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Abstract

In this paper we introduce a statistical model, called additively faithful directed acyclic
graph (AFDAG), for causal learning from observational data. Our approach is based on
additive conditional independence (ACI), a recently proposed three-way statistical relation
that shares many similarities with conditional independence but without resorting to multi-
dimensional kernels. This distinct feature strikes a balance between a parametric model
and a fully nonparametric model, which makes the proposed model attractive for handling
large networks. We develop an estimator for AFDAG based on a linear operator that char-
acterizes ACI, and establish the consistency and convergence rates of this estimator, as
well as the uniform consistency of the estimated DAG. Moreover, we introduce a modified
PC-algorithm to implement the estimating procedure efficiently, so that its complexity is
determined by the level of sparseness rather than the dimension of the network. Through
simulation studies we show that our method outperforms existing methods when com-
monly assumed conditions such as Gaussian or Gaussian copula distributions do not hold.
Finally, the usefulness of AFDAG formulation is demonstrated through an application to
a proteomics data set.

Keywords: additive conditional independence, additive reproducing kernel Hilbert space,
directed acyclic graph, global Markov property, normalized additive conditional covariance
operator, PC-algorithm

1. Introduction

Learning causality is fundamental in many scientific disciplines, such as epidemiology, genet-
ics, sociology, and business. See Pearl (2009), and Spirtes, Glymour, and Scheines (2000).
The underlying diagram for the causal structure is often represented as a directed acyclic
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graph (DAG). A directed graph consists of a finite set V = {1, . . . , p} and a subset E of
{(i, j) ∈ V × V, i 6= j}, where V represents the set of vertices, and E the set of directed
edges, with the order in (i, j) indicating i→ j. A DAG is a directed graph that contains no
directed cycles (page 11, Pearl, 2009). Suppose X = (X1, . . . , Xp) is a random vector and,
for any S ⊆ V, let XS denote the subvector {X i : i ∈ S}. We say that X satisfies the global
Markov property with respect to a DAG G = (V,E) if, for any (i, j) ∈ E and any subset
S ⊆ V \ {i, j},

i and j are d-separated by S under G ⇒ X i Xj|XS. (1)

Here, the notation U V |W indicates that random variables U and V are conditionally
independent given W , and d-separation means, loosely speaking, that all paths in G between
node i and node j are blocked by the set of nodes S; see Lauritzen (1996, page 48) and
Section 2.3 for its rigorous definition. An immediate implication of (1) is that two DAGs with
the same set of d-separation relations share the same conditional independence structure
and therefore cannot be distinguished using conditional independence. For this reason, we
regard the class of all DAGs sharing the same d-separation structure as an equivalence class
(see, Chickering, 2002, Section 2). It should be mentioned that some other aspects of the
statistical information might enable us to further distinguish between DAGs that share the
same d-separation relations (see, for example, Shimizu et al., 2006).

Many approaches have been developed to estimate the equivalence class of DAG. For
example, Chickering (2002) introduced the greedy equivalence search which provides a
BIC-score for each DAG; van de Geer and Bühlmann (2013) proposed likelihood-based
approaches combined with non-convex optimization procedures. These methods are intu-
itively appealing and enjoy good statistical properties, but are computationally intensive,
which restrict their use to relatively low-dimensional problems. Another type of approaches
are the various forms of the PC-algorithm (Spirtes, Glymour, and Scheines, 2000; Kalisch
and Bühlmann, 2007; He and Geng, 2008), which seek to infer the graphical structure by
conducting a sequence of conditional independence tests. The PC-algorithm is computa-
tionally simpler and can be applied to higher-dimensional problems. As indicated in Kalisch
and Bühlmann (2007), the number of tests involved in the PC-algorithm scales up with the
maximum degree of the underlying graph, and is only in a polynomial order with respect
to the dimensionality when the graph is sparse.

Recently, much work has been done to extend the DAG models to non-Gaussian or
nonlinear settings, or both; see Hoyer et al. (2009), Mooij et al. (2009), Tillman et al.
(2009), Zhang and Hyvärinen (2009), and Peters et al. (2014). Interestingly, as pointed
out in Hoyer et al. (2009), deviation from Gaussianity actually mitigates the identifiability
problem in making causal inference, possibly due to the asymmetric structures induced by
non-Gaussianity. Although these approaches are freed from the limitations of the strong
distribution assumptions, they employ fully-fledged nonparametric methods using multi-
dimensional kernels, i.e. kernel functions that take vector-valued inputs. Due to the curse
of dimensionality these procedures could have inferior performances with large networks.
We should also mention that, Shimizu et al. (2006) proposed to estimate the DAGs via the
combination of linear structural equation models and non-Gaussian errors.
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1.1. Our proposal and contributions

To take advantage of the flexibility offered by a nonparametric approach without resorting
to multi-dimensional kernels, in this paper we propose an alternative theory and estimat-
ing procedure for causal learning based on Additive Conditional Independence (ACI), a
three-way statistical relation recently proposed by Li, Chun, and Zhao (2014) to construct
undirected graphs. ACI resembles traditional conditional independence in many ways, but
its nonparametric characterization only involves one-dimensional kernel. This feature is
particularly attractive when handling high-dimensional data, because the curse of dimen-
sionality caused by multi-dimensional kernel is one of the main hindrances to accuracy in
high dimensions. We note that several recent papers have combined the graphical model
and univariate transformations under a Gaussian copula assumption; see Liu, Lafferty, and
Wasserman (2009), Liu, Han, Yuan, Lafferty, and Wasserman (2012), Xue and Zou (2012),
and Harris and Drton (2013). These approaches offer similar advantage of not requiring
multi-dimensional kernels. However, as demonstrated in Li, Chun, and Zhao (2014), ACI is
capable of detecting intrinsically nonlinear interactions that can elude the Gaussian copula
models.

In the classical setting, a DAG is linked to conditional independence through a faith-
fulness condition. Borrowing that idea, we introduce a new condition called additive faith-
fulness to link a DAG with a set of ACI relations, resulting in a new statistical graphical
model called additively faithful directed acyclic graph, or AFDAG. We introduce a linear
operator, called the Normalized Additive Conditional Covariance Operator (NACCO), to
characterize ACI. This operator is defined on reproducing kernel Hilbert spaces and is equal
to the zero operator if and only if ACI holds. The estimation of AFDAG is then based
on repeated evaluation of this operator among pairs of nodes in the DAG. To efficiently
implement this process we propose a modified PC-algorithm by combing the evaluation of
ACI with a standard PC-algorithm, whose computation complexity does not depend on the
size of the network but instead on its level of sparseness (Spirtes, Glymour, and Scheines,
2000; Kalisch and Bühlmann, 2007). We investigate the consistency and convergence rate
of the proposed estimator. We also study its uniform consistency (Zhang and Spirtes, 2002)
under a stronger version of additive faithfulness. Through numerical experiments, we show
that this condition is weaker than the strong faithfulness condition (Uhler et al., 2013) in
the linear setting.

1.2. Related work

Nonparametric testing for conditional independence (CI) has gained enormous attention
over the past decades. (Linton and Gozalo, 1996; Margaritis, 2005; Su and White, 2007,
2008; Song, 2009; Huang, 2010). Some work has been proposed recently using RKHS op-
erators. For example, Fukumizu et al. (2004, 2009) introduced the Conditional Covariance
Operator (CCO) and established the equivalence between CCO and CI. Fukumizu et al.
(2008) extended CCO to Normalized Conditional Covariance Operator (NCCO) by remov-
ing the marginal variations from the covariance operators. Moreover, for the purpose of
causality learning, Sun et al. (2007) and Tillman et al. (2009) combined the PC algorithm
with a permutation-based test of CCO. In a more recent development, Zhang et al. (2011)
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proposed to replace the permutation test by the test based on the asymptotic distribution
of the empirical CCO.

However, the implementation of CCO or NCCO relies on multi-dimensional kernels,
which can be a source of curse of dimensionality. Our solution replaces conditional inde-
pendence by additive conditional independence as the criterion to construct the DAG. Due
to the additive nature of additive conditional independence, we only need one-dimensional
kernels to construct the NACCO, avoiding the curse of dimensionality. Thus, our proposal
is substantially different from previous work based on conditional independence, in both
methodology and theory.

Methodologically, we introduce the Normalized Additive Conditional Covariance Oper-
ator (NACCO), which is structurally different from and cannot be deduced from NCCO.
Moreover, previous works did not study the condition of strong faithfulness, which is often
required by methods based on sequential tests like PC algorithm. We introduce the strong
additive faithfulness (SAF), and show that SAF is weaker than the (linear) strong faithful-
ness through synthetic examples. Theoretically, since our method is considerably different
from the previous ones, we needed to introduce a novel and systematic approach to study
the theoretical properties of our new estimator. We derived the consistency of NACCO,
which cannot be obtained directly from the consistency result of NCCO in Fukumizu et al.
(2008). We also established the uniform consistency of the proposed algorithm—under our
framework. This result appears to be the first of its kind, and is useful for attacking broader
problems related to nonparametric casual inference.

Our method is also substantially different from the closely related work of Li et al. (2014).
First, even though both papers employ the idea of additive conditional independence, the
current paper concerns directed acyclic graph, whereas Li et al. (2014) concerns undirected
graph. The extension from undirected graphs, also known as conditional independence
graphs (CIG), to directed graphs involves a set of completely different methods and theories.
Even the skeleton of a DAG, which replaces directed edges with undirected ones and thus
is generally less informative than a DAG, is different from a CIG (Kalisch and Bühlmann,
2007). Moreover, a DAG can be converted into a CIG by moralization (Lauritzen, 1996),
but cannot be converted from a CIG. Therefore, the methods for estimating a DAG cannot
be easily derived from those for estimating CIG. The DAG estimation is often more costly,
as it requires evaluation and thesholding of a much larger set of statistics. As a comparison,
the algorithm of Li et al. (2014) requires p(p − 1)/2 evaluations of additive conditional
independence, while our algorithm is of order ps

∗
, where s∗ is the maximum degree of the

DAG.

Second, to facilitate the theoretical development of our estimators, we modified the
definition of ACI so that it is characterized via an additive reproducing kernel Hilbert space,
instead of the L2 space used in Li et al. (2014). For example, Theorem 5 of Li et al. (2014)
was based on the L2-geometry, whereas our Theorem 5 is based on the RKHS-geometry.
Finally, we carried out a substantial body of new theoretical work, such as the consistency
of various operators, the graph estimation consistency, strong additive faithfulness and
uniform consistency, which involves invention of some new techniques and machineries.

4



Learning causal networks via additive faithfulness

1.3. Organization of the paper

The sections of this article are organized as follows. In Section 2, we introduce additive
faithfulness to relate a DAG to ACI. Based on this relation we propose the AFDAG model.
In Section 3, we introduce NACCO to quantify additive conditional independence. An esti-
mating procedure is developed for NACCO in Section 4. In Section 5, we further develop the
algorithm for estimating the AFDAG, which involves a PC-type algorithm that efficiently
evaluates the NACCO among pairs of nodes. In Sections 6, we study the consistency of
NACCO and that of the AFDAG estimator. In Section 7, we introduce strong additive
faithfulness and establish the uniform consistency of the proposed algorithm. In Section
8, we compare the performance of the proposed estimator with some existing methods by
simulation studies and apply it to a pathway analysis. Some concluding remarks are made
in Section 9, and all proofs are relegated to Appendix.

2. Directed acyclic graph based on additive conditional independence

We first define additive faithfulness, a new concept that connects a DAG with ACI. We begin
with additive reproducing kernel Hilbert spaces (RKHS), the platform of all subsequent
developments.

