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Abstract

Closed surfaces provide a useful model for 3-d shapes, with the data typically consisting
of a cloud of points in R3. The existing literature on closed surface modeling focuses on
frequentist point estimation methods that join surface patches along the edges, with surface
patches created via Bézier surfaces or tensor products of B-splines. However, the resulting
surfaces are not smooth along the edges and the geometric constraints required to join the
surface patches lead to computational drawbacks. In this article, we develop a Bayesian
model for closed surfaces based on tensor products of a cyclic basis resulting in infinitely
smooth surface realizations. We impose sparsity on the control points through a double-
shrinkage prior. Theoretical properties of the support of our proposed prior are studied and
it is shown that the posterior achieves the optimal rate of convergence under reasonable
assumptions on the prior. The proposed approach is illustrated with some examples.

Keywords: 3-d shapes; Bayesian nonparametrics; Imaging; Manifold learning; Splines;
Tensors.

1. Introduction

Surface reconstruction can be viewed as an algorithm that takes as an input an unorganized
set of points {p1, . . . , pn} ∈ R3 on or near an unknown manifold M embedded in R3 and
produces a surface that approximates M. Free-form surface modeling from massive data
points is becoming an important area of research in commercial computer aided design and
development of manufacturing software (Barnhill, 1985; Lang and Röschel, 1992; Hagen and
Santarelli, 1992; Aziz et al., 2002). A collection of introductory works on surface modeling
can be found in Su and Liu (1989) and the subsequent developments in Muller (2005).

Common surface reconstruction algorithms in the computer science literature usually
follow a sequential multistage process which includes scanning, outlier removal, denoising
and input normal estimation to generate a simplicial surface. The Poisson surface recon-
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struction method (Kazhdan et al., 2006) solves for an approximate indicator function of
the inferred surface, whose gradient best matches the input normals. The output scalar
function, represented in an adaptive octree (Whang et al., 2002), is then iso-contoured us-
ing an adaptive marching cubes algorithm (Lorensen and Cline, 1987). Cgal surface mesh
generator (Rineau and Yvinec, 2007) implements a variant of this algorithm which solves for
a piecewise linear function on a 3D Delaunay triangulation instead of an adaptive octree.
Hoppe et al. (1992); Boissonnat and Oudot (2005) developed a two stage surface recon-
struction algorithm by first estimating M by the implicit surface Z(f) = {y : f(y) = 0} of
a suitable function f : R3 → R and then using a contouring algorithm to approximate Z(f)
by a simplicial surface.

There is a rich literature on estimation of surfaces using tensor products of bases (Fowler,
1992; Goshtasby, 1992; Mann and DeRose, 1995; Johnstone and Sloan, 1995). Tensor prod-
uct surfaces provide a flexible representation of a surface embedded in an arbitrary Eu-
clidean space. However, there is a limited literature on Bayesian modeling of free-form
surfaces (Cunningham et al., 1999) and closed surfaces (Soussen and Mohammad-Djafari,
2002). While frequentist surface estimation using tensor products has been widely stud-
ied, Bayesian estimation has received almost no consideration. A notable exception is the
approach of Smith and Kohn (1997) for Bayesian estimation of bivariate regression sur-
faces using tensor products. However estimating a parametric surface S(u, v) : D2 → R3,
where D2 ⊂ R2 is different from usual regression surface or function estimation because the
independent variable (u, v) is unknown.

Modeling of closed surfaces is a primary focus in application areas such as computer
vision, as closed surfaces provide an adequate geometric model of a wide range of objects
ranging from anatomical organs to machine parts. In this field, standard practice involves
restrictive parametric shapes depending on a few parameters (Cinquin et al., 1982; Amenta
et al., 1998; Rossi and Willsky, 2003). Although such models can describe many common
surfaces, the variety of generated shapes is limited. More flexible models for closed surfaces
can be defined through carefully specified linear combinations of basis functions. Soussen
and Mohammad-Djafari (2002) developed the notion of global harmonic surfaces, which
yield a simple procedure to reconstruct coarse surfaces. Shen and Makedon (2006); Chung
et al. (2008) developed a novel method based on general and weighted spherical harmonics
to model closed sphere-like objects, such as the cortical surface. However the variety of
shapes generated by spherical harmonics are somewhat limited to sphere-like or convex
objects although weighted spherical harmonics can capture local features like cortical folds
quite well.

Amenta et al. (1998) developed a surface reconstruction algorithm called the Crust algo-
rithm based on the three-dimensional Voronoi diagram to model closed surfaces from a data
cloud in R3. The algorithm generates a regular surface and the output mesh interpolates,
rather than approximates, the input points. However, the algorithm is not probabilistic and
does not allow uncertainty in estimating the surface. Moreover, the algorithm requires a
dense collection of data points for a reasonably good reconstruction indicating slow conver-
gence. Some illustrations of the Crust algorithm are provided in Fig. 1. In computer aided
design, closed surface modeling is often aided by combining several Bézier or spline surface
patches by endpoint interpolation (Gordon and Riesenfeld, 1974; Piegl, 1986; Casale, 1987;
Szeliski and Tonnesen, 1992; Hoppe et al., 1992; Yang and Lee, 1999; Li et al., 2007). In
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Figure 1: Output triangulation from crust algorithm on a point cloud

a frequentist analysis such endpoint restrictions are incorporated through constrained op-
timization. In the Bayesian paradigm, these restrictions lead to mixing problems in the
posterior analysis. Furthermore, these restrictions can make the resulting surface non-
differentiable along the edges joining the patches.

We instead use a cyclic basis developed by Róth et al. (2009) to accommodate restrictions
without parameter constraints and give rise to an infinitely smooth surface. We propose a
Bayesian hierarchical model of a closed surface embedded in R3 using tensor products of such
cyclic bases with a carefully-chosen shrinkage prior placed on the tensor of basis coefficients.
In particular, motivated by the decreasing impact of the higher indexed basis functions in
the Bézier surface representation, we increasingly shrink the higher indexed coefficients.
The specification leads to a highly efficient algorithm for posterior computation that allows
uncertainty in the number of bases. In addition, the proposed prior is shown to have large
support and to lead to a posterior with the optimal rate of convergence up to a log factor.

2. Outline of the Method

2.1. Review of Terminology

Assume a data cloud {pi ∈ R3, i = 1, . . . , N} is given. Our aim is to obtain a posterior
distribution for a smooth closed surface about which these data points are concentrated.
Before going into the details of our model, we start with a few definitions.

Definition 1 A closed surface is a compact two dimensional closed manifold which does
not have a boundary. Examples are spaces like the sphere, torus, Klein bottle etc.
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Definition 2 A parametric surface is a surface in R3 which is defined by a parametric
equation with two parameters u and v. Mathematically, a parametric surface is an injective
map from R2 to R3 defined by S : [a, b]2 → R3, (u, v) 7→ S(u, v). See the Purdue University
thesis Sederberg (1983) for a detailed description of parametric surfaces.

