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Abstract

Iterative methods for fitting a Gaussian Random Field (GRF) model via maximum like-
lihood (ML) estimation requires solving a nonconvex optimization problem. The problem
is aggravated for anisotropic GRFs where the number of covariance function parameters
increases with the dimension. Even evaluation of the likelihood function requires O(n3)
floating point operations, where n denotes the number of data locations. In this paper1, we
propose a new two-stage procedure to estimate the parameters of second-order stationary
GRFs. First, a convex likelihood problem regularized with a weighted `1-norm, utilizing
the available distance information between observation locations, is solved to fit a sparse
precision (inverse covariance) matrix to the observed data. Second, the parameters of the
covariance function are estimated by solving a least squares problem. Theoretical error
bounds for the solutions of stage I and II problems are provided, and their tightness are
investigated.

Keywords: nonconvex optimization, Gaussian Markov random fields, kernel methods,
hyperparameter optimization, covariance selection, spatial statistics

1. Introduction

Gaussian Random Field (GRF) models2 are widely used in several fields, e.g., Machine
Learning, Geostatistics, Computer Experiments (metamodeling) and Industrial Metrology.
Traditional methods for fitting a GRF model to given sample data rely on computing the
maximum likelihood estimate (MLE) of the parameters of an assumed spatial covariance

1. This research is based on the dissertation of the first author, supervised by Drs. Aybat and del Castillo.
2. A GRF is also called a Gaussian Process (GP) model or simply a Gaussian Field (GF).
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function belonging to a known parametric family. As it is well-known in Spatial Statis-
tics (Warnes and Ripley, 1987), the log-likelihood function for the covariance parameters
of a GRF is non-concave, which leads to numerical difficulties in solving the optimization
problem (computing a global optimal solution) for MLE, yielding suboptimal estimates that
do not possess the desirable properties of MLE. Even though parametric GRF covariance
matrices for isotropic processes require estimation of a small number of parameters, finding
the MLEs is challenging due to nonconvexity of the negative loglikelihood function. Fur-
thermore, each evaluation of the negative loglikelihood function requires O(n3) operations
due to covariance matrix inversions (where n is the number of distinct data locations).
Since n is typically large in GRF modeling, the computational issues due to large n is called
the “big n problem” (Banerjee et al., 2008). The problem is much more significant for
anisotropic processes where the number of parameters scales with the dimension.

To overcome these difficulties, we propose a new method, Sparse Precision matrix Selec-
tion (SPS), for fitting a GRF model, and establish the recovery guarantees and theoretical
error bounds for the proposed estimator. In the first stage of the SPS method, a sparse
precision (inverse covariance) matrix is fitted to the GRF data observations by solving a
convex likelihood problem regularized with a weighted `1-norm, utilizing the available dis-
tance information among observation locations. This precision matrix is not parameterized
in any form and constitutes a Gaussian Markov Random Field (GMRF) approximation to
the GRF. The first-stage problem is solved using a variant of the Alternating Direction
Method of Multipliers (ADMM) with a linear convergence rate. Suppose the covariance
function has q parameters (q � n). In the second stage, these parameters are estimated
via a least-squares (LS) problem in Rq, resulting in more consistent estimates than the
suboptimal solutions of the non-convex MLE problem. Although the second stage LS prob-
lem is non-convex in general, it is still numerically much easier to solve when compared to
the non-convex MLE problem. In particular, the solution to the second stage LS problem
can be computed via a line search in the range parameter for isotropic GRFs. Empirical
evidence suggests that the first stage optimization “zooms-in” to a region in the covariance
parameter space that is close to the true parameter values, alleviating the non-convexity
to a certain degree. We next provide some preliminaries, including a brief review of other
state-of-the-art methods.

Preliminaries

Let X ⊆ Rd and y(x) denote the value of a latent GRF f : X → R observed with additive
Gaussian noise at location x ∈ X : y(x) = f(x) + ε, where f(x) has a mean function mf (x)
and covariance function cf (x,x′) = cov (f(x), f(x′)) for all x,x′ ∈ X , and ε ∼ N (0, θ∗0)
models the “nugget” error, assumed independent of f(x). We assume the training data

D = {(xi, y(r)
i ) : i = 1, ..., n, r = 1, ..., N} contains N realizations of the GRF at each of

n distinct locations in Dx , {xi}ni=1 ⊂ X . Let y(r) = [y
(r)
i ]ni=1 ∈ Rn denote the vector

of r-th realization values for locations in Dx. Given a new location x0 ∈ X , the goal in
GRF modeling is to predict f0 , f(x0). We assume that the GRF has a constant mean
equal to zero, i.e., mf (x) = 0. Since any countable collection of observations from a GRF

follows a multivariate normal distribution, the joint distribution of (y>, f0)> is given by(
y(r)

f0

)
∼ N

(
0n+1,

[
Cf + θ∗0In c0

c>0 c00

])
, for all r = 1, . . . , N , where c00 = cf (x0,x0),
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c>0 = [cf (x1,x0), ..., cf (xn,x0)], and the covariance matrix Cf ∈ Rn×n is formed such that

its (i, j)th element is equal to cf (xi,xj). Therefore, the conditional distribution of f0 given

{y(r)}Nr=1, i.e., the predictive distribution of f0 denoted by p(· | {y(r)}Nr=1), is given as

p(f0 | {y(r)}Nr=1) = N

(
c>0 (Cf + θ∗0In)−1

N∑
r=1

y(r)/N, c00 − c>0 (Cf + θ∗0In)−1c0

)
. (1)

The mean of this predictive distribution is a point estimate (known as the Kriging estimate
in Geostatistics) and its variance measures the uncertainty of this prediction.

It is clear from (1) that the prediction performance can be made significantly robust
by correctly estimating the unknown covariance function cf , which is typically assumed
to belong to some parametric family {cf (x,x′,θf ) : θf = [θ>ρ , θv]

> ∈ Θf}, where Θf =
{(θρ, θv) ∈ Rq × R : θρ ∈ Θρ, θv ≥ 0} is a set that contains the true parameters θ∗f of the
f -process—this practice is common in both the Geostatistics and in the Machine Learning
literature, e.g., Cressie (1993); Rasmussen and Williams (2006). In particular, we consider
the following parametric form for the covariance function of the f -process:

cf (x,x′,θf ) , θvr(x,x
′,θρ) (2)

for x,x′ ∈ X and θf ∈ Θf , where r(x,x′,θρ) is a parametric correlation function, and θρ
and θv denote the spatial correlation and variance parameters, respectively. A covariance
function is called valid if it leads to a positive definite covariance matrix for any finite set
of fixed locations {xi}ni=1 ⊂ X .

For isotropic correlation functions we have q = 1; for instance, the Squared-Exponential

(SE) exp
(
−‖x−x′‖2

θ2
ρ

)
and the Matern-3

2 function,
(

1 +
√

3‖x−x′‖
θρ

)
exp

(
−
√

3‖x−x′‖
θρ

)
. In the

isotropic setting, θρ ∈ R is the range parameter, and Θρ = R+. In second-order stationary
anisotropic random fields, the correlation between two points is a function of the vector con-
necting the two locations rather than the distance, e.g., the anisotropic squared exponential
correlation function has the following form:

r(x,x′,θρ) = exp
(
− (x− x′)>M(θρ)(x− x′)

)
, (3)

where M(θρ) ∈ Sd is a symmetric matrix, e.g., q = d, M(θρ) = diag(θ−2
ρ ) and Θρ = Rd+.

Let θ∗ = [θ∗f
>, θ∗0]> ∈ Θ denote the unknown true parameters of the y-process, where

Θ , Θf ×R+. Thus, the parametric covariance function of the y-process can be written as

c(x,x′,θ) , cf (x,x′,θf ) + θ0δ(x,x
′) (4)

for x,x′ ∈ X and θ ∈ Θ, where δ(x,x′) = 1 if x = x′ and equals 0 otherwise.

Definition 1 Given a set of locations Dx = {xi}ni=1 ⊂ X , and θ = [θf
>, θ0]> ∈ Θ, let

Cf (θf ) ∈ Rn×n be such that its (i, j)th element is cf (xi,xj ,θf ), and define C(θ) , Cf (θf )+
θ0In, i.e., (i, j)th element is equal to c(xi,xj ,θ) as defined in (4). Hence, Cf (θ∗f ) and

C∗ , C(θ∗) denote true covariance matrices of the f -process and y-process, respectively,
corresponding to locations {xi}ni=1 ⊂ X .

The log marginal likelihood `(θ | D) , 1
N

∑N
r=1 log p

(
y(r)| θ,Dx

)
can be written as

`(θ | D) = − 1
2 log det(C(θ))− 1

2N

N∑
r=1

y(r)>C(θ)−1y(r) − n
2 log(2π).
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Let S = 1
N

∑N
r=1 y(r)y(r)>. Given X,Y ∈ Rn×n, let 〈X,Y 〉 = Tr(X>Y ). Hence, finding

the MLE of the y-process parameters requires solving

θ̂MLE = argmin
θ∈Θ

〈
S,C(θ)−1

〉
+ log det(C(θ)) (5)

over a set Θ = Θf × R+ containing the true unknown parameters θ∗ = [θ∗f
>, θ∗0]>.

The log-likelihood function `(θ|D) is not concave in θ for many important parametric
families of covariance functions. Therefore, the MLE problem in (5) is non-convex, which
causes standard optimization routines to be trapped in local minima (Mardia and Watkins,
1989; Rasmussen and Williams, 2006). The main result of this paper given in Theorem 9,
and empirical evidence from our numerical experiments indicate the reason why our two-
step SPS approach works better compared to well-known one-step non-convex log-likelihood
maximization approaches. SPS defers dealing with the non-convexity issue to a later stage,
and first obtains a regularized log-likelihood estimate of the precision matrix solving a
convex problem. At the second stage, a non-convex least-squares problem is solved, in
which the global minimum is shown to be “close” to the unknown true values; moreover, it
is also shown that the objective function is strongly convex in a neighborhood of the global
minimum—see Figure 4.

Several other methods have been proposed in the literature to deal with the non-convex
“Big n” problem in GRF estimation. These approaches can be broadly classified in six
main classes: 1) Likelihood approximation methods approximate the likelihood function in
the spectral domain (Fuentes, 2007; Stein, 1999), or approximate it as a product of condi-
tional densities (Vecchia, 1988; Stein et al., 2004); 2) Covariance tapering provides a sparse
covariance matrix in which the long range (usually weak) covariance elements are set to zero.
Sparse matrix routines are then used to efficiently find the inverse and determinant of the
resulting matrix (Furrer et al., 2006); 3) Low-rank process approximation methods are based
on a truncated basis expansion of the underlying GRF which results in reducing the com-
putational complexity from O(n3) to O(p3), where p is the number of basis functions used
to approximate the process (Higdon, 2002; Cressie and Johannesson, 2008; Banerjee et al.,
2008; Nychka et al., 2015); 4) Sampling-based stochastic approximation draws m sample
data points (m� n) at each iteration, and the model parameters are updated according to
a stochastic approximation technique until the convergence is achieved (Liang et al., 2013);
5) Localized GRFs split the input domain into different segments, and the covariance pa-
rameters are estimated via ML locally on each segment (Gramacy and Apley, 2013)—this
approach requires further formulation to avoid discontinuities on the predicted surface over
the full domain (Park et al., 2011); and finally 6) Markov random field approximations, re-
lated to our proposed SPS method, will be discussed in more detail in Section 2. There are
also methods in the intersection of two classes: Sang and Huang (2012) combined low-rank
process approximation with covariance tapering; Snelson and Ghahramani (2007) proposed
a mix of likelihood approximation and localized GRF; Hensman et al. (2013) used stochas-
tic variational inference for GRF models and extended their approach to non-Gaussian and
latent variable models; Rodner et al. (2012) considered using GRF models for multi-class
classification under the big n scenario and used parametrized histogram intersection kernels.

The rest is organized as follows: in Section 2, we motivate the proposed method. In
Sections 3 and 4, we discuss the two-stage SPS method in detail and prove the statistical
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properties of the SPS estimator. From a computational perspective, it is shown that the
first stage has linear convergence rate, and that the second stage problem is strongly convex
around the estimator, which can be solved efficiently via a line search for isotropic GRFs.
Next, in Section 5, we assess the prediction performance of the proposed method comparing
it to alternative methods on both synthetic and real data. Finally, in Section 6 we conclude
by providing some summarizing remarks and directions for further research.

2. Motivation for the Proposed SPS Method
Let θ∗ ∈ Θ be the true covariance parameters, and C∗ = C(θ∗) ∈ Rn×n be the true
covariance matrix of the y-process corresponding to given locations Dx = {xi}ni=1. The
proposed method can be motivated by providing four interrelated remarks: a) the precision
matrix P ∗ , (C∗)−1 of a stationary GRF can be approximated with a sparse matrix; b)
powerful convex optimization algorithms exist to solve Sparse Covariance Selection (SCS)
problems to find a sparse approximation to P ∗; c) the past and recent work on directly
approximating a GRF with a GMRF also involves determining a sparse precision matrix;
d) the available distance information among given locations can be incorporated into the
GRF estimation. In the rest, let I , {1, . . . , n} denote the location index set.
a) First motivation: Our method is motivated by the observation that P ∗ = (C∗)−1

of a stationary GRF can be approximated by a sparse matrix. The off-diagonal element
P ∗ij , i.e., i 6= j, is determined by the conditional covariance (partial covariance) between

y(xi) and y(xj) given the rest of the variables; indeed, for any i 6= j, |P ∗ij | → 0 as

Cov
(
y(xi), y(xj) | {y(xk)}k∈Icij

)
→ 0, where Icij , I \ {i, j}, because for i 6= j we have

P ∗ij =
−Cov

(
y(xi), y(xj) | {y(xk)}k∈Icij

)
Var(y(xi)|{y(xk)}k∈Icij ) Var(y(xj)|{y(xk)}k∈Icij )− Cov(y(xi), y(xj)|{y(xk)}k∈Icij )2

.

In particular, conditionally independent variables lead to a zero entry in the precision
matrix (Whittaker, 2009). This is why sparse precision matrices are common in graphical
models and Bayesian networks (Whittaker, 2009) when most of the variable pairs are con-
ditionally independent. The fact that the precision matrix of a GRF is close to sparse is
related to the interesting behavior of the so-called screen effect in a spatial process (Cressie
(1993), p. 133; Journel and Huijbregts (1978), p. 346). The screen effect is complete in R1,
i.e., for given three data points on a line, the two outer points are conditionally indepen-
dent (in time series models, the partial (auto)correlation function “cuts off” after lag k for
a Markovian AR(k) process—see Box et al. (2008)). However, for a GRF in Rd with d > 1,
the screen effect is not complete; hence, the corresponding precision matrix is not sparse
for any finite set of variables pertaining to the GRF.

