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Abstract

Data-driven analysis has been increasingly used in various decision making processes.
With more sources, including reviews, news, and pictures, can now be used for data analysis,
the authenticity of data sources is in doubt. While previous literature attempted to detect
fake data piece by piece, in the current work, we try to capture the fake data sender’s
strategic behavior to detect the fake data source. Specifically, we model the tension between
a data receiver who makes data-driven decisions and a fake data sender who benefits from
misleading the receiver. We propose a potentially infinite horizon continuous time game-
theoretic model with asymmetric information to capture the fact that the receiver does
not initially know the existence of fake data and learns about it during the course of the
game. We use point processes to model the data traffic, where each piece of data can occur
at any discrete moment in a continuous time flow. We fully solve the model and employ
numerical examples to illustrate the players’ strategies and payoffs for insights. Specifically,
our results show that maintaining some suspicion about the data sources and understanding
that the sender can be strategic are very helpful to the data receiver. In addition, based on
our model, we propose a methodology of detecting fake data that is complementary to the
previous studies on this topic, which suggested various approaches on analyzing the data
piece by piece. We show that after analyzing each piece of data, understanding a source
by looking at the its whole history of pushing data can be helpful.

Keywords: data-driven analysis, fake data, game theory, point process

1. Introduction

With the growth of computational power and availability of data, we observe an increasing
trend toward the adoption of data-driven approaches in various decision making processes
such as quality of experience optimization (Jiang et al. (2017)) and media streaming (Zhang
et al. (2005); Ganjam et al. (2015)). Compared with traditional techniques, data-driven ap-
proaches have shown potential advantages including efficiency, flexibility, robustness (Zhang
et al. (2005)), and real-time agility (Jiang et al. (2017)).
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With the development of language, image, and video processing techniques, sources
including reviews, photos, advertisements, and news can now be used as data for analysis
(e.g.,Umbaugh (1997); Shi et al. (2016)). Recently, however, the authenticity of these
sources has been a topical and controversial subject (Malbon (2013); Allcott and Gentzkow
(2017)). Fake data senders can be incentivized by the benefit generated from misleading
data receivers (Mayzlin et al. (2014); Luca and Zervas (2016)). Recent developments in
adversarial machine learning also provide theories on and algorithms to produce fake data
(e.g., Goodfellow et al. (2014); Springenberg (2015)). Without taking the possibilities of
fake data into account, receivers who make decisions using data-driven approaches can suffer
significantly.

There have been increasing numbers of studies on detecting fake data, especially fake
news because of its threat to the whole of society. Most studies focus on two categories
of features for each piece of news: its linguistic features and its network features. A news
item’s linguistic features include its lexical features, as in the “bag of words” approach, which
identifies the usage of single significant words (e.g., Ott et al. (2013)), syntactic features
(e.g., Oraby et al. (2017)), and semantic features (e.g., Rubin et al. (2016)). Network
features apply to posts on social media such as Facebook and Twitter, to capture the posts’
social features, such as the number of likes and re-tweets (e.g., Shu et al. (2018)). With such
features, the studies run various classifiers, including Support Vector Machines (e.g., Zhang
et al. (2012)) and Näıve Bayesian models (e.g, Oraby et al. (2017)), to classify each piece
of news as fake or not. There are also studies that extract features and make classifications
using deep neural networks (e.g., Ruchansky et al. (2017)). Besides directly proposing an
algorithm of detecting fake data, there have also been discussions around how a platform,
such as Facebook, should plan the detection efficiently from an optimal control perspective
(Kim et al. (2018)).

To our knowledge, all the studies in this stream focus on identifying whether each single
piece of data is fake or not, as the examples mentioned above. However, in many practical
cases, whether a source rather than a specific piece of data is trustworthy is in the receiver’s
interest to decide. Identifying sources is different from identifying pieces of data, since
trustworthy sources can make honest mistakes while misleading sources can also stream
reliable data, such as the weather, to gain trust. In addition, even if one is interested in
determining whether a specific piece of data is fake, knowing the history of its source can
help. For example, a piece of news can be factually true but misleading because it is biased
in terms of wording or selectively neglect some facts (Mullainathan and Shleifer (2002)). In
such cases, one cannot conclude that the news is fake, even theoretically, by just looking
at the piece itself. However, one can form an idea about it by studying the history of its
source to see whether the source has a pattern of being systematically biased. Therefore,
we propose a method to detect whether each source is trustworthy or not.

Analogous to the study of Antonelli et al. (2006), who propose a model of skin elasticity
to detect whether a series of fingerprints are from fake fingers, we propose a game theoretic
model to illustrate the behavior of a fake data sender (referred to as “sender” and “he”
hereafter) who inserts fake data into a source and a data receiver (referred to as “receiver”
and “she” hereafter) who decides whether to depend on this source to make data-driven
decisions. We have a potentially infinite horizon continuous time model where the two agents
mentioned above have asymmetric information such that the receiver does not initially know
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whether there is a fake data sender or not at the beginning and learns this information during
the game. The receiver observes a stream of data from the source, which is a mixture of
a stream of fake data from the sender and a stream of ordinary data from nature.1 To
model the real-time features of data-driven analysis, we assume that the data are observed
piece by piece discretely but can be at any moment on the continuous time line (Kim
et al. (2018)). Additionally, in our model, both the sender and the receiver are making
decisions dynamically at every moment, contingent on what they have observed in the
game. Specifically, the receiver decides whether to depend on this data stream, which,
from the receiver’s point of view, has some possibility of containing fake data. The sender
decides the intensity of the fake data in the stream while facing a trade-off between an
immediate gain from misleading the receiver and potential loss in the future due to the
receiver’s increasing suspicion.

To model the distinction between fake and ordinary data, we assume that each piece of
data is a random variable and that the distribution of pieces of fake data is different from
that of ordinary data. Following the spirit of generative models, from the perspective of
the data generators, including the sender who generates fake data and nature who gener-
ates ordinary data, each piece of data is a draw from its distribution. The distribution of
the fake data can either be manually specified by the sender or automatically generated
with generative models developed following Goodfellow et al. (2014). From the receiver’s
perspective, she does not know the distributions of the data and can only use some de-
generated distributions, based on her technology for detecting fake data, to approximate
the generators’ distributions. This technology can be any machine learning algorithm that
characterizes each piece of data. The degenerated distributions of fake and ordinary data
are then the distributions of their feature vectors generated from the algorithm. For ex-
ample, if the receiver directly uses a fake data detections algorithm to detect each piece
of data, she will obtain a binary observation on each piece of data: each piece is detected
as either fake or true. Then, in this case, the receiver’s degenerated distribution for fake
data is a binary distribution, corresponding to her belief of the accuracy of the detection
algorithm, that is, Pr(Detected as fake|fake) and Pr(Detected as true|fake). Similarly her
degenerated distribution for ordinary data is also binary, characterized by Pr(Detected as
fake|ordinary) and Pr(Detected as true|ordinary). Therefore, our model complements to
the fake data detection literature mentioned above. If the receiver instead looks at some
lower-level features of each piece of data, such as the linguistic and network features of
news, she obtains higher-dimensional event spaces for her degenerated distributions. In our
theoretical analysis in Sections 2 and 3, we allow all such possibilities by making no assump-
tions on the event spaces of the degenerated distributions. In the numerical illustrations in
Sections 4 to 6, we assume the degenerated distributions to be binary, which is a practical
method for the receiver and also graphically provides the most insights.