Definition 3 A tensor product surface is formed by taking a tensor product of bases

Sn,m(u, v) =

kn∑
j=0

km∑
k=0

djkB
n
j (u)Bm

k (v), (1)

where (u, v) ∈ [a, b]2, {djk ∈ R3, j = 0, . . . , km, k = 0, . . . , kn} are control points and

{Bkn
l (u), u ∈ [a, b], l = 0, . . . , kn} are basis functions.

Here kn = n or 2n depending on whether the bases span the algebraic or the trigonometric
polynomials having maximum degree n. An example of a tensor product surface is the
Bézier surface (Farin, 2002) in which Bn

j (u) =
(
n
j

)
uj(1 − u)n−j , j = 1, . . . , n, u ∈ [0, 1].

Bézier surfaces are an extension of the idea of Bézier curves, and share many of their
properties.

2.2. Closed Surface Model

We assume that the data {pi = (p1i , p
2
i , p

3
i )

T, i = 1, . . . , N} arise as a random additive
perturbation from a closed parametric surface S(u, v), (u, v) ∈ [−π, π]2, as follows,

pi = S(ui, vi) + ei, ei ∼ N(0, σ2I3), i = 1, . . . , N, (2)

(ui, vi) ∼ Π[−π,π]2 (3)

where (ui, vi) are coordinates in [−π, π]2 corresponding to pi ∈ R3, S(ui, vi) =
{S1(ui, vi), S

2(ui, vi), S
3(ui, vi)}T is the unknown surface at coordinates (ui, vi), ei ∈ R3

is a measurement error and Π[−π,π]2 is a probability distribution on [−π, π]2. In absence of
any information on the coordinates, one can let (ui, vi) ∼ Unif([−π, π]2). Let P denote the
N × 3 matrix representation with rows {pTi , i = 1, . . . , N}. Assume σ−2 ∼ Ga(aσ, bσ). We
follow a tensor product surface representation (1) to model the closed parametric surface
S(u, v), (u, v) ∈ [−π, π]2.

In §3, the coordinates (ui, vi), i = 1, . . . , N , are assumed to be known. They are obtained
through a parameterization step described in §4.

2.3. Construction of a Closed Surface Using a Cyclic Basis

Using the tensor product specification in (1) for the surface S(u, v), we propose to use the
cyclic basis developed by Róth et al. (2009); Róth and Juhász (2010). These bases have a
cyclic symmetry that eliminates the need for constraints on the control points, while also
leading to surfaces that are infinitely smooth in the sense that the realizations are infinitely
differentiable (C∞). Assuming S ∈ C∞ is appealing in avoiding the need for geometric
constraints and surfaces in C∞ can approximate any parametric closed surface arbitrarily
well preserving local features. In addition, S can be characterized as a single coherent
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surface depending only on the control points, unlike piecing together local surfaces with
heavy geometric constraints along the joints.

Róth et al. (2009) devised a basis for the vector space

Vn = 〈1, cos(u), sin(u), . . . , cos(nu), sin(nu)〉

of trigonometric polynomials of degree at most n, i.e., of truncated Fourier series. Let

Bn
j (u) =

cn
2n

{
1 + cos

(
u+

2πj

2n+ 1

)}n
, (j = 0, 1, . . . , 2n), u ∈ [−π, π], (4)

where cn = (2nn!)2

(2n+1)! . The following lemma from Róth et al. (2009) demonstrates that any
truncated Fourier series can be expressed as a linear combination of the Bn

j for some large
n. This implies that any reasonable closed curve can be approximated arbitrarily well by
the linear combination of the Bn

j for some n. This concept is formalized in §3 in discussing
posterior convergence.

Lemma 4 The functions {Bn
j (u), j = 0, 1, . . . , 2n, u ∈ [−π, π]} form a basis of the vector

space Vn.

Using basis functions (4), we can define the tensor product of surfaces of degree (n,m)(n ≥
1,m ≥ 1) by Sn,m(u, v) with kn = 2n in (1). Lemma 5 guarantees that Sn,m is closed for
any choice of {djk, j = 0, . . . , 2n, k = 0, . . . , 2m} in (1).

Lemma 5 The tensor product surface Sn,m : [−π, π]2 → R3 constructed using basis func-
tions (4) is closed.

Proof If not, there exists a boundary of the surface, i.e., there exists a neighborhood
UT of the torus [−π, π]2 which is not entirely mapped to the surface Sn,m. Since the in-
side of [−π, π]2 is completely mapped to Sn,m, UT must intersect one or more of the edges
of [−π, π]2. Hence there exists u0 or v0 such that either Sn,m(u0,−π) 6= Sn,m(u0, π) or
Sn,m(−π, v0) 6= Sn,m(π, v0). But since Sn,m(u, v) =

∑2n
j=0

∑2m
k=0 djkB

n
j (u)Bm

k (v) where Bj ’s
are cyclic bases, Sn,m(u,−π) = Sn,m(u, π) and Sn,m(−π, v) = Sn,m(π, v) for all u ∈ [−π, π]
and v ∈ [−π, π] which contradicts the supposition.

2.4. Model for the Control Points

Let T2n+1,2m+1(Rp) denote the space of tensors of order (2n + 1) × (2m + 1) × p. Define

Dn,m = [djk]
2m,2n
j=0,k=0. Clearly Dn,m ∈ T2n+1,2m+1(R3) for all m ≥ 1, n ≥ 1. Róth et al.

(2009) remarked that although the control points have a global effect on the shape, this
influence dramatically decreases on further parts of the surface, especially for higher value
of n and m. They provide several test examples to show that the decrease of the influence
is fast. This observation is the key to the choice of sparsity favoring priors for Dn,m.

Because the elements of Dn,m are expected to have an increasingly localized influence
on the shape of the surface S(u, v) as the index on the control points increases, we choose
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a shrinkage prior that favors smaller values for djk as n and m increases. Here we use a
double shrinkage prior to facilitate a sparseness of the tensors Dn,m.

djk ∼ N3(0, φ
−1
jk I3), φjk = τjξk, τj ∼ Ga(γn, β), ξk ∼ Ga(γm, β), (5)

where γn is an increasing sequence of positive numbers.

The prior for S induced from (1), (4) and (5), denoted S ∼ ΠSn,m , is defined conditionally
on n and m. If n and m are chosen to be too small, the prior ΠSn,m will not support a sizable
subset of closed smooth surfaces. As an alternative to choosing n and m to be extremely
large or even infinite to obtain large support, we propose to choose a prior for n and m,
which allows one to adaptively learn and model average over the unknown dimensions of the
control point tensor Dn,m. Let (n,m) ∼ Πn,m denote this prior, with Πn,m a distribution
over {1, . . . ,∞}2, such as independent truncated Poisson distributions, and let S ∼ ΠS

denote the resulting prior for S marginalizing out n and m. This approach is related to the
literature on Bayesian adaptive splines (Denison et al., 1998), though we will bypass the
need to implement the standard reversible jump Markov chain Monte Carlo and describe a
computationally efficient approach in §3.