In addition, existing results from numerical linear algebra demonstrate that if the ele-
ments of a matrix show a decay property, then the elements of its inverse also show a similar
behavior—see Benzi (2016); Jaffard (1990). In particular, consider the two decay classes
defined in Jaffard (1990):

Definition 2 Given {xi}ni=1 ⊂ X and a metric d : X × X → R+, a matrix A ∈ Rn×n
belongs to the class Eγ for some γ > 0, if for all γ′ < γ there exists a constant Kγ′ such that

|Aij | ≤ Kγ′ exp
(
− γ′d(xi,xj)

)
, ∀ i, j ∈ I. (6)
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Moreover, A belongs to the class Qγ for some γ > 1 if there exists a constant K such that

|Aij | ≤ K
(
1 + d(xi,xj)

)−γ
, ∀ i, j ∈ I. (7)

Theorem 3 Given {xi}ni=1 ⊂ X and a metric d : X × X → R+, let A ∈ Rn×n be an
invertible matrix. If A ∈ Eγ for some γ > 0, then A−1 ∈ Eγ′ for some γ′ > 0. Moreover, if
A ∈ Qγ for some γ > 0, then A−1 ∈ Qγ.

Proof See Proposition 2 and Proposition 3 in (Jaffard, 1990).

This fast decay structure in the precision matrix, as also observed in Figure 1, makes it a
“compressible signal” (Candès et al., 2006), i.e., although not sparse, due to quick decay
in its entries when sorted by their magnitude, it can be well-approximated by a sparse
matrix—see Corollary 10. For all stationary GRFs tested, we observed that for a finite set
of locations, the magnitudes of the off-diagonal elements of the precision matrix decay to
0 much faster than the elements of the covariance matrix. To illustrate this behavior, we
compared the decay in covariance and precision elements in Figure 1 for data generated
from GRFs with Matern-3

2 , Squared Exponential, and Exponential covariance functions.
Clearly, the precision matrix can be better approximated than the covariance matrix by
using a sparse matrix.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Matern 3/2

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Squared Exponential

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Exponential

Figure 1: Decaying behavior of elements of the precision and covariance matrices for GRFs. For (i, j) ∈ S, P̃ij ,

|P ∗ij |/max{|P ∗ij | : (i, j) ∈ S} and C̃ij , C∗ij/max{C∗ij : (i, j) ∈ S}, where S = {(i, j) ∈ I × I : i 6= j}.
The largest 1000 elements of {P̃ij}(i,j)∈S and {C̃ij}(i,j)∈S are plotted after being sorted in descending

order. The underlying GRF was evaluated over a set of 100 points generated uniformly at random

from X = {x ∈ R2 : −50 ≤ x ≤ 50} for three different covariance functions with range and variance

parameters equal to 10, and 1, resp.
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% of elements s.t. |P̃ij | > ε

ε \ n 10 100 1000

0.1 10.49 0.29 0.00
0.01 26.94 2.52 0.03
0.001 46.46 9.34 0.28

% of elements s.t. C̃ij > ε

ε \ n 10 100 1000

0.1 16.82 13.00 12.94
0.01 36.84 32.31 32.18
0.001 56.86 53.04 52.86

Table 1: Effect of increasing density in a fixed spatial domain on the near-sparsity of precision (left) and covariance

(right) matrices for Matern GRF (ν = 3/2) over 100× 100 fixed spatial domain.

By fixing the domain of the process and increasing n (increasing the density of the
data points), the screen effect becomes stronger, i.e., off-diagonal entries decay to 0 faster.
Hence, the precision matrices can be better approximated with a sparse matrix as n in-
creases in a fixed domain. To illustrate this phenomenon numerically, we calculate the
precision matrices corresponding to a Matern GRF (ν = 3/2) with variance and range
parameters equal to 1 and 10, resp., for n ∈ {10, 100, 1000} over a fixed square domain
X = {x ∈ R2 : −50 ≤ x ≤ 50}. Then, as a measure of near-sparsity, we computed the
percentage of scaled off-diagonal elements in the precision matrix greater in absolute value

than a certain threshold ε ∈ {0.1, 0.01, 0.001}, i.e., card
(
{(i, j) ∈ S : |P̃ij | > ε}

)
/(n2−n), and

for comparison, we report the same quantities for the covariance matrices in Table 1, where
{P̃ij}(i,j)∈S and {C̃ij}(i,j)∈S are defined in the caption of Figure 1. This shows the effect
of infill asymptotics (Cressie, 1993) on the screen effect : in a fixed domain as n increases,
precision matrices get closer to sparse matrices, while the covariance matrices are much less
sensitive to increasing density.

b) Second motivation: Our work is also motivated by the recent optimization literature
on the Sparse Covariance Selection (SCS) problem (Dempster, 1972) in (8)—compare it with
(5). Given a sample covariance matrix S ∈ Rn×n of a zero-mean multivariate Gaussian y ∈
Rn, d’Aspremont et al. (2008) proposed to estimate the corresponding precision matrix by
solving a regularized maximum likelihood problem: minP�0 〈S, P 〉− log det(P )+α card(P ),
where card(P ) denotes the cardinality of non-zero elements of P , P � 0 denotes the cone
of symmetric, positive definite (PD) matrices. This problem is combinatorially hard due to

the cardinality operator in the objective function. Since the `1-norm, defined as ‖P‖1 ,∑
1≤i,j≤n |Pij |, is the tightest convex envelope of card(·), a convex approximation problem

can be formulated as
min
P�0

〈S, P 〉 − log det(P ) + α‖P‖1. (8)

The growth of interest in SCS in the last decade is mainly due to development of first-order
algorithms that can efficiently deal with large-scale `1-regularized convex problems (Yuan,
2012; Friedman et al., 2008; Mazumder and Hastie, 2012; Honorio and Jaakkola, 2013; Hsieh
et al., 2013; Lu, 2010, 2009; Scheinberg et al., 2010).
c) Third motivation: Further motivation comes from prior work on approximating a
GRF with a Gaussian Markov Random Field (GMRF) to obtain computational gains using
sparsity. A GRF process on a lattice is a GMRF under the conditional independence
assumption, i.e., a variable is conditionally independent of the other variables on the lattice
given its “neighbors” (Rue and Held, 2005). While the index set is countable for the lattice
data, the index set X for a GRF is uncountable; hence, in general GMRF models cannot
represent GRFs exactly. For a very special class, Lindgren et al. (2011) recently established
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that the Matern GRFs are Markovian; in particular, when the smoothing parameter ν is
such that ν − d/2 ∈ Z+, where d is the dimension of the input space—see Lindgren et al.
(2011); Simpson et al. (2012) for using this idea in the approximation of anisotropic and
non-stationary GRFs. Rather than using a triangulation of the input space as proposed by
Lindgren et al. (2011), or assuming a lattice process, we let the data determine the near-
conditional independence pattern between variables through the precision matrix estimated
via a weighted `1-regularization similar to that used in the SCS problem.

d) Fourth motivation: Since the spatial locations of the observations are known, i.e., Dx,
these data can be utilized to improve the estimation even when the number of realizations
at each location is low. As established in Theorem 3, since |C∗ij | decreases to 0 exponen-
tially as ‖xi − xj‖2 increases, |P ∗ij | decays to 0 exponentially fast as well. In fact, for all
stationary covariance functions tested, we observed this behavior—see Figure 2. Therefore,
this information can be utilized for regularizing the likelihood function (see Section 3.1).

0 10 20 30 40 50
-40

-20

0

20

40

60
Matern 3/2

0 10 20 30 40 50
-400

-200

0

200

400

600
Squared Exponential

0 10 20 30 40 50
-4

-2

0

2

4

6
Exponential

Figure 2: Elements of precision matrices from three covariance functions as a function of the Euclidean distance

between the data points. The variance, range, and nugget parameters of the covariance functions are 1,

10, and 0, respectively.

3. The SPS Algorithm for Fitting a GRF Model

The proposed method for fitting a GRF is composed of two stages: 1) the true precision
matrix corresponding to the training data set is approximated with a sparse matrix by
solving a convex maximum likelihood problem regularized with a weighted `1-norm; 2)
after inverting the fitted precision matrix from the first stage, a least-squares problem is
solved to estimate the unknown covariance function parameters.

3.1 STAGE-I: Estimation of Precision Matrices

Consider the unknown parameter vector θ∗ = [θ∗f
>, θ∗0]> ∈ Θ , Θf × R+ and suppose

θ0 ≥ 0 and θ∗f ∈ int(Θf ), i.e., θ∗ρ ∈ int(Θρ), θ∗v > 0. Let C∗ = C(θ∗) be the covariance

matrix of a zero-mean GRF corresponding to Dx = {xi}i∈I ⊂ X , and P ∗ = (C∗)−1, where

I , {1, . . . , n}. We define 1/0 = ∞ and 1/∞ = 0. Fix 0 ≤ a∗ ≤ b∗ ≤ ∞ satisfying 0 ≤
1
b∗ ≤ σmin(C∗) ≤ σmax(C∗) ≤ 1

a∗ where σmin(·) and σmax(·) denote minimum and maximum

8



Theoretical Guarantees for Fitting GRF Models

singular values, respectively; hence, a∗ ≤ σmin(P ∗) ≤ σmax(P ∗) ≤ b∗. GivenD = {(xi, y(r)
i ) :

i ∈ I, r = 1, ..., N}, compute the unbiased estimator of C∗, S = 1
N

∑N
r=1 y(r)y(r)> ∈

Sn, where Sn denotes the set of n × n symmetric matrices, and y(r) = [y
(r)
i ]ni=1 ∈ Rn.

Furthermore, we form the distance matrix G̃ ∈ Sn as follows: for all i ∈ I, let

G̃ij = ‖xi − xj‖, ∀j ∈ I \ {i}, G̃ii = min{‖xi − xj‖ : j ∈ I \ {i}}. (9)

Let G̃min , mini∈I G̃ii. Next, we define the weight matrix as follows:

Gij = G̃ij/G̃min ∀ (i, j) ∈ I × I. (10)

To approximate the true precision matrix with a sparse matrix, we propose to solve the
following convex problem:

P̂ , argmin{〈S, P 〉 − log det(P ) + α 〈G, |P |〉 : a∗I � P � b∗I}, (11)

where | · | is the element-wise absolute value operator; hence, the last term is a weighted
`1-norm with weights equal to the normalized distances Gij—compare it with (5) and (8).
The choice of weighted `1-norm with weights equal to the pairwise distances between the
points is supported by the trends observed in Figure 2. Choosing Gii > 0 as in (10) controls
the magnitude of diagonal elements of P̂ relative to off-diagonals – if we did not penalize the
diagonal elements, i.e., Gii was set to 0, then some diagonal entries might get unreasonably
large. Note that P̂ is always a full rank matrix due to the log det(·) term in the objective
function. Furthermore, having non-trivial bounds 0 < a∗ ≤ b∗ < ∞ is useful in practice
to control the condition number of the estimator, which is also argued for in (d’Aspremont
et al., 2008; Rothman et al., 2008).

If there is no prior information on the process to obtain non-trivial 0 < a∗ ≤ b∗ < ∞,
then setting a∗ = 0, and b∗ =∞ trivially satisfies the condition on a∗ and b∗. For this case,
(11) reduces to min{〈S, P 〉 − log det(P ) + α 〈G, |P |〉 : P � 0}. On the other hand, when
there is prior information on the process, one can also exploit it to obtain non-trivial bounds
a∗ > 0 and b∗ < ∞. For instance, let C∗ = C(θ∗) = Cf (θ∗f ) + θ∗0I be the true covariance

matrix corresponding to locations in Dx, where θ∗f = [θ∗ρ
>, θ∗v ]

>, θ∗ρ ∈ int(Θρ) and θ∗v > 0
denote the true spatial correlation and variance parameters of the f -process. The common
structure of the covariance functions implies that diag(Cf (θ∗f )) = θ∗v1, where 1 denotes the

vector of ones. Therefore, σmin(P ∗) ≥ 1/Tr(C(θ∗)) = 1
n(θ∗0+θ∗v) . Hence, if upper bounds on

θ∗0 and θ∗v are known a priori, then one can obtain non-trivial lower bounds.
In comparison to the SCS problem in (8), the proposed formulation (11) penalizes each

element of the estimator P̂ij for i 6= j with a different weight proportional to ‖xi−xj‖2, i.e.,
the distance between the corresponding locations. This model assumes that the off-diagonal
precision magnitudes decrease with distance, for which there is an empirical evidence as
shown in Figure 2. More importantly, Theorem 3 shows that this assumption indeed always
holds when the covariance elements decay with increasing ‖xi − xj‖2.

The form of STAGE-I problem in (11) is well-studied in the optimization literature.
Indeed, for any 0 ≤ a∗ ≤ b∗ ≤ ∞, one can use the Alternating Direction Method of Mul-
tipliers (ADMM) to generate a sequence of iterates that Q-linearly3 converges to P̂ , where

3. Let {X`} converge to X∗ for a given norm ‖.‖. The convergence is called Q-linear if
‖X`+1−X∗‖
‖X`−X∗‖

≤ c, for

some c ∈ (0, 1)

9
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P̂ is the unique optimal solution to STAGE-I problem given in (11). For the sake of com-
pleteness, in the online-only supplementary material, we provide an ADMM algorithm and
state its convergence properties—see Figure 11 and Theorem 12 in the online supplement.

3.2 STAGE-II: Estimation of Covariance Function Parameters

After estimating the precision matrix in the first stage according to (11), a least-squares

problem is solved in the second stage to fit a parametric covariance function to P̂ . Al-
though this is a non-convex problem for parametric covariance functions in general, our
main result, Theorem 9, and empirical evidence from our numerical experiments suggest
that non-convexity of this problem is much less serious than that of the likelihood function
in (5). In STAGE-II, we propose to estimate the covariance parameters by solving

θ̂ ∈ argmin
θ∈Θ

‖C(θ)− P̂−1‖2F , (12)

where θ = [θ>ρ , θv, θ0]>, Θ , {θ : θρ ∈ Θρ, θv ≥ 0, θ0 ≥ 0}, and C(θ) is the parametric
covariance matrix, as given in Definition 1, corresponding to the locations of the training
data Dx. Here θρ ∈ Rq denotes the spatial parameters of the correlation function, θv is the
variance parameter, and θ0 is the nugget, which in some applications is set equal to zero.
Indeed, Cij(θ) = c(xi,xj ,θ) for (i, j) ∈ I ×I. The SPS method is summarized in Figure 3.

Algorithm SPS (D)

1: input : D = {(xi, y(r)
i ) : r = 1, . . . , N, i ∈ I} ⊂ X × R

2: /* Compute sample covariance and the distance penalty matrices */

3: y(r) ← [y
(r)
i ]ni=1, S ← 1

N

∑N
r=1 y(r)y(r)>

4: G̃ij ← ‖xi − xj‖2, ∀(i, j) ∈ I × I, G̃ii ← min{‖xi − xj‖2 : j ∈ I \ {i}}, ∀i ∈ I
5: G̃min ← mini∈I G̃ii, Gij ← G̃ij/G̃min, ∀(i, j) ∈ I × I
6: /* Compute the fitted precision matrix—See Section 3.1 */
7: P̂ ← argmin {〈S, P 〉 − log det(P ) + α 〈G, |P |〉 : a∗I � P � b∗I}
8: /* Estimate covariance function parameters—See Section 3.2 */

9: θ̂ ← argminθ∈Θ ‖C(θ)− P̂−1‖2F
10: return θ̂

Figure 3: Sparse Precision matrix Selection (SPS) method

Solution to the STAGE-II problem. Let Ĉ , P̂−1, where P̂ is defined in (11).
Consider sequentially solving (12): Fixing θρ, the objective in (12) is first minimized over
θv and θ0 in closed form (inner optimization); hence, it can be written as a function of θρ
only. Next, the resulting function is minimized over θρ (outer optimization), i.e.,

min
θρ∈Θρ

{
min

θv≥0, θ0≥0

1

2

∑
i,j∈I

(
θv r(xi,xj ,θρ) + θ0 δ(xi,xj)− Ĉij

)2}
, (13)

where δ (xi,xj) = 1 if xi = xj , and equals 0 otherwise. Consider the inner optimization
problem written as follows:

ψ(θρ; ĉ) , min
θ0≥0, θv≥0

1
2‖θvr(θρ) + θ0d− ĉ‖2, (14)

where ‖ · ‖ denotes the Euclidean norm, ĉ, r, and d are long vectors in Rn2
such that

ĉij = Ĉij , rij(θρ) = r (xi,xj ,θρ), and dij = δ (xi,xj) for (i, j) ∈ I × I. We write r(θρ) as
r for short when we do not need to emphasize the dependence of r on θρ.

