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Abstract

Gaussian belief propagation (GaBP) is a message-passing algorithm that can be used to
perform approximate inference on a pairwise Markov graph (MG) constructed from a mul-
tivariate Gaussian distribution in canonical parameterization. The output of GaBP is a
set of approximate univariate marginals for each variable in the pairwise MG. An exten-
sion of GaBP (labeled GaBP-m), allowing for the approximation of higher-dimensional
marginal distributions, was explored by Kamper et al. (2019). The idea is to create an
MG in which each node is allowed to receive more than one variable. As in the univariate
case, the multivariate extension does not necessarily converge in loopy graphs and, even if
convergence occurs, is not guaranteed to provide exact inference. To address the problem
of convergence, we consider a multivariate extension of the principle of node regularization
proposed by Kamper et al. (2018). We label this algorithm slow GaBP-m (sGaBP-m),
where the term “slow” relates to the damping effect of the regularization on the message
passing. We prove that, given sufficient regularization, this algorithm will converge and
provide the exact marginal means at convergence, regardless of the way variables are as-
signed to nodes. The selection of the degree of regularization is addressed through the use
of a heuristic, which is based on a tree representation of sGaBP-m. As a further contri-
bution, we extend other GaBP variants in the literature to allow for higher-dimensional
marginalization. We show that our algorithm compares favorably with these variants, both
in terms of convergence speed and inference quality.

Keywords: belief propagation, Gaussian distributions, regularization, inference quality,
higher-dimensional marginals

1. Introduction

In this paper we deal with the problem of finding the marginal distributions of Xi : di × 1
for i = 1, 2, . . . , p where these are mutually exclusive and exhaustive subvectors of X : k×1.
We restrict our focus to the case where X follows a multivariate Gaussian distribution in
canonical parameterization with precision matrix S : k × k and potential vector b : k × 1.
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For the purpose of this marginalization, we consider applying belief propgation (BP) to
a graphical model. BP was introduced by Pearl (1988) as an inference algorithm, and was
later found to be equivalent to the sum-product algorithm for decoding LDPC codes (Gal-
lager, 1963; Frey and Kschischang, 1996; Aji and McEliece, 2000). BP applied to a pairwise
MG constructed from a Gaussian distribution in canonical parameterization is often labeled
GaBP. This corresponds to our marginalization objective, with p = k and di = 1 for all i.
The output of this algorithm is a set of approximate marginal distributions for each of the
variables represented in the pairwise MG. A limitation of GaBP is that it cannot be used
to approximate higher-dimensional marginals. Another issue with GaBP is that it does not
necessarily converge when applied to loopy pairwise MGs. Moreover, even if convergence
occurs, the precisions provided by GaBP are not necessarily exact (however, the means
provided are exact). There are several GaBP-based algorithms in the literature aimed at
improving on the convergence behavior of the basic algorithm (Johnson et al., 2009; Liu,
2010; El-Kurdi et al., 2012a; Ruozzi and Tatikonda, 2013; Liu et al., 2012; Kamper et al.,
2018).

Due to the way a multivariate Gaussian distribution in canonical parameterization is margin-
alized, GaBP implicitly solves a system of linear equations. This role of GaBP is considered
in the literature (Bickson, 2008; Shental et al., 2008; El-Kurdi et al., 2012b). Other types of
application include channel estimation in communication systems (Montanari et al., 2006;
Guo and Ping, 2008; Guo and Huang, 2011), sparse Bayesian learning in large-scale com-
pressed sensing problems (Seeger and Wipf, 2010), estimation on Gaussian graphical models
(Chandrasekaran et al., 2008; Liu et al., 2012) and the detection of F-formations in free-
standing conversational groups (Kamper, 2017).

Kamper et al. (2019) proposed an extension of the GaBP algorithm, allowing for the approx-
imation of higher-dimensional marginal distributions (GaBP-m). This algorithm operates
on a higher-dimensional extension of a pairwise MG. Therefore, GaBP-m can be used to
approximate the marginals of Xi : i = 1, 2, . . . , p, where each Xi is allowed to be higher-
dimensional. As in the case of GaBP, GaBP-m is not guaranteed to converge when applied
to loopy graphs. Assuming convergence, GaBP-m provides the correct marginal means of
Xi, while the precision matrices provided are not necessarily exact. The main reason for
using GaBP-m over GaBP is that it allows for the approximation of higher-dimensional
marginals. This is useful when fast approximations to diagonal blocks of S−1 are required.
Consider the marginal distribution of X1 with mean vector µ1 and precision matrix Θ1. We
note that, under the assumption of convergence, both GaBP-m and GaBP provide the exact
marginal means and hence both can be used to find µ1. A major advantage of GaBP-m
over GaBP is that it can be used to approximate Θ1. Another advantage is that GaBP-m
can converge in cases where GaBP does not (faster convergence is also possible). GaBP-m
can also be used to perform univariate marginalization. The idea is to first approximate
the marginal distribution of X1 using GaBP-m, and then apply direct matrix inversion to
approximate the univariate marginals. This method can yield better univariate marginal
approximations than GaBP (Kamper et al., 2019). However, doing this comes at an in-
creased computational cost compared to GaBP.
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In this paper, we consider a new algorithm (sGaBP-m), which can be regarded as either a
convergent extension of GaBP-m or a multivariate extension of sGaBP. The main motivation
for using sGaBP-m over GaBP-m is that sGaBP-m can converge for arbitrary precision ma-
trices. This is the main theoretical contribution of this paper, viz. sGaBP-m will converge,
given sufficient regularization. There are also other advantages of using sGaBP-m over
GaBP-m. These include that sGaBP-m can accelerate the convergence speed of GaBP-m,
and can provide superior inference quality in terms of the approximated precisions pro-
vided. These are some of the conclusions made in the empirical study presented in Section
5.1. The main motivation for using sGaBP-m over sGaBP is that sGaBP-m can provide
approximations of higher-dimensional marginals. Since both these algorithms provide the
exact marginal means at convergence, this improvement lies in the fact that sGaBP-m can
approximate higher-dimensional marginal precision matrices. Again, there are other rea-
sons for using sGaBP-m over sGaBP. Here we note that sGaBP-m can also be used for
univariate marginal approximation. This is done by first computing the higher-dimensional
precision estimate, and then using direct matrix inversion to approximate the univariate
precisions. In Section 5.3 we present an empirical study in which sGaBP-m outperforms
sGaBP in terms of inference quality.

We also extend relaxed GaBP (El-Kurdi et al., 2012a) and convergence fix GaBP (Johnson
et al., 2009) to allow for higher-dimensional marginalization. These algorithms are labeled
RGaBP and CFGaBP respectively. In the empirical study of Section 5.1 we show that
sGaBP-m compares favorably to these algorithms, both in terms of convergence speed and
inference quality.

The construction of this paper is as follows:

1. Section 2. We give an overview of some of the mathematical concepts that feature in
this paper.

2. Section 3. We provide a proof of convergence of sGaBP-m, given sufficient regulariza-
tion. This section contains most of the theoretical contributions of this paper. The
main theoretical novelty with respect to Kamper et al. (2018) is the use of computa-
tion trees to derive asymptotic expressions for the precision components of sGaBP-m.
The remainder of this section contains multivariate extensions of some of the theo-
retical results associated with sGaBP, and hence some of the proofs will be similar to
those of Kamper et al. (2018). We will indicate these proofs explicitly, and discuss
differences with their univariate analogs.

3. Section 4. We discuss a tree representation of sGaBP-m that can be used to unfold
all the computations done by sGaBP-m (including the means, which is not discussed
in Section 3). This is used to derive a heuristic for selecting λ.

4. Section 5. sGaBP-m is compared to other algorithms empirically.
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2. Preliminaries

In this section we discuss the concepts needed to understand the theoretical work covered
in this paper.

2.1. Terminology

BP is an iterative message-passing algorithm that operates on a graph. Direct commu-
nication only occurs between nodes linked in the graph. Bickson (2008) describes two
conventional types of message-update rules. In synchronous message passing, new messages
are formed using messages from the previous round only and therefore are not influenced
by the message scheduling. This is in contrast to the asynchronous case, where messages
updated in the current round are used to compute new messages. Although asynchronous
updates tend to outperform the synchronous approach (Koller and Friedman, 2009), our
focus is on the synchronous case. We do this since one of the more attractive properties of
BP is its application in distributed computing settings, which is far more compatible with
synchronous message updates.

At each iteration, the approximate marginal distribution of a node can be found by multiply-
ing all its incoming messages with the node potential. We label the approximate distribution
constructed by a node i at iteration n, the posterior distribution of node i at iteration n.
In the Gaussian case, the posterior distribution of node i at iteration n is characterized by
a mean vector and a precision matrix. We call these the posterior mean and the posterior
precision associated with node i at iteration n respectively.

2.2. Higher-dimensional MG

As in the case of GaBP-m, sGaBP-m operates on a higher-dimensional extension of a pair-
wise MG. For the purpose of our discussion, we assume, without loss of generality, that
X = (X′1,X

′
2, . . . ,X

′
p)
′. Let Ci denote the set of variables contained in Xi for i = 1, 2, . . . , p.

We sometimes refer to Ci as cluster i. The higher-dimensional MG consists of p nodes,
where we assign to node i the variables in Ci. There exists an edge between node i and
node j if, and only if, there is a variable in cluster i linked to a variable in cluster j in the
original (univariate) pairwise MG. We use MG to refer to the higher-dimensional extension
of the pairwise MG.

Let Sij be the submatrix of S corresponding to the variables in Ci (rows) and Cj (columns).
The set of edges is E = {(i, j) : i < j,Sij 6= 0 : di × dj}. The density function of X can be
written as

f(x) =
1

Z

p∏
i=1

exp

[
− 1

2
x′iSiixi + x′ibi

] ∏
(i,j)∈E

exp

[
− x′iSijxj

]
, (1)

where bi is the subvector of b corresponding to the variables in Ci, x = (x′1,x
′
2, . . . ,x

′
p)
′ cor-

responds to the decomposition X = (X′1,X
′
2, . . . ,X

′
p)
′, and Z is a normalization constant.
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The neighborhood of cluster i is defined as Ni = {j 6= i : Sij 6= 0 : di × dj}. If j ∈ Ni, then
Ni \ j denotes Ni with j removed.

2.3. Convergence of GaBP and GaBP-m

When GaBP is applied to a tree-structured pairwise MG, it will converge and provide exact
inference at convergence. Convergence is not guaranteed for loopy pairwise MGs, although
there are some guarantees. Weiss and Freeman (2001) showed that GaBP will converge
if the precision matrix is diagonally dominant. A weaker condition for convergence is the
walk-summability of the precision matrix (Malioutov et al., 2006). The spectral radius of
a matrix A : k × k is ρ(A) = max{|σ1|, |σ2|, . . . , |σk|}, where |σi| is the modulus of the ith
eigenvalue of A. We give the following definition:

Definition 1 (Walk-summability) Consider a precision matrix S : k × k = [sij ], and
suppose D = diag( 1√

s11
, 1√

s22
, . . . , 1√

skk
). The matrix S is considered to be walk-summable

if ρ(|Ik −DSD|) < 1

Note that |A| contains the absolute values of the elements of A (we use det(A) for the
determinant). For more studies on the convergence of GaBP, the reader can consult Su
and Wu (2015); Sui et al. (2015); Li and Wu (2019a,b). Note that other types of Gaus-
sian message-passing are considered in some of these studies. Different types of Gaussian
message-passing correspond to different factorizations of the underlying Gaussian density.
In this paper, we only consider node regularization applied to factorizations of the type
in Equation (1), although extensions to other factorizations are an interesting avenue for
further research.

