
Journal of Machine Learning Research 21 (2020) 1-31 Submitted 10/16; Revised 4/20; Published 4/20

Harmless Overfitting: Using Denoising Autoencoders in
Estimation of Distribution Algorithms

Malte Probst∗ malte.probst@honda-ri.de
Honda Research Institute EU
Carl-Legien-Str. 30, 63073 Offenbach, Germany

Franz Rothlauf rothlauf@uni-mainz.de

Information Systems and Business Administration

Johannes Gutenberg-Universität Mainz

Jakob-Welder-Weg 9, 55128 Mainz, Germany

Editor: Francis Bach

Abstract

Estimation of Distribution Algorithms (EDAs) are metaheuristics where learning a model
and sampling new solutions replaces the variation operators recombination and mutation
used in standard Genetic Algorithms. The choice of these models as well as the correspond-
ing training processes are subject to the bias/variance tradeoff, also known as under- and
overfitting: simple models cannot capture complex interactions between problem variables,
whereas complex models are susceptible to modeling random noise. This paper suggests
using Denoising Autoencoders (DAEs) as generative models within EDAs (DAE-EDA).
The resulting DAE-EDA is able to model complex probability distributions. Furthermore,
overfitting is less harmful, since DAEs overfit by learning the identity function. This over-
fitting behavior introduces unbiased random noise into the samples, which is no major
problem for the EDA but just leads to higher population diversity. As a result, DAE-EDA
runs for more generations before convergence and searches promising parts of the solution
space more thoroughly. We study the performance of DAE-EDA on several combinatorial
single-objective optimization problems. In comparison to the Bayesian Optimization Al-
gorithm, DAE-EDA requires a similar number of evaluations of the objective function but
is much faster and can be parallelized efficiently, making it the preferred choice especially
for large and difficult optimization problems.

Keywords: denoising autoencoder; estimation of distribution algorithm; overfitting;
combinatorial optimization; neural networks

1. Introduction

Estimation of Distribution Algorithms (EDAs) are metaheuristics for combinatorial opti-
mization which evolve a distribution over potential solutions (Mühlenbein and Paaß, 1996;
Larrañaga and Lozano, 2002). As in Genetic Algorithms (GAs, Holland, 2001; Goldberg,
1989), a single solution is often referred to as an individual, the current sample of individuals
is called a population, and one iterative step of evolution is considered to be a generation. In
each generation, an EDA selects a subset of high-quality solutions from the population. It
updates a probabilistic model to approximate the probability distribution of the variables in

∗. This work was done while the author was a member of the University of Mainz

c©2020 Malte Probst and Franz Rothlauf.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/16-543.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/16-543.html

Probst and Rothlauf

this subset of the population. In the next generation, this model is then used to sample new
candidate solutions. The underlying idea is that these sampled candidate solutions have
properties similar to those of the selected high-quality solutions. Hence, it is important that
the model’s approximation of the dependency structure is precise1.

A central challenge when learning a model is the bias/variance tradeoff, also referred
to as under- and overfitting (see, e.g., Geman et al., 1992). This tradeoff requires match-
ing the capacity and complexity of the model to the structure of the training data, both
when selecting a model, and, subsequently, when the approximation process estimates the
parameters of the model. Simple models often suffer from a strong bias since they may lack
the capacity to capture the dependencies between variables properly. In contrast, complex
models can show high variance, that is, they can overfit: Indeed, for a finite number of
training examples, there is always sampling noise and if the approximation process cap-
tures the structure of this sampling noise in the model, then the model is overfitting. Both
underfitting and overfitting can deteriorate the quality of a probabilistic model (Cawley and
Talbot, 2010).

EDAs require models that accurately capture the dependencies between problem vari-
ables within the selected population and allow them to sample new solutions with similar
properties and quality (Radetic and Pelikan, 2010). Simple, univariate models often suffer
from underfitting, i.e., they are unable to capture the relevant dependencies. This can lead
to an exponential number of evaluations of the objective function for growing problem sizes
(Pelikan et al., 1999; Pelikan, 2005a). Hence, for more relevant and complex problems, mul-
tivariate models are usually used. Indeed, such models have the capacity to approximate
more complex interactions between variables. However, they are not only susceptible to
underfitting (in the case that the approximation process terminates before all relevant de-
pendencies are captured); they are also affected by overfitting, that is, they learn sampling
noise. There are a number of mechanisms for limiting the amount of overfitting in complex
models, such as adding penalties for overly complex models, stopping the approximation
process early, or using Bayesian statistics (see, e.g., Bishop, 2006, Chapter 1.1.; Murphy,
2012, Chapter 5). However, even these techniques often cannot avoid overfitting entirely,
which decreases the model quality and, in turn, the EDA’s optimization performance (Wu
and Shapiro, 2006; Santana et al., 2008; Chen et al., 2010).

This paper suggests using Denoising Autoencoders (DAE, Vincent et al., 2008) as proba-
bilistic EDA models and studies the properties and performance of the resulting DAE-EDA.
DAEs are neural networks which map n input variables to n output variables via a hidden
representation, which captures the dependency structure of the input data. Since DAEs
implicitly model the probability distribution of the input data, sampling from this distri-
bution becomes possible (Bengio et al., 2013). In this paper, we assess the performance
of DAE-EDA on multiple combinatorial optimization benchmark problems, i.e., problems
with binary decision variables. We report the number of evaluations and required CPU

1. Throughout the paper, we use the term “dependency structure” when referring to dependencies (corre-
lations) between decision variables. For example, such a dependency structure could be modeled as a
graph where the nodes correspond to problem variables, and the connections correspond to conditional
dependencies between them. The structure or topology of such a graph could take various forms, e.g. a
single tree, multiple trees, a chain, or others, depending on the problem.

2

Harmless Overfitting: Using DAEs in EDAs

times. For comparison, we include results for the Bayesian Optimization Algorithm (BOA,
Pelikan et al., 1999; Pelikan, 2005a), which is still a state-of-the-art EDA approach.

We find that DAE-EDA has a model quality similar to BOA, however, it is faster and
can be parallelized more easily. The experiments reveal a major reason for the good perfor-
mance on the set of tested combinatorial optimization problems, specifically on the difficult
deceptive problems, which guide local search optimizers away from the global optimum: A
slightly overfitted DAE is beneficial for the diversity of the population since it does not
repeat sampling noise but is biased towards random solutions. When overfitting, a DAE
tends to learn the trivial identity function as its hidden representation, gradually overlaying
and replacing the learned, non-trivial hidden representation capturing problem structure.
Therefore, an overfitted DAE does not approximate the structure of the sampling noise of
the training data, but tends to simply replicate inputs as outputs. Sampling from a DAE
is done by initializing the DAE’s input with random values, which have high diversity with
respect to the solution space (meaning that solutions are sampled randomly from all solu-
tions of the solution space). Since an overfitted DAE partly learned the identify function,
which replicates inputs as outputs, it will carry over some of this diversity to the generated
samples, instead of replicating sampling noise specific to the training set. This particular
way of DAE overfitting in combination with the randomly initialized sampling process leads
to higher population diversity throughout an EDA run: Like other population-based meta-
heuristics, EDAs usually reduce the population diversity continuously, due to the selection
step in each generation. Using a DAE as EDA model leads to a lower loss of diversity since
sampling from the DAE is biased towards random solutions. As a result, populations sam-
pled from a DAE are slightly more diverse than the training population, allowing an EDA
to keep population diversity high, to run for more generations, and to find better solutions.

Section 2.1 introduces EDAs, describes the bias/variance tradeoff in EDAs, and reviews
the reference algorithm BOA. In Section 2.2, we describe DAEs, and propose DAE-EDA.
Section 2.3 gives a brief literature review on DAEs in combinatorial optimization. Section
3 presents test problems, the experimental setup, and results. Furthermore, it provides an
in-depth analysis of the overfitting behavior of a DAE and its influence on the EDA. We
discuss the findings in Section 4 and finish in Section 5 with concluding remarks.

2. Preliminaries

2.1. Estimation of Distribution Algorithms

We introduce EDAs, discuss the bias/variance tradeoff in EDAs, and briefly introduce BOA.

2.1.1. Principles

EDAs (Mühlenbein and Paaß, 1996; Larrañaga and Lozano, 2002) are well-established black-
box optimization methods for combinatorial optimization problems (Lozano et al., 2006;
Larrañaga et al., 2012). Algorithm 1 outlines their basic functionality. EDAs ”evolve” a
distribution D over the search space of all possible solutions, over the course of multiple
generations. In each generation, an EDA samples a set Pcandidates from D. It then calcu-
lates the objective value of all individuals in Pcandidates and selects a subset of high-quality
solutions Pt+1. Subsequently, the distribution Dt is updated using Pt+1. The updated dis-

3

Probst and Rothlauf

tribution Dt+1 can, in turn, be used to sample new candidates in the next iteration. This
loop continues until the distribution Dt does not change any more (population P is con-
verged), or some other termination criterion holds.2 The underlying assumption of an EDA
is that with each update, the distribution D models the hidden properties of the objective
function f better, and that sampling D yields previously unknown high-quality individuals.

EDAs can also be viewed as instances of Information-Geometric Optimization algorithms
(IGO, Ollivier et al., 2017). In a nutshell, IGOs strive to follow the natural gradient of the
objective function in the parameter space θ of the distribution D while strictly adhering to
invariance principles (for details, see Ollivier et al. 2017).

Algorithm 1 Estimation of Distribution Algorithm

1: Initialize Distribution D0, t = 0
2: while not converged do
3: Pcandidates ← Sample new candidate solutions from Dt

4: Pt+1 ← Select high-quality solutions from Pcandidates based on their objective value
5: Dt+1 ← Update Dt using Pt+1

6: t ← t+ 1
7: end while

EDAs differ in their choice of the model to approximate D. Simple models like UMDA
(Mühlenbein and Paaß, 1996) or PBIL (Baluja, 1994) use a probabilistic model that cor-
responds to the product of univariate marginal distributions. They use vectors with acti-
vation probabilities for each decision variable but neglect dependencies between variables.
Slightly more complex models like the Dependency Tree Algorithm (Baluja and Davies,
1997) use pairwise dependencies between variables modeled as trees or forests (Pelikan
and Mühlenbein, 1999). More complex dependencies can be captured by models that use
multivariate interactions, like ECGA (Harik et al., 2006) or BOA (Pelikan et al., 1999).
Common models for capturing complex dependencies are probabilistic graphical models
with directed edges (like Bayesian networks) or undirected edges (like Markov random
fields) (Larrañaga et al., 2012). Hence, model building consists of, first, finding a network
structure that matches the problem structure well and, second, estimating the model’s pa-
rameters. Usually, the computational effort to build the model increases with its complexity
and representational power.