10
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Theorem 4 For any given θρ ∈ Θρ, the minimization problem in (14) has a unique global

optimal solution (θ̂v, θ̂0) that can be computed as

(θ̂v, θ̂0) =


(0, d>ĉ/n) if r>ĉ ≤ d>ĉ,(

r>ĉ−d>ĉ
‖r‖2−n , d

>ĉ ‖r‖2/n−r>ĉ
‖r‖2−n

)
if d>ĉ < r>ĉ < d>ĉ ‖r‖2/n,

(r>ĉ/‖r‖2, 0) if d>ĉ ‖r‖2/n ≤ r>ĉ.

(15)

Corollary 5 In the absence of the nugget parameter, i.e., θ∗0 = 0, the unique global mini-
mizer to the problem minθv≥0

1
2‖θvr− ĉ‖2 is θ̂v , max{0, r>ĉ/‖r‖2}.

Using Theorem 4 or Corollary 5, the solution to the inner problem can be computed as
a function of the outer optimization variable, θρ, in (13). In Lemma 7, we show that under
certain conditions, the outer problem objective, ψ(θρ; ĉ), is strongly convex in θρ around

the global minimum. Moreover, for isotropic covariance functions, θ̂ρ = argmin{ψ(θρ; ĉ) :
θρ ∈ R+} can be simplified to a one-dimensional line search over [0, Dmax], where Dmax is an

upper bound on θ̂ρ. This is illustrated in Figure 4 which displays the STAGE-II objective
as a function of θρ. One can compute ψ(θρ; ĉ) as described in Section 3.2 using the sample
data D coming from an isotropic GRF with true parameters (θ∗ρ = 4, θ∗ν = 8, θ∗0 = 4) for
a SE covariance function. Note ψ(·; ĉ) is unimodal with global minimum close the true θ∗ρ
value. The univariate minimization is performed via bisection; hence, after log2(Dmax/ε)
iterations, the search reaches a point within ε-ball of θ̂ρ.

0 4 20 40 60
1.34

1.342

1.344

1.346

1.348

1.35

1.352

1.354
107

Figure 4: STAGE-II outer optimization objective ψ(θρ; ĉ). The red line shows the true parameter θ∗ρ = 4.

4. Statistical Analysis of the SPS Estimator

We now focus on the statistical convergence properties of the parameter estimates obtained
by the SPS algorithm displayed in Figure 3. Given S,G ∈ Sn, the SPS estimator of the
precision matrix, defined in (11), can be computed efficiently using an ADMM algorithm—
see Theorem 12 in the online supplement. Throughout this section, we assume that non-
trivial bounds 0 < a∗ ≤ b∗ <∞ are given. This same assumption is also made by Rothman
et al. (2008) to analyze the statistical properties of an estimator related to P̂ in (11)—see

11
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Assumptions A2 and A3 in (Rothman et al., 2008). Moreover, these bounds are useful in
practice to control the condition number of the estimator (d’Aspremont et al., 2008).

4.1 Learning the Precision Matrix

Theorem 6 Let {y(r)}Nr=1 ⊂ Rn be independent realizations of a GRF with zero-mean and
stationary covariance function c(x,x′,θ∗) observed over n distinct locations {xi}i∈I with

I , {1, ..., n}; furthermore, let P ∗ , (C∗)−1 be the corresponding true precision matrix

for these observations. Finally, let P̂ be the SPS estimator computed as in (11) for some

G ∈ Sn such that Gij ≥ 0 for all (i, j) ∈ I × I. Then for any given M > 0 and N ≥ N0 ,
d2(M + 2) log n+ log 16e, we have

Pr
(
‖P̂ − P ∗‖F ≤ 2b∗2

(
n+ ‖G‖F

)
α
)
≥ 1− n−M ,

for all b∗ and α such that σmax(P ∗) ≤ b∗ and 40(θ∗v + θ∗0)
√
N0/N ≤ α ≤ 40(θ∗v + θ∗0).

Proof Through the change of variables ∆ , P − P ∗, we can write (11) in terms of ∆:

∆̂ = argmin{F (∆) , 〈S,∆ + P ∗〉 − log det(∆ + P ∗) + α 〈G, |∆ + P ∗|〉 : ∆ ∈ F},

where F , {∆ ∈ Rn×n : ∆ = ∆>, a∗I � ∆ + P ∗ � b∗I}. Note that ∆̂ = P̂ − P ∗.
Define g(∆) , − log det(∆ +P ∗) on F . g(·) is strongly convex over F with modulus 1/b∗2;
hence, for any ∆ ∈ F , it follows that g(∆) − g(0) ≥ −

〈
(P ∗)−1,∆

〉
+ 1

2b∗2
‖∆‖2F . Let

H(∆) , F (∆)− F (0) and S∆ , {∆ ∈ F : ‖∆‖F > 2b∗2
(
n+ ‖G‖F

)
α}.

Under probability event Ω = {|Sij − C∗ij | ≤ α, ∀(i, j) ∈ I × I}, for any ∆ ∈ S∆ ⊂ F ,

H(∆) ≥ 〈S,∆〉 −
〈
(P ∗)−1,∆

〉
+

1

2b∗2
‖∆‖2F + α 〈G, |∆ + P ∗|〉 − α 〈G, |P ∗|〉 (16)

≥ 1

2b∗2
‖∆‖2F + 〈∆, S − C∗〉 − α 〈G, |∆|〉 (17)

≥ 1

2b∗2
‖∆‖2F − α

(
n+ ‖G‖F

)
‖∆‖F > 0, (18)

where the second inequality follows from the triangle inequality, the third one holds under
the probability event Ω and follows from the Cauchy-Schwarz inequality, and the final strict
one follows from the definition of S∆. Since F (0) is a constant, ∆̂ = argmin{H(∆) : ∆ ∈ F}.
Hence, H(∆̂) ≤ H(0) = 0. Therefore, ∆̂ 6∈ S∆ under the probability event Ω. It is

important to note that ∆̂ ∈ F ; hence, ∆̂ 6∈ S∆ implies ‖∆̂‖F ≤ 2b∗2
(
n+ ‖G‖F

)
α whenever

the probability event Ω is true. Thus,

Pr
(
‖P̂ − P ∗‖F ≤ 2b∗2(n+ ‖G‖F )α

)
≥ Pr

(
|Sij − C∗ij | ≤ α, ∀(i, j) ∈ I × I

)
= 1− Pr

(
max
i,j∈I

|Sij − C∗ij | > α

)
≥ 1−

∑
i,j∈I

Pr
(
|Sij − C∗ij | > α

)
.

Recall that S = 1
N

∑N
r=1 y(r)y(r)> and y(r) = [y

(r)
i ]i∈I for r = 1, . . . , N . Since y

(r)
i /
√
C∗ii ∼

N (µ = 0, σ = 1), i.e., standard normal, for all i and r, Lemma 1 in (Ravikumar et al., 2011)

12
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implies Pr
(
|Sij − C∗ij | > α

)
≤ Bα for any (i, j) ∈ I × I and α ∈ (0, 40 maxi∈I C

∗
ii), where

Bα , 4 exp

(
−N

2

(
α

40 maxi∈I C∗ii

)2
)
.

Hence, given any M > 0, by requiring N ≥
(

40 maxi∈I C
∗
ii

α

)2
N0, we get Bα ≤ 1

n2n
−M . Thus,

for any N ≥ N0, we have
∑

i,j∈I Pr
(
|Sij − C∗ij | > α

)
≤ n−M for all 40(θ∗v + θ∗0)

√
N0
N ≤ α ≤

40(θ∗v + θ∗0) since C∗ii = θ∗v + θ∗0 for all i ∈ I; and this completes the proof.

After setting α to its lower bound in Theorem 6, our bound conforms with the one pro-

vided by Rothman et al. (2008) (Theorem 1) which states ‖P̂α−P ∗‖F = O
(√

card(P ∗) logn
N

)
,

where P̂α is the solution to (8). Furthermore, our proof uses the strong convexity property
of the objective function, and does not require second-order differentiability of the objective
as in Rothman et al. (2008); hence, ours is a simpler proof leading to a similar conclusion.

4.2 Learning the Hyperparameters

To ease the notational burden in the proofs, we assume the nugget parameter θ∗0 = 0 in the
rest of the discussion. Hence, θ∗ = [θ∗ρ

>, θ∗v ]
> ∈ Rq+1.

Recall that r in Theorem 4 and Corollary 5 depends on θρ, i.e., r(θρ), where θρ is the
decision variable of the outer optimization in (13). After substituting the optimal solution
from Corollary 5, the objective of the outer problem in (13) is obtained by evaluating

ψ(θρ; c) =
1

2
‖max

{
0,

r(θρ)
>c

‖r(θρ)‖2

}
r(θρ)− c‖2, (19)

at c = ĉ, where r(θρ) and ĉ are defined as in (14). In the rest, R++ , {t ∈ R : t > 0}.

Lemma 7 Let θ∗ = [θ∗ρ
>, θ∗v ]

> ∈ int(Θρ)×R++ be the true parameters, and c∗ = θ∗vr(θ∗ρ) ∈
Rn2

be the true covariance matrix C∗ in vector form, i.e., c∗ ∈ Rn2
such that c∗ij = C∗ij for

(i, j) ∈ I×I. Suppose the correlation function r(x,x′,θρ) is twice continuously differentiable
in θρ over Θρ for all x,x′ ∈ X , then there exists γ∗ > 0 such that ∇2ψ(θ∗ρ; c

∗) � γ∗I if and

only if {r(θ∗ρ), r
′
1(θ∗ρ), . . . , r

′
q(θ
∗
ρ)} ⊂ Rn2

are linearly independent, where r′j(θ
∗
ρ) is the j-th

column of Jr(θ∗ρ), i.e., the Jacobian of r : Rq → Rn2
at θ∗ρ.

Proof Recall r : Rq → Rn2
such that rij(θρ) = r(xi,xj ,θρ) for (i, j) ∈ I × I. Let

θρ = [ξ1, . . . , ξq]
>. Define g : Rq × Rn2 → R such that

g(θρ; c) , 1
2‖
(

r(θρ)
>c

‖r(θρ)‖2

)
r(θρ)− c‖2. (20)

Note the objective of the outer problem in (13), i.e., ψ(θρ; ĉ) defined in (19), is equal to

g(θρ; ĉ) whenever r(θρ)
>ĉ ≥ 0. Let z : Rq×Rn2 → Rn2

such that z(θρ; c) ,
(

r(θρ)>c
‖r(θρ)‖2

)
r(θρ)−

13



Davanloo Tajbakhsh, Aybat, and Del Castillo

c and define p(x) , 1
2‖x‖

2, where θρ and c are the variable and parameter vectors of func-
tion z, respectively. Hence, g(θρ; c) = p(z(θρ; c)). In the rest, all the derivatives for z and
g are written with respect to θρ only, not c. Applying the chain rule we obtain:

∇g(θρ; c) = Jz(θρ; c)>∇p (z(θρ; c)) = Jz(θρ; c)>z(θρ; c), (21)

where Jz(θρ; c) ∈ Rn2×q denotes the Jacobian matrix, i.e., for (i, j) ∈ I × I, and k ∈
{1, . . . , q}, (Jz(θρ; c))(i,j),k = ∂

∂ξk
zij(θρ; c). Let Hz(θρ; c) ∈ Rn2q×q be the matrix of

second-order derivatives of z(θρ; c), i.e., Hz(θρ; c) = [wk1,k2 ]k1,k2∈{1,...,q} and wk1,k2 =
∂2

∂ξk1
∂ξk2

z(θρ; c) ∈ Rn2
. Let Iq denote q × q identity matrix. Then the Hessian of g can

be written as follows:

∇2g(θρ; c) = Hz(θρ; c)>
(
Iq ⊗∇p (z(θρ; c))

)
+ Jz(θρ; c)>∇2p (z(θρ; c)) Jz(θρ; c)

= Hz(θρ; c)>
(
Iq ⊗ z(θρ; c)

)
+ Jz(θρ; c)>Jz(θρ; c). (22)

Note c∗ = θ∗vr(θ∗ρ); hence, θ∗v =
r(θ∗ρ)>c∗

‖r(θ∗ρ)‖2 . Therefore, z(θ∗ρ; c
∗) = 0, and the definition of g

in (20) implies that g(θ∗ρ; c
∗) = 0, and ∇g(θ∗ρ; c

∗) = 0. Thus,

∇2g(θ∗ρ; c
∗) = Jz(θ∗ρ; c

∗)>Jz(θ∗ρ; c
∗), (23)

which is clearly a positive semidefinite matrix. Next, we investigate the condition under
which ∇2g(θ∗ρ; c

∗) is positive definite. Jz(θρ; c) can be explicitly written as

Jz(θρ; c) =
r(θρ)

‖r(θρ)‖2

(
c− 2

r(θρ)
>c

‖r(θρ)‖2
r(θρ)

)>
Jr(θρ) +

r(θρ)
>c

‖r(θρ)‖2
Jr(θρ). (24)

Plugging in θ∗ρ and c∗, and using c∗ = θ∗vr(θ∗ρ) and θ∗v =
r(θ∗ρ)>c∗

‖r(θ∗ρ)‖2 , we get

Jz(θ∗ρ; c
∗) =

r(θ∗ρ)

‖r(θ∗ρ)‖2
(
c∗ − 2θ∗vr(θ∗ρ)

)>
Jr(θ∗ρ) + θ∗vJr(θ∗ρ)

= −θ∗v
r(θ∗ρ)

‖r(θ∗ρ)‖2
r(θ∗ρ)

>Jr(θ∗ρ) + θ∗vJr(θ∗ρ)

= θ∗v

(
I−

(
r(θ∗ρ)

‖r(θ∗ρ)‖

)(
r(θ∗ρ)

‖r(θ∗ρ)‖

)>)
Jr(θ∗ρ).