Kamper et al. (2019) derived an extension of the walk-summability convergence condi-
tion for GaBP to GaBP-m. GaBP-m will converge if the precision matrix is preconditioned
walk-summable. We give the following definitions:

Definition 2 (Valid Preconditioner) We call a matrix Λ : k × k a valid preconditioner
with respect to the clusters Ci : i = 1, 2, . . . , p if Λii : di × di is positive definite and
Λij = 0 : di × dj.

Definition 3 (Preconditioned Walk-summability) Consider a precision matrix S :
k × k and clusters Ci : i = 1, 2, . . . , p. The precision matrix S is preconditioned walk-
summable if there exists a valid preconditioner Λ such that ΛSΛ is walk-summable.

We note here that walk-summable precision matrices are always preconditioned walk-
summable; however, the converse is not true. This provides theoretical justification for
the fact that GaBP-m can converge in cases where GaBP does not. For an explicit exam-
ple, see Kamper et al. (2019).

2.4. Derivation of Synchronous sGaBP-m

We restrict our focus to a sum-product-based derivation of sGaBP-m. We note that Kamper
et al. (2018) partially derive the sGaBP-m updates based on a max-sum formulation (they
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do not consider the need for damping) and these formulations (with damping for both) are
equivalent. In GaBP-m, the synchronous message updates are

m
(n+1)
ij (xj) =

∫
xi

exp

[
− 1

2
x′iSiixi + x′ibi

]
exp

[
− x′iSijxj

] ∏
t∈Ni\j

m
(n)
ti (xi)dxi,

for all i and all j ∈ Ni. sGaBP-m incorporates a regularization parameter that encourages

xi to use values close to µ
(n−1)
i for the purpose of constructing messages at iteration n+ 1.

The synchronous message updates for sGaBP-m are

m
(n+1)
ij (xj) =

∫
xi

exp

[
−1

2
x′iSiixi+x′ibi−

λ

2
||xi−µ(n−1)

i ||22
]
exp

[
−x′iSijxj

] ∏
t∈Ni\j

m
(n)
ti (xi)dxi,

(2)
for all i and all j ∈ Ni. We can interpret the regularization in Equation (2) as encouraging
the posterior distribution of node i at iteration n to consider values closer to the mean of
the posterior distribution at iteration n− 1 for the purpose of constructing new messages,

hence the principle of node regularization. If m
(n)
ti (xi) ∝ exp

[
− 1

2x′iQ
(n)
ti xi+x′iv

(n)
ti

]
, where

Q
(n)
ti : di × di and v

(n)
ti : di × 1 for all t ∈ Ni, then it can be shown that:

m
(n+1)
ij (xj) ∝ exp

[
− 1

2
x′iQ

(n+1)
ti xi + x′iv

(n+1)
ti

]
. (3)

The quantities in Equation (3) can be evaluated as:

Q
(n+1)
ij = −Sji[P

(n)
ij (λ)]−1Sij (4)

v
(n+1)
ij = −Sji[P

(n)
ij (λ)]−1[λµ

(n−1)
i + bi +

∑
t∈Ni\j

v
(n)
ti ], (5)

where P
(n)
ij (λ) = λIdi + Sii +

∑
t∈Ni\j Q

(n)
ti . To obtain the exact marginal means at con-

vergence it is necessary to perform damping on the progression of the posterior means (see
Theorem 1):

µ
(n+1)
i = [P

(n+1)
i (λ)]−1[λµ

(n)
i + bi +

∑
t∈Ni

v
(n)
ti ], (6)

where P
(n+1)
i (λ) = λIdi + Sii +

∑
t∈Ni

Q
(n+1)
ti . To see why this is a form of damping, set

P̂
(n)
i = Sii +

∑
t∈Ni

Q
(n+1)
ti and consider:

µ
(n)
i = [P

(n)
i (λ)]−1[λµ

(n−1)
i + z

(n)
i ]

= λ[P
(n)
i (λ)]−1µ

(n−1)
i + [P

(n)
i (λ)]−1z

(n)
i

= λ[P
(n)
i (λ)]−1µ

(n−1)
i + [P

(n)
i (λ)]−1P̂

(n)
i [P̂

(n)
i ]−1z

(n)
i .

Note that P
(n)
i (λ) = λIdi + P̂

(n)
i . If we set Υ

(n)
i (λ) = λ[P

(n)
i (λ)]−1, then

µ
(n)
i = Υ

(n)
i (λ)µ

(n−1)
i + (Idi −Υ

(n)
i (λ))[P̂

(n)
i ]−1z

(n)
i .
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We can interpret [P̂
(n)
i ]−1z

(n)
i as the posterior mean for iteration n, which we would have

computed if no damping was applied. Hence, the posterior mean at iteration n can be
interpreted as a damped value of the posterior mean of the previous iteration and the

mean suggested by the current messages. The damping is done through a matrix Υ
(n)
i (λ),

which depends on λ and the current posterior precision. In contrast to methods such as
RGaBP (relaxed GaBP), sGaBP-m automatically computes damping matrices based on
the regularization parameter λ. This damping is essential to preserve the exactness of the
converged posterior means as the true marginal means. This result is summarized in the
following theorem (for a proof see Appendix A):

Theorem 1 Suppose the iterative updates given in (4) - (6) have converged. The converged
posterior means solve the linear system of equations Sx = b.

Note that, in Theorem 1, we use the notation:

P̈
(n)
i (λ) = [P

(n)
i (λ)]−1

P̈
(n)
ij (λ) = [P

(n)
ij (λ)]−1.

The posterior distribution associated with node i at iteration n is a normal distribution with

mean vector µ
(n)
i and precision matrix P̂

(n)
i (not P

(n)
i (λ)). An efficient implementation of

the updates given in Equations (4) - (6) is given in Algorithm 1. We note that the definition
of convergence in Algorithm 1 depends only on how close the posterior means are to solving
the linear system Sµ = b. This is because the convergence of the posterior means requires
the convergence of the precision components of sGaBP-m (convergence of the posterior
means typically implies convergence of the precision components). By precision components

of sGaBP-m we mean Q
(n)
ij , P̈

(n)
i (λ) and P̈

(n)
ij (λ).

2.5. Computation Trees for GaBP-m

The idea behind a computation tree is to represent the computations done by GaBP as in-
ference on a tree-structured pairwise MG. This representation leads to analytical formulas
for the different components of the GaBP algorithm. Computation trees for GaBP were
introduced by Weiss and Freeman (2001) and extended by Kamper et al. (2019) for GaBP-m.

In order to avoid confusion between nodes in the higher-dimensional MG and its com-
putation tree, we will refer to nodes in the MG as clusters. This terminology will be used
for the remainder of the paper.

We will highlight the basics of the computation tree analysis and how it applies to this
paper. For an example, refer to Appendix D. Each cluster i receives its own computation

tree, with topology denoted by T (n)
i . The superscript refers to the depth of the computation

tree and each node in the computation tree has a reference to a specific cluster. The first

layer of T (n)
i consist of a single node with a reference to cluster i. The second layer consists

of mutually unconnected nodes for each of the clusters in Ni, with the root node as their

parent. For n ≥ 2, T (n+1)
i is constructed from T (n)

i by applying the following process to

each of the terminal nodes of T (n)
i :
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Algorithm 1 Synchronous sGaBP-m

1. Provide a precision matrix S : k × k, a potential vector b : k × 1 and clusters Ci : i =
1, 2, . . . , p as inputs.

2. Specify a tolerance ε, a maximum number of iterations m and a regularization pa-
rameter λ.

3. Initialize Q
(0)
ij = 0 : dj × dj , v

(0)
ij = 0 : dj × 1, µ

(−1)
i = bi for all i and all j ∈ Ni.

4. Set Err = Inf and n = 0.

5. While Err > ε

(a) Compute P
(n)
i (λ) = λIdi + Sii +

∑
j∈Ni

Q
(n)
ji and

z
(n)
i = bi +

∑
j∈Ni

v
(n)
ji for i = 1, 2, . . . , p.

(b) Set µ
(n)
i = [P

(n)
i (λ)]−1[λµ

(n−1)
i + z

(n)
i ], e

(n)
i =

∑
j Sijµ

(n)
j − bi and Err =

maxi{||e(n)i ||∞}.
(c) If Err > ε, do for all i ∈ {1, 2, . . . , p} and all j ∈ Ni:

Q
(n+1)
ij = −Sji[P

(n)
i (λ)−Q

(n)
ji ]−1Sij and

v
(n+1)
ij = −Sji[P

(n)
i (λ)−Q

(n)
ji ]−1[λµ

(n−1)
i + z

(n)
i − v

(n)
ji ].

(d) Increment n.

(e) If n = m, break.

6. End.

1. We note the reference of the terminal node (say t) and the reference of its parent in
layer n− 1 (say s).

2. Create mutually unconnected nodes in the terminal layer of T (n+1)
i , one for each of

the clusters in Nt \ s.

3. The terminal node under consideration is the parent of these nodes in T (n+1)
i .

Each computation tree T (n)
i receives a precision matrix T

(n)
ii . This precision matrix is

constructed as follows:

1. The submatrix of T
(n)
ii corresponding to a node in the computation tree with reference

to cluster t in T (n)
i is Stt.

2. Consider two linked nodes in T (n)
i with references to clusters s and t respectively. The

corresponding submatrix of T
(n)
ii is Sts.

3. All other entries of T
(n)
ii are zero.
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The computation tree T (n)
i can be converted into a line topology, L(n)i . This is done by

collecting all nodes in a given layer into a single node.

Consider a j ∈ Ni. Define T (n)
ji to be the subtree of T (n)

i , rooted at the node in the
second layer corresponding to cluster j. We note here that Kamper et al. (2019) use the
same notation for a different computation tree (it contains an additional node with a ref-

erence to cluster i linked to the root node of our T (n)
ji ); however, we need our definition for

the theoretical results of this paper. Let T
(n)
ji be the submatrix of T

(n)
ii corresponding to

the nodes in the subtree of T (n)
ji . We have the following proposition:

Proposition 1 The following formulas hold:

P̈
(n−1)
i (0) = [P

(n−1)
i (0)]−1 = [G

(n)
ii ]′[T

(n)
ii ]−1G

(n)
ii

P̈
(n−2)
ij (0) = [P

(n−2)
ij (0)]−1 = [G

(n)
ij ]′[T

(n)
ij ]−1G

(n)
ij ,

where [G
(n)
ii ]′ =

[
Idi 0

]
and [G

(n)
ij ]′ =

[
Idi 0

]
, both of a suitable dimension. Moreover,

convergence is guaranteed if S is preconditioned walk-summable.

