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Abstract

This paper describes AI-Toolbox, a C++ software library that contains reinforcement
learning and planning algorithms, and supports both single and multi agent problems, as
well as partial observability. It is designed for simplicity and clarity, and contains extensive
documentation of its API and code. It supports Python to enable users not comfortable
with C++ to take advantage of the library’s speed and functionality. AI-Toolbox is free
software, and is hosted online at https://github.com/Svalorzen/AI-Toolbox.
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1. Introduction

Decision theory is the branch of artificial intelligence that deals with action selection. Its
applications span from robotics, to information gathering, to video games. The field tackles
the problem of finding the optimal action-selection policy to perform in a given environment,
and is roughly divided into planning and reinforcement learning. In the former case a model
of the environment is known in advance (Boutilier et al., 1995), while in the latter case the
agent must learn from its interactions with the world (Sutton and Barto, 1998).

When new decision-theoretic algorithms are proposed, they need to be empirically com-
pared to existing methods to prove their worth. However, this comparative work often
requires re-implementing existing methods, which takes considerable effort. Furthermore,
each new line of code increases the risk of bugs, and thus makes comparisons across imple-
mentations harder, if not impossible. It also diverts resources from research towards software
maintenance. There is thus a great need in the research community for reusable, proven
software that implements existing planning and reinforcement learning algorithms.
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In this article, we present AI-Toolbox, a C++ framework containing implementations
of reinforcement learning and planning algorithms for Markov decision process (MDPs) and
its partially observable (POMDP) and multi-agent (MMDP) extensions.

2. Related Work

Several libraries with partially overlapping functionality to AI-Toolbox exist.
MADP (Oliehoek et al., 2017) is one of the best known toolboxes. It is written in C++,

and geared towards multi-agent partially observable models, and offers a wide variety of
algorithms. MADP is object oriented, which leads to a large hierarchy of classes, while
AI-Toolbox has a more compact design. In addition, MADP does not have Python bindings.

BURLAP Is an extensive JAVA library for reinforcement learning and planning. It in-
cludes code to visualize environments and can be used with the ROS framework (Quigley
et al., 2009). It is mostly focused on fully-observable environments, while AI-Toolbox
contains multiple state-of-the-art POMDP algorithms.

pomdp-solve is a C library by Anthony Cassandra, which contains relatively old
POMDP algorithms (the most recent was published in 2004). It additionally requires the
commercially licensed CPLEX linear programming solver.

MDPToolbox (Chades et al., 2014) is a MATLAB toolbox for single agent MDP algo-
rithms. In contrast, AI-Toolbox also supports bandits, POMDPs and MMDPs algorithms.

Other toolboxes exist, such as PyMDPToolbox, JuliaPOMDP (Egorov et al., 2017),
ZMDP and APPL, but they are much smaller in scope than AI-Toolbox.

3. Description

AI-Toolbox is written in C++17, taking advantage of all features of the language, and is
built following modern standard practices, i.e. unit tests, continuous integration, separate
concerns, etc. The goals of this framework are, in descending order of importance: usability
and documentation, ease of modification, clarity and performance.

3.1. Features

Documentation. All public functions, classes and interfaces in the library are fully docu-
mented, and the implementation code is extensively commented (nearly 45% of the lines of
code in the library are comments). The library’s repository contains tutorials on how to use
the library and examples, both in C++ and Python. The included unit tests can also be
used as example implementations to understand how to use the library.
Architecture. In AI-Toolbox classes are organized in a template-based, mostly-flat hier-
archy, which limits the amount of code that a user has to read in order to understand how
a method works. Furthermore, extending the library only requires respecting few template
interfaces. The only exception is for policy classes, which do not use templates but inher-
itance, as policies are designed to be composable. Thus, it may be necessary for custom
policies to inherit from provided interfaces to leverage virtual dispatching.

The library is designed to simplify customization. We believe it is more important that
users find easy to tune the code for their specific settings, rather than to provide a large
number of options natively. To reach this goal, the API only offers parameters that do not
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increase the branching factor of the code. For example, an ε parameter to tune an epsilon-
greedy policy is allowed, while a parameter that selectively enables an optimization is not.
This choice allows users to customize the library for their particular usage more easily.

Classes are organized in separate folders and files, depending on their functions: algo-
rithms reside in an Algorithms folder, policies in a Policies folder, and so on. Utility
functions reside in Utils files and folders. Internal classes are hidden where possible in
Impl namespaces and folders, so that users can safely ignore them.

