
Journal of Machine Learning Research 20 (2019) 1-6 Submitted 6/18; Revised 1/19; Published 2/19

Pyro: Deep Universal Probabilistic Programming

Eli Bingham eli.bingham@uber.com

Jonathan P. Chen jpchen@uber.com

Martin Jankowiak jankowiak@uber.com

Fritz Obermeyer fritzo@uber.com

Neeraj Pradhan npradhan@uber.com

Theofanis Karaletsos theofanis@uber.com

Rohit Singh rohits@uber.com

Paul Szerlip pas@uber.com
Uber AI Labs
Uber Technologies, Inc.
555 Market St., San Francisco, CA, 94103

Paul Horsfall horsfallp@gmail.com

Noah D. Goodman ngoodman@stanford.edu

Uber AI Labs

555 Market St., San Francisco, CA 94103

Stanford University, Stanford, CA, USA

Editor: Antti Honkela

Abstract

Pyro is a probabilistic programming language built on Python as a platform for developing ad-
vanced probabilistic models in AI research. To scale to large data sets and high-dimensional
models, Pyro uses stochastic variational inference algorithms and probability distributions
built on top of PyTorch, a modern GPU-accelerated deep learning framework. To accom-
modate complex or model-specific algorithmic behavior, Pyro leverages Poutine, a library
of composable building blocks for modifying the behavior of probabilistic programs.

Keywords: Probabilistic programming, graphical models, approximate Bayesian inference,
generative models, deep learning

c©2019 Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos,
Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-403.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-403.html

Bingham et al.

def model():
loc, scale = torch.zeros(20), torch.ones(20)
z = pyro.sample("z", Normal(loc, scale))
w, b = pyro.param("weight"), pyro.param("bias")
ps = torch.sigmoid(torch.mm(z, w) + b)
return pyro.sample("x", Bernoulli(ps))

def guide(x):
pyro.module("encoder", nn_encoder)
loc, scale = nn_encoder(x)
return pyro.sample("z", Normal(loc, scale))

def conditioned_model(x):
return pyro.condition(model, data={"x": x})()

optimizer = pyro.optim.Adam({"lr": 0.001})
loss = pyro.infer.Trace_ELBO()

svi = pyro.infer.SVI(model=conditioned_model,
guide=guide,
optim=optimizer,
loss=loss)

losses = []
for batch in batches:

losses.append(svi.step(batch))

Figure 1: A complete Pyro example: the generative model (model), approximate posterior
(guide), constraint specification (conditioned_model), and stochastic variational in-
ference (svi, loss) in a variational autoencoder. encoder is a torch.nn.Module object.
pyro.module calls pyro.param on every parameter of a torch.nn.Module.

1. Introduction

In recent years, richly structured probabilistic models have demonstrated promising results
on a number of fundamental problems in AI (Ghahramani (2015)). However, most such
models are still implemented from scratch as one-off systems, slowing their development and
limiting their scope and extensibility. Probabilistic programming languages (PPLs) promise
to reduce this burden, but in practice more advanced models often require high-performance
inference engines tailored to a specific application. We identify design principles that enable
a PPL to scale to advanced research applications while retaining flexibility, and we argue
that these principles are fully realized together in the Pyro PPL.

2. Design Principles

First, a PPL suitable for developing state-of-the-art AI research models should be expressive:
it should be able to concisely describe models with have data-dependent internal control
flow or latent variables whose existence depends on the values of other latent variables, or
models which only be defined in closed form as unnormalized joint distributions.

For a PPL to be practical, it must be scalable: its approximate inference algorithms
must be able to seamlessly handle the large data sets and non-conjugate, high-dimensional
models common in AI research, and should exploit compiler and hardware acceleration to
approach the performance of optimized bespoke implementations of these models.

A PPL targeting research models should be flexible: in addition to scalability, many
advanced models require inference algorithms with complex, model-specific behavior. A PPL
should enable researchers to quickly and easily implement such behavior and should enforce
a separation of concerns between between model, inference, and runtime implementations.

Finally, a PPL targeting researchers as users should strive to be minimal: in order to
minimize cognitive overhead, it should share most of its syntax and semantics with existing
languages and and systems and work well with other tools such as libraries for visualization.

2

Pyro: Deep Universal Probabilistic Programming

As is clear from Table 2, these four principles are often in conflict, with one being
achieved at the expense of others. For example, an overly flexible design may be very difficult
to implement efficiently and scalably, especially while simultaneously integrating a new
language with existing tools. Similarly, enabling development of custom inference algorithms
may be difficult without limiting model expressivity. In this section, we describe the design
choices we made in Pyro to balance between all four objectives.