Proof The proof of this proposition follows from Kamper et al. (2019), although they do

not consider the convergence of P̈
(n−2)
ij (0) explicitly. However, the convergence of P̈

(n−2)
ij (0),

under preconditioned walk-summability, can be proven using similar arguments to the proof

of convergence of P̈
(n−1)
i (0).

We note that computation trees can be constructed for any matrix A, even if this matrix
is not symmetrical. Next, we summarize Lemma 5 of Kamper et al. (2019):

Lemma 1 Let T
(n)
ii (A) be the precision matrix of the computation tree constructed for

cluster i based on the matrix A. We have that:

||T(n)
ii (A)||∞ ≤ ||A||∞.

Proposition 1 and Lemma 1 will be used to derive asymptotic expressions for P̈i(λ) =

limn→∞ P̈
(n)
i (λ) and P̈ij(λ) = limn→∞ P̈

(n)
ij (λ) as λ → ∞. These expressions play a key

role in the proof of convergence of sGaBP-m.

2.6. Notes on Subscripting

Care should be taken when interpreting the subscripts of matrices used in this paper,
although their meaning should be clear from the context. For instance, the subscripts of

the matrix T
(n)
ii refer to the cluster for which the computation tree is designed (cluster i in

this case). This is in contrast to Sij , which denotes the submatrix of S associated with the
variables in cluster i and cluster j for the rows and columns respectively.

3. Convergence of sGaBP-m

This section is dedicated to proving the convergence of sGaBP-m, given sufficient regular-
ization. The construction of this section is as follows:
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• Section 3.1. We prove the convergence of the precision components given sufficient
regularization.

• Section 3.2. Asymptotic expressions for P̈i(λ) and P̈ij(λ) as λ→∞ are derived.

• Section 3.3. We derive the convergence of the mean components of sGaBP-m, given
sufficient regularization. This proof is done under the assumption that the precision

components have converged. The mean components are the µ
(n)
i and v

(n)
ij in Algorithm

1.

• Section 3.4. We prove overall convergence of sGaBP-m, given sufficient regularization.

3.1. Convergence of Precision Components

Note that it is sufficient to prove the convergence of P̈
(n)
i (λ) and P̈

(n)
ij (λ), since Q

(n+1)
ij =

−SjiP̈
(n)
ij (λ)Sij . The proof of convergence of the precision components is simple, due to the

following proposition:

Proposition 2 P̈
(n)
i (λ) and P̈

(n)
ij (λ) obtained from sGaBP-m applied to S are equivalent

to P̈
(n)
i (0) and P̈

(n)
ij (0) respectively, obtained from GaBP-m applied to S + λIk.

Note that Proposition 2 is evident from Algorithm 1. We now have the following theorem:

Theorem 2 Consider sGaBP-m applied to S with a regularization parameter λ, then P̈
(n)
i (λ)

and P̈
(n)
ij (λ) will converge if S + λIk is preconditioned walk-summable.

Proof The proof follows directly from Propositions 1 and 2.

The following corollary to Theorem 2 also holds:

Corollary 1 Consider sGaBP-m applied to S with a regularization parameter λ, then

P̈
(n)
i (λ) and P̈

(n)
ij (λ) will converge if S + λIk is diagonally dominant.

Proof This follows from the fact that a diagonally dominant S + λIk is walk-summable,
and hence also preconditioned walk-summable.

Although the proof of convergence of the precision components of sGaBP-m is relatively
simple, the challenge is deriving associated asymptotic expressions as λ→∞. We consider
this in the next section.

3.2. Asymptotic Expressions

Consider the following lemma:

Lemma 2 We have the following asymptotic expressions:

λP̈i(λ) = Idi −
1

λ
Sii +O(

1

λ2
)

Uij(λ) = −SjiP̈ij(λ) = − 1

λ
Sji +O(

1

λ2
),

for all i ∈ V and all j ∈ Ni.

10
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Proof We start by defining the following:

1. Let T (n)
i (λ) and T (n)

ij (λ) be the computation trees constructed from S + λIk, with

T
(n)
ii (λ) and T

(n)
ij (λ) the associated precision matrices respectively.

2. Set S = [sij ], D = diag(s11, s22, . . . , skk) and R = D− S.

3. Let S̄(λ) = (λIk + D)−0.5(λIk + S)(λIk + D)−0.5 and set R̄(λ) = Ik − S̄(λ).

4. T̄
(n)
ii (λ) and T̄

(n)
ij (λ) are defined analogous to T

(n)
ii (λ) and T

(n)
ij (λ) respectively; how-

ever, they are constructed from S̄(λ).

5. R̄(n)
ii (λ) = Imn;i − T̄

(n)
ii (λ), where T̄

(n)
ii (λ) is mn;i×mn;i. The matrix R̄(n)

ii (λ) contains
only zeros on its diagonal.

6. Note that R̄(n)
ii (λ) is the precision matrix of the computation tree for cluster i, with

a depth of n, constructed from the matrix R̄(λ).

7. It can be shown that:

[G
(n)
ii ]′[T

(n)
ii (λ)]−1G

(n)
ii = (λIdi + Dii)

−0.5[G
(n)
ii ]′[T̄

(n)
ii (λ)]−1[G

(n)
ii ](λIdi + Dii)

−0.5.

By Lemma 1 we see that:

||R̄(n)
ii (λ)||∞ ≤ ||R̄(λ)||∞. (7)

A further consequence of Equation (7) is:

||(R̄(n)
ii (λ))t||∞ ≤ ||R̄(λ)||t∞.

Consider:

R̄(λ) = Ik − S̄(λ)

= (λIk + D)−0.5(D− S)(λIk + D)−0.5

= (λIk + D)−0.5R(λIk + D)−0.5. (8)

From (8) we have:

||R̄(λ)||∞ = ||(λIk + D)−0.5R(λIk + D)−0.5||∞
≤ ||(λIk + D)−0.5||∞||R||∞||(λIk + D)−0.5||∞

=
||R||∞

λ+ minl{Sll}
. (9)

The bound in (9) shows that there will always be a selection of λ such that S̄(λ) is strictly

diagonally dominant. Furthermore, ρ(R̄(n)
ii (λ)) ≤ ||R̄(n)

ii (λ)||∞ ≤ ||R̄(λ)||∞ ≤ rλ, where

rλ = ||R||∞
λ+minl{Sll} . From this point onwards we assume λ > ||R||∞ − minl{Sll} such that

11
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rλ < 1. Hence, ρ(R̄(n)
ii (λ)) < 1, and we can apply the Neumann power series [Imn −

R̄(n)
ii (λ)]−1 =

∑∞
t=0[R̄

(n)
ii (λ)]t to obtain:

[G
(n)
ii ]′[Imn − R̄

(n)
ii (λ)]−1G

(n)
ii =

∞∑
t=0

[G
(n)
ii ]′[R̄(n)

ii (λ)]tG
(n)
ii

= Idi + R̄ii(λ) +
∑

l∈{Ni∪i}

R̄il(λ)R̄li(λ) + Ω
(n)
ii (λ), (10)

where Ω
(n)
ii (λ) =

∑∞
t=3[G

(n)
ii ]′[R̄(n)

ii (λ)]tG
(n)
ii .

We note three important consequences of (10):

1. Since S̄(λ) is strictly diagonally dominant, limn→∞[G
(n)
ii ]′[Imn−R̄

(n)
ii (λ)]−1G

(n)
ii exists

by Corollary 1, and therefore limn→∞Ω
(n)
ii (λ) = Ωii(λ) for a specified matrix Ωii(λ).

2. We see that:

||Ω(n)
ii (λ)||∞ ≤

∞∑
t=3

||[G(n)
ii ]′||∞||[R̄(n)

ii (λ)]t||∞||G(n)
ii ||∞

=

∞∑
t=3

||[R̄(n)
ii (λ)]t||∞

≤
∞∑
t=3

rtλ

=
r3λ

1− rλ
= O

(
1

λ3

)
.

3. Points (1) and (2) guarantee that Ωii(λ) = O( 1
λ2

) (see Lemma 4 in Appendix D).

Consider further simplification of (8). We note that (Ik + D
λ )−0.5 is a diagonal matrix with

the lth diagonal entry equal to:

(
1 +

Sll
λ

)−0.5
= 1 +

∞∑
t=1

(
−0.5

t

)
Stll
λt

= 1 +O
(

1

λ

)
, (11)

where we assume that λ > Sll and
(
α
t

)
= α(α−1)...(α−t+1)

t! denote the generalized binomial
coefficients. As a consequence, we have:

(
Ik +

D

λ

)−0.5
= Ik +O

(
1

λ

)
,

12
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and

R̄(λ) = (λIk + D)−0.5R(λIk + D)−0.5

=
1

λ

(
Ik +

D

λ

)−0.5
R

(
Ik +

D

λ

)−0.5
=

1

λ

(
Ik +O

(
1

λ

))
R

(
Ik +O

(
1

λ

))
=

1

λ
R +O

(
1

λ2

)
. (12)

From (12) we see that:

Idi + R̄ii(λ) +
∑

l∈{Ni∪i}

R̄il(λ)R̄li(λ) = Idi +
1

λ
Rii +O

(
1

λ2

)
,

where no terms involve the iteration number n. Consider:

λP̈
(n−1)
i (λ) = λ[G

(n)
ii ]′[T

(n)
ii (λ)]−1G

(n)
ii

= λ(λIdi + Dii)
−0.5[G

(n)
ii ]′[T̄

(n)
ii (λ)]−1[G

(n)
ii ](λIdi + Dii)

−0.5

= λ(λIdi + Dii)
−0.5

[
Idi +

1

λ
Rii +O(

1

λ2
) + Ω

(n)
ii (λ)

]
(λIdi + Dii)

−0.5

→
(

Idi +
Dii

λ

)−0.5[
Idi +

1

λ
Rii +O(

1

λ2
)

](
Idi +

Dii

λ

)−0.5
(13)

as n → ∞, and where it should be noted that Ωii(λ) = O( 1
λ2

). A second-order expansion
of (11) yields:(

1 +
Sll
λ

)−0.5
= 1− 0.5

Sll
λ

+
∞∑
t=2

(
−0.5

t

)
Stll
λt

= 1− 0.5
Sll
λ

+O
(

1

λ2

)
,

which gives

(
Idi + Dii

λ

)−0.5
= Idi − 0.5Dii

λ +O( 1
λ2

). Equation (13) becomes:

(
Idi +

Dii

λ

)−0.5[
Idi +

1

λ
Rii +O

(
1

λ2

)](
Idi +

Dii

λ

)−0.5
=

(
Idi − 0.5

Dii

λ
+O

(
1

λ2

))[
Idi +

1

λ
Rii +O

(
1

λ2

)](
Idi − 0.5

Dii

λ
+O

(
1

λ2

))
=

(
Idi − 0.5

Dii

λ

)[
Idi +

1

λ
Rii

](
Idi − 0.5

Dii

λ

)
+O

(
1

λ2

)
= Idi +

1

λ
(Rii −Dii) +O

(
1

λ2

)
= Idi −

1

λ
Sii +O

(
1

λ2

)
.