2.1. Additive reproducing kernel Hilbert spaces and basic operators

Let (Ω,F , P ) be a probability space and let X : Ω→ Rp be a p-dimensional random vector,
whose ith component is denoted by X i. Let ΩX and ΩXi be the supports of X and X i, and
assume ΩX = ΩX1 × · · · × ΩXp . For each i, let H Xi be an RKHS of functions on ΩXi to R
defined by a positive definite kernel κXi : ΩXi × ΩXi → R. For simplicity, we assume these
kernels to be the same for i = 1, . . . , p (which also means that we assume the ΩXi are the
same), and denote the common kernel by κ. Thus, the inner product in H Xi is determined
by 〈κ(·, a), κ(·, b)〉H

Xi
= κ(a, b) for all a, b ∈ ΩXi .

Let H X be the direct sum ⊕pi=1H Xi , that is,

H X = {f1 + · · ·+ fp : f1 ∈H X1 , . . . , fp ∈H Xp},

with inner product defined by

〈f1 + · · ·+ fp, g1 + · · ·+ gp〉HX
= 〈f1, g1〉H

X1
+ · · ·+ 〈fp, gp〉H

Xp
.

Our construction of H X follows that of Aronszajn (1950, page 352). We call H X an additive
RKHS of functions on ΩX . Similarly, for any subvector U = (U 1, . . . , U r) of X, let H U be
the direct sum of H Ui , i = 1, . . . , r. The following assumption on the kernel κ guarantees
that H Xi is a subspace of L2(PXi), the class of all square-integrable functions of X i. Note
that L2(PX) is not itself an RKHS, a subspace K in L2(PX) is an RKHS if and only if K
has a reproducing kernel, and an RKHS is a subspace of L2(PX) if Eκ(X,X) is finite.

Assumption 1 Eκ(X i, X i) <∞, i = 1, . . . , p.

This is a mild condition that holds for many commonly used kernels such as the Gaussian
radial basis function. See, for example, Fukumizu, Bach, and Jordan (2009).
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We now lay out some notations that will be used in the rest of the article. For two
Hilbert spaces H and K , let B (H ,K ) denote the class of bounded linear operators from
H to K . The class B (H ,K ) is a Banach space, endowed with the operator norm, which
is denoted by ‖ · ‖. When H = K , we use B (H ) to denote B (H ,H ). For a linear
operator A, let null(A) denote the null space of A, ran (A) denote the range of A, and
ran (A) denote the closure of ranA. Further information about bounded operators can be
found in Weidmann (1980, Chapters 6 and 7).

Under Assumption 1, one can show that, for any (i, j) ∈ V×V there exists an operator
ΣXiXj ∈ B (H Xj ,H Xi) such that

〈f,ΣXiXjg〉 = cov [f(X i), g(Xj)] , for any f ∈H Xi and g ∈H Xj .

This operator is also called the covariance operator (see Baker, 1973; Fukumizu, Bach, and
Jordan, 2009). Let PXi,Xj , PXi , and PXj be the distributions of (X i, Xj), X i, and Xj,
respectively. As shown by Sejdinovic et al. (2013), the Hilbert-Schmidt norm of ΣXiXj is
identical to the distance between the RKHS embeddings of PXi,Xj and PXi × PXj , also
known as the maximum mean discrepancy (MMD). See Gretton et al. (2012) and Muandet
et al. (2014, 2016) for more details on embedding RKHS elements and MMD.

Let ΣXX : H X →H X be the matrix of operators whose (i, j)th element is the operator
ΣXiXj . That is, for any f = f1 + · · ·+ fp ∈H X ,

ΣXXf =
∑

p

j=1

∑
p

i=1
ΣXjXifi.

This structure was also used in Bach (2008) and Lee, Li, and Zhao (2016). We call ΣXX the
additive covariance operator of X. For subvectors U, V of X, we similarly define matrices
of operators ΣUV : H V →H U and ΣUU : H U →H U .

By Baker (1973), for any ΣUjUi , there exists RUjUi ∈ B (ran (ΣUiUi), ran (ΣUjUj )) such
that

ΣUjUi = Σ1/2

UjUj
RUjUiΣ

1/2

UiUi
.

The operator RUjUi is called the correlation operator from H Ui to H Uj . When a char-
acteristic kernel is used, RUjUi can capture all the nonlinear information between U i and
U j. Let DUU denote the r × r diagonal matrix of operators whose diagonal elements are
ΣUiUi , and RUU the r × r matrix operator whose (i, j)th element is RUiUj . Then we have
ΣUU = D1/2

UU RUU D
1/2
UU . We call RUU the additive correlation operator of U .

2.2. Regression operator and additive conditional independence

Building on the additive covariance and correlation operators we now introduce the regres-
sion operator, and thereby additive conditional independence. We first make the following
assumption.

Assumption 2 There exists TWU ∈ B (H U ,HW ) such that

RWUD
1/2
UU = RWWD

1/2
WWTWU .
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Lee, Li, and Zhao (2016) imposed a similar (but stronger) assumption, which assumes TWU

is a Hilbert-Schmidt operator. Here we only need it to be bounded. Because ΣWW =
D1/2
WWRWWD

1/2
WW and ΣWU = D1/2

WWRWUD
1/2
UU , the operator TWU can be formally represented

as TWU = Σ−1
WWΣWU , which resembles the regression coefficient matrix in multivariate linear

regression. For this reason we refer to TWU as the regression operator.

Definition 1 Let U , V , and W be subvectors of X. We say that U and V are additively
conditionally independent given W (denoted by U AV |W ) iff, for all f ∈H U and g ∈H V ,

cov[f(U)− (TWUf)(W ), g(V )− (TWV g)(W )] = 0. (2)

Li, Chun, and Zhao (2014) originally defined ACI in terms of the L2(P )-geometry.
Specifically, for a generic subvector S = (S1, . . . , Sr) of X, let H Si be a subspace of L2(PSi),
the collection of square-integrable functions of Si, and let

H S ,
∑

r

i=1
H Si = {

∑
r

i=1
fi : fi ∈H Si} .

For any subvectors U, V,W of X, we say U AV |W iff

(H U + HW )	HW ⊥ (H U + H V )	HW , (3)

where 	 is defined via A 	 B = A ∩ B⊥, and orthogonality is defined by f ⊥ g iff
cov[f(X), g(X)] = 0. Li, Chun, and Zhao (2014) showed that the three-way relation
U AV |W as defined by (3) satisfies the conditions of a semi-graphoid (Lauritzen, 1996),
a set of four axioms extracted from conditional independence to convey the idea that U
and V are separated by W . See Pearl and Verma (1987) and Pearl, Geiger, and Verma
(1989) for more details. Although ACI defined by (3) requires weaker assumptions and is
more intuitive than Definition 1, the latter is useful because it allows us to borrow some
of the recently developed asymptotic tools for linear operators in RKHS (Fukumizu, Bach,
and Gretton, 2007; Bach, 2008). Because the regression operators TWU and TWV are the
projections from H U onto HW , and H V onto HW , respectively, (2) in Definition 1 im-
plies (I − TWU)H U ⊥ (I − TWU)H U , which further implies the relation in (2) is also a
semi-graphoid, see Li, Chun, and Zhao (2014, Theorem 1).

2.3. Additive faithfulness

The traditional DAG models are based on conditional independence, i.e. a random vector X
is said to be faithful with respect to a DAG G if for any i, j ∈ V, and any subset S ⊆ V\{i, j},

X i Xj|XS ⇔ i and j are d-separated by S under G. (4)

The precise definition of d-separation is as follows: suppose we are given a DAG G; then,
for two nodes i, j ∈ V, a subset S of V \ {i, j} d-connects i and j if there exists a path L
between i and j such that every collider in L either belongs to S or has a descendent in S,
and no other node in L belongs to S. If S does not d-connect i and j, then it d-separates i
and j.

The implication ⇐ in (4) is called the global Markov condition, and the equivalence ⇔
is the faithfulness condition; see Pearl (2009, Chapter 2). The relation in (4) means that
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the set of all conditional independence has a one-to-one correspondence with the set of all
d-separations. More precisely, let T denote the set of all possible triplets {(i, j, S) : i, j ∈
V, i 6= j, S ⊆ V \ {i, j}}, and then let D and C be two subsets of T

D = {(i, j, S) ∈ T : S d-separates i, j}, C = {(i, j, S) ∈ T : X i Xj|XS}.

Then the global Markov condition means D ⊆ C , and the faithfulness condition means
D = C . When the faithfulness condition is satisfied, X is said to be faithful with respect
to the DAG G. For more information about faithfulness and DAG, see Spirtes, Glymour,
and Scheines (2000), Kalisch and Bühlmann (2007), and Harris and Drton (2013).

Our idea is to associate X with a DAG not by conditional independence but by additive
conditional independence, so as to avoid the caveat mentioned in Section 1.

Definition 2 We say a random vector X is additively faithful with respect to a direct acyclic
graph G if the following equivalence holds

X i
AX

j|XS ⇔ i and j are d-separated by S under G. (5)

If this occurs we say X follows an additively faithful directed acyclic graphical model (AFDAG)
with respect to G. Furthermore, the “⇐” and “⇔” of (5) are called the Additive Global
Markov condition and Additive Faithfulness, respectively.

Besides its satisfying the semi-graphoid axioms, an important rationale for us to use ACI
to replace CI in both Markov and faithful conditions, is that ACI is a good approximation
of CI. Suppose, for any pair (i, j) ∈ V × V, we let Ci,j = {S : X i Xj | XS}, and
Ci,j
A = {S : X i

AX
j | XS}. If CI and ACI are very close to being equivalent, then

we can expect that the estimates of Ci,j and Ci,j
A are practically identical. First of all,

it is shown in Li et al. (2014) that, under the copula Gaussian assumption, ACI and CI
are practically equivalent. That is, ACI implies CI mathematically, and although CI does
not imply ACI mathematically, the numerical evidence in Li et al. (2014) shows that the
difference is vanishingly small. We then summarize this result in the following proposition.

Proposition 3 (Li et al. (2014)) Let G be a directed acyclic graph. Suppose X follows
a multivariate Gaussian copula distribution with transforming functions (f 1, . . . , f p); that
is, there exist one-to-one transformations f 1, . . . , f p such that [f 1(X1), . . . , f p(Xp)] follows
a multivariate Gaussian distribution. Suppose H Xi = L2(PXi). Then we have

X i
AX

j | XS ⇒ X i Xj | XS.

In addition to the above Proposition, if X follows a copula Gaussian distribution, Li et al.
(2014, Section 3) showed that X i Xj | XS ⇒ X i

AX
j | XS holds approximately.

We would also like to mention that, investigating the relation between ACI and CI beyond
the Gaussian copula condition is an important question, which would need more complete
studies. For the interest of space we leave this part of theoretical development to future
research. Nonetheless, we have conducted additional numerical analysis to justify that ACI
can approximate CI reasonably well, when the Gaussian copula condition does not satisfied.
Specifically, in Sections 7 and 8, we carried out simulations based on a quadratic relation
between nodes, whose resulting distribution is neither Gaussian nor copula Gaussian, and
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also applied our method on a real world data set. In terms of recovering the true causal
diagram (which is based on CI), we see our proposed AF-PC (which is based on ACI)
outperforms competing methods, including HSIC-PC (Tillman et al., 2009) and KCI-PC
(Zhang et al., 2011), both of which are based on multi-dimensional kernel and likely suffer
from the curse of dimensionality.

In summary, we regard the ACI as a pragmatic criterion for the DAG that strikes a
balance between a parametric Gaussian model and a fully fledged nonparametric model, and
it performs well numerically. We acknowledge that it may involve untestable assumptions
when applied to the causal inference context.

