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Abstract

Recurrent Neural Networks have been widely used to process sequence data, but have
long been criticized for their biological implausibility and training difficulties related to
vanishing and exploding gradients. This paper presents a novel algorithm for training
recurrent networks, target propagation through time (TPTT), that outperforms standard
backpropagation through time (BPTT) on four out of the five problems used for testing.
The proposed algorithm is initially tested and compared to BPTT on four synthetic time
lag tasks, and its performance is also measured using the sequential MNIST data set. In
addition, as TPTT uses target propagation, it allows for discrete nonlinearities and could
potentially mitigate the credit assignment problem in more complex recurrent architectures.

Keywords: recurrent neural networks, target propagation, biological plausibility

1. Introduction

A Recurrent Neural Network (RNN) represents a type of artificial neural network adapted
to sequence data, which can model temporal events by retaining a state that spans a context
window of specified length. It has been demonstrated that RNNs can successfully address
a wide range of problems in the areas of speech recognition (Graves 2012, Heigold et al.
2015), image captioning (Xu et al. 2015, Karpathy and Fei-Fei 2017), text classification
(Liu et al. 2016, Yogatama et al. 2017), word prediction (Mikolov et al. 2013), sentiment
analysis (Timmaraju and Khanna 2015), mapping sentences and images (Socher et al. 2014),
language modelling (De Mulder et al. 2015) and others.

A diagram of a Simple Recurrent Network (SRN) (Jordan 1989, Elman 1990) is given
in Figure 1a. The network receives as input a sequence of data points {x1,x2, . . . ,xN} and
produces a sequence of output values {y1,y2, . . . ,yN}. The input and output values can be
binary or real-valued vectors, depending on the problem the network is designed to solve.
The SRN can compute an output value at each time step, or it can produce a single value
at its final step: in the latter case the output is a single data point.

The state of the network at time t is given by
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(a) (b)

Figure 1: (a) A Simple Recurrent Network with one input unit, one output unit, and one
recurrent hidden unit (b) An SRN “unrolled” for four time steps (t ∈ [1, 4]). The
network computes a single output y, and the initial state h0 is initialised with
zeros

ht = σ(Wxh · xt + Whh · ht−1 + bh) (1)

where Wxh is the matrix of synaptic weights between the input and the hidden layer, Whh

is the matrix of weights between the hidden layer and itself at adjacent time steps, and
bh is a bias term. Common choices for the non-linear activation function σ(·) include the
sigmoid and tanh.

When the network computes a categorical distribution its output is given by

yt = softmax(Why · ht + by) (2)

where Why is a matrix of weights between the hidden layer and the output, and by is
the output bias. If a real-valued output is needed, the normalized exponential function is
omitted.

Recurrent Neural Networks are typically trained using backpropagation (Rumelhart
et al. 1986), more specifically, a variant of backpropagation known as backpropagation
through time or BPTT (Werbos 1990).

Despite their popularity, recurrent networks have long been criticised because of the
training difficulties associated with learning dependencies in sequences that span long in-
tervals, and because of the lack of biological plausibility in their learning mechanism. The
following two sections discuss these issues in detail.

1.1. Training Difficulties

Similar to backpropagation, BPTT computes the gradient of a cost function with respect
to the synaptic weights, and uses the gradient to apply corrections that will minimize the
cost.

To handle the recurrent connection from ht to ht+1, BPTT “unrolls” the network for
a fixed number of time steps (t ∈ [1, tmax]), obtaining a simple feedforward network where
each time step is represented by one layer (Figure 1b). The initial state of the resulting
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network h0 can be initialised with zeros, and the network can be optimised using standard
backpropagation.

Bengio (1991) demonstrates that recurrent networks can outperform static networks
for small tmax (i.e. when the distance between the output and the input required for a
correct prediction is relatively short). It appears, however, that problems that exhibit
long-term dependencies present a challenge as the training process settles the network in
suboptimal solutions. This issue has been thoroughly investigated by Bengio et al. (1994)
and is attributed to the vanishing or exploding gradients of the objective function.

If E is the error that the network tries to minimize in a supervised setting, then the
derivative of the error with respect to the recurrent weights will be a sum of the derivatives
at each step in the context window.

∂E
∂W hh

=

tmax∑
t=1

∂E
∂y

∂y

∂htmax

∂htmax

∂ht

∂ht

∂W hh

The ∂htmax
∂ht

term is a product of Jacobian matrices such that

∂htmax

∂ht
=

tmax∏
i=t+1

∂hi

∂hi−1
=

tmax∏
i=t+1

W T
hhdiag[σ′(hi−1)]

As tmax grows, this product of Jacobian matrices can increase to infinity (exploding gradi-
ents) or exponentially decrease to zero (vanishing gradients). Pascanu et al. (2012) show
that it is necessary for the spectral radius (operator 2-norm) of Whh to be larger than 1
for the gradients to explode, and it is sufficient for it to be smaller than 1 for the gradients
to vanish.

As explained in Bengio et al. (1994), exploding and vanishing gradients prevent the
network from learning dependencies between temporally distant events. Various options
have been proposed for solving the vanishing and exploding gradients issues. Popular choices
include changing the network architecture (Hochreiter and Schmidhuber 1997), Hessian-free
optimisation (Sutskever et al. 2011), gradient clipping and regularisation (Pascanu et al.
2012), and others.

1.2. Biological Implausibility

Most of the objections against biological plausibility in recurrent neural networks stem
from the backpropagation-based training. Backpropagation has never been intended to be
biologically plausible, and it is deemed biologically unrealistic in almost every aspect (Crick
1989)

Backpropagation requires the passage of error signals back through the synapse and
along the axon to each neuron in the upstream layers. Moreover, each neuron has to emit
two distinct signals, an output and an error signal, although such error signals have not
been observed in neurophysiology (Roelfsema and Van Ooyen 2005).

Another objection is related to the way backpropagation solves the credit assignment
problem (Minsky 1961, Hinton et al. 1984). The essence of the problem is that the network
should be capable of assigning credit or blame to its decision elements (i.e. neurons) based
on their contribution to the error E . To solve this problem backpropagation uses weight
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transport, it requires neurons to send each other information using the downstream synaptic
weights. This computation would require knowledge of all the synaptic weights in the
forward path, implying a symmetric backward connectivity pattern, which is thought to be
impossible in the brain (Lillicrap et al. 2016).

It is reasonable to argue that credit assignment is a non-issue for the Simple Recurrent
Network model, as the “downstream” and “upstream” neuron classification has significance
only in the unrolled version of the network. In the original model (Figure 1a) there is only
one neuron and the synapses at time t+ 1, t+ 2, etc. are in fact the same set of synapses as
those at time t. However, the Simple RNN model is the most simplistic recurrent network
model. Many other RNN architectures exists where credit assignment becomes relevant
(i.e. higher order RNNs (Soltani and Jiang 2016), recurrent multilayer perceptrons with
multiple hidden layers (Puskorius et al. 1996), recurrent convolutional neural networks with
between-layers recurrent connections (Pinheiro and Collobert 2014)).

Another significant arguments against the biological plausibility of BPTT is the need of
complex temporal indexing. The computation of the gradients at each time step t requires
the network to store and match together time-indexed error signals and activity patterns.
It is difficult to imagine a biological mechanism that could satisfy this requirement within
a single, recurrently connected neuron.