2.5. Prior Realizations

Let T2 denote the 2-dimensional torus represented by the square [−π, π]2. Since Bn
j (u) ≥

0, j = 0, . . . , 2n, u ∈ [−π, π] and
∑2n

j=0B
n
j (u) = 1, the closed surface

Sn,m(u, v) =
∑2n

j=0

∑2m
k=0 djkB

n
j (u)Bm

k (v), (u, v) ∈ T2 lies in the convex-hull of its con-
trol points Dn,m. We can achieve a variety of closed surfaces through specific choices of
the control points as shown below in Fig. 2.5. The variety of shapes generated increases

(a) A sphere with its control points (b) A closed surface with n = 7, m = 9

Figure 2: (a) A sphere with its control points (b) A closed surface with n = 7, m = 9. This
figure is reproduced from Róth et al. (2009).

with increase in n and m, the indices of the basis, which is shown in Fig. 2.5. Figure 2.5
also demonstrates that the influence of the control points is increasingly localized for large
values of n and m.
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Figure 3: Prior realizations with increasing n and m

3. Support of the Prior and Posterior Convergence Rates

3.1. General Notations

The supremum and L1-norm are denoted by || · ||∞ and || · ||1, respectively. We let || · ||p,ν
denote the norm of Lp(ν), the space of measurable functions with ν-integrable pth absolute
power. The notation C(X ) is used for the space of continuous functions f : X → R
endowed with the uniform norm. For α > 0 , we let Cα(X ) denote the Hölder space of
order α, consisting of the functions f ∈ C(X ) that have bαc continuous derivatives with the
bαcth derivative f bαc being Lipschitz continuous of order α − bαc. The ε-covering number
N(ε, T, dM ) of a semi-metric space T relative to the semi-metric dM is the minimal number
of balls of radius ε needed to cover T . The logarithm of the covering number is referred
to as the entropy.

∮
stands for the complex line integral. We write “-” for inequality

up to a constant multiple and {a(1), a(2), . . . , a(n)} to denote the order statistics of the set
{ai : ai ∈ R, i = 1, . . . , n}.

3.2. Support

Let the Hölder class of bivariate periodic functions on T2 of order α be denoted by Cα(T2).
Define a class of closed parametric surfaces SC(α1, α2, α3) having different smoothness along
different coordinates as

SC(α1, α2, α3) := {S = (S1, S2, S3) : T2 → R3, Si ∈ Cαi(T2), i = 1, 2, 3}.
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From Lemma 5, SC(α1, α2, α3) is contained in the set of all closed T2 → R3 parametric
surfaces. For fixed n and m, define the stochastic process S ∼ ΠSn,m . To characterize the
support of our prior, we first recall the definition of the reproducing kernel Hilbert space
(RKHS) of a multivariate Gaussian process prior. van der Vaart and van Zanten (2008)
review facts that are relevant to the present setting. A Borel measurable random element W
with values in a separable Banach space (B, || · ||) is called Gaussian if the random variable
b∗W is normally distributed for any element b∗ ∈ B∗, the dual space of B. In our case, the
Banach space B is C(T2;R3), the space of continuous functions from T2 to R3. The RKHS
H attached to a zero-mean Gaussian process W is defined as the completion of the range
MB∗ of the map M : B∗ → B defined by Mb∗ = EWb∗(W ) relative to the inner product

〈Mb∗1,Mb∗2〉H = Eb∗1(W )b∗2(W ).

The following lemma describes the RKHS of the Gaussian process ΠSn,m given {φjk, j =
0, . . . , 2n, k = 0, . . . , 2m} defined in (5).

Lemma 6 Given {φjk, j = 0, . . . , 2n, k = 0, . . . , 2m}, the RKHS Hn,m of ΠSn,m consists of
all functions h : T2 → R3 of the form

h(u, v) =

2n∑
j=0

2m∑
k=0

cjkB
n
j (u)Bm

k (v),

where the weights cjk range over R3. The RKHS norm is given by

||h||2Hn,m =
2n∑
j=0

2m∑
k=0

||cjk||2φjk.

The following theorem describes how well an arbitrary closed parametric surface S0 ∈
SC(α1, α2, α3) can be approximated by the elements of Hn,m for each n and m given {φjk, j =
0, . . . , 2n, k = 0, . . . , 2m}.

Theorem 7 For any fixed S0 ∈ SC(α1, α2, α3), there exists h ∈ Hn,m with ||h||2Hn,m ≤
K1
∑2n

j=0

∑2m
k=0 φjk such that

||S0 − h||∞ ≤ K2(n ∧m)−α(1) log n logm

for some constants K1,K2 > 0 independent of n and m.

3.3. Rate of Convergence of the Posterior

The parameter space is C(T2;R3) × [0,∞) × [−π, π]2 and ΠS × Πσ × Π[−π,π]2 is the prior
on C(T2;R3)× [0,∞)× [−π, π]2 where Πσ denotes a general prior for σ which is compactly
supported on [0, L] for some L > 0. Assume that the density of Πσ with respect to the
Lebesgue measure on the compact interval is bounded away from zero and Π[−π,π]2 has a
density with respect to Lebesgue measure on [−π, π]2 which is nowhere zero. The inverse
gamma prior truncated to the interval [0, L] provides an example.
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Definition 8 For a given sequence εN ↓ 0, the posterior is said to contract around the true
parameter value (S0, σ0) ∈ C(T2;R3)× [0,∞) at a rate εN if for M sufficiently large,

ΠS0,σ0

[
(S, σ) :

∫
[−π,π]2

||S(u, v)− S0(u, v)||2dΠ[−π,π]2(u, v) + |σ − σ0|2 > Mε2N

∣∣∣∣ {pi, (ui, vi)}Ni=1

]
→ 0 asN →∞.

Theorem 9 If (S0, σ0) ∈ SC(α1, α2, α3)×[0, L], ΠS×Πσ×Π[−π,π]2 is the prior on C(T2;R3)×
[0,∞) × [−π, π]2 as defined above with γn = O(log n)3 and exp{−(nr + ms)} ≤ Πn,m ≤
(nm)−3, n,m ≥ 1 for some r, s > 0, then the posterior contracts around (S0, σ0) at the rate

εN = N
−

α(1)
2α(1)+2 logtN , where t is a known constant.

The proofs of Lemma 6, Theorem 7 and Theorem 9 are deferred to the Appendix. The
assumption on Πn,m ensures that the prior probability is not too small on smaller values
of n and m so that the prior favors relatively simple representations of the surface. The
assumption is satisfied by a product of independent Poisson distributions. Also the shape
parameter of the Gamma distribution for τj and ξk should be increased depending on the
values of n and m to guarantee an optimal rate of convergence. The increase in shape
parameter with n and m corresponds to a greater shrinkage of the higher indexed control
points. To estimate a real valued d-variate function in Cα(X ), the minimax optimal rate
of convergence is n−α/(2α+d). One can anticipate that for vector valued functions with
smoothness αj , j = 1, 2, 3 in the coordinates, with the loss function defined by the sum
of the individual loss across the coordinates, the rate of convergence cannot be improved
beyond n−α(1)/(2α(1)+d). Theorem 9 ensures that the posterior will converge to the true
surface at this rate which is offset slightly by a logarithmic factor as expected for Bayesian
procedures (de Jonge and van Zanten, 2010; van der Vaart and van Zanten, 2009).

