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Abstract

We study nonconvex optimization problems, where the objective function is either an av-
erage of n nonconvex functions or the expectation of some stochastic function. We propose
a new stochastic gradient descent algorithm based on nested variance reduction, namely,
Stochastic Nested Variance-Reduced Gradient descent (SNVRG). Compared with conven-
tional stochastic variance reduced gradient (SVRG) algorithm that uses two reference points
to construct a semi-stochastic gradient with diminishing variance in each iteration, our al-
gorithm uses K + 1 nested reference points to build a semi-stochastic gradient to further
reduce its variance in each iteration. For smooth nonconvex functions, SNVRG converges
to an ε-approximate first-order stationary point within Õ(n∧ ε−2 + ε−3∧n1/2ε−2)1 number
of stochastic gradient evaluations. This improves the best known gradient complexity of
SVRG O(n+n2/3ε−2) and that of SCSG O(n∧ ε−2 + ε−10/3∧n2/3ε−2). For gradient domi-
nated functions, SNVRG also achieves better gradient complexity than the state-of-the-art
algorithms.

Based on SNVRG, we further propose two algorithms that can find local minima
faster than state-of-the-art algorithms in both finite-sum and general stochastic (online)
nonconvex optimization. In particular, for finite-sum optimization problems, the pro-

posed SNVRG + Neon2finite algorithm achieves Õ(n1/2ε−2 + nε−3
H + n3/4ε

−7/2
H ) gradient

complexity to converge to an (ε, εH)-second-order stationary point, which outperforms
SVRG+Neon2finite (Allen-Zhu and Li, 2018), the best existing algorithm, in a wide regime.
For general stochastic optimization problems, the proposed SNVRG + Neon2online achieves
Õ(ε−3 + ε−5

H + ε−2ε−3
H ) gradient complexity, which is better than both SVRG + Neon2online

(Allen-Zhu and Li, 2018) and Natasha2 (Allen-Zhu, 2018a) in certain regimes. Thorough
experimental results on different nonconvex optimization problems back up our theory.
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1. Introduction

We study the following nonconvex optimization problem: minx∈Rd F (x), where F is a non-
convex smooth function. A popular example of this problem is the finite-sum optimization,
where the loss function is a sum of n nonconvex component functions:

min
x∈Rd

F (x) =
1

n

n∑

i=1

fi(x), (1)

where each fi is defined on a different data point. The finite-sum optimization problem (1)
is often regarded as the offline learning setting in the literature (Allen-Zhu and Li, 2018;
Fang et al., 2018). A closely related variant of the finite-sum optimization problem in (1)
is the following general stochastic optimization problem:

min
x∈Rd

F (x) = Eξ∼D[F (x; ξ)], (2)

where ξ is a random variable drawn from some fixed but unknown distribution D and F (x; ξ)
is a nonconvex smooth function indexed by ξ. The general stochastic optimization problem
defined in (2) encloses innumerable large-scale machine learning applications which keep
generating oceans of data samples. Therefore, (2) is also referred to as the online learning
setting (Allen-Zhu and Li, 2018).

For either (1) or (2), finding the global minimum of such nonconvex optimization
problems can be generally NP hard (Hillar and Lim, 2013). Therefore, instead of find-
ing the global minimum, various optimization methods have been developed to find an ε-
approximate first-order stationary point of (1) and (2), i.e., a point x satisfying ‖∇F (x)‖2 ≤
ε, where ε > 0 is a predefined precision parameter. This vast body of literature con-
sists of gradient descent (GD), stochastic gradient descent (SGD) (Robbins and Monro,
1951), stochastic variance reduced gradient (SVRG) (Reddi et al., 2016a; Allen-Zhu and
Hazan, 2016), StochAstic Recursive grAdient algoritHm (SARAH) (Nguyen et al., 2017b)
and stochastically controlled stochastic gradient (SCSG) (Lei et al., 2017). Among all
the aforementioned first-order methods, the stochastically controlled stochastic gradient
(SCSG) proposed by Lei et al. (2017) achieves the lowest gradient complexity2 O(n∧ ε−2 +
ε−10/3 ∧ (n2/3ε−2)), which, to the best of our knowledge, is the state-of-the-art gradient
complexity under the smoothness (i.e., gradient Lipschitzness) and bounded stochastic gra-
dient variance assumptions. The key idea behind variance reduction is that the gradient
complexity can be saved if the algorithm use history information as reference. For instance,
the representative variance reduction method SVRG is based on a semi-stochastic gradient
that is defined by two reference points. Since the the variance of this semi-stochastic gradi-
ent will diminish when the iterate gets closer to the minimizer, it therefore accelerates the
convergence of stochastic gradient method. A natural and long standing question is:

Is there still room for improvement in nonconvex finite-sum optimization without making
additional assumptions beyond smoothness and bounded stochastic gradient variance?

2. We usually use gradient complexity, the number of stochastic gradient evaluations, to measure the
convergence speed of different first-order algorithms.

2



Stochastic Nested Variance Reduction for Nonconvex Optimization

In this paper, we provide an affirmative answer to the above question, by showing that
the dependence on n in the gradient complexity of SVRG (Reddi et al., 2016a; Allen-Zhu
and Hazan, 2016) and SCSG (Lei et al., 2017) can be further reduced. We propose a novel
algorithm namely Stochastic Nested Variance-Reduced Gradient descent (SNVRG). Similar
to SVRG and SCSG, our proposed algorithm works in a multi-epoch way. Nevertheless, the
technique we developed is highly nontrivial. At the core of our algorithm is the multiple
reference points-based variance reduction technique in each iteration. In detail, inspired by
SVRG and SCSG, which uses two reference points to construct a semi-stochastic gradient
with diminishing variance, our algorithm uses K + 1 reference points to construct a semi-
stochastic gradient, whose variance decays faster than that of the semi-stochastic gradient
used in SVRG and SCSG.

Due to the nonconvexity of the objective function F (x), first-order stationary points
are not always satisfying since they can be saddle points and even local maxima. To avoid
such unsatisfactory stationary points, one can further pursue an (ε, εH)-approximate second-
order stationary point (Nesterov and Polyak, 2006) of (1) and (2), namely a point x that
satisfies

‖∇F (x)‖2 ≤ ε, and λmin

(
∇2F (x)

)
≥ −εH , (3)

where ε, εH ∈ (0, 1) are predefined precision parameters and λmin(·) denotes the minimum
eigenvalue of a matrix. An (ε,

√
ε)-approximate second-order stationary point is considered

as an approximate local minimum of the optimization problem (Nesterov and Polyak, 2006).
In many tasks such as training a deep neural network, matrix completion and matrix sensing,
one have found that local minima have a very good generalization performance (Choroman-
ska et al., 2015; Dauphin et al., 2014) or all local minima are global minima (Ge et al., 2016;
Bhojanapalli et al., 2016; Zhang et al., 2018). Although it has been proved that first-order
method such as GD can converge to local minima asymptotically (Lee et al., 2016, 2019),
there is no result in the literature that establishes the convergence rate of vanilla GD/SGD
algorithms to local minima. Recently, there has emerged a large body of work (Xu et al.,
2018b; Allen-Zhu and Li, 2018; Jin et al., 2018; Daneshmand et al., 2018) that only use
first-order oracles to find the negative curvature direction. Specifically, Xu et al. (2018b)
proposed a negative curvature originated from noise (NEON) algorithm that can extract
the negative curvature direction based on gradient evaluation, which saves Hessian-vector
computation. Later, Allen-Zhu and Li (2018) proposed a Neon2 algorithm, which further
reduces the number of (stochastic) gradient evaluations required by NEON. Equipped with
NEON and Neon2, many aforementioned algorithms such as GD, SGD, SVRG, SCSG for
finding the first-order stationary point can be turned into local minimum finding ones (Xu
et al., 2018b; Allen-Zhu and Li, 2018; Yu et al., 2017, 2018).

Based on the SNVRG algorithm we proposed for finding the first-order stationary point
in nonconvex optimization, we take a step further to propose faster algorithms for find-
ing the second-order stationary point. More specifically, we present two novel algorithms
that can find local minima faster than existing algorithms (Xu et al., 2018b; Allen-Zhu
and Li, 2018; Yu et al., 2018) in a wide regime for both finite-sum and stochastic opti-
mization. The proposed algorithms essentially use Neon2 (Allen-Zhu and Li, 2018) to turn
One-epoch-SNVRG into a local minimum finder.
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1.1. Contribution

We summarize the major contributions of this paper as follows:

• We propose a stochastic nested variance reduced gradient (SNVRG) algorithm for
nonconvex optimization, which reduces the dependence of the gradient complexity on
n compared with SVRG and SCSG.

• We show that our proposed algorithm is able to find an ε-approximate stationary point
with Õ(n ∧ ε−2 + ε−3 ∧ n1/2ε−2) stochastic gradient evaluations, which outperforms
all existing first-order algorithms such as GD, SGD, SVRG and SCSG. A detailed
comparison is demonstrated in Figure 1.

• As a by-product, when F is a τ -gradient dominated function, a variant of our algorithm
can achieve an ε-approximate global minimizer (i.e., F (x) − miny F (y) ≤ ε) within

Õ
(
n∧ τε−1 + τ(n∧ τε−1)1/2

)
stochastic gradient evaluations, which also outperforms

the state-of-the-art.

• For the finite-sum optimization setting (1), we propose an algorithm, SNVRG +
Neon2finite, that can find an (ε, εH) second-order stationary point of the finite-sum

problem (1) within Õ(n1/2ε−2 + nε−3
H + n3/4ε

−7/2
H ) stochastic gradient evaluations,

which is evidently faster than the best existing algorithm SVRG + Neon2finite (Allen-

Zhu and Li, 2018) that attains Õ(n2/3ε−2 + nε−3
H + n3/4ε

−7/2
H ) gradient complexity in

a wide regime. A thorough comparison is illustrated in Figure 3.

• For the general stochastic optimization setting (2), we propose an algorithm, SNVRG+
Neon2online, that can find an (ε, εH) second-order stationary point of (2) within
Õ(ε−3 + ε−5

H + ε−2ε−3
H ) stochastic gradient evaluations, which is again faster than the

state-of-the-art algorithms such as SCSG+Neon2online (Allen-Zhu and Li, 2018) with
Õ(ε−10/3 + ε−5

H + ε−2ε−3
H ) gradient complexity, and Natasha2 (Allen-Zhu, 2018a) with

Õ(ε−3.25 + ε−3εH + ε−5
H ) gradient complexity in certain regime. A detailed comparison

is demonstrated in Figure 4.

• We also show that our proposed algorithms can find local minima even faster when
the objective function enjoys the third-order smoothness property. We prove that
our proposed algorithms achieve faster convergence rates to a local minimum than
the FLASH algorithm proposed in Yu et al. (2018), which also exploits the third-
order smoothness of objective functions for both finite-sum and general stochastic
optimization problems.

A short version of this paper (Zhou et al., 2018b) has been published in NeurIPS 2018,
which proposes the SNVRG algorithm for finding first-order stationary points. This longer
version adds new algorithms that turn SNVRG into local minima finding algorithms.

The remainder of this paper is organized as follows: In Section 2 we review the relevant
work in the literature. We present preliminary definitions in Section 3. We then present
our SNVRG algorithm in Section 4. We present our main theoretical results for finding
stationary points in Section 5. We further present two algorithms based on SNVRG to
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find local minima in Section 6. The theoretical analysis for finding local minima for second-
order smooth functions is in Section 7 and that for third-order smooth functions in Section 8.
Experiments on validating the advantage of SNVRG is provided in Section 9. We conclude
the paper with Section 10.

Notation: Denote A = [Aij ] ∈ Rd×d as a matrix and x = (x1, ..., xd)
> ∈ Rd as a vector.

‖v‖2 denotes the 2-norm of a vector v ∈ Rd. We use 〈·, ·〉 to represent the inner product.
For two sequences {an} and {bn}, we denote an = O(bn) if there is a constant 0 < C < +∞
such that an ≤ C bn, denote an = Ω(bn) if there is a constant 0 < C < +∞, such that
an ≥ C bn, and use Õ(·) to hide logarithmic factors. We also write an . bn (or an & bn)
if an is less than (or larger than) bn up to a constant. We denote the product caca+1 . . . cb
term as

∏b
i=a ci. In addition, if a > b, we define

∏b
i=a ci = 1. In this paper, b·c represents

the floor function and log(x) represents the logarithm of x to base 2. a∧ b means min(a, b).
We denote by 1{E} the indicator function such that 1{E} = 1 if the event E is true, and
1{E} = 0 otherwise.

2. Related Work

In this section, we review and discuss the relevant work in the literature of nonconvex
optimization for solving problems (1) and (2).

Finding first-order stationary points For nonconvex optimization, it is well-known
that Gradient Descent (GD) can converge to an ε-approximate stationary point with O(n ·
ε−2) (Nesterov, 2013) number of stochastic gradient evaluations. GD needs to calculate
the full gradient at each iteration, which is a heavy load when n � 1. Stochastic gradi-
ent descent (SGD) (Robbins and Monro, 1951; Nesterov, 2013) and its variants (Ghadimi
and Lan, 2013, 2016; Ghadimi et al., 2016) achieve O(1/ε4) gradient complexity under the
assumption that the stochastic gradient has a bounded variance. Inspired by the great
success of various variance reduced techniques in convex finite-sum optimization such as
Stochastic Average Gradient (SAG) (Roux et al., 2012), Stochastic Variance Reduced Gra-
dient (SVRG) (Johnson and Zhang, 2013; Xiao and Zhang, 2014), SAGA (Defazio et al.,
2014a), Stochastic Dual Coordinate Ascent (SDCA) (Shalev-Shwartz and Zhang, 2013),
Finito (Defazio et al., 2014b) and Batching SVRG (Harikandeh et al., 2015), Garber and
Hazan (2015); Shalev-Shwartz (2016) first analyzed the convergence of SVRG under noncon-
vex setting, where F is still convex but each component function fi can be nonconvex. The
analysis for the general nonconvex function F was done by Reddi et al. (2016a); Allen-Zhu
and Hazan (2016), which shows that SVRG can converge to an ε-approximate stationary
point with O(n2/3 · ε−2) number of stochastic gradient evaluations. This result is strictly
better than that of GD. Nguyen et al. (2017a,b) proposed StochAstic Recursive grAdient
algoritHm (SARAH) with recursive estimators for finding first-order stationary points with
O(n+L2/ε4) stochastic gradient evaluations. Lei et al. (2017) proposed a new variance re-
duction algorithm, i.e., the stochastically controlled stochastic gradient (SCSG) algorithm,
which finds a first-order stationary point within O(min{ε−10/3, n2/3ε−2}) stochastic gradient
evaluations for finite-sum optimization in (1), and outperforms SVRG when the number of
component functions n is large.

The literature of finding local minima in nonconvex optimization can be roughly di-
vided into three categories according to the oracles they use: Hessian-based, Hessian-vector
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product-based and gradient-based (Hessian-free). We review each category in the sequel
accordingly.

Finding local minima using Hessian matrix The most popular algorithm using
Hessian matrix to find an (ε,

√
ε)-approximate local minimum is the cubic regularized New-

ton’s method (Nesterov and Polyak, 2006), which attains O(ε−3/2) iteration complexity.
The trust region method is proved to achieve the same iteration complexity (Curtis et al.,
2017). To alleviate the computation burden of evaluating full gradients and Hessian matri-
ces in large-scale optimization problems, subsampled cubic regularization and trust-region
methods (Kohler and Lucchi, 2017; Xu et al., 2019) were proposed and proved to enjoy
the same iteration complexity as their original versions with full gradients and Hessian ma-
trices. Recently, stochastic variance reduced cubic regularization method (SVRC) (Zhou
et al., 2018a) was proposed, which achieves the best-known second-order oracle complexity
among existing cubic regularization methods.

Finding local minima using Hessian-vector product Another line of research uses
Hessian-vector products to find the second-order stationary points. Carmon et al. (2018);
Agarwal et al. (2017) independently proposed two algorithms that can find an (ε,

√
ε)-

approximate local minimum within O(ε−7/4) full gradient and Hessian-product evaluations.
Agarwal et al. (2017) also showed that their algorithm only needs O(nε−3/2 + n3/4ε7/4)
stochastic gradient and Hessian-vector product evaluations for finite-sum optimization prob-
lems (1). Reddi et al. (2018) proposed a generic algorithmic framework that uses both first-
order and second-order methods to find the local minimum within O(n2/3ε−2 + nε−3/2 +
n3/4ε7/4) stochastic gradient and Hessian-product evaluations. Allen-Zhu (2018a) proposed
the Natasha2 algorithm which finds an (ε,

√
ε)-approximate second-order stationary point

within O(ε−7/2) stochastic gradient and Hessian-vector product evaluations.

Finding local minima using gradient The last line of research uses purely gradient
information to find the local minima. The local minima finding algorithms proposed in this
paper also fall into this category. Ge et al. (2015); Levy (2016) studied the perturbed GD and
SGD algorithms for escaping saddle points, where isotropic noise is added into the gradient
or stochastic gradient at each iteration or whenever the gradient is sufficiently small. Jin
et al. (2017) further proposed a perturbed accelerated gradient descent, which can finds the
second-order stationary point even faster. Xu et al. (2018b) showed that perturbed gradient
or stochastic gradient descent can help find the negative curvature direction without using
Hessian matrix and proposed the NEON algorithm that extracts the negative curvature
using only first-order information. Later Allen-Zhu and Li (2018) developed the Neon2
algorithm, which improves upon on Neon, and turns Natasha2 (Allen-Zhu, 2018a) into a
first-order method to find the local minima. Yu et al. (2017) proposed the gradient descent
with one-step escaping algorithm (GOSE) that saves negative curvature computation and
Yu et al. (2018) proposed the FLASH algorithm that exploits the third-order smoothness
of the objective function. Very recently, Daneshmand et al. (2018) proved that SGD with
periodically changing step size can escape from saddle points under an additional correlated
negative curvature (CNC) assumption on the stochastic gradient. In another line of research,
Zhang et al. (2017); Chen et al. (2020) studied the hitting time of SGLD to a local minimum
of nonconvex functions. And Raginsky et al. (2017); Xu et al. (2018a) studied the global
convergence of a family of Langevin dynamics based algorithms for nonconvex optimization.
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Figure 1: Comparison of gradient complexities.

To give a thorough comparison of our proposed SNVRG algorithm with existing al-
gorithms for nonconvex finite-sum optimization, we summarize the gradient complexity of
the most relevant algorithms in Table 1 for finding first-order stationary points and in
Table 2 for finding local minimum using first-order information. We also present the gra-
dient complexities of first-order local minimum finding algorithms in Table 2. According
to Table 1, the proposed SNVRG algorithm achieves the lowest gradient complexity to
find an ε-approximate first-order stationary point for both nonconvex functions and gra-
dient dominant functions. We can also see from Table 2 that our proposed algorithms
SNVRG + Neon2finite and SNVRG + Neon2online outperform all other first-order algorithms
in finding an (ε, εH)-approximate second-order stationary point for nonconvex optimization
problems in a wide regime, for both finite-sum and general stochastic optimization.