2.1.2. Bias/Variance Tradeoff in EDAs

As indicated earlier, the modeling/distribution update step in EDAs is subject to the
bias/variance tradeoff. Univariate EDA models assume that the probability distribution
is completely factorized. Hence, such models are unable to properly capture the dependen-
cies between the variables of more complicated problems with interdependencies between
variables (see, e.g., Radetic and Pelikan, 2010). Due to this underfitting, the use of univari-
ate models can cause exponential growth of the required number of fitness evaluations for

2. In the Evolutionary Algorithms community, EDAs are often defined by an “orthogonal” description, that
emphasizes the population-based nature: Here, the EDA’s main loop iterates over successive populations
P , from which it selects high-quality solutions, builds a new model M , and samples new candidates
Pcandidates from the model.

4

Harmless Overfitting: Using DAEs in EDAs

growing problem sizes (Pelikan et al., 1999; Pelikan, 2005a). Hence, multivariate models
are often a better choice for complex optimization problems.

However, complex models are subject to overfitting (see, e.g., Santana et al., 2008; Chen
et al., 2010; Bishop, 2006; Murphy, 2012). Due to limited number of samples drawn by
the EDA in each generation, model building is always affected by sampling noise. When
updating the distribution—that is, fitting the model to the selected subset of sampled
solutions—it is impossible to decide whether observed correlations are due to the inherent
problem structure or due to sampling noise. Hence, the learned model will include both
kinds of dependencies: those due to the problem structure and those due to sampling noise.
This can be harmful for optimization, since variables which are independent in the problem
may be modeled as correlated variables due to sampling noise.

There are multiple ways to control overfitting. A straightforward one is to increase the
population size. On increasing the population size, correlations due to sampling noise will
become weaker (see, e.g., Goldberg et al., 1992).
Alternatively, early stopping can be applied (Bishop, 2006, Chapter 5.2). When using early
stopping, the quality of a model is not only evaluated on the training set, but also on an
independent validation set. The rationale is that both sets are sampled from the same
distribution, however the sampling noise is different. As soon as a model stops improving
on the validation set, but keeps improving on the training set, there is a risk of overfitting
to the training data. However, the reverse is not necessarily true: a model may already
overfit the training data even if it is still improving on the validation data (Hinton, 2012).
Therefore, there is no unique, optimal time point for stopping early.

Another way of limiting overfitting is regularization, which usually includes a term in the
approximation objective that penalizes overly complex models. This can be done directly,
via a scoring function that prefers simple models to complicated ones (see, e.g., Schwarz,
1978), or indirectly, by imposing constraints on the values of the learned parameters, thereby
limiting the model complexity (see, e.g., Murphy, 2012). In both cases, it is necessary to
specify the strength of regularization. This is not a straightforward task, given that there is
usually no previous information on problem complexity (Bishop, 2006, Chapter 1.1). Even
when applying approaches like early stopping or regularization in EDAs to avoid overfitting,
overfitting can still be harmful to the optimization process (Wu and Shapiro, 2006).

A different approach to keep overfitting at bay is to use Bayesian statistics, where the
goal is to estimate a distribution over the parameters, rather than a point estimate (see, e.g,
Murphy, 2012, Chapter 5).3 However, it is often computationally infeasible to compute the
full posterior distribution over the parameters for larger models involving many parameters,
and instead a point estimate (e.g., the maximum a posteriori (MAP) estimate) has to be
used, which is, again, prone to overfitting.

2.1.3. Bayesian Optimization Algorithm

The Bayesian Optimization Algorithm (Pelikan et al., 1999) is a state-of-the-art EDA for
combinatorial optimization problems (Pelikan and Goldberg, 2003; Pelikan, 2005a, 2008;

3. Note that the Bayesian Optimization Algorithm mentioned in the next Section is not using Bayesian
statistics in the above sense.

5

Probst and Rothlauf

Abdollahzadeh et al., 2012)4. BOA uses a Bayesian network for modeling dependencies
between decision variables. Decision variables correspond to nodes, and dependencies be-
tween variables correspond to directed edges. As the number of possible network topologies
grows exponentially with the number of nodes, BOA uses a greedy construction heuristic
to find a network structure G that models the training data. Starting from an unconnected
(empty) network, BOA evaluates all possible additional edges, adds the one that maximally
increases the fit between the model and the selected individuals, and repeats this process
until no more edges can be added. The fit between the model and the selected individuals
is measured using the Bayesian Information Criterion (BIC, Schwarz, 1978). The resulting
BIC score guides the structural learning of the probabilistic model. BIC calculates the
conditional entropy of nodes given their parent nodes and includes a term which reduces
overfitting by penalizing complex models. It can be calculated independently for all nodes.
If an edge is added to the Bayesian network, the change of the BIC can be computed quickly.
BOA’s greedy network construction algorithm adds the edge with the largest BIC gain until
no more edges can be added. Edge additions resulting in cycles are not allowed.

After the network structure has been learned (that is, the Bayesian model has been fitted
to a population of solutions), the parameters of the model can be determined by calculating
the conditional distributions from the data. Once the model structure and conditional
distributions are available, BOA can produce new candidate solutions by drawing random
values for all nodes in topological order.

BOA has been succeeded by the Hierarchical Bayesian Optimization Algorithm (hBOA),
which outperforms BOA on complex, hierarchical problems (Pelikan, 2005b). hBOA extends
BOA by using a diversity-preserving selection mechanism, as well as exploiting local struc-
tures in Bayesian networks. In this work, we decided to use the non-extended version of
BOA, for the following reasons: First, both extensions could be applied to DAE-EDA as
well (directly or in principle, see discussion in Section 4). Second, in our analysis, we want
to isolate effects of the respective probabilistic models of the EDAs, which is not possible if
the analyzed system (the EDA) gets overly complex.

2.2. Using Denoising Autoencoders as EDA Models: DAE-EDA

We describe how to train an autoencoder (AE), introduce the Denoising AE, and illustrate
how to sample new solutions. Section 2.2.4 summarizes the proposed DAE-EDA.

2.2.1. AE Structure and Training Procedure

An AE is a multi-layer perceptron, which is one of the basic types of neural networks (see,
e.g., Murphy, 2012, Chapter 16.5). AEs have been used for dimensionality reduction and
are one of the building blocks for deep learning (Hinton and Salakhutdinov, 2006; Bengio
et al., 2007; Bengio, 2009).

An AE consists of one visible layer x, at least one hidden layer h, and one output layer
z (see Figure 1 for the case of one hidden layer, which we will consider throughout this

4. There are a number of BOA variants, each of which has its specific up- and downsides for specific problem
types. However, all of them follow the basic BOA principles laid out in this section, which, in this sense,
is still ”state-of-the-art” (also see Section 4).

6

Harmless Overfitting: Using DAEs in EDAs

Figure 1: Autoencoder with a single hidden layer h.

paper)5. The visible neurons xi, i ∈ {1, . . . , n} can hold a data vector of length n from the
training data. For example, in the EDA context, each xi represents a decision variable. The
hidden neurons hj , j ∈ {1, . . . ,m} are a non-linear representation of the input. The output
neurons zi, i ∈ {1, . . . , n} hold the AE’s reconstruction of the input. The weights W and
W′ fully connect x to h and h to z, respectively.

An AE defines two deterministic functions: First, the encoding function h = c(x; θ),
which maps a given input x ∈ {0, 1}n, to the hidden layer h ∈ {0, 1}m, with parameters
θ and n,m ∈ N. Second, the decoding function z = f(h; θ′), which maps h back to the
reconstruction z ∈ {0, 1}n in the input space. The training objective of an AE is to find
parameters θ, θ′ that minimize the reconstruction error Errθ,θ′(x, z), which is calculated
based on the differences between x and z for all examples xi, i ∈ {1, . . . , τ} in the training
set.

θ, θ′ := argmin
θ,θ′

1

τ

τ∑
i=1

Errθ,θ′(x
i, zi). (1)

Common choices for Errθ,θ′(x, z) are the mean squared error function Errθ,θ′(x, z) = ||x−z||2
or the cross entropy function Errθ,θ′(x, z) = −

∑n
k=1[xk ∗ log(zk) + (1− xk) ∗ log(1− zk)].

Encoding and decoding functions are usually chosen as c(x) = sigm(x ∗W + bh) and
f(h) = sigm(h ∗W′ + bz), where sigm(x) = 1

1+e−x is the logistic function, W and W′ are

weight matrices of size (n×m) and (m×n), respectively, and bh ∈ Rm, bz ∈ Rn are biases
which work as offsets. Often, W and W′ are tied, that is, W′ = W>. Then, the AEs
configurable parameters are θ = {W,bh,bz}, which can be trained by gradient descent.

2.2.2. Denoising AE

If the representational power of the hidden layer h is large enough (that is, if m is not
too small), a trivial way to solve Equation 1 is to learn the identity function where each
xi is directly mapped to the corresponding zi (Alain and Bengio, 2014). Regularization
can be used to force the model to learn a more useful representation (Bengio, 2009; Alain
and Bengio, 2014). One example of a regularized AE is the Denoising Autoencoder (DAE,
Vincent et al., 2008). In a DAE, each training example x is corrupted by a stochastic

5. We use the following notation: x denotes a scalar value, x denotes a vector of scalars, X denotes a matrix
of scalars.

7

Probst and Rothlauf

Algorithm 2 Pseudo code for training an AE (when training a DAE, replace xi with q(xi)
in line 5)

1: Initialize θ = {W,bh,bz} randomly
2: Set 0 < α < 1, e.g., α = 0.1
3: while not converged do
4: for each example i in the training set do
5: h = c(xi; θ)
6: z = f(h; θ)

7: θ := θ − α ∗ ∂Errθ(x
i,z)

∂θ
8: end for
9: end while

mapping x̂ = q(x), that is, we add random noise. Subsequently, a DAE calculates the
reconstruction of the corrupted input using the encoding and decoding function as z =
f(c(x̂)). As with the original AE, the parameters are updated in the direction of ∂Err(x,z)

∂θ
(see Algorithm 2). Hence, the DAE tries to reconstruct x rather than x̂.6 DAEs have
the additional property that the noise introduced by the corruption process q(·) makes the
model more robust to partially destroyed inputs (Vincent et al., 2008).