2.4. Skeleton and v-structure of DAG

Suppose C A = {(i, j, S) ∈ T : X i
AX

j|XS}. Then Definition 2 imposes equivalence
between ACI structure C A and the d-separation structure D , which is uniquely determined
by a DAG G. Hence, D is what we can learn about G based on ACI. The situation is
parallel to the classical setting, where conditional independence leads to the knowledge of
D but not more. How much can D tell us about G? Verma and Pearl (1991, Theorem 1)
showed that two DAGs share the same D if and only if they share the same skeleton and
same set of v-structures. Specifically, the skeleton ESKE of a DAG is simply the directed
edge set E with all arrowheads removed (that is, (i, j) ∈ E or (j, i) ∈ E iff (i, j) ∈ ESKE and
(j, i) ∈ ESKE). A v-structure is a sub-graph of three nodes i, k, j where i → k and j → k
but i and j are not connected (Pearl, 2009). For convenience we denote a v-structure by
(i→ k ← j). Let V be the set of all v-structures; that is

V = {(i→ k ← j) : i, j ∈ V, k ∈ V \ {i, j}}.

Then the result of Verma and Pearl (1991) can be summarized as follows: if G and G′ are
two DAGs, then

D (G) = D (G′) ⇔

{
ESKE(G) = ESKE(G′)

V (G) = V (G′).

Thus, for a given DAG G, its d-separation structure D (G) can tell us the skeleton of G and
those arrowheads that appear in the v-structures. The set of all DAGs having the same
ESKE and V form an equivalence class, which is the target of our estimation.

3. Normalized additive conditional covariance operator

In this section we introduce the Normalized Additive Conditional Covariance Operator and
establish its relation with ACI. To do so we first redefine the additive conditional covariance
operator introduced in Li, Chun, and Zhao (2014) in terms of the additive RKHS-geometry.

3.1. Additive conditional covariance operators

Recall that, if X follows a multivariate Gaussian distribution, then

cov(X i, Xj|XS) = 0 ⇔ X i Xj|XS. (6)
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Li, Chun, and Zhao (2014) extended this relation by introducing the additive conditional
covariance operator (ACCO)

ΛXiXj |XS , ΛXiXj − ΛXiXSΛXSXj ,

where, for any subvectors A,B ⊆ V, ΛXAXB is the covariance operator defined using
L2(P )-geometry; that is, ΛXAXB : H XB → H XA is induced by 〈f,ΛXAXBg〉L2(PX ) =
cov[f(XA), g(XB)], for any f ∈ H XA and g ∈ H XB . Note that ΛXSXS is indeed the
identity. Because of this, ΛXiXj |XS can also be represented as ΛXiXj −ΛXiXSΛ−1

XSXSΛXSXj , a
form more similar to the conditional covariance in the classical setting. Using ACCO they
extended the equivalence (6) to

ΛXiXj |XS = 0 ⇔ X i
AX

j|XS. (7)

We first re-establish this equivalence under a different geometry, which is the RKHS-
geometry. We make the following assumption on the correlation operators.

Assumption 3 For i 6= j, RXiXj is compact.

To provide intuition for this condition, note that a sufficient condition of Assumption 3 is
that the correlation operator RXiXj is Hilbert-Schmidt, which in fact imposes a smoothness
condition on the dependency between X i and Xj. Indeed, if {(λαi , φαi )}∞α=1 is the eigen-
decomposition of ΣXiXi , then the squared Hilbert-Schmidt norm ‖RXiXj‖2HS is equal to

‖RXiXj‖2HS =
∑∞

α,β=1
cor2

[
φαi (X i), φβj (X

j)
]
.

Therefore, assuming ‖RXiXj‖HS to be finite requires that the correlations between the tail
eigenfunctions to vanishes quickly. Moreover, because the marginal variances of these eigen-
functions, i.e. λαi , diminish to zero quickly, the dependency between X i and Xj needs to
adequately concentrate on the leading eigenfunctions.

We should mention that Fukumizu et al. (2007) also gives a sufficient condition for
Assumption 3: if the mean square contingency between X i and Xj is finite, then ‖RXiXj‖HS

is also finite. The mean square contingency between X i and Xj is defined as

M(X i, Xj) = E
1/2

[
fi,j(X

i, Xj)

fi(X i)fj(Xj)
− 1

]
,

where fi,j, fi, fj are the densities of (X i, Xj), X i, Xj. The above immediately implies that,
M(X i, Xj) = 0 if and only if X i Xj. The properties of M(X i, Xj) again regulate the
dependence between X i and Xj. For example, if X i and Xj are perfectly correlated, i.e.
X i = c1X

j + c2 for some c1 6= 0 and c2 ∈ R, then RXiXj is not compact because it is the
identity mapping.

Suppose, for all i ∈ V, null(ΣXiXi) = 0, which is satisfied by removing all constant
functions from H XiXi . Since constant functions are irrelevant to the construction of ACI,
we can let H Xi = ran (ΣXiXi). This implies the joint correlation operator RXX is invertible.
Furthermore, R−1

XX is also bounded by Assumption 3.

10
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Definition 4 Suppose Assumptions 1 and 3 hold. Then the following operator

ΣXiXj |XS = ΣXiXj − Σ1/2

XiXi
RXiXSR−1

XSXSRXSXjΣ
1/2

XjXj
(8)

is called the Additive Conditional Covariance Operator of (X i, Xj) given XS.

Fukumizu et al. (2009) introduced the Conditional Covariance Operator (CCO) as

ΣXiXj |XS = ΣXiXj − Σ
1/2

XiXi
RXiXSRXSXjΣ

1/2

XjXj
,

where RXiXS and RXSXj are the non-additive correlation operators. Note that RXiXS and
RXSXj are structurally different from their additive counterparts. This is because, RXSXS

is the identity mapping while RXSXS is a block matrix whose diagonal elements are the
identity operators and off-diagonal elements are compact operators.

The following theorem parallels Theorem 5 in Li, Chun, and Zhao (2014); that is,
equation (7), but with some adjustment of details to reflect the change of geometry.

Theorem 5 Under Assumptions 1, 2, and 3,

ΣXiXj |XS = 0 ⇔ X i
AX

j|XS. (9)

Note that the equivalence of X i
AX

j|XS and ΣXiXj |XS = 0 requires no preconditions
on the distribution of X. This is very appealing because it implies that one can use ACCO
to identify ACI under any distribution of X—in the same way as we use partial correlation
to identify conditional independence under the Gaussian distribution assumption on X.

3.2. Normalized additive conditional covariance operator

By construction, ACCO not only reflects the dependence between X i and Xj, but also the
variations of X i and Xj themselves through the presence of Σ1/2

XiXi
and Σ1/2

XjXj
. However, the

“pure” dependence between X i and Xj should be unrelated to the marginal variations of
X i and Xj themselves. For this reason it is reasonable to use a scale-free version of ACCO
that filters out the variations of X i and Xj. There is more than one way to achieve this,
and we focus on a construction which we call the normalized additive conditional covariance
operator.

Definition 6 Suppose Assumptions 1, 2, and 3 hold. Then the following operator from
H Xj to H Xi

RXiXj |XS , RXiXj −RXiXSR−1

XSXSRXSXj ,

is called the Normalized Additive Conditional Covariance Operator (NACCO) of (X i, Xj)
given XS.

By comparing Definition 4 and Definition 6, it is easy to see that

ΣXiXj |XS = Σ1/2

XiXi
RXiXj |XSΣ

1/2

XjXj
. (10)

Thus, we remove Σ1/2

XiXi
and Σ1/2

XjXj
from ACCO, which carries the information about the

marginal distributions of X i and Xj. Relation (10) immediately leads to the next corollary.

11
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Corollary 7 Under the same Assumptions in Theorem 5,

RXiXj |XS = 0 ⇔ X i
AX

j|XS.

The above result allows us to use NACCO as a measure of additive conditional depen-
dence. Interestingly, in a nonadditive setting, Fukumizu, Bach, and Jordan (2009) showed a
similar result which links the conditional variance operator with conditional independence.
The joint additive correlation operator RXSXS here is different from theirs due to the addi-
tive structure. In particular, in their setting, the operator corresponding to RXSXS is the
identity mapping; whereas here the (i, j)th element of RXSXS cannot be zero unless X i and
Xj are independent.

4. Estimation of NACCO

As a critical step towards estimating E, in this section we first develop the estimator of
NACCO and its norm.

4.1. Empirical operators

Let X1, . . . , Xn be an i.i.d. sample of X, and let X i
k denote the ith component of Xk. Let

Σ̂XiXj be the empirical covariance operator defined through the relation

〈f, Σ̂XiXjg〉H
Xi

= En [f(X i)g(Xj)]− Enf(X i)Eng(Xj) , covn(f, g),

for any f ∈H Xi and g ∈H Xj . Here, En and covn are the sample moments with respect to
the empirical distribution; for example, Enf(X i) = n−1

∑
n

k=1
f(X i

k). The operators Σ̂XiXj

are then used to build up the matrices of operators Σ̂XiXS , Σ̂XSXj , and Σ̂XSXS , for any
subset S ⊆ V. For example, Σ̂XSXS is the card(S)× card(S) matrix, whose components are
the operators {Σ̂XiXj : i, j ∈ S}, where card(S) indicates the cardinality of S. We define the
empirical version of ACCO to be

Σ̂XiXj |XS = Σ̂XiXj − Σ̂XiXSΣ̂?

XSXSΣ̂XSXj , (11)

where ? represents one of the two forms of regularized inverses to be detailed in Sections
4.3 and 4.4. Correspondingly, the empirical version of NACCO is defined as

R̂XiXj |XS = Σ̂?1/2

XiXi
Σ̂XiXj |XS Σ̂?1/2

XjXj
, (12)

where Σ̂?1/2

XiXi
stands for (Σ̂?

XiXi
)1/2.

4.2. Coordinate representation

The empirical operators in Section 4.1 are to be realized as matrices of numbers through
their coordinate representations, adopted from Horn and Johnson (1985). Suppose H is
an n-dimensional Hilbert space spanned by {h1, . . . , hn}. Let B denote the vector-valued
function (h1, . . . , hn)T. Then, any f ∈H can be represented as f =

∑
n

i=1
([f ]B)ihi = BT[f ]B,

where [f ]B ∈ Rn is called the coordinate of f with respect to B. Let H ′ be another Hilbert
space spanned by B′ = (h′1, . . . , h

′
m)T, and A be an operator from H to H ′. Then it can be

12
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shown that [Af ]B′ = (B′ [A]B)[f ]B, where B′ [A]B ∈ Rm×n is the matrix ([Ah1]B′ , . . . , [Ahn]B′),
which is called the coordinate of the operator A relative to the bases B and B′. If A′ :
H ′ → H ′′ where H ′′ is a third Hilbert space with bases B′′, then we also have that

B′′ [A
′A]B = (B′′ [A

′]B′)(B′ [A]B). For simplicity, [A] and [f ] will be used for B′ [A]B and [f ]B
when the bases involved are clear from context. It is also true that [Aα] = [A]α for any
α > 0. Hereafter we will reserve [·] exclusively for expressing the coordinate representations.

For more details about these representations and the above coordinate relations, see Li,
Chun, and Zhao (2012), Lee, Li, and Chiaromonte (2013) and Li, Chun, and Zhao (2014).