Follow-up work after this paper After the first appearance of our SNVRG algorithm
in a conference paper (Zhou et al., 2018b), there have emerged a considerable amount of
exciting work on this topic. Fang et al. (2018) concurrently proposed the Stochastic Path-
Integrated Differential EstimatoR (SPIDER), which uses recursive update to define the
semi-stochastic gradient in the variance reduction algorithm. They proved that SPIDER
achieves O(n1/2ε−2∧ε−3) gradient complexity for finding an ε-approximate stationary point
in nonconvex optimization. Wang et al. (2019) proposed an improved analysis for SPIDER
(also called SpiderBoost) and SPIDER with momentum. Nguyen et al. (2019) proposed an
improved analysis for SARAH. Tran-Dinh et al. (2019) proposed a hybrid method which
combines SARAH (Nguyen et al., 2017a) and SGD. Note that all the aforementioned algo-
rithms enjoy a similar convergence rate to SPIDER (Fang et al., 2018). Fang et al. (2018);
Zhou and Gu (2019) also showed that both SPIDER and SNVRG are near optimal with
respect to the gradient complexity. In a recent work, Fang et al. (2019) proposed a tighter
analysis of the gradient complexity for SGD to escape saddle points.

3. Preliminaries

In this section, we present some definitions that will be used throughout this paper.
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Table 1: Comparisons on gradient complexity of different algorithms. The second column
shows the gradient complexity for a nonconvex and smooth function to achieve
an ε-approximate stationary point (i.e., ‖∇F (x)‖2 ≤ ε). The third column
presents the gradient complexity for a gradient dominant function to achieve an
ε-approximate global minimizer (i.e., F (x) − minx F (x) ≤ ε). The last column
presents the space complexity of all algorithms.

Algorithm nonconvex gradient dominant
Hessian
Lipschitz

GD O
(
n
ε2

)
Õ(τn) No

SGD O
(

1
ε4

)
O
(

1
ε4

)
No

SVRG (Reddi et al., 2016a) O
(
n2/3

ε2

)
Õ(n+ τn2/3) No

SCSG (Lei et al., 2017) O
(

1
ε10/3

∧ n2/3

ε2

)
Õ
(
n ∧ τ

ε + τ
(
n ∧ τ

ε

)2/3)
No

GNC-AGD (Carmon et al., 2017) Õ
(

n
ε1.75

)
N/A Needed

Natasha 2 (Allen-Zhu, 2018a) Õ
(

1
ε3.25

)
N/A Needed

SNVRG (Algorithm 2 & 3) Õ
(

1
ε3 ∧ n1/2

ε2

)
Õ
(
n ∧ τ

ε + τ
(
n ∧ τ

ε

)1/2)
No

Definition 1 (Smoothness) f : Rd → R is L1-smooth for some constant L1 > 0, if it is
differentiable and satisfies

‖∇f(x)−∇f(y)‖2 ≤ L1‖x− y‖2, for any x,y ∈ Rd. (4)

Definition 1 implies that if f is L-smooth, we have for any x,h ∈ Rd

f(x + h) ≤ f(x) + 〈∇f(x),h〉+
L

2
‖h‖22. (5)

Definition 2 (Hessian Lipschitzness) f : Rd → R is L2-Hessian Lipschitz for some
constant L2 > 0, if it is twice-differentiable and satisfies

‖∇2f(x)−∇2f(y)‖2 ≤ L2‖x− y‖2, for any x,y ∈ Rd.

The above two smoothness conditions are widely used in nonconvex optimization problems
(Nesterov and Polyak, 2006). We will call them first-order smoothness and second-order
smoothness respectively in this paper. As shown in Carmon et al. (2017); Yu et al. (2018),
when the objective function has additionally third-order smoothness, one can design al-
gorithms that find local minima even faster. Following Yu et al. (2018), we denote the
three-way tensor ∇3f(x) ∈ Rd×d×d as the third-order derivative of f .

Definition 3 (Third-order Derivative) The third-order derivative of function f : Rd →
R is defined as a three-way tensor ∇3f(x) ∈ Rd×d×d, where

[∇3f(x)]ijk =
∂

∂xi∂xj∂xk
f(x), i, j, k = 1, . . . , d and x ∈ Rd.

8



Stochastic Nested Variance Reduction for Nonconvex Optimization

Table 2: Comparisons on gradient complexities of different algorithms to find an (ε, εH)-
approximate second-order stationary point in both finite-sum and general stochas-
tic optimization settings. The last column indicates whether the algorithm exploits
the third-order smoothness of the objective function.

Setting algorithm gradient complexity 3rd-order smooth

Finite-Sum

PGD (Jin et al., 2017) Õ
(
n
ε2

)
(for εH ≥ ε1/2) No

SVRG + Neon2finite
Õ
(
n2/3

ε2
+ n

ε3H
+ n3/4

ε
7/2
H

)
No

(Allen-Zhu and Li, 2018)

FLASH (Yu et al., 2018) Õ
(
n2/3

ε2
+ n

ε2H
+ n3/4

ε
5/2
H

)
Needed

SNVRG + Neon2finite
Õ
(
n1/2

ε2
+ n

ε3H
+ n3/4

ε
7/2
H

)
No

(Algorithm 4)

SNVRG + Neon2finite
Õ
(
n1/2

ε2
+ n

ε2H
+ n3/4

ε
5/2
H

)
Needed

(Algorithm 4)

Stochastic

Perturbed SGD
Õ
(

poly(d)
ε4

)
(for εH ≥ ε1/4) No

(Ge et al., 2015)
CNC-SGD

Õ
(

1
ε4

+ 1
ε10H

)
No

(Daneshmand et al., 2018)
Natasha2+Neon2online

(Allen-Zhu, 2018a)
Õ
(

1
ε3.25

+ 1
ε3εH

+ 1
ε5H

)
No

SCSG+Neon2online

Õ
(

1
ε10/3

+ 1
ε2ε3H

+ 1
ε5H

)
No

(Allen-Zhu and Li, 2018)

FLASH (Yu et al., 2018) Õ
(

1
ε10/3

+ 1
ε2ε2H

+ 1
ε4H

)
Needed

SNVRG + Neon2online

Õ
(

1
ε3

+ 1
ε2ε3H

+ 1
ε5H

)
No

(Algorithm 5)

SNVRG + Neon2online

Õ
(

1
ε3

+ 1
ε2ε2H

+ 1
ε4H

)
Needed

(Algorithm 5)

Now we are ready to present the formal definition of third-order smoothness, which has
been explored in Anandkumar and Ge (2016); Carmon et al. (2017); Yu et al. (2018). It is
also called third-order derivative Lipschitzness in Carmon et al. (2017).

Definition 4 (Third-order Smoothness) f : Rd → R is L3-third-order smooth for some
constant L3 > 0, if it is thrice-differentiable and satisfies

‖∇3f(x)−∇3f(y)‖F ≤ L3‖x− y‖2, for any x,y ∈ Rd.

The following definition characterizes the distance between the initial point of an algo-
rithm and the minimizer of function f .

9



Zhou, Xu and Gu

Definition 5 (Optimal Gap) The optimal gap of f at point x0 is denoted by ∆f and

f(x0)− min
x∈Rd

f(x) ≤ ∆f .

W.L.O.G., we assume ∆f < +∞.

Definition 6 f : Rd → R is λ-strongly convex for some constant λ > 0, if it satisfies

f(x + h) ≥ f(x) + 〈∇f(x),h〉+
λ

2
‖h‖22, for any x,y ∈ Rd. (6)

While the above definitions are based on a general function f , the following two defini-
tions rely on the finite-sum structure of F defined in (1).

Definition 7 A function F with finite-sum structure in (1) is said to have stochastic gra-
dients with bounded variance σ2, if for any x ∈ Rd, we have

Ei‖∇fi(x)−∇F (x)‖22 ≤ σ2, (7)

where i a random index uniformly chosen from [n] and Ei denotes the expectation over such
i.

σ2 is called the upper bound on the variance of stochastic gradients (Lei et al., 2017).

Definition 8 A function F with finite-sum structure in (1) is said to have averaged L-
Lipschitz gradient, if for any x,y ∈ Rd, we have

Ei‖∇fi(x)−∇fi(y)‖22 ≤ L2‖x− y‖22, (8)

where i is a random index uniformly chosen from [n] and Ei denotes the expectation over
the choice.

It should be noted that the smoothness condition of each fi in Definition 1 will directly
imply the averaged L-Lipschitz gradient for F .

We also consider a class of functions namely gradient dominated functions (Polyak,
1963), which is formally defined as follows:

Definition 9 We say function f is τ -gradient dominated if for any x ∈ Rd, we have

f(x)− f(x∗) ≤ τ · ‖∇f(x)‖22, (9)

where x∗ ∈ Rd is the global minimum of f .

Note that gradient dominated condition is also known as the Polyak-Lojasiewicz (P-L)
condition (Polyak, 1963), and is not necessarily convex. It is weaker than strong convexity
as well as other popular conditions that appear in the optimization literature (Karimi et al.,
2016).

Inspired by the SCSG algorithm (Lei et al., 2017), we will use the property of geometric
distribution in our algorithm design. The definition of geometric random variable is as
follows.

10
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Definition 10 (Geometric Distribution) A random variable X follows a geometric dis-
tribution with parameter p, denoted as Geom(p), if it holds that

P(X = k) = p(1− p)k, ∀k = 0, 1, . . . .

Definition 11 (Sub-Gaussian Stochastic Gradient) We say a function F has σ2-sub-
Gaussian stochastic gradient ∇F (x; ξ) for any x ∈ Rd and random variable ξ ∼ D, if it
satisfies

E
[

exp

(‖∇F (x; ξ)−∇f(x)‖22
σ2

)]
≤ exp(1).

Note that Definition 11 implies E[‖∇F (x; ξ) − ∇f(x)‖22] ≤ 2σ2 (Vershynin, 2010). In the
finite-sum optimization setting (1), we call ∇fi(x) a stochastic gradient of function F for
a randomly chosen index i ∈ [n], and we say F has σ2-sub-Gaussian stochastic gradient if
E[‖∇fi(x)−∇F (x)‖22] ≤ 2σ2.

4. Stochastic Nested Variance-Reduced Gradient Descent

In this section, we present our nested stochastic variance reduction algorithm, namely,
SNVRG for finding first-order stationary points in nonconvex optimization.

One-epoch-SNVRG: We first present the key component of our main algorithm, One-
epoch-SNVRG, which is displayed in Algorithm 1. The most innovative part of Algorithm 1
attributes to theK+1 reference points andK+1 reference gradients. Note that whenK = 1,
Algorithm 1 reduces to one epoch of SVRG algorithm (Johnson and Zhang, 2013; Reddi
et al., 2016a; Allen-Zhu and Hazan, 2016). To better understand our One-epoch-SNVRG
algorithm, it would be helpful to revisit the original SVRG which is a special case of our
algorithm. For the finite-sum optimization problem in (1), the original SVRG takes the
following updating formula

xt+1 = xt − ηvt = xt − η
(
∇F (x̃) +∇fit(xt)−∇fit(x̃)

)
,

where η > 0 is the step size, it is a random index uniformly chosen from [n] and x̃ is a
snapshot for xt after every T1 iterations. There are two reference points in the update

formula at xt: x
(0)
t = x̃ and x

(1)
t = xt. Note that x̃ is updated every T1 iterations,

namely, x̃ is set to be xt only when (t mod T1) = 0. Moreover, in the semi-stochastic

gradient vt, there are also two reference gradients and we denote them by g
(0)
t = ∇F (x̃)

and g
(1)
t = ∇fit(xt)−∇fit(x̃) = ∇fit(x(1)

t )−∇fit(x(0)
t ).

Back to our One-epoch-SNVRG, we can define similar reference points and reference
gradients as that in the special case of SVRG. Specifically, for t = 0, . . . ,

∏K
l=1 Tl − 1, each

point xt has K + 1 reference points {x(l)
t }, l = 0, . . . ,K, which is set to be x

(l)
t = xtl with

index tl defined as

tl =

⌊
t

∏K
k=l+1 Tk

⌋
·

K∏

k=l+1

Tk. (10)

11
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Algorithm 1 One-epoch-SNVRG(x0, F,K,M, {Tl}, {Bl}, B0)

1: Input: initial point x
(l)
−1 ← x0, l ∈ [K]; function F ; loop number K; step size parameter

M ; loop parameters {Tl}; batch parameters {Bl}, base batch size B0.
2: Option I T =

∏K
l=1 Tl

3: Option II T ∼ Geom(1/(1 +
∏K
l=1 Tl))

4: for t = 0, . . . , T − 1 do
5: r = min{j : 0 = (t mod

∏K
l=j+1 Tl), 0 ≤ j ≤ K}

6: {x(l)
t } ← Update reference points({x(l)

t−1},xt, r), 0 ≤ l ≤ K.

7: {g(l)
t } ← Update reference gradients({g(l)

t−1}, {x
(l)
t }, r), 0 ≤ l ≤ K.

8: vt ←
∑K

l=0 g
(l)
t

9: xt+1 ← xt − 1/(10M) · vt
10: end for
11: xout ← uniformly random choice from {xt}, where 0 ≤ t <∏K

l=1 Tl
12: Output: [xout,xT ]

13: Function: Update reference points({x(l)
old},x, r)

14: x
(l)
new ← x

(l)
old, 0 ≤ l ≤ r − 1; x

(l)
new ← x, r ≤ l ≤ K

15: return {x(l)
new}

16: Function: Update reference gradients({g(l)
old}, {x

(l)
new}, r)

17: if r > 0 then
18: g

(l)
new ← g

(l)
old, 0 ≤ l < r; g

(l)
new ← 0, r + 1 ≤ l ≤ K

19: Uniformly generate index set I ⊂ [n] without replacement, |I| = Br

20: g
(r)
new ← 1/Br

∑
i∈I
[
∇fi(x(r)

new)−∇fi(x(r−1)
new )

]

21: else
22: Uniformly generate index set I ⊂ [n] without replacement, |I| = B0

23: g
(0)
new ← 1/B0

∑
i∈I ∇fi(x

(0)
new); g

(l)
new ← 0, 1 ≤ l ≤ K

24: end if
25: return {g(l)

new}.

Specially, note that we have x
(0)
t = x0 and x

(K)
t = xt for all t = 0, . . . ,

∏K
l=1 Tl−1. Similarly,

xt also has K + 1 reference gradients {g(l)
t }, which can be defined based on the reference

points {x(l)
t }:

g
(0)
t =

1

B

∑

i∈I
∇fi(x0), g

(l)
t =

1

Bl

∑

i∈Il

[
∇fi(x(l)

t )−∇fi(x(l−1)
t )

]
, l = 1, . . . ,K, (11)

where I, Il are random index sets with |I| = B, |Il| = Bl and are uniformly generated from
[n] without replacement. Based on the reference points and reference gradients, we then

update xt+1 = xt − 1/(10M) · vt, where vt =
∑K

l=0 g
(l)
t and M is the step size parameter.

The illustration of reference points and gradients of SNVRG is displayed in Figure 2(b).

We remark that it would be a huge waste for us to re-evaluate g
(l)
t at each iteration.

Fortunately, due to the fact that each reference point is only updated after a long period,

12
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For t1 = 1, . . . , T1

x
(1)
tReference  point

x
(0)
tReference  point
g

(0)
tReference  gradient

g
(1)
t

Reference  gradient

update
xt+1 = xt � ⌘(g

(0)
t + g

(1)
t )

(a) SVRG

For t1 = 1, . . . , T1

For tK = 1, . . . , TK

For tK�1 = 1, . . . , TK�1

x
(1)
tReference  point

x
(K�1)
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x
(K)
tReference  point

x
(0)
tReference  point

g
(K�1)
tReference  gradient

g
(K)
t

Reference  gradient

g
(0)
tReference  gradient

g
(1)
t

Reference  gradient

xt+1 = xt � ⌘

KX

i=0

g
(i)
t

update

……

......

(b) SNVRG

Figure 2: Illustration of reference points and gradients in SVRG and SNVRG.

we can maintain g
(l)
t = g

(l)
t−1 and only need to update g

(l)
t when x

(l)
t has been updated as is

suggested by Line 20 in Algorithm 1.

SNVRG: Using One-epoch-SNVRG (Algorithm 1) as a building block, we now present our
main algorithm: Algorithm 2, for finding an ε-approximate stationary point in nonconvex
finite-sum optimization. At each iteration of Algorithm 2, it executes One-epoch-SNVRG
(Algorithm 1) which takes zs−1 as its input and outputs [ys, zs]. We choose yout as the
output of Algorithm 2 uniformly from {ys}, for s = 1, . . . , S.

SNVRG-PL: In addition, when function F in (1) is gradient dominated as defined in
Definition 9 (P-L condition), it has been proved that the global minimum can be found by
SGD (Karimi et al., 2016), SVRG (Reddi et al., 2016a) and SCSG (Lei et al., 2017) very
efficiently. Following a similar trick used in Reddi et al. (2016a), we present Algorithm
3 on top of Algorithm 2, to find the global minimum in this setting. We call Algorithm
3 SNVRG-PL, because gradient dominated condition is also known as Polyak-Lojasiewicz
(PL) condition (Polyak, 1963).

Space complexity: We briefly compare the space complexity between our algorithms and
other variance reduction based algorithms. SVRG and SCSG needs O(d) space complexity
to store one reference gradient, SAGA (Defazio et al., 2014a) needs to store reference gra-
dients for each component functions, and its space complexity is O(nd) without using any
trick. For our algorithm SNVRG, we need to store K reference gradients, thus its space
complexity is O(Kd). In our theory, we will show that K = O(log log n). Therefore, the
space complexity of our algorithm is actually Õ(d), which is almost comparable to that of
SVRG and SCSG.
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Algorithm 2 SNVRG(z0, F,K,M, {Tl}, {Bl}, B0, S)

1: Input: initial point z0; function F ; loop numbers K,S; step size parameter M ; loop
parameters {Tl}; batch parameters {Bl}; base batch size B0.

2: for s = 1, . . . , S do
3: [ys, zs] = One-epoch-SNVRG(zs−1, F,K,M, {Tl}, {Bl}, B0) . Algorithm 1 with

Option I
4: end for
5: Output: Uniformly choose yout from {ys}, 1 ≤ s ≤ S.

Algorithm 3 SNVRG-PL(z0, F,K,M, {Tl}, {Bl}, B0, S, U)

1: Input: initial point z0; function F ; loop number K,S; step size parameter M ; loop
parameters {Tl}; batch parameters {Bl}; base batch size B0; outer loop number U .

2: for u = 1, . . . , U do
3: zu = SNVRG(zu−1, F,K,M, {Tl}, {Bl}, B0, S) . Algorithm 2
4: end for
5: Output: zout = zU .

5. Theoretical Analysis of SNVRG

In this section, we provide the convergence analysis of SNVRG. We will assume that F has
the finite-sum structure in (1) throughout this section.

5.1. Convergence of SNVRG

The following theorem shows the gradient complexity for Algorithm 2 to find an ε-approximate
stationary point with a constant base batch size B0.