In the case in which a piece of data has strictly positive likelihoods in both the fake
and ordinary data generation distributions, it is theoretically impossible for any fake data
detection algorithm that is based on this single piece of data to be perfectly accurate. The
biased news example above is such a case. Practically, even without this theoretical gap, no

1. In our analysis, we consider the stream of ordinary data exogenous. However, even if whether including
ordinary data can be decided by the sender, it is of the sender’s interest to include such data in the
stream to gain the receiver’s trust.
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detection algorithm can reach perfect accuracy. Therefore, the degenerated distributions
will not be trivial. Our method fills this theoretical gap as well as overcomes the practical
limitations by modeling the sender’s behavior to incorporate information from his history.

Although Goodfellow et al. (2014) argues that, theoretically, one can generate data that
follows the same distribution as ordinary data, this is not of interest to the sender, since
such fake data will be useful instead of misleading to the receiver. However, although the
sender wants the distributions of fake and ordinary data to be different from his perspective,
he would like the degenerated distributions to be as close as possible from the receiver’s
perspective, to make the fake data harder for the receiver to detect.

We first assume that the degenerated distributions of both fake and ordinary data
are invariant throughout the game and known by the receiver beforehand. A practical
interpretation is that the receiver knows the distributions from previous experience, such
as training. Later, we relax this assumption to analyze the case in which the receiver has
inaccurate information about the distributions, which can happen if the sender is using a
new technology to generate fake data while the receiver is still using the old training samples.
In both cases, after each time the receiver observes a piece of data, she learns whether there
is a sender through Bayesian updates of her belief of whether there is a sender. Since such
learning is based on the degenerated distributions, the generators’ distributions are actually
irrelevant to the game. Therefore, in the remainder of the paper, distributions refer to the
degenerated ones unless otherwise specified.

We prove the existence and uniqueness of a Markov Perfect Equilibrium (MPE) (Maskin
and Tirole (2001)), which is a Perfect Bayesian Equilibrium where the players’ strategies
are Markovian. In our model, the state variable is the receiver’s belief of whether a sender
of fake data exists, since the receiver’s payoff depends on this state variable while the
sender has perfect information about this variable. We then use numerical examples to
illustrate the players’ strategies and payoffs to gain insights. On the sender’s side, we show
that the sender’s optimal strategy is to be careful and not too aggressive to prevent the
receiver from abandoning this source. In addition, we compare the sender’s payoffs when
the receiver anticipates the distribution of fake data correctly and incorrectly to show the
sender’s benefit from improving his technology for generating fake data. On the receiver’s
side, we show that, whether the receiver knows the distributions or not, the most important
thing for her is to have at least some initial suspicion about the source. We also show
the receiver’s benefit from having a better understanding of the distributions, although, in
practice, the receiver needs to balance this benefit with the cost of learning the distributions
from new samples.

Apart from the data-driven and adversarial machine learning literature mentioned above,
closely related literature also includes research on communication and deception games.
In communication theories, the information the sender provides to the receiver can be
non-strategic truth, strategically selected truth or fake information (e.g., Kamenica and
Gentzkow (2011); Anderson and Smith (2013)). Compared with other models in this lit-
erature, we generalize them by proposing a dynamic model where the cost of sending fake
information comes from the increasing suspicion of the receiver. Literature on deception
games (e.g., Anderson and Smith (2013)) models how the receiver updates her belief based
on her observations, and that the sender can deceive due to stochasticity. We generalize the
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model to fit our data-driven analysis settings, where each piece of information is observed
discretely and can follow arbitrary distributions.

2. Model Development

To model the data traffic and the interaction between the sender and the receiver, we
propose a game-theoretic model based on point processes. In this section, we first provide
a brief overview of point processes and then specify the players’ information and payoff
structures in our model.

2.1. Point Processes

A point process is a type of stochastic process that models the occurrence of events as a
series of random points in time or geographic space (Xu et al. (2014)). For example, in the
context of this study, the receiver’s observation of a piece of data can be modeled as a point
occurring along the time line. We can describe such a point process by N(t), which is an
increasing non-negative integer-valued counting process such that N(t2)−N(t1) is the total
number of points that occurred within the time interval (t1, t2]. Most point processes can
be fully characterized by the conditional intensity function defined as follows (Daley and
Vere-Jones (2007)):

λ(t|Ht) = lim
∆t→0

Pr(N(t+ ∆t)−N(t) > 0|Ht)

∆t
(1)

where Ht is the history up to time instant t, which includes all the information before t.
The intensity measures the probability of instantaneous point occurrence given the previous
history. Specifically, given the history Ht, the probability of a point occurring within
(t, t+ ∆t] is λ(t|Ht)∆t.

It is worth noting that the commonly used Poisson processes can be seen as a special
kind of point processes where the intensity λ(t|Ht) is independent of the history Ht. If
the intensity λ(t|Ht) is constant over the whole process, then the point process reduces to
a homogeneous Poisson process, and, if the intensity λ(t|Ht) is not constant but can be
a deterministic function of time t and independent of the history, then the point process
reduces to a nonhomogeneous Poisson process.

2.2. Players’ Information Structure

In the game we are modeling, there are two players, the sender and the receiver, and
there is information asymmetry in the game: the sender has perfect information about the
receiver whereas the receiver does not know whether there is a sender or not. Figure 1 is
an illustration of their information structure, which we will discuss in detail in this section.

In the game, the receiver observes incoming data traffic, that is a mixture of a stream
of fake data from the sender and a stream of ordinary data. To model the data traffic, we
need to model two characteristics of each piece of data: the timing and the content.

We use two point processes to model the time of occurrence of each piece of fake data
and ordinary data. Specifically, we use Na(t) to denote the stochastic process that counts
the number of pieces of fake data up to time t and, similarly, use N0(t) to denote the count
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Figure 1: An illustration of the game

of ordinary data. Following (1), denote Λ0(t|Ht) and Λa(t|Ht) as the conditional intensity
functions of N0 and Na, respectively. We assume that Λa(t|Ht), the intensity of fake data,
is decided by the sender, whereas Λ0(t|Ht), the intensity of ordinary data, is exogenous and
constant for the entire process, which implies that N0 is a Poisson process. For simplicity
of exposition, until further specification, Λa is used to denote the t dependent function,
Λa(t|Ht), and Λ0 is used to denote the constant that Λ0(t|Ht) equals to.

