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Abstract

Support Vector Machines (SVMs) are classic supervised learning models for classification,
regression and distribution estimation. A survey conducted by Kaggle in 2017 shows that
26% of the data mining and machine learning practitioners are users of SVMs. However,
SVM training and prediction are very expensive computationally for large and complex
problems. This paper presents an efficient and open source SVM software toolkit called
ThunderSVM which exploits the high-performance of Graphics Processing Units (GPUs)
and multi-core CPUs. ThunderSVM supports all the functionalities—including classifica-
tion (SVC), regression (SVR) and one-class SVMs—of LibSVM and uses identical command
line options, such that existing LibSVM users can easily apply our toolkit. ThunderSVM
can be used through multiple language interfaces including C/C++, Python, R and MAT-
LAB. Our experimental results show that ThunderSVM is generally an order of magnitude
faster than LibSVM while producing identical SVMs. In addition to the high efficiency, we
design our convex optimization solver in a general way such that SVC, SVR, and one-class
SVMs share the same solver for the ease of maintenance. Documentation, examples, and
more about ThunderSVM are available at https://github.com/zeyiwen/thundersvm.
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1. Introduction

Support Vector Machines (SVMs) have been widely used in many applications including
document classification (D’Orazio et al., 2014), image classification (Pasolli et al., 2014),
blood pressure estimation (Kachuee et al., 2015), disease detection (Bodnar and Salathé,
2013), and outlier detection (Roth, 2006). A survey conducted by Kaggle in 2017 shows that
26% of the data science practitioners use SVMs to solve their problems (Thomas, 2017).
The open-source project LibSVM which supports classification (SVC), regression (SVR)
and one-class SVMs has been widely used in many applications. LibSVM was developed in
2000 (Chang and Lin, 2011), and has been maintained since then. Despite the advantages
of SVMs, SVM training and prediction are very expensive for large and complex problems.

Graphics Processing Units (GPUs) have been used to accelerate the solutions of many
real-world applications (Dittamo and Cisternino, 2008), due to the abundant computing
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Figure 1: Overview of training and prediction

cores and high memory bandwidth of GPUs. In this paper, we introduce a toolkit named
ThunderSVM which exploits GPUs and multi-core CPUs. The mission of our toolkit is to
help users easily and efficiently apply SVMs to solve problems. It is worthy to point out
that one way to train SVMs faster is to use kernel approximations. ThunderSVM aims to
find an exact solution. ThunderSVM supports all the functionalities of LibSVM including
SVC, SVR and one-class SVMs. We use the same command line input options as LibSVM,
such that existing LibSVM users are able to easily switch to ThunderSVM. Moreover,
ThunderSVM supports multiple interfaces such as C/C++, Python, R and MATLAB.
ThunderSVM can run on Linux, Windows or Macintosh operating systems with or without
GPUs. Empirical results show ThunderSVM is generally 10 times faster than LibSVM in
all the functionalities. The full version of ThunderSVM, which is released under Apache
License 2.0, can be found on GitHub at https://github.com/zeyiwen/thundersvm. The
GitHub repository of ThunderSVM has attracted 700 stars and 85 forks as of July 24, 2018.

2. Overview and Design of ThunderSVM

Like LibSVM, ThunderSVM supports one-class SVMs, C-SVMs and ν-SVMs where C rep-
resents the regularization constant and ν represents the parameter controlling the training
error. Both C-SVMs and ν-SVMs are used for classification and regression.

Figure 1 shows the overview of ThunderSVM which has many functionalities: one-class
SVMs for distribution estimation, C-SVC and ν-SVC for SVM classification, and ε-SVR and
ν-SVR for SVM regression. The training algorithms for those SVMs are built on top of a
generic parallel SMO solver which is for solving quadratic optimization problems. Notably,
the SVM training for regression (such as ε-SVR and ν-SVR) and the multi-class SVM
training can be converted into the training of an SVM classifier. The prediction module
is relatively simple, because the prediction is the same for one-class SVMs, C-SVMs and
ν-SVMs. The prediction is essentially computing predicted values based on support vectors.
ThunderSVM also contains the cross-validation functionality.

2.1 Design of Parallel SVM Training Algorithms

We have developed a series of optimizations for the training. First, ThunderSVM computes
a number of rows of the kernel matrix in a batch, reuses the rows that are stored in the GPU
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memory buffer, and solves multiple subproblems in that batch. Thus, ThunderSVM avoids
performing a large number of small read/write operations to the high latency memory and
reduces repeated kernel value computation. Moreover, we apply GPU shared memory to
accelerate parallel reduction, and use the massive parallelism to update elements of arrays.