4.3. Estimation with ridge-regression inverse

We first develop the coordinate representation and the norm of R̂XiXj |XS using the ridge-
regression inverse (also known as Tychonoff regularization). Let KXi = {κ(X i

s, X
i
t)}ns,t=1 be

the kernel matrix for X i based on the samples X i
1, . . . , X

i
n and the reproducing kernel κ for

H Xi . Let {φik}nk=1 be the collection of functions in H Xi defined by

φik(·) = κ(·, X i
k)− En(κ(·, X i)), k = 1, . . . , n. (13)

Note that, for any (i, j) ∈ V×V, the ranges of Σ̂XiXi and Σ̂XjXj are contained in the spaces
spanned by the functions in (13). That is,

ran (Σ̂XiXi) = null(Σ̂XiXi)
⊥ = span{φi1, . . . , φin} , H (n)

Xi
;

ran (Σ̂XjXj ) = null(Σ̂XjXj )
⊥ = span{φj1, . . . , φjn} , H (n)

Xj
.

Hence we can restrict our development to these finite-dimensional spaces. This observa-
tion is critical because it links the infinite-dimensional operators to their finite-dimensional
representations.

Let GXi be the doubly centered kernel matrix GXi = QKXiQ with Q = In−1n1T
n/n and

1n being the n-dimensional vector (1, . . . , 1)T. Following similar arguments in Li, Chun, and
Zhao (2012), it can be shown that [Σ̂XiXj ] = n−1GXj for all (i, j) ∈ V × V. We can then
build up the coordinate representations for Σ̂XiXS , Σ̂XSXj , Σ̂XSXS using [Σ̂XiXj ] as matrix
blocks. For example, Σ̂XSXS is a card(S)× card(S) matrix of matrices, whose (i, j)th entry
is [ΣXiXj ] = n−1GXj . Furthermore, it can be shown that, for any f1, f2 ∈H (n)

Xi
, we have

〈f1, f2〉 = [f1]
TGXi [f2] = n[f1]

T[ΣXiXi ][f2].

Replacing the regularized inverse Σ̂?

XSXS in (11) and Σ̂?

XiXi
and Σ̂?

XjXj
in (12) by the

ridge-regression inverses, we have

Σ̂εn

XiXj |XS = Σ̂XiXj − Σ̂XiXS(Σ̂XSXS + εn)−1Σ̂XSXj ,

R̂εn,δn

XiXj |XS = (Σ̂XiXi + δnI)−1/2Σ̂εn

XiXj |XS(Σ̂XjXj + δnI)−1/2,

where εn, δn → 0 are tuning constants. Hence the coordinate representation of Σ̂εn

XiXj |XS is

[Σ̂εn

XiXj |XS ] = [Σ̂XiXj ]− [Σ̂XiXS ]([Σ̂XSXS ] + εnIn×card(S))
−1[Σ̂XSXj ],

13
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and that of R̂εn,δn

XiXj |XS is

[R̂εn,δn

XiXj |XS ] = ([Σ̂XiXi ] + δnIn)−1/2[Σ̂εn

XiXj |XS ]([Σ̂XjXj ] + δnIn)−1/2.

To find the operator norm of R̂εn,δn

XiXj |XS amounts to solving the following generalized

eigenvalue problem

maximize 〈f, R̂εn,δn

XiXj |XSg〉

subject to f ∈H (n)

Xi
, g ∈H (n)

Xj
, 〈f, f〉 = 〈g, g〉 = 1.

Using coordinate representation, the above can be equivalently represented as the following
singular value decomposition problem:

maximize n[f ]T[ΣXiXi ][R̂
εn,δn

XiXj |XS ][g]

subject to n[f ]T[ΣXiXi ][f ] = n[g]T[ΣXjXj ][g] = 1.
(14)

To transform this into a standard eigenvalue problem, let

u = G1/2

Xi
[f ] = n1/2[ΣXiXi ]

1/2[f ], v = G1/2

Xj
[g] = n1/2[ΣXjXj ]

1/2[g].

Solving these equations for [f ] and [g] with ridge-regression regularizations, we have

[f ] = n−1/2([ΣXiXi ] + δnIn)−1/2u, [g] = n−1/2([ΣXjXj ] + δnIn)−1/2v. (15)

Substituting (15) into (14), we have the following standard eigenvalue problem

maximize uT([ΣXiXi ] + δnIn)−1/2[Σ̂XiXi ][R̂
εn,δn

XiXj |XS ]([ΣXjXj ] + δnIn)−1/2v

subject to uTu = vTv = 1.

Consequently, the operator norm ‖R̂εn,δn

XiXj |XS‖ is simply the largest singular value of the n×n
matrix

([ΣXiXi ] + δnIn)−1/2[ΣXiXi ][R̂
εn,δn

XiXj |XS ]([ΣXjXj ] + δnIn)−1/2.

4.4. Estimation with principal-component inverse

The second approach to handle the inverse of Σ̂XSXS is to only invert its large eigenvalues,
while setting all the small eigenvalues to 0. So it is akin to the principal-component or
Moore-Penrose inverse. This approach is particularly attractive for handling large network
because it can reduce the amount of computation substantially. Write the symmetric matrix
GXi as

GXi = VXiΛXiV
T

Xi
,

where ΛXi is the diagonal matrix of the nonzero eigenvalues of GXi , and VXi is the matrix
of eigenvectors corresponding to ΛXi . Usually, the rank of GXi is n − 1, but this is not

14
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always the case. So let m be the rank of GXi and, for simplicity, assume it to be the same
for different i. It is then equivalent to work with G (n)

Xi
= span{ψi1, . . . , ψim}, where

(ψi1, . . . , ψ
i
m)T = Λ−1/2

Xi
V T

Xi
φi , ψi.

It is easy to see that the coordinate representation of the inner product in G (n)

Xi
is: for any

f, g ∈ G (n)

Xi
,

〈f, g〉 = [f ]T[g]

where [·] is the coordinate representation with respect to ψi.
The next proposition gives the coordinate representations of relevant operators using

the new bases.

Proposition 8 For any S = {s1, . . . , sd} ⊆ V , the operators

Σ̂XiXj : G (n)

Xj
→ G (n)

Xi
, Σ̂XiXi : G (n)

Xi
→ G (n)

Xi
, Σ̂XSXS : ⊕i∈SG (n)

Xi
→ ⊕i∈SG (n)

Xi

have the following coordinate representation:

[Σ̂XiXj ] = n−1Λ1/2

Xi
V T

Xi
VXjΛ

1/2

Xj
, [Σ̂XiXi ] = n−1ΛXi ,

[Σ̂XiXS ] = n−1Λ1/2

Xi
V T

Xi
MXS , [Σ̂XSXj ] = n−1MXSVXjΛ

1/2

Xj
, [Σ̂XSXS ] = n−1MT

XSMXS ,

where MXS = (VXs1Λ1/2

Xs1
, . . . , VXsdΛ1/2

Xsd
).

Expressions (11) and (12), and the rules for coordinate manipulation in Section 4.2
suggest the following coordinate representation for R̂XiXj |XS as

[R̂XiXj |XS ] = [Σ̂XiXi ]
−1/2

(
[Σ̂XiXj ]− [Σ̂XiXS ][Σ̂XSXS ]−1[Σ̂XSXj ]

)
[Σ̂XjXj ]

−1/2. (16)

However, to enhance performance and reduce the amount of computation we propose to
regularize the inversions of [Σ̂XiXi ], [Σ̂XjXj ], and [Σ̂XSXS ], as follows. For a generic symmetric
matrix A ∈ Rk×k and a number ε > 0, let

A†(ε) =
∑

k

i=1
λ−1
i I(λi > ε)viv

T
i ,

where (λ1, v1), . . . , (λr, vr) are the eigenvalue-eigenvector pairs of A. That is, we ignore all
the eigenvalues of A that are smaller than ε and invert only the eigenvalues larger than ε.
We replace the full inverses in (16) by their regularized versions:

[Σ̂XiXi ]
†(δn), [Σ̂XSXS ]†(εn), [Σ̂XjXj ]

†(δn),

where 0 < δn → 0 and 0 < εn → 0 are tuning constants. With these regularized inverses
the NACCO estimator is defined through its coordinate representation

[R̂εn,δn

XiXj |XS ] = [Σ̂XiXi ]
†1/2(δn)

(
[Σ̂XiXj ]− [Σ̂XiXS ][Σ̂XSXS ]†(εn)[Σ̂XSXj ]

)
[Σ̂XjXj ]

†1/2(δn). (17)
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The operator norm of R̂εn,δn

XiXj |XS can be found by solving the singular-value problem

maximize 〈f, R̂εn,δn

XiXj |XSg〉

subject to f ∈ G (n)

Xi
, g ∈ G (n)

Xj
, 〈f, f〉 = 〈g, g〉 = 1.

Because

〈f, R̂εn,δn

XiXj |XSg〉 = [f ]T[R̂εn,δn

XiXj |XS ][g], 〈f, f〉 = [f ]T[f ], 〈g, g〉 = [g]T[g],

‖R̂εn,δn

XiXj |XS‖ is the largest singular value of the matrix [R̂εn,δn

XiXj |XS ]. The next proposition gives

the explicit form of this matrix.

Proposition 9 The operator norm ‖R̂εn,δn

XiXj |XS‖ is the largest singular value of the matrix

diag(Iri , 0)V T

Xi

[
In −MXS(MT

XSMXS)†(εn)MT

XS

]
VXjdiag(Irj , 0), (18)

where ri = ri(n) and rj = rj(n) are the numbers of eigenvalues in ΛXi and ΛXj that are
greater than δn. Moreover, ‖R̂εn,δn

XiXj |XS‖ ≤ 1.

In appearance, (18) involves spectral decomposition of MT

XSMXS , which has dimension
[m · card(S)]× [m · card(S)]. This can be large when both the sample size n and the dimen-
sion of the network p are large. However, note that MXS(MT

XSMXS)†(εn)MT

XS is simply the
projection on to the space spanned by the eigenvectors of MXSMT

XS whose eigenvalues are
greater than εn, and MXSMT

XS is an n×n matrix. Hence, in effect, we only need to compute

the spectral decomposition of an n × n matrix in order to evaluate the norm of R̂εn,δn

XiXj |XS .

We record this fact as the following corollary.

Corollary 10 The operator norm ‖R̂εn,δn

XiXj |XS‖ is the largest singular value of the matrix

diag(Iri , 0)V T

Xi
[In −ΠXS(εn)]VXjdiag(Irj , 0),

where ΠXS(εn) is the projection on to the subspace spanned by those eigenvectors of MXSMT

XS

whose eigenvalues are greater than εn.

4.5. Tuning constants δn and εn

Based on the cumulative percentages of total variation explained by leading eigenvalues
(Jolliffe, 2002, Chapter 6), we recommend the following empirical rules for determining the
tuning constants εn and δn:

δn = max{δ :
∑

m

k=1
λkI(λk ≥ δ)/

∑
m

k=1
λk ≥ 1− 10−6},

εn = max{ε :
∑

n

k=1
τkI(τk ≥ ε)/

∑
n

k=1
τk ≥ 1− 10−6},

(19)

where λ1, . . . , λm are the eigenvalues of GXi , and τ1, . . . , τn are the eigenvalues of MXSMT

XS .
In other words, δn is selected so that the summation of the eigenvalues of GXi smaller than
δn, is less than 10−6 × trace(GXi); we choose εn similarly. Note that the λ’s are allowed to
depend on i, and the τ ’s are allowed to depend on S.
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4.6. Summary

We summarize below the estimation procedure for the norm of NACCO for given i, j ∈
V, S ⊆ V \ {i, j}, focusing on the principal-component-inverse version.

1. For i = 1, . . . , p, marginally standardize X i
1, . . . , X

i
n so that En(X i) = 0, varn(X i) = 1.

2. Choose a kernel function κ; for example, it can be the Gaussian radial basis function

κ(X i
s, X

i
t) = exp(−γi|X i

s −X i
t |2),

where γi is the bandwidth parameter. To compute γi we recommend the formula

1/
√
γi =

∑
s<t
|X i

s −X i
t |/(n2 ),

which was also used in Lee, Li, and Chiaromonte (2013); Lee, Li, and Zhao (2016).