For the content, we assume that the receiver uses a machine learning algorithm (denoted
as ML in Figure 1) to characterize each piece of data. This algorithm transforms a piece
of data into a feature vector. We use two random variables to model the feature vector of
each piece of fake data and ordinary data, denoted as Z0, Za : Ω → R. The event space Ω
is determined by the algorithm: it is binary when the algorithm is directly a piece-by-piece
fake data detection algorithm and could comprise of tens of dimensions or even more when
the algorithm summarizes the data’s lower level features. In the present model, we do not
go into the receiver’s decision model for the machine learning algorithm, and thus assume Ω
to be exogenous. Denote the distributions of Z0, Za to be P0, Pa respectively. The smaller
the difference between P0 and Pa, the better the technology the sender has, because it is
harder for the receiver to see the difference of a piece of ordinary data and a piece of fake
data. We assume P0 and Pa to be invariant throughout the game. We first consider P0 and
Pa to be exogenous and then numerically compare results for different Pa’s for insights. To
summarize, the receiver observes the incoming data traffic as a stochastic process Y subject
to

dY = Z0dN0 + ZadNa (2)
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However, given this observation of Y , the receiver does not know whether there is a
sender or not. Formally speaking, there are two states of the world: in State 1, there is a
sender and Y comes from (2). In State 2, there is no sender and Y is subject to dY = Z0dN

′
0,

where N ′0 is a point process whose intensity Λ′0 satisfies Λ′0 = Λ0 + Λa. At each time t,
the receiver has a belief q(t) ∈ [0, 1] that the world is in State 1 and a belief 1 − q(t) that
the world is in State 2. The belief q is Bayesian updated through the observation of Y as
follows2:

dq =
q(1− q)(ΛaPa(dY )+Λ0P0(dY )

Λ0+Λa
− P0(dY ))

q · ΛaPa(dY )+Λ0P0(dY )
Λ0+Λa

+ (1− q)P0(dY )
(3)

When proposing (3), we are making three assumptions. First, the receiver is learning
whether there is a sender from and only from the content of the data, which means that the
timing of data is not informative to the receiver. We assume that Λ′0 = Λ0 +Λa in State 2 to
make sure that the timing of data in both states is expected by the receiver to be the same,
which makes the timing does not include information of the existence of the sender. Second,
we assume that the receiver knows P0 and Pa beforehand, which could come from training.
In the latter part of our paper, we relax this assumption to analyze and compare the case in
which the receiver does not have accurate information about the distributions. Third, we
assume that the receiver correctly anticipates Λ0 and Λa, conditional on the world in State
1, which is a mandatory assumption for Nash equilibrium. We will discuss our solution
concept in detail in Section 3.

The information is asymmetric in the game. Although the receiver does not know
whether the world is in State 1 or State 2, the sender knows about his own existence,
meaning that the world is in State 1. Besides the timing and content of the fake data he
sends, we assume that the sender also knows the timing and content of ordinary data, which
is natural. We also assume that the sender knows the receiver’s initial belief, q(t0). Then
from (3), the sender knows the receiver’s belief, q(t), at any moment t.

2.3. Players’ Payoff Structure

With the information structure above, we next model the decision variables and payoff
structure for both players.

First, it is worth noting that the receiver decides whether to use the focal data source
for data-driven analysis instead of picking and using the pieces of data from this source
that appears authentic. With the random variable characterization of both ordinary and
fake data, using data selectively will significantly undermine the effect of the data-driven
analysis, because substantial selection bias would be introduced. For example, even when
the receiver believes that most of the ordinary reviews should be positive and the fake
ones are more likely to be negative, ignoring all the negative reviews will make the analysis
pointless.

Thus, the receiver needs to decide whether to abandon this data source, fully depend
on it, or partly depend on it. Denote p(t) ∈ [0, 1] as the receiver’s dependence on the focal
data source at time t, which is her decision variable. Normalize the receiver’s payoff from

2. For a proof, see the Appendix
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outside options, such as using other data sources or abandoning data-driven analysis, as
zero and her gain from depending on a piece of ordinary data as a unit. On the other hand,
we assume that the receiver suffers a loss L when she depends on a piece of fake data. With
the belief process q(t) that the world is in State 1, by dynamically choosing p(t) based on
the history before t, the receiver maximizes her expected payoff, i.e.,

max
p∞t=t0

E[

∫ ∞
t0

p((1− q)(Λ0 + Λa) + q(Λ0 − LΛa))dt]

s.t. p ∈ [0, 1] ∀t ∈ [t0,∞)

(4)

where p, q,Λa are functions of t.
The sender’s goal is to mislead the receiver. Therefore, his payoff depends on how much

fake data is consumed by the receiver and how much the receiver depends on such fake data.
By dynamically choosing the fake data intensity Λa(t), the sender maximizes his expected
payoff, i.e.,

max
Λa
∞
t=t0

E[

∫ ∞
t0

e−r(t−t0)pΛadt]

s.t. Λa ∈ [0, c] ∀t ∈ [t0,∞)

(5)

where r is the time discount factor and p,Λa are functions of t. We did not assume a time
discount factor for the receiver, and we explain why in the equilibrium analysis. We assume
that the capacity of the sender is c, that is, Λa(t) ∈ [0, c] for all t.

3. Equilibrium Analysis

In the present research, we focus on the MPE of the game, which is a Perfect Bayesian
equilibrium where the players’ strategies are Markovian. In our model, the state variable
is the receiver’s belief of whether a sender of fake data exists, since the receiver’s payoff
depends on this state variable while the sender has perfect information about this variable.
In other words, we focus on the equilibrium where, at each time t, both players’ strategies
depend on t only through the receiver’s current belief q(t), that is, p(t) and Λa(t), can be
written as deterministic functions of q(t). In the remainder of the paper, p and Λa denotes
p(q(t)) and Λa(q(t)) unless further specification.