Let the q columns of the Jacobian matrix Jz(θ∗ρ; c
∗) be denoted by [z′1, ..., z

′
q], and the q

columns of Jr(θ∗ρ) be denoted by [r′1, ..., r
′
q]. Define r∗ , r(θ∗ρ) and r̃ , r∗/‖r∗‖, then

z′j = θ∗v(I− r̃r̃>)r′j , ∀ j = 1, ..., q. (25)

For ∇2g(θ∗ρ; c
∗) to be positive definite, the matrix Jz(θ∗ρ; c

∗) should be full rank, i.e.,
{z′1, ..., z′q} should be linearly independent. Note {z′1, ..., z′q} are linearly dependent if and

only if there exists β 6= 0 such that
∑q

j=1 βjz
′
j = 0, which is equivalent to the condition∑q

j=1 βjr
′
j = β̄ r̃ due to (25), where β̄ , r̃>

(∑q
j=1 βjr

′
j

)
. If β̄ = 0, then the set of vectors

14
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{r′1, . . . , r′q} are linearly dependent; otherwise, β̄ 6= 0 implies that r̃ =
∑q

j=1(βj/β̄)r′j ; thus,

{r, r′1, . . . , r′q} are linearly dependent. Therefore, {z′1, ..., z′q} are linearly independent if and
only if {r, r′1, ..., r′q} are linearly independent. Finally, the function

s(θρ, c) ,
r(θρ)

>c

‖r(θρ)‖2

is continuous in (θρ, c); hence, the preimage s−1(R++) is an open set. Moreover, s(θ∗ρ, c
∗) =

θ∗v > 0; hence, (θ∗ρ, c
∗) ∈ s−1(R++). Therefore, there exists δ1 > 0 such that Bδ1(θ∗ρ, c

∗), the
open ball around (θ∗ρ, c

∗) with radius δ1, satisfies Bδ1(θ∗ρ, c
∗) ⊆ s−1(R++), and the objective

of the outer problem in (13), i.e., ψ(θρ; c) defined in (19), is equal to g(θρ; c) on Bδ1(θ∗ρ, c
∗).

Thus, ∇2ψ(θ∗ρ; c
∗) exists, and it satisfies ∇2ψ(θ∗ρ; c

∗) = ∇2g(θ∗ρ; c
∗) � γ∗I.

Remark 8 We here comment on the linear independence condition stated in Lemma 7.
For instance, consider the anisotropic exponential correlation function r(x,x′,θρ) = exp

(
−

(x− x′)> diag(θρ)(x− x′)
)
, where q = d, and Θρ = Rd+. Let X = [−β, β]d for some β > 0,

and suppose {xi}i∈I is a set of independent identically distributed uniform random samples
inside X . Then it can be shown that for this correlation function, the condition in Lemma 7
holds with probability 1, i.e., {r(θ∗ρ), r

′
1(θ∗ρ), . . . , r

′
q(θ
∗
ρ)} are linearly independent w.p. 1.

The next result shows the convergence of the SPS estimator as the number of samples
per location, N ∈ Z+, increases.

Theorem 9 Let θ∗ = [θ∗ρ
>, θ∗v ]

> ∈ int(Θρ) × R++ be the true parameters. Suppose r :

Rq → Rn2
is twice continuously differentiable, and vectors in {r(θ∗ρ), r

′
1(θ∗ρ), . . . , r

′
q(θ
∗
ρ)}

are linearly independent. For any given M > 0 and N ≥ N0 , d2(M + 2) log n+ log 16e,
let θ̂

(N)
= [θ̂

>
ρ , θ̂v]

> be the SPS estimator of θ∗, i.e., θ̂ρ ∈ argminθρ∈Θρ ψ(θρ; ĉ), and

θ̂v be computed as in Corollary 5. Then for any ε > 0, there exists N ≥ N0 satisfying

N = O(N0/ε
2) such that setting α = 40θ∗v

√
N0
N in (11) implies ‖θ̂(N) − θ∗‖ ≤ ε with

probability at least 1 − n−M ; moreover, the STAGE-II function ψ(·; ĉ) is strongly convex
around θ̂ρ.
Proof From the hypothesis, {r(θ∗ρ), r

′
1(θ∗ρ), ..., r

′
q(θ
∗
ρ)} are linearly independent; hence,

Lemma 7 implies there exists γ∗ > 0 such that ∇2g(θ∗ρ; c
∗) � γ∗I for g defined in (20)—

throughout the proof, all the derivatives of g are written with respect to θρ only, not

c. Recall from the proof of Lemma 7 that the function s(θρ, c) , r(θρ)>c
‖r(θρ)‖2 is continuous

in (θρ, c); therefore, there exists δ1 > 0 such that Bδ1(θ∗ρ, c
∗) ⊆ s−1(R++). Hence, the

objective of the outer problem in (13), i.e., ψ(θρ; c) defined in (19), is equal to g(θρ; c) on
Bδ1(θ∗ρ, c

∗). Moreover, since θ∗ρ ∈ int(Θρ), δ1 can be chosen to satisfy Bδ1(θ∗ρ) ⊂ int(Θρ).
Since r(θρ) is assumed to be twice continuously differentiable in θρ, it follows from (22)

that ∇2g(θρ; c) is continuous in (θρ, c) on Bδ1(θ∗ρ, c
∗). Moreover, eigenvalues of a matrix

are continuous functions of matrix entries; hence, λmin

(
∇2g(θρ; c)

)
is continuous in (θρ, c)

on Bδ1(θ∗ρ, c
∗) as well. Thus, ψ is strongly convex around (θ∗ρ, c

∗). Indeed, there exists

δ2 > 0 such that δ2 ≤ δ1 and ∇2g(θρ; c) � γ∗

2 I for all (θρ, c) ∈ Bδ2(θ∗ρ, c
∗). Define

C , {c : ‖c− c∗‖ ≤ δ2√
2
}, Θ′ρ , {θρ ∈ Θρ : ‖θρ − θ∗ρ‖ ≤

δ2√
2
};
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and for all c ∈ C, let
θρ(c) , argmin{g(θρ; c) : θρ ∈ Θ′ρ}

be the unique minimizer as g(·; c) is strongly convex in θρ over Θ′ρ for c ∈ C. Furthermore,
since Θ′ρ is a convex compact set and g(θρ; c) is jointly continuous in (θρ, c) on Θ′ρ × C, by
Berge’s Maximum Theorem (Ok, 2007), θρ(c) is continuous at c∗ and θρ(c

∗) = θ∗ρ. Hence,

given any 0 < η < δ2√
2
, there exists δ(η) > 0 such that δ(η) ≤ δ2√

2
, and ‖θρ(c) − θ∗ρ‖ ≤ η

for all ‖c − c∗‖ ≤ δ(η). It follows from Theorem 6 that by setting an appropriate α(η)
in STAGE-I problem (11), it is guaranteed with high probability that ‖ĉ − c∗‖ ≤ δ(η)—
we will revisit this claim at the end. Thus, ‖θρ(ĉ) − θ∗ρ‖ ≤ η < δ2√

2
, which implies that

θρ(ĉ) = argmin{g(θρ; ĉ) : θρ ∈ Θρ}, i.e., it is equal to the solution to the outer problem

in (13) of STAGE-II: θ̂ρ = θρ(ĉ). Hence, it follows that ‖θ̂ρ − θ∗ρ‖2 + ‖ĉ− c∗‖2 < δ2
2 ≤ δ2

1 ,

which implies that (θ̂ρ, ĉ) ∈ Bδ1(θ∗ρ, c
∗) ⊆ s−1(R++); and since θ̂v = max{0, s(θ̂ρ, ĉ)}, we

also have θ̂v = s(θ̂ρ, ĉ) > 0. Moreover, θ̂ρ ∈ Bδ1(θ∗ρ) implies θ̂ρ ∈ int(Θρ). Note that

θ̂ρ ∈ Θ′ρ and ĉ ∈ C; hence, g(·; ĉ) is strongly convex at θ̂ρ with modulus γ∗

2 .

Next we establish a relation between δ(η) and η by showing θ̂ρ(c) is Lipschitz around
c∗. Since, for c ∈ C, g(·; c) is strongly convex in θρ over Θ′ρ with convexity modulus γ∗/2,

for any c ∈ C, and θiρ ∈ Θ′ρ for i = 1, 2, we have〈
θ2
ρ − θ1

ρ, ∇g(θ2
ρ; c)−∇g(θ1

ρ; c)
〉
≥ γ∗

2
‖θ2

ρ − θ1
ρ‖2.

Suppose c1, c2 ∈ C. Since θρ(c
i) = argmin{g(θρ; c

i) : θρ ∈ Θ′ρ} for i = 1, 2, it follows from
the first-order optimality conditions that〈

θρ − θρ(c
i), ∇g(θρ(c

i); ci)
〉
≥ 0, ∀ θρ ∈ Θ′ρ, i ∈ {1, 2}. (26)

Strong convexity and (26) imply
〈
θρ(c

2)− θρ(c
1), ∇g(θρ(c

2); c1)
〉
≥ γ∗

2 ‖θρ(c
2)−θρ(c

1)‖2.

Adding and subtracting ∇g(θρ(c
2); c2), and using (26) again, we get γ∗

2 ‖θρ(c
2)−θρ(c1)‖2 ≤〈

θρ(c
2)− θρ(c

1), ∇g(θρ(c
2); c1)−∇g(θρ(c

2); c2)
〉
. Thus, from Cauchy-Schwarz,

‖∇g(θρ(c
2); c2)−∇g(θρ(c

2); c1)‖ ≥ γ∗

2
‖θρ(c2)− θρ(c

1)‖. (27)

Moreover, (21) and (24) imply that

∇g(θρ; c) =
1

‖r(θρ)‖2
Jr(θρ)

>v(θρ; c), (28)

v(θρ; c) , r(θρ)
>(c− z(θρ; c))z(θρ; c)− (r(θρ)

>c)(r(θρ)
>z(θρ; c))

‖r(θρ)‖2
r(θρ),

=

(
1

‖r(θρ)‖2
r(θρ)r(θρ)

> − I

)
cc>r(θρ),

where z : Rq × Rn2 → Rn2
is defined as in the proof of Lemma 7, i.e., z(θρ; c) ,(

r(θρ)>c
‖r(θρ)‖2

)
r(θρ) − c. Observe ‖I − 1

‖r(θρ)‖2 r(θρ)r(θρ)
>‖2 = 1 and ‖r(θρ)‖ ≥

√
n; there-

fore, given c1, c2 ∈ C, we have

‖∇g(θρ; c
2)−∇g(θρ; c

1)‖ =
1

‖r(θρ)‖2
‖Jr(θρ)

>
(

I− 1

‖r(θρ)‖2
r(θρ)r(θρ)

>
)

(c1c1> − c2c2>)r(θρ)‖,

≤ 1√
n
‖Jr(θρ)‖2 (‖c1‖+ ‖c2‖)‖c2 − c1‖, (29)
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where (29) follows from ‖c1c1>− c2c2>‖2 ≤ (‖c1‖+ ‖c2‖)‖c2− c1‖. Since θ∗ρ = θρ(c
∗) and

θ̂ρ = θρ(ĉ), by setting c1 = ĉ and c2 = c∗ within (27) and (29), we get

‖θ̂ρ − θ∗ρ‖ ≤
2

γ∗
√
n
‖Jr(θ∗ρ)‖2

(
2‖c∗‖+

δ2√
2

)
‖ĉ− c∗‖, (30)

where we have used the fact that ‖ĉ − c∗‖ ≤ δ2√
2
. Thus, given any 0 < η < δ2√

2
, it follows

that ‖ĉ− c∗‖ ≤ δ(η) implies ‖θ̂ρ − θ∗ρ‖ ≤ η, for δ(η) chosen as

δ(η) , min

{
γ∗
√
n

2‖Jr(θ∗ρ)‖2
(2‖c∗‖+

δ2√
2

)−1η,
δ2√

2

}
. (31)

Now, we show that |θ̂v − θ∗v | can be made arbitrarily small. Let t : Rq → Rn2
such

that t(θρ) = r(θρ)/‖r(θρ)‖2; hence, Jt(θρ) =
(
I− 2

‖r(θρ)‖2 r(θρ)r(θρ)
>
)

Jr(θρ)
‖r(θρ)‖2 . Since r is

twice continuously differentiable, there exists 0 < U ∈ R such that

U , max{‖Jr(θρ)‖2 : ‖θρ − θ∗ρ‖ ≤ δ2/
√

2}.

Therefore, ‖Jt(θρ)‖2 ≤ U/‖r(θρ)‖2 ≤ U/n for any θρ belonging to the line segment con-

necting θ∗ρ and θ̂ρ. Furthermore, t(θ̂ρ) = t(θ∗ρ) +
(∫ 1

0 Jt(θ∗ρ + ` (θ̂ρ − θ∗ρ)) d`
)

(θ̂ρ − θ∗ρ);

hence, ‖t(θ̂ρ) − t(θ∗ρ)‖ ≤ U
n ‖θ̂ρ − θ∗ρ‖ ≤ U

n η as η > 0 is chosen as η < δ2/
√

2. Since

θ̂v = s(θ̂ρ, ĉ) > 0 and θ∗v = s(θ∗ρ, c
∗) > 0, it follows

|θ̂v − θ∗v | =

∣∣∣∣∣ r(θ̂ρ)
>ĉ

‖r(θ̂ρ)‖2
−

r(θ∗ρ)
>c∗

‖r(θ∗ρ)‖2

∣∣∣∣∣
=

∣∣∣∣∣
〈

r(θ̂ρ)

‖r(θ̂ρ)‖2
−

r(θ∗ρ)

‖r(θ∗ρ)‖2
, c∗

〉
+

〈
r(θ̂ρ)

‖r(θ̂ρ)‖2
, ĉ− c∗

〉∣∣∣∣∣
≤ ‖t(θ̂ρ)− t(θ∗ρ)‖‖c∗‖+

1

‖r(θ̂ρ)‖
‖c∗ − ĉ‖

≤ U

n
‖c∗‖η +

1√
n
δ(η).

Therefore, using the identity (a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R, we get

‖θ∗ − θ̂‖2 = ‖θ∗ρ − θ̂ρ‖2 + |θ∗v − θ̂v|2 ≤
(

2U2

n2
‖c∗‖2 + 1

)
η2 +

2

n
(δ(η))

2
.

From (31) and ‖c∗‖ = ‖C∗‖F ≤ Tr(C∗) ≤ nθ∗v , let κ , (
√

2Uθ∗v+1)(2nθ∗v+ δ2√
2
)+ γ∗√

2‖Jr(θ∗ρ)‖2
;

hence, choosing ηε , min
{

1
κ(2‖c∗‖+ δ2√

2
) ε, δ2√

2

}
implies that ‖θ∗ − θ̂‖ ≤ ε. Thus, for all

sufficiently small ε > 0, having ‖ĉ− c∗‖ ≤ δε implies that ‖θ∗ − θ̂‖ ≤ ε, where δε , δ(ηε) =
γ∗
√
n

2‖Jr(θ∗ρ)‖2
ε
κ . Next, according to Theorem 6, given ε > 0 and M > 0, for all N such that√

N/N0 ≥ 160 κ
γ∗ ‖Jr(θ∗ρ)‖2

(
b∗

a∗

)2
(n+‖G‖F )θ∗v

1
ε , choosing α = 40θ∗v

√
N0
N in (11) guarantees

‖ĉ− c∗‖ = ‖Ĉ − C∗‖F ≤
√
n‖Ĉ − C∗‖2 ≤

√
n

a∗2
‖P̂ − P ∗‖2 ≤

√
n

a∗2
‖P̂ − P ∗‖F ≤ δε, (32)
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with probability at least 1−n−M , where the equality follows from the definitions of c∗ and
ĉ, the second inequality follows from Ĉ = (P̂ )−1, C∗ = (P ∗)−1, and the fact that P 7→ P−1

is Lipschitz continuous on P � a∗I. This completes the proof.