3. Use the chosen κ and γi, compute the kernel matrices KXi and their centered versions
GXi for i = 1, . . . , p. Perform spectral decomposition on GXi to obtain VXi and ΛXi .
Stack VXiΛ

1/2

Xi
, i ∈ S to form MXS .

4. Determine the tuning constants εn, δn using (19).

5. Perform spectral decomposition on MXSMT

XS and compute ΠXS(εn) in Corollary 10.

6. Evaluate ‖R̂εn,δn

XiXj |XS‖ according to Corollary 10.

5. Estimation of AFDAG

The estimators of NACCO in the last section suggests a way to determine ACI approxi-
mately based on the data: if the norm of the operator R̂εn,δn

XiXj |XS is small, then we can expect

X i
AX

j|XS to hold with large probability. Making this assessment for every possible
triplet (i, j, S) for i, j ∈ V, S ⊆ V \ {i, j} then leads to an estimator of the set C A = D
which, in turn, leads to estimators of ESKE and V . Below we describe this process in detail.
We begin with descriptions at the population level of how D (and hence also C A) determines
ESKE and V , and then mimic these relations at the sample level to create estimators for ESKE

and V . Finally, we develop a modified PC-algorithm (Spirtes et al., 2000) to implement the
estimation procedure efficiently.

5.1. Characterizing ESKE and V by ACI at population level

We first describe how the ACI structure C A determines the skeleton of an AFDAG model.
The following result immediately follows from Verma and Pearl (1990, Lemma 1) and thus
its proof is omitted.

Proposition 11 For a given AFDAG model G = (V,E),

ESKE = {(i, j) : (i, j, S) /∈ C A for every S ⊆ V \ {i, j}}. (20)
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A semi-graphoid model is the graphical model that associates a semi-graphoid relation
with graph separation. Lauritzen (Example 3.2, 1996) also provides a general relation
of semi-graphoid models. Li, Chun, and Zhao (2014) used ACI to define an additive semi-
graphoid model (ASG) for undirected graphs. In their setting, the undirected graph, denoted
by EASG, is associated with ACI according to the following relation

(i, j) /∈ EASG ⇔ X i
AX

j|XV\{i,j}.

This and (20) together imply that ESKE ⊆ EASG; that is, the skeleton of a DAG is a subset of
the additive semi-graphoid. Therefore, one may also use EASG to estimate an upper bound
of ESKE, but in general it cannot fully specify ESKE.

The next proposition describes how the ACI structure C A determines the set of v-
structures V , a result that follows directly from Lemma 2 of Verma and Pearl (1990).

Proposition 12 For a given AFDAG model G = (V,E),

V = {{i, k, j} : (i, j) /∈ ESKE, (i, k) ∈ ESKE, (j, k) ∈ ESKE, k /∈ Ci,j}, (21)

where Ci,j = {S : (i, j, S) ∈ C A}.

Since ESKE and Ci,j are determined by C A, V itself is determined by C A.

5.2. Estimation of ESKE and V

Propositions 11 and 12 suggest methods to estimate ESKE and V once we have an estimate of
the ACI structure C A, and Corollary 7 suggests that we can estimate ACI by the smallness
of R̂εn,δn

XiXj |XS . Specifically, we propose to estimate C A by

Ĉ A = {(i, j, S) ∈ T : ‖R̂εn,δn

XiXj |XS‖ < ρ}, (22)

where ρ is a pre-determined threshold. We then mimic (20) to estimate ESKE:

ÊSKE = {(i, j) : (i, j, S) /∈ Ĉ A for each S ⊆ V \ {i, j}}.

Finally, we mimic (21) to estimate V :

V̂ = {{i, k, j} : (i, j) /∈ ÊSKE, (i, k) ∈ ÊSKE, (j, k) ∈ ÊSKE, k /∈ Ĉi,j},

where Ĉi,j = {S : (i, j, S) ∈ Ĉ A}.

5.3. A permutation test-based threshold

In Section 5.2 we used a constant threshold ρ to construct ÊSKE and V̂ . In this subsection
we introduce a permutation test for additive conditional independence, which leads to a
more natural and data driven threshold for estimating the AFDAG.

We adopt a similar technique used in both Fukumizu et al. (2008) and Tillman et al.
(2009), where the idea is to first divide the conditioned variables into groups, and then
to permute the random elements within the same groups to break the dependency. More
specifically, suppose we want to break the conditional dependence between X i and Xj given
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XS. We first partition {XS
1 , . . . , X

S
n} into L subsets, say C1, . . . , CL using the distance in the

XS-space, which can be implemented via the K-means clustering (Lloyd, 1982). For each
` = 1, . . . , L, let D` denote the subset {k : XS

k ∈ C`} = {k`,1, . . . , k`,d`} and let XD`
denote

the subvector (Xk`,1
, . . . , Xk`,d`

).
Next, we permute the data within D`. Given ` = 1, . . . , L, let π` : D` → D` be a

permutation (i.e. a bijection), and let S` be the set of all such permutations of this form.
For each i ∈ {1, . . . , p} and π` ∈ S`, let

gπ`,i : Rp × · · · × Rp︸ ︷︷ ︸
d`

→ Rp × · · · × Rp︸ ︷︷ ︸
d`

be the function that permutes the ith component of a set of d` vectors by π`. That is,
if (a1, . . . , ad`) is a set vectors in Rp, then gπ`,i(a1, . . . , ad`) = (b1, . . . , bd`), where for each
k ∈ {1, . . . , d`}, bk is a vector in Rp whose jth component is defined by

bjk =

{
ajk j 6= i

ajπ`(k) j = i.

Let R̂εn,δn

XiXj |XS [gπ1,i(XD1
), · · · , gπL,i(XDL

)] denote the estimate of RXiXj |XS constructed

using the partially permuted sample [gπ1,i(XD1
), · · · , gπL,i(XDL

)]. The empirical distribution
of the norm of this operator based on the permutations is

F̂NACCO(x) = (ΠL
`=1d`)

−1
∑

π1∈S1
· · ·
∑

πL∈SL
1
{
‖R̂εn,δn

XiXj |XS [gπ1,i(XD1
), · · · , gπL,i(XDL

)]‖ ≤ x
}
.

We can use ρ = F̂−1
NACCO(1− α) as the threshold in (22) for significance level α.

The cardinality of S1 × · · · ×SL scales fast and the associated computation can easily
become infeasible. In practice, we use the following approximation of F̂NACCO(x). Suppose
π1

1 × · · · × π1
L, . . . , π

b
1 × · · · × πbL are b random draws from the discrete uniform distribution

on {π1 × · · · × πL : π` ∈ S`, ` = 1, . . . , L}. We then estimate F̂NACCO(x) via

F̂ b
NACCO(x) =

1

b

∑
b

j=1
1
{
‖R̂εn,δn

XiXj |XS [gπj1,i
(XD1

), · · · , g
π
j
L
,i
(XDL

)]‖ ≤ x
}
,

where b is a sufficiently large integer.

5.4. PC-algorithm

In appearance, (22) involves evaluating the criterion ‖R̂εn,δn

XiXj |XS‖ < ρ for all distinct pairs

(i, j) and all distinct subsets S ⊆ V \ {i, j}, which would be an enormous task. However,
we can make the process much more efficient by adapting the PC-algorithm (Spirtes et al.,
2000) to this criterion. That is, we gradually prune a complete graph according to this
criterion and, after each pruning action, focus only on those edges that have not been
pruned. In this way the complexity of the algorithm is not determined by the dimension
of X but by the level of sparseness of the DAG. We refer this modified algorithm as the
AF-PC algorithm (AF referring to additively faithful).

For any (i, j), let conn(i,−j, ÊSKE) denote the collection of all vertices connected to i in
ÊSKE with the jth vertex removed; that is,

conn(i,−j, ÊSKE) = {j : (i, j) ∈ ÊSKE} \ {j}.
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Pseudo codes: AF-PC skeleton-algorithm
initialize: set l = −1 and ÊSKE to be the complete graph
repeat

set l = l + 1
repeat

select a new ordered pair (i, j) ∈ ÊSKE such that card{conn(i,−j, ÊSKE)} ≥ l
repeat

select new S ⊆ conn(i,−j, ÊSKE) with card{S} = l
if ‖R̂XiXj |XS‖ < ρ then remove (i, j) from ÊSKE and save Si,j = S

until (i, j) /∈ ÊSKE or all S ⊆ conn(i,−j, ÊSKE) with card{S} = l have been
chosen

until all ordered pairs (i, j) ∈ ÊSKE such that card{conn(i,−j, ÊSKE)} ≥ l have
been chosen

until l = p− 2 or there is no (i, j) ∈ ÊSKE such that card{conn(i,−j, ÊSKE)} ≥ l.

The AF-PC algorithm is given below in the form of pseudo codes:
Note that the outputs of AF-PC algorithm is the estimated skeleton ÊSKE and the

separating sets Si,j. We then use Si,j to identify the v-structures and orient the edges in
ÊSKE accordingly, using the rules described in the previous subsection. We can further orient
as many edges as we can under the constraint that the terminal graph is a DAG. One can
show that the output is a completed partially directed acyclic graphs (CPDAG, Kalisch and
Bühlmann, 2007), which we denote by ÊCPDAG. The algorithm of this portion is omitted
here as it can be found in standard PC-algorithms such as Kalisch and Bühlmann (2007,
Algorithm 2).

6. Consistency

We now establish the consistency of the estimator of the AFDAG skeleton ESKE and its
v-structures V described in Section 5. For simplicity, we will focus on the case where ρ
is fixed. We carry this out in three steps: the consistency of the ACCO estimator, the
consistency of the NACCO estimator, and then the consistency of Ĉ A, which implies the
consistency of ÊSKE and V̂ . Since ridge-regression-inverse version (Section 4.3) is analyt-
ically simpler to handle, we focus on that version. However, we expect that consistency
of the principal-component-inverse version (as described in Section 4.4) can be established
similarly. To emphasize the dependence of Ĉ A, ÊSKE, and V̂ on εn, δn, and ρ, we write them
as Ĉ A(εn, δn, ρ), ÊSKE(εn, δn, ρ), and V̂ (εn, δn, ρ) henceforth.

6.1. Consistency of ACCO

To prove the convergence of Σ̂εn

XiXj |XS to ΣXiXj |XS , we need the following lemma.

Lemma 13 Suppose Assumptions 2 and 3 hold. Then, for any S ⊆ V,

(a) ‖(Σ̂XSXS + εI)−1‖ = OP (ε−1), ‖(ΣXSXS + εI)−1‖ = O(ε−1);

(b) ‖(ΣXSXS + εI)−1/2D1/2

XSXS‖ = OP (1).
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We introduce the following intermediate operator

Σεn

XiXj |XS , ΣXiXj − ΣXiXS(ΣXSXS + εnI)−1ΣXSXj . (23)

The next lemma first shows that the norm of Σεn

XiXj |XS is bounded by a constant for all n.

Lemma 14 Under the same assumptions in Lemma 13, given any sequence εn > 0, ‖Σεn

XiXj |XS‖
is bounded by a constant.

For two positive sequences an and bn, we write an ≺ bn when an/bn → 0, and an � bn
when an/bn converges to 0 or is bounded. In particular, an ≺ 1 means an → 0. The next
two lemmas show the closeness of the intermediate operator to Σ̂εn

XiXj |XS and ΣXiXj |XS .

Lemma 15 If Assumptions 1, 2, 3 hold, and n−1/2 ≺ εn ≺ 1, then

‖Σ̂εn

XiXj |XS − Σεn

XiXj |XS‖ = OP (ε−1
n n

−1/2).