Other objections include the fact that backpropagation uses continuous values while
neurons in the brain communicate using spikes. The algorithm also uses precisely clocked
changes between a forward and backward regime, which is also deemed unlikely in biological
neural systems (Bengio et al. 2015).

2. Target Propagation Through Time

The model we propose is a form of target propagation (LeCun 1986, Bengio 2014), where
the network computes targets instead of gradients for each time step and optimises the
synaptic weights locally.

The main idea of target propagation is to set local targets that are close to the activation
value of each neuron in such a way, that if the targets were produced by the neurons during
their forward phase, the global error of the network would decrease. An algorithm that
implements target propagation for feedforward networks is given by Lee et al. (2015). This
section introduces a similar approach applied to an “unrolled” recurrent network, with
certain modifications that handle the network state inputs. The suggested name for this
algorithm is target propagation through time (TPTT) (Figure 2).

The first question that has to be addressed is how to set local targets ĥt for the neurons
in the hidden layer at time t. Setting the target for the final time step ĥtmax is trivial, as it
can be based on the gradient of the error w.r.t. the activations of htmax

ĥtmax = htmax − αi ∗
∂E

∂htmax

(3)

where αi is an initial learning rate.

Setting the targets for the earlier time steps relies on a function that acts as an inverse
of the forward output function. If F (·) is a function that computes the hidden state of the
network at time t, then according to Equation 1, F (·) is a function of xt and ht−1:
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Figure 2: Target propagation through time: Setting the first and the upstream targets and
performing local optimisation to bring ht closer to ĥt

ht = F (xt,ht−1) = σ(Wxh · xt + Whh · ht−1 + bh)

The inverse of F (xt,ht−1) should be a function G(·) that takes xt and ht as inputs and
produces an approximation of ht−1:

ht−1 ≈ G(xt,ht)

ht−1 ≈ G(xt, F (xt,ht−1))
(4)

If function G(·) can be approximated, then it can serve to set the local targets using:

ĥt = G(xt+1, ĥt+1) (5)

The presented model adopts a linearly corrected formula (difference target propagation)
suggested by Lee et al. (2015), which stabilizes the optimisation problem when G(·) is not
a perfect inverse of F (·):

ĥt = ht −G(xt+1,ht+1) +G(xt+1, ĥt+1) (6)

If G(·) is an inverse of F (·) then G(xt+1,ht+1) = ht and ht−G(xt+1,ht+1) = ht−ht = 0,
thus (6) reduces to (5). The corrected formula stabilizes the optimisation as it guarantees
that as ht+1 approaches ĥt+1, ht also approaches ĥt. For a detailed explanation the reader
is referred to Section 2.3 in Lee et al. (2015).

The proposed configuration for G(·) is

G(xt+1,ht+1) = σ(Wxh · xt+1 + Vhh · ht+1 + ch) (7)

where Vhh is a matrix of weights and ch is a bias term, which the network must learn so
that (4) holds. Plugging (7) into (6) produces the final equation for the upstream targets:

ĥt = ht − σ(Wxh · xt+1 + Vhh · ht+1 + ch) + σ(Wxh · xt+1 + Vhh · ĥt+1 + ch) (8)
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After the local targets have been set using (3) and (8), the network operates by switching
between two distinct phases. First, it updates the parameters of G(·) using gradient descent
with the following rules:

Vhh := Vhh − αg

tmax−1∑
t=1

∂MSE(G(xt, F (xt,ht−1)),ht−1)

∂Vhh

ch := ch − αg

tmax−1∑
t=1

∂MSE(G(xt, F (xt,ht−1)),ht−1)

∂ch

(9)

where MSE is the mean squared error and αg is a learning rate. The intuition here is that
the network is adapting Vhh and ch so that the approximated state for time t−1 gets closer
to the actual ht−1 values.

In the second phase the network updates the feedforward parameters. The parameters
that govern the hidden states are updated using:

Whh := Whh − αf

tmax∑
t=1

∂MSE(F (xt,ht−1), ĥt)

∂Whh

bh := bh − αf

tmax∑
t=1

∂MSE(F (xt,ht−1), ĥt)

∂bh

(10)

where αf is the learning rate for updating the feedforward parameters. The intuition behind

the above updates is that outputs closer to ĥt reduce the global error. If the network adapts
to bring ht closer to ĥt this should respectively lead to a lower error at the final step.

As the feedforward parameters of the output Why and by are not susceptible to van-
ishing/exploding gradients they can be updated using the gradients w.r.t. E directly.

Why := Why − αf
∂E

∂Why

by := by − αf
∂E
∂by

(11)

There are two options for handling the feedforward parameters of the input. The updates
for Wxh can be obtained equivalently to the updates of Why and by by computing their
gradients w.r.t. to E

Wxh := Wxh − αf
∂E

∂Wxh
(12)

This mechanism is similar to the approach in Pascanu et al. (2012), where the regulari-
sation is constrained to the transition matrix, and all other parameters are updated using
the chain rule. The experiments in Section 3 are conducted using an equivalent method,
where the parameters of the output are updated using (11), and the parameters of the input
are updated using (12).

Alternatively, Wxh can be updated in a way similar to how the Whh updates are being
performed, pushing the output of the hidden layer closer to the local target.
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Wxh := Wxh − αf

tmax∑
t=1

∂MSE(F (xt,ht−1), ĥt)

∂Wxh
(13)

The results of an identical set of experiments using (13) for the Wxh updates is provided
in Appendix A.

The process of setting targets, optimising the parameters of G(·), and optimising the
parameters of F (·) is repeated until a selected convergence criterion is met.

2.1. Gradients Stability

As discussed in Section 1.1, vanishing and exploding gradients prevent backpropagation-
trained RNNs from learning long-term dependencies. In a deep recurrent network, where
the derivatives of Whh in the lower (decreasing t) layers vanish or explode, the lower layers
will not be able to contribute effective corrections to the synaptic weights of the hidden-to-
hidden connections.

TPTT alleviates the issue by assigning local targets at every time step, thus allowing
the lower layers to continuously learn and contribute to the weight changes in a way that
hopefully leads to a lower global error. For the case where G(·) is a perfect inverse of F (·),
it has been analytically proven (see Theorem 1 in Lee et al. (2015)) that local updates that
improve layer-wise loss also decrease the global loss.

Lee et al. (2015), however, point out that choosing G(·) to be the perfect inverse of F (·)
may need heavy computation and lead to instability, hence the model described adopts an
alternative approach where an approximate inverse is learnt. In this case, the expectation
that bringing the outputs in the lower layers closer to ĥt also reduces E is not guaranteed.

2.2. Biological Plausibility

There exists compelling evidence that certain unbiological traits of backpropagation-trained
RNNs can be mitigated by using target propagation.