2.2.3. Sampling a DAE

Standard AEs do not include (and do not need) a sampling process to generate new so-
lutions. However, recent work has shown that some variants of AEs, including the DAE,
implicitly capture the probability distribution of the training data. Consequently, multi-
ple sampling processes have been suggested and empirically validated (for an overview, see
Bengio et al., 2013).

For the current study, we adopted the sampling process proposed by Bengio et al.
(2013), which is a general approach and comes with a theoretical justification. Given a
data-generating distribution, P (x), a corruption process x̂ = q(x) and a DAE that has
been trained to reconstruct x from x̂, the sampling process is as follows (see Algorithm
3): First, we randomly initialize a sample x ∈ {0, 1}n. Then, for s sampling steps, we
iteratively corrupt the sample using the corruption process x̂ = q(x), use the trained DAE
to reconstruct the input z = f(c(x̂)), and set x := z. After s sampling steps, we use x as a
sample from the DAE.

Bengio et al. (2013) showed that this sampling process returns samples from the DAE’s
approximation of the data-generating distribution, that is, the training data.

6. On first glance, the DAE’s sample corruption looks similar to the mutation operator of Genetic Algo-
rithms. However, in a DAE, the corrupted data point x̂ is never directly used as a sample, but is first
reconstructed/denoised by f and c. This is in contrast to the genetic mutation operator, where the
random mutations are carried over to the next generation. Second, the level of corruption in a DAE is
typically on a much higher absolute level, i.e., more bits are distorted.

8

Harmless Overfitting: Using DAEs in EDAs

Algorithm 3 Pseudo code for sampling a DAE

1: Given the trained DAE’s θ = {W,bc,bf}, its reconstruction function f(c(x̂)), and the
corruption process q(x)

2: Initialize x ∈ [0, 1]n randomly
3: for a fixed number s of sampling steps do
4: x̂ = q(x)
5: z = f(c(x̂))
6: x := z
7: end for
8: Use x as a sample from the DAE

2.2.4. DAE-EDA

We describe how we use a DAE within an EDA, and how our practical implementation
slightly diverges from the generalized description in Algorithm 1 in two aspects. Recall that
an EDA uses a probabilistic model D to capture the properties of high-quality solutions
and sample new candidate solutions Pcandidates. Since we assume no prior knowledge, D0 is
initialized to the uniform distribution over the search space.

In each EDA generation the EDA uses the current model Dt to generate candidate
solutions Pcandidates, as in line 3 of Algorithm 1. In DAE-EDA, this is done by sampling
from the DAE, and using the samples as Pcandidates (see Algorithm 3). DAE-EDA then
evaluates the objective value of the candidate solutions, and selects a subset of high-quality
solutions. Note that in our implementation of DAE-EDA, the selection step resembles that
of a steady-state Genetic Algorithm (see, e.g., Syswerda, 1991). Here, previously selected
high-quality solutions are not simply discarded, but have a chance to be carried over into the
next generation. That is, we select Pt+1 not only from Pcandidates but from Pcandidates ∪ Pt.

Subsequently, DAE-EDA approximates the probability distribution Dt+1 by training a
DAE, using Pt+1 as training data (see Algorithm 2). In principle, it would be possible to
create Dt+1 by updating Dt using Pt+1, as stated by Algorithm 1. However, in this case, the
training data distribution constantly changes over the number of generations. Therefore,
the problem becomes an online learning task, which is much harder than training on iid
data (see, e.g., Murphy, 2012). Therefore, we train a new DAE on Pt+1 in each generation.7

After the DAE has been trained, DAE-EDA iterates to the next generation.

In order to train and sample the DAE, a number of parameters must be set in advance.
In a set of preliminary experiments, we coarsely tested various parameter settings, without
extensive fine tuning to specific problem types. Throughout our experiments, we used the
following parameters for DAE-EDA8: since we want to make as few assumptions about

7. In earlier experiments we studied training RBM-EDA (which uses a Restricted Boltzmann Machine
instead of an DAE, see Probst et al. 2017) in this fashion. However, the resulting “online-learning” EDA
had large problems finding optimal solutions for more difficult problems, as the model was not able to
adapt to the necessary changes during an EDA run.

8. The chosen values for the parameters specific to the DAE can be considered standard. The parameters
are identical for all benchmark problems. Additional experiments showed that the performance of DAE-
EDA is robust to minor changes of single parameters (parameters should remain in the same order of
magnitude). The complete source code including configuration files containing all parameter settings for
the experiments is available at https://github.com/wohnjayne/eda-suite.

9

https://github.com/wohnjayne/eda-suite

Probst and Rothlauf

the problem structure as possible, we set the number m of hidden neurons equal to the
problem size n. The corruption process q(x) randomly selects c = 10% of the inputs.
Subsequently, each of the selected bits is randomly set to 0 or 1 (salt+pepper noise). We
draw the initial weights W from a normal distribution with zero mean and variance 0.005,
as W ∼ N(0, 0.005). During training, the learning rates are set to α = 0.1 and α′ = 0.5
for weights and biases, respectively. We use a batch size of b = 100, and a cross-entropy
loss. To improve generalization, we use weight decay (L2 regularization)with a weight cost
of λ = 0.001. Furthermore, we use a momentum of β = 0.3 (Qian, 1999).

When sampling new candidate solutions from the DAE, a proper choice of the number of
sampling steps s is important. Preliminary experiments revealed that s should be relatively
small. We chose s = 10, which allows the DAE to introduce correlations between the hidden
neurons in the samples. Nevertheless, s is still low enough to be influenced by the random
noise used for initializing the sampling process (see also Sections 3.4.3 and 4). Note that
each sample is a vector x ∈ {0, 1}n. To turn this vector of real-valued elements into a
candidate solution for the EDA, that is, a binary string, we sample each variable xi from a
Bernoulli distribution with p = xi.

When training the DAE, we have to decide how many epochs the learning process shall
be allowed to run. We apply a rather simple parameter control scheme to terminate DAE
training (Probst et al., 2017; Probst, 2015a). The scheme uses the reconstruction error
et = Err(x, z), which usually decreases with the number of epochs t ∈ 1, . . . , T . Every
second epoch, we calculate for a fixed subset u of the training set U the relative difference
et = 1/|u|

∑
j∈uErr(x

j , zj). We run the learning process for a minimum of 50 training
epochs. After the initial 50 epochs, we continue training, unless et rises. We measure the
decrease γ of the reconstruction error in the last 33% of all epochs as

γ = (e0.67t − et)/(e0 − et).

We use γ to automatically check for convergence of the training. We stop training as soon as
γ < 0.05, as we assume that the DAE has, by then, learned the most relevant dependencies
between the variables. Further training is unlikely to improve the model considerably. When
sampling from the DAE (after training is terminated), we use the weights W of the epoch
with the lowest et.

2.3. Previous use of DAEs for Combinatorial Optimization

Recently, a technical report suggested using a DAE in an EDA-like optimization process
(Churchill et al., 2014). In that work, the DAE is not used as a multivariate EDA model
to sample new solutions, but is trained on the best 10-20% of the population. The trained
DAE model is then used to improve a second set of selected individuals from a population
as a variant of local search. Those individuals are first corrupted by the DAE’s corruption
process, and then reconstructed by the DAE, using the encoding and decoding functions.
The underlying idea is that the DAE is capable of improving the second set of individuals
by using the hidden representation of the problem structure learned from the best 10-20%
of the population. Therefore, it resembles a local search where the variation operator is
defined by the DAE’s learned representation. Churchill et al. report that the approach
works better than a simple genetic algorithm on a number of benchmark problems.

10

Harmless Overfitting: Using DAEs in EDAs

We recently published the basic idea of DAE-EDA in a technical report and pre-
sented preliminary results on the performance of DAE-EDA for combinatorial optimization
(Probst, 2015a,b). The early results showed that DAE-EDA is capable of solving a set
of benchmark problems very quickly, although it showed lower performance in comparison
to EDAs considering multivariate dependencies like BOA. However, its model quality was
already better than that of a simple univariate model. The refined DAE-EDA presented
in this paper differs in a number of aspects from the variant already published on arXiv
(Probst, 2015a). In contrast to the previous version, we now initialize the weights to smaller
values and also use lower values for the learning rate α and weight cost λ. Furthermore, we
use momentum, train the DAE for at least 50 epochs (instead of 20), and do not use early
stopping using a held-out validation set. In sum, the DAE with these modified settings
makes more steps in the direction of the gradient, but each individual step is smaller. This
usually yields a better approximation to the training data, while accepting more overfitting
and a longer run time.

3. Experiments and Results

We introduce the test problems (Section 3.1) and the experimental setup (Section 3.2), and
present results for DAE-EDA and BOA on solving the test problems to optimality (Section
3.3). In Section 3.4, we study overfitting in DAE-EDA. We find that overfitting is no major
problem for DAE-EDA.

3.1. Test Problems

We evaluate DAE-EDA on four standard benchmark problems using binary decision vari-
ables. Their difficulty depends on the problem size, that is, problems with more decision
variables are more difficult. Additionally, for some of the problems, the difficulty is tunable
by a parameter. Apart from the simplest problem, all problems are composed of concate-
nated subproblems. Those subproblems make the optimization objectives multimodal, since
they are either deceptive, i.e., any local search using a small neighborhood would be first
guided away from the global optimum, overlapping, i.e., variables of different subproblems
are correlated, or even hierarchical, i.e., the optimization objective is composed of multiple
hierarchical steps taking into account more and more problem variables. All problems are
maximization problems.

The simple onemax problem assigns a binary solution x of length l an objective value
f(x) =

∑l
i=1 xi, that is, it is equal to the number of ones in x. The onemax function is

unimodal and can be solved by a deterministic hill climber.