AI-Toolbox is one of the largest libraries available in the field, currently containing
over 40 learning and planning algorithms, 5 different policy types, and a large number of
independent helper functions and classes. All algorithms are listed in the supplement.
Python Bindings. The framework offers Python bindings, to allow researchers who are not
familiar with the C++ language to still benefit from its performance. The Python interface
of the library is extremely close to its C++ counterpart, which results in a near line by line
match between user code in Python and C++. The project’s examples help to show the
similarities, as they are implemented in both languages.
Performance. The C++ language allows for high computational performance compared to
algorithms implemented purely in Python or MATLAB. AI-Toolbox has support for sparse
matrices, yielding performance improvements on models with sparse transition, reward and
observation tables. As an example of computational performance, our implementation of
GapMin (Poupart et al., 2011) takes only 0.8s to reach results for a POMDP that in the
original MATLAB implementation took 15s—an improvement of nearly 19x.
Community. The library has already been used in multiple projects, demos and papers, and
has thus shown to be useful in practical applications and research. The library is hosted
on GitHub, where it has over 420 stars and has been forked 60 times by individuals and
organizations. GitHub supports both an issue tracker, as well as pull request handling for
contributing to the main codebase.

3.2. Considerations

Language Concerns. Nowadays, C++ is not so common in the research community anymore,
due to its complexity. To mitigate this, we kept non-utility code as simple and accessible as
possible in C++, and provide extensive documentation which does not require reading the
code directly. In addition, Python bindings are provided, so that C++ does not need to be
used at all, while still providing fast execution.
Non-Linear Function Approximation. Recently, there has been an incredible development
in the field of AI regarding non-linear function approximation, e.g. deep learning. As of
present, AI-Toolbox only supports linear function approximation in factored domains.
However, more developments in this direction are currently planned.
Backwards Compatibility. As a software project evolves, there are often concerns of porta-
bility with newer versions. As additional methods are added to the library, sometimes we
must make a choice on whether to keep old code as-is, or to refactor the library to improve
the overall interface. Since one of the main goals of the library is clarity, we generally opt
for refactoring, which may require users to update their code if they want to keep using
the newest version. However, the documentation is always kept up to date, and all older
versions are always accessible via version control.

3



Bargiacchi, Roijers and Nowé

4. Technical Details

The framework is easily built with CMake, a cross-platform tool that supports many oper-
ating systems. It additionally requires the Boost library, the Eigen matrix library and,
for POMDPs and MMDPs, the lp-solve linear programming library. All dependencies
are free and open source, to avoid having to buy expensive software licenses.

AI-Toolbox is released through the GPL 3.0 license, making it Free and Libre Open
Source Software. It is versioned using the Git version control system, and it is hosted online
on GitHub. It has been developed on an Ubuntu machine, but has also been successfully
built on both Mac and Windows.

The library contains more than 70 unit tests, each of which is composed of one or more
tests. Adding and extending tests is easy, which allows to guarantee correctness even as the
library is further developed. All tests are run using continuous integration, which alerts if
any given commit fails to compile or breaks existing functionality.

5. Example

In this section we go over a brief example on how to use the incremental pruning POMDP
algorithm on the tiger problem (Cassandra et al., 1994) using AI-Toolbox. This example is
in C++, but the (nearly identical) equivalent example in Python is provided in the repository.
// The model can be any custom class that respects a 10-method interface.
auto model = makeTigerProblem();
unsigned horizon = 10; // The horizon of the solution.

// The 0.0 is the convergence parameter. It gives a way to stop the
// computation if the policy has converged before the horizon.
AIToolbox::POMDP::IncrementalPruning solver(horizon, 0.0);

// Solve the model and obtain the optimal value function.
auto [bound, valueFunction] = solver(model);

// We create a policy from the solution to compute the agent's actions.
// The parameters are the size of the model (SxAxO), and the value function.
AIToolbox::POMDP::Policy policy(2, 3, 2, valueFunction);

// We begin a simulation with a uniform belief. We sample from the belief
// in order to get a "real" state for the world, since this code has to
// both emulate the environment and control the agent.
AIToolbox::POMDP::Belief b(2); b << 0.5, 0.5;
auto s = AIToolbox::sampleProbability(b.size(), b, rand);

// We sample the first action. The id is to follow the policy tree later.
auto [a, id] = policy.sampleAction(b, horizon);

double totalReward = 0.0;// As an example, we store the overall reward.
for (int t = horizon - 1; t >= 0; --t) {

// We advance the world one step.
auto [s1, o, r] = model.sampleSOR(s, a);
totalReward += r;

// We select our next action from the observation we got.
std::tie(a, id) = policy.sampleAction(id, o, t);

s = s1; // Finally we update the world for the next timestep.
}
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Appendix A. Implemented Algorithms

In this section we list all the algorithms currently implemented by AI-Toolbox at the time
of writing. The algorithms are divided by the type of model where they are applicable.
Note that this list does not include the large number of utility function that AI-Toolbox
provides.