4. Posterior Computation

Since fully Bayes posterior updates of all the unknown parameters will require a computa-
tionally intensive Metropolis-Hastings step to update the {(ui, vi), i = 1, . . . , N} within the
Gibbs sampler, we consider a simpler two-stage estimation. In the first stage, we estimate
{(ui, vi), i = 1, . . . , N}, a procedure popularly termed as parameterization. In the second
stage, we plug the values of {(ui, vi), i = 1, . . . , N} obtained in the first stage and perform
Gibbs sampling to update the remaining parameters as described in §4.2 and §4.3.

4.1. Empirical Bayes Estimation of {(ui, vi), i = 1, . . . , N}

We formally define parameterization below.

Definition 10 Parameterization is an algorithm to find the coordinate (ui, vi) correspond-
ing to the observed data point pi for each i = 1, . . . , N such that there exists a parametric
surface S so that pi is regarded as an error-prone realization of S(ui, vi), i = 1, . . . , N . The
coordinate chart {(ui, vi), i = 1, . . . , N} is alternatively termed as the associated parameter
values.

9
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Since we intend to fit a parametric surface, we have to find the coordinate chart {(ui, vi) ∈
[a, b]2} corresponding to the points {pi ∈ R3, i = 1, . . . , N}. Closed surfaces can be achieved
by parameterizations on the sphere or the torus. The parameterizations are typically esti-
mated from the data by, for example, projecting the points {pi} onto a suitably chosen plane.
Spherical harmonics were originally used as a type of parametric surface representation for
radial or steller surfaces S(u, v), 0 < u < 2π, 0 < v < π (Brechbühler et al., 1995; Shen and
Makedon, 2006). The idea is to project the data on the sphere by constrained optimization
and then recover the surface by fitting S(u, v) to pi, i = 1, . . . , N . Parameterization with
the torus topology has the advantage of encompassing a wider range of closed surfaces com-
pared to spherical harmonic functions which can only model sphere-like or convex surfaces.
We use the relational perspective map developed by Li (2004) to project the 3-d point cloud
onto a torus and then scale down to [−π, π]2. The relational perspective mapping is a mul-
tidimensional scaling algorithm with topological constraints. It preserves the neighborhood
property of the 3d points pi in the projected points (ui, vi) by minimizing an energy function∑

1≤i<j<N (δ1ij − δ2ij)2/δ2ij where δ1ij = ||pi− pj || and δ2ij = ||(ui, vi)− (uj , vj)|| subject to the
constraint that the points (ui, vi) lies on a torus. Applying the relational perspective map
to the point cloud in Fig. 1, we obtain the points in the [−π, π]2 square shown in Fig. 4.1.

Figure 4: Parameterization of the human skull and the Beethoven data

4.2. Gibbs Sampler for a Fixed Truncation Level and {(ui, vi), i = 1, . . . , N}

For a fixed n and m, the full conditional distributions of all the unknown variables are
conjugate and we can do Gibbs sampling. The sampler cycles through the following steps.
Step 1. DefineX to be theN×(2n+1)(2m+1) matrix with rows {Bn

0 (ui), B
n
1 (ui), . . . , B

n
2n(ui)}⊗

{Bm
0 (vi), B

m
1 (vi), . . . , B

m
2m(vi)}, i = 1, . . . , N . Also let D be the (2n+ 1)(2m+ 1)× 3 coef-

ficient matrix with rows dT
jk, j = 0, 1, . . . , 2n, k = 0, 1, . . . , 2m. Recall that the density of a

matrix-normal random variable Z ∼ MN(M,Ω,Σ) with mean M having dimension n× p is
given by

f(z |M,Ω,Σ) ∝ exp[−0·5tr{Ω−1(z −M)TΣ−1(z −M)}],

for positive definite matrices Ω and Σ of order p× p and n× n. Then

D | − ∼ MN(2n+1)(2m+1)×3

[
(1/σ2)XTP, I3, {(1/σ2)XTX + Λ−1}−1

]
,

10
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vec(D) | − ∼ N3(2n+1)(2m+1)

[
vec{(1/σ2)XTP}, I3 ⊗ {(1/σ2)XTX + Λ−1}−1

]
.

Here Λ−1 = diag{τjξk, j = 0, . . . , 2n, k = 0, . . . , 2m}.
Step 2.

σ−2 | − ∼ Ga

(
aσ + 3N/2, bσ + 0·5

N∑
i=1

||pi − S(ui, vi)||2
)
.

Step 3. For j = 0, . . . , 2n and k = 0, . . . , 2m,

τj | − ∼ Ga

{
γn + 3(2m+ 1)/2, β + 0·5

2m∑
k=0

ξk||djk||2
}
.

ξk | − ∼ Ga

{
γm + 3(2n+ 1)/2, β + 0·5

2n∑
j=0

τj ||djk||2
}
.

4.3. Posterior Sampling of n and m

The conditional likelihood of n,m, {(djk, φjk), j = 0, . . . , 2n, k = 0, . . . , 2m} given {pi, (ui, vi), i =
1, . . . , N} is proportional to

exp

(
− 1

2σ2

N∑
i=1

||pi − Sn,m(ui, vi)||2
)

Πn,m

2n∏
j=0

2m∏
k=0

p(djk | φjk)p(φjk).

In this case, rather than proposing an entirely new parameter vector, the form of reversible
jump Markov chain Monte Carlo for n and m becomes relatively straightforward. The
common parameters σ−2 and {djk, j = 0, . . . , 2n, k = 0, . . . , 2m} as the order of the model
changes are updated using a within model Gibbs move as in §4.2. Consider a proposal
q(n,m | n0,m0) = q(n | n0)q(m | m0) with q(1 | 0) = 1 and q(k′ | k) = 1/2 for all |k−k′| = 1.
Suppose the chain is at (n0,m0) and a proposal is made to go to state (n0 + 1,m0 + 1), we
employ a step-wise sampler as in Godsill (2001). We sample (d′2n0+1,2m0+1, φ

′
2n0+1,2m0+1)

and (d′2n0+2,2m0+2, φ
′
2n0+2,2m0+2) from a kernel ker(djk, φjk) and the move is accepted with

probability min{1, α}, where

α =
exp (− 1

2σ2

∑N
i=1 ||pi − Sn0+1,m0+1(ui, vi)||2)Πn0+1,m0+1

exp (− 1
2σ2

∑N
i=1 ||pi − Sn0,m0(ui, vi)||2)Πn0,m0

×

q(n0 + 1,m0 + 1 | n0,m0)

q(n0,m0 | n0 + 1,m0 + 1)
∏2
j=1 ker(d

′
2n0+j,2m0+j

, φ′2n0+j,2m0+j
)
.