Concatenated deceptive traps (Deb and Goldberg, 1993) are tunably hard problems
composed of separable subproblems. Here, a solution vector x is divided into l subsets of
size k, with each one being a deceptive trap, which guides a local optimizer towards a local
optimum: Within a trap, all bits are dependent on each other but independent of all other
bits in x. Thus, the contribution Fl to the optimization objective of each of the l traps
can be evaluated separately and the total objective of the solution vector is the sum of
these expressions. In particular, the assignment a = xi:i+k−1 (that is, the k bits from xi to

11

Probst and Rothlauf

xi+k−1)
9 leads to a contribution of

Fl(a) =

{
k if

∑
i ai = k,

k − (
∑

i ai + 1) otherwise.

In other words, the objective value of a single trap increases with the number of zeros,
except for the vector of all ones, which is the global optimum for this particular trap.
Consequently, the objective value of a solution vector x is calculated as f(x) =

∑
l Fl(a).

NK landscapes (Kauffman and Weinberger, 1989) are defined by the two parameters n
and k ∈ {0, n−1} as well as n components fi(x), i ∈ {1 . . . , n}. A solution vector x consists
of n bits and each bit belongs to k+ 1 subsets. Consequently, each subset (component) has
k + 1 bits. Thus, each component fi depends on the value of the corresponding variable xi
as well as k other variables and maps each possible configuration of its k + 1 variables to a
scalar contribution to the objective value. The total objective value f of a solution is the
sum of the n components and calculated as

f(x) = 1/n
n∑
i=1

fi(x).

Each decision variable usually influences several fi. These dependencies between subsets
make NK landscapes also non-separable in the subproblems, that is, in general, we cannot
solve the subproblems independently. The problem difficulty increases with k. k = 0 is
a special case where all decision variables are independent and the problem reduces to a
unimodal onemax. For our experiments, we use instances of NK landscapes with known
optima provided by Pelikan (2008).

The Hierarchical If-and-only-if (HIFF) function (Watson et al., 1998) is defined for
solutions vectors of length n = 2l where l ∈ N is the number of layers of the hierarchy. It
uses a mapping function M and a contribution function C, both of which take two inputs.
The mapping function takes each of the n/2 blocks of two neighboring variables of level
l = 1, and maps them onto a single symbol each. In particular, an assignment of 00 is
mapped to 0, 11 is mapped to 1 and everything else is mapped to the null symbol ’-’. The
concatenation of M ’s outputs on level l is used as M’s input for the next level l + 1 of the
hierarchy, that is, if level l = 1 has n variables, level l = 2 has n/2 variables. On each
level, C calculates a contribution to the objective value for each block of two variables.
In particular, the assignments 00 and 11 contribute a value of 2l to the overall objective
value, all other assignments contribute nothing. The overall objective value is the sum of
all blocks’ contributions on all levels. In other words, a block contributes to the value of
the current level if both variables in the block have the same assignment. However, only if
neighboring blocks agree on the assignment, they will contribute to the value of the next
level, which is why HIFF is a difficult problem. HIFF has two global optima: the string of
all ones, and the string of all zeros.

3.2. Experimental Setup

First, we wanted to empirically determine the minimal population size that is necessary to
optimally solve a problem according to a predefined percentage of all runs (for example,

9. The k variables assigned to trap l do not have to be adjacent, but can be at any position in x.

12

Harmless Overfitting: Using DAEs in EDAs

90%).10 Consequently, for each instance and algorithm we tested multiple population sizes
between 50 and 16,00011. For each population size, we ran 20 instances. We terminated
each EDA run after either the (known) optimal solution was found, or after a maximum
of 150 generations, or if there was no improvement in the best solution for more than 50
generations. Both types of EDAs (DAE-EDA and BOA) used tournament selection without
replacement of size two, which is the tournament size that leads to the smallest possible
selection pressure, i.e., which is most diversity-preserving (Miller and Goldberg, 1995).

All test problems (with the exception of NK landscapes) have the string of all ones
as their global optimum, for any problem size. To avoid any possible model-induced bias
towards solutions with ones or zeros, we generated a random matrix R ∈ {0, 1}n∗m of ones
and zeros for each run. In each generation, we applied the following operations: before
training, we modified the training data to be Pt+1 ⊕ R, with ⊕ being a logical XOR.
After sampling from the DAE model, we obtained the resulting candidate solutions as
Pcandidates = PmodelSamples ⊕ R. Both operations are transparent to correlations between
variables.

All algorithms were implemented in Matlab/Octave and executed using Octave V3.2.4
on a single core of an AMD Opteron 6272 processor with 2,100 MHz.

3.3. Performance Results

Table 1 lists the performance of DAE-EDA and BOA for onemax with n ∈ {50, 75, 100, 150}
bits, concatenated deceptive traps with k = 4, n ∈ {40, 60, 80, 120, 160} bits and k = 5, n ∈
{50, 75, 100, 150} bits, NK landscapes with k ∈ {4, 5} and n ∈ {30, 34} bits (two instances
i each) as well as the HIFF function with n ∈ {64, 128}. For each instance and algorithm,
we report the minimal population size N that allows the EDA to find the optimal solution
in at least 18 of 20 runs, the corresponding average number of unique evaluations, i.e.,
the average number of times the objective function was called in these 20 runs, as well
as the corresponding average CPU time. Note that we only count unique evaluations—
if a particular configuration x occurs multiple times, we only count the first evalution of
f(x), store the objective value, and load it on subsequent calls12. Bold numbers indicate
a significant difference between BOA and DAE-EDA according to a Wilcoxon signed-rank
test (p < 0.01, data is not normally distributed), highlighting the better approach.

First, we study the number of required evaluations. Overall, neither of the two ap-
proaches (BOA versus DAE-EDA) clearly dominates. For the easy onemax problems, BOA
needs slightly fewer evaluations in comparison to DAE-EDA. This is also true for the smaller
k = 4 trap problems up to n = 80. For larger 4-trap problems, and all 5-trap problems,
DAE-EDA needs fewer evaluations. For the NK-landscapes, neither of the two approaches
dominates; each approach beats the other one in about the same number of test instances.

10. For a fixed problem size n, the probability α that population-based metaheuristics like EDAs fail to find
the optimal solution is O(e−N), where N is the used population size (Harik et al., 1999). While larger
populations increase the probability of finding the optimal solution, calculating the objective values of
all solutions may become prohibitively large.

11. N ∈ {50; 125; 250; 500; 1,000; 1,500; and 2,000 to 16,000 (increment 1,000)}
12. The computational cost for querying and maintaining such a memory is small, compared to the cost

of re-evaluating the fitness for our benchmark problems, and very likely to be negligible for real-world
problems.

13

Probst and Rothlauf

Problem Algorithm

Average results
Population size N such that optimum

is found in ≥90% of runs
N Unique Evaluations Time (sec)

ONEMAX50
BOA 125 2,119±125 685±101

DAE-EDA 125 2,324±121 204±30

ONEMAX75
BOA 125 2,787±158 2,182±321

DAE-EDA 125 2,944±137 336±36

ONEMAX100
BOA 250 6,259±153 8,967±1,016

DAE-EDA 250 7,005±214 693±58

ONEMAX150
BOA 250 7,698±270 26,867±3,380

DAE-EDA 250 8,132±253 1,361±140

4-Traps 40 bit
BOA 1,000 13,673±758 2,728±297

DAE-EDA 1,000 20,309±2,690 237±38

4-Traps 60 bit
BOA 1,000 20,236±1,362 10,604±1,707

DAE-EDA 1,000 33,794±1,205 492±35

4-Traps 80 bit
BOA 2,000 43,777±1,695 43,935±4,994

DAE-EDA 1,000 46,918±1,816 910±34

4-Traps 120 bit
BOA 3,000 82,068±2,120 205,244±16,962

DAE-EDA 1,000 74,998±2,670 2,633±100

4-Traps 160 bit
BOA - execution time limit exceeded

DAE-EDA 1,000 105,528±3,749 6,287±323

5-Traps 25 bit
BOA 1,500 14,924±1,028 1,384±211

DAE-EDA 1,000 10,833±992 101±17

5-Traps 50 bit
BOA 3,000 47,904±3,120 20,199±2,704

DAE-EDA 1,000 28,017±3,414 380±52

5-Traps 75 bit
BOA 6,000 119,044±4,353 119,275±15,826

DAE-EDA 1,000 45,438±2,313 925±84

5-Traps 100 bit
BOA 8,000 190,011±4,664 355,140±25,659

DAE-EDA 1,000 62,599±2,852 1,897±161

5-Traps 150 bit
BOA - execution time limit exceeded

DAE-EDA 1,500 125,238±5,440 7,671±535

NK n = 30,
k = 4, i = 1

BOA 2,000 32,015±3,094 4,590±1,044
DAE-EDA 1,000 17,472±2,130 202±37

NK n = 30,
k = 4, i = 2

BOA 4,000 67,939±6,649 13,360±3,445
DAE-EDA 10,000 189,613±15,223 1,091±319

NK n = 34,
k = 4, i = 1

BOA 1,000 21,546±1,860 3,603±625
DAE-EDA 2,000 44,860±7,456 368±119

NK n = 34,
k = 4, i = 2

BOA 5,000 88,321±9,272 20,377±5,123
DAE-EDA 1,500 34,879±4,686 344±99

NK n = 30,
k = 5, i = 1

BOA 500 11,221±644 1,565±260
DAE-EDA 3,000 66,820±10,883 504±152

NK n = 30,
k = 5, i = 2

BOA 2,000 41,641±5,157 6,831±1,541
DAE-EDA 4,000 83,832±13,303 463±157

NK n = 34,
k = 5, i = 1

BOA 16,000 307,171±24,227 86,846±15,431
DAE-EDA 5,000 117,065±10,868 631±97

NK n = 34,
k = 5, i = 2

BOA 16,000 300,058±42,914 84,266±22,365
DAE-EDA 8,000 195,202±24,422 1,011±226

HIFF64
BOA 500 11,991±731 7,480±1,059

DAE-EDA 1,000 22,066±2,234 369±32

HIFF128
BOA 1,500 51,008±2,387 137,617±12,151

DAE-EDA 1,000 50,447±1,214 2,542±161

Table 1: Number of evaluations and CPU time for DAE-EDA and BOA. Bold numbers
indicate better performance.

14

Harmless Overfitting: Using DAEs in EDAs

HIFF problem size
Average number of evaluations to solve all runs

DAE guided local search (10 runs) DAE-EDA (20 runs)

128bit 231,000±23,537 86,700±6,867

256bit 1,355,500±190,793 220,650±13,348

Table 2: Number of evaluations to solve two HIFF problem instances to optimality. Results
for the DAE guided local search are from Churchill et al. (2014).