First and foremost, target propagation does not require the passage of error signals back
through the synapse towards the upstream layers. Instead, it optimises towards targets,
which can be set locally via feedback pathways. There are many feedback connections
in the brain (Kaas and Lyon 2001). More specifically, Spratling (2002) illustrates how
pyramidal neurons in layers II and III of the cerebral neocortex receive information from
different sources, integrating feedforward information at their basal dendrites and feedback
information at the apical dendrites. Difference target propagation based training can then
be considered a form of error-driven learning, where the basal synaptic weights of a neuron
are modified towards a required output presented via the apical input. This can be deemed
a form of modulation, where basal activity is suppressed or enhanced to match a certain
expectation (target).

A similar interpretation is given by Roelfsema and Holtmaat (2018), who present a model
where the synaptic plasticity is explained based on the idea that the error signal factorizes
into two components, a steering neuromodulatory signal that determines whether a synapse
undergoes potentiation or depression, and a gating signal carried by feedback connections,
that determines how much credit or blame should be assigned to individual synapses. In
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contrast to Roelfsema and Holtmaat’s model, where the gating values are always in {0, 1}
and the sign of the change is controlled via neuromodulation, the feedback connections in
TPTT pass real-valued information to the targeted synapses. This allows the sign of the
locally computed error to drive individual synapses towards long-term potentiation (LTP)
or long-term depression (LTD).

Assuming that the feedback pathways provide the information required to assign credit
or blame allows TPTT to potentially present a more biologically plausible solution to the
credit assignment problem. As mentioned in Section 1.2, the common approach to credit
assignment in backpropagation-based settings is to use weight transport to explicitly cal-
culate updates for the synaptic weights at earlier time steps. TPTT avoids this non-local
transmission of information by optimising towards locally set targets. One could argue
that the process of setting of the local target can be viewed as a form of weight transport,
however, an argument could be put forward about the feedback connections in the human
brain being plastic. In this case a more biologically plausible model is a neuron where all
incoming synaptic weights are adaptable (Luo et al. 2017). There is, on the other hand,
sufficient evidence that the necessity for updates to Vhh and ch might be circumvented by
using the random feedback alignment technique suggested by Lillicrap et al. (2016). This
could potentially completely remove the requirement for computing gradients and updating
the local targets during the feedback phase, although Luo et al. (2017) show that adaptable
feedback outperforms feedback-alignment.

As mentioned in Section 1.2, this weight transport resolution provided by TPTT is
not applicable to SRNNs, as the unrolled network is a temporally indexed version of the
same neuron. It was indicated, however, that target propagation can indeed bring benefits
in terms of biological plausibility to recurrent networks comprising multiple neurons with
long-range connections. A specific example of such a network could be drawn from the
information processing mechanism in the human visual system. It has been suggested that
this mechanism employs an underlying recurrent circuit (Drewes et al. 2016, Lamme and
Roelfsema 2000), and there is significant evidence that the ventral visual pathway is a
complex recurrent network (Kravitz et al. 2013). It has been shown that in primates the
primary visual cortex (V1) links not only to the secondary visual cortex (V2), but also to
visual areas 3 and 4 (V3, V4), and the middle temporal visual area (MT) (see Van Essen
et al. 1986, Nakamura et al. 1993, and Maunsell and van Essen 1983). Based on the
assumption that in the human ventral system V2 sends information to V4, which is then
send back to V1, and that V4 sends forwards information to the inferior temporal cortex
(IT), which is again recurrently connected to V2, Chang et al. (2017) present a simplified
RNN model in the form of V1-V2-V4-IT, with V1 receiving recurrent connections from V2,
V4, and IT. Unfolding such a network in time, for processing dynamic visual signals, would
now entail the repetition of interconnected groups of neurons. In this setting the credit
assignment problem reappears in the form of within-the-group weight transport. This can
be mitigated by target propagation, however, the need for complex temporal indexing still
pertains as group level targets would not be received for a number of time steps. It appears
that the storage of temporally indexed data is not a constraint that TPTT, in its present
form, can resolve.

Another objection mentioned in Section 1.2 is related to the use of continuous values.
By definition, backpropagation uses the error gradients to apply corrections to the synaptic
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weights of the network. When the context window increases, learning speed for the early
time steps decreases as the gradients get closer to zero. Lee et al. (2015) discuss an extreme
case where the error signal becomes discrete: its derivatives are zero almost everywhere
and infinite where the function changes discretely. A backpropagation-trained network
cannot properly operate in this regime, but target propagation can handle such discrete non-
linearities, and it can indeed learn using discrete transmissions between units (LeCun 1986).
This property can help with making the model more biologically plausible by implementing
spike coding (discrete binary units) instead of coding of analogue variables by firing rate,
which seems biologically improbable, especially in the context of fast cortical computations
(Maas 1997).

Finally, in contrast to BPTT, TPTT does not require precisely clocked changes between
the forward and feedback regimes. The computational dependency between the two phases
is sufficiently relaxed to allow them to run in an arbitrary order. In fact, they could
potentially run in parallel.

2.3. Related Work

An attempt to use target propagation in a recurrent setting was previously presented by
Wiseman et al. (2017). The authors, however, find the results “disappointing”, with the pre-
sented algorithm underperforming in comparison to BPTT on the two real-world language
modelling data sets (Penn Tree Bank and Text8). It should be noted, that the target prop-
agation variant of Wiseman et al. (2017) is based on a constraint in the form of λC(ĥt, ht)
added to the loss, where ĥt is a predicted hidden state at time t and C is an L2 type
penalty. In contrast to the work of Wiseman et al. (2017), this paper demonstrates that
Target propagation through time, as outlined in Section 2, generally outperforms BPTT-
trained recurrent networks.

Another idea closely related to the target propagation approach adopted in TPTT are
synthetic gradients (Czarnecki et al. 2017; Jaderberg et al. 2017). The concept of synthetic
gradients is similar to target propagation in the sense that the synaptic weights update
process does not have a strict dependency on a backpropagated global error signal.

The different layers of the network are individually updated, but instead of providing
local targets and updating the network parameters to bring the activation values close to
the targets, the network uses local models to approximate the true error gradients directly.
Under this scheme, the model Mt for network layer t is trained by minimising the error
between the predicted gradient δ̂t and the gradient estimated by the synthetic model in the
next layer δ̂t+1. This process is repeated for all upstream layers until the final layer of the
network, where the target gradient can be computed directly from the global error E . This
training method allows individual segments of the network to be update asynchronously,
resulting in an architecture known as Decoupled Neural Interfaces (DNIs).

The DNI architecture gives rise to a group of interesting properties. By removing the
sequential backpropagation of error signals through the network, DNI provides a method
where the network can be updated asynchronously. The constraint that a layer has to wait
until a full forward pass and a backward pass up to the said layer must be completed before
the layer is updated is substantially relaxed. Using synthetic gradients the decoupled layers
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can be independently updated. This property facilitates parallel learning and in addition
enables different segments of the network to learn at different speeds.

3. Experiments

TPTT was tested on a subset of the pathological synthetic problems initially presented in
Hochreiter and Schmidhuber (1997). The network was also tested on a sequence classifica-
tion task based on the MNIST data set (LeCun et al. 1998).