13



Kamper, Steel, and du Preez

Finally we obtain:

λP̈i(λ) = lim
n→∞

λP̈
(n−1)
i (λ) = Idi −

1

λ
Sii +O(

1

λ2
). (14)

Similar to the derivation of (14), it can be shown that:

P̈ij(λ) =
1

λ
Idi +O

(
1

λ2

)
.

Defining Uij(λ) = −SjiP̈ij(λ), we see that:

Uij(λ) = − 1

λ
Sji +O

(
1

λ2

)
.

In the next section, we show that, after the precision components of sGaBP-m have con-
verged, the updates of the mean components become linear. The linear update matrix is
determined by the matrices Uij(λ) and λP̈i(λ) for i ∈ V and j ∈ Ni, and hence they play a
crucial role in the convergence behavior of sGaBP-m. Of particular interest is the behavior
of the spectral radius of the linear update matrix as λ → ∞. The asymptotic expressions
derived in this section allow us to show that this spectral radius will be less than 1 for large
enough λ.

3.3. Convergence of Mean Components

We now turn our attention to proving the convergence of the mean components, given the
convergence of the precision components. We will also assume, without loss of generality,
that we are dealing with a fully connected higher-dimensional MG.

3.3.1. Convergence to Linear Updates

By Theorem 2 we know that, if λ is sufficiently large, then P̈
(n)
ij (λ)→ P̈ij(λ) and P̈

(n)
i (λ)→

P̈i(λ) as n → ∞ for specified P̈ij(λ) and P̈i(λ). For the remainder of Section 3, we will
write

P̈i = P̈i(λ)

Uij = Uij(λ),

and proceed under the assumption that the precision components of sGaBP-m have con-
verged. Under this assumption, the remaining components of sGaBP-m are updated through
the equations:

v
(n+1)
ij = Uij [λµ

(n−1)
i + bi +

∑
t6=i,j

v
(n)
ti ] (15)

µ
(n+1)
i = P̈i[λµ

(n)
i + bi +

∑
t6=i

v
(n+1)
ti ] (16)

14
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for all i and j 6= i. We now show that these updates can be done through a linear transfor-
mation matrix. Define

γ
(n+1)
i = (v

(n+1)′

1i ,v
(n+1)′

2i , . . . ,v
(n+1)′

(i−1);i,v
(n+1)′

(i+1);i, . . . ,v
(n+1)′

pi )′,

and set γ(n+1) = (γ
(n+1)′

1 ,γ
(n+1)′

2 , . . . ,γ
(n+1)′
p ,µ

(n)′

1 , . . . ,µ
(n)′
p )′. Note that the size of γ

(n+1)
i

is (p − 1)di. Set m1 = (p − 1)
∑

i di = k(p − 1) and m2 = m1 + k = kp. We are going to
show that there is a matrix L : m2 ×m2, such that:

γ(n+1) = γ0 + Lγ(n), (17)

where γ0 is an m2 × 1 vector. Consider Uij : dj × di and set

γ0i = (b′1U
′
1i, b

′
2U
′
2i, . . . , b

′
i−1U

′
(i−1);i, b

′
i+1U

′
(i+1);i, . . . , b

′
pU
′
pi)
′.

Let γ0 = (γ ′01,γ
′
02, . . . ,γ

′
0p, b

′
1P̈
′
1, . . . , b

′
pP̈
′
p)
′. For the linear update matrix, consider the

decomposition

L =

[
L11 : m1 ×m1 L12 : m1 × k
L21 : k ×m1 L22 : k × k

]
.

The construction of L is as follows:

1. Consider first the matrix L11. We can decompose L11 into blocks, where each block
corresponds to a row message and a column message. Consider block s, t of L11 and
assign to this block a row index and column index, which are to be obtained from
the first m1 components of γ0. To obtain the row and column message indices of this
block, we move to entry s and entry t of γ0. If entry s is Ujibj and entry t is Urubr,
then the row and column indices of block s, t are (j, i) (message from j to i) and (r, u)
(message from r to u) respectively.

2. Consider block s, t of L11 with row indices (j, i) and column indices (r, u). If u = j
and r 6= j, i; then this block is Uji, otherwise the block is a matrix of zeros.

3. The matrix L22 has a decomposition according to the last k components of γ0. Block
s, t of L22 is associated with bs (row index is s) and bt (column index is t). A block
of L22, corresponding to a row and column index of s and t respectively, is 0 if s 6= t
and λP̈t otherwise. Therefore, L22 is block-diagonal.

4. The matrix L12 has a decomposition according to the row indices of L11 and the
column indices of L22. Block s, t has a row index (j, i) and a column index u. This
block is λUji if u = j, and a matrix of zeros otherwise.

5. L21 has a block decomposition with row indices equal to the row indices of L22 and
the column indices equal to the column indices of L11. Block s, t has a row index u
and a column index (j, i). This block is P̈u if i = u and j 6= u, otherwise it is a matrix
of zeros.
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Let us look at an example for p = 3 with the following precision matrix:

S =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 .
After the convergence of the precision components, we have the the matrix P̈1 U12 U13

U21 P̈2 U23

U31 U32 P̈3

 ,
which is to be used in the construction of the linear update matrix. The vectors γ(n+1) and
γ0, given in Equation (17), are

γ(n+1) =



v
(n+1)
21

v
(n+1)
31

v
(n+1)
12

v
(n+1)
32

v
(n+1)
13

v
(n+1)
23

µ
(n)
1

µ
(n)
2

µ
(n)
3


and γ0 =



U21b2
U31b3
U12b1
U32b3
U13b1
U23b2
P̈1b1
P̈2b2
P̈3b3


respectively. The linear update matrix, with the row and column indices as discussed, is

L =

2 → 1 3 → 1 1 → 2 3 → 2 1 → 3 2 → 3 1 2 3



2 → 1 0 0 0 U21 0 0 0 λU21 0
3 → 1 0 0 0 0 0 U31 0 0 λU31

1 → 2 0 U12 0 0 0 0 λU12 0 0
3 → 2 0 0 0 0 U32 0 0 0 λU32

1 → 3 U13 0 0 0 0 0 λU13 0 0
2 → 3 0 0 U23 0 0 0 0 λU23 0

1 P̈1 P̈1 0 0 0 0 λP̈1 0 0

2 0 0 P̈2 P̈2 0 0 0 λP̈2 0

3 0 0 0 0 P̈3 P̈3 0 0 λP̈3

.

Note how the row and column messages follow the subscripts of the messages in γ(n+1). For
this example, we see that Equation (17) performs the updates given in (15) and (16).

Returning to the general case, the vector γ(n+1) → (I − L)−1γ0 as n → ∞ if, and only
if, ρ(L) < 1.
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Let ∆ = diag(1m1 , λ1k), where 1i is an i × 1 vector containing only ones. To study
the spectral radius of L, we consider the following matrix:

L̃ = ∆L∆−1 =

[
L̃11 : m1 ×m1 L̃12 : m1 × k
L̃21 : k ×m1 L̃22 : k × k

]
,

where λ > 0, L̃11 = L11, L̃12 = 1
λL12, L̃21 = λL21 and L̃22 = L22. Define Lst as the block of

L corresponding to (s, t). A consequence of this scaling is that all non-zero blocks in a given
row block are identical. Note that σ is an eigenvalue of L̃ if, and only if, it is an eigenvalue
of L. Hence, our objective is to show that the spectral radius of L̃ is less than 1 when λ is
sufficiently large. To this end, we consider the asymptotic behavior of L̃ as λ→∞.

3.3.2. The Asymptotic Linear Update Matrix

Consider a matrix H defined as

H : m1 × k =

1 2 . . . p



Id1 . . . . . . . . .
Id1 . . . . . . . . .
... . . . . . . . . .

Id1 . . . . . . . . .
. . . Id2 . . . . . .
. . . Id2 . . . . . .

. . .
... . . . . . .

. . . Id2 . . . . . .
...

...
...

...
. . . . . . . . . Idp
. . . . . . . . . Idp
. . . . . . . . . Idp
. . . . . . . . . Idp

, (18)

where each column block (indexed by i) contains exactly (p − 1) Idi matrices stacked in
consecutive rows; the remainder of the column block contains zeros. The way the stacking is

done is shown clearly in Equation (18), where the . . . and
... indicate that the corresponding

part of the matrix is filled with zeros. For our example we have

H =

1 2 3


Id1 0 0
Id1 0 0
0 Id2 0
0 Id2 0
0 0 Id3
0 0 Id3

,

17
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where each 0 is of a suitable dimension. We now have the following expressions:

L̃12 =
1

p− 2
L11H

L̃21 = L22H
′.

Set δ = 1
λ and consider the following matrices:

1. M11 has an identical construction to L11, using −Sji instead of Uij .

2. M22 has an identical construction to L22, using Sii instead of λP̈i.

By Lemma 2 we have that:

L11 = δM11 +O(δ2)

L22 = Ik − δM22 +O(δ2).

Therefore, we have the following asymptotic expression for the scaled linear update matrix:

L̃ =

[
δM11

δ
p−2M11H

(Ik − δM22)H
′ (Ik − δM22)

]
+O(δ2).

The behavior of the eigenvalues of L (which is equivalent to the behavior of the eigenvalues
of L̃) as λ→∞ is given in the following theorem.

Theorem 3 Consider applying sGaBP-m to a precision matrix S : k × k and a potential
vector b : k×1, where variables are assigned to nodes according to clusters Ci : i = 1, 2, . . . , p.
Suppose that L is the linear update matrix obtained after the precision components have con-
verged. Let νstu ≥ 0 : u = 1, 2, . . . , ds (s 6= t) be the eigenvalues of SstSts and σ1, σ2, . . . , σk
the eigenvalues of S. The eigenvalues of L can be characterized as:

1− σi
λ

+O(
1

λ2
) for i = 1, 2, . . . , k

±
√
vstu
λ

+O(
1

λ2
) for s 6= t and u = 1, 2, . . . , ds.

The proof of Theorem 3 (see Appendix C) is similar to the proof of Theorem 2 of Kam-
per et al. (2018); however, there are some differences. The differences lie in the asymptotic
behavior of the eigenvalues that converge to zero. For sGaBP (univariate version of sGaBP-
m), these eigenvalues are characterized by ± sij

λ + O( 1
λ2

), for i, j = 1, 2, . . . , k and i 6= j.
This means that the convergence rate of sGaBP-m and sGaBP will be identical for large λ,
but will likely differ for moderate λ.

The following corollary follows directly from Theorem 3:

Corollary 2 The spectral radius of L defined in Theorem 3 can be characterized as

ρ(L) = 1− σmin

λ
+O(

1

λ2
),

where σmin is the smallest eigenvalue of S.