For the 64 bit HIFF problem, BOA needs fewer evaluations. For n = 128 bit, there is no
significant difference between both approaches.

When comparing the performance of DAE-EDA to the results of its previous variant
reported in a technical report (Probst, 2015a, not included in the table), the number of eval-
uations is significantly smaller, often by a large margin (except one single instance). Thus,
we do not further examine performance differences between DAE-EDA and its previous
variant.

Second, we examine the average time the two algorithms require to solve the problems.
Here, the situation is different: For all problem instances, DAE-EDA is significantly faster
than BOA, sometimes by multiple orders of magnitude. We want to emphasize that the di-
rect comparison of CPU times is not entirely fair for BOA, due to the choice of programming
language (see discussion in Section 4).

Table 2 compares DAE-EDA to the DAE-inspired local search proposed by Churchill
et al. (2014). We report the number of evaluations required to optimally solve two instances
of the HIFF problem (128bit and 256bit) in all runs. The results for the DAE-guided local
search are taken from Churchill et al. (2014) and are the average number of evaluations
necessary to solve 10 out of 10 optimization runs. For DAE-EDA, we report the average
number of evaluations necessary to solve 20 out of 20 runs13. We observe that DAE-EDA
needs fewer evaluations for both instances of the HIFF problem. For the instance with
128 bit, DAE-EDA needs only approx. 38% of the number of evaluations; for the 256 bit
problem, it only needs 17%. We attribute this large performance difference to the sampling
process, which samples from the trained model’s distribution directly instead of using the
DAE as a tool for local search modifying only selected individuals.

The results indicate that DAE-EDA is able to properly decompose the problems by
approximating the probability distribution of the training data. Figure 2 exemplarily visu-
alizes the DAE’s problem decomposition when solving a concatenated 5-trap problem. For
three different generations (7, 13, and 17), the plots visualize the DAE’s weight matrix;
white pixels correspond to large positive weights, black pixels correspond to large nega-
tive weights. Each of the 30 rows (each row corresponds to one of the 30 hidden neurons)
contains 30 weights connecting the hidden neuron with the 30 problem variables. In the
deceptive 5-trap problem, blocks of five adjacent variables have a strong contribution to the
objective value if all five variables are equal to one or equal to zero. Furthermore, each block

13. Note that solving 20 out of 20 runs is more difficult than solving 10 out of 10 runs. Also note that the
number of evaluations reported for DAE-EDA for the 128bit problem in Table 2 differs from the one in
Table 1, which reports unique evaluations only.

15

Probst and Rothlauf

(a) EDA generation 7 (b) EDA generation 13 (c) EDA generation 17

Figure 2: Example of weight matrices W ∈ R[m×n] of DAE-EDA optimizing a 30 bit concatenated
5-trap problem.

of five variables is independent of all other blocks. In early generations (Figure 2a), problem
structure is strongly masked by noise. Rows with a single bright or dark pixel correspond to
hidden neurons which have partly learned the identity function, due to overfitting. In later
generations (Figures 2b and 2c), many of the hidden neurons strongly influence a single
block of problem variables (bright/dark blocks of five adjacent pixels), and are indifferent
to most other variables (mid gray values). Therefore, the learned representation of the
model matches the problem structure well.

3.4. Overfitting in DAE-EDA

We study overfitting of DAEs and how it affects EDA behavior and performance. We find
that, in a single EDA generation, the DAE overfits by learning the identity function (IF)
(Section 3.4.1). This situation is especially relevant in the early EDA generations, where
strong noise is masking the problem structure (Section 3.4.2). We show that samples from
a DAE-EDA which has learned the IF are very diverse, sometimes even more diverse than
the training data (Section 3.4.3). This diversity can help DAE-EDA to avoid premature
convergence, search the solution space more thoroughly by escaping local optimal, and yield
better overall solutions (Section 3.4.4).

Throughout this section, we report results for a population size of N = 200, which
are averaged over 50 runs. For the DAE corruption noise, we use three different values
c ∈ {0.05, 0.1, 0.2}. The corruption noise acts as a regularizer and, therefore, has a direct
influence on overfitting.

3.4.1. An Overfitting DAE Learns the Identity Function

We study the overfitting behavior of the DAE when approximating the population Pt+1

in the very first EDA generation. Recall that an AE tends to learn the IF as its hidden
representation. To measure how strongly the AE replicates given input in its output, we

16

Harmless Overfitting: Using DAEs in EDAs

define the degree τ ∈ [0, 1] to which the DAE has learned the IF as

τ =
1

u ∗ n
∑
u,n

I(Aun, f(c(Aun))),

where A ∈ [0, 1]un is a matrix containing u random individuals ∈ {0, 1}n, Aun is the nth
bit in the uth row of A, and

I(a, b) =

{
1 if a = b,

0 otherwise.

τ measures the percentage of output bits that are identical to the corresponding input bits
after performing a single encoding/decoding step with z = f(c(x)) (see Algorithm 2, lines
5-6). For an untrained DAE, τ ≈ 0.5. If the learned hidden representation is equal to the
IF, the output is identical to the input, and, hence, τ = 1.

To study how τ changes during DAE training, we focus on the first EDA generation.
If the initial distribution is uniform over the search space, the diversity of the population
will be the highest possible. Each subsequent selection step consecutively reduces diversity
throughout an EDA run.

Figure 3 plots the degree τ to which the IF has been learned by the partially trained
DAE over the number of training epochs for a 50 bit 5-Trap problem.14 We show results
for different amounts of corruption c ∈ {0.05, 0.1, 0.2}.

14. Results for other problem instances are qualitatively similar. Hence, for brevity reasons, Sections 3.4.1
to 3.4.3 only display results for 50 bit 5-Traps.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 50 100 150 200 250 300

Id
e
n
ti
ty

 f
u
n
c
ti
o
n
 i
n
te

n
s
it
y
 τ

DAE epochs

DAE c= 5%
DAE c=10%
DAE c=20%

Figure 3: Degree τ to which a DAE learns the identity function over the training epochs of
the first generation. We plot results for different levels of regularization noise c.

17

Probst and Rothlauf

We find that in the first epochs, τ ≈ 0.5, for all c. This means, the DAE has not
(yet) learned the identify function. After approximately 30 to 40 training epochs, τ starts
increasing. With a lower amount of corruption noise c, that is, with less regularization, τ
starts to increase earlier and grows stronger. Hence, after an initial period of a few epochs
where the DAE is not overfitting, a DAE that is trained for more epochs gradually overfits
by learning the univariate IF. Lower values for c lead to an earlier and stronger overfitting
behavior.

Learning the IF has a strong impact on the samples obtained from the DAE, due to the
way the sampling process works: New samples are initialized by random values, followed by
multiple encoding/decoding and corruption steps (see Section 2.2.3). These initial random
values are uniformly distributed in the EDA solution space. Since the overfitting DAEs
learns the identity function (which just replicates the random input values as output values),
the DAEs samples become more similar to the random initialization noise, which avoids
replicating sampling noise.

3.4.2. DAE Overfitting over the Number of EDA Generations

We extend our analysis and study how τ develops over the number of generations of an EDA
run. Figure 4 plots the degree τ to which the trained DAE has learned the identity function
(after training is terminated) over the generations of the EDA. As before, we show results
for 50 bit 5-traps and average results over 50 runs. Results for other problem instances are
analogous. We find that τ decreases during an EDA run, and that, again, lower values of
corruption noise c lead to larger values of τ . This means that with lower corruption noise,
the DAE tends to overfit more strongly by learning the identity function.

0.55

0.6

0.65

0.7

0.75

0.8

0 5 10 15 20 25 30

Id
e
n
ti
ty

 f
u
n
c
ti
o
n
 i
n
te

n
s
it
y
 τ

EDA generations

DAE c= 5%
DAE c=10%
DAE c=20%

Figure 4: Degree τ to which DAE-EDA has learned the identity function over the number
of generations. We plot results for different levels of regularization noise c.

18

Harmless Overfitting: Using DAEs in EDAs

Recall that, in each generation, DAE training stops when the improvement on the
reconstruction error has slowed down (see Section 2.2.4). In the early EDA generations, the
problem structure is usually strongly masked by random noise. During training, the DAE
can only learn problem structure which is not masked. After doing so, it will capture the
IF to further decrease the reconstruction error, especially in the early EDA generations.
This is different in later generations, when the amount of noise present in the population
is lower. In this case, the DAE can reduce the reconstruction error by capturing problem
structure, before starting to overfit by learning the IF. As a result, the high uncertainty
about the problem structure in the first EDA generations leads to a DAE with a hidden
representation strongly determined by the IF. Such a model will tend to reproduce inputs
as outputs.

3.4.3. Population Diversity in DAE-EDA and BOA

We study how the diversity of the individuals in a population develops over an EDA run
and how DAE corruption noise c affects population diversity.

The diversity of a population measures how diverse the individuals in a population are.
Diversity is high if there are large differences between the solutions in a population, which
is the case when sampling uniformly from the solution space. In contrast, a completely
converged population has minimal diversity since all individuals are identical. We measure
the diversity δ ∈ [0, 1] of a population as the (normalized) inertia I (Morrison and De Jong,
2002) as

δ =
4

nN
∗ I =

4

nN

n∑
i=1

N∑
u=1

(xui − x̄i)2,

where n is the length of a solution (number of bits), N is the population size, xui is the
value of individual u ∈ {1, . . . , N} at position i ∈ {1, . . . , n}, and x̄i = 1/N ∗

∑N
u=1 x

u
i

is the mean of the ith variable across all individuals. Thus, the inertia I is equal to the
sum of the variances of the individual variables. The factor 4/(nN) normalizes δ to be
∈ [0, 1]. Besides inertia, there are other ways to measure the diversity of a population
such as the population diversity index (Smit et al., 2011), which counts the number of
duplicates in a population. Unfortunately, such approaches are not meaningful in the first
EDA generations since the number of duplicates is usually close to zero. In contrast, using
the inertia I has the drawback that it is univariate, that is, it does not consider interactions
between variables. Hence, it tends to overestimate population diversity when there are
multiple copies of pairwise diverse individuals in the population (see discussion in Smit
et al., 2011), which can be the case in later EDA generations (especially for trap functions).