Pyro is embedded in Python, and Pyro programs are written as Python functions, or
callables, with just two extra language primitives (whose behavior is overridden by inference
algorithms): pyro.sample for annotating calls to functions with internal randomness, and
pyro.param for registering learnable parameters with inference algorithms that can change
them. Pyro models may contain arbitrary Python code and interact with it in arbitrary ways,
including expressing unnormalized models through the obs keyword argument to pyro.sample.
Pyro’s language primitives may be used with all of Python’s control flow constructs, including
recursion, loops, and conditionals. The existence of random variables in a particular execution
may thus depend on any Python control flow construct.1

Pyro implements several generic probabilistic inference algorithms, including the No
U-turn Sampler (Hoffman and Gelman (2014)), a variant of Hamiltonian Monte Carlo.
However, the primary inference algorithm is gradient-based stochastic variational inference
(SVI) (Kingma and Welling (2014)), which uses stochastic gradient descent to optimize
Monte Carlo estimates of a divergence measure between approximate and true posterior
distributions. Pyro scales to complex, high-dimensional models thanks to GPU-accelerated
tensor math and reverse-mode automatic differentiation via PyTorch, and it scales to large
data sets thanks to stochastic gradient estimates computed over mini-batches of data in SVI.

Some inference algorithms in Pyro, such as SVI and importance sampling, can use
arbitrary Pyro programs (called guides, following webPPL) as approximate posteriors or
proposal distributions. A guide for a given model must take the same input arguments as
the model and contain a corresponding sample statement for every unconstrained sample
statement in the model but is otherwise unrestricted. Users are then free to express complex
hypotheses about the posterior distribution, e.g. its conditional independence structure.
Unlike webPPL and Anglican, in Pyro guides may not depend on values inside the model.

Finally, to achieve flexibility and separation of concerns, Pyro is built on Poutine, a
library of effect handlers (Kammar et al. (2013)) that implement individual control and
book-keeping operations used for inspecting and modifying the behavior of Pyro programs,
separating inference algorithm implementations from language details.

3. Project Openness and Development

Pyro’s source code is freely available under an MIT license and developed by the authors
and a community of open-source contributors at https://github.com/uber/pyro and
documentation, examples, and a discussion forum are hosted online at https://pyro.ai. A
comprehensive test suite is run automatically by a continuous integration service before code
is merged into the main codebase to maintain a high level of project quality and usability.

We also found that while PyTorch was an invaluable substrate for tensor operations
and automatic differentiation, it was lacking a high-performance library of probability

1. See the geometric example in http://pyro.ai/examples/intro_part_i.html

3

https://github.com/uber/pyro
https://pyro.ai
http://pyro.ai/examples/intro_part_i.html

Bingham et al.

distributions. As a result, several of the authors made substantial open-source contributions
upstream to PyTorch Distributions,2 a new PyTorch core library inspired by TensorFlow
Distributions (Dillon et al. (2017)).

4. Existing Systems

System
Expressivity:
Dynamic control

Scalability:
Subsampling, AD

Flexibility:
Flexible inference

Minimality:
Host language

Stan Static control flow Some, CPU Automated None
Church Yes No, None Automated Scheme
Venture Yes No, None Yes None
webPPL Yes No, CPU Some JavaScript
Edward Static control flow Yes, CPU/GPU Yes TensorFlow
Pyro Yes Yes, CPU/GPU Yes Python, PyTorch

Figure 2: Simplified summary of design principles of Pyro and some other PPLs.

Probabilistic programming and approximate inference are areas of active research, so
there are many existing probabilistic programming languages and systems. We briefly
mention several that were especially influential in Pyro’s development, regretfully omitting
(due to space limitations) many systems for which simple direct comparisons are more
difficult. We also emphasize that, as in conventional programming language development,
our design decisions are not universally applicable or desirable for probabilistic programming,
and that other systems purposefully make different tradeoffs to achieve different goals.

Stan (Carpenter et al. (2017)) is a domain-specific language designed for describing a
restricted class of probabilistic programs and performing high-quality automated inference
in those models. Church (Goodman et al. (2008)), a probabilistic dialect of Scheme, was an
early universal probabilistic programming language, capable of representing any computable
probability distribution. Venture (Mansinghka et al. (2018)) is a universal language with a
focus on expressiveness and flexibility and a custom syntax and virtual machine. Anglican
(Tolpin et al. (2016)) and webPPL (Goodman and Stuhlmüller (2014)) are lightweight
successors to Church, embedded as syntactic subsets (Wingate et al. (2011)) in the general-
purpose programming languages Clojure and JavaScript. Edward (Tran et al. (2017)) is a
PPL built on static TensorFlow graphs that features composable representations for models
and inference. ProbTorch (Siddharth et al. (2017)) is a PPL built on PyTorch with a focus
on deep generative models and developing new objectives for variational inference. Turing
(Ge et al. (2018)) is a PPL embedded in Julia featuring composable MCMC algorithms.