3.1. Pathological Synthetic Problems

The pathological synthetic problems are known to be very challenging for SRNs to solve, as
they require the memorization of long-term correlations. Here is a brief description of the
four individual problems selected for testing TPTT:

• The Temporal Order Problem. The goal in this problem is sequence classifica-
tion. A sequence of length T is generated using a set of randomly chosen symbols
{a, b, c, d}. Two additional symbols—X and Y are selected at random and presented
at positions t1 ∈ [ T10 ,

2T
10 ] and t2 ∈ [4T10 ,

5T
10 ]. The network must predict the correct

order of appearance of X and Y out of four possible options: {XX, XY, YX, YY }

• The 3-bit Temporal Order Problem. This problem is similar to the Temporal
Order Problem, but the positions of interest are increased to three—t1 ∈ [ T10 ,

2T
10 ],

t2 ∈ [3T10 ,
4T
10 ], and t3 ∈ [6T10 ,

7T
10 ]. This also leads to an increased number of possible

outcomes that the network must learn to predict: {XXX, XXY, XYX, XYY, YXX,
YXY, YYX, YYY }

• The Adding Problem. The problem presents the network with two input channels
of length T . The first channel is a sequence of randomly selected numbers from [0, 1].
The second channel is a series of zeros, with the exception of two positions t1 ∈ [1, T

10 ]
and t2 ∈ [ T10 ,

T
2 ], where its values are ones. The ones at positions t1 and t2 act as

markers that select two values from the first channel: X1 and X2. The target that
the network must learn to predict is the result of X1+X2

2

• The Random Permutation Problem. This task receives a sequence of sym-
bols T, with the symbol at t1 being either 1 or 0 and also being identical to the
symbol at tmax. All the other symbols in the sequence are randomly sampled from
[3, 100]. This condition produces two types of sequences—(0, at2 , at3 , . . . , atmax−1 , 0)
and (1, at2 , at3 , . . . , atmax−1 , 1) where at is randomly sampled from [3, 100]. The goal
is to predict the symbol at tmax, which only depends on the symbol at t1, while the
other symbols in the sequence act as distractors.

The problems were tested with a Simple RNN1 with a hyperbolic tangent non-linear
activation function, 100 neuron in the hidden layer, all synaptic weights sampled from
N (µ = 0, σ = 0.1), and the biases initialised with zeros. The optimisation technique used

1. Source code for all experiments is available at https://github.com/nmanchev/tptt
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for training the network was Nesterov’s Accelerated Gradient (Nesterov 1983; Bengio et al.
2013) with the momentum µt set to 0.9.

The approach was to start with a relatively short sequence length (T) of 10 time steps
and keep increasing it by 10 time steps, in an attempt to see how well the network will
handle long test sequences. This approach, however, did not work well with the BPTT-
trained SRN. In line with Hochreiter and Schmidhuber (1997)’s observations that BPTT,
as many other recurrent net algorithms, “fail miserably on real long time lag problems”,
the network was unable to solve all but one of the problems, even at a relatively shallow
depth of 10 time steps. Moreover, the 3-bit Temporal Order Problem, which the network
did manage to solve, was only handled at the initial depth of 10 time steps and failed for
larger values of T .

In order to provide a meaningful baseline and to better assess the effect of using TPTT a
variant of the SRN was tested, where the synaptic weight matrices were carefully initialised
to be orthogonal. Orthogonal matrices preserve gradient norm during backpropagation,
hence they can help mitigate issues related to vanishing gradients (Henaff et al. 2016; Le
et al. 2015; Arjovsky et al. 2015).

The networks were run for up to 100’000 iterations, each iteration processing a mini-
batch of 20 examples: 2 million examples in total. For the Temporal, 3-bit Temporal, and
Random Permutation problems the network uses a softmax layer as its final layer (see
Equation 2), and optimises a cross-entropy cost function between the prediction y and a
target t

E = − 1

N

N∑
i=1

(ti × log(yi))

where N is the number of samples in the mini-batch. For the adding problem, which
requires a real valued output, the last layer of the network is linear, and the cost function
the network minimises is the MSE:

y = Why · ht + by

E =
1

N

N∑
i=1

(ti − yi)
2

In this case, an example i in the mini-batch is considered successfully predicted if the error
between the prediction and the target is below 0.04. This criterion is identical to the one
used by Hochreiter and Schmidhuber (1997).

For all problems, the accuracy of the network was measured every 100 iterations on a
validation set of 10’000 samples. The success criterion was a validation error below 0.0001. If
the network did not meet this criterion by its last iteration, the run was considered a failure.
The results from all runs for the two different networks are shown in Table 1. The network
referred to as BPTT is an backpropagation-trained SRN with orthogonal initialisation for
Whh; TPTT is a recurrent network with orthogonal initialisation combined with target
propagation through time learning. The hyperparameters for both the BPTT and TPTT
networks were optimised against each T, using a grid search over {10−1, 10−2, 10−3, 10−4,
10−5, 10−6} for each α. The parameters used by each network to achieve the reported Tmax

are also provided in Table 1.
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Problem BPTT TPTT
tmax parameters tmax parameters

Temporal Order 120 α = 0.00001 150 αi = 0.1, αf = 0.01, αg = 0.001
3-bit Temporal Order 70 α = 0.00001 150 αi = 0.1, αf = 0.01, αg = 0.001
Adding 90 α = 0.001 60 αi = 0.5, αf = 0.02, αg = 0.07
Random Permutation 70 α = 0.01 300 αi = 0.1, αf = 0.01, αg = 0.001

Table 1: Maximal depth (sequence length) by model. Each model is trained with an initial
sequence length of T=10. If it successfully solves the problem, T is increased by
10 and the model is trained and tested again. The process is repeated until failure
and the highest T achieved by the network is reported as tmax.

Figure 3: Comparison of BPTT and TPTT-trained networks for the temporal order prob-
lem with T = 100. For the BPTT network (a) shows the change in the norm of
the synaptic weight updates (||∇W||2) and the spectral radius of the hidden-to-
hidden matrix (ρ); (b) shows the change in cost (E). For the TPTT the change
in ||∇W||2 and ρ is given in (c), and E is shown in (d).

Table 1 reveals that replacing the BPTT learning mechanism with TPTT allows suc-
cessful training to greater depths (larger tmax) in three out of the four selected synthetic
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Problem tmax BPTT TPTT
best common model best parameters

Temporal Order 120 46,500 1,600 1,600
αi = 0.1, αf = 0.01,

αg = 0.001

3-bit Temporal Order 70 56,000 1,300 800
αi = 0.1, αf = 0.01,

αg = 0.1
Addition 90 18,000 - - -

Random Permutation 70 12,200 12,700 700
αi = 0.1, αf = 0.1,

αg = 0.01

Table 2: Difference between BPTT and TPTT-training expressed as number of iterations
needed until convergence. “BPTT best” provides the results from the fastest
converging BPTT models based on the grid search. “TPTT common model”
shows the iterations needed by the TPTT model with identical hyperparameters
used in Table 1 (αi = 0.1, αf = 0.01, αg = 0.001). “TPTT best” and “TPTT
parameters” show the results from the fastest TPTT models based on the grid
search and their respective parameters.

problems. Moreover, a single TPTT model with identical hyper-parameters was able to
successfully handle the Temporal Order, 3-bit Temporal Order, and Random Permutation
problems. The adding problem turned out to be the most difficult of the four, and although
the network was on the correct path to solving it, its convergence rate was quite slow and
would not allow for the training to reach a solution within the limits of the experiment
(100’000 iterations). To overcome this, the TPTT learning rates for this specific problem
were manually increased and set to αf = 0.02, αg = 0.07, and αi = 0.5. This allowed the
TPTT network to perform better in terms of sequence lengths, but it still could not match
the results obtained using backpropagation.