Therefore, we can always find a λ sufficiently large such that the mean components converge,
assuming the convergence of the precision components.
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3.4. Overall Convergence

In the previous section we proved convergence of the mean components given convergence
of the precision components. We now extend this result by dropping the assumption of
convergence of the precision components. To this end, we consider the following lemma.

Lemma 3 Consider the recursion an+1 = bn+Cnan, where limn→∞bn = b and limn→∞Cn =
C, such that ρ(C) < 1. We have the following:

lim
n→∞

an = (I−C)−1b.

The proof of Lemma 3 is given in Section VI of Moallemi and Van Roy (2009). The following
corollary to Lemma 3 shows the convergence of sGaBP-m, given sufficient regularization.

Corollary 3 There exists a constant λ0 such that sGaBP-m will converge if λ > λ0.

Proof Consider the following:

1. Ln is constructed as L by using U
(n)
ij = −SjiP̈

(n)
ij and P̈

(n)
i instead of Uij and P̈i

respectively.

2. γ(n+1) remains as before, while γ
(n)
0 is constructed as γ0 by using U

(n)
ij = −SjiP̈

(n)
ij

instead of Uij .

We now have the following updating equation:

γ(n+1) = γ
(n)
0 + Lnγ

(n).

The following holds:

1. From Corollary 1 we know that there exists a λ1 such that limn→∞ Ln = L and

limn→∞ γ
(n)
0 = γ0 when λ > λ1.

2. By Corollary 2 there is a λ2 such that ρ(L) < 1 when λ > λ2.

By taking λ > λ0 = max(λ1, λ2), the conditions of Lemma 3 are satisfied, and hence γ(n+1)

will converge to (I− L)−1γ0. Note that by selecting λ > λ0, the precision components will
converge, and hence the conditions for Theorem 1 are satisfied.

4. Heuristic Regularization

In this section we discuss a heuristic for selecting the degree of regularization. The selec-
tion of the degree of regularization through this heuristic is adaptive, i.e. it changes from
iteration to iteration.

In order to develop this heuristic, we consider a tree representation of sGaBP-m. The
role of this tree representation is similar to the computation trees for GaBP-m, that is we
want to represent the computations done by sGaBP-m as inference on a tree-structured
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MG. We can interpret this tree representation as unfolding the computations of sGaBP-m.

The tree representation of sGaBP-m, discussed in this section, could be a useful basis
for further research into the convergence behavior of sGaBP-m. From this point onward,
we use computation tree to refer to the computation tree of sGaBP-m.

4.1. Tree Representation of sGaBP-m

Assume we want to use the computation tree for node i to determine an analytical formula

for µ
(n)
i (λ), i.e. the posterior mean associated with cluster i after n iterations where the

dependence on λ is emphasized. In order to do this, we need to adjust the way in which
we assign a precision matrix and potential vector to the computation tree, compared to the
method for GaBP-m.

For the precision matrix associated with the computation tree, we assign to a node with
reference to cluster j the precision matrix λIdj +Sjj . The precision matrices between nodes
in the computation tree remain as for GaBP-m. The precision matrix assigned to the com-

putation tree for cluster i is T
(n)
ii (λ) (precision matrix of computation tree constructed from

S(λ)).

To assign a potential to a node in the computation tree, we require the cluster reference
of the node and the layer number in which it occurs. In addition, we require the history
of the posterior means, that is µ(s)(λ) (posterior mean at iteration l) for all s < n − 1.
Consider a node in layer l with a reference to cluster j. To this node we assign the potential

bj + λµ
(n−l−1)
j (λ). We do this with the understanding that µ

(−1)
j (λ) is an initial value

for the posterior mean associated with cluster i. In our application of sGaBP-m, we used

µ
(−1)
j (λ) = bj . We use t

(n)
i (λ) to denote the potential of the computation tree for cluster i.

If we marginalize the computation tree with the above precision matrix and potential vector

and extract the marginal mean at the root node, we obtain µ
(n−1)
i (λ). An illustration of

this procedure is given in Appendix D. In the next section, we introduce matrix notation
for the tree representation of sGaBP-m.

4.2. Matrix Notation

The different types of matrices considered in Section 3.1 of Kamper et al. (2019) will be
used here. For some examples we refer to Appendix D. Consider the row-extractor matrix,

E
(n)
ii , for cluster i and a computation tree depth of n. Let the rows of E

(n)
ii be decomposed

according to the different layers of the computation tree:

E
(n)
ii =


F̃1i

F̃2i
...

F̃ni

 . (19)
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A node in the computation tree with a reference to cluster t receives a row-extractor matrix
Ft. This matrix has the property that FtS are the rows of S corresponding to the variables
in Ct. The matrix F̃mi is obtained by row stacking all the row-extractor matrices in layer
m of the computation tree.

If λ = 0, then we would have assigned E
(n)
ii b to the potential of the computation tree.

In the λ 6= 0 case, different layers of the computation tree correspond to different posterior
means. To allow for this, we define the matrix

J
(n)
ii =


F̃1i 0 . . . 0

0 F̃2i . . . 0
...

...
...

...

0 0 . . . F̃ni


and the vector

φn−1(λ) = (µ(n−2)(λ)′,µ(n−3)(λ)′, . . . ,µ(0)(λ)′,µ(−1)(λ)′)′,

where µ(−1)(λ) = b. The potential assigned to the computation tree becomes E
(n)
ii b +

λJ
(n)
ii φn−1(λ). Consider a node in layer l with a reference to cluster j. We state the

following formula (it should be noted that this formula was validated empirically):

µ
(n−1)
i (λ) = (G

(n)
ii )′(T

(n)
ii (λ))−1[E

(n)
ii b+ λJ

(n)
ii φn−1(λ)]. (20)

In the next section, we use the formula given in Equation (20) to derive a recursive repre-
sentation of the posterior means.

4.3. Recursive Representation of the Posterior Means

Let Vn(λ) : k × k and Wn(λ) : k × nk be defined as:

Vn(λ) =


(G

(n)
11 )′(T

(n)
11 (λ))−1E

(n)
11

(G
(n)
22 )′(T

(n)
22 (λ))−1E

(n)
22

...

(G
(n)
pp )′(T

(n)
pp (λ))−1E

(n)
pp



Wn(λ) =


(G

(n)
11 )′(T

(n)
11 (λ))−1J

(n)
11

(G
(n)
22 )′(T

(n)
22 (λ))−1J

(n)
22

...

(G
(n)
pp )′(T

(n)
pp (λ))−1J

(n)
pp

 .

Equation (20) implies

µ(n−1)(λ) = Vn(λ)b+ λWn(λ)φn−1(λ).

21



Kamper, Steel, and du Preez

Define the following matrices,

Ṽn(λ) : (n+ 1)k × k =

[
Vn(λ)

0 : nk × k

]
W̃n(λ) =

[
Wn(λ)

Ikn

]
,

which give:
φn(λ) = Ṽn(λ)b+ λW̃n(λ)φn−1(λ). (21)

Equation (21) can be used to obtain a recursive formula for µ(n)(λ) and can, in principle,
be used to derive convergence conditions for sGaBP-m. However, this recursive formula is
complicated due to the varying nature of Ṽn(λ) and W̃n(λ) (in terms of varying dimension-
ality and its dependence on n), and we leave the study of this formula for further research.
The results of this section can be useful in the derivation of heuristics for the selection of
λ, which we discuss in the next section.

4.4. Heuristic Regularization

The computation tree analysis discussed in the previous section can be regarded as a method
of unfolding the computations done by sGaBP-m. We now show how the computation trees
can be adapted to develop a heuristic for selecting the degree of regularization. Instead of
using a single regularization parameter for all blocks in the line topology, we vary λ from
layer to layer (we call this a varying computation tree). For the precision matrix associated
with the varying computation tree for cluster i, we assign to a node in layer l, with reference

to cluster j, the precision matrix λ(n−l)Idj +Sjj . We call this precision matrix T
(n)
ii (λ(n−1)),

where we only emphasize its dependence on λ(n−1) (λ(n−l) is assumed to be fixed for l ≥ 2).

The potential associated with a node, with reference to cluster j, is bj + λ(n−l)µ
(n−l−1)
j .

Note that we assume µ
(n−l)
j to be fixed for l ≥ 2, and hence no dependence on any regular-

ization is indicated. The precision matrix between nodes remains as in Section 4.1.

We now discuss a heuristic aimed at varying the regularization between layers such that
convergence is achieved at a faster rate. Let Dni(λ(n−1)) denote a diagonal matrix in which
the diagonal entries corresponding to layer l of the varying computation tree are λ(n−l).
Similar to Equation (20), we see that:

µ
(n−1)
i (λ(n−1)) = (G

(n)
ii )′(T

(n)
ii (λ(n−1)))−1[E

(n)
ii b+Dni(λ(n−1))J(n)

ii φn−1], (22)

where φn−1 contains all the posterior means until stage n−2. Note that Equation (22) was
validated empirically. Since we have completed the updates until stage n− 2, the entries of
φn−1 will be fixed. Furthermore,

∂T
(n)
ii (λ(n−1))

∂λ(n−1)
=
∂Dni(λ(n−1))
∂λ(n−1)

= G
(n)
ii (G

(n)
ii )′

∂(T
(n)
ii (λ(n−1)))−1

∂λ(n−1)
= −(T

(n)
ii (λ(n−1)))−1

∂T
(n)
ii (λ(n−1))

∂λ(n−1)
(T

(n)
ii (λ(n−1)))−1

= −(T
(n)
ii (λ(n−1)))−1G

(n)
ii (G

(n)
ii )′(T

(n)
ii (λ(n−1)))−1.
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Differentiating (22) with respect to λ(n−1), we obtain

∂µ
(n−1)
i (λ(n−1))

∂λ(n−1)
= −(G

(n)
ii )′(T

(n)
ii (λ(n−1)))−1G

(n)
ii (G

(n)
ii )′(T

(n)
ii (λ(n−1)))−1E

(n)
ii b

+ (G
(n)
ii )′(T

(n)
ii (λ(n−1)))−1G

(n)
ii (G

(n)
ii )′J

(n)
ii φn−1

− (G
(n)
ii )′(T

(n)
ii (λ(n−1)))−1G

(n)
ii (G

(n)
ii )′(T

(n)
ii (λ(n−1)))−1Dni(λ(n−1))J(n)

ii φn−1

= (G
(n)
ii )′(T

(n)
ii (λ(n−1)))−1G

(n)
ii

[
(G

(n)
ii )′J

(n)
ii φn−1

− (G
(n)
ii )′(T

(n)
ii (λ(n−1)))−1(E

(n)
ii b+Dni(λ(n−1))J(n)

ii φn−1)

]
.