In the following lists two types of structures are listed: value-based algorithms and poli-
cies (exploration strategies and actor-critic). The library considers as value-based algorithms
all classes and functions that relate to planning and learning through value functions. The
library considers policies all classes and functions that use the learned values in order to
produce a policy, or that learn a policy directly. This division is approximate as each algo-
rithm is unique, but it results in a rough split where algorithms in the same group tend to
have similar API.

Note that different classes of models may list the same type of policy, as policies that
apply to different models must have different API from each other.

The library offers detailed documentation and brief descriptive summary on each method
in the online documentation.

A.1. Bandit and Normal Games

Policies:

• Q-Greedy policy (Russo et al., 2017)

• Softmax policy

• Thompson sampling (normal distribution) (Thompson, 1933; Korda et al., 2013)

• Linear reward penalty (Unsal, 1993)

• Exploring selfish reinforcement learning (ESRL) (Verbeeck et al., 2007)

A.2. Single Agent MDP and Stochastic Games

Value-based algorithms:

• Dyna-Q (Sutton, 1990)

• Dyna2 (Silver et al., 2008)

• Expected SARSA (Van Seijen et al., 2009)

• Hysteretic Q-Learning (Matignon et al., 2007)

• Importance Sampling (Precup, 2000)

• Linear programming (Schweitzer and Seidmann, 1985)

• Monte carlo tree search (MCTS) (Coulom, 2006)

• Policy evaluation (Howard, 1960)
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• Policy iteration (Howard, 1960)

• Prioritized sweeping (Moore and Atkeson, 1993)

• Q-learning (Watkins, 1989)

• Q(λ) (Harutyunyan et al., 2016)

• R-Learning (Schwartz, 1993)

• SARSA (Rummery and Niranjan, 1994)

• SARSA(λ) (Rummery and Niranjan, 1994)

• Retrace(λ) (Munos et al., 2016)

• Tree backup(λ) (Precup, 2000)

• Value iteration (Bellman, 1957)

Policies:

• Policy from value function

• Q-greedy policy

• Epsilon-greedy policy

• Softmax policy

• PGA-APP (Zhang and Lesser, 2010)

• Win or learn fast policy iteration (WoLF) (Bowling and Veloso, 2001)

A.3. Single Agent POMDP

Value-based algorithms:

• Augmented MDP (AMDP) (Roy and Thrun, 2000; Thrun, 2002)

• Blind strategies (Hauskrecht, 1997)

• Fast informed bound (Hauskrecht, 2000)

• GapMin (Poupart et al., 2011)

• Incremental pruning (Cassandra et al., 1997)

• Linear support (Cheng, 1988)

• PERSEUS (Spaan and Vlassis, 2005)

• Point based value iteration (PBVI) (Pineau et al., 2003)
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• POMCP with UCB1 (Silver and Veness, 2010)

• QMDP (Littman et al., 1995; Thrun, 2002)

• rPOMCP (Bargiacchi, 2016)

• Real-time belief state search (RTBSS) (Paquet et al., 2005)

• SARSOP (Kurniawati et al., 2008)

• Witness (Kaelbling et al., 1998)

Policies:

• Policy from value function

A.4. Factored/Joint Multi-Agent Bandits and Coordination Graphs

Value-based algorithms:

• Variable elimination (Rosenthal, 1977; Dechter, 1998; Guestrin et al., 2002)

• Multi-agent Thompson sampling (MATS) (Verstraeten et al., 2020)

• Multi-agent upper confidence exploration (MAUCE) (Bargiacchi et al., 2018)

• Multi-objective variable elimination (Roijers et al., 2013, 2015)

• Learning with linear rewards (LLR) (Gai et al., 2012)

• Upper confidence variable elimination (UCVE) (Bargiacchi et al., 2018)

Policies:

• Q-greedy policy

A.5. Factored/Joint Multi-Agent MDP and Stochastic Games

Value-based algorithms:

• Cooperative Prioritized Sweeping (Bargiacchi et al., 2020)

• Factored LP (Guestrin et al., 2002)

• Multi-agent linear programming (Guestrin et al., 2002)

• Joint action learners (Claus and Boutilier, 1998)

• Sparse cooperative Q-learning (Kok and Vlassis, 2004)

Policies:

• Naive single action policy

• Epsilon-greedy policy

• Q-greedy policy
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