Lemma 16 If Assumptions 1, 2, 3 hold, then

‖ΣXiXS(ΣXSXS + εI)−1ΣXSXj − Σ
1/2

XiXi
RXiXSR−1

XSXSRXSXjΣ
1/2

XjXj
‖ = O(ε1/2).

The consistency of ACCO follows immediately.

Theorem 17 Suppose Σ̂εn

XiXj |XS is the empirical additive covariance operator defined in

(11) with εn satisfying n−1/2 ≺ εn ≺ 1. Then under the same assumptions in Lemma 16, we
have

‖Σ̂εn

XiXj |XS − ΣXiXj |XS‖ = OP (ε1/2n + n−1/2ε−1
n ).

6.2. Consistency of NACCO

Similar to (23), we define the intermediate operator between RXiXj |XS and R̂εn,δn

XiXj |XS as

Rδn

XiXj |XS = (ΣXiXi + δnI)−1/2ΣXiXj |XS(ΣXjXj + δnI)−1/2.

By the triangular inequality, for the consistency of R̂εn,δn

XiXj |XS it suffices to show that, as
n→∞,

‖R̂εn,δn

XiXj |XS −Rδn

XiXj |XS‖
P→ 0 and ‖Rδn

XiXj |XS −RXiXj |XS‖ → 0. (24)

We first state a lemma (Fukumizu, Bach, and Gretton, 2007, Lemma 8).

Lemma 18 Let {An : n = 1, 2, . . .} and A be self-adjoint random operators in B (H ). If

‖An −A‖
P→ 0, then ‖A3/2

n −A3/2‖ = O(‖An −A‖).

The next two lemmas show the two convergence results in (24).
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Lemma 19 If Assumptions 1, 2, 3 hold and

n1/2 ≺ εn ≺ 1, n−1/2ε−1
n + ε1/2n ≺ δ3/2n , (25)

then ‖R̂εn,δn

XiXj |XS −Rδn

XiXj |XS‖
P→ 0.

Lemma 20 Under the same Assumptions in Lemma 19, we have, as δn → 0,

‖Rδn

XiXj |XS −RXiXj |XS‖ → 0.

Consistency of R̂εn,δn

XiXj |XS now follows from the previous two lemmas.

Theorem 21 Under the same assumptions in Lemma 19 we have

‖R̂εn,δn

XiXj |XS −RXiXj |XS‖ P→ 0.

Fukumizu et al. (2008, Theorem 5) established the consistency of (non-additive) nor-
malized conditional correlation operator. As previously discussed, our setting is additive
and different from theirs; therefore, Theorem 21 can not be directly implied by their result.

6.3. Consistency of the estimator of AFDAG skeleton

We are now ready to prove the consistency of the estimated skeleton of AFDAG.

Theorem 22 Suppose X is additively faithful with respect to a directed acyclic graph G.
Then, under Assumptions 1, 2, and 3, we have

P (Ĉ A(εn, δn, ρ) = C A)→ 1,

for (εn, δn) satisfying (25) and sufficiently small ρ. Consequently,

P (ÊSKE(εn, δn, ρ) = ESKE)→ 1, P (V̂ (εn, δn, ρ) = V )→ 1.

7. Strong additive faithfulness and uniform consistency

7.1. Uniform consistency

The consistency established in the last section is in terms of the true distribution. Sometimes
a stronger form of consistency—uniform consistency—is preferable so that we can control
the worst-case type I and type II errors. Zhang and Spirtes (2002) proved the uniform
consistency for the Gaussian DAG model, if X is strongly faithful (SF) with respect to G;
that is,

i and j are d-separated by S under G ⇔ |cor(X i, Xj|XS)| ≤ λ, (26)

for some λ > 0. The necessary part of (26) is equivalent to

min{|cor(X i, Xj|XS)| : (i, j, S) /∈ D } > λ. (27)

We now extend uniform consistency to our setting. Let P be a class of distributions of X,
and, for each P ∈ P , let C A(P ) be the ACI structure corresponding distribution P ; that
is, C A(P ) = {(i, j, S) ∈ T : X i

AX
j|XS under P}. We first extend the strong faithfulness

assumption to our setting.
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Definition 23 The family of distribution P is strongly additively faithful (SAF) with re-
spect to G, if the Additive global Markov condition holds, and that there is a λ > 0 such
that

min{‖RXiXj |XS(P )‖ : (i, j, S) /∈ D } > λ ∀P ∈P .

Let P 0 be the subset of P whose members are faithful with respect to G; that is,
P 0 = {P ∈P : C A(P ) = D }. We then establish the uniform consistency of Ĉ A.

Theorem 24 Suppose

a. P is strongly additively faithful with respect to G;

b. for each (i, j, S) ∈ T and ε > 0, we have

lim
n→∞

sup
P∈P

P
(∥∥∥R̂εn,δn

XiXj |XS −RXiXj |XS(P )
∥∥∥ > ε

)
= 0.

Then, for any 0 < ρ < λ, we have

lim
n→∞

sup
P∈P0

P (Ĉ A 6= D ) = 0, lim
n→∞

sup
P∈P c

0

P (Ĉ A = D ) = 0. (28)

Condition b. is the uniform version of P (‖R̂εn,δn

XiXj |XS − RXiXj |XS(P )‖ > ε)→ 0, which is

proved in Section 6. It depends on the nature of the family P . This type of condition is
not regarded as very restrictive in the classical setting (see, for example Bickel et al. (1993,
page 18).

Because there is a one-to-one correspondence between D and (ESKE,V ), Theorem 24
also implies the uniform convergence of ÊSKE and V̂ , as recorded in the next corollary.

Corollary 25 Under the conditions of Theorem 24, we have

lim
n→∞

sup
P∈P0

P ({ÊSKE 6= ESKE} ∪ {V̂ 6= V }) = 0,

lim
n→∞

sup
P∈P c

0

P ({ÊSKE = ESKE} ∩ {V̂ = V }) = 0.

7.2. Comparison between SAF and SF

As concluded in Uhler et al. (2013), the SF condition in (27) can be very restrictive. In this
subsection we show, through a numerical investigation, that SAF is a weaker condition than
SF. For demonstration, we only consider a simple example of a complete DAG with three
nodes. The distribution of the random vector (X1, X2, X3)T is generated via a structural
equation model (SEM, see Pearl, 2009):

X1 = ε1,

X2 = a21X
1 + a22X

1 ·X1 + ε2,

X3 = a31X
1 + a32X

1 ·X1 + a33X
2 + a34X

2 ·X2 + ε3,

(29)
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Figure 1: Proportion of unfaithfulness distributions.

where εi are i.i.d. standard Gaussian variables and (a21, . . . , a34) ∈ [−1, 1]6.

To characterize the level of additive unfaithfulness when SAF does not hold, we use the
volume of the additively unfaithful distributions in the following sense. Let

{P ∈P : there exists (i, j, S) ∈ D c such that ‖RXiXj |XS(P )‖ ≤ λ}

be the set of unfaithful distributions. In our example it has a one-to-one correspondence
with the set

{(a21, . . . , a34) ∈ [−1, 1]6 : min
i,j,S
‖RXiXj |XS(a21, . . . , a34)‖ ≤ λ}, (30)

where RXiXj |XS(a21, . . . , a34) is the NACCO corresponding to each (a21, . . . , a34) ∈ [−1, 1]6.
We then use the volume of (30) to measure the level of unfaithfulness.

Because model (29) consists of both linear and quadratic functions, we use the poly-
nomial kernel of order two; that is, κ(a, b) = (1 + ab)2, a, b ∈ R. The volume of (30) is
empirically approximated as follows. Starting with an independent draw (a21, . . . , a34) from
Uniform([−1, 1]6), we compute RXiXj |XS(a21, . . . , a34) using the polynomial kernel. If there
is some i, j, S ⊆ V\(i, j) such that ‖RXiXj |XS(a21, . . . , a34)‖ ≤ λ, then we count the distribu-
tion as additively unfaithful. We repeat the process 1,000 times to compute the proportion
of additively unfaithful distributions. Uhler et al. (2013) considered a similar setting to
estimate the proportion of unfaithful distributions based on linear models, where the coef-
ficients of the quadratic terms a22, a32, a34 are set zeros. Figure 1 shows the proportions of
both additive unfaithfulness and unfaithfulness with different values of λ. The curve of the
additive unfaithfulness is consistently below that of the faithfulness. In particular, when
λ ≤ 0.1, it is very unlikely to have additive unfaithfulness. This indicates that the strong
additive faithfulness is less restrictive than the strong faithfulness.
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8. Numerical studies

8.1. Simulation settings

We compute the AFDAG estimator based on the principal-component-type procedure in
Section 4.6 and AF-PC algorithm in Section 5.4. We also compare our estimator with
two existing parametric and semi-parametric estimators: the linear-PC algorithm (Spirtes,
Glymour, and Scheines, 2000; Kalisch and Bühlmann, 2007), i.e. PC algorithm combined
with partial correlation test, and the rank-PC algorithm (Harris and Drton, 2013). A
distinct feature of AFDAG is that it is able to capture interdependent structures beyond
the Gaussian copula models. In order to reflect this feature, it is necessary to generate
non-Gaussian random variables, which can be accomplished via SEM. We first describe
how to produce non-Gaussian (or non-copula Gaussian) graphical models. Suppose an edge
set E is given and the natural ordering of the nodes is 1 → p. Then the random vector
X = (X1, . . . , Xp) can be sequentially generated via

X1 = ε1,

X i = fi [{Xj : (j, i) ∈ E}, εi] , i = 2, . . . , p,

where fi(·) specifies the dependency of node i on its parent nodes, and ε1, . . . , εp are i.i.d.
standard Gaussian variables. The joint distribution of X from this model is non-Gaussian
unless all fi’s are linear.

We then use the following two models for fi, i = 2, . . . , p,

Linear : fi [{Xj : (j, i) ∈ E}, εi] =
∑

(i,j)∈E αi,jX
j + εi,

Quadratic : fi [{Xj : (j, i) ∈ E}, εi] =
∑

(i,j)∈E αi,jX
j ·Xj + εi.

To complete the simulation setting, we generate the graph E and the coefficients αi,j’s in
the same way as Kalisch and Bühlmann (2007). Specifically, the graph is determined by
the binary variable I [(i, j) ∈ E] and the value of αi,j = I [(i, j) ∈ E] Ai,j, where

I [(i, j) ∈ E] ∼ Bernoulli(d), Ai,j ∼ Uniform(0.1, 1).

The parameter d controls the complexity of the graph: a larger d means a less sparse graph.

8.2. Comparison of ÊSKE

We fix the network size at p = 5, the sparse parameter at d = 0.1, and vary the sample size
n between 50, 100, and 300. We also fix the number of resamplings in the approximated
permutation test b = 5000. For each model and each DAG, we compare the estimated
skeleton ÊSKE and the truth ESKE, and compute the corresponding ROC curves. The process
is repeated 50 times and the averaged ROC curves are reported in Figure 2 for the linear
model, and Figure 3 for the quadratic model.

We should mention that in our simulation experiments the unfaithfulness is less serious of
an issue because the edge weight is generated from Uniform(0.1, 1) with a support bounding
away from 0. As noticed by (Uhler et al., 2013), when the causal parameters are large, the
strong faithfulness becomes less problematic. Therefore, in our simulation we expect the
performance of linear-PC (i.e. based on partial correlation) would perform the best when the
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Figure 2: Comparisons of the ROC curves by AF-PC, rank-PC, and linear-PC on linear
models.
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Figure 3: Comparisons of the ROC curves by AF-PC, rank-PC, and linear-PC on quadratic
models.
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Figure 4: Boxplots of SHD(ÊCPDAG) from AF-PC, HSIC-PC, and linear-PC.

underlying distribution is precisely Gaussian. Nonetheless, when the underlying distribution
deviates from normality, the improvement by our method over the other approaches is
significant.