We take ker(djk, φjk) = p(djk, φjk). The proposal probabilities for the moves (n0,m0) →
(n0,m0±1), (n0,m0)→ (n0±1,m0) and (n0,m0)→ (n0±1,m0±1) can be derived similarly.
The shrinkage prior on the φjk’s gives rise to highly efficient moves which converge to the
appropriate values of n and m rapidly in most cases we have observed.

11
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5. Applications

We analyzed the skull and Beethoven data shown in Fig. 1 using our proposed method. As
all reasonable methods will do a good job at surface estimation based on a large number of
points located very close to the surface of interest, we simulated different levels of sparse and
noisy data by sampling a subset of the points in the original data sets and adding different
levels of Gaussian measurement errors. In many other applications, sparse and noisy data
are routinely collected but focusing on two dense, low measurement error data sets allows
careful study of the impact of sample size and measurement error on the performance of
our proposed Bayesian approach relative to the state-of-the-art Crust algorithm.

First we reconstruct the surface from non-noisy sparse data by taking random subsam-
ples of 390 points from the skull and Beethoven point clouds. Refer to the Appendix for
Figs A - A. The results for Crust are shown in Fig. A, while the results for the posterior
mean surface obtained from our Bayesian approach are shown in Fig. 6. In each case, we
generated 5000 samples and discarded the first 2000 as burn-in. Convergence was moni-
tored using trace plots of the deviance as well as several parameters. Also we get essentially
identical posterior modes of n and m with different starting points and moderate changes
to hyperparameters.

In many applications, the features of the data acquisition device can dictate the amount
of noise incorporated. Choosing an informative prior for the noise variance can help in the
ability to pick up local features. The hyperparameters in the priors for τj and ξk play a key
role in controlling the smoothness of the surface. An increase in γn corresponds to a decrease
in the values of τj and ξk leading to over-smoothing. Estimation of noise variance and the
surface is robust to moderate changes in hyperparameters as the sample size increases.

Our method performs closely to Crust for non-noisy data. As we add Gaussian noise to
the points, the performance of Crust deteriorates (Fig. A) while the tensor product surface
(Fig. A) is quite robust to the addition of noise as it takes into account the uncertainty in
estimating the surface. In Fig. A, we notice some parts from the skull and the Beethoven’s
head jutting out owing to poor characterization of the noise.

To compare the performance of our method with existing competitors, we compute the
Hausdorff distance between the true surface and the fitted surface as described below. Let
S1 and S2 be two manifolds embedded in R3. Then the Hausdorff distance is defined by

hD(S1, S2) = max

{
sup
x∈S1

inf
y∈S2

d(x, y), sup
x∈S2

inf
y∈S1

d(x, y)

}
where d is any distance in R3. It can be shown that hD(S1, S2) = 0 if and only if S1
and S2 have the same closure. For the tensor product approach we estimate hD(S, Ŝ) by
max { supi infj d(pi, p̂j), supj infi d(pi, p̂j)} where {p̂i, i = 1, . . . , N} is a Bayes estimate of
{pi, i = 1, . . . , N} where d is the standard Euclidean distance. For the Crust algorithm, we
estimate hD(S, Ŝ) by max { supi infj d(pi, tj), supj infi d(pi, tj)} where {ti : i = 1, . . . ,M} is
a dense grid of points on the resulting simplicial surface.

We summarize the performances of the Crust algorithm and the tensor product approach
in Table 1 for a variety of choices of the sample size and noise variance (σ2). We observe that
for non-noisy data Crust performs closely and slightly better than the tensor-product surface
for large sample sizes while the tensor product outperforms the Crust as the noise variance

12
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Table 1: Hausdorff distance between true and fitted surface using tensor product method
and Crust

Skull Beethoven

σ N=390 N=690 N=990 N=390 N=690 N=990

0·05 (2·123, 2·045) (2·008, 1·971) (1·981, 1·791) (1·528, 1·557) (1·510, 1·527) (1·411,1·397)
0·1 (2·561, 2·671) (2·345, 2·682) (2·311, 2·677) (1·589, 1·679) (1·524, 1·560) (1·579, 1·730)
0·2 (2·711, 3·134) (2·697, 3·225) (2·523, 3·435) (1·812, 2·146) (1·796 ,1·874) (1·657, 2·334)

Table 2: Posterior summaries of σ and n,m (posterior mean of σ, 95% credible intervals
for σ, posterior mode of (n,m))

σ N=390 N=690 N=990

Skull

0·05 0·075, [0·065, 0·093], (3,4) 0·064, [0·056, 0·077], (4,4) 0·056, [0·047, 0·062], (4,4)
0·1 0·194, [0·124, 0·265], (4,4) 0·154 [0·096, 0·213], (4,4) 0·120, [0·081, 0·156], (3,4)
0·2 0·220, [0·127, 0·314], (3,4) 0·210 [0·136, 0·279], (3,4) 0·196 [0·139, 0·253], (3,4)

Beethoven

0·05 0·090, [0·081 0·109], (5,6) 0·061, [0·041, 0·081], (6,6) 0·054, [0·039, 0·067], (6,7)
0·1 0·220, [0·191, 0·261], (5,6) 0·171,[0·143, 0·191], (5,6) 0·167, [0·091, 0·159], (6,6)
0·2 0·228, [0·166, 0·291], (5,6) 0·214, [0·161, 0·267], (5,6) 0·203 [0·161, 0·246], (5,6)

increases. As the sample size increases, the tensor product surface fit becomes better even
when the noise variance is large. However, the performance of the Crust improves with
sample size only when the noise variance is very small. Posterior summaries of the noise
variance and the basis function truncation levels n and m are provided in Table 2. The
noise variance is not well-estimated for small sample sizes and smaller value of the true
noise variance. However, estimation becomes better for larger sample sizes consistent with
the posterior convergence results. Also, one can estimate larger variances well compared to
smaller ones for reasons discussed earlier. As the sample size increases, the posterior mode
of (n,m) tend to increase slightly when the noise variance is small in order to capture local
features. When the noise variance is large, the global features dominate and the posterior
modes of n and m remain constant at the smaller values.

6. Discussion

This article develops a novel Bayesian hierarchical model for a closed surface, allowing full
posterior inferences via an efficient Markov chain Monte Carlo algorithm. Consistent with
our theory results on optimal rates of posterior contraction, we find that the methodology
does a good job in reconstructing a closed surface from sparse and noisy 3d point cloud data
yielding improved performance over state-of-the-art computer science algorithms. Although
modern sensing technology, such as computed tomography or magnetic resonance imaging,
enables us to make detailed scans of complex objects generating point cloud data consisting

13



Binette, Pati and Dunson

of millions of points, the data acquired is usually distorted by noise arising out of various
physical measurement processes and limitations of the acquisition technology. Most of
these points are typically discarded after taking into account acquisition effects leading to
a sparse noisy point cloud. The resolution specifics of these acquisition devices provide
information on the magnitude of the measurement error variance. A major advantage of
the proposed model is that the Markov chain Monte Carlo algorithm is quite simple and
easy to implement rapidly which makes it particularly easy to include generalizations (e.g.,
to heavy-tailed residual densities, background clutter, etc). An appealing feature of our
Bayesian approach is that we obtain a full posterior for the surface allowing uncertainty.
Visualizing this uncertainty is an interesting challenge for future research, but one can
produce interior and exterior pointwise 95% credible surfaces and even movies of surface
realizations from the posterior. In addition, when there is interest in surface features,
such as the interior volume, surface area, or the number of holes, one can obtain posterior
summaries of the feature of interest.