The search behavior and performance of EDAs strongly depend on the diversity of its
population. Often, EDAs start with an initial population of solutions that are uniformly
sampled from the solution space. In such an initial population, diversity is maximal and
subsequent EDA generations usually continuously reduce diversity (Rothlauf, 2011). The
main mechanism that reduces diversity in an EDA is selection. In each selection step,
low-quality solutions are discarded from the population. Since the selected solutions form
a subset of the original population, population diversity is reduced with every selection

19

Probst and Rothlauf

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

D
iv

e
rs

it
y
 δ

EDA generations

DAE c= 5% (avg gens 30.0)
DAE c=10% (avg gens 25.7)
DAE c=20% (avg gens 22.0)

BOA (avg gens 18.7)

Figure 5: Diversity δ of the population over number of generations. We plot results for
DAE-EDA with different levels of regularization noise c and BOA.

step.15 Often, an EDA run stops when the population is converged and diversification is
low.

Usually, building an appropriate model for a population and sampling from the model
does not affect a population’s diversity. For example, when using large population sizes
N and simple univariate models like UMDA or PBIL, which assume factorized probability
distributions, univariate diversity measures like δ find that the diversity of the sampled pop-
ulation is identical to its parent population which was used to train the model. However,
the situation is different if the model does not learn the properties of the parent popula-
tion, that is, it is underfitting. In this case, model building and sampling can also reduce
population diversity since candidate solutions sampled from an underfitting model of the
parent population have lower diversity (Branke et al., 2007).

We study how the diversity δ of an EDA population changes over the number of gen-
erations. Figure 5 plots the diversity δ of the individuals selected by the EDA for model
building over the number of EDA generations. We show results for the three DAE configu-
rations with different corruption noise (c ∈ {0.05, 0.1, 0.2}) and for BOA. Again, results are
for 50 bit 5-traps and averaged over 50 runs.16

As expected, the initial diversity is close to δ ≈ 1, which indicates a randomly sampled
population uniformly distributed over the search space. Furthermore, diversity decreases in
subsequent generations. For DAE-EDA, low values of c (which means low regularization)

15. Note that there are specific mechanisms that can be used in GAs and EDAs to limit the loss of diversity
in the selection step—see discussion in Section 4.

16. We only plot results up to the average generation in which each of the individual runs found its best
solution (which may also be a local optimum). As outlined in Section 3.2, EDAs that do not find the
optimum solution may continue for up to 50 more generations before converging or terminating. These
“tails” of the runs are omitted in the plots.

20

Harmless Overfitting: Using DAEs in EDAs

0.97

0.98

0.99

1

1.01

1.02

1.03

0 5 10 15 20 25 30

δ
s
a
m

p
le

s
 /
 δ

tr
a
in

in
g

EDA generations

DAE c= 5%
DAE c=10%
DAE c=20%

BOA

Figure 6: δsamples/δtraining over number of generations. We plot results for DAE-EDA with
different levels of regularization noise c and BOA.

result in a slower decrease of diversity. Accordingly, DAE-EDA with weak regularization
runs for more EDA generations than DAE-EDA with strong regularization. For example,
with c = 0.05, DAE-EDA finds the best solutions after an average number of 30.0 gener-
ations; with c = 0.2, DAE-EDA finds the best solutions already after an average of 22.0
generations. BOA runs find their best solutions after only 18.7 generations. We see that
for this specific problem instance, the population diversity in DAE-EDA is significantly
higher than in BOA, where we observe the strongest loss of diversity and the lowest average
number of generations.

The results obtained are surprising since all four EDA variants use the same selection
mechanism. Hence, the differences in the population diversity cannot be a result of selection
but must be a result of the model building and sampling step. Therefore, we analyze the
diversity of the individuals sampled from a model and compare it to the individuals selected

for training a model. Figure 6 shows the ratio rδ =
δsamples

δtraining
for DAE-EDA with different

regularization noise c and BOA over the number of generations. Again, we only plot results
up to the average number of generations that are necessary to find the best solutions.
rδ = 1 indicates that the diversity of the training and sampled population is identical.
Lower values of rδ indicate a diversity loss due to model building and sampling. Higher
values of rδ indicate that model building and sampling introduce additional diversity into
the search process.

For BOA, we observe rδ ≈ 0.995. Thus, model building and sampling leads to a small,
but constant loss of diversity over the number of generations. A reason for this loss in
diversity could be that BOA uses BIC, which “tends to favor overly simply models” (Bishop,
2006, p. 33), thereby introducing a bias towards simpler, less diverse solutions.

21

Probst and Rothlauf

The behavior of DAE-EDA varies, depending on the setting of c. For weak regular-
ization (c ∈ {0.05, 0.1}), model building and sampling reduces diversity only in the first
few generations. After ≈ 5 generations, rδ & 1 which means that model building and
sampling slightly increases the diversity. This constant increase of diversity enables the
weakly regularized DAE-EDAs to keep the population diversity at a relatively high level
for many generations (compare Figure 5). When increasing regularization noise to c = 0.2,
the situation is similar; however, it takes more generations until the model building and
sampling increases diversity. Since the loss of diversity is stronger in the early generations,
the diversity of the population is reduced more quickly in comparison to lower values of c.

3.4.4. Diverse Populations Lead to Better Solutions

We found that DAE-EDA with weak regularization tends to increase the diversity of the
samples, compared to the training data. This keeps the population diversity high, enabling
the EDA to run for more generations. However, diverse solutions alone do not necessarily
entail better optimization results: if the additional diversity is merely caused by noise
overlaying the same prototype solution, it may cause the EDA to converge more slowly, but
not by default to a better solution. We are more interested in solutions that are diverse in
the sense that they belong to different, promising areas of the solution space.

Hence, we analyze how many of the promising parts of the solution space are searched.
All test problems are multimodal, that is, they have multiple local optima. One of these
local optima is the global optimum. Therefore, during the search, multiple areas of the
search space can be deemed promising. As a rule of thumb, a good heuristic should not
focus on very few of these promising areas too quickly, since it may discard the part of
the solution space containing the global optimum. Instead, it should keep the coverage of
the promising areas high. A proxy for this coverage is the number of local optima, that
the algorithm is likely to find. A higher number of local optima means a better coverage
of the promising areas of the solution space. We can determine this number by counting
the number of different basins of attraction of local optima in the population. A basin
of attraction for a local optimum consists of all solutions which take a deterministic hill
climber to this local optimum. Therefore, for a population of solutions, we determine the
number of basins γ by counting how many different local optima a simple hill climber finds
on the candidate solutions.

The left-hand side of Figure 7 shows the number of basins of attraction γ for DAE-
EDA and BOA on the 50 bit 5-Traps (7a), NK with n = 30, k = 4, and i = 1 (7b), and
64 bit HIFF instances (7c). For all three problem instances, DAE-EDAs coverage of the
solution space γ is higher for low values of c, that is, using a weakly regularized DAE.
That is, throughout a run, DAE-EDA is able to keep a higher number of different basins
of attraction in the population, and focus the search on specific basins only in later EDA
generations.

Consequently, the objective values of the model samples develops differently, depending
on the regularization. The right-hand side of Figure 7 shows the average value of the
best model sample in each EDA generation. For all three problems, DAE-EDA with strong
regularization finds good solutions faster by quickly focusing the search on a smaller number
of basins of attraction. On the other hand, DAE-EDA with weak regularization explores

22

Harmless Overfitting: Using DAEs in EDAs

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

N
u
m

b
e
r

o
f
b
a
s
in

s
 i
n
 s

a
m

p
le

s

EDA generations

DAE c= 5%
DAE c=10%
DAE c=20%

BOA

25

30

35

40

45

50

0 10 20 30 40 50

F
it
n
e
s
s
 o

f
b
e
s
t
s
a
m

p
le

EDA generations

DAE c= 5% (avg. best:46.52)
DAE c=10% (avg. best:45.72)
DAE c=20% (avg. best:43.68)

BOA (avg. best:41.48)

(a) 50 bit 5-Traps

0

50

100

150

200

0 5 10 15 20 25 30 35

N
u
m

b
e
r

o
f
b
a
s
in

s
 i
n
 s

a
m

p
le

s

EDA generations

DAE c= 5%
DAE c=10%
DAE c=20%

BOA

19.5

20

20.5

21

21.5

22

22.5

23

0 10 20 30 40 50 60 70 80

F
it
n
e
s
s
 o

f
b
e
s
t
s
a
m

p
le

EDA generations

DAE c= 5% (avg. best:22.92)
DAE c=10% (avg. best:22.96)
DAE c=20% (avg. best:22.84)

BOA (avg. best:22.88)

(b) NK landscape n = 30, k = 4, i = 1

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35

N
u
m

b
e
r

o
f
b
a
s
in

s
 i
n
 s

a
m

p
le

s

EDA generations

DAE c= 5%
DAE c=10%
DAE c=20%

BOA
100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

F
it
n
e
s
s
 o

f
b
e
s
t
s
a
m

p
le

EDA generations

DAE c= 5% (avg. best:346.80)
DAE c=10% (avg. best:332.08)
DAE c=20% (avg. best:305.10)

BOA (avg. best:362.40)

(c) 64 bit HIFF

Figure 7: Number of basins of attraction γ covered in the model samples (left) and the fitness of the
best model sample (right) over the number of generations for the 50 bit 5-Trap problem
(top), the NK n = 30, k = 4, i = 1 instance (middle), and the 64 bit HIFF problem
(bottom). The left-hand plots show γ up to the average number of generations until the
best solution is found, whereas the right-hand plots show the fitness until the EDA run
is stopped.

23

Probst and Rothlauf

more basins, and needs a higher number of EDA generations to find high-quality solutions.
With increasing number of generations the higher coverage of basins pays off for the weakly
regularized DAE-EDAs, allowing them to find better solutions. For all test problems, the
quality of the final solution is higher for the weakly regularized DAE-EDAs.17

These results, which are obtained with a lower population size N = 200, confirm the
findings from Table 1: DAE-EDA performs particularly well on the deceptive trap problem.
Here, DAE-EDA’s high coverage of the solution space, which is higher than BOA, leads to a
performance difference between DAE-EDA and BOA. For the NK instance, the coverage γ
of the solution space is similar for DAE-EDA and BOA, which leads to similar performance
(even when low-regularized DAE-EDAs slightly outperform BOA). For the 64 bit HIFF
problem, we observe a higher performance of BOA, which goes along with a higher coverage
γ of the solution space. For the larger 128 bit HIFF problem (not shown in the figure),
the situation would slightly change since weakly-regularized DAE-EDAs better cover the
solution space, allowing them to perform similar to BOA (compare Table 1).