8.3. Comparison of ÊCPDAG

We compare the performances of the estimators in recovering ECPDAG. Let ÊCPDAG denote
an estimator of ECPDAG by one of the methods. Because ECPDAG is partially directed and
provides more information about a DAG than the skeleton, we use a different criterion
than the ROC to evaluate the performance of ÊCPDAG, namely, the structure Hamming
distance (Tsamardinos, Brown, and Aliferis, 2006). Given an estimate ÊCPDAG, its structure
Hamming distance, or SHD(ÊCPDAG), is the minimum number of single operations, including
deletions, insertions, and re-orientations that are required to go from ÊCPDAG to ECPDAG. A
smaller value of SHD(ÊCPDAG) indicates greater similarity between ÊCPDAG and ECPDAG.

Since the ROC curves in Figures 2 and 3 show that the linear-PC and the rank-PC
produce very similar results, we only compare AF-PC with the first of the two. In addition,
we also compare with the KCI-PC proposed by (Zhang et al., 2011). Furthermore, we also
extend the comparison settings to include different network sizes ranging from 3 to 15. The
averaged SHD(ÊCPDAG) from 50 replicates are reported in Tables 1 and 2. Again, AF-PC
outperforms both linear-PC and KCI-PC when there exists nonlinearity between the nodes
(in this case the Gaussian assumption no longer holds).

8.4. Large networks

Another feature of AFDAG is that it is capable of dealing with high-dimensional networks
due to its computational simplicity, despite its nonparametric nature. To show this, we
conduct a similar analysis with relatively large number of vertices: p = 50 and d = 0.02.
Figure 4 shows the boxplots of 50 SHDs from both AF-PC and linear-PC. Moreover, we have
added the comparison to HSIC-PC, the PC algorithm combined with CCO tests (Tillman
et al., 2009). For the nonlinear model, AF-PC performs better than both linear-PC and
HSIC-PC.
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Learning causal networks via additive faithfulness

AF-PC HSIC-PC KCI-PC linear-PC

mean (std) 16.80 (1.80) 17.67 (1.40) 24.45 (1.23) 19.20 (1.53)

Table 3: Mean (s.d.) of the SHD(ÊCPDAG) by AF-PC, HSIC-PC, KCI-PC, and linear-PC.

8.5. The Mitogen-Activated Protein Kinase (MAPK) pathways

We next apply our method, the linear-PC, HSIC-PC, and KCI-PC to a flow cytometry
data set from Sachs et al. (2005), in which p = 11 protein activities levels were measured on
n = 7466 cells. The purpose of this study is to recover the causal networks of the protein
signaling pathways within a human immune system. This data set has also been investigated
by Friedman, Hastie, and Tibshirani (2008), Ellis and Wong (2008), and Luo and Zhao
(2011). The underlying true DAG can be found in Friedman, Hastie, and Tibshirani (Figure
2, 2008). We conduct a stability analysis by first drawing a subsample of 2,000 cells. For
each subsample, we then compute the SHD(ÊCPDAG) from all competing methods. This
process is repeated 20 times and the averaged SHDs and standard deviations are reported
in Table 3.

AF-PC performs the best among all competing methods. This indicates that the
CPDAG estimated by AF-PC is closer to the truth.

9. Concluding remarks

In this paper we introduced a statistical model, called the additively faithful directed acyclic
graph, for causal network analysis, as well as a procedure to estimate the graph based on a
normalized additive conditional covariance operator. Additive faithfulness is derived from
additive conditional independence, which provides a balance between a parametric model
and a fully nonparametric model: it enjoys the flexibility of a nonparametric method but
at the same time avoids using multi-dimensional kernels. In particular, it can capture the
type of nonlinear interactions that elude a Gaussian graphical model or a copula-Gaussian
graphical model (see Li, Chun, and Zhao, 2014).

We also introduced an efficient PC-type algorithm to implement the estimator of the
AFDAG, so that the complexity of the algorithm does not depend on the dimension of the
network but instead on the level of sparseness of AFDAG. This feature makes the proposed
method feasible for high-dimensional networks because the skeleton of a DAG is typically
sparse (containing far fewer edges than the corresponding undirected graph). Along with
theory of AFDAG and the methods for its estimation, we also established the consistency of
the estimators, as well as their convergence rates. Furthermore, we established the uniform
consistency of the proposed procedure under a strong additive faithfulness; we showed that
this condition is weaker than the strong faithfulness in the linear setting, and is therefore
more reasonable in modeling causality networks.

The methods developed in Sections 4 and 5 are but the first attempt to implement
the general theory of AFDAG laid out in Sections 2 and 3, and there is much room for
refinement and further development. For example, in this paper we only considered the
thresholding or CI testing as a mechanism for deciding the absence of edges, but more
sophisticated sparse penalized optimization, such as the LASSO (Tibshirani, 1996), SCAD
(Fan and Li, 2001), and the adaptive LASSO (Zou, 2006) may be employed at the operator
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level to further improve the accuracy of the estimation of AFDAG. These will be left for
further research.
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Appendix: Proofs

Proof of Theorem 5: We first show that, for any f ∈H Xi and g ∈H Xj ,

〈f,ΣXiXj |XSg〉 = cov[f(X i)− (TXSXif)(XS), g(Xj)− (TXSXjg)(XS)]. (31)

By Lee et al. (2016, Proposition 2), for any f ∈H Xi and g ∈H Xj ,

cov[(TXSXif)(XS), g(Xj)− (TXSXjg)(Xj)] = 0.

Hence the right-hand side of (31) reduces to

cov[f(X i), g(Xj)− (TXSXjg)(XS)] = cov[f(X i), g(Xj)]− cov[f(X i), (TXSXjg)(XS)]. (32)

By Assumption 2, 〈f,Σ1/2

XiXi
RXiXSR−1

XSXSRXSXjΣ
1/2

XjXj
g〉 = 〈f,Σ1/2

XiXi
RXiXSD

1/2

XSXSTXSXjg〉, which
is equal to 〈f,ΣXiXSTXSXjg〉 = cov[f(X i), (TXSXjg)(Xj)] by the definition of ΣXiXS . In the
meantime, 〈f,ΣXiXjg〉 = cov[f(X i), g(Xj)]. Thus the right-hand side of (32) is simply
〈f,ΣXiXj |XS g〉, proving (31).

By Definition 1, the right-hand side of (9) holds if and only if the right-hand side of
(31) is 0 for all f ∈ H Xi and g ∈ H Xj ; the left-hand side of (9) holds if and only if the
left-hand side of (31) is 0 for all f ∈H Xi and g ∈H Xj . Thus the equality (31) implies the
equivalence in (9). 2

Proof of Proposition 8: For any f ∈ G (n)

Xi
, g ∈ G (n)

Xj
,

〈f, Σ̂XiXjg〉 = 〈[f ]Tψi, (ψi)T[Σ̂XiXj ][g]〉
= [f ]TΛ−1/2

Xi
V T

Xi
GXiVXiΛ

−1/2

Xi
[Σ̂XiXj ]g] = [f ]T[Σ̂XiXj ][g].

(33)

By the definition of Σ̂XiXj , the left hand side also equals

covn[f(X i), g(Xj)] = n−1[f ]TΛ−1/2

Xi
V T

Xi
GXiGXjVXjΛ

−1/2

Xj
[g]. (34)

Equate the right hand sides of (33) and (34) to obtain [Σ̂XiXj ]. We can use the same argu-
ment to derive [Σ̂XiXi ]. The last three coordinate representations are simply block matrices
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with Σ̂XiXj as blocks. For example, [Σ̂XSXS ] is the card(S)× card(S) matrix of submatrices
whose (i, j)th block is [Σ̂XiXj ]. Hence it has the asserted form. 2

Proof of Proposition 9: By (17),

[R̂εn,δn

XiXj |XS ] = [Σ̂XiXi ]
†1/2(δn)[Σ̂XiXj ][Σ̂XjXj ]

†1/2(δn)

− [Σ̂XiXi ]
†1/2(δn)[Σ̂XiXS ][Σ̂XSXS ]†(εn)[Σ̂XSXj ][Σ̂XjXj ]

†1/2(δn)
(35)

After substituting the coordinate representations in Proposition 8, the first term on the
right-hand side becomes

(n−1ΛXi)
†1/2(δn)(n−1Λ1/2

Xi
V T

Xi
VXjΛ

1/2

Xj
)(n−1ΛXj )

†1/2(δn) = diag(Iri , 0)V T

Xi
VXjdiag(Irj , 0).

Similarly, the second term (without the negative sign) on the right-hand side of (35) is

(n−1ΛXi)
†1/2(δn)(n−1Λ1/2

Xi
V T

Xi
MXS)(n−1MT

XSMXS)†(εn)(n−1MT
SVXjΛ

1/2

Xj
)(n−1ΛXj )

†1/2(δn)

= diag(Iri , 0)V T

Xi
MXS(MT

XSMXS)†(εn)MT
SVXjdiag(Irj , 0).

Substitute these two terms into (35) to obtain the desired matrix. Finally, the norm is
bounded by 1 because In −MXS(MT

XSMXS)†(εn)MT

XS is a projection matrix. 2

Proof of Lemma 13: (a) By the definition of empirical covariance operator, we have
Σ̂XSXS ≥ 0. Therefore, ‖(Σ̂XSXS + εI)−1‖ ≤ ε−1. This is also true if we replace Σ̂XSXS by
ΣXSXS .
(b) First note that ‖(ΣXSXS + εI)−1/2Σ1/2

XSXS‖ ≤ 1. Since RXiXj is compact for all i < j,

by Lemma A3 in Lee, Li, and Zhao (2016), there exists C ∈ B (H XS) such that D1/2

XSXS =

Σ1/2

XSXSC. Hence ‖(ΣXSXS + εI)−1/2D1/2

XSXS‖ ≤ ‖(ΣXSXS + εI)−1/2Σ1/2

XSXS‖‖C‖ ≤ ‖C‖, which
implies the asserted result. 2

Proof of Lemma 14: It suffices to show that ΣXiXS(ΣXSXS + εnI)−1ΣXSXj is bounded.
This term can be decomposed as

ΣXiXS(ΣXSXS + εnI)−1ΣXSXj = Σ
1/2

XiXi
RXiXSD

1/2

XSXS(ΣXSXS + εnI)−1D1/2

XSXSRXSXjΣ
1/2

XjXj
.

By Lemma 13, ‖D1/2

XSXS(ΣXSXS + εnI)−1D1/2

XSXS‖ is bounded by a constant independent of n.
Therefore, the norm of the above displayed operator is also bounded by a constant inde-
pendent of n. 2

Proof of Lemma 15: By the triangular inequality,

‖Σ̂εn

XiXj |XS−Σεn

XiXj |XS‖ ≤ ‖Σ̂XiXj − ΣXiXj‖

+ ‖Σ̂XiXS(Σ̂XSXS + εnI)−1Σ̂XSXj − ΣXiXS(ΣXSXS + εnI)−1ΣXSXj‖.