4.2.1 Tighter Bounds Through Exploiting the Decay Property

In the GRF setting considered in this paper card(P ∗) = n2; hence, the bound obtained in
Theorem 6 may seem loose. On the other hand, Theorem 3 shows that the elements of P ∗

exhibit a fast decay similar to the elements of the covariance matrix. Therefore, although
card(P ∗) = n2, significant portion of these elements are close to 0. In this section, we
argue that by exploiting this property, the O(1) constant in Theorem 6 can be significantly
improved. More precisely, the main reason we get

√
n2 log n/N bound on ‖P̂ − P ∗‖F is

that the analysis provided for Theorem 6 is similar to Rothman et al. (2008) (Theorem 1)

and it does not exploit the fast decay in the elements of P ∗, leading us to

√
card(P ∗) logn

N

and card(P ∗) = n2. Instead in Corollary 10, we were able to replace card(P ∗) with the
cardinality of some set Sε̄ ⊂ {(i, j) ∈ I × I : |P ∗ij | ≥ ε̄}, defined in (34) for some ε̄ > 0.
Clearly, |Sε̄| ≤ card(P ∗) for all ε̄ ≥ 0.

The fast decay of the elements in inverse of the covariance matrix (Theorem 3) is the
motivation behind sparse approximation of the inverse covariance matrix in the STAGE-I of
SPS as Jaffard’s decay algebra clearly applies to the inverse covariance matrix. The proposed
sparse approximation of P ∗ leads to a |Sε̄| term in the bound on ‖P̂ −P ∗‖F . More precisely,
intuitively, given a reasonable threshold value ε̄ > 0, due to fast decay seen in the elements
of P ∗, one expects |Sε̄| � n2. Unfortunately, even for very simple deterministic designs such
as a d-dimensional lattice, computing |Sε̄| in closed-form is a hard combinatorial problem—
indeed, we spend quite some time computing it in the closed form for lattice designs, only
to get some partial results. Therefore, we numerically investigated how |Sε̄| compares to n
for different values of ε̄ > 0 and it turns out that |Sε̄| behaves similar to O(n), rather than
O(n2)—In Remark 11, we plot |Sε̄|/n and compare it to n2/n for (squared) exponential and
Matern covariance functions for different values of ε̄ ranging between 10−1 and 10−15.

In the rest of this section, we assume that the true covariance matrix C∗ belongs to the
class Eγ for some γ > 0; hence, it follows from Theorem 3 that P ∗ belongs to the class Eγ′
for some γ′ > 0. Thus, for all (i, j) ∈ I × I, |P ∗ij | ≤ Kγ′ exp(−γ′d(xi,xj)), where d(xi,xj)
is the Euclidean distance between xi and xj . Given ε̄ > 0, we define

q(ε̄) , 1
γ′ log(Kγ′/ε̄). (33)

If d(xi,xj) ≥ q(ε̄), then we have |P ∗ij | ≤ Kγ′ exp(−γ′d(xi,xj)) ≤ ε̄. Next, we define

Sε̄ , {(i, j) ∈ I × I : d(xi,xj) ≤ q(ε̄)} ⊆ {(i, j) ∈ I × I : |P ∗ij | ≥ ε̄} (34)

and let Scε̄ be its complement, i.e., Scε̄ , I × I\Sε̄.
Next, in Corollary 10, we establish O(log(1/ε̄)

√
|Sε̄| log n/N) bound on ‖P̂ −P ∗‖F and

show that N = O(1/ε2) rate result of Theorem 9 still holds for all ε > 0.

Corollary 10 Let {y(r)}Nr=1 ⊂ Rn be independent realizations of a GRF with zero-mean and
stationary covariance function c(x,x′,θ∗) observed over n distinct locations {xi}i∈I with
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I , {1, ..., n}. Suppose there exists some Kγ , γ > 0 such that c(x,x′,θ∗) ≤ Kγexp(−γ‖x−
x′‖) for x,x′ ∈ X . Then, under the premise of Theorem 9, for any given ε > 0 and M > 0,
there exists ε̄ > 0 and Nε = O(N0/ε

2) such that with probability 1− n−M , we have

‖P̂ − P ∗‖F ≤ O
(

log(1/ε̄)
√
|Sε̄| log n/Nε

)
= O(ε), (35)

where P̂ is the SPS estimator of P ∗ computed as in (11) with α = 40θ∗v
√
N0/Nε. Moreover,

(35) implies that the STAGE-II solution satisfies ‖θ̂(Nε) − θ∗‖ ≤ ε.

Proof Given any ∆ ∈ Rn×n, we define ∆Sε̄ and ∆Scε̄ as follows: (∆Sε̄)ij is equal to ∆ij if

(i, j) ∈ Sε̄ and zero otherwise (∆Scε̄ is defined similarly). Furthermore, ‖∆‖1 ,
∑

i,j∈I |∆ij |
and ‖∆‖∞ , maxi,j∈I |∆ij |.

For any given ε̄ > 0, define T , {∆ ∈ F : ‖∆‖F > αb∗2(1 + q(ε̄)/G̃min)|Sε̄|1/2 +((
αb∗2(1 + q(ε̄)/G̃min)|Sε̄|1/2

)2
+ 4αb∗2‖G‖∞

∑
(i,j)∈Scε̄ |P

∗
ij |
)1/2
} where F is defined as in

the proof of Theorem 6. From (16), for any ε̄ > 0 and ∆ ∈ T , we have

H(∆) ≥
1

2b∗2
‖∆‖2F + 〈∆, S − C∗〉+ α 〈G, |∆ + P ∗| − |P ∗|〉 ,

≥
1

2b∗2
‖∆‖2F + 〈∆, S − C∗〉 − α

∑
(i,j)∈Sε̄

Gij |∆ij |+ α
∑

(i,j)∈Scε̄

Gij(|∆ij | − 2|P ∗ij |), (36)

≥
1

2b∗2
‖∆‖2F − α‖∆Sε̄‖1 − α‖∆Sε̄c ‖1 − α

q(ε̄)

G̃min

‖∆Sε̄‖1 + α
G̃min

G̃min

‖∆Scε̄
‖1 − 2α

∑
(i,j)∈Scε̄

Gij |P ∗ij |, (37)

=
1

2b∗2
‖∆‖2F − α(1 +

q(ε̄)

G̃min

)‖∆Sε̄‖1 − 2α
∑

(i,j)∈Scε̄

Gij |P ∗ij |, (38)

≥
1

2b∗2
‖∆‖2F − α(1 +

q(ε̄)

G̃min

)|Sε̄|1/2‖∆‖F − 2α‖G‖∞
∑

(i,j)∈Scε̄

|P ∗ij | > 0, (39)

where (36) follows from the triangle inequality, (37) follows under the probability event Ω as
defined in the proof of Theorem 6 and the definition of q(ε̄) in (34) and Gij = G̃ij/G̃min ≥ 1,
as defined in (10), and finally (39) holds for any ∆ ∈ S∆. Hence, following a similar
argument within the proof of Theorem 6, under the probability event Ω, we have

‖∆̂‖F ≤ αb∗2(1 + q(ε̄)/G̃min)|Sε̄|1/2 +
((
αb∗2(1 + q(ε̄)/G̃min)|Sε̄|1/2

)2
+ 4αb∗2‖G‖∞

∑
(i,j)∈Scε̄

|P ∗ij |
)1/2

. (40)

Now, suppose the inequality

4b∗−2‖G‖∞(1 + q(ε̄)/G̃min)−2 1

|Sε̄|
∑

(i,j)∈Scε̄

|P ∗ij | ≤ α (41)

holds, which is equivalent to

(
4αb∗2‖G‖∞

∑
(i,j)∈Scε̄

|P ∗ij |
)1/2 ≤ αb∗2(1 + q(ε̄)/G̃min)|Sε̄|1/2.

Therefore, provided that (41) holds, we have

‖P̂ − P ∗‖F ≤ (1 +
√

2)b∗2(1 + q(ε̄)/G̃min)|Sε̄|1/2α. (42)
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It follows from the proof of Theorem 6 that setting α = 40θ∗v
√
N0/N implies

‖P̂ − P ∗‖F ≤ O
(

log(1/ε̄)|Sε̄|1/2
√
N0/N

)
(43)

with high probability, i.e., w.p. 1− n−M . Hence, using the definition of N0 and by taking
N ≥ N0, then with probability 1− n−M , we get the bound in (35). Provided the sufficient

condition (41), from (32) in the proof of Theorem 9, we get ‖θ̂(N) − θ∗‖ ≤ ε whenever

√
n

a∗2
‖P̂ − P ∗‖F ≤ δε ,

γ∗
√
nε

2κ‖Jr(θ∗ρ)‖2
,

which is equivalent to

‖P̂ − P ∗‖F ≤
γ∗a∗2ε

2κ‖Jr(θ∗ρ)‖2
. (44)

Therefore, using the bound for ‖P̂ − P ∗‖F provided in (42) for α = 40θ∗v
√
N0/N , the

condition in (44) holds for all large N such that

(1 +
√

2)b∗2(1 + q(ε̄)/G̃min)|Sε̄|1/240θ∗ν

√
N0

N
≤ γ∗a∗2

2κ‖Jr(θ∗ρ)‖2
ε. (45)

Define Nε such that (45) holds with equality. Next, we discuss how ε̄ > 0 should be set so

that the sufficient condition in (41) holds for αε , 40θ∗v
√
N0/Nε, i.e.,

4b∗
−2‖G‖∞(1 + q(ε̄)/G̃min)−2 1

|Sε̄|
∑

(i,j)∈Scε̄

|P ∗ij | ≤ αε =
(a∗/b∗)2

2(1 +
√

2)

γ∗

κ‖Jr(θ∗ρ)‖2
(1 + q(ε̄)/G̃min)−1√

|Sε̄|
ε, (46)

where the equality follows from the definitions ofNε and αε. Since κ = O(n) and ‖Jr(θ∗ρ)‖2 =
O(n), we define

gn(ε̄) ,
n2
∑

(i,j)∈Scε̄ |P
∗
ij |

|Sε̄|1/2(1 + q(ε̄)/G̃min)
, (47)

which is clearly an increasing function of ε̄. Hence, for any ε > 0, there exists an ε̄ > 0
small enough such that

gn(ε̄)

ε
≤ a∗2γ∗

8(1 +
√

2)‖G‖∞
. (48)

Therefore, it follows from (46) that for ε̄ satisfying (48), the sufficient condition in (41) is

true for αε = 40θ∗ν

√
N0
Nε

, where Nε = O(1/ε2). This completes the proof.

Remark 11 Note that gn(ε̄) in (48) is an increasing function of ε̄ since |Sε̄| is nonincreasing
(hence |Scε̄ | is nondecreasing), and q(ε̄) is a decreasing function of ε̄—see also the left plots
in Figures 5, 6, and 7. Hence, for any ε > 0 (the STAGE-II bound), there exists ¯̄ε > 0
such that the condition (48) holds for all ε̄ ∈ (0, ¯̄ε]. The plots on the left in Figures 5, 6,
and 7 show decay of gn(ε̄) with decreasing ε̄ for exponential, Matern (ν = 3/2), and squared
exponential covariance functions over a two-dimensional uniform design, respectively. The
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corresponding plots on the right illustrate the growth of |Sε̄| in n for different ε̄ values.
More precisely, to visually compare the growth of |Sε̄| and n2, we plotted |Sε̄|/n and n in
log-scale against n in the x-axis. Note |Sε̄|/n behaves as a constant that depends on ε̄;
hence, |Sε̄| scales as O(n) compared to card(P ∗) = O(n2) appearing in the bound provided
in Theorem 6—see also Section 5.1.
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Figure 5: Exponential covariance function

5. Numerical Performance of the Proposed SPS Method

In this section, the performance of the proposed algorithms is reported for both simulated
and real data sets.

To solve the STAGE-I problem, the sparsity parameter α in (11) was set to c
√

log(n)/N
(except for Section 5.1 ) with c = 10−3. Furthermore, to solve STAGE-I problem, we used
a particular ADMM implementation displayed in Figure 11 of the online supplement, for
which the penalty sequence {ρ`} is set to a geometrically increasing sequence ρ`+1 = 1.05ρ`
with ρ0 = n. In the simulation studies R denotes the number of simulation replications.
The numerical tests were carried on computer with an Intel Xeon x5650 CPU and 12.0
GB memory. Implementation of the proposed SPS algorithm in MATLAB is available at
https://github.com/samdavanloo/SPS. The package also includes the extension of the
SPS algorithm to fit multivariate GRF models – see Tajbakhsh et al. (2018).

5.1 Actual Error vs. the Theoretical Bound Based on Corollary 10

We simulate an isotropic GRF with exponential covariance function with θ∗ρ = 10, θ∗ν = 1,
and θ∗0 = 0 in a 2-dimensional square X = [0, 100]× [0, 100] over a uniform design with n =

21
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Figure 6: Matern covariance function
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Figure 7: Squared exponential covariance function
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Figure 8: Actual error ‖P̂ − P ∗‖F versus the theoretical bound ε log(1/ε̄)|Sε̄|1/2

100, 200, ..., 1000 points, and calculate C∗ and P ∗ accordingly. Next, we sample N = N0/ε
2

realizations from the resulting GRFs for ε ∈ {1e− 2, 1e− 3, 1e− 4}, where we set M = 1 in
the definition of N0.

To obtain the numerical error, the STAGE-I problems are solved using α = 40θ∗ν
√
N0/N

with N = N0/ε
2, i.e., α = 40θ∗νε to obtain P̂ . The numerical error is then calculated as

‖P̂ − P ∗‖F . The theoretical error bound is computed based on (35) of Corollary 10; in
particular, using (43) in the proof Corollary 10, i.e., for any fixed ε > 0 we set the bound
to log(1/ε̄)|Sε̄|1/2

√
N0/N for N = N0/ε

2 and ε̄ > 0 satisfying (48); hence, it is given as
ε log(1/ε̄)|Sε̄|1/2. Given ε, to compute ε̄ satisfying (48), one needs a∗ = λmin(P ∗) and γ∗,
which is the strong convexity modulus of the g(·) function defined in (20) and is calculated
using (23). For any ε ∈ {1e−2, 1e−3, 1e−4}, to calculate gn(ε̄) small enough satisfying (48),
we start from ε̄ = 1 and keep dividing by 10 until the condition is satisfied. The first ε̄ that
satisfies (48) is then used to calculate the theoretical error bound. Results are displayed in
Figure 8, which shows that the numerical error nicely matches with the theoretical bound
for all values of ε ∈ {1e− 2, 1e− 3, 1e− 4}.

