and B are equal in distribution to t(Ã) and B respectively. By Taylor expansion,

E‖A −B‖2
F = ∑

i, j
(λi j− (1− e−λi j)) = ∑

i, j

∞

∑
k=2

(−λi j)
k/k! = ∑

i, j
O(λ 2

i j) = ∑
i, j

O((αn/n)2) = O(α2
n ).

Then, E‖B‖2
F = ∑i j λi j > cαnn. So, defining t(Ã) and B with the above coupling yields the result.

Proof [proof of Lemma 1]

P(A = a|1T
n A1n = m) =

P(A = a)
P(1T

n A1n = m)
=

∏i, j
λ

ai j
i j

ai j!
e−λi j

(λ11 +λ12 + · · ·+λnn)
m

m!
e−(λ11+λ12+···+λnn)

=
m!

∏i, j ai j!
∏
i, j

(
λi j

λ11 +λ12 + · · ·+λnn

)ai j
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