In sum, we find that DAEs overfit by learning the IF, especially in the first EDA gener-
ations, where there is a lot of uncertainty about the problem structure. The strength of this
effect can be influenced by the regularization parameter c. The overfitting of the DAE leads
to more diverse samples, which enables DAE-EDAs to run longer before converging. Fur-
thermore, higher diversity leads to a higher coverage of the promising parts of the solution
space, and hence, to a better solution quality.

4. Discussion

Our results indicate that DAE-EDA is able to solve difficult combinatorial optimization
problems. Regarding the number of evaluations of the objective functions, its performance
is similar to BOA. Especially for larger, difficult concatenated trap problems, DAE-EDA
outperforms BOA. This indicates that the representation learned by the DAE in each EDA
generation matches the underlying problem structure well, allowing DAE-EDA to properly
decompose difficult problems.

The way the DAE handles overfitting has a major impact on the performance of DAE-
EDA. Usually, when fitting complex models to data, overfitting has to be carefully controlled
by adjusting the amount of regularization. DAE overfits by learning the identity function
(IF), gradually overlaying the learned, useful representation. Although this type of overfit-
ting has a negative effect on the quality of the DAE’s approximation of the training data,
learning the univariate IF is less harmful for the EDA in comparison to learning multivari-
ate sampling noise, since the IF introduces unbiased random noise into the samples. This
unbiased noise leads to a higher level of population diversity, which allows DAE-EDA to run
for more generations before convergence, results in a better coverage of promising solutions
in the solution space, and enables DAE-EDA to search the promising parts of the solution
space more thoroughly.

Since overfitting leads to unbiased random noise in the samples, DAE-EDA is robust
with respect to the amount of regularization. Thus, an accurate adjustment of the amount
of regularization is usually not necessary. This is particularly useful since the probability

17. For the NK landscape problem, the overall pattern is consistent but the average best solution of DAE-
EDA with c = 0.1 is slightly better than with c = 0.05 (see Figure 7b).

24

Harmless Overfitting: Using DAEs in EDAs

distributions of populations in different EDA generations change strongly: in early EDA
generations, populations are very noisy and population diversity is high. With an increasing
number of generations, there is less noise and population diversity gets lower as the search
focuses on promising areas of the search space. At the end of a run, population diversity is
very low and the population has converged. Since DAE-EDA is robust with respect to the
amount of regularization, no larger effort to control overfitting throughout an DAE-EDA
run is necessary.

All algorithms presented in this paper are implemented in Matlab/Octave. We found
that the execution times of DAE-EDA are much lower than BOA, sometimes by multiple
orders of magnitude (see Table 1). However, the CPU times are biased since the implemen-
tation of DAE-EDA usually makes extensive use of matrix operations, which are relatively
fast in Matlab/Octave. In contrast, BOA mainly uses nested loops for calculating the
model, which are relatively slow in Matlab/Octave. When switching to other programming
languages like C, we expect the running time differences between BOA and DAE-EDA
to be smaller since such languages better support nested loops. On the other hand, of
course, DAE-EDA can strongly benefit from parallelization using GPUs (see e.g. Probst
et al. (2014)). In contrast, parallelizing multivariate EDAs like BOA is possible but diffi-
cult, and typically yields lower speedups, even when using GPUs (Očenášek and Schwarz,
2000; Munawar et al., 2009). In summary, moving from Octave/Matlab to more efficient
implementations is likely to reduce the gap in running times between DAE-EDA and BOA.
However, since model building and sampling in DAEs can strongly benefit from paralleliza-
tion, we presume that the use of parallel architectures like GPUs would, again, result in
DAE-EDA being the faster algorithm.

In this work, we compare a DAE-EDA with a single hidden layer to the basic version
of BOA rather than its successor hBOA (compare Section 2.1.3). To tackle challenging,
hierarchical problems more efficiently, hBOA extends BOA with two mechanisms: First, it
uses Restricted Tournament Replacement (RTR), a modified selection operator designed to
retain higher levels of diversity (Harik, 1995). RTR could be used directly in DAE-EDA
as well. Second, hBOA uses decision trees to capture local structures better, and reduce
the number of probabilities that need to be calculated and stored when a node has many
parents, i.e., hierarchical dependencies are present. A similar effect could be achieved in a
DAE by increasing the number of hidden layers, i.e., making it deeper. Deep latent layers
could then model patterns spanning many decision variables by building upon patterns
spanning fewer decision variables modeled by shallow layers.

Consequently, it would be interesting to investigate in greater detail how the performance
of DAE-EDA varies when modifying the number and size of the hidden layer(s). A single,
smaller hidden layer can not properly implement the identity function required for unbiased
sampling noise, but would allow for faster training and automatic regularization. Using a
deeper network with more than one hidden layer and skip connections (see, e.g., He et al.
(2016)) accounting for the identity function could be a promising compromise.

Lastly, it would be worthwhile to investigate how the discovered diversity-preserving
mechanism of DAE-EDA relates to IGO algorithms (Ollivier et al., 2017). For IGO al-
gorithms (like PBIL or cGA), it has been shown that the loss of diversity during an op-
timization run is minimal. DAE-EDA also follows this idea and keeps the diversity loss
resulting from model building and sampling low. We encourage future work that studies

25

Probst and Rothlauf

the properties of the Fisher information matrix (Ollivier et al., 2017) when using DAE
models.

5. Conclusions

We introduced DAE-EDA, an Estimation of Distribution Algorithm which uses a Denoising
Autoencoder as its probabilistic model and tested its performance on a set of standard
benchmark problems for combinatorial optimization with a single objective. DAE-EDA
required a similar number of evaluations of the objective function to solve the problems to
optimality, compared to the Bayesian Optimization Algorithm (BOA). For larger instances
of difficult concatenated deceptive trap problems, DAE-EDA needed a lower number of
evaluations than BOA. In our Octave implementation, the running times of DAE-EDA are
much lower than BOA since model training and sampling is much faster for a DAE than for
a Bayes network as used in BOA. Therefore, DAE-EDA can be a very useful optimization
tool for problems where the computational cost of evaluating the objective function is low.

The major reason for the high performance of DAE-EDA is its specific way of overfitting
to limited amounts of data. Overfitting usually leads to learning multivariate sampling noise,
where the model learns spurious correlations between decision variables. In contrast to other
models, DAEs overfit by gradually replacing a learned, useful latent problem representation
by the univariate identity function. Although this has a detrimental effect on the overall
model quality, its effect on heuristic search is low since candidate solutions sampled from
a DAE tend to be diverse and resemble white noise when combined with the stochastic
sampling process. This enables DAE-EDA to run for more generations, and search the
solution space more thoroughly.

There are multiple paths for future research. First, it could be beneficial to implement
walkback training, an extension of the training algorithm often used with DAEs (Bengio
et al., 2013). This could yield an improved model quality, at the cost of a higher computa-
tional effort. Furthermore, there are other sampling techniques that could be applied to the
DAE to create new candidate solutions (Bengio et al., 2013). Another area of research could
be to use other generative variants of autoencoders, such as the Contractive Autoencoder
(Rifai et al., 2011) or the Variational Autoencoder (Kingma and Welling, 2013). Lastly, it
would be very interesting to investigate the effect of modifying the size of the DAE’s hidden
layer, or increasing the number of hidden layers.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable and insightful
comments.

References

Asaad Abdollahzadeh, Alan Reynolds, Michael Christie, David W Corne, Brian J Davies,
and Glyn JJ Williams. Bayesian optimization algorithm applied to uncertainty quantifi-
cation. SPE Journal, 17(03):865–873, 2012.

26

Harmless Overfitting: Using DAEs in EDAs

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data-
generating distribution. Journal of Machine Learning Research, 15:3563–3593, 2014.

Shumeet Baluja. Population-based incremental learning: A method for integrating genetic
search-based function optimization and competitive learning. Technical Report CMU-
CS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994.

Shumeet Baluja and Scott Davies. Using optimal dependency-trees for combinational op-
timization: Learning the structure of the search space. In Proceedings of the Fourteenth
International Conference on Machine Learning (ICML 1997), pages 30–38. Morgan Kauf-
mann, 1997.

Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends Machine
Learning, 2(1):1–127, January 2009. ISSN 1935-8237. doi: 10.1561/2200000006. URL
http://dx.doi.org/10.1561/2200000006.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In B. Schölkopf, J.C. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems 19, pages 153–160. MIT Press, 2007.

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising Auto-
encoders as generative models. In Advances in Neural Information Processing Systems
26 (NIPS’13). NIPS Foundation (http://books.nips.cc), 2013.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, 2006. ISBN 9780387310732.

Juergen Branke, Clemens Lode, and Jonathan L. Shapiro. Addressing sampling errors
and diversity loss in umda. In Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’07, pages 508–515, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-697-4. doi: 10.1145/1276958.1277068. URL http://doi.acm.

org/10.1145/1276958.1277068.

Gavin C Cawley and Nicola LC Talbot. On over-fitting in model selection and subsequent
selection bias in performance evaluation. Journal of Machine Learning Research, 11(Jul):
2079–2107, 2010.

Shih-Hsin Chen, Min-Chih Chen, Pei-Chann Chang, Qingfu Zhang, and Yuh-Min Chen.
Guidelines for developing effective estimation of distribution algorithms in solving single
machine scheduling problems. Expert Systems with Applications, 37(9):6441–6451, 2010.

Alexander W. Churchill, Siddharth Sigtia, and Chrisantha Fernando. A denoising autoen-
coder that guides stochastic search. Technical Report arXiv:1404.1614, Queen Mary,
University of London, 2014.

Kalyanmoy Deb and David E Goldberg. Analyzing deception in trap functions. In D. L.
Whitley, editor, Foundations of Genetic Algorithms 2, pages 93–108. Morgan Kaufmann,
1993. doi: 10.1016/B978-0-08-094832-4.50012-X.

27

http://dx.doi.org/10.1561/2200000006
http://doi.acm.org/10.1145/1276958.1277068
http://doi.acm.org/10.1145/1276958.1277068

Probst and Rothlauf

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance
dilemma. Neural Computation, 4(1):1–58, 1992.