To simplify the notation, define function g(·; q,Λa) as

g(·; q,Λa) =
q(1− q)(ΛaPa(·)+Λ0P0(·)

Λ0+Λa
− P0(·))

q · ΛaPa(·)+Λ0P0(·)
Λ0+Λa

+ (1− q)P0(·)

Then, equation (3) can be rewritten as

dq = g(dY ; q,Λa)

Give the properties of point processes, we know that, in any time period dt, the likelihood
of dN0 + dNa ≥ 2 is O(dt2). Therefore, with likelihood 1−O(dt2), dN0 and dNa are either
0 or 1 and are not both 1. Therefore,

dq = g(Z0; q,Λa)dN0 + g(Za; q,Λa)dNa (6)
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Now, we start analyzing the equilibrium strategies of the players.
Because both players’ strategies depend only on q and equation (6) suggests that the

receiver’s strategy p will not influence the evolution of q, the receiver’s current decision will
not have any impact in the future. Therefore, the receiver’s dynamic optimization problem
is equivalent to optimization at each static time point t. This is why we did not assume
a time discount factor for the receiver, since it does not affect her strategy. With this
argument, the receiver’s optimal strategy p for problem (4) can thus be characterized by

p ∈ arg max
p

p((1− q)(Λ0 + Λa) + q(Λ0 − LΛa))

s.t. p ∈ [0, 1]
(7)

for each q ∈ [0, 1], where Λa is a function of q.
For the sender’s dynamic optimization problem (5), we define a value function V and

derive the associated Hamilton-Jacobi-Bellman (HJB) equation, whose solution suggests
the sender’s optimal strategy.

Definition 1 The value function V is defined as the maximum of the expected value of the
sender’s payoff from state q ∈ [0, 1] to the final state, i.e.,

V (q)
.
= max

Λa(q(t))∞t=t0

E[

∫ ∞
t0

e−r(t−t0)p(q(t))Λa(q(t))dt|q(t0) = q]

s.t. Λa(q(t)) ∈ [0, c] ∀t ∈ [t0,∞)

(8)

We apply Bellman’s principle of optimality (Bellman and Kalaba (1965)) to the above
definition and obtain that

V (q(t0)) = max
Λa(q(t0))

E[e−r(t0+dt−t0)V (q(t0 + dt)) + e−r(t0−t0)p(q(t0))Λa(q(t0))dt] (9)

With e−r(t0+dt−t0) = e−rdt = 1− rdt and e−r(t0−t0) = 1, (9) leads to

V (q(t0)) = max
Λa(q(t0))

E[(1− rdt)V (q(t0 + dt)) + p(q(t0))Λa(q(t0))dt] (10)

Due to the Markov property of the state variable q(t), (10) can be reorganized as

E[rdtV (q(t0 + dt))] = max
Λa(q(t0))

{E[V (q(t0 + dt))− V (q(t0))] + p(q(t0))Λa(q(t0))dt} (11)

With E[V (q(t0 + dt))] = V (q(t0 + dt)) and q(t0) = q by definition (8), differentiate both
sides of (11) with respect to t and omit the higher order infinitesimal on the left hand side,
we obtain the HJB equation:

rV (q) = max
Λa(q)
{E[

dV (q)

dt
|t=t0 ] + p(q)Λa(q)}, (12)

with V (1) = 0 as the the terminal condition. This terminal condition comes from the
following argument: When q(t0) = 1, dq = 0 because of equation (3). Therefore the
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receiver holds the belief of q(t) = 1 for all t, meaning that the receiver is always sure that
there is a fake data sender. In this case, it is natural to assume that the sender cannot
mislead the receiver and therefore gets zero payoff.

For simplicity of exposition, we use V, p and Λa to denote V (q), p(q) and Λa(q). We also
use V ′ to denote V ′(q), which is the value of dV

dq at point q. With equation (6), we obtain

E[
dV (q)

dt
|t=t0 ] = E[

dV

dq
|q ·

dq

dt
|t=t0 ]

= V ′E[g(Z0; q,Λa)
dN0

dt
|t=t0 + g(Za; q,Λa)

dNa

dt
|t=t0 ]

= V ′ · (E[g(Z0; q,Λa)]Λ0 + E[g(Za; q,Λa)]Λa)

(13)

Take (13) into (12), we have

rV = max
Λa

pΛa + V ′ · (E[g(Z0; q,Λa)]Λ0 + E[g(Za; q,Λa)]Λa), (14)

which can be separated into two conditions:

Λa ∈ arg max
Λa

pΛa + V ′ · (E[g(Z0; q,Λa)]Λ0 + E[g(Za; q,Λa)]Λa)

s.t. Λa ∈ [0, c]
(15)

and
rV = pΛa + V ′ · (E[g(Z0; q,Λa)]Λ0 + E[g(Za; q,Λa)]Λa), (16)

where V (1) = 0.
Conditions (15) and (16) fully characterize the sender’s optimal strategy. Thus, in all,

a MPE is a 3-tuple (p, V,Λa), where each entry is a function of q, such that conditions
(7),(15),(16) are satisfied.

Next, we discuss the solution to these conditions in the following proposition and its
proof.

Theorem 2 There exists a unique MPE.

Proof We first provide a 3-tuple (p, V,Λa) such that (7), (15), (16) are satisfied, then show
its uniqueness.

First consider condition (7). When the receiver’s expected payoff, (1 − q)(Λ0 + Λa) +
q(Λ0 − LΛa), is positive, the receiver’s only optimal strategy is p = 1; when it is negative,
her only optimal strategy is p = 0; when it equals to 0, her optimal strategy is any p ∈ [0, 1].
Therefore, condition (7) is equivalent to

p


= 1,when (1 + L)q − 1 ≤ 0 or Λa <

Λ0
(1+L)q−1

∈ [0, 1],when (1 + L)q − 1 > 0 and Λa = Λ0
(1+L)q−1

= 0,when (1 + L)q − 1 > 0 and Λa >
Λ0

(1+L)q−1

(17)

It is easy to verify that a pair of (p,Λa) that satisfy the following conditions (18) and
(19) will suffice both (17) and the condition that Λa ∈ [0, c] for all q ∈ [0, 1].

p

{
= 1,when q ≤ c+Λ0

c(1+L)

∈ (0, 1),when q > c+Λ0
c(1+L)

(18)

10
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Λa =

{
c,when q ≤ c+Λ0

c(1+L)
Λ0

(1+L)q−1 ,when q > c+Λ0
c(1+L)

(19)

Next, we try to find a pair of (p, V ), with Λa fully characterized by (19), that can suffice
(15), (16) and (18). Consider the first order condition of (15). When Λa is not at the
border, i.e., q > c+Λ0

c(1+L) , we have

p+ V ′ · d(V ′(E[g(Z0; q,Λa)]Λ0 + E[g(Za; q,Λa)]Λa))

dΛa
= 0 (20)

Taking (19) into (20), we have

p+ V ′ ·
∫

Ω
a(x)dx = 0, (21)

where

a(x) =
(P0(x)− Pa(x))(−1 + q)(P 2

a (x)q + P 2
0 (x)(−1 + q + Lq)2 + P0(x)Pa(x)(−1 + q + 2Lq))

(LP0(x) + Pa(x))2q

Taking (19), (21) into (16), we have

rV = V ′Λ0 ·
∫

Ω
s(x)dx, (22)

where

s(x) =
(P0(x)− Pa(x))(−1 + q)(Pa(x) + P0(x)(−1 + q + Lq))

(LP0(x) + Pa(x))(−1 + q + Lq)
− a(x)

(1 + L)q − 1

Solving (22), we have

V = CeF (q), (23)

where F (·) is an antiderivative of r
Λ0·

∫
Ω s(x)dx

and C is any constant.

