
Journal of Machine Learning Research 20 (2019) 1-6 Submitted 5/18; Revised 10/18; Published 2/19

TensorLy: Tensor Learning in Python

Jean Kossaifi1 jean.kossaifi@imperial.ac.uk

Yannis Panagakis1,2 i.panagakis@imperial.ac.uk

Anima Anandkumar3,4 anima@caltech.edu

Maja Pantic1 m.pantic@imperial.ac.uk
1Imperial College London 2Middlesex University
3 NVIDIA 4 California Institute of Technology

Editor: Alexandre Gramfort

Abstract

Tensors are higher-order extensions of matrices. While matrix methods form the corner-
stone of traditional machine learning and data analysis, tensor methods have been gaining
increasing traction. However, software support for tensor operations is not on the same
footing. In order to bridge this gap, we have developed TensorLy, a Python library that
provides a high-level API for tensor methods and deep tensorized neural networks. Ten-
sorLy aims to follow the same standards adopted by the main projects of the Python
scientific community, and to seamlessly integrate with them. Its BSD license makes it suit-
able for both academic and commercial applications. TensorLy’s backend system allows
users to perform computations with several libraries such as NumPy or PyTorch to name
but a few. They can be scaled on multiple CPU or GPU machines. In addition, using
the deep-learning frameworks as backend allows to easily design and train deep tensorized
neural networks. TensorLy is available at https://github.com/tensorly/tensorly

1. Introduction

Tensors are higher-order extensions of matrices. While matrices are indexed by two indices
(and hence, second order tensors), tensors can be indexed by an arbitrary number of indices.
Tensors have a rich history, stretching almost a century, and have been used in diverse fields
such as psychometrics, quantum systems, signal processing etc. Only recently have tensors
been employed in machine learning and data analytics. This can be attributed to the
availability of large-scale multi-dimensional and multi-modal datasets. Tensors form the
natural framework to encode and operate on such data structures.

For multi-dimensional datasets, there are natural extensions of traditional dimensionality-
reduction methods, such as principal component analysis (PCA), to higher dimensions.
These involve tensor decompositions and have been applied in a number of areas, including
the theoretical analysis of deep neural nets (Cohen et al., 2015). Another line of work aims to
operate on higher-order moments of the data distribution, i.e., beyond pairwise correlations.
This is shown to be fruitful for learning a wide range of probabilistic latent-variable models
such as Gaussian mixtures, Independent Component Analysis, topic models etc (Anandku-
mar et al., 2014). More recently, deep tensorized neural networks have been explored for
a variety of applications. They extend linear-algebraic operations in various layers to ten-
sor algebraic operations, such as tensor contraction and tensor regression, in convolutional

c©2019 Jean Kossaifi, Yannis Panagakis, Anima Anandkumar and Maja Pantic.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-277.html.

https://github.com/tensorly/tensorly
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-277.html


Kossaifi, Panagakis, Anandkumar, Pantic

architectures (Novikov et al., 2015; Kossaifi et al., 2017), generative adversarial networks
(Cao and Zhao, 2017) and sequence models (Yu et al., 2017).

Interested readers are referred to several surveys on this topic. Some works focus on the
basics of multi-linear (tensor) algebra and different types of tensor decompositions, (Kolda
and Bader, 2009; Sidiropoulos et al., 2016). Others focus on algorithmic advances, (Cichocki
et al., 2009; Lu et al., 2011; Grasedyck et al., 2013; Cichocki et al., 2015; Papalexakis et al.,
2016). Recent surveys focus on their applications (Acar and Yener, 2009) and uses in
learning probabilistic models (Janzamin et al., 2019).

Thus, tensor methods can have a profound impact on data analytics and machine learn-
ing with clear theoretical, algorithmic, and practical advantages over their matrix counter-
parts. However, as opposed to matrix methods, tensor methods have not yet been widely
adopted by data scientists. This can be mainly attributed to the lack of available software
libraries for tensor operations and decompositions, in programming languages that data
scientists and practitioners are familiar with (e.g., Python, Java, Scala, etc).

Even though some tensor libraries exist, they are implemented in non-free platforms
(e.g., MATLAB’s TensorToolbox, (Bader and Kolda, 2015) and TensorLab, (Vervliet et al.,
2016)) or in low-level languages like C++ (e.g., TH++). Python is emerging as a language
of choice for machine learning, as witnessed with the success of scikit-learn (Pedregosa
et al., 2011), and is increasingly used in both academic and industrial research projects.
However, there is not yet a Python library implementing tensor operations, decomposi-
tion, and learning. The existing ones (e.g., scikit-tensor) offer only limited functionalities
and/or have restrictive licenses. Moreover, widely-adopted deep-learning libraries such as
Tensorflow and Torch lack advanced tensor operations. For applications to data analyt-
ics, machine learning, and deep learning, there is an urgent need for well-developed and
documented open-source libraries that include methods for tensor decompositions.