David E Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional, Reading, MA, USA, 1989.

David. E. Goldberg, Kalyanmoy Deb, and James H. Clark. Genetic algorithms, noise, and
the sizing of populations. Complex Systems, 6:333–362, 1992.

George Harik, Erick Cantú-Paz, David E. Goldberg, and Brad L. Miller. The gambler’s ruin
problem, genetic algorithms, and the sizing of populations. Evolutionary Computation, 7
(3):231–253, 1999.

Georges R. Harik. Finding multimodal solutions using restricted tournament selection. In
Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh, PA,
USA, July 15-19, 1995, pages 24–31, 1995.

Georges R Harik, Fernando G Lobo, and Kumara Sastry. Linkage learning via proba-
bilistic modeling in the extended compact genetic algorithm (ECGA). In Martin Pelikan,
Kumara Sastry, and Erick Cantú-Paz, editors, Scalable optimization via probabilistic mod-
eling, volume 33 of Studies in Computational Intelligence, pages 39–61. Springer, Berlin,
Heidelberg, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

Geoffrey E. Hinton. A practical guide to training restricted Boltzmann machines. In
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Ragan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, Moshe Y.
Vardi, G. Weikum, G. Montavon, G. B. Orr, and K.-R. Müller, editors, Neural Networks:
Tricks of the Trade, volume 7700 of Lecture Notes in Computer Science, pages 599–
619. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-35288-1. doi:
10.1007/978-3-642-35289-8{\textunderscore}32.

Geoffrey E Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

John H Holland. Adaptation in Natural and Artificial Systems: An Introductory Analy-
sis with Applications to Biology, Control and Artificial Intelligence. Complex Adaptive
Systems. MIT Press, Cambridge, 6 edition, 2001. ISBN 9780262082136.

Stuart A Kauffman and Edward D Weinberger. The NK model of rugged fitness landscapes
and its application to maturation of the immune response. Journal of Theoretical Biology,
141(2):211–245, 1989. ISSN 00225193. doi: 10.1016/S0022-5193(89)80019-0.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of
the 2014 International Conference on Learning Representations (ICLR), 2013.

28

Harmless Overfitting: Using DAEs in EDAs

Pedro Larrañaga and Jose A. Lozano. Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation, volume 2 of Genetic Algorithms and Evolutionary
Computation. Springer US, Boston, MA, USA, 2002. ISBN 978-1-4613-5604-2. doi:
10.1007/978-1-4615-1539-5.

Pedro Larrañaga, Hossein Karshenas, Concha Bielza, and Roberto Santana. A review on
probabilistic graphical models in evolutionary computation. Journal of Heuristics, 18(5):
795–819, 2012. doi: 10.1007/s10732-012-9208-4.

Jose A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, editors. Towards a New Evo-
lutionary Computation: Advances on Estimation of Distribution Algorithms, volume 192
of Studies in Fuzziness and Soft Computing. Springer, Berlin, Heidelberg, 2006. ISBN
9783540324942. doi: 10.1007/3-540-32494-1.

Brad L. Miller and David E. Goldberg. Genetic algorithms, tournament selection, and the
effects of noise. Complex Systems, 9:193–212, 1995.

Ronald W. Morrison and KennethA. De Jong. Measurement of population diversity. In
Pierre Collet, Cyril Fonlupt, Jin-Kao Hao, Evelyne Lutton, and Marc Schoenauer, editors,
Artificial Evolution, volume 2310 of Lecture Notes in Computer Science, pages 31–41.
Springer Berlin Heidelberg, 2002. ISBN 978-3-540-43544-0. doi: 10.1007/3-540-46033-0 3.
URL http://dx.doi.org/10.1007/3-540-46033-0_3.

Heinz Mühlenbein and G. Paaß. From recombination of genes to the estimation of distribu-
tions i. binary parameters. In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and
Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature (PPSN IV), volume
1141 of Lecture Notes in Computer Science, pages 178–187. Springer, Berlin, Heidelberg,
1996. ISBN 978-3-540-61723-5.

Asim Munawar, Mohamed Wahib, Masaharu Munetomo, and Kiyoshi Akama. Theoreti-
cal and empirical analysis of a GPU-based parallel Bayesian optimization algorithm. In
International Conference on Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT 2009), pages 457–462. IEEE, 2009. doi: 10.1109/PDCAT.2009.32.

Kevin P Murphy. Machine Learning: A Probabilistic Perspective. MIT press, 2012.

Jǐŕı Očenášek and Josef Schwarz. The parallel Bayesian optimization algorithm. In
P. Sinčák, Ján Vaščák, V. K., and R. Mesiar, editors, The State of the Art in
Computational Intelligence, volume 5 of Advances in Soft Computing, pages 61–
67. Physica-Verlag, Heidelberg, 2000. ISBN 978-3-7908-1322-7. doi: 10.1007/
978-3-7908-1844-4{\textunderscore}11.

Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. Information-geometric
optimization algorithms: A unifying picture via invariance principles. The Journal of
Machine Learning Research, 18(1):564–628, 2017.

Martin Pelikan. Bayesian optimization algorithm. In Hierarchical Bayesian Optimization
Algorithm, volume 170 of Studies in Fuzziness and Soft Computing, pages 31–48. Springer,
2005a.

29

http://dx.doi.org/10.1007/3-540-46033-0_3

Probst and Rothlauf

Martin Pelikan. Hierarchical Bayesian optimization algorithm. In Hierarchical Bayesian
Optimization Algorithm, volume 170 of Studies in Fuzziness and Soft Computing, pages
105–129. Springer, 2005b.

Martin Pelikan. Analysis of estimation of distribution algorithms and genetic algorithms
on NK landscapes. In C. Ryan and M. Keijzer, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2008), volume 10, pages 1033–1040, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-130-9. doi: 10.1145/1389095.1389287.
URL http://medal-lab.org/files/nk-instances.tar.gz.

Martin Pelikan and David E Goldberg. Hierarchical BOA solves ising spin glasses and
MAXSAT. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2003), volume 2724 of Lecture Notes in Computer Science, pages 1271–
1282, Berlin, Heidelberg, 2003. Springer. ISBN 978-3-540-40603-7. doi: 10.1007/
3-540-45110-2{\textunderscore}3.

Martin Pelikan and Heinz Mühlenbein. The bivariate marginal distribution algorithm.
In R. Roy, T. Furuhashi, and P. K. Chawdhry, editors, Advances in Soft Comput-
ing, pages 521–535. Springer, London, 1999. ISBN 978-1-85233-062-0. doi: 10.1007/
978-1-4471-0819-1{\textunderscore}39.

Martin Pelikan, David E Goldberg, and Erick Cantu-Paz. BOA: the Bayesian optimization
algorithm. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,
and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 1999), volume 1, pages 525–532, San Francisco, CA, USA, 1999.
Morgan Kaufmann.

Malte Probst. Denoising autoencoders for fast combinatorial black box optimization. Tech-
nical Report arXiv:1503.01954, University of Mainz, 2015a.

Malte Probst. Denoising autoencoders for fast combinatorial black box optimization. In
Proceedings of the Companion Publication of the 2015 Genetic and Evolutionary Compu-
tation Conference (GECCO), GECCO Companion ’15, pages 1459–1460, New York, NY,
USA, 2015b. ACM.

Malte Probst, Franz Rothlauf, and Jörn Grahl. An implicitly parallel EDA based on re-
stricted Boltzmann machines. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2014), pages 1055–1062, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2662-9. doi: 10.1145/2576768.2598273.

Malte Probst, Franz Rothlauf, and Jörn Grahl. Scalability of using restricted Boltzmann
machines for combinatorial optimization. European Journal of Operational Research, 256
(2):368–383, 2017.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Net-
works, 12(1):145–151, 1999. ISSN 08936080. doi: 10.1016/S0893-6080(98)00116-6.

Elizabeth Radetic and Martin Pelikan. Spurious dependencies and EDA scalability. In
Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation,
pages 303–310. ACM, 2010.

30

http://medal-lab.org/files/nk-instances.tar.gz

Harmless Overfitting: Using DAEs in EDAs

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive
auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 833–840, 2011.

Franz Rothlauf. Design of Modern Heuristics. Springer, Heidelberg, 2011.

Roberto Santana, Pedro Larrañaga, and José A Lozano. Combining variable neighborhood
search and estimation of distribution algorithms in the protein side chain placement
problem. Journal of Heuristics, 14(5):519–547, 2008.

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):
461–464, 1978.

Selmar K Smit, Zoltan Szláavik, and Agoston E Eiben. Population diversity index: a
new measure for population diversity. In Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation, pages 269–270. ACM, 2011.

Gilbert Syswerda. A study of reproduction in generational and steady-state genetic algo-
rithms. In Foundations of Genetic Algorithms, volume 1, pages 94–101. Elsevier, 1991.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In Proceedings of the 25th
International Conference on Machine learning, pages 1096–1103. ACM, 2008.

Richard A Watson, Gregory S Hornby, and Jordan B Pollack. Modeling building-block
interdependency. In Parallel Problem Solving from Nature - PPSN V, pages 97–106.
Springer, 1998.

Hao Wu and Jonathan L. Shapiro. Does overfitting affect performance in estimation of
distribution algorithms. In Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’06, pages 433–434, New York, NY, USA, 2006.
ACM. ISBN 1-59593-186-4. doi: 10.1145/1143997.1144078. URL http://doi.acm.org/

10.1145/1143997.1144078.

31

http://doi.acm.org/10.1145/1143997.1144078
http://doi.acm.org/10.1145/1143997.1144078

	Introduction
	Preliminaries
	Estimation of Distribution Algorithms
	Principles
	Bias/Variance Tradeoff in EDAs
	Bayesian Optimization Algorithm

	Using Denoising Autoencoders as EDA Models: DAE-EDA
	AE Structure and Training Procedure
	Denoising AE
	Sampling a DAE
	DAE-EDA

	Previous use of DAEs for Combinatorial Optimization

	Experiments and Results
	Test Problems
	Experimental Setup
	Performance Results
	Overfitting in DAE-EDA
	An Overfitting DAE Learns the Identity Function
	DAE Overfitting over the Number of EDA Generations
	Population Diversity in DAE-EDA and BOA
	Diverse Populations Lead to Better Solutions

	Discussion
	Conclusions