The second term on the right can be decomposed as Θ1 + Θ2 + Θ3, where

Θ1 = ‖Σ̂XiXS(Σ̂XSXS + εnI)−1Σ̂XSXj − ΣXiXS(Σ̂XSXS + εnI)−1Σ̂XSXj‖,
Θ2 = ‖ΣXiXS(Σ̂XSXS + εnI)−1Σ̂XSXj − ΣXiXS(Σ̂XSXS + εnI)−1ΣXSXj‖,
Θ3 = ‖ΣXiXS(Σ̂XSXS + εnI)−1ΣXSXj − ΣXiXS(ΣXSXS + εnI)−1ΣXSXj‖.
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By Lemma 13,

Θ1 ≤ ε−1
n ‖Σ̂XiXS − ΣXiXS‖ ‖Σ̂XSXj‖,

which is of order OP (ε−1
n n

−1/2) by Lemma 4 in Fukumizu, Bach, and Gretton (2007). Simi-
larly, Θ2 = OP (ε−1

n n
−1/2). Regarding Θ3 we have

Θ3 ≤‖ΣXiXS(ΣXSXS + εnI)−1/2‖ ‖(ΣXSXS + εnI)−1/2ΣXSXi‖
‖(ΣXSXS + εnI)−1/2(Σ̂XSXS + εnI)(ΣXSXS + εnI)−1/2 − I‖,

(36)

where the last term in the above inequality is due to the following relation

‖(Σ̂XSXS + εnI)1/2(ΣXSXS + εnI)−1(Σ̂XSXS + εnI)1/2 − I‖
= ‖(ΣXSXS + εnI)−1/2(Σ̂XSXS + εnI)(ΣXSXS + εnI)−1/2 − I‖,

which is identical to ‖(ΣXSXS + εnI)−1/2(Σ̂XSXS −ΣXSXS)(ΣXSXS + εnI)−1/2‖. Substitute this
into (36) to obtain Θ3 = OP (ε−1

n n
−1/2). 2

Proof of Lemma 16: By Assumption 2, we have

ΣXiXS(ΣXSXS + εI)−1ΣXSXj − Σ
1/2

XiXi
RXiXSR−1

XSXSRXSXjΣ
1/2

XjXj

= ΣXiXS((ΣXSXS + εI)−1ΣXSXj − TXSXj ) = −εnΣXiXS(ΣXSXS + εI)−1TXSXj ,

whose norm is bounded by

ε‖ΣXiXS(ΣXSXS + εI)−1‖‖TXSXj‖ ≤ ε‖D
1/2

XSXS(ΣXSXS + εI)−1/2‖‖(ΣXSXS + εI)−1/2‖.

The lemma now follows from Lemma 13. 2

Proof of Lemma 19: Similar to the proof in Lemma 15, we have

‖R̂εn,δn

XiXj |XS − (ΣXiXi + δnI)−1/2ΣXiXj |XS(ΣXjXj + δnI)−1/2‖ ≤ Γ1 + Γ2 + Γ3,

where

Γ1 = ‖((Σ̂XiXi + δnI)−1/2 − (ΣXiXi + δnI)−1/2)Σ̂εn

XiXj |XS(Σ̂XjXj + δnI)−1/2‖,

Γ2 = ‖(ΣXiXi + δnI)−1/2(Σ̂εn

XiXj |XS − ΣXiXj |XS)(Σ̂XjXj + δnI)−1/2‖,

Γ3 = ‖(ΣXiXi + δnI)−1/2ΣXiXj |XS((Σ̂XjXj + δnI)−1/2 − (ΣXjXj + δnI)−1/2)‖.

To show Γ1 is sufficiently small, we first observe that it is bounded from above by Γ1,1 +Γ1,2,
where

Γ1,1 = ‖(ΣXiXi + δnI)−1/2((ΣXiXi + δnI)3/2 − (Σ̂XiXi + δnI)3/2)

(Σ̂XiXi + δnI)−3/2Σ̂εn

XiXj |XS(Σ̂XjXj + δnI)−1/2‖,

Γ1,2 = ‖(Σ̂XiXi − ΣXiXi)(Σ̂XiXi + δnI)−3/2Σ̂εn

XiXj |XS(Σ̂XjXj + δnI)−1/2‖.
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Note that Γ1,1 is no greater than δ−3/2
n ‖((ΣXiXi + δnI)3/2 − (Σ̂XiXi + δnI)3/2)‖ ‖R̂εn,δn

XiXj |XS‖.
By Proposition 9 and Lemma 18, this term is of the order δ−3/2

n OP (n−1/2ε−1
n + ε1/2n ). The

term Γ1,2 is upper bounded by δ−1
n ‖(Σ̂XiXi − ΣXiXi)‖ = δ−1

n OP (n−1/2). Therefore, we have
Γ1 = oP (1). Similarly, one can show Γ3 is bounded by δ−3/2

n OP (n−1/2ε−1
n + ε1/2n ) ‖Rδn

XiXj |XS‖,
which is oP (1) because ‖Rδn

XiXj |XS‖ is bounded by Lemma 20.

Meanwhile, by Lemmas 15 and 16, Γ2 = δ−1
n [OP (n−1/2 + ε−1

n n
−1/2) + o(δn)] = oP (1),

which completes the proof. 2

Proof of Lemma 20: Note that ‖Rδn

XiXj |XS −RXiXj |XS‖ ≤ Ξ1 + Ξ2 + Ξ3, where

Ξ1 = ‖(ΣXiXi + δnI)−1/2ΣXiXj (ΣXjXj + δnI)−1/2 −RXiXj‖,

Ξ2 = ‖
[
(ΣXiXi + δnI)−1/2Σ

1/2

XiXi
− I
]
RXiXSR−1

XSXSRXSXjΣ
1/2

XjXj
(ΣXjXj + δnI)−1/2‖,

Ξ3 = ‖RXiXSR−1

XSXSRXSXj

[
Σ

1/2

XjXj
(ΣXjXj + δnI)−1/2 − I

]
‖.

By Fukumizu, Bach, and Gretton (2007, Lemma 7), we have Ξ1 = o(1). To show Ξ2

converges to 0, we note that

Ξ2 ≤ ‖
[
(ΣXiXi + δnI)−1/2Σ

1/2

XiXi
− I
]
RXiXSR−1

XSXS‖ ‖RXSXj‖ ‖Σ
1/2

XjXj
(ΣXjXj + δnI)−1/2‖,

where the last norm on the right is O(1) by Lemma 13. Because RXiXSR−1

XSXS is compact,
we have

range(RXiXSR−1

XSXS) ⊆ ran (ΣXiXi) = ran (Σ
1/2

XiXi
).

Also note that, for any h′ ∈H Xi ,

‖((ΣXiXi + δnI)−1/2Σ
1/2

XiXi
− I)Σ

1/2

XiXi
h′‖

= ‖(ΣXiXi + δnI)−1/2Σ
1/2

XiXi

[
Σ

1/2

XiXi
− (ΣXiXi + δnI)1/2

]
h′‖,

which has order ‖Σ1/2

XiXi
− (ΣXiXi + δnI)1/2‖ = o(1) as δn → 0.

Therefore, by Lemma A8 in Lee, Li, and Zhao (2016),

‖
[
(ΣXiXi + δnI)−1/2Σ

1/2

XiXi
− I
]
RXiXSR−1

XSXS‖ → 0, as δn → 0,

which implies Ξ2 = o(1). By a similar statement one can show Ξ3 = o(1). 2

Proof of Theorem 22: Let the thresholding value be a sufficiently small positive number
such that

ρ < min{‖RXiXj |XS‖ : (i, j, S) /∈ C A}.

By Theorems 17 and 21, for any (i, j) ∈ C A, ‖R̂εn,δn

XiXj |XS‖ converges to 0 in probability. Hence

it is smaller than ρ with probability tending to 1. Therefore, the event (i, j) ∈ Ĉ A(εn, δn, ρ)
has probability tending to 1. Similarly, for any (i, j) ∈ ESKE, ‖R̂εn,δn

XiXj |XS‖ converges to
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‖RXiXj |XS‖ > ρ, implying that the event (i, j, S) /∈ Ĉ A(εn, δn, ρ) has probability tending to

1. The consistency of ÊSKE(εn, δn, ρ) and that of V̂ (εn, δn, ρ) follow because they are contin-
uous functions of Ĉ A(εn, δn, ρ) (with respect to the discrete topology). 2

Proof of Theorem 24. To prove the first convergence in (28), we note that

P (Ĉ A 6= D ) = P ( the statements ‖R̂εn,δn

XiXj |XS‖ < ρ ∀(i, j, S) ∈ D

and ‖R̂εn,δn

XiXj |XS‖ ≥ ρ ∀(i, j, S) ∈ D c are not both true).
(37)

By a., for each P ∈P 0, ‖RXiXj |XS(P )‖ = 0 for all (i, j, S) ∈ D and ‖RXiXj |XS(P )‖ > λ for
all (i, j, S) /∈ D . Hence the right hand side of (37) is

P ( the statements ‖R̂εn,δn

XiXj |XS‖ < ρ ∀(i, j, S) ∈ D

and ‖R̂εn,δn

XiXj |XS‖ ≥ ρ ∀(i, j, S) ∈ D c are not both true,

‖RXiXj |XS(P )‖ = 0 ∀ (i, j, S) ∈ D , ‖RXiXj |XS(P )‖ > λ ∀ (i, j, S) /∈ D ).

Let Sn represent the event inside the parentheses. Then

P (Sn) =P (Sn, ‖R̂εn,δn

XiXj |XS −RXiXj |XS(P )‖ < ε ∀(i, j, S) ∈ T )

+ P (Sn, ‖R̂εn,δn

XiXj |XS −RXiXj |XS(P )‖ ≥ ε for some (i, j, S) ∈ T )

≤P (Sn, ‖R̂εn,δn

XiXj |XS −RXiXj |XS(P )‖ < ε ∀(i, j, S) ∈ T )

+ P (‖R̂εn,δn

XiXj |XS −RXiXj |XS(P )‖ ≥ ε for some (i, j, S) ∈ T ).

The second term on the right-hand side is

P (∪(i,j,S)∈T {‖R̂εn,δn

XiXj |XS −RXiXj |XS(P )‖ ≥ ε})

≤
∑

(i,j,S)∈T P (‖R̂εn,δn

XiXj |XS −RXiXj |XS(P )‖ ≥ ε).

It follows that

sup
P∈P0

P (Sn) ≤ sup
P∈P0

P (Sn, ‖R̂εn,δn

XiXj |XS −RXiXj |XS(P )‖ < ε ∀(i, j, S) ∈ T )

+
∑

(i,j,S)∈T sup
P∈P0

P (‖R̂εn,δn

XiXj |XS −RXiXj |XS(P )‖ ≥ ε).

Since the set T is finite, by condition b., the second term on the right-hand side tends to
0 as n→∞. Hence

lim sup
n→∞

sup
P∈P0

P (Sn) ≤ lim sup
n→∞

sup
P∈P0

P (Sn, ‖R̂εn,δn

XiXj |XS −RXiXj |XS(P )‖ < ε ∀(i, j, S) ∈ T ).

However, the statement inside P (· · · ) on the right-hand side consists of, when spelled out
fully, the following statements:

‖R̂εn,δn

XiXj |XS‖ < ρ ∀(i, j, S) ∈ D and ‖R̂εn,δn

XiXj |XS‖ ≥ ρ ∀(i, j, S) ∈ D c are not both true,

‖RXiXj |XS(P )‖ = 0 ∀ (i, j, S) ∈ D , and ‖RXiXj |XS(P )‖ > λ ∀ (i, j, S) /∈ D are both true,

‖R̂εn,δn

XiXj |XS −RXiXj |XS(P )‖ < ε ∀(i, j, S) ∈ T ,
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which cannot happen for sufficiently small ε. Hence

lim
n→∞

sup
P∈P0

P (Ĉ A 6= D ) = lim
n→∞

sup
P∈P0

P (Sn) = 0.

This proves the first convergence in (28). The second convergence can be proved similarly. 2
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