Taking (23) into (18),(21), we have

p =

{
1,when q ≤ c+Λ0

c(1+L)

− r
Λ0·

∫
Ω s(x)dx

· CeF (q) ·
∫

Ω a(x)dx,when q > c+Λ0
c(1+L) ,

(24)

where C is selected such that p is continuous at q = c+Λ0
c(1+L) . With this C, (23) and (24)

fully characterize V and p.

Following the derivations above, the 3-tuple (p, V,Λa) characterized by (23), (24) and
(19) suffice the conditions (7), (15) and (16).

Next, we show the uniqueness by exploiting the zero-sum feature of the game. Here,
zero-sum does not mean that the aggregated payoff of the players is literally zero, but that
the sender benefits from misleading the receiver, which provides the receiver disutility. This
feature leads to the fact that any pair of strategies of the players leads to a Pareto efficient
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allocation, where neither player can be strictly better off while leaving the other player not
worse off.

If the MPE of the game is not unique, there will exist two different 3-tuple, (p, V,Λa)
and (p∗, V ∗,Λ∗a). Consider a given initial belief q. Since p is the receiver’s best response
to Λa, she does weakly better at (p,Λa) than at (p∗,Λa), thus the sender does weakly
worse at (p,Λa) than at (p∗,Λa). Again, because Λ∗a is the sender’s best response to p∗,
he does weakly better at (p∗,Λ∗a) than at (p∗,Λa). Combining these two arguments, the
sender does weakly better at (p∗,Λ∗a) than at (p,Λa), i.e., V ∗(q) ≥ V (q). However, our
starting point is arbitrary, V ∗(q) ≤ V (q) can therefore be derived with the same logic.
Therefore, V ∗(q) = V (q). Since these arguments hold for any initial belief q, we obtain
V ∗ = V . Conditions (16) and (20) show that (p,Λa) are uniquely determined by V and
its derivative. Therefore, (p, V,Λa) = (p∗, V ∗,Λ∗a), contradicting the assumption at the
beginning.

4. An Illustrative Example

In this section, to illustrate and analyze the equilibrium strategies, we use an example where
both distributions of Z0 and Za, P0 and Pa, are binary distributions. This is the case when
the receiver uses the results of a fake data detection algorithm as her only observations.
Other than this practical interpretation and computational convenience, another advantage
of choosing binary distributions is that they make it easier to measure the efficiency of
the sender’s technology for producing fake data. Specifically, assume that there are two
states in the event space of Z0 and Za, Ω, denoted State M and State N . Z0 is realized
as State M with probability p0 and as State N with probability 1 − p0; Za is realized as
State M with probability pa and as State N with probability 1 − pa. The efficiency of
the sender’s technology can be measured by the difference between P0 and Pa, which, in
this case, reduces to |p0 − pa|. When |p0 − pa| = 0, the sender’s technology is flawless and
the receiver has no way to distinguish between ordinary and fake data, which makes our
research trivial. Thus, we study the case where |p0 − pa| 6= 0.

Our focus in this section is to illustrate both players’ strategies and payoffs and under-
stand how the sender’s technology will influence them. First, we are interested in how the
game evolves with time and we obtain the following results when both players are playing
their equilibrium strategies.

Theorem 3 When 0 < q < 1, E[dq/dt] > 0. Therefore, there are only two stable states:
q = 0 and q = 1. If the receiver’s initial belief q0 > 0, q → 1 when t→∞.

Proof See the Appendix.

From Theorem 3, we observe that if the receiver’s initial belief is strictly between 0 and
1, then this game is like a Ponzi Scheme: At the end of the game, the receiver learns that
there is a fake data sender; however, she lost value through the learning process, which can
be seen as the cost of learning, and the sender also gains through the game.
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Figure 2: Comparison of the sender’s strategies

To visualize both players’ strategies and payoffs, we use a numerical example. Because
we are interested in the influence of the sender’s technology, we set parameters including
L, c, r,Λ0, p0 as fixed and analyze the change of pa. Specifically, we set L = 3, c = 3, r =
0.1,Λ0 = 1, p0 = 0.1, and compare the strategies and payoffs between cases where pa = 0.3
and pa = 0.4.

Figure 2 depicts the sender’s strategies in the two cases. In both cases, the sender fully
employs his capability when the receiver’s belief is below a threshold, and his attacking
frequency starts declining after a threshold with the increase in the belief. The intuition
is that, when the receiver is more suspicious of the data source, the sender needs to be
more cautious to prevent the receiver from abandoning the source. The sender’s strategies
fully overlap in the two cases, suggesting that the strategies remain the same for different
technologies. This is because given the receiver’s belief, her optimization problem (7) is
independent of the sender’s technology, which makes the intensity the sender requires to
keep the receiver using the source independent of the sender’s technology.

Figure 3 depicts the receiver’s strategies. With a lower belief, implying greater trust in
the data source, the receiver will fully depend on the source. As this belief increases, the
receiver will rely less on the source. The dependence converges to 0 as the belief converges
to 1. It is worth noting that the receiver’s strategies converge to 0 continuously instead
of jumping to 0 after a threshold because, in the equilibrium, the sender also carefully
manages his intensity to ensure that he is not being too aggressive, which provides the
receiver incentive to keep using the data source even if she has a significant belief that there
exists a fake data sender. Because in such cases, the sender’s attacking intensity is low
enough to make the receiver still expect a benefit from the source. Another observation
from Figure 3 is that, when the sender has better technology (pa = 0.3), the receiver will
be depend less on the data source, given the same belief.

Figure 4 depicts the sender’s value function V (q), which can be interpreted as the
sender’s expected payoff throughout the game when the receiver’s initial belief q(t0) = q.
It is straightforward that V is monotonically decreasing with q because the more trust
the receiver has in the beginning, the more room there is for the sender to extract profit.
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Figure 3: Comparison of the receiver’s strategies

Figure 4: Comparison of the sender’s payoffs
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Figure 5: Receiver’s expected payoffs

Comparing the two cases in which the sender’s technology differs, we observe that, if the
receiver’s initial belief is low, the sender is better off with superior technology; meanwhile,
if the initial belief of the receiver is high, the sender is better off with inferior technology.
The intuition here is that having superior technology has two effects: First, the difference
between the distributions of ordinary data and fake data is smaller, and, therefore, the
receiver will update her belief more slowly. Second, as shown in Figure 3, the receiver
will be more cautious and depend on the data source less, especially when her belief is
high. When the initial belief of the receiver is lower, there is a longer period in terms
of belief when the receiver’s strategies—given the sender’s different technologies—do not
diverge, such that the first effect dominates the second effect. On the other hand, when
the receiver’s initial belief is relatively high, the second effect will dominate the first. This
contrast between these two effects leads to the comparison of sender payoff, shown in Figure
4.