In this paper, to address the aforementioned need, the TensorLy 1 library is introduced,
allowing several contributions over the existing libraries for tensor methods. In particular,
TensorLy a) provides state-of-the-art tensor learning, including core tensor operations and
algebra, tensor decomposition and tensor regression methods; b) has a flexible backend
system that allows switching between NumPy, MXNet, PyTorch, TensorFlow, and CuPy to
perform the computation, and to easily combine tensor methods with deep learning; c) is
open source and BSD licensed; d) depends by default exclusively on NumPy and SciPy;
and e) is accompanied by extensive tests and documentation.

2. TensorLy : functionalities and implementation

TensorLy has been developed with the goal of making tensor learning more accessible
and to allow for seamless integration with the Python scientific environment. It depends
by default only on Numpy (van der Walt et al., 2011) and Scipy, with a soft dependency on
Matplotlib (Hunter, 2007) for plotting.

To enable algorithms to be easily run at scale, on various hardware, and to combine
tensor methods with deep learning, TensorLy has a flexible backend system. This allows
tensor operations to be ran using NumPy, MXNet (Chen et al., 2015), PyTorch (Paszke

1. TensorLy ’s source code available at https://github.com/tensorly/tensorly and documentation at
http://tensorly.org.

2

https://github.com/tensorly/tensorly
http://tensorly.org


TensorLy: Tensor Learning in Python

X[n]; vec(X̃ ); fold(X̃ )

Ỹ = X̃ ×n U; X̃ ×n v

Kronecker ⊗; Khatri-Rao
⊙

Hadamard product (∗)

JU(1), · · · ,U(N)K

JG̃; U(1), · · · ,U(N)K

E[x⊗ x⊗ x]

Prox`1 , Prox`∗

Tucker

CP / PARAFAC

MPS / Tensor-Train

Robust tensor PCA

Ridge Tucker &
Kruskal Regression

Tensor
Regression
Networks

Tensor Decomposition

Ten
sor Learning

Operations Methods

Figure 1: TensorLy builds on top of the Python ecosystem and implements Tensor Algebra
Operations. These tensor operators are then used for higher level Methods such
as tensor regression and decomposition, or combined with deep learning.

et al., 2017), Chainer’s CuPy (Tokui et al., 2015) or TensorFlow with eager execution (Abadi
et al., 2015). NumPy is the standard library for numerical computation in Python. It offers
high performance structures for manipulating multi-dimensional arrays. CuPy works as
a drop-in replacement for NumPy with GPU support. MXNet is a flexible deep learning
library with an NDArray structure that allows to efficiently run code on CPU, GPU and
multi-machines. Similarly, PyTorch provides a NumPy-like API with GPU acceleration
and auto-grad using dynamical graphs. TensorFlow is an established machine-learning
framework that provides an imperative approach using eager execution.

We aim at making the API simple and efficient, following that of scikit-learn (Buitinck
et al., 2013), where possible. However, while scikit-learn works with observations (samples)
represented as vectors, this library focuses on higher order arrays. TensorLy ’s main func-
tionalities in term of tensor operations are summarized in Fig. 2, where in the operations
column the mathematical notation of Kolda and Bader (2009) is adopted. In the methods
column, we summarize the implemented well-known tensor decomposition and regression
methods. These include CP and Tucker decompositions, their non-negative versions, matrix-
product-state (also known as tensor-train decomposition), Robust tensor PCA, (Goldfarb
and Qin, 2014) and low-rank tensor (Kruskal and Tucker) Regression. Additionally, using
the deep learning backends, it is easy to combine tensor methods and Deep Learning.

We emphasize code quality and ease of utilization for the end user. To that extent, both
testing and documentation are an essential part of the package: all functions come with
documentation and unit-tests (at the time of writing, the coverage is of 99%).

3. Performance

TensorLy has been tailored for the Python ecosystem: tensors are multi-dimensional ar-
rays which are effectively manipulated directly by the various methods, decomposition or
regression. This allows for competitive performance even though the library is implemented
in a high-level, interactive language. The operations are also optimized for speed: tensor
operations have been redefined when possible to allow for better performance. In particular,

3



Kossaifi, Panagakis, Anandkumar, Pantic

we propose an efficient unfolding of tensors which differs from the traditional one (Kolda
and Bader, 2009) by the ordering of the fibers.

Given a tensor, X̃ ∈ RI1×I2×···×IN , the mode-n unfolding of X̃ is a matrix X[n] ∈ RIn,IM ,
and is defined by the mapping from element (i1, i2, · · · , iN ) to (in, j),

with j =

N∑
k=1,
k 6=n

ik ×
N∏

m=k+1,
k 6=n

Im, and M =

N∏
k=1,
k 6=n

Ik

This formulation both achieves better performance when using C-ordering of the elements
(Numpy and most Python libraries’ default), and translates into more natural properties.