23



Davanloo Tajbakhsh, Aybat, and Del Castillo

5.2 SPS vs ML Parameter Estimates

An anisotropic zero-mean GRF with a squared exponential correlation function, i.e., (3)
with M(θρ) = diag(θ−2

ρ ) and θρ ∈ Θρ = Rd+, was simulated R times in a hypercube domain

X = [0, 10]d where the variance and nugget parameters are fixed at θ∗ν = 1, θ∗0 = 0.1,
and θ∗ρ ∈ Rd is sampled randomly from the intersection of a hypersphere having radius 10
within the positive quadrant in each replication—θ∗ρ,l denotes the true correlation parameter
vector for the l-th replication. Table 2 compares the quality of the SPS and ML parameter
estimates in terms of the mean and standard deviation of {‖θ̂l−θ∗l ‖}Rl=1 for R = 5 repeated
model fits as the dimension d, the numbers of locations n, and process realizations N change,
where θ∗l = [θ∗ρ,l

>, θ∗v , θ
∗
0]> and θ̂l is the SPS estimate for the l-th replication. To deal with

the nonconcavity of the likelihood function, the ML method is initialized from 1, 10, and
100 random starting points, and the stationary solutions with the best objective values
among those corresponding to 1, 10, and 100 initializations are denoted as MLE-1, MLE-10,
and MLE-100, respectively. To avoid numerical inconsistencies when solving the likelihood
problem, the numerically stable approach mentioned in Lophaven et al. (2002) is used.
Table 2 also includes the timing comparison between the two methods in seconds. Since the
run times do not change much as N changes, we reported the run times for each (d, n) setting
averaged over changing values of N . We highlighted in the blue color the regimes where
SPS performs better than all MLE methods in the mean. According to these empirical
findings, generally in higher dimensions, e.g., d ∈ {5, 10} and specifically for N ≥ 5, SPS
works as well as (or even better than) all MLE methods. Comparing the estimation times,
SPS almost always beats MLE-10 and finishes an order of magnitude sooner than MLE-100.
In the lower dimensional case (d = 2), SPS has a reasonable estimation performance, better
than MLE-1; but is dominated by MLE-10 and MLE-100. On the other hand, it is worth
emphasizing the fact that the better performance of MLE-10 and MLE-100 comes at the
cost of considerably longer computation time.

Next, we discuss the effect of parameter estimation quality on the process predictions.
When n locations are dense in the domain, interpolating predictions may still be adequate
even if the parameter estimates are biased; however, when the location density is low, poor
estimates will result in weak prediction performance. This issue is further aggravated in
extrapolation scenarios. To show the extrapolation behavior, we sample n = 1000 training
data within a 10-dimensional hypersephere with radius 10 from a zero-mean isotropic GRF
with variance, nugget, and range parameters equal to 1, 0.1, and

√
2, respectively. Next, we

sample 10,000 test data of which distance to the center is between 10 and 15, i.e., from a
hyper-ring. The left graph on Figure 9 shows the design locations projected on the x1 − x2

plane. The training data is used to fit GRF models using MLE-1, MLE-10, MLE-100 (see
the paragraph above for their definitions), and SPS. The graph on the right of Figure 9
shows the prediction errors as a function of the distance between the test point and the
convex hull of the training data set. Prediction performance of SPS is better than MLE-1
and MLE-10; but slightly worse than MLE-100, while estimation time is greatly in favor of
SPS compared to the MLE-100 method.

4. For d = 10 and n = 1000, one replicate of MLE-100 was not finished in 24hrs.
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N

d n Method 1 5 10 40 Time in seconds

2

100

SPS 2.9 (2.1) 2.5 (1.7) 1.6 (0.9) 1.1 (0.6) 6.3 (0.9)
MLE-1 2.6 (1.7) 2.1 (1.5) 1.4 (0.9) 1.0 (0.7) 1.2 (0.2)
MLE-10 2.6 (1.7) 2.1 (1.5) 1.4 (0.9) 1.0 (0.7) 11.1 (1.1)
MLE-100 2.6 (1.7) 2.1 (1.5) 1.4 (0.9) 1.0 (0.7) 119.2 (7.1)

500

SPS 2.7 (1.8) 1.8 (1.1) 1.5 (0.9) 1.0 (0.6) 274.3 (8.1)
MLE-1 2.3 (1.5) 1.4 (1.0) 1.0 (0.6) 1.0 (0.4) 49.7 (25.1)
MLE-10 2.3 (1.5) 1.4 (1.0) 1.0 (0.6) 1.0 (0.4) 407.6 (72.2)
MLE-100 2.3 (1.5) 1.4 (1.0) 1.0 (0.6) 1.0 (0.4) 3931.5 (419.4)

1000

SPS 2.1 (1.4) 1.6 (0.9) 1.3 (0.6) 0.9 (0.3) 1793.9 (41.6)
MLE-1 1.9 (1.3) 1.2 (0.8) 0.9 (0.5) 0.8 (0.2) 405.3 (342.4)
MLE-10 1.9 (1.3) 1.2 (0.8) 0.9 (0.5) 0.8 (0.2) 2858.6 (434.9)
MLE-100 1.9 (1.3) 1.2 (0.8) 0.9 (0.5) 0.8 (0.2) 24771.1 (2413.1)

5

100

SPS 3.2 (1.6) 2.3 (1.4) 1.8 (1.2) 1.3 (0.8) 7.6 (2.4)
MLE-1 3.1 (1.9) 2.5 (1.7) 2.1 (1.6) 1.8 (1.4) 1.9 (0.4)
MLE-10 3.1 (1.9) 2.5 (1.7) 1.9 (1.6) 1.7 (1.4) 20.7 (0.8)
MLE-100 2.9 (1.5) 2.3 (1.6) 1.9 (1.5) 1.6 (1.2) 233.7 (68.6)

500

SPS 2.9 (1.7) 1.9 (1.4) 1.8 (1.1) 1.3 (0.8) 359.3 (45.3)
MLE-1 2.8 (1.7) 1.9 (1.6) 1.8 (1.5) 1.6 (1.4) 72.3 (12.2)
MLE-10 2.8 (1.7) 1.8 (1.6) 1.8 (1.5) 1.3 (1.1) 782.0 (116.1)
MLE-100 2.5 (1.7) 1.7 (1.4) 1.6 (1.4) 1.2 (1.0) 7924.2 (1720.7)

1000

SPS 2.8 (1.6) 1.6 (1.1) 1.3 (0.7) 0.9 (0.4) 2050.8 (137.7)
MLE-1 2.7 (1.4) 1.8 (1.3) 1.5 (1.0) 1.1 (0.9) 520.9 (133.4)
MLE-10 2.5 (1.4) 1.7 (1.3) 1.3 (1.0) 1.0 (0.7) 4485.7 (686.0)
MLE-100 2.3 (1.3) 1.5 (1.3) 1.2 (0.9) 1.0 (0.6) 49587.4 (1099.7)

10

100

SPS 5.8 (2.3) 4.1 (1.6) 3.2 (1.4) 1.9 (1.0) 9.8 (5.3)
MLE-1 6.6 (2.6) 5.1 (2.4) 5.0 (2.4) 4.3 (2.1) 3.9 (2.2)
MLE-10 6.2 (2.3) 5.1 (2.1) 4.9 (1.9) 4.8 (1.9) 48.9 (10.7)
MLE-100 6.2 (2.1) 5.0 (2.0) 4.4 (1.9) 3.9 (1.8) 532.1 (121.8)

500

SPS 4.9 (2.0) 3.9 (1.5) 2.9 (1.3) 1.6 (0.9) 284.6 (8.7)
MLE-1 5.8 (2.4) 4.9 (2.2) 4.3 (2.0) 3.7 (1.7) 230.4 (154.7)
MLE-10 5.0 (2.3) 4.8 (2.0) 3.9 (1.9) 3.6 (1.7) 2873.7 (1042.7)
MLE-100 4.8 (2.0) 4.3 (1.9) 3.4 (1.8) 2.8 (1.5) 42739.0 (21786.0)

1000

SPS 4.8 (1.9) 3.6 (1.3) 2.6 (1.3) 1.4 (0.8) 3544.1 (171.2)
MLE-1 5.8 (2.3) 4.8 (2.0) 4.1 (1.7) 3.6 (1.6) 644.8 (180.3)
MLE-10 4.8 (2.1) 4.5 (1.8) 3.7 (1.4) 3.4 (1.3) 5535.6 (926.5)

MLE-1004 – (–) – (–) – (–) – (–) – (–)

Table 2: SPS vs MLE methods. Numbers are the mean (standard deviation) of {‖θ̂l −
θ∗l ‖}5l=1. Blue color is used for the SPS method and red color highlights the
regimes where MLE performs poorer than SPS in the mean.

5.3 Dealing with the “Big n” Problem

To solve the STAGE-I problem efficiently for large n, we propose to segment the set of
training locations Dx , {xi}ni=1 ⊂ X into K segments (or blocks) {Dxk}Kk=1 of size nk ,
card(Dxk) such that the number of data points in each segment, nk, is less than nB (in our
experiments we set nB to 1000). If n ≤ nB, then segmentation is not needed; otherwise, we
used the following two segmentation schemes in our numerical experiments.

Spatial Segmentation (SS): This scheme is based on partitioning the spatial domain
X into K non-overlapping hypercubes, and considering the training data points in each
hypercube Xk as one block. Let Xk , {x ∈ Rd : ¯̀

k ≤ x ≤ ūk} for some {¯̀k, ūk}Kk=1 such
that ∪Kk=1Xk = X and Xk1 ∩ Xk2 = ∅ for all k1 6= k2. Then we define Dxk , Dx ∩ Xk for all
k. Assuming that data point locations, Dx, are uniformly distributed within X , each block
Dxk will contain n

K observations in expectation.
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Figure 9: Left: Hyper-sphere design locations projected on the x1 − x2 plane. Right: Prediction performance

Random Segmentation (RS): The set of training data locations Dx is partitioned
uniformly at random into K blocks {Dxk}Kk=1 such that the first K − 1 blocks contain b nK c
data locations and the last block contains n− (K−1)b nK c many. Let Dk = {(xi, y(r)

i ) : r =
1, . . . , N, i ∈ Ik} denote the subset of training data corresponding to the k-th block, where
the index set Ik is defined as Ik , {1 ≤ i ≤ n : xi ∈ Dxk}. Hence, nk = |Ik|. Note that the
SS segmentation scheme, but not the RS scheme, can handle non-stationary GRFs.

For both segmentation schemes, we solve STAGE-I problem for each segment k sepa-
rately using the sample covariance Sk and the matrix of pairwise distances Gk corresponding
to observations in segment k, i.e., P̂k = argminP�0 〈Sk, P 〉 − log det(P ) + αk 〈Gk, |P |〉, for
k = 1, . . . ,K, for some αk > 0. Under the assumption that the underlying stochastic pro-
cess is second-order stationary, i.e., the covariance function parameters are fixed across the
domain X (Stein, 1999), one can fit a single covariance function for the whole domain. In
this case, for both schemes we propose to estimate the covariance function parameters by
solving the following least squares problem: θ̂ ∈ argminθ∈Θ

∑K
k=1 ‖P̂

−1
k − Ck(θ)‖2F . Note

that this method generates a predicted surface with no discontinuities along the boundary
between segments. This is in contrast to other methods that partition large data sets for
fitting a GRF but require further formulation to achieve continuity, see Park et al. (2011).
Finally, in case the process cannot be assumed to be stationary, the second stage opti-
mization is solved separately for each segment k, which has its own covariance parameter
estimates. These estimates are computed by solving θ̂k ∈ argminθk∈Θ ‖P̂−1

k − Ck(θk)‖2F ,
for each segment k = 1, . . . ,K.

SPS-Fitted GRF for Small and Large Data Sets. We simulated two data sets
of sizes n = 1, 000 and n = 64, 000 points from a GRF with zero mean and isotropic SE
covariance function with parameters: range θ∗ρ = 4, variance θ∗v = 8, and nugget θ∗0 = 4
over a square domain X = [0, 100]× [0, 100]. In the simulation with n = 1000, the results
are based on R (number of simulation replications) equal to 100, while for the simulation
with n = 64, 000, given that each run of the simulation takes around 3-4 hours, results are
given for R = 5 replicates. The number of realizations N is set to 1 in these simulations.
Let θ̂l denote the covariance parameter estimates obtained in the l-th replication. In all the
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tables, θ̄ ,
∑R

l=1 θ̂l/R and stdevθ ,
√

1
R

∑R
l=1(θ̂l − θ̄)2 denote the sample mean and the

standard deviation of the parameter estimates, respectively. For benchmarking, we compare
our estimates with those obtained by Domain Decomposition method (DDM) of Park et al.
(2011) using a rectangular mesh. The number of control points on the boundaries and the
number of constraining degrees of freedom equal to 3. DDM is selected since it shows the
best performance among the other big-n methods considered in Section 5.4.

n=1000 (R=100 replicates) n=64000 (R=5 replicates)

Method θ = (θρ, θv , θ0) stdevθ θ = (θρ, θv , θ0) stdevθ

SPS-SS (3.98, 7.77, 4.87) (0.41, 1.01, 0.76) (4.01, 8.16, 4.75) (0.43, 0.78, 0.29)

SPS-RS (4.01, 8.11, 4.22) (0.90, 1.16, 0.85) (3.98, 7.97, 4.83) (0.06, 0.11, 0.11)

DDM (1.73, 7.34, 6.11) (1.23, 1.98, 2.67) (1.43, 8.67, 3.65) (0.87, 0.95, 0.53)

Table 3: Parameter estimate of SPS under the two segmentation schemes vs. DDM (Domain Decomposition

method of Park et al. (2011)) for simulated data with N=1 realization. The covariance function is

squared-exponential and the true parameter values are θ∗ρ = 4, θ∗v = 8, and θ∗0 = 4.

Both segmentation schemes were used for comparison. When n = 1000, for the SS
segmentation scheme, the domain was split into 3 × 3 = 9 equal size square segments; for
the RS segmentation scheme Dx was randomly partitioned into 9 equal cardinality sets.
Similarly, when n = 64, 000, for the SS segmentation scheme, the domain was split into
8 × 8 = 64 equal size square segments; for the RS scheme, Dx was randomly partitioned
into 64 equal cardinality sets. Table 3 shows the model fitting results.

When n = 1000, the parameter estimates using either segmentation scheme appear unbi-
ased. Computing θ̂ ∈ argminθ∈Θ

∑K
k=1 ‖P̂

−1
k −Ck(θ)‖2F , we explicitly ignore the correlation

of process values for any two points in different blocks. Over the fixed domain when n is
large, i.e., n = 64, 000, the larger data location density results in more observations close
to boundaries; hence, correlations between blocks for the SS scheme may not be ignored
anymore. Empirical results show lower stdevθ under the RS scheme when n is large. DDM
underestimates the range parameter in all scenarios.

Effect of range and nugget parameters. To analyze the effect of the range, θ∗ρ,
and nugget, θ∗0, parameters on the performance of the proposed method, we setup another
simulation with n=64,000 points with results shown in Table 4. When the range parameter
increases, the standard deviations of the parameter estimates increase under both segmen-
tation schemes. Furthermore, the RS scheme appears to be less sensitive to changes in the
nugget parameter. In general, for big-n scenarios and given the high point density, the RS
scheme results in more robust parameter estimates. DDM highly underestimates the range
parameter, especially when θ∗ρ = 30.