With Theorem 3, the receiver’s expected payoff (4) can be calculated (for details, see
the Appendix) and is shown in Figure 5.

When there is a fake data sender, it is no surprise that the receiver needs to incur more
costs of learning the existence of the sender if she starts with a lower initial belief, and
this cost converges to infinity as the initial belief approaches 0. Therefore, having an initial
belief that is strictly greater than 0 can significantly reduce this cost. On the other hand,
from Figure 3, we see that the receiver’s strategy holds the same when her belief is under a
threshold, implying that, when there is no fake data sender, having a reasonably low initial
belief that is different from 0 will not hurt the receiver at all. Taking both possibilities
into account, it is suggested that, when dealing with data, one should have some degree of
suspicion (a reasonably low, but strictly positive, initial belief) in case there is a fake data
sender.
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5. Off-equilibrium Analysis

In the previous section, we illustrated equilibrium strategies and payoffs, assuming that
the receiver knows accurately the distributions from training. However, in practice, this
assumption could be too restrictive, especially when the sender is also keep improving his
technology, such that the old training samples cannot work perfectly. In this section, we
relax this assumption and examine a case in which the receiver does not perfectly anticipate
the sender’s technology, to gain more insights.

In this case, following the same arguments as before, we continue to assume Z0 and
Za to be binary distributions, and maintain the previous notations p0 and pa to model the
distributions of Z0 and Za, respectively. However, in this case, the receiver anticipates the
sender’s technology, pa, to be p′a, which is not equal to pa. Therefore, instead of using the
equilibrium strategy where the technology is pa, the receiver uses the equilibrium strategy
where the technology is p′a, which is suboptimal in this case. Additionally, the receiver
updates belief q based on her incorrect anticipation, meaning that, in function g(·), the
parameter pa is substituted by p′a and Λa is substituted by the receiver’s anticipation of the
sender’s attacking intensity, which is the sender’s equilibrium strategy when his technology
is pa. Assume that the sender knows how the receiver estimates his technology and therefore
updates his strategy to be optimal given the receiver’s strategy. In other words, in this case,
equation (7) does not hold because the receiver is not optimizing, whereas conditions (15)
and (16) hold given a certain p, which is the receiver’s equilibrium strategy with technology
p′a. Following the derivations in the proof of Theorem 2, V and Λa can be solved with (15)
and (16).

We say that the receiver underestimates the sender’s technology if p0 < pa < p′a or
p′a < pa < p0. The larger (p0− p′a)/(p0− pa) is, the more underestimated we say the sender
is. Practically, this underestimation is likely to be due to the sender’s improvement in
technology.

Analogous to Theorem 3, we are still interested in how the game evolves in time. How-
ever, the result is different for the following property.

Theorem 4 Assume that Lc > Λ0. If the sender is underestimated, then there exists a
unique qe ∈ (0, 1), such that:
i) when 0 < q < qe, E[dq/dt] > 0
ii) when q = qe, E[dq/dt] = 0
iii) when qe < q < 1, E[dq/dt] < 0
Therefore, besides q = 0 and q = 1, qe is another stable state. If 0 < q(t0) < 1, as t→∞, q
will fluctuates around qe and the sender’s intensity will fluctuate around Λa(qe). Specifically,
Λa(qe) satisfies:

i) Λa(qe) = p0−p′a
Lp0+p′a−pa−Lpa

Λ0, if p0−p′a
p0−pa <

c
c+Λ0

(1 + L).

ii) Λa(qe) = c, if p0−p′a
p0−pa ≥

c
c+Λ0

(1 + L)

Proof See the Appendix.

The assumption at the beginning is trivial: when Lc < Λ0, there is actually no game
because the sender is not capable enough to hurt the receiver as much as her gain, so the
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receiver will always be fully dependent on the data source and still benefit even when the
data are polluted.

From Theorem 4, as t→∞, q does not converge to 1, therefore the receiver’s expected
payoff at each time does not converge to 0, and, so, we cannot use equation (4) to evaluate
her expected payoff throughout the game. Instead, we use the intensity of fake data in
the stream in the long term to evaluate the receiver’s payoff. If the receiver’s initial belief
is q(t0) = 1, she will abandon the source at all times; and, if the receiver’s initial belief
is q(t0) = 0, she will be attacked with the sender’s capacity, c, at all times. Other than
those two trivial cases, in the long term, the fake data intensity will fluctuate around Λa(qe).
Since (p0−p′a)/(p0−pa) characterizes how the sender is underestimated, we see that as long
as the receiver does not underestimate the sender too much, the receiver will end up with

Λa(qe) = p0−p′a
Lp0+p′a−pa−Lpa

, which is easily shown to be smaller than c. Actually, in practical
cases such as the following numerical example, this difference is significant. Therefore,
following the same arguments as in the equilibrium case, the receiver is suggested to have
a low but non-zero initial belief because this will not hurt the receiver at all if there is no
sender but will benefit the receiver significantly if there is a sender. In addition, we obtain
the following result:

Theorem 5 If the receiver has an initial belief 0 < q(t0) < 1 and underestimates the
sender’s technology, she will receive more fake data in the long run if the sender is more
underestimated. Formally, Λa(qe) is an increasing function with respect to (p0−p′a)/(p0−pa).

Proof See the Appendix.

This result shows that it is beneficial for the receiver to have a better understanding of
the sender’s technology, even with some upfront cost, because it will benefit her payoff in
the long term.

In this section, we still use a numerical example to show the effects of underestimating the
sender’s technology. Specifically, we keep assuming L = 3, c = 3, r = 0.1,Λ0 = 1, p0 = 0.1
while setting pa = 0.3 and p′a = 0.4.

Figure 6 depicts the sender’s strategy when the receiver underestimates his technology.
It is no surprise that, under the same belief, the sender is attacking with a higher intensity
than in the equilibrium case, because he benefits more from the receiver’s greater dependence
on the data source than in the equilibrium strategy (as shown in Figure 3).

Figure 7 depicts the comparison between the sender’s payoff in the off-equilibrium case
in which pa = 0.3 and p′a = 0.4 and in those two equilibrium cases where pa = 0.3, 0.4.
First, the sender is strictly better off than the case in which equilibrium strategies are
implemented as pa = 0.4. The intuition is straightforward that the receiver is using the
same strategy in these two cases while the sender has superior technology. The comparison
between the off-equilibrium case and the pa = 0.3 equilibrium case is more complicated.
In this comparison, the sender’s technologies are the same, so the difference is due to the
receiver’s underestimation of the sender’s technology.