5. Experiments

To demonstrate that Pyro meets our design goals, we implemented several state-of-the-art
models.3 Here we focus on the variational autoencoder (VAE; Kingma and Welling (2014))

2. http://pytorch.org/docs/stable/distributions.html
3. http://pyro.ai/examples/

4

http://pytorch.org/docs/stable/distributions.html
http://pyro.ai/examples/

Pyro: Deep Universal Probabilistic Programming

z # h PyTorch (ms) Pyro (ms)

10 400 3.82 ± 0.02 6.79 ± 0.04
30 400 3.73 ± 0.07 6.67 ± 0.03
10 2000 7.65 ± 0.02 10.14 ± 0.06
30 2000 7.66 ± 0.02 10.19 ± 0.03

Figure 3: Times per update of VAE
in Pyro versus PyTorch

IAFs Test ELBO

0 (theirs) -6.93

0 (ours) -6.87
1 -6.82
2 -6.80

Figure 4: Test ELBOs for DMM and
extension with IAF guide

and the Deep Markov Model (DMM; Krishnan et al. (2017)), a non-linear state space model
that has been used for several applications including audio generation and causal inference.
The VAE is a standard example in deep probabilistic modeling, while the DMM has several
characteristics that make it ideal as a point of comparison: it is a high-dimensional, non-
conjugate model designed to be fit to large data sets; the number of latent variables in a
sequence depends on the input data; and it uses a hand-designed approximate posterior.

The models and inference procedures derived by Pyro replicate the original papers almost
exactly, except that we use Monte Carlo estimates rather than exact analytic expressions for
KL divergence terms. We use the MNIST data set and 2-hidden-layer MLP encoder and
decoder networks with varying hidden layer size #h and latent code size #z for the VAE
and the same data set of digitized music4 to train the DMM.

To demonstrate that Pyro’s abstractions do not reduce its scalability by introducing
too much overhead, we compared our VAE implementation with an idiomatic PyTorch
implementation.5 After verifying that they converge to the same test ELBO, we compared
the wall-clock time taken to compute one gradient update, averaged over 10 epochs of
GPU-accelerated mini-batch stochastic gradient variational inference (batch size 128) on a
single NVIDIA GTX 1080Ti. Figure 3 shows that the relative performance gap between the
Pyro and PyTorch versions is moderate, and, more importantly, that it shrinks as the total
time spent performing tensor operations increases.

We used the DMM to evaluate Pyro’s flexibility and expressiveness. As Figure 4 shows,
we found that we were able to quickly and concisely replicate the exact DMM model and
inference configuration and quantitative results reported in the paper after 5000 training
epochs. Furthermore, thanks to Pyro’s modular design, we were also able to build DMM
variants with more expressive approximate posteriors via autoregressive flows (IAFs) (Kingma
et al. (2016)), improving the results with a few lines of code at negligible computational cost.

Acknowledgments

We would like to acknowledge Du Phan, Adam Scibior, Dustin Tran, Adam Paszke, Soumith
Chintala, Robert Hawkins, Andreas Stuhlmueller, our colleagues in Uber AI Labs, and the
Pyro and PyTorch open-source communities for helpful contributions and feedback.

4. This is the JSB chorales data set from http://www-etud.iro.umontreal.ca/~Eboulanni/icml2012

5. We used the PyTorch example at https://github.com/pytorch/examples/tree/master/vae

5

https://github.com/pytorch/examples/tree/master/vae

Bingham et al.

References

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A
probabilistic programming language. Journal of Statistical Software, 76(1), 2017.

Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave
Moore, Brian Patton, Alex Alemi, Matt Hoffman, and Rif A. Saurous. TensorFlow
Distributions. arXiv:1711.10604, November 2017.

Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: a language for flexible probabilistic
inference. In AISTATS, 2018.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521:
452–459, May 2015.

Noah D Goodman and Andreas Stuhlmüller. The Design and Implementation of Probabilistic
Programming Languages. http://dippl.org, 2014.

Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B.
Tenenbaum. Church: A language for generative models. In UAI, 2008.

Matthew D. Hoffman and Andrew Gelman. The no-U-turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1), January 2014.

Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In ICFP, 2013.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR, 2014.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improved variational inference with inverse autoregressive flow. In NIPS. 2016.

Rahul G Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear
state space models. In AAAI, 2017.

Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and
Martin Rinard. Probabilistic programming with programmable inference. In PLDI, 2018.

N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D. Goodman,
Pushmeet Kohli, Frank Wood, and Philip Torr. Learning disentangled representations
with semi-supervised deep generative models. In NIPS, 2017.

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. Design and
implementation of probabilistic programming language anglican. In IFL, 2016.

Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and
David M. Blei. Deep probabilistic programming. In ICLR, 2017.

David Wingate, Andreas Stuhlmller, and Noah Goodman. Lightweight implementations
of probabilistic programming languages via transformational compilation. In AISTATS,
2011.

6

http://dippl.org

	Introduction
	Design Principles
	Project Openness and Development
	Existing Systems
	Experiments