Theorem 12 Suppose that F has averaged L-Lipschitz gradient and stochastic gradients
with bounded variance σ2. In Algorithm 2, let B0 = n ∧ (2Cσ2/ε2) and suppose B0 > 4,

S = 1 ∨ (2CL∆F /(B
1/2
0 ε2)) and C = 6000. The rest parameters (K,M, {Bl}, {Tl}) are

chosen as follows:

K = blog logB0c,
M = 6L1,

T1 =
⌊
B2−K

0

⌋
, Tl =

⌊
B2l−K−2

0

⌋
, for 2 ≤ l ≤ K,

Bl = 6K−l+1

( K∏

s=l

Ts

)2

, for 1 ≤ l ≤ K. (12)

Then the output yout of Algorithm 2 satisfies E[‖∇F (yout)‖22] ≤ ε2 with less than

O

(
log3

(
σ2

ε2
∧ n
)[

σ2

ε2
∧ n+

L∆F

ε2

[
σ2

ε2
∧ n
]1/2])

(13)

stochastic gradient computations, where ∆F = F (z0)− F ∗.
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Remark 13 If we treat σ2, L and ∆F as constants, and assume ε � 1, then (13) can be
simplified to Õ(ε−3 ∧ n1/2ε−2). This gradient complexity is strictly better than O(ε−10/3 ∧
n2/3ε−2), which is achieved by SCSG (Lei et al., 2017). Specifically, when n . 1/ε2, our
proposed SNVRG is faster than SCSG by a factor of n1/6; when n & 1/ε2, SNVRG is faster
than SCSG by a factor of ε−1/3. Moreover, SNVRG also outperforms Natasha 2 (Allen-
Zhu, 2018a) which attains Õ(ε−3.25) gradient complexity and needs the additional Hessian
Lipschitz condition.

5.2. Convergence of SNVRG-PL

We now consider the case when F is a τ -gradient dominated function. In general, we
are able to find an ε-approximate global minimizer of F instead of only an ε-approximate
stationary point. Algorithm 3 uses Algorithm 2 as a component.

Theorem 14 Suppose that F has averaged L-Lipschitz gradient and stochastic gradients
with bounded variance σ2, F is a τ -gradient dominated function. In Algorithm 3, let the
base batch size B0 = n∧ (4C1τσ

2/ε) and suppose B0 > 4, the number of epochs for SNVRG

S = 1 ∨ (2C1τL/B
1/2
0 ) and the number of epochs U = log(2∆F /ε). The rest parameters

(K,M, {Bl}, {Tl}) are chosen as the same in Lemma 28. Then the output zout of Algorithm
3 satisfies E

[
F (zout)− F ∗

]
≤ ε within

O

(
log3

(
n ∧ τσ

2

ε

)
log

∆F

ε

[
n ∧ τσ

2

ε
+ τL

[
n ∧ τσ

2

ε

]1/2])
(14)

stochastic gradient computations, where ∆F = F (z0)− F ∗

Remark 15 If we treat σ2, L and ∆F as constants, then the gradient complexity in (14)
turns into Õ(n ∧ τε−1 + τ(n ∧ τε−1)1/2). Compared with nonconvex SVRG (Reddi et al.,
2016b) which achieves Õ(n+ τn2/3) gradient complexity, our SNVRG-PL is strictly better
than SVRG in terms of the first summand and is faster than SVRG at least by a factor of
n1/6 in terms of the second summand. Compared with a more general variant of SVRG,
namely, the SCSG algorithm (Lei et al., 2017), which attains Õ

(
n∧ τε−1 + τ(n∧ τε−1)2/3

)

gradient complexity, SNVRG-PL also outperforms it by a factor of (n ∧ τε−1)1/6.

If we further assume that F is λ-strongly convex, then it is easy to verify that F is also
1/(2λ)-gradient dominated. As a direct consequence, we have the following corollary:

Corollary 16 Under the same conditions and parameter choices as Theorem 14. If we ad-
ditionally assume that F is λ-strongly convex, then Algorithm 3 will outputs an ε-approximate
global minimizer within

Õ

(
n ∧ λσ

2

ε
+ κ ·

[
n ∧ λσ

2

ε

]1/2)
(15)

stochastic gradient computations, where κ = L/λ is the condition number of F .

Remark 17 Corollary 16 suggests that when we regard λ and σ2 as constants and set ε� 1,
Algorithm 3 is able to find an ε-approximate global minimizer within Õ(n+n1/2κ) stochastic
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gradient computations, which matches SVRG1ep in Katyusha X (Allen-Zhu, 2018b). Using
catalyst techniques (Lin et al., 2015) or Katyusha momentum (Allen-Zhu, 2017), it can
be further accelerated to Õ(n + n3/4√κ), which matches the best-known convergence rate
(Shalev-Shwartz, 2016; Allen-Zhu, 2018b).

6. Stochastic Nested Variance Reduction for Finding Local Minima

In this section, we present our algorithms that are built upon One-epoch-SNVRG (Al-
gorithm 1) and Neon2 (Allen-Zhu and Li, 2018) to find a local minimum in nonconvex
optimization faster than existing methods. It is worth noting that to find local minima, we
employ a different choice of the number of iteration T which is chosen to be a random vari-
able following a geometric distribution (Algorithm 1 with Option II) rather than fixed. We
will show in the next section that these differences are essential in the theoretical analysis
of finding local minima.

6.1. SNVRG + Neon2: Finding Local Minima

We propose two different algorithms for solving the finite-sum optimization problem in (1)
and the general stochastic optimization problem in (2) respectively.

To solve the finite-sum optimization problem (1), we propose the SNVRG + Neon2finite

algorithm to find the local minimum, which is displayed in Algorithm 4. At each iteration
of 4, it first determines whether the current point is a first-order stationary point (Line 4)
or not. If not, it will run Algorithm 1 (One-epoch-SNVRG) in order to find a first-order
stationary point. Once obtaining a first-order stationary point, it will call Neon2finite to
find the negative curvature direction to escape any potential non-degenerate saddle point.
According to Xu et al. (2018b); Allen-Zhu and Li (2018), Neon-type algorithms can output
such a direction with probability 1− δ for some failure probability δ ∈ (0, 1). If Neon2finite

does not find such a direction, it will output v̂ =⊥ and Algorithm 4 terminates and outputs
zu−1 (Line 9) since it has already reached a second-order stationary point according to
(3). If Neon2finite finds a negative curvature direction v̂ 6=⊥, Algorithm 4 will perform one
step of negative curvature descent in the direction of v̂ or −v̂ (Line 12) to escape the non-
degenerate saddle point. The direction can also be chosen in the same way as in Carmon
et al. (2017) via comparing the function values at the two resulting points. Here to reduce
the computational complexity, we follow Xu et al. (2018b) and generate a Rademacher
random variable to decide the direction, which leads to the same result in expectation.

To solve the general stochastic optimization problem in (2), we propose the SNVRG +
Neon2online algorithm to find the local minimum, which is displayed in Algorithm 5. It
is almost the same as Algorithm 4 used in the finite-sum nonconvex optimization setting
except that it uses a subsampled gradient to determine whether we have obtained a first-
order stationary point (Line 5 in Algorithm 5) and it uses Neon2online (Line 8) to find
the negative curvature direction to escape the potential saddle points. Algorithm 5 will
terminate and output the current iterate if no negative curvature direction is found (Line 10).

Note that both Algorithms 4 and 5 are only based on the gradient information of the
objective function and are therefore first-order optimization algorithms. As we will show
in the next two sections, our proposed algorithms push the frontier of first-order stochastic
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Algorithm 4 SNVRG + Neon2finite(z0, F,K,M, {Tl}, {Bl}, B0, U, ε, εH , δ, η, L1, L2)

1: Input: initial point z0; function F ; loop number K; step size parameter M ; loop
parameters {Tl}; batch parameters {Bl}; base batch size B0; gradient accuracy ε; Hes-
sian accuracy εH ; failure probability δ; negative curvature descent step size η; gradient
Lipschitz parameter L1; Hessian Lipschitz parameter L2.

2: for u = 1, . . . , U do
3: gu−1 = ∇F (zu−1)
4: if ‖gu−1‖2 ≥ ε then
5: zu = One-epoch-SNVRG(zu−1,F,K,M, {Tl}, {Bl}, B0) . Algorithm 1 with

Option II
6: else
7: v = Neon2finite(F, zu−1, L1, L2, δ, εH)
8: if v =⊥ then
9: return zu−1

10: else
11: Generate a Rademacher random variable ζ
12: zu ← zu−1 + ζηv̂
13: end if
14: end if
15: end for
16: return

optimization algorithms for finding local minima (Xu et al., 2018b; Allen-Zhu and Li, 2018;
Allen-Zhu, 2018a; Yu et al., 2017, 2018).

7. Theoretical Analysis of SNVRG for Finding Local Minima

In this section, we provide the main theoretical results for finding local minima using
SNVRG.

7.1. Finite-Sum Optimization Problems

We start with the nonconvex finite-sum optimization problem (1). The following theorem
provides the gradient complexity of Algorithm 4 in finding an approximate local minimum.

Theorem 18 Suppose that F = 1/n
∑n

i=1 fi, where each fi is L1-smooth and L2-Hessian
Lipschitz continuous. Let 0 < ε, εH < 1, δ = ε3H/(144L2

2∆F ) and U = 24L2
2∆F ε

−3
H +

1800L1∆F ε
−2n−1/2. Set B0 = n,M = 6L1 and all the rest parameters of One-epoch-SNVRG

as in (12) Lemma 29. Choose step size η = εH/L2. Then with probability at least 1/4,
SNVRG + Neon2finite will find an (ε, εH)-second-order stationary point within

Õ

(
∆FnL

2
2

ε3H
+

∆Fn
3/4L

1/2
1 L2

2

ε
7/2
H

+
∆Fn

1/2L1

ε2

)
(16)

stochastic gradient evaluations.
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Algorithm 5 SNVRG + Neon2online(z0, F,K,M, {Tl}, {Bl}, U, ε, εH , δ, η, L1, L2)

1: Input: initial point z0; function F ; loop number K; step size parameter M ; loop
parameters {Tl}; batch parameters {Bl}; base batch size B0; gradient accuracy ε; Hes-
sian accuracy εH ; failure probability δ; negative curvature descent step size η; gradient
Lipschitz parameter L1; Hessian Lipschitz parameter L2.

2: for u = 1, . . . , U do
3: Uniformly generate index set I ⊂ [n] without replacement, |I| = B0

4: gu−1 = 1/B0
∑

i∈I ∇fi(zu−1)
5: if ‖gu−1‖2 ≥ ε/2 then
6: zu = One-epoch-SNVRG(zu−1,F,K,M, {Tl}, {Bl}, B0) . Algorithm 1 with

Option II
7: else
8: v = Neon2online(F, zu−1, L1, L2, δ, εH)
9: if v =⊥ then

10: return zu−1

11: else
12: Generate a Rademacher random variable ζ
13: zu ← zu−1 + ζηv̂
14: end if
15: end if
16: end for
17: return

Remark 19 Note that the gradient complexity in Theorem 18 holds with constant proba-
bility 1/4. In practice, we can repeatedly run Algorithm 4 for log(1/p) times to achieve a
result that holds with probability at least 1−p for any p ∈ (0, 1). Similar boosting techniques
have also been used in Yu et al. (2017); Allen-Zhu and Li (2018); Yu et al. (2018).

Remark 20 For finite-sum nonconvex optimization, Theorem 18 suggests that the gradient

complexity of Algorithm 4 (SNVRG + Neon2finite) is Õ(n1/2ε−2 + nε−3
H + n3/4ε

−7/2
H ). In

contrast, the gradient complexity of other state-of-the-art local minimum finding algorithms

(SVRG + Neon2finite) (Allen-Zhu and Li, 2018) is Õ(n2/3ε−2 + nε−3
H + n3/4ε

−7/2
H ). Our

algorithm is strictly better than that of Allen-Zhu and Li (2018) in terms of the first term
in the big O notation.

If we choose εH =
√
ε, the gradient complexity of our algorithm to find an (ε,

√
ε)-

approximate local minimum turns out to be O(n1/2ε−2 + nε−3/2 + n3/4ε−7/4) and that of
SVRG + Neon2finite is O(n2/3ε−2 + nε−3/2 + n3/4ε−7/4). We compare these two algorithms
in Figure 3 when εH =

√
ε and make the following comments:

• When n & ε−3/2, the gradient complexities of both algorithms are in the same order
of Õ(nε−3/2).

• When ε−1 . n . ε−3/2, SNVRG + Neon2finite enjoys Õ(nε−3/2) gradient complexity,
which is strictly better than that of SVRG + Neon2finite, i.e., Õ(n2/3ε−2).

18



Stochastic Nested Variance Reduction for Nonconvex Optimization

1

✏

1

✏3/2
n

Gradient
Complexity

1

n1/2

✏2

n2/3

✏2
n

✏3/2

n

✏3/2

SNVRG+ + Neon2finite

SVRG + Neon2finite

Figure 3: Comparison of gradient complexities between SNVRG + Neon2finite and SVRG +
Neon2finite for finding an (ε,

√
ε)-approximate local minimum in finite-sum opti-

mization problems.

• Lastly, when n . ε−1, SNVRG + Neon2finite achieves Õ(n1/2ε−2) gradient complexity,
which is again better than the gradient complexity of SVRG + Neon2finite, Õ(n2/3ε−2),
by a factor of Õ(n1/6).

In short, our algorithms beats SVRG + Neon2finite when n . ε−3/2.

7.2. General Stochastic Optimization Problems

Now we consider the general stochastic optimization problem (2). Recall that in this setting
we will call ∇F (x; ξi) the stochastic gradient at point x for some random variable ξi and
index i. Note that the finite-sum optimization problem (1) can be viewed as a special case
of the general stochastic optimization problem (2). When n is very large, we can avoid
using the full batch size n as suggested in Theorem 21 and instead use batch size Õ(1/ε2)
as suggested in the following theorem, by applying Algorithm 5 for the general stochastic
setting.

Theorem 21 Suppose that F (x) = Eξ∈DF (x; ξ) has σ2-sub-Gaussian stochastic gradient,
where each F (x; ξ) is L1-smooth and L2-Hessian Lipschitz continuous. Let 0 < ε, εH < 1
and

B0 = σ2ε−2 ·max

{
64
(

1 + log
[
2500C1 max

{
54σ2L−1

1 L2
2ε
−3
H , 6

}
∆FL1ε

−2
])
, 96C1

}
, (17)

where C1 = 200. Define ρ = max{54σ2L−1
1 L2

2ε
−3
H B

−1/2
0 , 6}. Set δ = 1/(3000∆FL

2
2ε
−3
H ),

the number of epochs U = 216∆FL
2
2ε
−3
H + 96C1ρ∆FL1B

−1/2
0 ε−2, the step size of Algorithm

5 η = εH/L2 and the step size of One-epoch-SNVRG M = 2ρL1. Choose all the rest
parameters of One-epoch-SNVRG as in Lemma 29. Then with probability at least 1/4,
SNVRG + Neon2online will find an (ε, εH)-second-order stationary point within

Õ

(
∆FL

2
1L

2
2

ε5H
+

∆Fσ
2L2

2

ε3Hε
2

+
∆FσL1

ε3

)
(18)
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Figure 4: Comparison of gradient complexities among SNVRG + Neon2online, SCSG +
Neon2online and Natasha2+Neon2online for finding an (ε, εH)-approximate second-
order stationary point: (a) the comparison when εH <

√
ε, and (b) the comparison

when εH ≥
√
ε.

stochastic gradient evaluations.

The gradient complexity in Theorem 21 again holds with constant probability 1/4 and we
can boost it to a high probability using the same trick as we discussed in Remark 19.

Remark 22 Theorem 21 suggests that the gradient complexity of Algorithm 5 is Õ(ε−3 +
ε−5
H + ε−2ε−3

H ). In contrast, the gradient complexity of SCSG+Neon2online (Allen-Zhu and

Li, 2018) is Õ(ε−10/3 + ε−5
H + ε−2ε−3

H ) and that of Natasha2+Neon2online (Allen-Zhu, 2018a)

is Õ(ε−3.25 + ε−5
H + ε−3εH). Our algorithm is evidently faster than these two algorithms in

the first term in the big O notation. We visualize the gradient complexities of these three
algorithms in Figure 4. To better visualize the differences, we divide the entire regime of εH
into two regimes: (a) εH <

√
ε and (b) εH ≥

√
ε, and plot them separately in Figures 4(a)

and 4(b). From Figure 4, we have the following discussion.

• When εH ≤ ε, all three algorithms achieve Õ(ε−5
H ) gradient complexity.

• When ε < εH <
√
ε, both SNVRG + Neon2online and SCSG+Neon2online attain

Õ(ε−2ε−3
H ) gradient complexity and are worse than Natasha2+Neon2online, which has

Õ(ε−5
H ) gradient complexity for εH ∈ (ε, ε3/4) and Õ(ε−3ε−1

H ) gradient complexity for
εH ∈ (ε3/4, ε1/2).

• When
√
ε ≤ εH ≤ ε4/9, SNVRG + Neon2online and SCSG+Neon2online still attain

Õ(ε−2ε−3
H ) gradient complexity but perform better than Natasha2+Neon2online, which

has Õ(ε−3ε−1
H ) gradient complexity.

• When εH ≥ ε4/9, SNVRG + Neon2online enjoys a smaller gradient complexity than
both SCSG+Neon2online and Natasha2+Neon2online.
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In particular, when εH = ε1/3, the gradient complexity of our algorithm SNVRG+Neon2online

is smaller than that of SCSG+Neon2online and Natasha2+Neon2online by a factor of O(ε1/3).
And when εH ≥ ε1/4, SNVRG+Neon2online is faster than Natasha2+Neon2online by a factor
of O(ε1/4).

8. Theoretical Analysis of SNVRG for Finding Local Minima with
Third-Order Smoothness

As we mentioned before, it has been shown that the third-order smoothness of the objective
function F can help accelerate the convergence of nonconvex optimization (Carmon et al.,
2017; Yu et al., 2018). For the intuition of the acceleration by third-order smoothness, we
refer readers to the detailed exhibition and discussion in Yu et al. (2018). In this section,
we will show that our local minimum finding algorithms (Algorithms 4 and 5) can find local
minima faster provided this additional condition.

8.1. Finite-Sum Optimization Problems

We first consider the finite-sum optimization problem in (1). The following theorem spells
out the gradient complexity of Algorithm 4 under additional third-order smoothness.

Theorem 23 Suppose that F = 1/n
∑n

i=1 fi, where each fi is L1-smooth, L2-Hessian Lip-
schitz continuous and F is L3-third-order smooth. Let 0 < ε, εH < 1, δ = ε2H/(72L3∆F ) and
U = 12L3∆F ε

−2
H + 1800CL1∆F ε

−2n−1/2. Set B0 = n,M = 6L1 and all the rest parameters

of One-epoch-SNVRG as in Lemma 29. Choose the step size as η =
√

3εH/L3. Then with
probability at least 1/4, SNVRG + Neon2finite will find an (ε, εH)-second-order stationary
point within

Õ

(
∆FnL3

ε2H
+

∆Fn
3/4L

1/2
1 L3

ε
5/2
H

+
∆Fn

1/2L1

ε2

)
(19)

stochastic gradient evaluations.

Similar to previous discussions, we can repeatedly run Algorithm 4 for log(1/p) times to
boost its confidence to 1− p for any p ∈ (0, 1).

Remark 24 Compared with step size η = εH/L2 used in the negative curvature descent step
(Line 12) of Algorithm 4 in Theorem 18 without third-order smoothness, the step size in
Theorem 23 is chosen to be η =

√
εH/L3 where L3 is the third-order smoothness parameter.

Note that when εH � 1, the step size we choose under third-order smoothness assumption
is much bigger than that under only second-order smoothness assumption. As is pointed out
by Yu et al. (2018), the key advantage of third-order smoothness condition is that it enables
us to choose a larger step size and therefore achieve much more function value decrease in
the negative curvature descent step (Line 12 of Algorithm 4).