5.4 SPS vs. State-of-the-Art Methods for Fitting GRFs to Big Data Sets

We compare the SPS method against the Partial Independent Conditional (PIC) method by
Snelson and Ghahramani (2007), the Domain Decomposition (DDM) method of Park et al.
(2011), and the Full Scale covariance Approximation (FSA) of Sang and Huang (2012).
Park et al. (2011) provided computer codes for PIC and DDM, and we coded the FSA
method. We simulated a data set of size n = 64, 000 generated from a zero mean GRF with
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θ∗ρ = 4 θ∗ρ = 30

Nugget Method θ = (θρ, θv , θ0) stdevθ θ = (θρ, θv , θ0) stdevθ

θ∗0 = 4

SPS-SS (4.01, 8.16, 4.75) (0.43, 0.78, 0.29) (29.03, 7.94, 4.80) (1.15, 1.76, 0.11)

SPS-RS (3.98, 7.97, 4.83) (0.06, 0.11, 0.11) (29.24, 7.95, 4.79) (1.93, 0.26, 0.19)

DDM (1.43, 8.67, 3.65) (0.87, 0.95, 0.53) (19.32, 8.65, 3.69) (0.97, 0.64, 0.73)

θ∗0 = 8

SPS-SS (4.03, 8.08, 8.77) (0.47, 0.86, 0.36) (28.39, 7.97, 8.77) (1.35, 1.89, 0.13)

SPS-RS (3.98, 7.98, 8.83) (0.07, 0.12, 0.15) (28.93, 7.87, 8.78) (1.65, 0.31, 0.18)

DDM (1.27, 7.35, 9.10) (0.08, 0.08, 0.25) (11.45, 7.35, 10.10) (1.89, 0.70, 0.49)

Table 4: SPS vs. DDM (Domain Decomposition method of Park et al. (2011)) estimates for simulated data sets

with n = 64, 000, N = 1 and R = 5. The covariance function is squared-exponential with variance

parameter θ∗v = 8.

isotropic Squared-Exponential (SE) covariance function with N = 1 realization using the
following parameter values: θ∗ρ=4, θ∗v=8, and θ∗0=4.

For each replication, 90% of the simulated data was allocated for training (i.e., for
estimating the parameters), and 10% for testing (prediction). The Mean Square Prediction
Error (MSPE) is computed on the test data. The MSPE corresponding to the l-th replication
is computed as follows: MSPEl ,

1
ntl
‖ytl − ŷtl‖2, where ntl denotes the number of test data

points in the l-th replication, ytl ∈ Rntl and ŷtl ∈ Rntl are vectors of true and predicted
function values, respectively. Since the true parameter values are known for the simulated
data set, the true function values yt are taken to be the predictions obtained via (1) using
the true parameter values. Calculating the MSPE this way shows the specific error due to
the discrepancies between the estimated and true parameter values. Finally, MSPE and
stdevMSPE are defined similar to θ and stdevθ.

In the SPS method, we used SS segmentation scheme with 64 equal-size blocks as de-
scribed in Section 5.3. In the PIC method, the number of local regions was set to 64, and
the number of pseudo inputs was set to 100. In the DDM method, a rectangular mesh
was selected with both the number of control points on the boundaries and the number of
constraining degrees of freedom equal to 3. In the FSA method, the number of knots was
set to 50 on a regular grid, the tapering function used was spherical with taper range set
to 10. These settings are based on the guidance provided in the corresponding papers. In
the training phases for PIC, DDM, and FSA methods, the initial values for each covariance
function parameters were randomly selected from the uniform distribution over (0, 10] in
each replicate. The reason is that these methods attempt to solve non-convex problem in
(5); hence, the local minima generated by the optimization solvers highly depend on the
initial point. Therefore, to be fair to these methods, we run them starting from many ran-
domly generated initial solutions for each replicate. The mean and standard deviation of
MSPE and parameter estimates for R = 5 replications are reported in Table 5.

The SPS method provides the least biased estimates for all three covariance parameters,
with the degree of bias provided by the other methods being much more substantial. Fur-
thermore, the mean MSPE for the SPS method is considerably lower than that of the other
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Method θ = (θρ, θv , θ0) stdevθ MSPE stdevMSPE

PIC (5.11, 6.22, 5.01) (2.03, 2.82, 2.532) 2.87 1.03

DDM (0.83, 8.23, 4.03) (0.09, 0.96, 0.73) 2.23 0.44

FSA (3.31, 2.58, 0.65) (2.97, 0.76, 0.14) 4.47 1.35

SPS (4.14, 7.82, 4.64) (0.65, 1.06, 0.57) 0.42 0.35

Table 5: Comparison of the SPS method against PIC, DDM, and FSA for n = 64, 000, N = 1 and R = 5

on data sets generated from a GRF with zero mean and SE covariance function with true parameters

θ∗ = (θ∗ρ, θ
∗
v , θ
∗
0) = (4, 8, 4).

alternatives (one order of magnitude less), and has the least variability. The CPU times
required by each method in the learning and prediction stages are displayed in Figure 10.
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Figure 10: Learning times (Left) and prediction times (Right) of PIC, DDM, FSA, and
SPS methods.

For both learning and prediction the DDM method is the fastest, and the FSA method
the slowest. However, note that while PIC, DDM and SPS use segmentation (64 blocks in
this example), there is no segmentation in FSA but instead one should select the number of
knots. Hence computing times of FSA against the other three methods are not completely
comparable. Of the remaining two methods contrasted, PIC is faster than SPS in the pre-
diction phase but SPS is faster than PIC in learning. In view of the prediction performance
of all the methods compared, the slight speed advantage of DDM over SPS is not a demerit
of our method: DDM is unable to provide an unbiased estimate of the range parameter θ∗ρ,
crucial in spatial modeling, and this naturally results in considerably worse predictions.

5.5 Implementation of the SPS Method for Real Data Sets

Finally, we tested the SPS method on two real data sets. The first data set contains
ozone and air quality data as recorded by the Total Ozone Mapping Spectrometer (TOMS)
instrument on board the Nimbus-7 satellite. The data set contains 48,331 Total Column
Ozone (TCO) measurements over the globe on October 1, 1988 and is available at NASA’s
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website5. The second data set is the Day/Night Cloud Fraction (CF) from January to
September 2009 (size n = 64, 800 points) collected by the Moderate Resolution Imaging
Spectrometer (MODIS) instrument on board the Terra satellite, a data set also available
at NASA’s website6. A wrapper Matlab function which can read the TCO data with
its specific format and produce the input/output matrices is available with our software
package at https://github.com/samdavanloo/SPS and also at http://sites.psu.edu/

engineeringstatistics/computer-codes/.

Data Covariance Function Segmentation θ = (θρ, θv , θ0) stdevθ MSPE stdevMSPE

TCO Matern RS (12.20, 1098, 0.00) (0.01, 0.54, 0.00) 4.5361 0.0623

CF Exponential RS (10.07, 0.05, 0.82) (0.04, 0.00, 0.00) 0.0044 0.0000

Table 6: Implementation of the proposed SPS method for two real data sets, TCO and CF, with performance mea-

sures computed over R=5 replicated cross-validations (10% of data randomly sampled in each replication

for testing).

The mean and standard deviations of the MSPEs and the parameter estimates for R = 5
replicates are reported in Table 6. In each replication, 10% of the data is randomly selected
for testing, and the remaining 90% is used for learning the covariance parameters. Both
segmentation schemes were implemented and RS segmentation resulted in better prediction
results for both data sets; therefore, we only report RS results. The RS segmentation scheme
is adopted using a random partition of Dx in each replication. The type of covariance
function was selected based on the best MSPE values obtained. Since this is real data, we
cannot make any judgment about the quality of parameter estimates; however, the standard
deviations are quite small relative to the parameter estimate magnitudes for both data sets.

6. Conclusions and Further Research

A new two-stage method to estimate the parameters of Gaussian Random Field (GRF)
models is presented and its theoretical error bound is established. This method, which we
named Sparse Precision matrix Selection (SPS), first finds a sparse estimate of the pre-
cision (inverse covariance) matrix of the underlying GRF by solving a nonsmooth convex
optimization problem, and then estimates the parameters of the GRF model by solving a
least-square problem. Numerical studies confirming our theoretical findings are presented;
these include numerical comparisons with MLE which requires solving a nonconvex prob-
lem. In higher dimensional regimes, especially with higher number of realizations, the SPS
method performs better than its MLE counterparts. Moreover, the computational time of
SPS scales much better with the number of locations, replicated observations per location,
and especially, with the dimension.

The sparse estimation of the precision matrix of the GRF model is well-motivated and
theoretically supported by Jaffard’s decay algebra (Jaffard, 1990). Indeed, we were able to
bound the error of the sparse estimate of the true precision matrix, which is dense but its
elements decay rapidly to zero in magnitude. This bound then allowed us to establish the
error bound of the parameter estimates in Corollary 10.

5. http://ozoneaq.gsfc.nasa.gov/nimbus7Ozone.md
6. http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance id=MODIS MONTHLY L3
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The following are some possible future research directions: a) The established error
bound for the stage-I problem that involves sparse estimation of the true dense precision
matrix includes the cardinality of some set |Sε̄| given in (34) for some ε̄ > 0. Clearly,
|Sε̄| ≤ card(P ∗) for all ε̄ ≥ 0; however, theoretically quantifying the cardinality of this
set for even simple designs, e.g. d-dimensional lattice, is a combinatorial challenge and is
left for future works. b) Our numerical motivations at the beginning of the paper suggest
that the decay rate of the precision matrix increases with the density of the points (infill
asymptotics). We did not investigate this phenomenon theoretically nor did we utilize it in
the proposed parameter estimation algorithm, and it is left as a matter for future research.

Appendix A. Proof of Theorem 4

Proof For any given θρ ∈ Θρ, note that d is not parallel to r = r(θρ), i.e., d ∦ r. Let h

denote the objective function in (14), i.e., h(θv, θ0) , 1
2‖θvr + θ0d− ĉ‖2, it satisfies

∂h(θv, θ0)

∂θv
= r>(θvr + θ0d− ĉ), (49a)

∂h(θv, θ0)

∂θ0
= d>(θvr + θ0d− ĉ). (49b)

The Hessian of h in (14) is ∇2h =

[
r>r r>d
r>d d>d

]
. Note r>r > n > 0, and det(∇2h) =

‖r‖2‖d‖2 − (r>d)2 > 0 by Cauchy-Schwartz and the fact that r ∦ d; thus, ∇2h is positive
definite. Therefore, for any given θρ ∈ Θρ, h is strongly convex jointly in θv and θ0.

From the definitions of d and r, we have ‖d‖2 = n, d>r = n, and ‖r‖2 > n (because
r(x,x,θρ) = 1 for any x and θρ ∈ Θρ). Necessary and sufficient KKT conditions imply

∇h(θv, θ0) ≥ 0, (50a)

θv ≥ 0, θ0 ≥ 0, (50b)

∂h(θv, θ0)

∂θv
θv = 0,

∂h(θv, θ0)

∂θ0
θ0 = 0. (50c)

Below, we consider four possible scenarios for problem (14):

1. (θv = 0, θ0 = 0)—This solution is optimal if and only if r>ĉ ≤ 0 and d>ĉ ≤ 0 (from
(49a) (49b), and (50a)). However, since Ĉ = P̂−1 is positive definite, its diagonal
elements are strictly positive, d>ĉ > 0. Hence, this scenario is not possible.

2. (θv = 0, θ0 > 0)—From (50a), (50c) and (49b) follows that (θv = 0, θ0 = d>ĉ/n) is
the optimal solution if and only if r>ĉ ≤ d>ĉ.

3. (θv > 0, θ0 > 0)—From (49a), (49b), (50c), and (50a)

(θv, θ0) =

(
r>ĉ− d>ĉ

‖r‖2 − n
,

(d>ĉ)‖r‖2/n− r>ĉ

‖r‖2 − n

)

is the optimal solution if and only if (d>ĉ)‖r‖2/n > r>ĉ > d>ĉ.
4. (θv > 0, θ0 = 0)—From (50a), (50c) and (49a) follows that (θv = r>ĉ/‖r‖2, θ0 = 0) is

the optimal solution if and only if r>ĉ ≥ (d>ĉ)‖r‖2/n.
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Supplementary Material for the paper titled “On the Theoretical
Guarantees for Parameter Estimation of Gaussian Random Field Models:
A Sparse Precision Matrix Approach”

An ADMM Algorithm for Solving Stage-I Problem (11)

Theorem 12 Let 0 ≤ a∗ ≤ b∗ ≤ ∞. Given arbitrary Z0,W0 ∈ Sn and ρ > 0, let ρ` = ρ for
` ≥ 0, and {P`, Z`}`≥1 denote the iterate sequence generated by ADMM(S,G, α, a∗, b∗) as
shown in Figure 11. Then {P`} converges Q-linearly7 to P̂ , and {Z`} converges R-linearly
to P̂ , where P̂ is the unique optimal solution to STAGE-I problem given in (11).

Algorithm ADMM (S,G, α, a∗, b∗)

1: input : Z0,W0 ∈ Sn, {ρ`}`≥0 ⊂ R++, 0 ≤ a∗ ≤ b∗ ≤ ∞
2: if a∗ > 0 and b∗ <∞ then a← a∗, b← b∗

3: if a∗ = 0 and b∗ <∞ then a← min{b∗, 1
‖S‖2+α‖G‖F }, b← b∗

4: if a∗ > 0 and b∗ =∞ then a← a∗, b← na∗

αGmin
max{‖S‖2 + α‖G‖F , 1/a∗}

5: if a∗ = 0 and b∗ =∞ then a← (‖S‖2 + α‖G‖F )−1, b← n/(αGmin)
6: while ` ≥ 0 do
7: P`+1 ← argminP∈Sn{〈S, P 〉 − log det(P ) + ρ`

2 ‖P − Z` + 1
ρ`
W`‖2F : aI � P � bI}

8: Z`+1 ← argminZ∈Sn{α 〈G, |Z|〉+ ρ`
2 ‖Z − P`+1 − 1

ρ`
W`‖2F : diag(Z) ≥ 0}

9: W`+1 ←W` + ρ`(P`+1 − Z`+1)
10: end while

Figure 11: ADMM algorithm for STAGE-I

Remark. As shown in the proof of Theorem 12, when a∗ = 0 and/or b∗ =∞, the choice of
a, b in Figure 11 satisfies a ≤ σmin(P̂ ) ≤ σmax(P̂ ) ≤ b for P̂ , defined in (11). This technical
condition makes sure that the ADMM iterate sequence converges linearly.

The algorithm is terminated at the end of iteration ` when both primal and dual residuals
(r`, s`) are below a given tolerance value, where r` , P`+1 − Z`+1 and s` , ρ`(Z`+1 − Z`).
From the necessary and sufficient optimality conditions for Step 7 and Step 8 in Figure 11,
r` = s` = 0 implies P`+1 = Z`+1 = P̂ , i.e., the unique optimal solution to (11). In practice,
ADMM converges to an acceptable accuracy within a few tens of iterations, which was also
the case in our numerical experiments.