The success of TPTT in the classification tasks can be attributed to the mitigation of the
vanishing/exploding gradients problem. Figure 3 shows the impact of TPTT on learning
and gradient stability for one specific run, however this characteristic situation was consis-
tently observed across different problems and separate runs. In the BPTT-trained network
the spectral radius of the hidden-to-hidden matrix gradually decreases until reaching the
sufficient criterion for the gradients to vanish (ρ < 1.0). This correlates with the decrease
in the norm of ∇W, resulting in the inability of the network to learn efficiently and the
lack of reduction in the cost function. In contrast, the TPTT network maintains stable ρ,
updates to the synaptic weights are not constrained to the beginning of the training, and
the cost decreases until the problem is successfully solved.

Interestingly, the TPTT-trained networks also outperformed BPTT in terms of conver-
gence speed. Table 2 shows the number of iterations needed by BPTT and TPTT for solving
the longest sequences that the BPTT-trained network was capable of handling. With the
exception of the adding problem, which TPTT could not solve for tmax = 90, the number
of iterations needed was significantly lower when using target propagation for training. The
change in the cost function E for the best performing networks is provided in Figure 4.
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Figure 4: Changes in the training cost for the synthetic problems. The models compared
are the ones listed in Table 2. The cost function is averaged over 100 iterations.
The iterations are given on a logarithmic scale, as the TPTT network converges
significantly faster than the BPTT network.

3.1.1. Comparison of Weight Updates and Layerwise Errors

Lillicrap et al. (2016) demonstrate that after a few epochs of training random feedback
alignment can match the synaptic weight updates prescribed by backpropagation. This
analysis is performed by exploring the angle between the updates specified by the two
learning algorithms.

A similar investigation is presented here in regard to the similarity of the transition
matrix updates prescribed by TPTT and BPTT. This analysis is confined to W hh, as the
remaining network parameters are updated according to Equation 11 and Equation 12,
hence they are identical across the backpropagation and target propagation networks. The
TPTT-trained network was run as usual and let to compute the update term as given in
Equation 10:

∆WhhTPTT = αf

tmax∑
t=1

∂MSE(F (xt,ht−1), ĥt)

∂Whh

In parallel, an alternative update term was computed using backpropagation.
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Figure 5: Angle between BPTT and TPTT prescribed updates. The data is averaged over
10 iterations with the error bars indicating two standard deviations. a) Tempo-
ral order problem with tmax = 120; b) Temporal 3-bit problem tmax = 90; c)
Random Permutation problem tmax = 70;

∆WhhBPTT = αf
∂E

∂Whh

The angle between the update matrices is then measured using

∆WhhBPTT]∆WhhTPTT = arccos

(
〈∆WhhTPTT ,∆WhhBPTT 〉
‖∆WhhTPTT ‖‖∆WhhBPTT ‖

)
A set of experiments were conducted, where the angle between the prescribed updates

was measured and aggregated over every 10 iterations, and the network was allowed to
run until reaching the convergence criterion. The results for the temporal order, 3-bit
temporal order, and random permutation problems are presented in Figure 5. For all three
problems, the ∆WhhBPTT]∆WhhTPTT is initially close to 90◦. As training progresses,
the update vectors for all three problems become less orthogonal to each other, and in the
3-bit temporal order problem the angle falls under 45◦. Interestingly, halfway through the
random permutation problem the angle increased again, peaking at about 89◦. Combined
with the much shorter convergence time, this indication of roughly orthogonal updates
suggests that in this case TPTT discovered a better path leading to a local minimum.

A modified version of the network, which tracks the layer-specific cost functions over the
period of training was developed, in an attempt to get additional insight on the learning
dynamics in TPTT. Figure 6 shows the results for three TPTT networks, working on
different problems for T = 30. The selection of T was mainly determined with clarity and
readability in mind, as deeper networks tend to produce obscured plots that are difficult to
analyse. However, experiments with larger values of T where only a subset of layers were
plotted (e.g. every third layer) confirmed that the networks exhibit similar behaviour.
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Figure 6: Change in the layer-specific cost in three TPTT trained networks solving the
addition problem for T = 30 (row a), the permutation problem for T = 30 (row
b), and the 3-bit temporal order problem for T = 30 (row c). The first plot in
each row represent the cost used in the update rule for Vhh and ch. The second
plot represents the cost used to learn Whh and bh. The third plot shows the
change in the global error E . Layers are numbered in a way that reflects the
depth of the network with 1 being the cost at h0 and 30 the cost at h29

The data in Figure 6 reveals that in general the network manages to approximate the
inverse without major difficulties. However, it also appears that the difference between the
local targets and the feedforward activations becomes smaller towards the lower levels of
the network. This likely has a negative effect on the capability of the network to learn and
is similar to the effects induced by vanishing gradients. However, it appears that impact in
TPTT is not as severe, as the network still outperform its BPTT-trained counterparts on
three out of the four synthetic problems.
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tmax Parameters Without noise With noise injection
Accuracy

%
ε

Accuracy
%

ε

70 αi = 0.1, αf = 0.01, αg = 0.01 82.67 0.0 94.99 0.100
80 αi = 0.1, αf = 0.01, αg = 0.001 99.09 0.0 99.59 0.005
90 αi = 0.1, αf = 0.01, αg = 0.01 92.74 0.0 96.52 0.006

Table 3: Impact of noise injection on a TPTT-trained network when tested against the
adding problem.

3.1.2. Gaussian Noise

Lee et al. (2015) suggest injection of random Gaussian noise in the process of learning G(·).
Under this scheme the update rule for the synaptic weights of G(·) given in Equation 9
changes to

Vhh := Vhh − αg

tmax−1∑
t=1

∂MSE(G(xt, F (xt,ht−1 + ε)),ht−1 + ε)

∂Vhh

ch := ch − αg

tmax−1∑
t=1

∂MSE(G(xt, F (xt,ht−1 + ε)),ht−1 + ε)

∂ch

where ε ∼ N (0, σ). The introduction of noise acts as regularisation, ensuring that the
inverse function is not fine-tuned to the training data, but maps to a region around these
values in a way that facilitates the computation of G(xt, ĥt) for unseen ĥt.

Given that TPTT performed well on the temporal order, 3-bit temporal order, and
random permutation problems without the need of noise injection, its impact for these
specific problems did not warrant an in-depth investigation. In these three cases the TPTT
model presented in Table 1 can be viewed as using the corrected update rule but having
ε = 0.

A number of experiments were conducted for the adding problem to determine the
impact introduced by noise injection. First, a grid search was run for sequences of 70, 80,
and 90 time steps. The best performing combination of learning parameters were selected
for each sequence, and another grid search was performed over (0, 1] for finding optimal
ε values. The results from these experiments are given in Table 3, and the impact of
introducing noise on the change in the cost function for tmax = 70 is shown in Figure 7.
The experimental results support the suggestion of Lee et al. (2015) that making F (·) and
G(·) approximate inverses not just at ht−1 but in its neighbourhood leads to better results.
For this specific problem, however, the improvement did not provide sufficient boost to the
network’s accuracy to successfully solve the problem for larger tmax.