This underestimation has two effects: First, as shown in Figure 2, the receiver has
greater dependence when her belief is high. Second, the Bayes’s Rule suggests that, for
each piece of suspicious data that is realized as State M , the receiver will update her belief
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Figure 6: Comparison of the sender’s equilibrium strategy and strategy when the receiver
underestimates the sender’s technology

Figure 7: Comparison of the sender’s payoffs when the receiver underestimates the sender’s
technology
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more toward a sender existing when she underestimates the sender’s technology. Therefore,
when the receiver’s belief is relatively low, such that she is fully dependent on the source,
this underestimation will make her belief update more quickly and, thus, reduce the sender’s
payoff. Aggregating these two effects leads to what we observe in Figure 6: if the receiver’s
initial belief is high, the sender is better off with this underestimation; however, when the
initial belief gets lower, this difference shrinks.

Because improving technology to generate fake data is costly for the sender, this result
provides insight for the sender in deciding how much effort to exert on sharpening his
technology. In the cases where the receiver’s initial belief is either low or the belief is high,
improving the technology will not give the sender a big boost in payoff; however, when the
belief is moderate, the sender might want to spend more effort on improving his technology.

6. Simulation

In this section, we illustrate the fact that one cannot be perfectly accurate in detecting fake
data by looking at each piece of data separately when the distributions of true and fake
data have the same support, meaning that the data have strictly positive likelihoods in the
distributions of both the true and fake data . We then use simulation data to show that
our method addresses this problem.

6.1. Detection of the Data Piece by Piece

Denote the feature vector of the piece of data of interest as x. Assume that it has strictly
positive likelihoods in the distributions of both the true and fake data, i.e., Pa(x) > 0 and
P0(x) > 0. Denote the prior belief that this piece of data is fake as p. Then the posterior

belief after analyzing this piece of data will be pPa(x)
pPa(x)+(1−p)P0(x) , which is not surprisingly

strictly between 0 and 1, meaning that such an algorithm cannot be perfectly accurate in
determining whether this piece of data is fake or not.

6.2. Detection of the Source

In our model, we illustrated an approach to how the receiver updates her belief about
the source, based on her understanding of the sender’s strategic behavior. As Theorem 3
suggests, with this approach, if a sender of fake data exists, then the receiver’s belief of this
converges to 1 with time. However, if the receiver is näıve in terms of not recognizing that
the sender has a consistent strategy, this belief will not converge to 1, meaning that the
receiver will not be able to detect the fake source with certainty. We use simulation data to
show this difference by comparing a strategic receiver following our approach and a näıve
receiver. Both types of receiver apply the same machine learning algorithm to obtain the
realization x of each piece of data. However, the strategic receiver will update her belief
based on her understanding of the sender’s strategy, which is to be more careful as the
receiver becomes suspicious, as shown in Figure 2. The näıve receiver will ignore this fact
that the sender can be strategic and thus update her belief by assuming the sender is always
at his full capacity.
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Figure 8: Comparison of the belief process of a strategic receiver and a näıve receiver

Figure 9: Comparison of the mean of 100 samples of the belief process of a strategic receiver
and a näıve receiver

To generate simulation data, we use our model and set the parameters L = 3, c = 3, r =
0.1,Λ0 = 1, q(t0) = 0.1, p0 = 0.1, pa = 0.4. We look at the how the belief of both types’
receivers’ is updated in the first 200 units of time. An example is shown in Figure 8.
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We can see that the näıve receiver’s belief fluctuates significantly while the strategic
receiver’s belief converges to 1, which is the ground truth. This is because that when the
sender becomes careful, the näıve receiver will start to think the sender is innocent whereas
the strategic receiver will not, because the latter knows this is part of the sender’s strategy.

We generate the process above 100 times. Figure 9 shows the mean of the belief pro-
cesses. Even when the fluctuation is smoothed out by averaging, we can see that a näıve
receiver’s belief will not converge to 1.

These results show that, in the case in which the distributions of true and fake data have
the same support, so that the sender can potentially apply such a strategy we modeled, it
is important to recognize this strategy and be a strategic receiver, besides detecting each
piece of data separately.

7. Conclusions and Future Directions

In the present research, we propose a game-theoretic model based on point processes to
model data traffic that potentially contains fake data and show insights for both the sender
and the receiver of fake data. Specifically, we show that, for the receiver, having some initial
degree of suspicion of the data source and understanding that the sender can be strategic
are very helpful, even when the receiver does not accurately anticipate the fake data sender’s
technological capabilities. In our observation, current data-driven research is ignorant of the
potential existence of fake data, possibly because their data sources are reasonably reliable.
However, with more and more sources—such as reviews, news and photos—being analyzed
as data these days and people relying increasingly heavily on data, there could be more
fake data senders in the future because they can see the profitability. Therefore, in light
of the results of this research, we suggest remaining suspicious of the source when making
data-driven decisions. Additionally, from the sender’s strategy we find from our model, we
propose an approach of detecting fake data source, which complements the piece-by-piece
fake data detection algorithms in previous studies.

Discussions remain open in many aspects around this issue. First, the timing of the
fake data can be more strategic. For example, the sender could decide to push a large
amount of fake data at once to influence some significant decisions by the receiver, and the
receiver could also learn about the existence of a sender from the timing of the data she
receives. Second, practically speaking, the receiver could decide the event space of each
piece of data, Ω, by choosing different machine learning algorithms to check them. An Ω
with a higher dimension means a higher cost for the receiver but also allows the receiver to
gain a better understanding on whether there is fake data. How to balance this trade-off
is also an important issue for the receiver. Third, the fake data sender could improve his
technology for generating fake data through the game and the receiver could also gain a
better understanding of the characteristics of fake data through observation. It will be
interesting to incorporate these possibilities to see how both sides should exert effort on
dynamically improving themselves.
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Appendix

Proof of Equation 3

Proof

dq = q(t+ dt)− q(t)
= Pr[State 1|dY ]− q

=
Pr[dY |State 1]Pr[State 1]

Pr[dY |State 1]Pr[State 1] + Pr[dY |State 2]Pr[State 2]
− q

=
(ΛaPa(dY ) + Λ0P0(dY ))q

(ΛaPa(dY ) + Λ0P0(dY ))q + (Λa + Λ0)P0(dY )(1− q)
− q

=
(ΛaPa(dY ) + Λ0P0(dY ))(q − q2)− (Λa + Λ0)P0(dY )(1− q)q

(ΛaPa(dY ) + Λ0P0(dY ))q + (Λa + Λ0)P0(dY )(1− q)