Our proposed approach represents an initial step in a line of research related to Bayesian
modeling of 3-d closed surfaces. There are several important next steps. The use of pa-
rameterization domains that are closed surfaces of arbitrary genus would require carefully
chosen basis functions. It is also commonly the case that each subject has their own surface
and interest focuses on modeling a collection of dependent surfaces across subjects, while
incorporating subject-specific predictors, using the surface to predict a response variable,
and testing differences in distributions of surfaces between groups. In such settings, it is
necessary to align the surfaces for the different subjects, which can potentially be accom-
plished in a Bayesian probabilistic framework. Another ongoing problem relates to surfaces
that change dynamically over time within a subject. In addition, it is common for the data
to not consist simply of a 3-d point cloud but instead to have pixelated data in which the
surface(s) of interest are embedded in an blurry image containing other objects.

As in other functional data modeling settings, the smoothness and local features of the
surfaces being estimated can be somewhat sensitive to the basis functions being used. We
have focused on tensor products of truncated Fourier series, which lead to obtain rates
of posterior contraction and have good practical performance in reconstructing infinitely
smooth surfaces that have cross sections that are closed curves. There are settings in which
the objects being modeled may have interesting local features, such as spikes, that may
be smoothed out with our proposed bases and shrinkage priors in the absence of abundant
data.
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Appendix A.

Proof of Lemma 6. The Gaussian process prior ΠSn,m given {φjk, j = 0, . . . , 2n, k =
0, . . . , 2m} has the following representation.

Sn,m(u, v) =
2n∑
j=0

2m∑
k=0

djkB
n
j (u)Bm

k (v), djk ∼ N3(0, φ
−1
jk I3), (u, v) ∈ T2.

To characterize the RKHS of Sn,m(u, v), we need the following generalization of Theorem
4.2 of van der Vaart and van Zanten (2008) to the multivariate case.

Proposition 11 Let (hi) be a sequence of elements in a separable Banach space B such
that

∑∞
i=1wihi = 0 for a sequence w ∈ `2(R3), where the convergence is in B, implying that

w = 0. Let Zi = (Zi1, Zi2, Zi3)
T ∼ N3(0, I3), and assume that the series W =

∑∞
i=1 Zihi

converges almost surely in B3. Then the RKHS of W as a map in B3 is given by H =
{
∑∞

i=1wihi : w ∈ `2(R3)} with squared norm ||
∑∞

i=1wihi||2H =
∑∞

i=1 ||wi||2.

Proof The almost sure convergence of the series W =
∑∞

i=1 Zihi ∈ B3 implies almost sure
convergence of the series b∗W for any b∗ ∈ (B3)∗. Now any b∗ ∈ (B3)∗ can be written as
b∗ = α1b

∗
1 + α2b

∗
2 + α3b

∗
3 for αi ∈ R, b∗i ∈ B∗. Hence b∗W =

∑3
j=1 αj

∑∞
i=1 Zijb

∗
jhi. Since

the partial sums of the last series are zero mean Gaussian, the series also converges in
L2(Ω,U ,P). Hence for b∗, b∗ ∈ (B3)∗,

Eb∗Wb∗W =

3∑
j=1

αjαj

∞∑
i=1

b∗jhib
∗
jhi.

For w ∈ `2(R3) and natural numbers m < n, by the Hahn-Banach theorem and the Cauchy-
Schwartz inequality, we have

||
∑

m≤i≤n
wihi||2 = sup

||b∗||≤1
||

3∑
j=1

αj

∞∑
m≤i≤n

wijb
∗
jhi||2

≤ 3 sup
||b∗||≤1

3∑
j=1

α2
j

∑
m≤i≤n

w2
ij

∑
m≤i≤n

(b∗jhi)
2

≤ 3(

3∑
j=1

∑
m≤i≤n

w2
ij) sup
||b∗||≤1

3∑
j=1

α2
j

∑
m≤i≤n

(b∗jhi)
2

As m,n → 0, the first term on the far right converges to zero as w ∈ `2(R3). By the first
paragraph the second factor is bounded by sup||b∗||≤1 E(b∗W )2 ≤ E||W ||2. Hence the partial

sums of the series
∑

iwihi form a Cauchy sequence in B3 and hence it converges.

Because
∑∞

i=1(b
∗
jhi)

2 was seen to converge for each j = 1, 2, 3, it follows that
∑∞

i=1(b
∗
jhi)hi

converge in B, and hence b∗
∑∞

i=1(α1b
∗
1hi, α2b

∗
2hi, α3b

∗
3hi)

Thi =
∑3

j=1 αjαj
∑∞

i=1 b
∗
jhib

∗
jhi =

Eb∗Wb∗W , for any b∗ ∈ (B3)∗. This shows that Mb∗ =
∑∞

i=1(α1b
∗
1hi, α2b

∗
2hi, α3b

∗
3hi)

Thi
and the RKHS is not bigger than this space. Also ||Mb∗||2H =

∑3
j=1 α

2
j

∑∞
i=1(b

∗
jhi)

2.
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Thus the RKHS consists of elements
∑∞

i=1wihi =
∑∞

i=1wihi where wi ∈ `2(R3) and
||
∑∞

i=1wihi||2H =
∑∞

i=1 ||wi||2.
The space would have been smaller than claimed if there existed w ∈ `2(R3) that is

not in the closure of the linear span of the elements (b∗hi) of `2(R3) when b∗ ranges over
(B∗)3. Without loss of generality, we can take this w to be orthogonal to the later collection,
i.e.,

∑3
j=1 αj

∑
iwijb

∗
jhi = 0 for every b∗ ∈ (B∗)3. This is equivalent to

∑
iwijhi = 0 for

j = 1, 2, 3 which implies w = 0.

Since djk ∼ N3(0, φ
−1
jk I3), ΠSn,m can be written as

Sn,m(u, v) =

2n∑
j=0

2m∑
k=0

b∗jkφ
−1/2
jk Bn

j (u)Bm
k (v),

where b∗jk ∼ N3(0, I3). Hence Hn,m consists of h : T2 → R3 such that

h(u, v) =

2n∑
j=0

2m∑
k=0

cjkB
n
j (u)Bm

k (v), (6)

where cjk ∈ R3. The RKHS norm of h in (6) is given by ||h||2Hn,m =
∑2n

j=0

∑2m
k=0 φjk||cjk||2.