3.1.3. Asynchronous Learning

One of the limitations of backpropagation that was acknowledged in Section 1.2 is the need of
precise alternation between feedforwad and backpropagation phases. In target propagation
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Figure 7: Impact of Gaussian noise on the adding problem with tmax = 70. The learning
parameters are set to αi = 0.1, αf = 0.01, αg = 0.01, and the network is run
with ε = 0.0 and ε = 0.1 for 100,000 iterations. The value of the cost function is
averaged over 100 iterations.

the dependency between the parameter update phases of G(·) and F (·) is not as strict,
relaxing the requirement for precisely clocked transitions between the two phases.

This suggestion was experimentally confirmed by running a modified version of the
TPTT network, where the probability of executing either of the update phases is controlled
by a tunable parameter. The network was used in a series of tests on the pathological
synthetic problems where the change of the cost function was compared between runs with
strictly alternating phases and runs where the update phases were probabilistically deter-
mined.

Figure 8 shows the change in cost for the Temporal and the 3-bit Temporal Order
Problem when the phase change is synchronised (i.e. G(·) update is always followed by an
F (·) update). The two alternative runs per network show results for when the phase is
randomly determined with the network running a G(·) update with a probability of 1

2 in
the first run, and a probability of 1

3 in the second run.

The empirical evidence upholds the statement that precise phase alternation is not
required in TPTT-trained networks. Although there is a small penalty in terms of the
onset of decrease of the cost, the fact that the two phases do not strictly depend on each
other hints towards the possibility of a TPTT implementation where the parameter update
for G(·) and F (·) are computed in a parallel fashion.

3.1.4. Generalisation Capability

It has been shown (Pollack 1990; Pascanu et al. 2012) that recurrent networks sometimes
generalise beyond the length of the training examples they were exposed to. It appears

18



Target Propagation in Recurrent Neural Networks

Figure 8: Impact of randomised transition between updating the parameters of G(·) and
F (·) on a) temporal order problem with tmax = 60; b) 3-bit temporal order
problem with tmax = 60; Esync is the cost change in a network with constant
alteration between the G(·) and F (·) phases. Ep(G(·))= 1

2
and Ep(G(·))= 1

3
represent

networks that switch to updating the parameters of G(·) with probability 1
2 and

1
3 respectively.

Problem Accuracy (%)
BPTT TPTT

Temporal Order 26.67 45.76
3-bit Temporal Order 13.65 28.36
Adding 65.63 66.23
Random Permutation 51.52 100.00

Table 4: Accuracy of the BPTT and TPTT networks trained on samples with tmax = 100
and tested on sequences of length 200. The learning rate used for the backprop-
agation network is the corresponding problem specific value given in Table 1.
The TPTT network uses the common model parameters (αi = 0.1, αf = 0.01,
αg = 0.001)

relevant to investigate this generalisation capability by comparing the solutions found by
the TPTT and BPTT-trained networks.

A series of experiments were conducted, where a TPTT and a BPTT networks were
trained on the synthetic problems using training sequences of length T = 100. The two
networks were then tested using longer sequences with T set to 200. The accuracy achieved
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Problem Learning rate Accuracy (%)

Temporal Order 0.0001 75.28
3-bit Temporal Order 0.001 29.03
Adding 0.0001 91.90
Random Permutation 0.0001 50.54

Table 5: Accuracy of an LSTM network trained on samples with tmax = 100 and tested on
sequences of length 200.

by the networks is reported in Table 4. The data reveals that the TPTT-trained network
outperforms the equivalent network trained with backpropagation on all of the synthetic
problems, suggesting that the problem-specific solutions found using target propagation
generalise better.

An identical experiment was performed for assessing the generalisation capability of
an LSTM network. The configuration of the LSTM network was analogous to the simple
recurrent network, with the activation function set to hyperbolic tangent and using orthog-
onal initialisation for the synaptic weights. The learning rate α was optimised using a grid
search over {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} for sequences with T = 100. The network
was then trained using the optimal learning rate for each of the synthetic problems and
its accuracy was measured on sequences of length 200. The results of this experiment are
given in Table 5. It is evident that the LSTM network outperforms both the BPTT and
TPTT networks on three of the synthetic problems. It should be noted, however, that this
result is largely provided for reference, as the improvement demonstrated is likely driven by
the LSTM architecture and not so much by the specific optimisation technique—the LSTM
network used in this specific experiment was optimised using backpropagation.

3.2. MNIST Sequence of Pixels

The MNIST database contains a large collection of images of handwritten digits. The data
set was assembled by LeCun et al. (1998) and is derived from the NIST Special Database
19 (Grother 1995). It contains 60’000 training and 10’000 test images with dimensions of
28x28 pixels each (784 pixels in total).

The MNIST data was used to define the MNIST classification from a sequence of pixels
problem, originally devised by Le et al. (2015). In this challenge, the images are presented
to the network one pixel at a time in a scanline order. This results in a very long range
dependency problem as 784 pixels translate to 784 time steps (i.e. T = 784).

To make the results from the TPTT network comparable to the results of Le et al.
(2015), the training configuration was kept as similar as possible. The number of images
per mini-batch was set to 16, the training was capped to 1’000’000 iterations (≈ 267 epochs),
and the number of neurons in the hidden layer was set 100.

A grid search was performed for finding optimal αi, αg, and αf , however, due to the size
and computational complexity of the data, the grid search was carried out using only 10’000
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Figure 9: Accuracy results from the “MNIST sequence of pixels problem”

training and 1’000 test images, which were randomly selected from the complete data set.
The runs were also limited to a maximum of 375’000 iterations (100 epochs). The hyper-
parameter space for αi, αg, and αf was constrained to {10−1, 10−2, 10−3 ,10−4,10−5,10−6,
10−7,10−8}. The best accuracy was determined to be produced when using αi = 10−7,
αf = 10−2, and αg = 10−8.

The accuracy results achieved by a TPTT-trained SRNN on the test MNIST set are
compared to four other networks—a BPTT-trained SRNN with ReLU activations, a BPTT-
trained SRNN with tanh activations, a BPTT-trained SRNN with ReLU activations and
identity matrix initialisation (IRNN), and an LSTM network. The performance data from
the four networks is directly obtained2 from Le et al. (2015). The maximal accuracy achieved
by all networks is given in Table 6, and the change over time is shown in Figure 9.

It is evident, that the TPTT-trained network outperforms both the ReLU and tanh-
based RNNs, although it does not perform as well as the LSTM or IRNN networks when
constrained to the same number of neurons in the hidden layer.

It has been reported that “too large” networks trained with backpropagation rarely do
worse, as backpropagation tends to ignore excess parameters (Caruana 1993 as cited in
Lawrence et al. 1997). This prompts the question if the TPTT network would experience
difficulties as the number of neurons in the hidden layer increases, as this would also increase

2. The data used for the SRNN, LSTM, and IRNN networks presented in Table 6 and Figure 9 was extracted
from the plot presented in Le et al. (2015) and potentially suffers from a minor loss of precision.
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Network Accuracy
%

SRNN (ReLU) 20.74
SRNN (tanh) 34.20
LSTM 65.68
IRNN 97.20
TPTT 54.20

Table 6: Maximal accuracy on the
MNIST data set for SRNN
(using backpropagation with
ReLU or tanh activation),
LSTM, IRNN, and TPTT.