=
q(1− q)(ΛaPa(dY )+Λ0P0(dY )

Λ0+Λa
− P0(dY ))

q · ΛaPa(dY )+Λ0P0(dY )
Λ0+Λa

+ (1− q)P0(dY )

Proof of Theorem 3

Proof First, for any q ∈ [0, 1], we have

E[dq/dt] = E[(g(Z0; q,Λa)dN0 + g(Za; q,Λa)dNa)/dt]

= Λ0E[g(Z0; q,Λa)] + ΛaE[g(Za; q,Λa)]

= Λ0(p0 · g(M ; q,Λa) + (1− p0) · g(N ; q,Λa)) + Λa(pa · g(M ; q,Λa) + (1− pa) · g(N ; q,Λa))
(25)

Calculating g(M ; q,Λa), we have

g(M ; q,Λa) =
q(1− q)(ΛaPa(M)+Λ0P0(M)

Λ0+Λa
− P0(M))

q · ΛaPa(M)+Λ0P0(M)
Λ0+Λa

+ (1− q)P0(M)

=
q(1− q)(Λapa+Λ0p0

Λ0+Λa
− p0)

q · Λapa+Λ0p0

Λ0+Λa
+ (1− q)p0

(26)

Similarly, we have

g(N ; q,Λa) =
q(1− q)(Λa(1−pa)+Λ0(1−p0)

Λ0+Λa
− (1− p0))

q · Λa(1−pa)+Λ0(1−p0)
Λ0+Λa

+ (1− q)(1− p0)
(27)

Taking (26), (27) into (25), after simplification, we have

E[dq/dt] =
(p0 − pa)2(1− q)2qΛ2

a(Λ0 + Λa)

((1− p0)Λ0 + (1− p0 + p0q − paq)Λa)(paqΛ0 + p0(Λ0 + Λa − qΛa))
(28)
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On the right hand side, the only term that is not straightforwardly larger than 0 is 1− p0 +
p0q − paq. If p0 > pa, 1 − p0 + p0q − paq ≥ 1 − p0 > 0; if p0 < pa, 1 − p0 + p0q − paq ≥
1− p0 + p0 − pa = 1− pa > 0. Therefore, we have E[dq/dt] > 0, when 0 < q < 1.

Calculation of the receiver’s payoff in the equilibrium case

With Theorem 2, we know that if 0 < q(t0) < 1,

E[

∫ ∞
0

p((1− q)(Λ0 + Λa) + q(Λ0 − LΛa))dt] = E[

∫ 1

q(t0)
p((1− q)(Λ0 + Λa) + q(Λ0 − LΛa))

dq

dt
dt]

= E[
dq

dt
]

∫ 1

q(t0)
p((1− q)(Λ0 + Λa) + q(Λ0 − LΛa))dt

So, with (28), the receiver’s expected payoff can be rewritten as a deterministic form, which
then can be numerically calculated.

Proof of Theorem 4

Proof Same as the proof of Theorem 3, we still have the equation (25). However, in this
case, the receiver is updating her belief based on her wrong anticipation, meaning that in
function g(·), pa is substituted by p′a, and Λa follows (19). Then follow the same steps as
in the proof of Theorem 3 and after simplification, we have

E[dq/dt] =

{
c(p0−p′a)(1−q)q((p0−pa)Λ0Λa+c(−paΛa+p′aq(Λ0+Λa)−p0(q(Λ0+Λa)−Λa)))

(c(p0(1−q)+p′aq)+p0Λ0)(c(1−p0(1−q)−p′aq)+Λ0−p0Λ0) ,when q ≤ c+Λ0
c(1+L)

− (p0−p′a)(1−q)((p0−p′a)Λ0−(Lp0+p′a−pa−Lpa)Λa)
(1−p′a+L(1−p0))(Lp0+p′a) ,when q > c+Λ0

c(1+L)

Because when q ≤ c+Λ0
c(1+L) , Λa = c,

E[dq/dt] =

{
c2(p0−p′a)(1−q)q(p0−pa−p0q+p′aq)(c+Λ0)

(c(p0−p0q+paq)+p0Λ0)(c(1−p0+p0q−p′aq)+(1−p0)Λ0) ,when q ≤ c+Λ0
c(1+L)

− (p0−p′a)(1−q)((p0−p′a)Λ0−(Lp0+p′a−pa−Lpa)Λa)
(1−p′a+L(1−p0))(Lp0+p′a) ,when q > c+Λ0

c(1+L)

(29)

Simplifying (22), we have that: when q ≤ c+Λ0
c(1+L) , E[dq/dt] has the same symbol as p0−pa

p0−p′a
−q;

when q > c+Λ0
c(1+L) , E[dq/dt] has the same symbol as Lp0+p′a−pa−Lpa

p0−p′a
Λa − Λ0.

When p0−p′a
p0−pa < c

c+Λ0
(1 + L), it’s easy to see that p0−pa

p0−p′a
− q > 0 when q ≤ c+Λ0

c(1+L)

and it’s also easy to show that Lp0+p′a−pa−Lpa
p0−p′a

> 0. Therefore, if there exists qe such

that Λa(qe) = p0−p′a
Lp0+p′a−pa−Lpa

Λ0, it will be a stable state. From condition (15), we have

Λa(0) = c, Λa(1) = 1
LΛ0 and Λa is strictly monotonously decreasing when Λa < c. Because

1
LΛ0 <

p0−p′a
Lp0+p′a−pa−Lpa

Λ0 < c, there exists a unique qe such that Λa(qe) = p0−p′a
Lp0+p′a−pa−Lpa

Λ0.

When p0−p′a
p0−pa >

c
c+Λ0

(1 +L), we have Lp0+p′a−pa−Lpa
p0−p′a

Λa−Λ0 < 0, therefore qe = p0−pa
p0−p′a

is

the only stable state other than 0 and 1 and Λ(qe) = c.

When p0−p′a
p0−pa = c

c+Λ0
(1 + L), qe = p0−pa

p0−p′a
= c+Λ0

c(1+L) and Λ(qe) = c.

23



Li and Whinston

Proof of Theorem 5

Proof First, it’s obvious that when p0−p′a
p0−pa ≥

c
c+Λ0

(1 + L), Λa(qe) equals to c and is larger

than the Λa(qe) when p0−p′a
p0−pa <

c
c+Λ0

(1 + L).

Then, when p0−p′a
p0−pa <

c
c+Λ0

(1 + L), Λa(qe) = p0−p′a
Lp0+p′a−pa−Lpa

Λ0 = 1

(L+1)
p0−pa
p0−p′a

−1
Λ0, which

is increasing with respect to p0−p′a
p0−pa .

Therefore, Λa(qe) is an increasing function with respect to p0−p′a
p0−pa .
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