Since (G
(n)
ii )′Jniφn−1 = µ

(n−2)
i (which is fixed), we have

∂µ
(n−1)
i (λ(n−1))

∂λ(n−1)
= (G

(n)
ii )′(T

(n)
ii (λ(n−1)))−1G

(n)
ii

[
µ
(n−2)
i − µ(n−1)

i (λ(n−1))

]
= (P

(n−1)
i (λ(n−1)))−1

[
µ
(n−2)
i − µ(n−1)

i (λ(n−1))

]
, (23)

where P
(n−1)
i (λ(n−1) indicates the posterior precision at iteration n − 1, and this only de-

pends on λ(n−1). We can obtain the derivative of µ(n)(λ(n)) with respect to λ(n) by applying
Equation (23) (where n← n+ 1) to all nodes i. Set j = argmaxi{|s′iµ(n)(λ(n))− b|}, where
s′i is the ith row of S, and let div(λ(n)) = s′j∇µ(n)(λ(n)), where ∇µ(n)(λ(n)) is the gradi-

ent of µ(n)(λ(n)) with respect to λ(n). Consider λ0 as a candidate for λ(n). To evaluate
div(λ0), we need to perform the message updates using λ0 as the value for the regulariza-
tion parameter. After the message updates, we see that using λ0 − αsign(div(λ0)) instead
of λ0 would have been better (for sufficiently small α) in the sense that it would have
given posterior means that are closer to solving the linear system, Sµ = b. If we assume
that λ(n) was decided upon at iteration n − 1, we can make the retrospective adjustment
λ(n+1) = λ(n)−αsign(div(λ(n))). We test this heuristic measure in the empirical section by
varying α over different values.

We note that this approach can also be used to derive further heuristics, by changing the
way in which we vary the regularization. For instance, we could set λ(n−1) = λ(n−2) = λ and
differentiate the computation tree for a new heuristic. We leave this for further research.
Appendix D contains some examples of the considerations of this section.

5. Empirical Results

In this section we present three empirical studies of the sGaBP-m algorithm. In the first, we
compare sGaBP-m to the multivariate extensions of RGaBP and convergence fix GaBP (CF-
GaBP) by considering both convergence speed and inference quality. We describe RGaBP
and CFGaBP for nodes of any size in Algorithms 2 and 3 respectively. In the literature,
these algorithms are formulated for univariate nodes, but they can easily be extended to
the multivariate case. The second study is dedicated to testing the heuristic described in
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Algorithm 2 Synchronous RGaBP

1. Specify a tolerance ε, a maximum number of iterations m and a relaxation parameter
τ .

2. Initialize Q
(0)
ij = 0 : dj × dj , v

(0)
ij = 0 : dj × 1, µ(−1) = b for all i and all j ∈ Ni.

3. Set Err = Inf and n = 0.

4. While Err > ε

(a) Compute P
(n)
i (0) = Sii +

∑
j∈Ni

Q
(n)
ji and z

(n)
i = bi +

∑
j∈Ni

v
(n)
ji for i =

1, 2, . . . , p.

(b) Update z
(n)
i ← τz

(n)
i + (1 − τ)P

(n)
i (0)µ

(n−1)
i , set µ

(n)
i = [P

(n)
i (0)]−1z

(n)
i , e

(n)
i =∑

j Sijµ
(n)
j − bi and Err = maxi{||e(n)i ||∞}.

(c) If Err > ε, do for all i ∈ {1, 2, . . . , p} and all j ∈ Ni: Q
(n+1)
ij = −Sji[P

(n)
i (0) −

Q
(n)
ji ]−1Sij and v

(n+1)
ij = −Sji[P

(n)
i (0)−Q

(n)
ji ]−1[z

(n)
i − v

(n)
ji ].

(d) Increment n.

(e) If n = m, break.

5. End.

the previous section, while the third involves a performance comparison between sGaBP
and sGaBP-m.

5.1. Comparison of sGaBP-m with Other Methods

We simulated data using the following procedure:

1. Select a ρ̃ uniformly from the interval [1; 1.3].

2. Using the method from Kamper et al. (2018), we generate a 100×100 precision matrix
S with zero-diagonal spectral radius equal to ρ̃, along with a 100× 1 potential vector
b. The zero-diagonal spectral radius of S is defined as the spectral radius of Ik − S
after S has been scaled to have all diagonal entries equal to one.

3. The 100 variables are assigned randomly to 10 clusters each of size 10.

4. For each of sGaBP-m, RGaBP and CFGaBP, we determine the hyperparameters
yielding convergence in the minimum number of iterations using a line search with
increments of 0.01. These parameters are then used to initialize the methods.

This process was repeated 1 000 times. For each simulation, we record the number of
iterations required for convergence and the posterior precisions for each cluster supplied by
each method. For sGaBP-m and RGaBP, the precision estimates are computed as

P̂i = Sii +
∑
t∈Ni

Qti.
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Algorithm 3 Synchronous CFGaBP

1. Specify a tolerance ε, a maximum number of iterations m and a diagonal loading λ.

2. Initialize µwork = 0.

3. Set Err = Inf.

4. While Err > ε

(a) Compute h = b− Sµwork.

(b) Apply ordinary GaBP-m using the precision matrix S + λIk and the potential
vector h. This can be done by setting λ = 0 or τ = 1 in Algorithm 1 or Algorithm
2 respectively.

(c) Let ξ be the posterior means supplied in Step (4b). Set µwork ← µwork + ξ and
let Err = ||Sµwork − b||∞.

(d) Increment n by the number of iterations performed by GaBP-m in Step (4b).

(e) If n ≥ m, break.

5. End.

Because we are supplying S +λIk to the inner loop of CFGaBP, we propose computing the
precision estimate of CFGaBP for cluster i as

P̂i = Sii − λIdi +
∑
t∈Ni

Qti.

Note that, if we use the same λ for sGaBP-m and CFGaBP, then the precision estimates
will be the same. They are likely to differ in the simulations, since the λ yielding the
convergence in the smallest number of iterations will differ between the methods. We note
the following practical considerations for the CFGaBP algorithm:

1. The converged posterior precisions are the posterior precisions obtained from the first
inner-loop application of GaBP-m in Algorithm 3.

2. This is because, in the later stages of the outer-loop of Algorithm 3, h = b−Sµwork ≈
0, and this could cause the inner-loop application of GaBP-m to terminate before the
convergence of the precision components.

To compare inference quality, we consider the Kullback-Leibler (KL) divergence of the
posterior marginal of a cluster from its corresponding exact marginal. Suppose that fi(y)
and f̂i(y) are the exact and posterior marginals associated with cluster i. We calculate the
KL divergence of the posterior marginal from the exact marginal as:

DKL(fi||f̂i) =

∫
y∈<di

fi(y)log

(
fi(y)

f̂i(y)

)
dy.
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Figure 1: Visualization of the results of our simulations comparing the number of iterations
required for convergence by sGaBP-m, RGaBP and CFGaBP. The bottom panel
zooms in on the boxplots corresponding to sGaBP-m and RGaBP. CFGaBP re-
quired the greatest number of iterations to converge. The number of iterations
required for convergence by sGaBP-m and RGaBP are more comparable, with
sGaBP-m tending to require a smaller number of iterations to converge.
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Figure 2: Visualization of the results of our simulations comparing the inference quality of
sGaBP-m, RGaBP and CFGaBP. The bottom panel zooms in on the boxplots
corresponding to sGaBP-m and CFGaBP. The inference quality of RGaBP is
poor compared to that of the other methods. This is because RGaBP computes
precision estimates in the same manner as ordinary GaBP-m. Clearly, sGaBP-m
performed the best of the methods in terms of inference quality.
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Figure 3: Visualization of the results of our simulations of the convergence speed of the
heuristic method, with different initializations, compared to optimal regulariza-
tion. We see that the heuristics with α = 0.05 or α = 0.1 compare well with
the optimal regularization, although they tend to provide slower convergence.
The α = 0.01 heuristic does not compare well with the other regularizations,
indicating that the adjustments are done too slowly.

Because all the methods considered yield the exact marginal means at convergence, the KL
divergence of the exact marginal of a cluster to its corresponding posterior distribution will
only be influenced by the precisions of the respective distributions. For a specific simulation,
each method is represented by the mean of all the KL divergences of the exact marginals
to their corresponding posterior distributions.

The results for the convergence speed (as measured by the number of iterations required for
convergence) and inference quality (as measured by the mean KL divergence) are summa-
rized in Figures 1 and 2 respectively. The convergence speed of CFGaBP is slow compared
to that of the other methods. This is caused by the double-loop implementation in Algo-
rithm 3, Step (b). sGaBP-m tends to converge faster than RGaBP. In terms of inference
quality, the performance of RGaBP is poor compared to that of the other methods. The
best inference quality is provided by sGaBP-m. Clearly, sGaBP-m outperformed the com-
petitors in our simulations.

It is possible to measure inference quality by computing the KL divergence of the exact
marginal from the posterior marginal (this is the opposite direction used in the simulations).
We note that changing the order of the KL divergence does not affect the conclusions drawn
from Figure 2.

As a final comment, we note that a comparison of sGaBP-m with GaBP-m was made
implicitly. This is because the approximate precisions of RGaBP is equivalent to the ap-
proximate precisions of GaBP-m. Hence, sGaBP-m can provide superior inference quality
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compared to GaBP-m. Furthermore, GaBP-m is equivalent to sGaBP-m with λ = 0, and
since all simulations involved selected a λ > 0 (recall that λ was chosen to yield the fastest
convergence), we see that sGaBP-m can accelerate the convergence of GaBP-m.

5.2. Performance of Heuristic Regularization

In this section we investigate how well the heuristic regularization approaches optimal regu-
larization. For this purpose, we use the data from the previous section and compare optimal
sGaBP-m with different initializations of the heuristic. For each application of the heuristic,
we start with λ = 0 and consider using α = 0.01, 0.05 and 0.1. The different methods are
compared in terms of the number of iterations required for convergence. The results are
given in Figure 3. We see that the heuristics with α = 0.05 and α = 0.1 compare well with
the optimal method (sGaBP-m initialized to have fastest convergence), but they tend to
converge at a slower speed. The heuristic with α = 0.01 does not compare well with the
other methods. We see that the heuristic makes some progress in shifting the regularization
towards the optimal level, but it is sensitive to the selection of α. This simulation study
shows that our heuristic can play a role in the selection of the regularization parameter,
given appropriate initialization.

5.3. Performance Comparison of sGaBP-m and sGaBP

In this empirical study, we compare sGaBP-m to sGaBP in terms of univariate inference
quality. We use p = 100 in our simulations and clusters Ci = {10(i − 1) + 1, . . . , 10i} for
i = 1, 2, . . . , 10. The following simulation procedure was used:

1. Generate a precision matrix S with zero-diagonal spectral radius equal to 0.8 and a
potential vector b using the method from Kamper et al. (2018).

2. Select a ρ uniformly from [1.2; 1.3].

3. For i = 1, 2, . . . , 10, generate a 10 × 10 precision matrix with zero-diagonal spectral
radius equal to ρ and override Sii with this precision matrix.