Remark 25 Theorem 23 suggests that the gradient complexity of SNVRG + Neon2finite un-

der third-order smoothness is Õ(n1/2ε−2 +nε−2
H +n3/4ε

−5/2
H ). In stark contrast, the gradient

complexity of the state-of-the-art finite-sum local minimum finding algorithm with third-

order smoothness assumption (FLASH) (Yu et al., 2018) is Õ(n2/3ε−2 +nε−2
H +n3/4ε

−5/2
H ).
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Clearly, our algorithm is strictly better than the FLASH algorithm (Yu et al., 2018) in the
first term of the gradient complexity.

Specifically, if we choose εH =
√
ε, SNVRG + Neon2finite is faster for finding an (ε,

√
ε)-

approximate local minimum than FLASH by a factor of O(1/ε1/6) when n . ε−2. SNVRG+
Neon2finite is also strictly faster than FLASH when ε−2 . n . ε−3 and will match FLASH
when n & ε−3. We show this comparison in Figure 5, which clearly demonstrates that the
gradient complexity of SNVRG + Neon2finite is much smaller than that of FLASH in a very
wide regime.

n

Gradient
Complexity

1

FLASH
n1/2

✏2

n2/3

✏2 n

✏

n

✏

1

✏2
1

✏3

SNVRG+ + Neon2finite

Figure 5: Comparison of gradient complexities between SNVRG + Neon2finite and FLASH
for finding an (ε,

√
ε)-approximate local minimum in finite-sum nonconvex opti-

mization problems.

8.2. General Stochastic Optimization Problems

Now we turn to the general stochastic optimization problem (2). We characterize the
gradient complexity of Algorithm 5 under third-order smoothness in the following theorem.

Theorem 26 Suppose that F (x) = Eξ∈DF (x; ξ) has σ2-sub-Gaussian stochastic gradient,
where each F (x; ξ) is L1-smooth, L2-Hessian Lipschitz continuous and F (x) is L3-third-
order smooth. Let 0 < ε, εH < 1, and

B0 = σ2ε−2 ·max

{
64
(

1 + log
[
2500C1 max{36σ2L−1

1 L3ε
−2
H , 6}∆FL1ε

−2
])
, 96C1

}
, (20)

where C1 = 200. Define ρ = max{36σ2L−1
1 L3ε

−2
H B

−1/2
0 , 6}. Let δ = 1/(1000∆FL3ε

−2
H ),

the number of epochs U = 72∆FL3ε
−2
H + 96C1ρ∆FL1B

−1/2
0 ε−2, the step size η =

√
εH/L3

and the step size of One-epoch-SNVRG M = 2ρL1. Choose all the rest parameters of
One-epoch-SNVRG the same as in Lemma 29. Then with probability at least 1/4, SNVRG+
Neon2online will find an (ε, εH)-second-order stationary point within

Õ

(
∆FL

2
1L3

ε4H
+

∆Fσ
2L3

ε2Hε
2

+
∆FσL1

ε3

)
(21)
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stochastic gradient evaluations.

Remark 27 Theorem 26 suggests that the gradient complexity of Algorithm 5 under third-
order smoothness is Õ(ε−3 + ε−4

H + ε−2ε−2
H ). As a comparison, the gradient complexity of

existing best stochastic local minimum finding algorithm with third-order smoothness as-
sumption (FLASH) (Yu et al., 2018) is Õ(ε−10/3 + ε−4

H + ε−2ε−2
H ). The gradient complexity

of SNVRG + Neon2online is faster than that of FLASH in the first term. We illustrate the
comparison of gradient complexities of both algorithms in Figure 6. It is evident that when
εH ≥ ε2/3, our algorithm SNVRG + Neon2online always enjoys a lower gradient complexity
than FLASH. In addition, if we choose εH =

√
ε, our algorithm is faster for finding an

(ε,
√
ε)-approximate local minimum than FLASH (Yu et al., 2018) by a factor of O(ε−1/3).

Gradient
Complexity

SNVRG+ + Neon2online
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✏2✏2H

1
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Figure 6: Comparison of gradient complexities between SNVRG + Neon2online and FLASH
for finding an (ε, εH)-approximate second-order stationary point in general
stochastic problems.

9. Experiments

In this section, we conduct experiments to validate the superiority of the proposed algo-
rithms. In the first part of this section, we compare our algorithm SNVRG with existing
baseline algorithms on training a convolutional neural network for image classification. In
the second part of this section, we consider a symmetric matrix sensing problem, where
many saddle points exist and thus the proposed SNVRG + Neon2online is compared with
vanilla SNVRG, SGD+NEON and SCSG+Neon2online.

9.1. SNVRG for Training CNNs for Image Classification

We compare the performance of the following algorithms: SGD; SGD with momentum
(Qian, 1999) (denoted by SGD-momentum); ADAM (Kingma and Ba, 2014); SCSG Lei
et al. (2017). It is worth noting that SCSG is a special case of SNVRG when the number of
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nested loops K = 1. Due to the memory cost, we did not compare Gradient Descent (GD) or
SVRG which need to calculate the full gradient. Although our theoretical analysis holds for
general K nested loops, it suffices to choose K = 2 in SNVRG to illustrate the effectiveness
of the nested structure for the simplification of implementation. In this case, we have 3
reference points and gradients. All experiments are conducted on Amazon AWS p2.xlarge
servers which comes with Intel Xeon E5 CPU and NVIDIA Tesla K80 GPU (12G GPU
RAM). All algorithm are implemented in Pytorch platform version 0.4.0 within Python
3.6.4.

Datasets We use three image datasets: (1) The MNIST dataset (Schölkopf and Smola,
2002) consists of handwritten digits and has 50, 000 training examples and 10, 000 test
examples. The digits have been size-normalized to fit the network, and each image is 28
pixels by 28 pixels. (2) CIFAR10 dataset (Krizhevsky, 2009) consists of images in 10 classes
and has 50, 000 training examples and 10, 000 test examples. The digits have been size-
normalized to fit the network, and each image is 32 pixels by 32 pixels. (3) SVHN dataset
Netzer et al. (2011) consists of images of digits and has 531, 131 training examples and
26, 032 test examples. The digits have been size-normalized to fit the network, and each
image is 32 pixels by 32 pixels.

CNN Architecture We use the standard LeNet (LeCun et al., 1998), which has two con-
volutional layers with 6 and 16 filters of size 5 respectively, followed by three fully-connected
layers with output size 120, 84 and 10. We apply max pooling after each convolutional layer.

Implementation Details & Parameter Tuning We did not use the random data aug-
mentation which is set as default by Pytorch, because it will apply random transformation
(e.g., clip and rotation) at the beginning of each epoch on the original image dataset, which
will ruin the finite-sum structure of the loss function. We set our grid search rules for all
three datasets as follows. For SGD, we search the batch size from {256, 512, 1024, 2048} and
the initial step sizes from {1, 0.1, 0.01}. For SGD-momentum, we set the momentum pa-
rameter as 0.9. We search its batch size from {256, 512, 1024, 2048} and the initial learning
rate from {1, 0.1, 0.01}. For ADAM, we search the batch size from {256, 512, 1024, 2048}
and the initial learning rate from {0.01, 0.001, 0.0001}. For SCSG and SNVRG, we choose
loop parameters {Tl} which satisfy Bl ·

∏l
j=1 Tj = B automatically. In addition, for SCSG,

we set the batch sizes (B,B1) = (B,B/b), where b is the batch size ratio parameter. We
search B from {256, 512, 1024, 2048} and we search b from {2, 4, 8}. We search its initial
learning rate from {1, 0.1, 0.01}. For our proposed SNVRG algorithm, we set the batch
sizes (B,B1, B2) = (B,B/b,B/b2), where b is the batch size ratio parameter. We search
B from {256, 512, 1024, 2048} and b from {2, 4, 8}. We search its initial learning rate from
{1, 0.1, 0.01}.

9.1.1. Experimental Results with Learning Rate Decaying

In this section, we first present the experimental results with learning rate decay. In par-
ticular, following the convention of deep learning practice, we apply learning rate decay
schedule to each algorithm with the learning rate decayed by 0.1 every 20 epochs.

We plotted the training loss and test error for different algorithms on each dataset in
Figure 7. The results on MNIST are presented in Figures 7(a) and 7(d); the results on
CIFAR10 are in Figures 7(b) and 7(e); and the results on SVHN dataset are shown in
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Figure 7: Experiment results on different datasets with learning rate decay. (a) and (d)
depict the training loss and test error (top-1 error) v.s. data epochs for training
LeNet on MNIST dataset. (b) and (e) depict the training loss and test error
v.s. data epochs for training LeNet on CIFAR10 dataset. (c) and (f) depict the
training loss and test error v.s. data epochs for training LeNet on SVHN dataset.

Figures 7(c) and 7(f). It can be seen that with learning rate decay schedule, our algorithm
SNVRG outperforms all baseline algorithms, which confirms that the use of nested reference
points and gradients can accelerate the nonconvex finite-sum optimization.

We would like to emphasize that, while this experiment is on training convolutional
neural networks, the major goal of this experiment is to illustrate the advantage of our
algorithm and corroborate our theory, rather than claiming a state-of-the-art algorithm for
training deep neural networks.

9.1.2. Experimental Results without Learning Rate Decay

We also conducted experiments comparing different algorithms without the learning rate
decay schedule. The parameters are tuned by the same grid search described in Section 9.
In particular, we summarize the parameters of different algorithms used in our experiments
with and without learning rate decay for MNIST in Table 3, CIFAR10 in Table 4, and SVHN
in Table 5. We plotted the training loss and test error for each dataset without learning
rate decay in Figure 8. The results on MNIST are presented in Figures 8(a) and 8(d); the
results on CIFAR10 are in Figures 8(b) and 8(e); and the results on SVHN dataset are
shown in Figures 8(c) and 8(f). It can be seen that without learning decay, our algorithm
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SNVRG still outperforms all the baseline algorithms except for the training loss on SVHN
dataset. However, SNVRG still performs the best in terms of test error on SVHN dataset.
These results again suggest that SNVRG can beat the state-of-the-art in practice, which
backups our theory.

Table 3: Parameter settings of all algorithms on MNIST dataset.

Algorithm
With Learning Rate Decay Without Learning Rate Decay

Initial learning Batch size Batch size learning Batch size Batch size
rate η B ratio b rate η B ratio b

SGD 0.1 1024 N/A 0.01 1024 N/A
SGD-momentum 0.01 1024 N/A 0.1 1024 N/A

ADAM 0.001 1024 N/A 0.001 1024 N/A
SCSG 0.01 512 8 0.01 512 8

SNVRG 0.01 512 8 0.01 512 8

Table 4: Parameter settings of all algorithms on CIFAR10 dataset.

Algorithm
With Learning Rate Decay Without Learning Rate Decay

Initial learning Batch size Batch size learning Batch size Batch size
rate η B ratio b rate η B ratio b

SGD 0.1 1024 N/A 0.01 512 N/A
SGD-momentum 0.01 1024 N/A 0.01 2048 N/A

ADAM 0.001 1024 N/A 0.001 2048 N/A
SCSG 0.01 512 8 0.01 512 8

SNVRG 0.01 1024 8 0.01 512 4

Table 5: Parameter settings of all algorithms on SVHN dataset.

Algorithm
With Learning Rate Decay Without Learning Rate Decay

Initial learning Batch size Batch size learning Batch size Batch size
rate η B ratio b rate η B ratio b

SGD 0.1 2048 N/A 0.01 1024 N/A
SGD-momentum 0.01 2048 N/A 0.01 2048 N/A

ADAM 0.001 1024 N/A 0.001 512 N/A
SCSG 0.01 512 4 0.1 1024 4

SNVRG 0.01 512 8 0.01 512 4
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Figure 8: Experimental results on different datasets without learning rate decay. (a) and
(d) depict the training loss and test error (top-1 error) v.s. data epochs for
training LeNet on MNIST dataset. (b) and (e) depict the training loss and test
error v.s. data epochs for training LeNet on CIFAR10 dataset. (c) and (f) depict
the training loss and test error v.s. data epochs for training LeNet on SVHN
dataset.

9.2. Experimental Results for Escaping Saddle Points

In this section, we conduct experiments to validate the superiority of our proposed algo-
rithms for escaping from saddle points. We consider the matrix sensing problem, which is
defined as follows:

min
U∈Rd×r

f(U) =
1

2n

n∑

i=1

(〈Ai,UU>〉 − bi)2, (22)

where {Ai}ni=1 are sensing matrices, bi = 〈Ai,M
∗〉 is the i-th observation, and M∗ =

U∗(U∗)> is the underlying unknown low-rank matrix. Following the same setting in Yu et al.
(2018), we consider two matrix sensing problems: (1) d = 50, r = 3 and (2) d = 100, r = 3.
We generate n = 20d sensing matrices {Ai}ni=1, where each entry of Ai follows the standard
normal distribution. We generate U∗ randomly where each row of U∗ follows the standard
normal distribution. We generate u0 from standard normal distribution and set the initial
point as U0 = [u0,0, . . . ,0].

We compare our algorithm SNVRG+Neon with following baselines for nonconvex opti-
mization problems: SNVRG, noisy stochastic gradient descent (NSGD) (Ge et al., 2015),
and Stochastically Controlled Stochastic Gradient with Neon (SCSG-Neon) (Xu et al.,
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Figure 9: Experimental results on matrix sensing problems. (a) depicts matrix sensing
problem with d = 50, r = 3. (b) depicts matrix sensing problem with d =
100, r = 3.

2018b; Allen-Zhu and Li, 2018). For the simplicity, we choose the gradient batch size
to be 100 for all algorithms. For SCSG-Neon, we set the outer batch size to be n. For
SNVRG and SNVRG+Neon, we choose K = 2 and set (B,B1) = (n, n/5). We apply Oja’s
algorithm (Oja, 1982) to calculate the negative curvature with a Hessian mini-batch size of
100. We perform a grid search over step sizes for all algorithms. We report the objective
function value versus CPU running time.

The experimental results are shown in Figures 9(a) and 9(b). From the figures we can
see that without adding additional noise or using negative curvature information, SNVRG
tends to get stuck in saddle points. In sharp contrast, NSGD, SCSG-Neon and SNVRG-
Neon are able to escape from saddle points. We also notice that SNVRG-Neon outperforms
all other baseline algorithms in both problem settings.

10. Summary and Conclusion

In this work, we study nonconvex optimization problems (1) and (2). In the first part of
this paper (Sections 4 and 5), we propose the stochastic nested variance-reduced gradient
descent algorithm (SNVRG) for finding an ε-approximate first-order stationary point of the
nonconvex optimization problems. SNVRG is a natural extension of the original SVRG
algorithm proposed by Johnson and Zhang (2013) but utilizes multiple reference points and
reference gradients to reduce the variance in the semi-stochastic gradient used in the update
rule. We prove that SNVRG converges to an ε-approximate first-order stationary point
after Õ(n ∧ ε−2 + ε−3 ∧ n1/2ε−2) stochastic gradient evaluations. This gradient complexity
improves all existing first-order methods in nonconvex optimization such as SGD (Robbins
and Monro, 1951), SVRG (Reddi et al., 2016a; Allen-Zhu and Hazan, 2016) and SCSG (Lei
et al., 2017), and matches the lower bound provided in Fang et al. (2018); Zhou and Gu
(2019).
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In the second part of this paper (Sections 6, 7 and 8), we integrate SNVRG with re-
cently proposed NEON/Neon2 algorithms (Xu et al., 2018b; Allen-Zhu and Li, 2018) and
propose a class of algorithms that can find local minima, i.e., (ε,

√
ε)-approximate second-

order stationary points of the nonconvex optimization problems. The proposed algorithms
SNVRG + Neon2finite and SNVRG + Neon2online achieve the state-of-the-art gradient com-
plexities for finding local minima in nonconvex optimization. Detailed comparison is pre-
sented in Table 2. Furthermore, we provide an alternative analysis of these two algo-
rithms when the objective function enjoys the third-order smoothness property (Anandku-
mar and Ge, 2016; Carmon et al., 2017; Yu et al., 2018). With this property, we prove that
SNVRG + Neon2finite and SNVRG + Neon2online attain lower gradient complexities and can
find local minima more efficiently.
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Appendix A. Proof of Main Theory for Finding Stationary Points

In this section, we provide the proofs of our theoretical analysis in Section 5 for finding
first-order stationary points.

A.1. Proof of Theorem 12

We start with the following supporting lemma that characterizes the function value decrease
of One-epoch-SNVRG (Algorithm 1).

Lemma 28 Suppose that F has averaged L-Lipschitz gradient. Suppose that B0 ≥ 4 and
the rest parameters (K,M, {Bl}, {Tl}) of Algorithm 1 are chosen the same as in (12). Then
Algorithm 1 with Option I satisfies

E‖∇F (xout)‖22 ≤ C
(

L

B
1/2
0

· E
[
F (x0)− F (xT )

]
+
σ2

B0
· 1(B0 < n)

)
(23)

within 1 ∨ (10B0 log3B0) stochastic gradient computations, where T =
∏K
l=1 Tl, C = 6000

is a constant and 1(·) is the indicator function.

Now we prove our main theorem which spells out the gradient complexity of SNVRG.

Proof [Proof of Theorem 12] By (23) we have

E‖∇F (ys)‖22 ≤ C
(

L

B
1/2
0

· E
[
F (zs−1)− F (zs)

]
+
σ2

B0
· 1(B0 < n)

)
, (24)
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where C = 6000. Taking summation for (24) over s from 1 to S, we have

S∑

s=1

E‖∇F (ys)‖22 ≤ C
(

L

B
1/2
0

· E
[
F (z0)− F (zS)

]
+
σ2

B0
· 1(B0 < n) · S

)
. (25)

Dividing both sides of (25) by S, we immediately obtain

E‖∇F (yout)‖22 ≤ C
(
LE
[
F (z0)− F ∗

]

SB
1/2
0

+
σ2

B0
· 1(B0 < n)

)
(26)

= C

(
L∆F

SB
1/2
0

+
σ2

B0
· 1(B0 < n)

)
, (27)

where (26) holds because F (zS) ≥ F ∗ and by the definition ∆F = F (z0)−F ∗. By the choice

of parameters in Theorem 12, we have B0 = n ∧ (2Cσ2/ε2), S = 1 ∨ (2CL∆F /(B
1/2
0 ε2)),

which implies

1(B0 < n) · σ2/B0 ≤ ε2/(2C), and L∆F /(SB
1/2
0 ) ≤ ε2/(2C). (28)

Submitting (28) into (27), we have E‖∇F (yout)‖22 ≤ 2Cε2/(2C) = ε2. By Lemma 23, we
have that each One-epoch-SNVRG takes less than 7B0 log3B0 stochastic gradient compu-
tations. Since we have total S epochs, so the total gradient complexity of Algorithm 2 is
less than

S · 7B0 log3B0 ≤ 7B0 log3B0 +
L∆F

ε2
· 7B1/2

0 log3B0

= O

(
log3

(
σ2

ε2
∧ n
)[

σ2

ε2
∧ n+

L∆F

ε2

[
σ2

ε2
∧ n
]1/2])

,

which leads to the conclusion.