Size of Whh Accuracy
%

64 49.49
128 53.28
256 54.60
512 56.77
1024 74.02

Table 7: Maximal accuracy on the
MNIST data set in a TPTT
network for various sizes of the
transition matrix Whh.

Figure 10: Impact of varying the number of neurons in the hidden layer on the accuracy
achieved by a TPTT-trained network on the “MNIST sequence of pixels prob-
lem”

the variance in the gradient approximation. It could be therefore argued that the superior
results shown by TPTT in comparison to BPTT are dependent on the fairly small number
of neurons in the hidden layer where getting a good target is relatively easy.

To assess this possibility a series of experiments were conducted on the MNIST data set,
with the size of the transition matrix Whh set to 26, 27, 28, 29, and 210. The results of the
runs are given in Table 7 and Figure 10. The change in accuracy indicates that increasing
the complexity of the TPTT-trained network does not harm its performance. On the
contrary, increasing the number of neurons in the hidden layer leads to an increase in the
network’s accuracy, with the 210 network surpassing the accuracy achieved by the LSTM
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network (although this is not a fair comparison provided that the number of parameters of
the TPTT network is greater by one order of magnitude).

4. Discussion and Future Work

This work presented target propagation through time: a difference target propagation-based
algorithm for learning in recurrent neural networks. It was demonstrated that TPTT per-
forms generally better when compared to backpropagation, can be combined with other
techniques that look to reduce the impact of vanishing/exploding gradients, and provides
an advantage in training deeper recurrent networks. The experiments provide solid evi-
dence that the introduction of target propagation-based updates for the transition matrix
provides clear advantage not only on the sequence length but also in terms of convergence
speed. The paper also introduced a training scheme where the Wxh updates are computed
to minimize the distance between the output of the hidden layer and the local target (i.e.
see TPTThx in Appendix A), thus avoiding the chain rule through Whh. This variant of the
network, where the updates for both Whh and Wxh are based on local targets, performed
even better in terms of depth, although it lagged slightly behind on speed of convergence.
Both target propagation variants, however, were significantly quicker to converge compared
to BPTT.

In addition, there is evidence that in certain aspects TPTT is more biologically plau-
sible compared to Back-Propagation Through Time. This is in agreement with the widely
accepted idea that incorporation of additional neuro-biological mechanisms results in en-
hanced computational abilities (Hassabis et al. 2017; Spoerer et al. 2017; Lotter et al.
2016). Indeed, the feedback connections in the building blocks of TPTT mimic the layout
of a neuron with functionally distinct apical and basal dendrites. This neuro-biologically
inspired mechanism is the main driver that helps TPTT to outperform other BPTT-based
approaches, as it was experimentally confirmed.

Another factor that supports the more biologically plausible nature of TPTT is that
this training mechanism is better suited to handle discrete error signals. It has been shown
by Lee et al. (2015) that target propagation can be used in networks with discretized
transmission between units, and it would be interesting to see if TPTT can be adapted for
recurrent networks with discretized layers. This is, however left to future work.

A question that remains open is the impact of orthogonal initialisation on biological
plausibility. The literature on biological plausibility of initialisation tricks is unusually
scarce. The decision to use orthogonal initialisation was driven by the preference to keep
the BPTT and TPTT network architectures as close as possible, so that the impact of
architecture-related differences on the learning performance can be confined to the difference
between the BPTT and TPTT learning algorithms. It is worth noting that Lee et al. (2015)
also use orthogonal initialisation in their presentation of difference target propagation. One
could speculate that it is in theory possible to have a separate biological process that aligns
the weights before the actual learning commences. An example to illustrate this idea could
be the work presented in Bengio et al. (2016), where a feedforward pass is used to obtain
initialization for a deep Boltzmann machine. In a more general case it could be argued that
careful initialisation can be considered a form of pre-training. Furthermore Henaff et al.
(2016) demonstrate that different types of initialisation are more or less effective for different
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types of tasks. For example, identity initialization should perform better on the Addition
task compared to orthogonal initialisation. A more in-depth investigation on the impact
of different initialisation techniques in a TPTT context and the biological plausibility of
orthogonal initialisation is left for future investigations.

Jaderberg et al. (2017) suggest that target propagation is a more restrictive training
scheme, as it relies on local targets that must be generated sequentially, thus a network
trained with target propagation must remain update- and backwards-locked. This limitation
should be relatively easy to address. Let us consider an unrolled SRN with tmax number of
time steps (tmax > 3) and local targets ĥt (t ∈ [1, tmax]). Let k be arbitrary chosen so that
1 < k < tmax. This network can be treated as comprised of two separate computational
graphs—the first spanning over hidden units in [1, k] and the second one over [k + 1, tmax].
These two graphs can be treated as separate TPTT networks. Network [k+ 1, tmax] sets its
ĥtmax using the global SRN error and Equation 3. The first target for network [1, k] (ĥk)
can be initialised at random or, if waiting for one sequential setting of targets for network
[k + 1, tmax] is not an issue, it can be computed using

ĥk = hk − αi ∗
∂ĥtk+1

∂htk

Under this regime the two networks operate independently, with network [1, k] still
providing updates in the generally correct direction, whilst waiting for more precise guidance
from the second network. In this case, the two networks can run asynchronously and in
theory, they could also run at different speeds. Combined with the asynchronous execution
of the G(·) and F (·) phases, this mechanism has the potential of completely unlocking
the TPTT network so that it can be fully trained in parallel. Moreover, there is no need
to limit the separation of the network to only two subgraphs. As long as tmax is large
enough, the same approach can be applied to split the network into three, four, or more
independent TPTT networks. In the extreme case, each subnetwork can be made as small
as consisting of two hidden units only—an architecture close to the local representations
alignment suggested by Ororbia et al. (2018)

Another investigation related to “unlocking” the network is the effect of removing the
approximation of G(·) phase, and relying on some form of random feedback alignment
instead. Said modification should be fairly straightforward to implement. It could further
simplify the training scheme, and it can provide insights on the performance difference of
plastic vs. fixed feedback synaptic weights.

Lee et al. (2015) also demonstrate that injecting random noise is beneficial for stabilizing
learning in target propagation. This was experimentally confirmed for the adding problem,
where the addition of fixed Gaussian noise did indeed improve the accuracy of the network.
Ororbia et al. (2018), however, show that difference target propagation struggles to select
good local targets in the upstream layers, leading to a decrease of the global loss in the
first epochs, followed by a collapse afterwards. This effect was also observed experimentally
in the grid search runs for the MNIST sequence of pixels problem. Ororbia and Mali
(2018) suggest an improved variation of difference target propagation called DTP-σ, which
introduces an adaptive approach to noise injection scheme where the standard deviation of
the noise is a function of the local loss. Future research could look into adapting TPTT to

24



Target Propagation in Recurrent Neural Networks

leverage the DTP-σ modification and verify the positive impact on accuracy in a recurrent
context.