This simulation procedure is an example of where the partial correlations are stronger
within clusters than between clusters. The above procedure was applied 1 000 times. For
each of these simulated examples, sGaBP and sGaBP-m were given 50 iterations to pro-
vide approximate univariate marginals. For sGaBP-m, this implies first approximating the
higher-dimensional marginals, and then applying a direct method to these in order to obtain
approximate univariate marginals. The inference quality of a method applied to a simulated
example was measured by calculating the mean KL divergence of the posterior marginal
from the exact marginal. The results are illustrated in Figure 4.

We see that the univariate inference quality of sGaBP-m is far superior to that provided by
sGaBP (about 32 times more accurate on average). The reason for this superior inference
quality is as follows:

1. sGaBP-m tends to provide more accurate univariate precision approximations.

2. The posterior means of sGaBP-m tend to converge faster in terms of iteration count.
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Figure 4: Visualizations of the results of the performance comparison between sGaBP and
sGaBP-m. We see that the inference quality of sGaBP-m is superior to that
provided by sGaBP. This is due to more accurate approximate precisions and
faster convergence of the posterior means in terms of iteration count.

Although the main motivation for using sGaBP-m over sGaBP is that it can be used to
approximate higher-dimensional marginals, we also see that it can be useful for univariate
marginal approximation.

6. Conclusion and Further Research

This paper was concerned with the application of node regularization to a higher-dimensional
extension of a pairwise MG. This extension allows for the approximation of multivariate
marginals through the use of BP. The main result was a proof of the convergence of sGaBP-m
given sufficient regularization. The proof is based on asymptotic expressions for the pre-
cision components of sGaBP-m, which were derived through the use of computation trees.
Under the assumption of convergence of the precision components, we then showed that the
updates are linear and that the linear-update matrix depends on the precision components
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of sGaBP-m. We proved that the spectral radius of the linear-update matrix approaches one
from below as λ → ∞. We completed the proof by showing that the above conditions are
sufficient for the overall convergence of sGaBP-m, given sufficient regularization. A proof
that sGaBP-m provides the exact marginal means at convergence was also given. The selec-
tion of the level of regularization was addressed through the use of a heuristic. The heuristic
was derived from a novel computation tree-type representation of sGaBP-m and based on a
gradient-descent principle. The performance of sGaBP-m was considered empirically. The
empirical study showed that sGaBP-m compares favorably to certain competitors, both in
terms of inference quality and convergence speed. The advantages of using the heuristic
were also illustrated empirically.

The computation tree representation of sGaBP-m could be useful in deriving sufficient
conditions for the convergence of this algorithm (in terms of λ) and in establishing theo-
retical guarantees for the heuristic measure. The accuracy of the posterior precisions as
approximations for the true marginal precisions in terms of λ needs to be analyzed. In this
paper, we did not consider the possibility of using multiple regularization parameters. If
we can find an effective way of selecting these parameters, it would most likely result in
improved inference quality and faster convergence. We also believe that node regularization
should be applied to other types of Gaussian message-passing. All these considerations are
left for further research.
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Appendix A. Proof of Theorem 1

Proof We assume, without loss of generality, that we are dealing with a fully connected MG.

We write limn→∞ P̈
(n)
ij (λ) = P̈ij and limn→∞ P̈

(n)
i (λ) = P̈i (we are assuming convergence

of sGaBP-m). Convergence implies the following conditions:

Qij = −SjiP̈ijSji

vij = −SjiP̈ij [λµi + zi − vji]

µi = P̈i[λµi + zi],

where P̈−1ij = λIdi + Sii +
∑

t6=i,j Qti, P̈−1i = P̈−1ij + Qji and zi = bi +
∑

t6=i vti. We now
show that these equations imply that

∑
i Sjiµi = bj for all j.

Note the following for all i 6= j:

P̈ji = [P̈−1j −Qij ]
−1

= [P̈−1j + SjiP̈ijSji]
−1

= P̈j − P̈jSji[P̈
−1
ij + SijP̈jSji]

−1SijP̈j , (24)

and

P̈i = [P̈−1ij + Qji]
−1

= [P̈−1ij − SijP̈jiSji]
−1

= P̈ij + P̈ijSij [P̈
−1
ji − SjiP̈ijSij ]

−1SjiP̈ij

= P̈ij + P̈ijSij [P̈
−1
ji + Qij ]

−1SjiP̈ij

= P̈ij + P̈ijSijP̈jSjiP̈ij . (25)

Consider

SjiP̈iSijP̈ji = Sji[P̈ij + P̈ijSijP̈jSjiP̈ij ]SijP̈ji (see Equation (25))

= SjiP̈ijSijP̈ji + SjiP̈ijSijP̈jSjiP̈ijSijP̈ji

= SjiP̈ijSij [P̈j − P̈jSji[P̈
−1
ij + SijP̈jSji]

−1SijP̈j ]

+ SjiP̈ijSijP̈jSjiP̈ijSij [P̈j − P̈jSji[P̈
−1
ij + SijP̈jSji]

−1SijP̈j ].

Setting Oij = [P̈−1ij + SijP̈jSji]
−1, we obtain (after some simplification)

SjiP̈iSijP̈ji = −QijP̈j

+ QijP̈jSji[Idi − P̈ijO
−1
ij + P̈ijSijP̈jSji]OijSijP̈j .

Consider

Idi − P̈ijO
−1
ij + P̈ijSijP̈jSji = Idi − P̈ij [P̈

−1
ij + SijP̈jSji] + P̈ijSijP̈jSji

= Idi − Idi − P̈ijSijP̈jSji + P̈ijSijP̈jSji

= 0 : di × di,
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and hence, for all i 6= j, we have SjiP̈iSijP̈ji = −QijP̈j .

Setting Q̈ij = −SjiP̈iSij , we see that Q̈ijP̈ji = QijP̈j and SjiP̈ij = SjiP̈i + Q̈ij [P̈
−1
ji −

Q̈ij ]
−1SjiP̈i by Equation (24). Furthermore,

SjiP̈ij = [Idj + Q̈ij [P̈
−1
ji − Q̈ij ]

−1]SjiP̈i

= [P̈−1ji − Q̈ij + Q̈ij ][P̈
−1
ji − Q̈ij ]

−1SjiP̈i

= P̈−1ji [P̈−1ji − Q̈ij ]
−1SjiP̈i.

Consider

vij = −SjiP̈ij [λµi + zi − vji]

= −P̈−1ji [P̈−1ji − Q̈ij ]
−1SjiP̈i[λµi + zi − vji],

which implies that
−[P̈−1ji − Q̈ij ]P̈jivij = Sjiµi − SjiP̈ivji, (26)

since µi = P̈i[λµi + zi]. From Equation (26), we see that

Sjiµi = −vij + Q̈ijP̈jivij + SjiP̈ivji.

Since SjiP̈ivji = −SjiP̈iSijP̈ji[λµj + zj − vji] = Q̈ijP̈ji[λµj + zj − vji] = Q̈ijP̈ji[λµj +

zj ]− Q̈ijP̈jivij = QijP̈j [λµj + zj ]− Q̈ijP̈jivij = Qijµj − Q̈ijP̈jivij , we have

Sjiµi = −vij + Qijµj (27)

for all i 6= j. From Equation (27),∑
i

Sjiµi = Sjjµj −
∑
i 6=j

vij +

[∑
i 6=j

Qij

]
µj

= Sjjµj + bj − zj +

[
P̈−1j − λIdj − Sjj

]
µj

= bj − zj + P̈−1j µj − λµj
= bj − zj + λµj + zj − λµj
= bj

for all j. In particular, we see that the means implied by the stationary conditions satisfy
Sµ = b and are therefore the correct marginal means.
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Appendix B. Proof of Lemma 4

Lemma 4 Consider a sequence of matrices An(λ) with the following properties:

1. There exists a constant λ0 such that limn→∞An(λ) = A(λ) for all λ > λ0.

2. ||An(λ)||∞ ≤ g(λ) = O( 1
λ3

).

These properties imply that A(λ) = O( 1
λ2

).

Proof Consider A
(n)
ij (λ) and limn→∞A

(n)
ij (λ) = Aij(λ) for any i, j. Since ||An(λ)||∞ ≤

g(λ) = O( 1
λ3

), we also have:

|A(n)
ij (λ)| ≤ g(λ). (28)

Pre-multiplying (28) by λ2 and taking the limit as n→∞, we see that:

|λ2Aij(λ)| ≤ λ2g(λ).

Since limλ→∞ λ
2g(λ) = 0, we see from the squeeze theorem,

lim
λ→∞

λ2Aij(λ) = 0. (29)

Equation (29) implies that Aij(λ) = O( 1
λ2

).

Appendix C. Proofs Leading to Theorem 3

Lemma 5 There exists a constant K > 0 such that, for sufficiently small δ, each eigenvalue
x of L̃ either satisfies |x| ≤ Kδ or |x− 1| ≤ Kδ.

Proof We reason by contradiction and assume that there is an eigenvalue for which |x| >
Kδ and |x − 1| > Kδ. Consider ||L̃11||∞ = ||L11||∞ = δ||M11||∞ + O(δ2). If we choose
K large enough (e.g. K ≥ 1 + ||M11||∞), then ||L11||∞ < Kδ + O(δ2) and ||L11||∞ < |x|
for sufficiently small δ. Therefore, x is not an eigenvalue of L11 and xIm1 − L11 will be
invertible. We can now apply the Schur complement on L̃ to obtain:

det(xIm2 − L̃) = det(xIm1 − L11)

× det(xIk − L22 −
1

p− 2
L22H

′(xIm1 − L11)
−1L11H). (30)

It remains to show that the second determinant is not equal to zero:

xIk − L22 −
1

p− 2
L22H

′(xIm1 − L11)
−1L11H

= (x− 1)Ik − (L22 − Ik)−
1

x(p− 2)
L22H

′(Im1 −
1

x
L11)

−1L11H

= (x− 1)Ik + H1 +
1

x
H2, (31)
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where H1 = −(L22 − Ik) and H2 = − 1
(p−2)L22H

′(Im1 − 1
xL11)

−1L11H. Consider

||H1||∞ = ||L22 − Ik||∞
= ||δM22 +O(δ2)||∞
= δ||M22||∞ +O(δ2)

≤ δκ1,

where δ is sufficiently small and, e.g., κ1 ≥ ||M22||∞ + 1. Furthermore,

(I− 1

x
L11)

−1L11 = (I− δ

x
M11 +O(δ2))−1(δM11 +O(δ2))

= δ(I− δ

x
M11)

−1M11 +O(δ2)

= δ(I +O(δ))M11 +O(δ2)

= δM11 +O(δ2).