A.2. Proof of Theorem 14

We then prove the main theorem on gradient complexity of SNVRG under gradient domi-
nance condition (Algorithm 3).
Proof [Proof of Theorem 14] Following the proof of Theorem 12, we obtain a similar
inequality with (26):

E‖∇F (zu+1)‖22 ≤ C
(
LE[F (zu)− F ∗]

SB
1/2
0

+
σ2

B0
· 1(B0 < n)

)
. (29)

Since F is a τ -gradient dominated function, we have E‖∇F (zu+1)‖22 ≥ 1/τ ·E[F (zu+1)−F ∗]
by Definition 9. Plugging this inequality into (29) yields

E
[
F (zu+1)− F ∗

]
≤ CτL

SB
1/2
0

· E
[
F (zu)− F ∗

]
+
Cτσ2

B0
· 1(B0 < n)
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≤ 1

2
E
[
F (zu)− F ∗

]
+
ε

4
, (30)

where the second inequality holds due to the choice of parameters B0 = n∧ (4C1τσ
2/ε) and

S = 1 ∨ (2C1τL/B
1/2
0 ) for Algorithm 3 in Theorem 14. By (30) we can derive

E
[
F (zu+1)− F ∗

]
− ε

2
≤ 1

2

(
E
[
F (zu)− F ∗

]
− ε

2

)
,

which immediately implies

E
[
F (zU )− F ∗

]
− ε

2
≤ 1

2U

(
∆F −

ε

2

)
≤ ∆F

2U
. (31)

Plugging the number of epochs U = log(2∆F /ε) into (31), we obtain E
[
F (zU ) − F ∗

]
≤ ε.

Note that each epoch of Algorithm 3 needs at most S · 7B0 log3B0 stochastic gradient com-
putations by Theorem 12 and Algorithm 3 has U epochs, which implies the total stochastic
gradient complexity

U · S · 7B0 log3B0 = O

(
log3

(
n ∧ τσ

2

ε

)
log

∆F

ε

[
n ∧ τσ

2

ε
+ τL

[
n ∧ τσ

2

ε

]1/2])
,

which completes the proof.

Appendix B. Proof of Main Theory for Finding Local Minima

In this section, we provide the proofs of gradient complexities of our proposed algorithms
SNVRG + Neon2finite and SNVRG + Neon2online.

B.1. Proof of Theorem 18

It is worth noting that in order to find local minima we apply One-epoch-SNVRG with
Option II which samples the total number of epochs T from a geometric distribution. Similar
to the analysis for finding first-order stationary points, we also have the following supporting
lemma about the function value decrease of Algorithm 1.

Lemma 29 Suppose that each fi is L1-smooth and F has σ2-sub-Gaussian stochastic gra-
dient. In Algorithm 1, suppose that B0 ≥ 4 and the rest parameters (K,M, {Bl}, {Tl}) of
Algorithm 1 are chosen the same as in (12). Then Algorithm 1 with Option II satisfies

E‖∇F (xT )‖22 ≤ C
(

M

B
1/2
0

· E[F (x0)− F (xT )] +
2σ2

B0
· 1{B0 < n}

)
, (32)

where C = 1000. In addition, the total number of stochastic gradient computations T by
Algorithm 1 satisfies ET ≤ 10B0 log3B0.
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Remark 30 Note that Lemma 28 is regarding xout, which is a uniformly chosen iterate from
x1, . . . ,xT . In contrast, Lemma 29 is regarding the last iterate of xT in Algorithm 1. This
difference leads to the nonergodic-type and ergodic-type guarantees of One-epoch-SNVRG
which plays different roles in the analysis of stationary point finding algorithms and local
minimum finding algorithms.

Remark 31 For simplicity, we use ∇fi(x) to denote the stochastic gradient at point x
in our One-epoch-SNVRG algorithm (Lines 20 and 23 in Algorithm 1) and the analysis
of Lemma 29. However, we emphasize that One-epoch-SNVRG also works in the general
stochastic optimization setting if we replace ∇fi(x) with ∇F (x; ξi) for any index i. And the
theoretical result in Lemma 29 still holds.

When F (x) has the finite-sum structure in (1), we choose B0 = n,M = 6L1 in
One-epoch-SNVRG. Lemma 29 straightforwardly implies the following corollary.

Corollary 32 Suppose that each fi is L1-smooth. We choose B0 = n, and let other pa-
rameters be chose as in Lemma 29. Then the output of Algorithm 1 with Option II satisfies

E‖∇F (xT )‖22 ≤
CL1

n1/2
· E
[
F (x0)− F (xT )

]
,

where C = 6000. Let T be the total amount of stochastic gradient computations of Algorithm
1, then we have ET ≤ 10n log3 n.

The following lemma shows that based on Neon2finite the negative curvature descent step
of Algorithm 4 (Line 12) enjoys sufficient function value decrease. The proof can be found
in Theorem 5 and Claim C.2 in Allen-Zhu and Li (2018).

Lemma 33 (Allen-Zhu and Li (2018)) Suppose that F = 1/n
∑n

i=1 fi, each fi is L1-
smooth and L2-Hessian Lipschitz continuous. Let εH ∈ (0, 1) and set η = εH/L2. Sup-
pose that λmin(∇2F (zu−1)) < −εH and that at the u-th iteration Algorithm 4 executes the
Neon2finite algorithm (Line 7). Then with probability 1− δ it holds that

Eζ
[
F (zu)− F (zu−1)

]
≤ −ε3H/(12L2

2).

In addition, Neon2finite takes O
(
(n+ n3/4

√
L1/εH) log2(d/δ)

)
stochastic gradient computa-

tions.

Proof [Proof of Theorem 18] Let I = {1, . . . , U} be the index set of all iterations. We
denote I1 and I2 as the index sets such that zu is obtained from Neon2finite for all u ∈ I1

and zu′ is the output by SNVRG for all u′ ∈ I2. Obviously we have U = |I1| + |I2|. We
will calculate |I1|, |I2| separately. For |I1|, by Lemma 33, with probability 1− δ, we have

E
[
F (zu)− F (zu−1)

]
≤ −ε3H/(12L2

2), for u ∈ I1. (33)

Summing up (33) over u ∈ I1, then with probability 1− δ · |I1| we have

|I1| · ε3H/(12L2
2) ≤

∑

u∈I1

E
[
F (zu−1)− F (zu)

]
≤
∑

u∈I
E
[
F (zu−1)− F (zu)

]
≤ ∆F , (34)
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where the second inequality holds because by Corollary 32 it holds that

0 ≤ E‖∇F (zu)‖22 ≤
CL1

n1/2
E
[
F (zu−1)− F (zu)

]
, for all u ∈ I2. (35)

By (34), we have

|I1| ≤ 12L2
2∆F /ε

3
H .

To calculate |I2|, we further decompose I2 into two disjoint sets such that I2 = I1
2 ∪ I2

2 ,
where I1

2 = {u ∈ I2 : ‖gu‖2 > ε}, I2
2 = {u ∈ I2 : ‖gu‖2 ≤ ε}. It is worth noting that

if u ∈ I2
2 such that ‖gu‖2 ≤ ε, then Algorithm 4 will execute Neon2finite and a negative

curvature descent step, which means u + 1 ∈ I1 by definition. Thus, it always holds that
|I2

2 | ≤ |I1|. For |I1
2 |, note that x0 = zu−1 and xT = zu in Corollary 32, which directly

implies

∑

u∈I12

E‖∇F (zu)‖22 ≤
∑

u∈I12

CL1

n1/2
E
[
F (zu−1)− F (zu)

]

≤
∑

u∈I

CL1

n1/2
E
[
F (zu−1)− F (zu)

]

≤ CL1

n1/2
·∆F , (36)

where the second inequality holds because E[F (zu−1)− F (zu)] ≥ 0 for u ∈ I1 ∪ I2 by (33)
and (35). Applying Markov’s inequality, with probability at least 2/3, we have

∑

u∈I12

‖∇F (zu)‖22 ≤
3CL1∆F

n1/2
.

Since for any u ∈ I1
2 , we have ‖∇F (zu)‖2 = ‖gu‖2 > ε, with probability at least 2/3 it

holds that

|I1
2 | ≤

3CL1∆F

ε2n1/2
.

Thus, the total number of iterations is U = |I1| + |I2| ≤ 2|I1| + |I1
2 | ≤ 24L2

2∆F ε
−3
H +

3CL1∆F ε
−2n−1/2.

We now calculate the gradient complexity of Algorithm 4. By Corollary 32 one single
call of One-epoch-SNVRG needs at most 20n log3 n stochastic gradient computations and
by Lemma 33 one single call of Neon2finite needs O

(
(n+n3/4

√
L1/εH) log2(d/δ)

)
stochastic

gradient computations. In addition, we need to compute gu at each iteration of Algorithm
4 (Line 3), which takes O(n) stochastic gradient computations. Thus, the expectation of
the total amount of stochastic gradient computations, denoted by ETtotal, can be upper
bounded by

|I1| ·O
(
(n+ n3/4

√
L1/εH) log2(d/δ)

)
+ |I2| ·O(n log3 n) + |I| ·O(n)

= |I1| · Õ
(
n+ n3/4

√
L1/εH

)
+ (|I1

2 |+ |I2
2 |) · Õ(n)
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= |I1| · Õ
(
n+ n3/4

√
L1/εH

)
+ (|I1

2 |+ |I1|) · Õ(n). (37)

We further plug the upper bound for |I1| and |I1
2 | into (37) and obtain

ETtotal = O(L2
2∆F ε

−3
H ) · Õ

(
n+ n3/4

√
L1/εH

)
+O(L1∆F ε

−2n−1/2)Õ(n)

= Õ
(
∆FnL

2
2ε
−3
H + ∆Fn

3/4L
1/2
1 L2

2ε
−7/2
H + ∆Fn

1/2L1ε
−2
)
.

Finally, applying Markov inequality, with probability 2/3, it holds that

Ttotal = Õ
(
∆FnL

2
2ε
−3
H + ∆Fn

3/4L
1/2
1 L2

2ε
−7/2
H + ∆Fn

1/2L1ε
−2
)
.

Since |I1|δ = |I1|/(144 · L2
2∆F ε

−3
H ) ≤ 1/12, then by the union bound, with probability

1−1/3−1/3−|I1|δ ≥ 1/4, SNVRG+Neon2finite will find an (ε, εH)-second order stationary
point within

Õ
(
∆FnL

2
2ε
−3
H + ∆Fn

3/4L
1/2
1 L2

2ε
−7/2
H + ∆Fn

1/2L1ε
−2
)

stochastic gradient computations.

B.2. Proof of Theorem 21

For general stochastic problem in (2), we denote ∇F (x; ξi) as one subsampled gradient at x
for any random variable ξ and index i in One-epoch-SNVRG. Base on Lemma 28 we have
the next corollary.

Corollary 34 Suppose that for each ξ, F (x; ξ) is L1-smooth and has σ2-sub-Gaussian
stochastic gradient. We choose M = 2ρL1 and suppose that n � O(ε−2) and B0 < n.
Then the output of Algorithm 1 with Option II satisfies

E‖∇F (xT )‖22 ≤ C1

(
ρL1

B
1/2
0

· E
[
F (x0)− F (xT )

]
+
σ2

B0

)
,

where C1 = 2000. The total amount of stochastic gradient computations of Algorithm 1 is
ET ≤ 20B0 log3B0.

The following lemma shows that based on Neon2online the negative curvature descent step
of Algorithm 5 (Line 13) enjoys sufficient function value decrease. More detailed about
Neon2online can be found in Algorithm 7. The proof can be found as a combination of
Theorem 1, Lemma 3.1 and Claim C.2 in Allen-Zhu and Li (2018).

Lemma 35 (Allen-Zhu and Li (2018)) Suppose that F (x) = Eξ∈DF (x; ξ) and each F (x; ξ)
is L1-smooth, L2-Hessian Lipschitz continuous. Let εH ∈ (0, 1) and set η = εH/L2. Sup-
pose that λmin(∇2F (zu−1)) < −εH and that at the u-th iteration Algorithm 5 executes the
Neon2online algorithm (Line 8). Then with probability 1− δ it holds that

Eζ
[
F (zu)− F (zu−1)

]
≤ −ε3H/(12L2

2).

In addition, Neon2online takes O(L2
1/ε

2
H log2(d/δ)) stochastic gradient computations.
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We also need the following concentration inequality in our proof.

Lemma 36 (Ghadimi et al. (2016)) Suppose the stochastic gradient ∇F (x; ξ) is σ2-
sub-Gaussian. Let ∇FS(x) = 1/|S|∑i∈S ∇F (x; ξi), where S is a subsampled gradient of

F (x). If the sample size satisfies |S| = 2σ2/ε2(1 + log1/2(1/δ))2, then with probability at
least 1− δ,

‖∇FS(x)−∇F (x)‖2 ≤ ε.

Proof [Proof of Theorem 21] Denote δ0 = 1/(2500C1ρ∆FL1B
−1/2
0 ε−2). Then by the choice

of B0 in (17) it holds that B0 > 32σ2/ε2(1+log1/2(1/δ0))2. Let I = {1, . . . , U} be the index
set of all iterations. We use I1 and I2 to represent the index set of iterates where the zu
is obtained from Neon2finite and SNVRG respectively. From Lemma 35, we have that with
probability at least 1− δ that

E
[
F (zu)− F (zu−1)

]
≤ −ε3H/(12L2

2), for u ∈ I1. (38)

By Corollary 34, we have

E‖∇F (zu)‖22 ≤ C1

(
ρL1

B
1/2
0

· E
[
F (zu−1)− F (zu)

]
+
σ2

B0

)
, for u ∈ I2. (39)

where C1 = 200. We further decompose I2 = I1
2 ∪ I2

2 , where I1
2 = {u ∈ I2 : ‖gu‖2 > ε/2}

and I1
2 = {u ∈ I2 : ‖gu‖2 ≤ ε/2}. (39) immediately implies the following two inequalities:

E
[
F (zu)− F (zu−1)

]
≤ − B

1/2
0

C1ρL1
E‖∇F (zu)‖22 +

σ2

ρL1B
1/2
0

, u ∈ I1
2 , (40)

E
[
F (zu)− F (zu−1)

]
≤ σ2

ρL1B
1/2
0

, u ∈ I2
2 . (41)

Summing up (38) over u ∈ I1, (40) over u ∈ I1
2 and (41) over u ∈ I2

2 , we have

E
[∑

u∈I
F (zu−1)− F (zu)

]
≥ |I1|ε3H

12L2
2

+
B

1/2
0

C1ρL1

∑

u∈I12

E‖∇F (zu)‖22

−
∑

u∈I12

σ2

ρL1B
1/2
0

−
∑

u∈I22

σ2

ρL1B
1/2
0

. (42)

Since for any u ∈ I2
2 we have ‖gu‖2 ≤ ε/2, Algorithm 5 will execute Neon2online at the u-th

iteration, which indicates |I2
2 | ≤ |I1|. Combining this with (42) and by the definition of

∆F , with probability at least 1− |I1|δ, we have

|I1|ε3H
12L2

2

+
B

1/2
0

C1ρL1

∑

u∈I12

E‖∇F (zu)‖22 ≤ ∆F + (|I1|+ |I1
2 |)

σ2

ρL1B
1/2
0

. (43)
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Using Markov inequality, then with probability at least 2/3, it holds that

|I1|ε3H
12L2

2

+
B

1/2
0

C1ρL1

∑

u∈I12

‖∇F (zu)‖22 ≤ 3

(
∆F + (|I1|+ |I1

2 |)
σ2

ρL1B
1/2
0

)
. (44)

By Lemma 36, for any u ∈ I1
2 , with probability at least 1−δ0, it holds that ‖∇F (zu)−gu‖2 <

ε/4 if B0 ≥ 32σ2/ε2(1+log1/2(1/δ0))2, which further indicates that ‖∇F (zu)‖2 > ε/4. Thus,
applying union bound yields that with probability at least 1− |I1|δ − 1/3− |I1

2 |δ0 we have

|I1|ε3H
12L2

2

+
|I1

2 |B
1/2
0 ε2

16C1ρL1
≤ 3∆F +

3|I1
2 |σ2

ρL1B
1/2
0

+
3|I1|σ2

ρL1B
1/2
0

. (45)

Recall that in Theorem 21 we set ρ = max{54σ2L−1
1 L2

2ε
−3
H B

−1/2
0 , 6} ≥ 54σ2L2

2/(L1ε
3
HB

1/2
0 ),

which implies

3|I1|σ2

ρL1B
1/2
0

≤ |I1|ε3H
18L2

2

. (46)

By (17) we have B0 > 96C1σ
2ε−2, which implies

3|I1
2 |σ2

ρL1B
1/2
0

≤ |I
1
2 |B

1/2
0 ε2

32C1ρL1
. (47)

Plugging (46) and (47) into (45) and rearranging the resulting inequality, then with prob-
ability 1− |I1|δ − 1/3− |I1

2 |δ0, we have

|I1|ε3H
36L2

2

+
|I1

2 |B
1/2
0 ε2

32C1ρL1
≤ 3∆F ,

which immediately implies that

|I1| ≤ 108∆FL
2
2ε
−3
H = O(∆FL

2
2ε
−3
H ), (48)

and

|I1
2 | ≤ 96C1ρ∆FL1B

−1/2
0 ε−2

= max{54σ2L−1
1 L2

2ε
−3
H B

−1/2
0 , 6} · 96C1∆FL1B

−1/2
0 ε−2

= Õ(∆Fσ
−1L1ε

−1) + Õ(∆FL
2
2ε
−3
H ). (49)

Thus we can calculate U = |I1|+ |I2| ≤ 2|I1|+ |I1
2 | ≤ 216∆FL

2
2ε
−3
H +96C1ρ∆FL1B

−1/2
0 ε−2.

Now we are ready to calculate the gradient complexity of Algorithm 5. By Lemma 35,
we know that one single call of Neon2online needs O

(
L2

1/ε
2
H log2(d/δ)

)
stochastic gradient

computations, and one single call of One-epoch-SNVRG needs 20B0 log3B0 = Õ(σ2/ε2)
stochastic gradient computations. In addition, we need to compute gu at each iteration of
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Algorithm 5 (Line 3), which costs B0 = Õ(σ2/ε2) stochastic gradient computations. Thus,
the expected total amount of stochastic gradient computations ETtotal can be bounded as

ETtotal = |I1| ·O(L2
1/ε

2
H log2(d/δ)) + |I2| · Õ(σ2/ε2) + |I| · Õ(σ2/ε2)

= |I1| · Õ(L2
1/ε

2
H) + (|I1

2 |+ |I2
2 |) · Õ(σ2/ε2) + |I| · Õ(σ2/ε2)

= |I1| · Õ(L2
1/ε

2
H) + (|I1

2 |+ |I1|) · Õ(σ2/ε2)

= Õ(∆FL
2
1L

2
2ε
−5
H + ∆Fσ

2L2
2ε
−3
H ε−2 + ∆FσL1ε

−3).

Applying Markov inequality yields

Ttotal = Õ(∆FL
2
1L

2
2ε
−5
H + ∆Fσ

2L2
2ε
−3
H ε−2 + ∆FσL1ε

−3)

with probability at least 2/3. Furthermore, we have |I1|δ = |I1|/(3000∆FL
2
2ε
−3
H ) ≤ 1/24

and |I1
2 |δ0 = |I1

2 |/(2500C1ρ∆FL1B
−1/2
0 ε−2) < 1/24. Therefore, with probability at least

1−|I1|δ−1/3−|I1
2 |δ0−1/3 ≥ 1/4, Algorithm 5 can find an (ε, εH)-second order stationary

point within

Õ(∆FL
2
1L

2
2ε
−5
H + ∆Fσ

2L2
2ε
−3
H ε−2 + ∆FσL1ε

−3)

stochastic gradient computations.

Appendix C. Proof of Main Theory with Third-order Smoothness

In this section, we prove the theoretical results of our proposed algorithms under third-order
smoothness condition.

C.1. Proof of Theorem 23

The following lemma shows that the negative curvature descent step (Line 12) of Algorithm
4 achieves more function value decrease under third-order smoothness assumption. The
proof can be found in Lemma 4.3 of Yu et al. (2018).