Proof of Theorem 7. From Stepanets (1974) and observing that the basis functions {Bn
j , j =

0, . . . , 2n} span the vector space of trigonometric polynomials of degree at most n, it fol-
lows that given any Si0 ∈ Cαi(T2), there exists hi(u, v) =

∑2n
j=0

∑2m
k=0 c

i
jkB

n
j (u)Bm

k (v),

hi : T2 → R with |cijk| ≤ Mi, such that ||hi − Si0||∞ ≤ Ki(n ∧m)−αi log n logm for some

constants Mi,Ki > 0, i = 1, 2, 3. Setting h(u, v) =
∑2n

j=0

∑2m
k=0(c

1
jk, c

2
jk, c

3
jk)

TBn
j (u)Bm

k (v),
we have

||h− S0||∞ ≤M(n ∧m)−α(1) log n logm,

with ||h||2H ≤ K
∑2n

j=0

∑2m
k=0 φjk where M = M(3),K = K(3).

Proof of Theorem 9. It is enough to verify the following along the lines of de Jonge and
van Zanten (2010). We will show that if S0 ∈ SC(α1, α2, α3) there exists for every constant
C > 1 measurable subsets BN of C(T2;R3) such that for N large enough,

logN(ε̄N , BN , || · ||∞) ≤ DNε̄2N , (7)

P (S /∈ BN ) ≤ e−CNε
2
N , (8)

P ( sup
(u,v)∈T2

||S(u, v)− S0(u, v)|| ≤ εN ) ≥ e−Nε
2
N , (9)

with εN = N−α(1)/(2α(1)+2) logt1 N and ε̄N = N−α(1)/(2α(1)+2) logt2 N for some global con-
stants t1, t2 > 0. It is evident from de Jonge and van Zanten (2010) that the conditions
(7) - (9) which are only related to the random object S are alone sufficient to map to the
general conditions on rates of contraction of posterior distributions used in Ghosal et al.
(2000); Ghosal and van der Vaart (2007) assuming both S0 and σ0 to be unknown and σ0
lying in some compact interval on which the prior for σ is supported.
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To find an upper bound to the metric entropy of the unit ball of Hn,m, we embed it
in an appropriate space of functions for which the upper bound is known. The function
h is in fact well defined on A(1) = {z ∈ C2 : |Im(zj)| ≤ 1, j = 1, 2}, is analytic on this
set and takes real values in R2. By the Cauchy-Schwartz inequality, it follows that with
φ1,n,m = min{φjk, j = 0, . . . , 2n, k = 0, . . . , 2m},

|h(z)|2 ≤
∑2n

j=0

∑2m
k=0 ||cjk||2φjk

∑2n
j=0

∑2m
k=0(1/φjk)B

n
j (z1)

2Bm
k (z2)

2,

≤ ||h||2Hn,m(1/φ1,n,m), (10)

for every z ∈ A(1). Let S(φ, ψ) denote the set of all analytic functions on A(ψ), uniformly

bounded by φ−0·5. (10) shows that Hn,m
1 ⊂ S(φ1,n,m, 1).

Next we characterize the metric entropy of S(φ, ψ) for any φ > 0 in Proposition 12.

Proposition 12 There exist ε0, φ0 > 0 such that

logN(ε,S(φ, ψ), || · ||∞) ≤ K1
1

ψ2

(
log

K2

φ0·5ε

)3

for φ ∈ (0, φ0) and ε ∈ (0, ε0).

Proof The proof proceeds similarly to van der Vaart and van Zanten (2009). However,

extra care is needed to identify the role of φ and ψ. Let M = φ−0·5. h is an analytic
function h : C2 → C, |h(z)| ≤M for all z ∈ Ω = {z ∈ C2 : |Re(z1)| ≤ ψ, |Re(z2)| ≤ ψ} and
hence admits a Taylor series expansion on Ω.

Let {t1, . . . , tm} be an ψ/2-net of T2 for sup norm, let T2 = ∪mi=1Bi be a partition of
T2 into sets B1, . . . , Bm obtained by assigning every t ∈ T2 to a closest ti ∈ {t1, . . . , tm}.
Consider P =

∑m
i=1 Pi,aiIBi for Pi,ai(t) =

∑
n.≤k ai,n(t − ti)n where the sum ranges over

n = (n1, n2) ∈ (N∪{0})2 with n.= n1 +n2 ≤ k and xn is defined as xn1
1 x

n2
2 . Obtain a finite

set of functions by discretizing ai,n for each i and n over a mesh of ε/ψn.-net of the interval
[−M/ψn.,M/ψn.]. Then

log

(∏
i

∏
n:n.≤k

#ai,n

)
≤ {3/(ψ/2)}2k2 log

(
2M

ε

)
.

By the Cauchy formula (2 applications of the formula in one dimension suffice), for
C1, C2 circles of radius ψ in the complex plane around the coordinates ti1, ti2 of ti, and with
Dn the partial derivative of orders n = (n1, n2) and n! = n1!n2!,∣∣∣∣Dnh(ti)

n!

∣∣∣∣ =

∣∣∣∣ 1

(2πi)2

∮
C1

∮
C2

h(z)

(z − ti)n+1
dz1dz2

∣∣∣∣ ≤ M

ψn.
.

Consequently for any z ∈ Bi, a universal constant K, an appropriately chosen ai and for
k > log KM

ε ,∣∣∣∣ ∑
n.>k

Dnh(ti)

n!
(z − ti)n

∣∣∣∣ ≤∑
n.>k

M

ψn.
(ψ/2)n. ≤M

∞∑
l=k+1

l

2l
≤ KM

(
2

3

)k
≤ ε,

∣∣∣∣ ∑
n.≤k

Dnh(ti)

n!
(z − ti)n − Pi,ai(z)

∣∣∣∣ ≤∑
n.>k

ε

ψn.
(ψ/2)n. ≤ ε

k∑
l=1

l

2l
≤ Kε.
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Hence logN(ε,S(M,ψ), || · ||∞) ≤ K1
1
ψ2 ( log K2M

ε )3.

We return to verifying (7), (8) and (9). First we will verify (9). By Lemma 5.3 of van der
Vaart and van Zanten (2008), we have for S0 ∈ SC(α1, α2, α3), the inequality

− logP (||S − S0||∞ < ε) ≤ ψn,mS0
(ε),

with ψn,mS0
denoting the concentration function defined as,

ψn,mS0
(ε) = inf

h∈Hn,m:||h−S0||∞<ε
||h||2Hn,m − logP (||Sn,m|| < ε).

We can provide a lower bound to − logP (||Sn,m|| < ε) using Proposition 12. Observe that

P (||S − S0|| ≤ εN ) =
∞∑

n,m=1

Πn,m

∫
P (||Sn,m − S0|| ≤ εN )

2n,2m∏
j,k=0

p(φjk)dφjk.