Since L22 = Ik +O(δ), we see that

−H2 =
δ

p− 2
H′M11H +O(δ2),

and ||H2||∞ ≤ κ2δ for sufficiently small δ and, e.g., κ2 ≥ 1
p−2 ||H

′M11H||∞ + 1. Suppose
that |x| ≥ 0.5, then

||H1 +
1

x
H2||∞ ≤ δκ1 + δ

κ2
|x|
≤ δ(κ1 + 2κ2) < Kδ < |x− 1|

for δ sufficiently small and K > κ1 + 2κ2. If |x| < 0.5,

||H1 +
1

x
H2||∞ ≤ δκ1 + δ

κ2
|x|
≤ δκ1 +

δκ2
δK

= δκ1 +
κ2
K

< 0.5 ≤ |x− 1|

for δ sufficiently small and K sufficiently large (e.g. K > 2κ2). We have that, for sufficiently
small δ and sufficiently large K, x− 1 will not be an eigenvalue of H1 + H2, and the second
determinant in Equation (30) will not be zero. Therefore, x cannot be an eigenvalue of L̃
and, by contradiction, the statement is proved.

C.1. Proof of Theorem 3

Proof We first consider the eigenvalues that are close to one. Set x = 1 − δt for some t
where |t| < K. For sufficiently small δ, x will not be an eigenvalue of L11, and therefore
xIm1 − L11 will be invertible. Application of the Schur complement on L̃ yields

det(L̃) = det(xIm1 − L11)det(−δt+ H1 +
1

x
H2) (32)
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(see Equation (31)). Since H1 = δM22 + O(δ2) and H2 = − δ
p−2H′M11H + O(δ2), we see

that the second determinant of Equation (32) becomes

det(δ(M22 − tIk)−
δ

p− 2
H′M11H +O(δ2))

= det((M22 − tIk)−
1

p− 2
H′M11H +O(δ))

= det(−tIk + M22 −
1

p− 2
H′M11H + M)

= det(tIk −
[
M22 −

1

p− 2
H′M11H

]
+ M), (33)

where M = O(δ). As δ → 0 we obtain the characteristic equation of

[
M22− 1

p−2H′M11H

]
.

Its k solutions (counted with multiplicity) give rise to k branches t1(δ), t2(δ), . . . , tk(δ) that
solve the implicit equation in Equation (33).

Considering the eigenvalues that are close to zero, we set x = δt for some t with |t| < K.
For δ sufficiently small, x will not be an eigenvalue of L22, and hence xIk − L22 will be
invertible. A second application of the Schur complement (with respect to the diagonal
block L22) gives

det(L̃) = det(xIk − L22)det(xIm1 − L11 −
1

p− 2
L11H(xIk − L22)

−1L22H
′). (34)

First note that xIm1−L11 = δtIm1−δM11 +O(δ2) and (xIk−L22)
−1 = −Ik+O(δ). Hence

L11H(xIk − L22)
−1 = δM11H +O(δ2) and

1

p− 2
L11H(xIk − L22)

−1L22H
′ = − δ

p− 2
M11HH′ +O(δ2).

The second determinant of Equation (34) becomes

det(tIm1 −M11[Im1 −
1

p− 2
HH′] + M̃), (35)

where M̃ = O(δ). As δ → 0, Equation (35) converges to the characteristic function of
M11[Im1 − 1

p−2HH′]. This gives rise to k2 − k branches t̄i(δ) : i = 1, 2, . . . , k2 − k, which
solve the implicit equation in Equation (35).

For our example, the matrix

[
M22− 1

p−2H′M11H

]
can easily be seen to be equal to S, and

this holds for the general case as well. The matrix W = M11[Im1 − 1
p−2HH′] has a more

complicated construction. For our example, we see that W is symmetric and that W′W is
a block-diagonal matrix with a diagonal block for each of SijSji where i 6= j. Again, this
holds in general.

Consider Equation (33) set equal to zero,

det(tIk − S + M) = 0, (36)
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where M = O(δ). Let V be the matrix of eigenvectors that diagonalizes S. Pre- and
post-multiplying Equation (36) by V and V′ respectively, we obtain

det(tIk −Λ + VMV′) = 0,

where Λ is a diagonal matrix containing the eigenvalues of S on its diagonal. Since
M = O(δ), we have that VMV′ = O(δ). This guarantees the existence of a constant
κ3 such that ||VMV′||∞ ≤ κ3δ for sufficiently small δ. In order for the matrix in the de-
terminant of Equation (36) to be singular, we must have that |t−Λii| ≤ κ3δ, otherwise this
matrix will be strictly diagonally dominant. The diagonal entries of Λ are the eigenvalues
σi : i = 1, 2, . . . , k of S, and therefore t = σi +O(δ).

The smaller eigenvalues can be dealt with in a similar way where we need to find the
eigenvalues of W. Since W′W is a block-diagonal matrix and symmetric, we can find the
squared values of the eigenvalues of W (recall that W is symmetric) by computing the
eigenvalues of SijSji for all i 6= j. Let νiju ≥ 0 : u = 1, 2, . . . , di (i 6= j) be the eigenvalues
of SijSji. We have the following asymptotic expressions for the eigenvalues:

1− σiδ +O(δ2) : i = 1, 2, . . . , k.

±√vijuδ +O(δ2) : i 6= j and u = 1, 2, . . . , di.

Clearly, the eigenvalue with the largest absolute value approaches one from below as δ → 0.
For sufficiently large λ (small δ), the spectral radius of the linear update matrix will be less
than one, and convergence will occur with this level of regularization.

Appendix D. Computation Tree Examples

Let us consider an example for the loopy MG given in the top panel of Figure 5. The
associated precision matrix and potential vector are:

S =


S11 S12 S13 0
S21 S22 S23 S24

S31 S32 S33 S34

0 S42 S43 S44


and

b =


b1
b2
b3
b4

 ,
respectively. The computation tree for cluster 4 (with a depth of n = 4) is shown in the
bottom panel of Figure 5. From this point onwards we will consider the matrices and vec-
tors used in Section 4.4 using the computation tree of depth 3 for cluster 4 (the matrices
corresponding to a depth of 4 are too large). This computation tree is obtained by elimi-
nating the final layer of the tree on the bottom panel of Figure 5.
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The matrix T
(n)
ii (λ) can be obtained by moving along the computation tree (first by layer

and then from left to right) and assigning to a node, with reference to cluster t, the matrix
λIdt + Stt. If two nodes in the computation tree are linked, we need to determine the refer-
ences of both nodes (say s and t), and they are linked by the matrix Sts. As an example,

T
(3)
44 (λ) =


S44 + λId4 S42 S43 0 0 0 0

S24 S22 + λId2 0 S21 S23 0 0
S34 0 S33 + λId3 0 0 S31 S32

0 S12 0 S11 + λId1 0 0 0
0 S32 0 0 S33 + λId3 0 0
0 0 S13 0 0 S11 + λId1 0
0 0 S23 0 0 0 S22 + λId2

 .

The matrix T
(n)
ji (λ), j 6= i can be obtained in a similar fashion. However, we only consider

the subtree rooted at the node in the second layer, corresponding to cluster j of the original
graph. For example,

T
(3)
34 (λ) =



S33 + λId3 S31 S32 0 0 0
S13 S11 + λId1 0 S12 0 0
S23 0 S22 + λId2 0 S21 S24

0 S21 0 S22 + λId2 0 0
0 0 S12 0 S11 + λId1 0
0 0 S42 0 0 S44 + λId4

 .

Let us consider constructing a potential vector t
(3)
4 (λ) to use alongside T

(3)
44 (λ) for the com-

putation of µ
(2)
4 (λ). Suppose we have already obtained µ(0)(λ) and µ(1)(λ). The potential

is:

t
(3)
4 (λ) =



b4 + λµ
(1)
4 (λ)

b2 + λµ
(0)
2 (λ)

b3 + λµ
(0)
3 (λ)

b1
b3
b1
b2


.

The row-extractor matrix for a node in the computation tree with reference to cluster j is
defined as:

Fj =
[
0 : dj × d1 0 : dj × d2 . . . 0 : dj−1 × dj−1 Idj 0 : dj × dj+1 . . . 0 : dj × dk

]
.

The row-extractor matrix for cluster i (E
(n)
ii ) is obtained by moving along its computation

tree and stacking the row-extractor matrices of the nodes row-wise. The matrix F̃li, used
in Equation (19), is obtained by moving to layer l of the computation tree associated with
cluster i and then stacking the row-extractor matrices of its nodes row-wise. We now give
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examples of the matrices in Section 4.2 using the MG given in Figure 5:

[G
(3)
44 ]′ =

[
Id4 0 0 0

]

E
(3)
44 =



0 0 0 Id4
0 Id2 0 0
0 0 Id3 0

Id1 0 0 0
0 0 Id3 0

Id1 0 0 0
0 Id2 0 0



J
(3)
44 =



0 0 0 Id4 0 0 0 0 0 0 0 0
0 0 0 0 0 Id2 0 0 0 0 0 0
0 0 0 0 0 0 Id3 0 0 0 0 0
0 0 0 0 0 0 0 0 Id1 0 0 0
0 0 0 0 0 0 0 0 0 0 Id3 0
0 0 0 0 0 0 0 0 Id1 0 0 0
0 0 0 0 0 0 0 0 0 Id2 0 0


.

From these matrices we see that t
(3)
4 (λ) = E

(3)
44 b+ λJ

(3)
44 φ2(λ) where

φ2(λ) = (µ(1)(λ)′,µ(0)(λ)′, b′)′.

We can obtain µ
(2)
4 (λ) by computing [G

(3)
44 ]′[T

(3)
44 (λ)]−1t

(3)
4 (λ), which is what is given by

Equation (20).

Let us consider an example for the change of Equation (20) to Equation (22) for the heuristic
measure. For our example we have n = 3 and i = 4. The following changes are made:

T
(3)
44 (λ(2)) =


S44 + λ(2)Id4 S42 S43 0 0 0 0

S24 S22 + λ(1)Id2 0 S21 S23 0 0

S34 0 S33 + λ(1)Id3 0 0 S31 S32

0 S12 0 S11 + λ(0)Id1 0 0 0

0 S32 0 0 S33 + λ(0)Id3 0 0

0 0 S13 0 0 S11 + λ(0)Id1 0

0 0 S23 0 0 0 S22 + λ(0)Id2

 .

D34(λ
(2)) =


λ(2)Id4 0 0 0 0 0 0

0 λ(1)Id2 0 0 0 0 0

0 0 λ(1)Id3 0 0 0 0

0 0 0 λ(0)Id1 0 0 0

0 0 0 0 λ(0)Id3 0 0

0 0 0 0 0 λ(0)Id1 0

0 0 0 0 0 0 λ(0)Id2

 .

Here, λ(2), λ(1) and λ(0) denote the regularization used for layers 1, 2 and 3 of the com-
putation tree in Figure 5. The regularization parameter λ(0) is an initial parameter, and
we used λ(0) = 0 in our simulations. For the purpose of our heuristic, we are interested in
adjusting λ(2) to a level where the posterior means at iteration 2 are closer to solving the
system of linear equations, Sµ = b.
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Loopy Markov Graph

2

1

4

3

Computation Tree for Cluster 4

3 1 4 2 1 4

1 3 1 2

2 3

4

Figure 5: Loopy Markov graph and the computation tree for cluster 4 with n = 3 iterations.
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