Lemma 37 (Yu et al. (2018)) Suppose that F = 1/n
∑n

i=1 fi, each fi is L1-smooth, L2-
Hessian Lipschitz continuous and F is L3-third-order smooth. Let εH ∈ (0, 1) and η =√

3εH/L3. Suppose that λmin(∇2F (zu−1)) < −εH and that at the u-th iteration Algorithm
4 executes the Neon2finite algorithm (Line 7). Then with probability 1− δ it holds that

Eζ
[
F (zu)− F (zu−1)

]
≤ −ε2H/(6L3).

In addition, Neon2finite takes O
(
(n+ n3/4

√
L1/εH) log2(d/δ)

)
stochastic gradient computa-

tions.

Proof [Proof of Theorem 23] Denote I = {1, . . . , U} as the index of iteration. Let I =
{1, . . . , U} be the index set of iteration. We use I1 and I2 to represent the index set of
iterates where the zu is obtained from Neon2finite and One-epoch-SNVRG. Since U =
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|I1| + |I2|, we calculate |I1|, |I2| separately. For |I1|, by Lemma 37, with probability at
least 1− δ, we have

E
[
F (zu)− F (zu−1)

]
≤ −ε2H/(6L3), for u ∈ I1. (50)

Summing up (50) over u ∈ I1 and applying union bound, then with probability at least
1− δ · |I1| we have

|I1| · ε2H/(6L3) ≤
∑

u∈I1

E
[
F (zu−1)− F (zu)

]
≤
∑

u∈I
E
[
F (zu−1)− F (zu)

]
≤ ∆F , (51)

where the second inequality holds due to the fact that by Corollary 32 we have

0 ≤ E‖∇F (zu)‖22 ≤
CL1

n1/2
E
[
F (zu−1)− F (zu)

]
, for u ∈ I2. (52)

(51) directly implies

|I1| ≤ 6L3∆F /ε
2
H .

For |I2|, we decompose I2 = I1
2 ∪ I2

2 , where I1
2 = {u ∈ I2 : ‖gu‖2 > ε} and I2

2 = {u ∈ I2 :
‖gu‖2 ≤ ε}. If u ∈ I2

2 , then at the (u+ 1)-th iteration, Algorithm 4 will execute Neon2finite.
Thus, we have |I2

2 | ≤ |I1|. For |I1
2 |, note that x0 = zu−1 and xT = zu in Corollary 32 and

summing up over u ∈ I1
2 yields

∑

u∈I12

E‖∇F (zu)‖22 ≤
∑

u∈I12

CL1

n1/2
E
[
F (zu−1)− F (zu)

]

≤
∑

u∈I

CL1

n1/2
E
[
F (zu−1)− F (zu)

]

≤ CL1

n1/2
·∆F , (53)

where the second inequality follows from (51) and (52). Applying Markov’s inequality, with
probability at least 2/3, we have

∑

u∈I12

‖∇F (zu)‖22 ≤
3CL1∆F

n1/2
.

by definition for any u ∈ I1
2 , we have ‖∇F (zu)‖2 = ‖gu‖2 > ε. Then we have with

probability at least 2/3 that

|I1
2 | ≤

3CL1∆F

ε2n1/2
.

Total number of iteration is U = |I1|+ |I2| ≤ 2|I1|+ |I1
2 | ≤ 12L3∆F ε

−2
H +3CL1∆F ε

−2n−1/2.
We now calculate the gradient complexity of Algorithm 4. By Lemma 37 one single call of
Neon2finite needs O

(
(n+ n3/4

√
L1/εH) log2(d/δ)

)
stochastic gradient computations and by
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Corollary 32 one single call of One-epoch-SNVRG needs 20n log3 n stochastic gradient com-
putations. Moreover, we need to compute gu at each iteration, which takes O(n) stochastic
gradient computations. Thus, the expectation of the total amount of stochastic gradient
computations ETtotal can be bounded by

|I1| ·O
(
(n+ n3/4

√
L1/εH) log2(d/δ)

)
+ |I2| ·O(n log3 n) + |I| ·O(n)

= |I1| · Õ
(
n+ n3/4

√
L1/εH

)
+ (|I1

2 |+ |I2
2 |) · Õ(n)

= |I1| · Õ
(
n+ n3/4

√
L1/εH

)
+ (|I1

2 |+ |I1|) · Õ(n). (54)

We further plug the upper bound of |I1| and |I1
2 | into (54) and obtain

ETtotal = O(L3∆F ε
−2
H ) · Õ

(
n+ n3/4

√
L1/εH

)
+O(L1∆F ε

−2n−1/2)Õ(n)

= Õ
(
∆FnL3ε

−2
H + ∆Fn

3/4L
1/2
1 L3ε

−5/2
H + ∆Fn

1/2L1ε
−2
)
.

Using Markov inequality, with probability at least 2/3, we have

Ttotal = Õ
(
∆FnL3ε

−2
H + ∆Fn

3/4L
1/2
1 L3ε

−5/2
H + ∆Fn

1/2L1ε
−2
)
.

Note that |I1|δ = |I1|/(72 · L3∆F ε
−2
H ) ≤ 1/12. By union bound, with probability at least

1−1/3−1/3−|I1|δ ≥ 1/4, SNVRG+Neon2finite will find an (ε, εH)-second order stationary
point within

Õ
(
∆FnL3ε

−2
H + ∆Fn

3/4L
1/2
1 L3ε

−5/2
H + ∆Fn

1/2L1ε
−2
)

stochastic gradient computations.

C.2. Proof of Theorem 26

The following lemma shows that the negative curvature descent step (Line 13) of Algorithm
5 achieves more function value decrease under third-order smoothness assumption. The
proof can be found in Lemma 4.6 of Yu et al. (2018).

Lemma 38 (Yu et al. (2018)) Suppose that F (x) = Eξ∈DF (x; ξ), each F (x; ξ) is L1-
smooth, L2-Hessian Lipschitz continuous and F (x) is L3-third-order smooth. Let εH ∈ (0, 1)
and η =

√
3εH/L3. Suppose that λmin(∇2F (zu−1)) < −εH and that at the u-th iteration

Algorithm 5 executes the Neon2online algorithm (Line 8). Then with probability 1−δ it holds
that

Eζ
[
F (zu)− F (zu−1)

]
≤ −ε2H/(6L3).

In addition, Neon2online takes O(L2
1/ε

2
H log2(d/δ)) stochastic gradient computations.

Proof [Proof of Theorem 26] Denote δ0 = 1/(2500C1ρ∆FL1B
−1/2
0 ε−2), then by (20) we

have B0 > 32σ2/ε2(1 + log1/2(1/δ0))2. Let I = {1, . . . , U} be the index set of all iterations.
We use I1 and I2 to represent the index set of iterates where zu is obtained from Neon2online
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and One-epoch-SNVRG respectively. Obviously U = |I1|+|I2| and we need to upper bound
|I1| and |I2|. From Lemma 38, we have with probability at least 1− δ that

E
[
F (zu)− F (zu−1)

]
≤ −ε2H/(6L3), for u ∈ I1. (55)

By Corollary 34, we have

E‖∇F (zu)‖22 ≤ C1

(
ρL1

B
1/2
0

· E
[
F (zu−1)− F (zu)

]
+
σ2

B0

)
, for u ∈ I2, (56)

where C1 = 200. We decompose I2 into two disjoint sets I2 = I1
2 ∪ I2

2 , where I1
2 = {u ∈

I2 : ‖gu‖2 > ε/2} and I1
2 = {u ∈ I2 : ‖gu‖2 ≤ ε/2}. (56) leads to the following inequalities:

E
[
F (zu)− F (zu−1)

]
≤ − B

1/2
0

C1ρL1
E‖∇F (zu)‖22 +

σ2

ρL1B
1/2
0

, for u ∈ I1
2 , (57)

E
[
F (zu)− F (zu−1)

]
≤ σ2

ρL1B
1/2
0

, for u ∈ I2
2 . (58)

Summing up (55) over u ∈ I1, (57) over u ∈ I1
2 and (58) over u ∈ I2

2 , we have

E
[∑

u∈I
F (zu−1)− F (zu)

]

≥ |I1| ·
ε2H
6L3

+
B

1/2
0

C1ρL1

∑

u∈I12

E‖∇F (zu)‖22 −
∑

u∈I12

σ2

ρL1B
1/2
0

−
∑

u∈I22

σ2

ρL1B
1/2
0

. (59)

For any u ∈ I2
2 , we have ‖gu‖2 ≤ ε/2, then algorithm will execute Neon2online at u-th

iteration, which implies |I2
2 | ≤ |I1|. Combining this with (59) and by the definition of ∆F ,

with probability at least 1− |I1|δ, we have

|I1|ε2H
6L3

+
B

1/2
0

C1ρL1

∑

u∈I12

E‖∇F (zu)‖22 ≤ ∆F + (|I1|+ |I1
2 |)

σ2

ρL1B
1/2
0

. (60)

Applying Markov inequality, yields with probability at least 2/3 that

|I1|ε2H
6L3

+
B

1/2
0

C1ρL1

∑

u∈I12

‖∇F (zu)‖22 ≤ 3

(
∆F + (|I1|+ |I1

2 |)
σ2

ρL1B
1/2
0

)
. (61)

By Lemma 36, if B0 ≥ 32σ2/ε2(1 + log1/2(1/δ0))2, then for any u ∈ I1
2 , with probability at

least 1 − δ0, we have ‖∇F (zu)‖2 > ε/4. Applying union bound, we have with probability
at least 1− |I1|δ − 1/3− |I1

2 |δ0 it holds that

|I1|ε2H
6L3

+
|I1

2 |B
1/2
0 ε2

16C1ρL1
≤ 3∆F +

3|I1
2 |σ2

ρL1B
1/2
0

+
3|I1|σ2

ρL1B
1/2
0

. (62)
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By (20) we have B0 > 96C1σ
2ε−2, which indicates

3|I1
2 |σ2

ρL1B
1/2
0

≤ |I
1
2 |B

1/2
0 ε2

32C1ρL1
. (63)

By the choice of ρ we have ρ = max{36σ2L−1
1 L3ε

−2
H B

−1/2
0 , 6} ≥ 36σ2L−1

1 L3ε
−2
H B

−1/2
0 , which

indicates

3|I1|σ2

ρL1B
1/2
0

≤ |I1|ε2H
12L3

. (64)

Plugging (63), (64) into (62), then with probability 1− |I1|δ − 1/3− |I1
2 |δ0, we have

|I1|ε2H
12L3

+
|I1

2 |B
1/2
0 ε2

32C1ρL1
≤ 3∆F ,

which immediately implies

|I1| ≤ 36∆FL3ε
−2
H = O(∆FL3ε

−2
H ), (65)

and

|I1
2 | ≤ 96C1ρ∆FL1B

−1/2
0 ε−2 = Õ(∆Fσ

−1L1ε
−1 + ∆FL3ε

−2
H ). (66)

Total number of iteration is U = |I1|+|I2| ≤ 2|I1|+|I1
2 | ≤ 72∆FL3ε

−2
H +96C1ρ∆FL1B

−1/2
0 ε−2.

Now we calculate the gradient complexity of Algorithm 5. By Lemma 38 one single call of
Neon2online needs O

(
L2

1/ε
2
H log2(d/δ)

)
stochastic gradient computations and by Corollary

34 one single call of One-epoch-SNVRG needs 20B0 log3B0 = Õ(σ2/ε2) stochastic gradient
computations. In addition, we need to compute gu at each iteration, which takes Õ(σ2/ε2)
stochastic gradient computations. The expected total amount of stochastic gradient com-
putations ETtotal is

ETtotal = |I1| ·O(L2
1/ε

2
H log2(d/δ)) + |I2| · Õ(σ2/ε2) + |I| · Õ(σ2/ε2)

= |I1| · Õ(L2
1/ε

2
H) + (|I1

2 |+ |I2
2 |) · Õ(σ2/ε2) + |I| · Õ(σ2/ε2)

= |I1| · Õ(L2
1/ε

2
H) + (|I1

2 |+ |I1|) · Õ(σ2/ε2)

= Õ(∆FL
2
1L3ε

−4
H + ∆Fσ

2L3ε
−2
H ε−2 + ∆FσL1ε

−3).

Applying Markov’s inequality, with probability at least 2/3, we have

Ttotal = Õ(∆FL
2
1L3ε

−4
H + ∆Fσ

2L3ε
−2
H ε−2 + ∆FσL1ε

−3).

Note that |I1|δ = |I1|/(1000∆FL3ε
−2
H ) ≤ 1/24 and |I1

2 |δ0 = |I1
2 |/(2500C1ρ∆FL1B

−1/2
0 ε−2) <

1/24. Therefore, with probability at least 1− |I1|δ − 1/3− |I1
2 |δ0 − 1/3 ≥ 1/4, Algorithm

5 can find an (ε, εH)-second-order stationary point with

Õ(∆FL
2
1L3ε

−4
H + ∆Fσ

2L3ε
−2
H ε−2 + ∆FσL1ε

−3)

stochastic gradient computations.

41



Zhou, Xu and Gu

Appendix D. Proof of Supporting Lemmas

D.1. Proof of Lemma 28

We first prove our key lemma on One-epoch-SNVRG. In order to prove Lemma 28, we
need the following supporting lemma, which shows that with any chosen epoch length T ,
the summation of expectation of the square of gradient norm

∑T−1
j=0 E‖∇F (xj)‖22 can be

bounded.

Lemma 39 Suppose we arbitrarily fix the amount of epochs T > 1 in Algorithm 1. In other
words, we do not bother with Options I or II for the present. If the step size and batch size
parameters in Algorithm 1 satisfy M ≥ 6L and Bl ≥ 6K−l+1(

∏K
s=l Ts)

2 for any 1 ≤ l ≤ K,
then the iterates of Algorithm 1 satisfies

T−1∑

j=0

E‖∇F (xj)‖22 ≤ C
(
ME

[
F (x0)− F (xT )

]
+

2σ2T

B0
· 1{B0 < n}

)
, (67)

where C = 100.

Proof [Proof of Lemma 28] We can check that 2 ≤ B2−K

0 < 4, and we can check that the
choice of M, {Tl}, {Bl} in Lemma 28 satisfies the assumption of Lemma 39. Moreover, we
have

T =
K∏

l=1

Tl

> (B2−K

0 − 1)
K∏

l=2

(B2l−K−2

0 − 1)

>
1

2
B2−K

0 ·
K∏

l=2

B2l−K−2

0 ·
(

1−
( K∑

l=2

1

B2l−K−2

0

))

≥ 1

2
B

1/2
0

(
1−

( K∑

l=2

1

22l−2

))

>
1

10
B

1/2
0 , (68)

where the first inequality holds due to the fact bxc > x − 1 for any x > 1, the second

inequality holds since 2 ≤ B2−K

0 < 4 and the fact
∏K
l=2(xl − 1) >

∏K
l=2 xl(1 −

∑K
l=2 x

−1
l )

for any sequence {xl}Kl=2 satisfying ∀2 ≤ l ≤ K,xl ≥ 2, the third inequality holds since

22K ≤ B0, the last inequality holds due to the fact that
∑K

l=2 2−2l−2
< 4/5. We now submit

(68) into (67), which immediately implies (23). Next we compute how many stochastic
gradient computations we need in total after we run One-epoch-SNVRG once. According to

the update of reference gradients in Algorithm 1, we only update g
(0)
t once at the beginning

of Algorithm 1 (Line 23 is only reached when r = 0), which needs B0 stochastic gradient

computations. For g
(l)
t , we only need to update it when 0 = (t mod

∏K
j=l+1 Tj), and thus

we need to sample g
(l)
t for T/

∏K
j=l+1 Tj =

∏l
j=1 Tj times. We need 2Bl stochastic gradient
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computations for each sampling procedure (Line 20 in Algorithm 1). We use T to represent
the total number of stochastic gradient computations, then based on above arguments we
have

T = B0 + 2
K∑

l=1

Bl ·
l∏

j=1

Tj . (69)

Now we calculate T under the parameter choice of Lemma 28. Note that we can easily
verify the following inequalities:

l∏

j=1

Tj ≤ B2−K

0

l∏

j=2

B2j−K−2

0 = B
2l

2K+1

0 ,

( K∏

j=l

Tj

)2

≤
( K∏

j=l

B2j−K−2

0

)2

= B1−2K+1−l

0 , ∀2 ≤ l ≤ K,

( K∏

j=1

Tj

)2

≤
(
B2−K

0 ·
K∏

j=2

B2j−K−2

0

)2

= B0,

which implies that

B1 ·
1∏

j=1

Tj = 6K
( K∏

j=1

Tj

)2

T1 ≤ 6KB0 · 4,

Bl ·
l∏

j=1

Tj = 6K−l+1

( K∏

j=l

Tj

)2 l∏

j=1

Tj ≤ 6K−l+1B0. (70)

Submit (70) into (69) yields the following results:

T = B0 + 2

(
4× 6KB0 +

K∑

l=2

6K−l+1B0

)

< B0 + 9× 6KB0

≤ B0 + 9× 6log logB0B0

< B0 + 9B0 log3B0.

Therefore, the total gradient complexity T is bounded as follows.

T = B0 + 2
K∑

l=1

Bl ·
l∏

j=1

Tj ≤ B0 + 9B0 log3B0 ≤ 10B0 log3B0. (71)
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D.2. Proof of Lemma 29

Now we prove Lemma 29 about the function value decrease of Algorithm 1 with Option
II. Note that Lemma 39 shows that with any chosen epoch length T , the summation of
expectation of the square of gradient norm

∑T−1
j=0 E‖∇F (xj)‖22 can be bounded. In order

to prove the upper bound on E‖∇F (xT )‖22, we need the following technical lemma about
geometric distribution.

Lemma 40 Suppose that G ∼ Geom(p), where P(G = k) = p(1− p)k, k ≥ 0. Let a(j), b(j)
be two series and b(0) ≥ 0. If for any k ≥ 1, it holds that

∑k−1
j=0 a(j) ≤ b(k), then we have

1− p
p

EGa(G) ≤ EGb(G).

Proof [Proof of Lemma 29] We can easily check that the choice of M, {Tl}, {Bl} in Lemma
29 satisfies the assumption of Lemma 39. By Algorithm 1, we have T ∼ Geom(p) where
p = 1/(1 +

∏K
j=1 Tj). Let

a(j) = E‖∇F (xj)‖22, b(j) = C

(
ME

[
F (x0)− F (xj)

]
+
σ2j

B0
· 1{B0 < n}

)
.

Then by Lemma 39, for any T ≥ 1, we have
∑T−1

j=0 a(j) ≤ b(T ) and b(0) = 0. Thus, by
Lemma 40, we have

1− p
p

ETE‖∇F (xT )‖22 ≤ C
(
METE

[
F (x0)− F (xT )

]
+

2σ2ETT
B0

· 1{B0 < n}
)
.

Since ETT = (1− p)/p =
∏K
j=1 Tj > B

1/2
0 /10 due to (68) , we have

E‖∇F (xT )‖22 ≤ C
(

M
∏K
j=1 Tj

E
[
F (x0)− F (xT )

]
+

2σ2

B0
· 1{B0 < n}

)

≤ 10C

(
M

B
1/2
0

E
[
F (x0)− F (xT )

]
+

2σ2

B0
· 1{B0 < n}

)
,

which immediately implies (32).