From Theorem 7 we obtain

P (||S − S0|| ≤ εN ) ≥
∞∑

n,m≥(1/εN )
1/α(1)

Πn,m exp

{
−M(2n+ 1)(2m+ 1)

αmγn
β2

+K1

(
log

K3

εN

)3}

for some constant K3 > 0.

Next we will verify (8). Define RN to be the region {φjk ≥ tN , j = 0, . . . , n, k =
0, . . . ,m;n,m = 1, . . . , rN}, where tN and rN are to be determined. Let B1 denote the unit
ball in the Banach space C(T2;R3). Define

BN = LNS(tN , 1) + εNB1.

Then by Borel’s inequality (van der Vaart and van Zanten, 2008)

P (S /∈ BN ) =
∞∑
n=1

∞∑
m=1

Πn,m

∫
P (Sn,m /∈ BN )

2n,2m∏
j,k=0

p(φjk)dφjk

≤
rN∑
n=1

rN∑
m=1

Πn,m

∫
P (Sn,m /∈ LNHn,m

1 + εNB1)

2n,2m∏
j,k=0

p(φjk)dφjk

+ P (n > rN ,m > rN )

≤
rN∑
n=1

rN∑
m=1

Πn,m

∫
RN

P (Sn,m /∈ LNHn,m
1 + εNB1)

2n,2m∏
j,k=0

p(φjk)dφjk

+ P (φ1,rN ,rN ≤ tN ) + P (n > rN ,m > rN ).

From van der Vaart and van Zanten (2009), the first term on the right hand side of the
previous inequality is bounded as follows.

P (Sn,m /∈ LNHn,m
1 + εNB1) ≤ 1− Φ[Φ−1{P (||Sn,m||∞ ≤ εN )}+ LN ].
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For εN small enough and since Φ−1(y) ≥ −{(5/2) log(1/y)}0·5 for y ∈ (0, 0·5), it follows
that

P (Sn,m /∈ LNHn,m
1 + εNB1) ≤ 1− Φ

[
LN −

{
(5/2)K1

(
log

K2

t0·5N εN

)3}0·5]
,

for LN ≥
{

(5/2)K1

(
log K2

t0·5N εN

)3}0·5
and for {φjk, j = 0, . . . , 2rN , k = 0, . . . , 2rN} in RN .

Let τN = min{τi, 0 ≤ i ≤ 2rN}, τ̃N ∼ Ga{αrN , (2rN + 1)β} and κN = min{κi, 0 ≤ i ≤
2rN}, κ̃N ∼ Ga{αrN , (2rN + 1)β}, τ̃N and κ̃N are independent.

Observe that

P (φ1,rN ,rN ≤ tN ) ≤ P (τNκN ≤ tN ) ≤ P (τ̃N κ̃N ≤ tN )

≤
∫ e−1

0
P (τ̃N ≤ tN/y)fκ̃N (y)dy + P (τ̃N ≤ etN ).

Now P (τ̃N ≤ etN ) - exp[αrN + αrN log{(2rN + 1)tNβ} − αrN logαrN ] and fκ̃N (y) -
exp(−αrN ) for y ∈ (0, e−1). Thus

P (φ1,rN ,rN ≤ tN ) - exp[αrN + αrN log{(2rN + 1)tNβ} − αrN logαrN ] + exp(−αrN ).

Finally we will verify (7). For ε̄N ≥ εN ,

N(2ε̄N , BN , || · ||∞) ≤ N(ε̄N/LN ,S(tN , 1), || · ||∞)

≤ K1

(
log

K2

t0·5N ε̄N/LN

)3

.

Letting γN = O(logN)3, rN = O

{
exp

(
N

2
3(2α(1)+2)

)}
, tN = O

{
exp

(
−N

2
3(2α(1)+2)

)}
such that (2rN + 1)tNβ is a global constant, L2

N = N2/(2α(1)+2), we can verify that (7), (8)

and (9) are satisfied with εN = N−α(1)/(2α(1)+2) logt1 N and ε̄N = N−α(1)/(2α(1)+2) logt2 N

for some global constants t1, t2 > 0. P (n > rN ,m > rN ) is guaranteed to be O

[
exp

{
−

N
2

2α(1)+2

}]
from the tail condition in the assumption.
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Á. Róth, I. Juhász, J. Schicho, and M. Hoffmann. A cyclic basis for closed curve and surface
modeling. Computer Aided Geometric Design, 26(5):528–546, 2009.

T.W. Sederberg. Implicit and parametric curves and surfaces for computer aided geometric
design. ETD Collection for Purdue University, 1983.

L. Shen and F. Makedon. Spherical mapping for processing of 3D closed surfaces. Image
and vision computing, 24(7):743–761, 2006.

25



Binette, Pati and Dunson

M. Smith and R. Kohn. A Bayesian approach to nonparametric bivariate regression. Journal
of the American Statistical Association, 92(440):1522–1535, 1997.

C. Soussen and A. Mohammad-Djafari. Closed surface reconstruction in X-ray tomography.
In Image Processing, 2001. Proceedings. 2001 International Conference on, volume 1,
pages 718–721. IEEE, 2002. ISBN 0780367251.

AI Stepanets. The approximation of certain classes of differentiable periodic functions of
two variables by fourier sums. Ukrainian Mathematical Journal, 25(5):498–506, 1974.

B. Su and D. Liu. Computational geometry: curve and surface modeling. Academic Press
Professional, Inc. San Diego, CA, USA, 1989. ISBN 0126756104.

R. Szeliski and D. Tonnesen. Surface modeling with oriented particle systems. ACM SIG-
GRAPH Computer Graphics, 26(2):185–194, 1992.

AW van der Vaart and JH van Zanten. Reproducing kernel Hilbert spaces of Gaussian
priors. IMS Collections, 3:200–222, 2008.

A.W. van der Vaart and J.H. van Zanten. Adaptive Bayesian estimation using a Gaussian
random field with inverse Gamma bandwidth. The Annals of Statistics, 37(5B):2655–
2675, 2009.

K.Y. Whang, J.W. Song, J.W. Chang, J.Y. Kim, W.S. Cho, C.M. Park, and I.Y. Song.
Octree-R: An adaptive octree for efficient ray tracing. Visualization and Computer Graph-
ics, IEEE Transactions on, 1(4):343–349, 2002.

M. Yang and E. Lee. Segmentation of measured point data using a parametric quadric
surface approximation. Computer Aided Design, 31(7):449–457, 1999.

26


	Introduction
	Outline of the Method
	Review of Terminology
	Closed Surface Model
	Construction of a Closed Surface Using a Cyclic Basis
	Model for the Control Points
	Prior Realizations

	Support of the Prior and Posterior Convergence Rates
	General Notations
	Support
	Rate of Convergence of the Posterior

	Posterior Computation
	Empirical Bayes Estimation of { (ui, vi), i=1, …, N}
	Gibbs Sampler for a Fixed Truncation Level and {(ui, vi), i=1, …, N}
	Posterior Sampling of n and m

	Applications
	Discussion
	