3.1. Numerical test

We generated random third order tensors of size 500 × 500 × 500 (125 million elements).
We then compared the decomposition speed for a rank–50 CANDECOMP-PARAFAC (CP)
and rank (50, 50, 50)–Tucker decomposition with TensorLy on CPU (NumPy backend) and
TensorLy on GPU (MXNet, PyTorch, TensorFlow and CuPy backends), and Scikit-Tensor
(Sktensor), Fig. 2. In all cases we fixed the number of iterations to 100 to allow for a
fair comparison. The experiment was repeated 10 times, with the main bar representing
the average CPU time and the tip on the bar the standard deviation of the runs. As
can be observed, our library offers competitive speed, thanks to optimized formulation and
implementation. Experiments were done on an Amazon Web Services p3 instance, with a
NVIDIA VOLTA V100 GPU and 8 Intel Xeon E5 (Broadwell) processors.

Figure 2: Speed comparison for Tucker and CANDECOMP-PARAFAC decomposition.

4. Conclusion

TensorLy makes tensor learning accessible and straightforward by offering state-of-the-art
tensor methods and operations through simple and consistent interfaces, under a permissive
license. It is optimized to be fast and robust, with systematic unit-tests and documentation.
The library’s speed and ease of use allow for an efficient comparison of existing methods and
easy implementation of new ones. Its flexible backend system allows to transparently switch
between libraries and platforms and help combine tensor methods with deep learning. Going
forward, we will further extend the available methods with other state-of-the-art methods
and target further improvements in performance, as exemplified by Shi et al. (2016).

4



TensorLy: Tensor Learning in Python

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Mur-
ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from tensorflow.org.

E. Acar and B. Yener. Unsupervised multiway data analysis: A literature survey. IEEE Transactions
on Knowledge and Data Engineering, 21(1):6–20, Jan 2009.

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for learning
latent variable models. JMLR, 15(1):2773–2832, jan 2014.

B. W. Bader and T. G. Kolda. Matlab tensor toolbox version 2.6. Available online, February 2015.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux. API
design for machine learning software: experiences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, pages 108–122, 2013.

X. Cao and Q. Zhao. Tensorizing generative adversarial nets. CoRR, abs/1710.10772, 2017.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous distributed systems. CoRR,
abs/1512.01274, 2015.

A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari. Nonnegative Matrix and Tensor Factorizations:
Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. John Wiley
& Sons, Ltd, 2009.

A. Cichocki, D. Mandic, L. D. Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. PHAN. Tensor
decompositions for signal processing applications: From two-way to multiway component analysis.
IEEE Signal Processing Magazine, 32(2):145–163, March 2015.

N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A tensor analysis.
CoRR, abs/1509.05009, 2015.

D. Goldfarb and Z. T. Qin. Robust low-rank tensor recovery: Models and algorithms. SIAM Journal
on Matrix Analysis and Applications, 35(1):225–253, 2014.

L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor approximation
techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science Engineering, 9(3):
90–95, May 2007.

M. Janzamin, R. Ge, J. Kossaifi, and A. Anandkumar. Spectral learning on matrices and tensors.
pre-print, 2019.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM REVIEW, 51(3):
455–500, 2009.

5

https://www.tensorflow.org/


Kossaifi, Panagakis, Anandkumar, Pantic

J. Kossaifi, Z. C. Lipton, A. Khanna, T. Furlanello, and A. Anandkumar. Tensor regression networks.
CoRR, abs/1707.08308, 2017.

H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. A survey of multilinear subspace learning for
tensor data. Pattern Recognition, 44(7):1540 – 1551, 2011.

A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov. Tensorizing neural networks. In NIPS,
pages 442–450, 2015.

E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos. Tensors for data mining and data fusion:
Models, applications, and scalable algorithms. ACM Trans. Intell. Syst. Technol., 8(2):16:1–16:44,
Oct. 2016.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Y. Shi, U. N. Niranjan, A. Anandkumar, and C. Cecka. Tensor contractions with extended blas
kernels on cpu and gpu. In IEEE HiPC, pages 193–202, Dec 2016.

N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Faloutsos. tensor
decomposition for signal processing and machine learning. arXiv preprint arXiv:1607.01668, 2016.

S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer: a next-generation open source framework for
deep learning. In LearningSys Workshop in NIPS, 2015.

S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: A structure for efficient
numerical computation. Computing in Science Engineering, 13(2):22–30, March 2011.

N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer. Tensorlab 3.0, Mar. 2016.
URL https://www.tensorlab.net. Available online.

R. Yu, S. Zheng, A. Anandkumar, and Y. Yue. Long-term forecasting using tensor-train rnns. CoRR,
abs/1711.00073, 2017.

6

https://www.tensorlab.net

	Introduction
	TensorLy: functionalities and implementation
	Performance
	Numerical test

	Conclusion