Finally we consider how many stochastic gradient computations for us to run One-
epoch-SNVRG once. According to the update of reference gradients in Algorithm 1, for

g
(l)
t , we need to update it when 0 = (t mod

∏K
j=l+1 Tj), and thus we need to sample g

(l)
t

for T/
∏K
j=l+1 Tj times. We need B0 stochastic gradient computations to update g

(0)
t and

2Bl stochastic gradient computations for g
(l)
t (Lines 20 and 23 in Algorithm 1 respectively).

If we use T to represent the total number of stochastic gradient computations, then based
on above arguments, we have

ET ≤ B0 ·
ET

∏K
j=1 Tj

+ 2
K∑

l=1

Bl ·
ET

∏K
j=l+1 Tj
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= B0 + 2

K∑

l=1

Bl

l∏

j=1

Tj

≤ 10B0 log3B0,

where the last inequality holds due to (71).

Appendix E. Proof of Key Lemma 39

In this section, we focus on proving Lemma 39, which holds for any fixed T and plays
a pivotal role in the analyses of Algorithm 1 with both Option I and Option II. Let
M, {Ti}, {Bi}, B0 be the parameters as defined in Algorithm 1. We define filtration Ft =

σ(x0, . . . ,xt). Let {x(l)
t }, {g

(l)
t } be the reference points and reference gradients in Algorithm

1. We define v
(l)
t as

v
(l)
t :=

l∑

j=0

g
(j)
t , for 0 ≤ l ≤ K. (72)

We first present the following definition and two technical lemmas for the purpose of our
analysis.

Definition 41 We define constant series {c(s)
j } as the following. For each s, we define c

(s)
Ts

as

c
(s)
Ts

=
M

6K−s+1
∏K
l=s Tl

. (73)

When 0 ≤ j < Ts, we define c
(s)
j by induction:

c
(s)
j =

(
1 +

1

Ts

)
c

(s)
j+1 +

3L2

M
·
∏K
l=s+1 Tl

Bs
. (74)

Lemma 42 For any p, s, where 1 ≤ s ≤ K, p ·∏K
j=s Tj < T and q

∏K
j=1 Tj ≤ p ·

∏K
j=s Tj <

(p+ 1) ·∏K
j=s Tj ≤ (q + 1)

∏K
j=1 Tj, we define

start = p ·
K∏

j=s

Tj , end = min

{
start +

K∏

j=s

Tj , T

}

for simplification. Then we have the following results:

E
[ end−1∑

j=start

‖∇F (xj)‖22
100M

+ F (xend) + c
(s)
Ts
· ‖xend − xstart‖22

∣∣Fstart

]

≤ F (xstart) +
2

M
· E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
· (end− start).
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Lemma 43 (Lei et al. (2017)) Let ai be vectors satisfying
∑N

i=1 ai = 0. Let J be a
uniform random subset of {1, . . . , N} with size m, then

E
∥∥∥∥

1

m

∑

j∈J
aj

∥∥∥∥
2

2

≤ 1(|J | < N)

mN

N∑

j=1

‖aj‖22.

Proof [Proof of Lemma 39] We have

T−1∑

j=0

E‖∇F (xj)‖22
100M

+ E
[
F (xT )

]
≤

T−1∑

j=0

E‖∇F (xj)‖22
100M

+ E
[
F (xT ) + c

(1)
T1
· ‖xT − x0‖22

]

≤ E
[
F (x0)

]
+

2

M
· E‖∇F (x0)− g0‖22 · T, (75)

where the second inequality comes from Lemma 42 with we take s = 1, p = 0. Moreover we
have

E‖∇F (x0)− g0‖22 = E
∥∥∥∥

1

B0

∑

i∈I

[
∇fi(x0)−∇F (x0)

]∥∥∥∥
2

2

≤ 1(B0 < n) · 1

B0
· 1

n

n∑

i=1

∥∥∇fi(x0)−∇F (x0)
∥∥2

2
(76)

≤ 1(B0 < n) · σ
2

B0
, (77)

where (76) holds because of Lemma 43. Plug (77) into (75) and note that we have M = 6L,
and then we obtain

T−1∑

j=0

E‖∇F (xj)‖22 ≤ C
(
ME

[
F (x0)− F (xT )

]
+

2Tσ2

B0
· 1(B0 < n)

)
, (78)

where C = 100, which complete the proof of Lemma 39.

Appendix F. Proof of Technical Lemmas

In this section, we provide the proofs of technical lemmas used in Appendix E.

F.1. Proof of Lemma 42

Let M, {Tl}, {Bl}, B0 be the parameters defined in Algorithm 1 and {x(l)
t }, {g

(l)
t } be the

reference points and reference gradients defined in Algorithm 1. Let v
(l)
t ,Ft be the variables

and filtration defined in Appendix E and let c
(s)
j be the constant series defined in Definition

41.

In order to prove Lemma 42, we will need the following supporting propositions and

lemmas. We first state the proposition about the relationship among x
(s)
t ,g

(s)
t and v

(s)
t :
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Proposition 44 Let v
(l)
t be defined as in (72). Let p, s satisfy 0 ≤ p ·∏K

j=s+1 Tj < (p+ 1) ·∏K
j=s+1 Tj < T . For any t, t′ satisfying p ·∏K

j=s+1 Tj ≤ t < t′ < (p+ 1) ·∏K
j=s+1 Tj, it holds

that

x
(s)
t = x

(s)
t′ = xp

∏K
j=s+1 Tj

, (79)

g
(s′)
t = g

(s′)
t′ , for any s′ that satisfies 0 ≤ s′ ≤ s, (80)

v
(s)
t = v

(s)
t′ = vp

∏K
j=s+1 Tj

. (81)

The following lemma spells out the relationship between c
(s−1)
j and c

(s)
Ts

. In a word,

c
(s−1)
j is about 1 + Ts−1 times less than c

(s)
Ts

:

Lemma 45 If Bs ≥ 6K−s+1(
∏K
l=s Tl)

2, Tl ≥ 1 and M ≥ 6L, then it holds that

c
(s−1)
j · (1 + Ts−1) < c

(s)
Ts
, for 2 ≤ s ≤ K, 0 ≤ j ≤ Ts−1, (82)

and

c
(K)
j · (1 + TK) < M, for 0 ≤ j ≤ TK . (83)

Next lemma is a special case of Lemma 42 with s = K:

Lemma 46 Suppose p satisfies q
∏K
i=1 Ti ≤ pTK < (p+ 1)TK ≤ (q + 1)

∏K
i=1 Ti for some q

and pTK < T. For simplification, we denote

start = pTK , end = min{(p+ 1)TK , T}.

If M > L, then we have

E

[
F
(
xend

)
+ c

(K)
TK
·
∥∥xend − xstart

∥∥2

2
+

end−1∑

j=start

∥∥∇F (xj)
∥∥2

2

100M

∣∣∣∣Fstart

]

≤ F (xstart) +
2

M
· E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
· (end− start).

The following lemma provides an upper bound of E
[∥∥∇F (x

(l)
t )−v

(l)
t

∥∥2

2

]
, which plays an

important role in our proof of Lemma 42.

Lemma 47 Let tl be as defined in (10), then we have x
(l)
t = xtl, and

E
[∥∥∇F (x

(l)
t )− v

(l)
t

∥∥2

2

∣∣Ftl
]
≤ L2

Bl

∥∥x(l)
t − x

(l−1)
t

∥∥2

2
+
∥∥∇F (x

(l−1)
t )− v

(l−1)
t

∥∥2

2
.

Proof [Proof of Lemma 42] We use mathematical induction to prove that Lemma 42 holds
for any 1 ≤ s ≤ K. When s = K, we have the result hold because of Lemma 46. Suppose
that for s+ 1, Lemma 42 holds for any p′ which satisfies p′

∏K
j=s+1 Tj < T and q

∏K
j=1 Tj ≤

p′
∏K
j=s+1 Tj < (p′+1)

∏K
j=s+1 Tj ≤ (q+1)

∏K
j=1 Tj . We need to prove Lemma 42 still holds

for s and p, where p satisfies p
∏K
j=s+1 Tj < T and q

∏K
j=1 Tj ≤ p

∏K
j=s Tj < (p+1)

∏K
j=s Tj ≤
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(q + 1)
∏K
j=1 Tj . We choose p′ = pTs + u which satisfies that p′

∏K
j=s+1 Tj < T , and we set

indices startu and endu as

startu = p′
K∏

j=s+1

Tj , endu = min

{
startu +

K∏

j=s+1

Tj , T

}
.

Then we have

E
[ endu−1∑

j=startu

‖∇F (xj)‖22
100M

+ F (xendu) + c
(s+1)
Ts+1

· ‖xendu − xstartu‖22
∣∣Fstartu

]

≤ F (xstartu) +
2

M
· E
[∥∥∇F (xstartu)− vstartu

∥∥2

2

∣∣Fstartu

]
· (endu − startu), (84)

where the last inequality holds because of the induction hypothesis that Lemma 42 holds

for s+ 1 and p′. Note that we have xstartu = x
(s)
startu from Proposition 44, which implies

E
[∥∥∇F (xstartu)− vstartu

∥∥2

2

∣∣Fstartu

]
= E

[∥∥∇F (x
(s)
startu)− v

(s)
startu

∥∥2

2

∣∣Fstartu

]

≤ L2

Bs

∥∥x(s)
startu − x

(s−1)
startu

∥∥2

2
+
∥∥∇F (x

(s−1)
startu)− v

(s−1)
startu

∥∥2

2

(85)

=
L2

Bs
‖xstartu − xstart‖22 +

∥∥∇F (xstart)− vstart

∥∥2

2
, (86)

where (85) holds because of Lemma 47 and (86) holds due to Proposition 44. Plugging (86)
into (84) and taking expectation E[·|Fstart] for (84) will yield

E
[ endu−1∑

j=startu

‖∇F (xj)‖22
100M

+ F (xendu) + c
(s+1)
Ts+1

‖xendu − xstartu‖22
∣∣Fstart

]

≤ E
[
F (xstartu) + (endu − startu)

2L2

MBs
‖xstartu − xstart‖22

+
2(endu − startu)

M

∥∥∇F (xstart)− vstart

∥∥2

2

∣∣∣∣Fstart

]

≤ E
[
F (xstartu) +

( K∏

j=s+1

Tj

)
2L2

MBs
‖xstartu − xstart‖22

+
2(endu − startu)

M

∥∥∇F (xstart)− vstart

∥∥2

2

∣∣∣∣Fstart

]
. (87)

We now give a bound of ‖xendu − xstart‖22:

‖xendu − xstart‖22
= ‖xstartu − xstart‖22 + ‖xendu − xstartu‖22 + 2〈xendu − xstartu ,xstartu − xstart〉

≤ ‖xstartu − xstart‖22 + ‖xendu − xstartu‖22 +
1

Ts
· ‖xstartu − xstart‖22 + Ts · ‖xendu − xstartu‖22

(88)
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=

(
1 +

1

Ts

)
· ‖xstartu − xstart‖22 + (1 + Ts) · ‖xendu − xstartu‖22, (89)

where (88) holds because of Young’s inequality. Taking expectation E[·|Fstart] over (89) and

multiplying c
(s)
u+1 on both sides, we obtain

c
(s)
u+1E

[
‖xendu − xstart‖22

∣∣Fstart

]
≤ c(s)

u+1

(
1 +

1

Ts

)
E
[
‖xstartu − xstart‖22

∣∣Fstart

]

+ c
(s)
u+1(1 + Ts)E

[
‖xendu − xstartu‖22

∣∣Fstart

]
. (90)

Adding up inequalities(90) and (87) together, we have

E
[ endu−1∑

j=startu

‖∇F (xj)‖22
100M

+ F (xendu) + c
(s)
u+1‖xendu − xstart‖22 + c

(s+1)
Ts+1

‖xendu − xstartu‖22
∣∣Fstart

]

≤ E
[
F (xstartu) + ‖xstartu − xstart‖22

[
c

(s)
u+1

(
1 +

1

Ts

)
+

3L2

BsM

K∏

j=s+1

Tj

]∣∣∣∣Fstart

]

+
2

M
E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
(endu − startu)

+ c
(s)
u+1(1 + Ts)E

[
‖xendu − xstartu‖22

∣∣Fstart

]

< E
[
F (xstartu) + c(s)

u ‖xstartu − xstart‖22
∣∣Fstart

]

+
2

M
E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
(endu − startu)

+ c
(s+1)
Ts+1

E
[
‖xendu − xstartu‖22

∣∣Fstart

]
, (91)

where the last inequality holds due to the fact that c
(s)
u = c

(s)
u+1(1 + 1/Ts) + 3L2/(BsM) ·

∏K
j=s+1 Tj by Definition 41 and c

(s)
u+1 · (1 + Ts) < c

(s+1)
Ts+1

by Lemma 45. Cancelling out the

term c
(s+1)
Ts+1

E
[
‖xendu − xstartu‖22

∣∣Fstart

]
from both sides of (91), we get

endu−1∑

j=startu

E
[‖∇F (xj)‖22

100M

∣∣∣∣Fstart

]
+ E

[
F (xendu) + c

(s)
u+1 · ‖xendu − xstart‖22

∣∣Fstart

]

≤ E
[
F (xstartu) + c(s)

u ‖xstartu − xstart‖22
∣∣Fstart

]

+
2

M
E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
(endu − startu). (92)

We now try to telescope the above inequality. We first suppose that u∗ = max{0 ≤ u < Ts :
startu < T}. Next we telescope (92) for u = 0 to u∗. Since we have startu = endu−1, start0 =
start for 0 ≤ u ≤ u∗, then we get

E
[ u∗∑

u=0

endu−1∑

j=startu

‖∇F (xj)‖22
100M

+ F (xendu∗ ) + c
(s)
u∗ · ‖xendu∗ − xstart‖22

∣∣Fstart

]

≤ F (xstart) +
2Ts
M
· E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
·
u∗∑

u=0

(endu − startu).

49



Zhou, Xu and Gu

Since for 0 ≤ u ≤ u∗, we have startu = endu−1, start0 = start, endu∗ = end, and c
(s)
u∗ > c

(s)
Ts

,
thus we have that

E
[ end−1∑

j=start

‖∇F (xj)‖22
100M

+ F (xend) + c
(s)
Ts
· ‖xend − xstart‖22

∣∣Fstart

]

≤ F (xstart) +
2

M
· E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
· (end− start). (93)

Therefore, we have proved that Lemma 42 still holds for s and p. Then by mathemati-
cal induction, we have for all 1 ≤ s ≤ K and p which satisfy q

∏K
j=1 Tj ≤ p ·∏K

j=s Tj <

(p+ 1) ·∏K
j=s Tj ≤ (q + 1)

∏K
j=1 Tj , Lemma 42 holds.

F.2. Proof of Lemma 43

The following proof is adapted from that of Lemma A.1 in Lei et al. (2017). We provide
the proof here for the self-containedness of our paper.
Proof [Proof of Lemma 43] We only consider the case when m < N . Let Wj = 1(j ∈ J ),
then we have

EW 2
j = EWj =

m

N
,EWjWj′ =

m(m− 1)

N(N − 1)
.

Thus we can rewrite the sample mean as

1

m

∑

j∈J
aj =

1

m

N∑

i=1

Wiai,

which immediately implies

E
∥∥∥∥

1

m

∑

j∈J
aj

∥∥∥∥
2

=
1

m2

( N∑

j=1

EW 2
j ‖aj‖22 +

∑

j 6=j′
EWjWj′〈aj ,aj′〉

)

=
1

m2

(
m

N

N∑

j=1

‖aj‖22 +
m(m− 1)

N(N − 1)

∑

j 6=j′
〈aj ,aj′〉

=
1

m2

((
m

N
− m(m− 1)

N(N − 1)

) N∑

j=1

‖aj‖22 +
m(m− 1)

N(N − 1)

∥∥∥∥
N∑

j=1

aj

∥∥∥∥
2

2

)

=
1

m2

(
m

N
− m(m− 1)

N(N − 1)

) N∑

j=1

‖aj‖22

≤ 1

m
· 1

N

N∑

j=1

‖aj‖22.
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Appendix G. Proofs of Auxiliary Lemmas

In this section, we present the additional proofs of supporting lemmas used in Appendix F.

Let M, {Tl}, {Bl} and B0 be the parameters defined in Algorithm 1. Let {x(l)
t }, {g

(l)
t } be

the reference points and reference gradients used in Algorithm 1. Finally, v
(l)
t ,Ft are the

variables and filtration defined in Appendix E and c
(s)
j are the constant series defined in

Definition 41.

G.1. Proof of Proposition 44

Proof [Proof of Proposition 44] By the definition of reference point x
(s)
t in (10), we can

easily verify that (79) holds trivially.

Next we prove (80). Note that by (79) we have x
(s)
t = x

(s)
t′ . For any 0 ≤ s′ ≤ s, it is also

true that x
(s′)
t = x

(s′)
t′ by (10), which means xt and xt′ share the same first s+ 1 reference

points. Then by the update rule of g
(s′)
t in Algorithm 1, we will maintain g

(s′)
t unchanged

from time step t to t′. In other worlds, we have g
(s′)
t = g

(s′)
t′ for all 0 ≤ s′ ≤ s.

We now prove the last claim (81). Based on (72) and (80), we have v
(s)
t =

∑s
s′=0 g

(s′)
t =∑s

s′=0 g
(s′)

p·
∏K

j=s+1 Tj
= v

(s)

p·
∏K

j=s+1 Tj
. Since for any s ≤ s′′ ≤ K, we have the following equations

by the update in Algorithm 1 (Line 14).

x
(s′′)

p·
∏K

j=s+1 Tj
= xbp·

∏K
j=s+1 Tj/

∏K
j=s′′+1 Tjc·

∏K
j=s′′+1 Tj

= xp·
∏K

j=s+1 Tj/
∏K

j=s′′+1 Tj ·
∏K

j=s′′+1 Tj

= x
(s)

p·
∏K

j=s+1 Tj
.

Then for any s < s′′ ≤ K, we have

g
(s′′)

p·
∏K

j=s+1 Tj
=

1

Bs′′

∑

i∈I

[
∇fi

(
x

(s′′)

p·
∏K

j=s+1 Tj

)
−∇fi

(
x

(s′′−1)

p·
∏K

j=s+1 Tj

)]
= 0. (94)

Thus, we have

vp·
∏K

j=s+1 Tj
=

K∑

s′′=0

g
(s′′)

p·
∏K

j=s+1 Tj
=

s∑

s′′=0

g
(s′′)

p·
∏K

j=s+1 Tj
=

s∑

s′′=0

g
(s′′)
t = v

(s)
t , (95)

where the first equality holds because of the definition of vp·
∏K

j=s+1 Tj
, the second equality

holds due to (94) , the third equality holds due to (80) and the last equality holds due to
(72). This completes the proof of (81).