Finally, this work provides empirical evidence of the superiority of target propagation
over backpropagation in simple recurrent neural networks. The TPTT network does not
performs as well as LSTM, however, it was suggested in Section 3.2 that there is a high
possibility that the LSTM performance is driven exclusively by the advantages provided by
the LSTM architecture. A fair LSTM-based comparison of BPTT and TPTT would require
an LSTM model trained with target propagation.

Taking into account the work of Wiseman et al. (2017) and given that TPTT outperforms
BPTT in four out of the five problems it was tested on, it would be interesting to see how
a TPTT trained network would fare on language modelling data sets. One could easily
imagine a modification of TPTT that computes yt for every ht, and thus can be used
for “next character prediction” type of tasks. It would also be interesting to see how a
TPTT-trained LSTM network performs in this setting. This investigation, however, is left
to future work.

Appendix A. Alternative Update Rule

To distinguish between the two update schemes we refer to the original network configura-
tion as TPTT, and introduce the TPTThx notation to denote a network where Whh and
bh are updated using (10), and Wxh is updated using (13) (i.e. both the hidden and input
weight matrices are updated using local targets). The key experiments from Section 3 were
repeated and all results are provided below.

The configuration of the TPTThx network for the synthetic problems was kept identical
to the configuration of the network used in Section 3.1—hyperbolic tangent non-linear
activation function, 100 neuron in the hidden layer, orthogonal initialisation, and the biases
set to zeros. All runs were restricted to 100,000 iterations. An optimal combination of
hyperparameters for the TPTThx network was discovered by running a grid search over
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6} for each α. This is also identical to the arrangement
used for the network in Section 3.1. A comparison between the maximal depth achieved by
the TPTT and TPTThx networks is given in Table A1. The optimal parameters discovered
by the grid search are given in Table A2.

The results in Table A1 suggest that applying target based updates to Wxh is beneficial,
as the TPTThx network outperforms the original TPTT network on all but the adding
problem. It could be theorized that because updating Wxh using ∂E

∂Wxh
mandates a chain

rule through Whh, similar instabilities come into play. Removing the chain rule through
Whh from the computation of Wxh therefore improves the overall stability and helps the
network achieve convergence at greater depth.

Similar to the results from Section 3.1, the adding problem proved to be the most
difficult challenge for the TPTThx network. Again, the network was on convergence path,
but wouldn’t complete within the 100,000 iterations limit, hence the learning rates for this
specific problem were manually increased to αi = 0.02, αf = 0.01, and αg = 0.05. This
allowed the TPTThx network to achieve performance identical to TPTT, but it still couldn’t
match the results obtained using backpropagation.
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Problem tmax

TPTT TPTThx

Temporal Order 150 210
3-bit Temporal Order 150 160
Adding 60 60
Random Permutation 300 800

Table A1: Comparison of the maximal depth (sequence length) achieved by the TPTT and
TPTThx models. The TPTT results come from Section 3.1, and the TPTThx

depth is obtained using the same technique (initial sequence length of T=10,
which is increased by 10 upon successful solving of the given problem).

Problem TPTT Network

Temporal Order αi = 0.1, αf = 0.01, αg = 0.001
3-bit Temporal Order αi = 0.1, αf = 0.01, αg = 0.001
Adding αi = 0.5, αf = 0.02, αg = 0.07
Random Permutation αi = 0.1, αf = 0.01, αg = 0.001

Problem TPTThx Network

Temporal Order αi = 0.1, αf = 0.01, αg = 0.01
3-bit Temporal Order αi = 0.1, αf = 0.01, αg = 0.01
Adding αi = 0.2, αf = 0.01, αg = 0.05
Random Permutation αi = 0.1, αf = 0.01, αg = 0.001

Table A2: Learning rates used for the TPTT and TPTThx networks listed in Table A1.

The impact of Gaussian noise in the TPTThx network was assessed under the same
conditions as in Section 3.1.2. After selecting an optimal value for ε from (0, 1], the accuracy
of the TPTThx network on the adding problem with tmax = 70 increased by approximately
6.7%. As with the TPTT network, however, this improvement was not sufficient to allow
the network to fulfil the solving criteria. The impact of running the TPTThx network with
and without injected noise is illustrated in Figure A1.

It is interesting to note that contrary to the results in Section 3.1, the grid search did
not discover a common set of learning rates that solves the temporal order, 3-bit temporal
order, and permutation problems (i.e. a common model). It was also observed, that the
convergence speed of the TPTThx network was on par with the BPTT implementation,
and was not exhibiting the faster convergence times achieved by TPTT (see Table 2). This
prompted an expansion of the search space towards larger learning rates, which quickly
uncovered the set αi = 0.1, αf = 0.2, αg = 0.01 that solves all three problems quicker
than BPTT and constitutes a common model. Similarly to the TPTT results, the modified
search uncovered other parameter combinations that solve the problems even quicker. These
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Figure A1: Impact of Gaussian noise on the adding problem with tmax = 70. The learning
parameters are set to αi = 0.2, αf = 0.01, αg = 0.05, and the network is run
with ε = 0.0 and ε = 0.1 for 100,000 iterations. The value of the cost function
is averaged over 100 iterations.

Problem tmax BPTT TPTThx

best common model best parameters

Temporal Order 120 46,500 5,800 5,800
αi = 0.1, αf = 0.2,

αg = 0.01

3-bit Temporal Order 70 56,000 13,800 12,500
αi = 0.2, αf = 0.2,

αg = 0.001
Addition 90 18,000 - - -

Random Permutation 70 12,200 40,300 100
αi = 0.1, αf = 0.2,

αg = 0.1

Table A3: Difference between BPTT and TPTThx-training expressed as number of iter-
ations needed until convergence. “BPTT best” provides the results from the
fastest converging BPTT models based on the grid search. “TPTThx common
model” shows the iterations needed by the TPTThx model with identical hyper-
parameters for all problems (αi = 0.1, αf = 0.2, αg = 0.01). “TPTThx best”
and “TPTThx parameters” show the results from the fastest TPTThx models
based on the extended grid search and their respective parameters.

combinations and their respective convergence times, measured as number of iterations, are
listed in Table A3.
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Network Accuracy Parameters
%

TPTT 54.20 αi = 10−7, αf = 10−2, αg = 10−8

TPTThx 54.75 αi = 10−7, αf = 10−2, αg = 10−8

Table A4: Accuracy on the MNIST sequence of pixels problem achieved by the TPTT and
TPTThx networks.

The TPTThx was also tested on the MNIST sequence of pixels problem (see Section 3.2).
The grid search performed over the same parameter space selected a combination of learning
rates identical to the TPTT network used on the same problem. In addition, the accuracy
results shown in Table A4 appear too close to call, therefore the performance of the two
schemes on this specific problem can be considered nearly identical.

In conclusion, the empirical results suggest that in terms of sequence length the alter-
native update rule (i.e. a network that is fully optimised using local targets) outperforms
both BPTT and a TPTT network that updates Wxh using the global error directly. Simi-
larly to the original TPTT network, the TPTThx converges quicker than BPTT, discovers
a common model for the synthetic classification problems, and has comparable accuracy on
the MNIST sequence of pixels problem.
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