For solving each subproblem in the training, we use the SMO algorithm which consists of
three key steps. Step (i): Find two extreme training instances which can potentially improve
the currently trained SVM the most. Step (ii): Improve the two Lagrange multipliers of the
two instances. Step (iii): Update the optimality indicators of all the training instances. We
parallelize Step (i) and (iii). Step (ii) is computationally inexpensive, and we simply execute
it sequentially. In Step (i), our key idea is to apply the parallel reduction (Merrill, 2015)
twice for finding the two extreme training instances. In the parallel reduction, we first load
the whole array from the GPU global memory to shared memory in a coalescent way, and
then reduce the array size by two at each iteration until only one element left. In Step (iii),
we dedicate one thread to update one optimality indicator to use the massive parallelism
mechanism of the GPU. The training is terminated when the optimality condition is met or
the SVMs cannot be further improved. More details about the training and the termination
condition can be found in our supplementary material (Wen et al., 2017).

For solving the batch of subproblems, we propose techniques to exploit the properties
of the batch of subproblems. First, to reduce access to the high latency memory, the
kernel values needed for the batch are organized together and computed through matrix
multiplication. As a result, we reduce a large number of small read/write operations to the
high latency memory during kernel value computation. We use matrix operations from the
high-performance library cuSparse (Nvidia, 2008) provided by NVIDIA. Second, to reduce
repeated kernel value computation, we store the kernel values in a GPU buffer for efficient
reuse during the optimization for the batch. Regarding the selection of the batch, we make
use of the set of instances with the deepest gradients.

Training SVMs for regression (SVR) or for multi-class classification can be reduced to
training SVMs for binary classification (SVC), as discussed in the previous study (Shevade
et al., 2000). Two SVC training algorithms (C-SVC and ν-SVC) and training algorithm
for one-class SVMs are essentially solving optimization problems using SMO. More details
about the relationship of SVR and SVC, and SMO can be found in our supplementary
material (Wen et al., 2017). The key task in the SVM training is to parallelize SMO, and
the insight has been discussed above. The parallelism principles are applicable to CPUs.

2.2 Design of the Parallel Prediction Algorithm

Although ThunderSVM supports several algorithms (such as one-class SVMs, classification
and regression), their underlying prediction algorithm is identical: a function based on the
support vectors and their Lagrange multipliers. The function is v =

∑n
i=1 yiαiK(xi,xj) + b

where xj is the instance of interest for prediction; yi and αi are the label and Lagrange
multiplier of the support vector xi, respectively; b is the bias of the SVM hyperplane;
K(·, ·) is the kernel function. In ThunderSVM, we perform the prediction by evaluating
the equation in parallel. First, we conduct a vector to matrix multiplication in parallel to
obtain all the needed kernel values, where the vector is xj and the matrix consists of all the
support vectors. Then, the sum of the equation can be performed using a parallel reduction.
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data set elapsed time (sec)
speedup

name cardinality dimension
ThunderSVM

LibSVM
gpu cpu gpu cpu

mnist8m (svc) 8.1x106 784 7.1x103 3.2x104 8.1x105 114 39.9

rcv1 test (svc) 677399 47236 621 20633 8.3x105 1337 40

epsilon (svc) 400000 2000 1251 26042 1 week+ 483+ 23+

e2006-tfidf (svr) 16087 150360 13.25 343.5 9161 691 25.3

webdata (ocsvm) 49749 300 4.66 16.5 1493 320 90.5

Table 1: Comparison between ThunderSVM with LibSVM

3. Experimental Studies

We compare the efficiency on training SVMs for classification, regression and one-class
SVMs (denoted by “OCSVM”). Five representative data sets are listed in Table 1. We
conducted our experiments on a workstation running Linux with two Xeon E5-2640 v4 10
core CPUs, 256GB main memory and a Tesla P100 GPU of 12GB memory. ThunderSVM
are implemented in CUDA-C and C++ with OpenMP. We used the Gaussian kernel. Five
pairs of hyper-parameters (C, γ) for the data sets are (10, 0.125), (100, 0.125), (0.01,
1), (256, 0.125), and (64,7.8125) and are the same as the existing studies (Wen et al.,
2014, 2018). More experimental evaluation can be found in our supplementary material.
ThunderSVM when using GPUs is over 100 times faster than LibSVM. When running on
CPUs, it is over 10 times faster than LibSVM. For prediction, ThunderSVM is also 10 to
100 times faster than LibSVM (Wen et al., 2017). We varied the hyper-parameters C from
0.01 to 100 and γ from 0.03 to 10, and ThunderSVM is 10 to 100 times faster than LibSVM.

4. Conclusion

In this paper, we present our software tool called “ThunderSVM” which supports all the
functionalities of LibSVM. For ease of usage, ThunderSVM uses identical input command
line options as LibSVM, and supports Python, R and Matlab. Empirical results show that
ThunderSVM is generally 100 times faster than LibSVM in all the functionalities when
GPUs are used. When running purely on CPUs, ThunderSVM is often 10 times faster than
LibSVM. We hope this significant efficiency improvement would help practitioners in the
community quickly solve their problems and enable SVMs to solve more complex problems.
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