G.2. Proof of Lemma 45

Proof [Proof of Lemma 45] For any fixed s, it can be seen that from the definition in (74),

c
(s)
j is monotonically decreasing with j. In order to prove (82), we only need to compare
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(1 + Ts−1) · c(s−1)
0 and c

(s)
Ts

. Furthermore, by the definition of series {c(s)
j } in (74), it can be

inducted that when 0 ≤ j ≤ Ts−1,

c
(s−1)
j =

(
1 +

1

Ts−1

)Ts−1−j
· c(s−1)
Ts−1

+
(1 + 1/Ts−1)Ts−1−j − 1

1/Ts−1
· 3L2

M
·
∏K
l=s Tl
Bs−1

. (96)

We take j = 0 in (96) and obtain

c
(s−1)
0 =

(
1 +

1

Ts−1

)Ts−1

· c(s−1)
Ts−1

+
(1 + 1/Ts−1)Ts−1 − 1

1/Ts−1
· 3L2

M
·
∏K
l=s Tl
Bs−1

< 2.8× c(s−1)
Ts−1

+
6L2

M
·
∏K
l=s−1 Tl

Bs−1
(97)

≤ 2.8M + 6L2/M

6K−s+2 ·∏K
l=s−1 Tl

(98)

<
3M

6K−s+2 ·∏K
l=s−1 Tl

, (99)

where (97) holds because (1 + 1/n)n < 2.8 for any n ≥ 1, (98) holds due to the definition of

c
(s−1)
Ts−1

in (73) and Bs−1 ≥ 6K−s+2(
∏K
l=s−1 Tl)

2 and (99) holds because M ≥ 6L. Recall that

c
(s)
j is monotonically decreasing with j and the inequality in (99). Thus for all 2 ≤ s ≤ K

and 0 ≤ j ≤ Ts−1, we have

(1 + Ts−1) · c(s−1)
j ≤ (1 + Ts−1) · c(s−1)

0

≤ (1 + Ts−1) · 3M

6K−s+2 ·∏K
l=s−1 Tl

<
6M

6K−s+2 ·∏K
l=s Tl

= c
(s)
Ts
, (100)

where the third inequality holds because (1 + Ts−1)/Ts−1 ≤ 2 when Ts−1 ≥ 1 and the last
equation comes from the definition of csTs in (73). This completes the proof of (82).

Using similar techniques, we can obtain the upper bound for cK0 which is similar to
inequality (99) with s− 1 replaced by K. Therefore, we have

(1 + TK) · c(K)
j ≤ (1 + TK) · c(K)

0 <
6M

6K−K+1 ·∏K
l=K Tl

≤M,

which completes the proof of (83).

G.3. Proof of Lemma 46

Now we prove Lemma 46, which is a special case of Lemma 42 when we choose s = K.
Proof [Proof of Lemma 46] To simplify notations, we use E[·] to denote the conditional
expectation E[·|Fp·TK ] in the rest of this proof. For pTK ≤ pTK + j < min{(p + 1)TK , T},
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we denote hp·TK+j = −(10M)−1 ·vp·TK+j . According to the update in Algorithm 1 (Line 9),
we have

xp·TK+j+1 = xp·TK+j + hp·TK+j , (101)

which immediately implies

F (xp·TK+j+1)

= F (xp·TK+j + hp·TK+j)

≤ F (xp·TK+j) + 〈∇F (xp·TK+j),hp·TK+j〉+
L

2
‖hp·TK+j‖22 (102)

=
[
〈vp·TK+j ,hp·TK+j〉+ 5M‖hp·TK+j‖22

]
+ F (xp·TK+j)

+ 〈∇F (xp·TK+j)− vp·TK+j ,hp·TK+j〉+

(
L

2
− 5M

)
‖hp·TK+j‖22

≤ F (xp·TK+j) + 〈∇F (xp·TK+j)− vp·TK+j ,hp·TK+j〉+ (L− 5M)‖hp·TK+j‖22, (103)

where (102) is due to the L-smoothness of F and (103) holds because 〈vp·TK+j ,hp·TK+j〉+
5M‖hp·TK+j‖22 = −5M‖hp·TK+j‖22 ≤ 0. Further by Young’s inequality, we obtain

F (xp·TK+j+1) ≤ F (xp·TK+j) +
1

2M
‖∇F (xp·TK+j)− vp·TK+j‖22 +

(
M

2
+ L− 5M

)
‖hp·TK+j‖22

≤ F (xp·TK+j) +
1

M
‖∇F (xp·TK+j)− vp·TK+j‖22 − 3M‖hp·TK+j‖22, (104)

where the second inequality holds becauseM > L. Now we bound the term c
(K)
j+1‖xp·TK+j+1−

xp·TK‖22. By (101) we have

c
(K)
j+1‖xp·TK+j+1 − xp·TK‖22
= c

(K)
j+1‖xp·TK+j − xp·TK + hp·TK+j‖22

= c
(K)
j+1

[
‖xp·TK+j − xp·TK‖22 + ‖hp·TK+j‖22 + 2〈xp·TK+j − xp·TK ,hp·TK+j〉

]
.

Applying Young’s inequality yields

c
(K)
j+1‖xp·TK+j+1 − xp·TK‖22

≤ c(K)
j+1

[
‖xp·TK+j − xp·TK‖22 + ‖hp·TK+j‖22

+
1

TK
‖xp·TK+j − xp·TK‖22 + TK‖hp·TK+j‖22

]

= c
(K)
j+1

[(
1 +

1

TK

)
‖xp·TK+j − xp·TK‖22 + (1 + TK)‖hp·TK+j‖22

]
, (105)

Adding up inequalities (105) and (104), we get

F (xp·TK+j+1) + c
(K)
j+1‖xp·TK+j+1 − xp·TK‖22
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≤ F (xp·TK+j) +
1

M
‖∇F (xp·TK+j)− vp·TK+j‖22 −

[
3M − c(K)

j+1(1 + TK)
]
‖hp·TK+j‖22

+ c
(K)
j+1

(
1 +

1

TK

)
‖xp·TK+j − xp·TK‖22

≤ F (xp·TK+j) +
1

M
‖∇F (xp·TK+j)− vp·TK+j‖22 − 2M‖hp·TK+j‖22

+ c
(K)
j+1

(
1 +

1

TK

)
‖xp·TK+j − xp·TK‖22, (106)

where the last inequality holds due to the fact that c
(K)
j+1(1 + TK) < M by Lemma 45. Next

we bound ‖∇F (xp·TK+j)‖22 with ‖hp·TK+j‖22. Note that by (101)

‖∇F (xp·TK+j)‖22 =
∥∥[∇F (xp·TK+j)− vp·TK+j

]
− 10Mhp·TK+j

∥∥2

2

≤ 2
(
‖∇F (xp·TK+j)− vp·TK+j‖22 + 100M2‖hp·TK+j‖22

)
,

which immediately implies

−2M‖hp·TK+j‖22 ≤
2

100M

(
‖∇F (xp·TK+j)− vp·TK+j‖22 −

1

100M
‖∇F (xp·TK+j)‖22. (107)

Plugging (107) into (106), we have

F (xp·TK+j+1) + c
(K)
j+1‖xp·TK+j+1 − xp·TK‖22

≤ F (xp·TK+j) +
1

M
‖∇F (xp·TK+j)− vp·TK+j‖22 +

1

50M
· ‖∇F (xp·TK+j)− vp·TK+j‖22

− 1

100M
‖∇F (xp·TK+j)‖22 + c

(K)
j+1

(
1 +

1

TK

)
‖xp·TK+j − xp·TK‖22

≤ F (xp·TK+j) +
2

M
‖∇F (xp·TK+j)− vp·TK+j‖22 −

1

100M
‖∇F (xp·TK+j)‖22

+ c
(K)
j+1

(
1 +

1

TK

)
‖xp·TK+j − xp·TK‖22. (108)

Next we bound ‖∇F (xp·TK+j)− vp·TK+j‖22. First, by Lemma 47 we have

E
∥∥∥∇F (x

(K)
p·TK+j)− v

(K)
p·TK+j

∥∥∥
2

2
≤ L2

BK
E
∥∥∥x(K)

p·TK+j − x
(K−1)
p·TK+j

∥∥∥
2

2
+ E

∥∥∥∇F (x
(K−1)
p·TK+j)− v

(K−1)
p·TK+j

∥∥∥
2

2
.

Since x
(K)
p·TK+j = xp·TK+j ,v

(K)
p·TK+j = vp·TK+j , x

(K−1)
p·TK+j = xp·TK and v

(K−1)
p·TK+j = vp·TK , we have

E‖∇F (xp·TK+j)− vp·TK+j‖22 ≤
L2

BK
E‖xp·TK+j − xp·TK‖22 + E‖∇F (xp·TK )− vp·TK‖22.

(109)

Taking expectation E[·] with (108) and plugging (109) into (108) , we obtain

E
[
F (xp·TK+j+1) + c

(K)
j+1‖xp·TK+j+1 − xp·TK‖22 +

1

100M
‖∇F (xp·TK+j)‖22

]
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≤ E
[
F (xp·TK+j) +

(
c

(K)
j+1

(
1 +

1

TK

)
+

3L2

BKM

)
‖xp·TK+j − xp·TK‖22

+
2

M
‖∇F (xp·TK )− vp·TK‖22

]

= E
[
F (xp·TK+j) + c

(K)
j ‖xp·TK+j − xp·TK‖22 +

2

M
· ‖∇F (xp·TK )− vp·TK‖22

]
, (110)

where (110) holds because we have c
(K)
j = c

(K)
j+1(1 + 1/TK) + 3L2/(BKM) by Definition 41.

Telescoping (110) for j = 0 to end− start− 1, we have

E
[
F
(
xend

)
+ c

(K)
TK
· ‖xend − xstart‖22

]
+

1

100M

end−1∑

j=start

E‖∇F (xj)‖22

≤ E
[
F
(
xend

)
+ c

(K)
end−start · ‖xend − xstart‖22

]
+

1

100M

end−1∑

j=start

E‖∇F (xj)‖22

≤ F (xstart) +
2(end− start)

M
· E‖∇F (xstart)− vstart‖22,

which completes the proof.

G.4. Proof of Lemma 47

Proof [Proof of Lemma 47] If tl = tl−1, we have x
(l)
t = x

(l−1)
t and v

(l)
t = v

(l−1)
t . In this case

the statement in Lemma 47 holds trivially. Therefore, we assume tl 6= tl−1 in the following
proof. Note that

E
[∥∥∇F (x

(l)
t )− v

(l)
t

∥∥2

2
|Ftl

]

= E
[∥∥∇F (x

(l)
t )− v

(l)
t − E

[
∇F (x

(l)
t )− v

(l)
t

]∥∥2

2
|Ftl

]
+
∥∥E
[
∇F (x

(l)
t )− v

(l)
t |Ftl

]∥∥2

2

= E

[∥∥∥∥∇F (x
(l)
t )−

l∑

j=0

g
(j)
t − E

[
∇F (x

(l)
t )−

l∑

j=0

g
(j)
t

]∥∥∥∥
2

2

∣∣∣∣Ftl
]

︸ ︷︷ ︸
J1

+

∥∥∥∥E
[
∇F (x

(l)
t )−

l∑

j=0

g
(j)
t

∣∣∣∣Ftl
]∥∥∥∥

2

2
︸ ︷︷ ︸

J2

,

(111)

where in the second equation we used the definition v
(l)
t =

∑l
i=0 g

(i)
t in (72). We first upper

bound term J1. According to the update rule in Algorithm 1 (Line 20-23), when j < l, g
(j)
t

will not be updated at the tl-th iteration. Thus we have E[g
(j)
t |Ftl ] = g

(j)
t for all j < l. In

addition, by the definition of Ftl , we have E[∇F (x
(l)
t )|Ftl ] = ∇F (x

(l)
t ). Then we have the

following equation

J1 = E
[∥∥g(l)

t − E
[
g

(l)
t |Ftl

]∥∥2

2
|Ftl

]
. (112)

We further have

g
(l)
t =

1

Bl

∑

i∈I

[
∇fi(x(l)

t )−∇fi(x(l−1)
t )

]
, E

[
g

(l)
t

∣∣Ftl
]

= ∇F (x
(l)
t )−∇F (x

(l−1)
t ).
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Therefore, we can apply Lemma 43 to (112) and obtain

J1 ≤
1

Bl
· 1

n

n∑

i=1

∥∥∇fi(x(l)
t )−∇fi(x(l−1)

t )−
[
∇F (x

(l)
t )−∇F (x

(l−1)
t )

]∥∥2

2

≤ 1

Bln

n∑

i=1

∥∥∇fi(x(l)
t )−∇fi(x(l−1)

t )
∥∥2

2

≤ L2

Bl

∥∥x(l)
t − x

(l−1)
t

∥∥2

2
, (113)

where the second inequality is due to the fact that E[‖X − E[X]‖22] ≤ E‖X‖22 for any
random vector X and the last inequality holds due to the fact that F has averaged L-
Lipschitz gradient.

Next we turn to bound term J2. Note that

E
[
g

(l)
t

∣∣Ftl
]

= E
[

1

Bl

∑

i∈I

[
∇fi(x(l)

t )−∇fi(x(l−1)
t )

]∣∣∣∣Ftl
]

= ∇F (x
(l)
t )−∇F (x

(l−1)
t ),

which immediately implies

E
[
∇F (x

(l)
t )−

l∑

j=0

g
(j)
t

∣∣∣∣Ftl
]

= E
[
∇F (x

(l)
t )−∇F (x

(l)
t ) +∇F (x

(l−1)
t )−

l−1∑

j=0

g
(j)
t

∣∣∣∣Ftl
]

= E
[
∇F (x

(l−1)
t )− v

(l−1)
t

∣∣Ftl
]

= ∇F (x
(l−1)
t )− v

(l−1)
t ,

where the last equation is due to the definition of Ft. Plugging J1 and J2 into (111) yields
the following result:

E
[∥∥∇F (x

(l)
t )− v

(l)
t

∥∥2

2

∣∣Ftl
]
≤ L2

Bl

∥∥x(l)
t − x

(l−1)
t

∥∥2

2
+
∥∥∇F (x

(l−1)
t )− v

(l−1)
t

∥∥2

2
,

which completes the proof.

Appendix H. More Details of the Proposed Algorithms

In this section, we give additional details about the proposed algorithms. In particular,
we will present an equivalent version of Algorithm 1, which shows an alternative view of
interpreting it. We will also present the detailed Neon algorithm for the self-containedness.

H.1. An Equivalent Version of Algorithm 1

Recall the One-epoch-SNVRG algorithm in Algorithm 1. Here we present an equivalent
version of Algorithm 1 using nested loops, which is displayed in Algorithm 6 and is more
aligned with the illustration in Figure 2(b). Note that the notation used in Algorithm 6 is
slightly different from that in Algorithm 1 to avoid confusion.
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Algorithm 6 One-epoch-SNVRG(F,x0,K,M, {Ti}, {Bi}, B)

1: Input: Function F , starting point x0, loop number K, step size parameter M , loop
parameters Ti, i ∈ [K], batch parameters Bi, i ∈ [K], base batch B > 0.
Output: [xout,xend]

2: T ←∏K
l=1 Tl

3: Uniformly generate index set I ⊂ [n] without replacement

4: g
(0)
[t0] ← 1

B

∑
i∈I ∇fid(x0)

5: x
(l)
[0] ← x0, 0 ≤ l ≤ K,

6: for t1 = 0, . . . , T1 − 1 do
7: Uniformly generate index set I ⊂ [n] without replacement, |I| = B1

8: g
(1)
[t1] ← 1

B1

∑
i∈I
[
∇fi(x(1)

[t1])−∇fi(x
(0)
[0] )
]

9: . . .
10: for tl = 0, . . . , Tl − 1 do
11: Uniformly generate index set I ⊂ [n] without replacement, |I| = Bl

12: g
(l)
[tl]
← 1

Bl

∑
i∈I
[
∇fi(x(l)

[tl]
)−∇fi(x(l−1)

[tl−1])
]

13: . . .
14: for tK = 0, . . . , TK − 1 do
15: Uniformly generate index set I ⊂ [n] without replacement, |I| = BK

16: g
(K)
[tK ] ← 1

BK

∑
i∈I
[
∇fi(x(K)

[tK ])−∇fi(x
(K−1)
[tK−1] )

]

17: Denote t =
∑K

j=1 tj
∏K
l=j+1 Tl, then let xt+1 ← xt − 1/(10M) ·∑K

l=0 g
(l)
[tl]

18: x
(K)
[tK+1] ← xt+1

19: end for
20: . . .
21: x

(l)
[tl+1] ← x

(l+1)
[Tl+1]

22: end for
23: . . .
24: x

(1)
[t1+1] ← x

(2)
[T2]

25: end for
26: xout ← a uniformly random choice from {x0, ...,xT−1}
27: return [xout,xT ]

H.2. The Procedure of Neon2

Recall that we use Neon2 (Allen-Zhu and Li, 2018) in Algorithms 4 and 5 as a subrou-
tine to find the negative curvature direction for escaping saddle points. For the self-
containedness of this paper, we present the procedure of Neon2 in Algorithm 7. The key
idea of NEON/NEON+ (Xu et al., 2018b) and Neon2 (Allen-Zhu and Li, 2018) is to find
a negative curvature direction around the stationary point z (or x0) using the update in
Line 6 of Algorithm 7, which can be seen as an approximation of the power method. If no
such direction is found by this procedure, Algorithm 7 returns v =⊥. Xu et al. (2018b);
Allen-Zhu and Li (2018) proved that with a constant probability this procedure will output
a negative curvature direction that decreases the function value sufficiently (see Lemmas 33
and 35 for the details). The outer for loop in Algorithm 7 is used to boost the probability to
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Algorithm 7 Neon2(F, z, L1, L2, δ, εH)

1: Input: initial point x0 = z, step size η = εH/(CL
2
1 log(100d)), noise variance σ =

η2ε3H/(L2(100d)3C), C > 0 is a constant
2: for j = 1, . . . , log(1/δ) do
3: ξ ← random Gaussian vector
4: x1 = x0 + ξ
5: for t = 1, . . . , T do
6: xt+1 = xt − η(∇fi(xt)−∇fi(x0)), where i is randomly drawn from [n]
7: if ‖xt+1 − x0‖ ≥ (100d)Cσ then
8: v̂j = (xt+1 − x0)/‖xt+1 − x0‖2
9: break

10: else if t = T then
11: v̂j =⊥
12: end if
13: end for
14: if v̂j 6=⊥ then
15: m = CL2

1 log(1/δ)/ε2H , v′ = CεHv/L2

16: Draw i1, . . . , im from [n]
17: zj = 1/(m‖v′‖22)

∑m
l=1〈v′,∇fil(z + v′)−∇fil(z)〉

18: if zj ≤ −3εH/4 then
19: return v = v̂j
20: end if
21: end if
22: end for
23: return v =⊥

1−δ for any δ ∈ (0, 1). Note that the step size η depends on Hessian smoothness parameter
L2. To estimate L2, we could use line search technique (Nesterov and Polyak, 2006) or
calculate the difference between two Taylor expansions (Weiser et al., 2007).
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machine learning problems using stochastic recursive gradient. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 2613–2621. JMLR. org,
2017a.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Stochastic recursive gradient
algorithm for nonconvex optimization. arXiv preprint arXiv:1705.07261, 2017b.

61



Zhou, Xu and Gu

Lam M Nguyen, Marten van Dijk, Dzung T Phan, Phuong Ha Nguyen, Tsui-Wei Weng,
and Jayant R Kalagnanam. Finite-sum smooth optimization with sarah. arXiv preprint
arXiv:1901.07648, 2019.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathe-
matical biology, 15(3):267–273, 1982.

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychis-
litel’noi Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural net-
works, 12(1):145–151, 1999.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via
stochastic gradient langevin dynamics: a nonasymptotic analysis. In Conference on
Learning Theory, pages 1674–1703, 2017.

Sashank Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos, Francis Bach, Ruslan
Salakhutdinov, and Alex Smola. A generic approach for escaping saddle points. In
International Conference on Artificial Intelligence and Statistics, pages 1233–1242, 2018.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International Conference on Machine
Learning, pages 314–323, 2016a.
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