Typically, in ADMM algorithms (Boyd et al., 2011), the penalty parameter is held
constant, i.e., ρ` = ρ > 0 for all ` ≥ 1, for some ρ > 0. Although the convergence is
guaranteed for all ρ > 0, the empirical performance critically depends on the choice of
ρ—it deteriorates rapidly if the penalty is set too large or too small (Kontogiorgis and
Meyer, 1998). Moreover, Lions and Mercier (1979) discuss that there exists a ρ∗ > 0 which
optimizes the convergence rate bounds for the constant penalty ADMM scheme; however,
estimating ρ∗ is difficult in practice. In our experiments, we used an increasing penalty
sequence {ρ`}`≥1. For details on the convergence of variable penalty ADMM, see (He et al.,
2002; Aybat and Iyengar, 2015) in addition to the references above.

7. Let {X`} converge to X∗ for a given norm ‖.‖. The convergence is called Q-linear if
‖X`+1−X∗‖
‖X`−X∗‖

≤ c, for

some c ∈ (0, 1); and R-linear if ‖X` −X∗‖ ≤ c`, for some {c`} converging to 0 Q-linearly.
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Next, we show that Steps 7 and 8 of ADMM, displayed in Figure 11, can be computed
efficiently. Given a convex function f : Sn → R ∪ {+∞} and λ > 0, the proximal mapping
proxλf : Sn → Sn is defined as proxλf (P̄ ) , argminP∈Sn λf(P ) + 1

2‖P − P̄‖
2
F ; and given

a set Q ⊂ Sn, let 1Q(·) denote the indicator function of Q, i.e., 1Q(P ) = 0 for P ∈ Q;
otherwise equal to +∞. For the proof of Lemma 13, see (Yuan, 2012). The result of
Lemma 14 for off-diagonal indices follows from the typical soft-thresholding from the lasso
solution, see Friedman et al. (2007).

Lemma 13 Let Ψ(P ) , 〈S, P 〉−log det(P )+1Q(P ), and Q , {P ∈ Sn : aI � P � bI}. In
generic form, Step 7 of ADMM can be written as proxΨ/ρ(P̄ ) for some P̄ ∈ Sn and ρ > 0.

Suppose P̄− 1
ρS has eigen-decomposition U diag(λ̄)U>. Then proxΨ/ρ(P̄ ) = U diag(λ∗)U>,

where

λ∗i = max
{

min
{ λ̄i +

√
λ̄2
i + 4/ρ

2
, b
}
, a
}
, i = 1, . . . , n. (51)

Lemma 14 Let Φ(P ) , α 〈G, |P |〉 + 1Q′(P ), and Q′ , {P ∈ Sn : diag(P ) ≥ 0}. In
generic form, Step 8 of ADMM can be written as proxΦ/ρ(P̄ ) for some P̄ ∈ Sn and ρ > 0,
which can be computed as follows:

(proxΦ/ρ(P̄ ))ij = sgn
(
P̄ij
)

max
{
|P̄ij | − α

ρGij , 0
}
, ∀(ij) ∈ I × I s.t. i 6= j, (52a)

(proxΦ/ρ(P̄ ))ii = max
{
P̄ii − α

ρGii, 0
}
, ∀i ∈ I. (52b)

The proofs of Theorem 12, Lemma 13 and Lemma 14 follow from the existing results in the
literature. For the sake of completeness, these proofs are provided in the supplementary
material.

Proof of Theorem 12

Consider a more generic problem of the following form:
min
P∈Sn

Ψ(P ) + Φ(P ), (53)

where Ψ : Sn → R ∪ {+∞} and Φ : Sn → R ∪ {+∞} are proper closed convex functions,
and Sn denotes the vector space of n-by-n symmetric matrices. By introducing an auxiliary
variable Z ∈ Sn, (53) can be equivalently written as min{Ψ(P )+Φ(Z) : P = Z, P, Z ∈ Sn}.
For a given penalty parameter ρ > 0, the augmented Lagrangian function is defined as

Lρ(P,Z,W ) , Ψ(P ) + Φ(Z) + 〈W,P − Z〉+ ρ
2‖P − Z‖

2
F , (54)

where W ∈ Sn is the dual multiplier for the linear constraint P − Z = 0. Given an
initial primal-dual point Z1,W 1 ∈ Sn, when the ADMM algorithm (Boyd et al., 2011) is
implemented on (53), it generates a sequence of iterates {P`, Z`}`≥1 according to:

P`+1 = argmin
P∈Sn

Lρ(P,Z`,W`) = proxΨ/ρ

(
Z` − 1

ρW`

)
, (55a)

Z`+1 = argmin
Z∈Sn

Lρ(P`+1, Z,W`) = proxΦ/ρ

(
P`+1 + 1

ρW`

)
, (55b)

W`+1 = W` + ρ (P`+1 − Z`+1). (55c)

For all ρ > 0, convergence of the ADMM iterate sequence {P`, Z`}`≥1 is guaranteed. In
particular, lim`≥1 Z` = lim`≥1 P`; moreover, any limit point of {P`} is a minimizer of (53).
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Recently, Deng and Yin (2016) showed that the ADMM iterate sequence converges linearly
if Ψ is strongly convex and has a Lipschitz continuous gradient. In particular, {P`,W`}
converges8 Q-linearly to a primal-dual optimal pair (P opt,W opt), where P opt is the unique
primal optimal solution, and {Z`} converges R-linearly to P opt.

Returning to the SPS method, note that the precision matrix estimation problem in (11)
immediately fits into the ADMM framework by setting Ψ(P ) = 〈S, P 〉− log det(P )+1Q(P )
and Φ(P ) = α 〈G, |P |〉, where Q , {P ∈ Sn : a∗I � P � b∗I} and 1Q(·) is the indicator
function of Q, i.e., 1Q(P ) = 0 if P ∈ Q; and it is equal to +∞, otherwise. Therefore, both
Ψ and Φ are closed convex functions. When 0 < a∗ ≤ b∗ < +∞, Theorem 12 immediately
follows from the convergence properties of ADMM discussed above.

Now consider the case a∗ = 0 and b∗ = +∞. For this scenario, Ψ is strictly convex and
differentiable on Q with ∇Ψ(P ) = S − P−1; however, note that ∇Ψ(P ) is not Lipschitz
continuous on Q. Therefore, this choice of Ψ and Φ do not satisfy the assumptions in (Deng
and Yin, 2016). On the other hand, following the discussion in (d’Aspremont et al., 2008),
we will show that by selecting a slightly different Q, one can obtain an equivalent problem
to (11) which does satisfy the ADMM convergence assumptions in (Deng and Yin, 2016);
hence, linear convergence rate for stage I of the SPS method can be obtained. Noting that
|t| = max{ut : |u| ≤ 1}, one can write (11) equivalently as follows:

F̂ , min
P�0

max
{U∈Sn: |Uij |≤αGij}

L(P,U) , 〈S + U,P 〉 − log det(P ), (56)

where F̂ ,
〈
S, P̂

〉
− log det(P̂ ) + α

〈
G, |P̂ |

〉
, and P̂ is the solution to (11), i.e., P̂ =

argmin{〈S, P 〉 − log det(P ) + α 〈G, |P |〉 : P � 0}. Since L is convex in P , linear in U , and
{U ∈ Sn : |Uij | ≤ αGij} is compact, the strong min-max property holds:

F̂ = max
{U∈Sn: |Uij |≤αGij}

min
P�0
L(P,U) = max

{U∈Sn: |Uij |≤αGij}
n− log det

(
(S + U)−1

)
, (57)

where (57) follows from the fact that for a given U ∈ Sn, P̂ (U) = (S + U)−1 minimizes
the inner problem if S + U � 0; otherwise, the inner minimization problem is unbounded
from below. Therefore, we conclude that P̂ is the optimal solution to (11) if and only if

there exists Û ∈ Sn such that P̂ = (S + Û)−1 � 0, |Ûij | ≤ αGij for all (i, j) ∈ I, and〈
S, P̂

〉
+ α

〈
G, |P̂ |

〉
= n. Since S, P̂ � 0, we have

〈
S, P̂

〉
≥ 0; hence,

〈
G, |P̂ |

〉
≤ n/α.

Hence, we can derive the desired bounds, similar to those derived in (d’Aspremont et al.,
2008):

a ,
1

‖S‖2 + α‖G‖F
≤ 1

‖S‖2 + ‖Û‖F
≤ 1

‖S + Û‖2
= σmin(P̂ ), (58)

b ,
n

α Gmin
≥

〈
G, |P̂ |

〉
Gmin

≥
∑
i,j

|P̂ij | ≥ ‖P̂‖F ≥ ‖P̂‖2 = σmax(P̂ ), (59)

where Gmin , min{Gij : (i, j) ∈ I × I, i 6= j} > 0. Therefore, (11) is equivalent to

P̂ = argmin{〈S, P 〉 − log det(P ) + α 〈G, |P |〉 : aI � P � bI}, (60)

8. Q-linear and R-linear convergence were defined in Section A.
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for a and b defined in (58) and (59), respectively. Going back to the convergence rate
discussion, when ADMM is applied to (60) we can guarantee that the primal-dual iterate
sequence converges linearly. In particular, we apply ADMM on (53) with

Ψ(P ) = 〈S, P 〉 − log det(P ) + 1Q̃(P ), Q̃ , {P ∈ Sn : aI � P � bI}, (61)

Φ(P ) = α 〈G, |P |〉+ 1Q′(P ), Q′ , {P ∈ Sn : diag(P ) ≥ 0}. (62)

Since Q̃ ⊂ Sn+ ⊂ Q′, the term 1Q′(.) in the definition of Φ appears redundant. However,
defining Φ this way will restrict the sequence {Z`} to lie in Q′ rather than in Sn, which leads
to faster convergence to feasibility in practice. By resetting Q to Q̃ as in (61), we ensure
that Ψ is strongly convex with constant 1/b2 and ∇Ψ is Lipschitz continuous with constant
1/a2. Indeed, the Hessian of Ψ is a quadratic form on Sn such that ∇2Ψ(P )[H,H] =
Tr(P−1HP−1H), which implies 1

b2
‖H‖2F ≤ ∇2Ψ(P )[H,H] ≤ 1

a2 ‖H‖2F .

The values of a > 0 and b < +∞ in the definition of Q̃ , {P ∈ Sn : aI � P � bI} for
the other cases, i.e., (a∗ = 0, b∗ < +∞) and (a∗ > 0, b∗ = +∞) are given in Figure 11; these
bounds can also be proven very similarly; thus, their proofs are omitted.

Proof of Lemma 13

The proxΨ/ρ map can be equivalently written as

proxΨ/ρ(P̄ ) = argmin
P∈Sn

{− log det(P ) + ρ
2‖P − (P̄ − 1

ρS)‖2F : aI � P � bI}. (63)

Let U diag(λ̄)U> be the eigen-decomposition of P̄ − 1
ρS. Fixing U ∈ Sn, and by restricting

the variable P ∈ Sn in (63) to have the form U diag(λ)U> for some λ ∈ Rn, we obtain the
optimization problem (64) over the variable λ ∈ Rn:

min
λ∈Rn

{
−

n∑
i=1

log(λi) + ρ
2 (λi − λ̄i)2 : a ≤ λi ≤ b, i = 1, . . . , n

}
. (64)

For a given t̄ ∈ R, and a, b, γ > 0, the unique minimizer of mint∈R{− log(t) + ρ
2 |t− t̄|

2 : a ≤

t ≤ b} can be written as max

{
min

{
t̄+
√
t̄2+4/ρ

2 , b

}
, a

}
. Hence, λ∗ ∈ Rn given in (51) is

the unique minimizer of (64). Let h : Rn → R∪{+∞} be defined as h(λ) , −
∑n

i=1 log(λi)+
1H(λ), where H , {λ ∈ Rn : a1 ≤ λ ≤ b1} and λ∗ = argminλ∈Rn{h(λ)+ ρ

2‖λ− λ̄‖
2
2}. From

the first-order optimality conditions, it follows that λ̄− λ∗ ∈ 1
ρ ∂h(λ)|λ=λ∗ .

Let H : Sn → R ∪ {+∞} be such that H(P ) = − log det(P ) + 1Q(P ). Definition of

proxΨ/ρ(P̄ ) implies that
(
P̄ − 1

ρS − proxΨ/ρ(P̄ )
)
∈ 1

ρ∂H(P )|P=proxΨ/ρ(P̄ ). In the rest of

the proof, σ : Sn → Rn denotes the function that returns the singular values of its argument.
Note that H(P ) = h(σ(P )) for all P ∈ Sn. Since h is absolutely symmetric, Corollary 2.5
in Lewis (1995) implies that P prox = proxΨ/ρ(P̄ ) if and only if σ(P̄ − 1

ρS − P prox) ∈
1
ρ ∂h(λ)|λ=σ(Pprox) and there exists a simultaneous singular value decomposition of the form

P prox = U diag(σ(P prox))U> and P̄ − 1
ρS − P prox = U diag

(
σ
(
P̄ − 1

ρSk − P
prox
))

U>.

Hence, proxΨ/ρ(P̄ ) = U diag(λ∗)U> follows from λ̄− λ∗ ∈ 1
ρ ∂h(λ)|λ=λ∗ .
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Proof of Lemma 14

From the definition of proxΦ/ρ, we have

proxΦ/ρ = argmin
P∈Sn

{ ∑
(i,j)∈I×I

α
ρGij |Pij |+

1
2 |Pij − P̄ij |

2 : diag(P ) ≥ 0
}
. (65)

For a given t̄ ∈ R, and γ > 0, the unique minimizer of mint∈R γ|t|+ 1
2 |t− t̄|

2 can be written
as sgn(t̄) max{|t̄|−γ, 0}; and the minimizer of mint∈R{γt+ 1

2 |t− t̄|
2 : t ≥ 0} can be written

as max{t̄− γ, 0}. Hence, (52) follows from the separability of the objective in (65).

Additional Numerical Results

In this section, the importance of STAGE-I in the SPS algorithm is shown numerically.
Notice that the STAGE-II can be directly implemented for the sample covariance matrix S.
This could be interpreted as direct estimation of the covariance function parameters by fit-
ting the covariogram (Cressie, 1993). For this purpose, the covariance function parameters
are estimated from N realizations of a zero-mean GRF simulated over n = 100 randomly
selected locations over a square domain X = [0, β]×[0, β] with a Matern covariance function
with smoothness parameter 3/2 and the parameter vector θ∗ = [θ∗ρ

>, θ∗v , θ
∗
0]> = [15, 8, 1]>.

The SPS and covariogram methods are then compared based on R = 100 simulation repli-
cations (every time n = 100 locations are randomly resampled). Table 7 shows the mean
and standard error of the parameter estimates, respectively. With increasing N , we see
faster convergence of the SPS parameter estimates to their true values. Compared to the
covariogram method, the SPS mean parameter estimates are almost always closer to their
true parameter values and their standard errors are lower. The importance of STAGE-I in
the SPS algorithm is more evident when N � N0. STAGE-I zooms into the region in the
parameter space of the nonconvex objective function where the global minimum lies, and
this results in better covariance parameter estimates. As expected, increasing the domain
size (β) results in a lower point density in the domain, and this deteriorates the performance
of both methods.
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