
Journal of Machine Learning Research 21 (2020) 1-54 Submitted 7/18; Revised 2/20; Published 6/20

Fast Bayesian Inference of Sparse Networks
with Automatic Sparsity Determination

Hang Yu hyu1@e.ntu.edu.sg
Songwei Wu wuso0002@e.ntu.edu.sg
School of Electrical and Electronic Engineering
Nanyang Technological University
50 Nanyang Avenue, 639798 Singapore

Luyin Xin xinl0002@e.ntu.edu.sg
School of Physical and Mathematical Sciences
Nanyang Technological University
50 Nanyang Avenue, 639798 Singapore

Justin Dauwels jdauwels@ntu.edu.sg

School of Electrical and Electronic Engineering

Nanyang Technological University

50 Nanyang Avenue, 639798 Singapore

Editor: Peter Spirtes

Abstract

Structure learning of Gaussian graphical models typically involves careful tuning of penalty
parameters, which balance the tradeoff between data fidelity and graph sparsity. Unfortu-
nately, this tuning is often a “black art” requiring expert experience or brute-force search.
It is therefore tempting to develop tuning-free algorithms that can determine the sparsity
of the graph adaptively from the observed data in an automatic fashion. In this paper,
we propose a novel approach, named BISN (Bayesian inference of Sparse Networks), for
automatic Gaussian graphical model selection. Specifically, we regard the off-diagonal
entries in the precision matrix as random variables and impose sparse-promoting horseshoe
priors on them, resulting in automatic sparsity determination. With the help of stochastic
gradients, an efficient variational Bayes algorithm is derived to learn the model. We further
propose a decaying recursive stochastic gradient (DRSG) method to reduce the variance of
the stochastic gradients and to accelerate the convergence. Our theoretical analysis shows
that the time complexity of BISN scales only quadratically with the dimension, whereas the
theoretical time complexity of the state-of-the-art methods for automatic graphical model
selection is typically a third-order function of the dimension. Furthermore, numerical results
show that BISN can achieve comparable or better performance than the state-of-the-art
methods in terms of structure recovery, and yet its computational time is several orders of
magnitude shorter, especially for large dimensions.

Keywords: Gaussian Graphical Models, Structure Learning, Tuning Free, Time Com-
plexity, Variational Bayes, Variance Reduction, Decaying Recursive Stochastic Gradient
(DRSG).

c©2020 Hang Yu, Songwei Wu, Luyin Xin, and Justin Dauwels.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/18-514.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/18-514.html

Yu, Wu, Xin, and Dauwels

1. Introduction

Undirected graphical models can compactly encode high-dimensional data and help to
interpret the data. As an example, inferring the gene regulatory networks (i.e., which genes
may have correlation and which are expressed independently) is currently en vogue, since
it is an effective strategy to understand how genes interact in a biological process and to
further detect novel disease mechanisms (Su et al., 2018; Jia and Liang, 2018; Zhao and
Duan, 2019). Now suppose one has a collection of thousands of genes and a graphical model
is used to represent the network where the nodes denote the genes and there exists an edge
between two nodes if the corresponding two genes are conditionally dependent. According to
the principle of parsimony, we should select the simplest (i.e., sparsest) graphical model that
can adequately describe the data. Such a graphical model provides an efficient representation
of the gene regulatory network, thus allowing the biologists to focus on a limited number of
gene pairs and greatly reducing the time and effort for further analysis. Apart from gene
networks, undirected graphical models have traced their origins to many different fields and
have been applied in a wide variety of settings, such as social network analysis (Farasat
et al., 2015), financial system risk modeling (Hashem and Giudici, 2016; Bianchi et al., 2019),
and brain connectivity analysis (Ortiz et al., 2015; Belilovsky et al., 2016). In practice,
nevertheless, the structure of the undirected graphical model is typically unknown, and
therefore, we aim to learn the graph structure from the data.

Particularly for Gaussian graphical models, the graph structure is characterized by the
precision (inverse covariance) matrix: a zero off-diagonal entry in the precision matrix denotes
the conditional independence of two variables as well as the absence of the corresponding
edge in the graphical model. Hence, when variables are Gaussian distributed in an undirected
graphical model, the objective is to seek a sparse precision matrix that can best describe
the data. In this paper, we focus on the structure learning of Gaussian graphical models
with automatic sparsity determination. In the following review, we divide the large body of
literature on graphical model selection into three categories, including tuning-sensitive, tuning-
insensitive, and tuning-free methods. For the first class, we also review the corresponding
methods for selecting the tuning parameter.

Algorithms in the first category typically employ frequentist methods that maximize the
likelihood (Friedman et al., 2008; Banerjee et al., 2008; Duchi et al., 2008; Scheinberg et al.,
2010; Rolfs et al., 2012; Hsieh et al., 2014, 2013; Treister and Turek, 2014; Tarzanagh and
Michailidis, 2018; Zhang et al., 2018b; Bollhöfer et al., 2019) or pseudo-likelihood (Mein-
shausen and Bühlmann, 2006) of the precision matrix with an `1 norm penalty on the
matrix. Given the penalty parameter (a.k.a. regularization parameter) in front of the
`1 norm, the resulting problem is convex and can be solved via optimization algorithms.
Considerable efforts have been undertaken to increase the scalability of such algorithms,
such as BIG&QUIC (Hsieh et al., 2013) and BCDIC (Treister and Turek, 2014); at their
heart lies the insight that only a small proportion of elements in the precision matrix needs
to be updated to guarantee convergence under certain conditions. More precisely, it has
been shown in Hsieh et al. (2014) that we only need to update non-zero elements and
elements whose gradients are larger than the penalty parameter in each iteration. Indeed,
by leveraging the sparsity of the precision matrix, the time complexity of the computational
bottleneck of BIG&QUIC and BCDIC is O(pm), where p is the dimension and m is the

2

BISN: Bayesian Inference of Sparse Networks

average number of non-zero elements in the precision matrix as the algorithm proceeds.
As a result, by initializing the precision matrix as a diagonal matrix and choosing a large
penalty parameter, the precision matrix can be kept sparse in all iterations, therefore, the
resulting algorithms are applicable to problems with one million variables (Hsieh et al.,
2013; Treister and Turek, 2014). Nevertheless, there remains a severe drawback: the penalty
parameter is typically unknown in real-world applications and it determines the sparsity
of the graph estimates. To find a proper value, we can only resort to brute-force search
methods, such as cross validation, Akaike information criterion (AIC), Bayesian information
criterion (BIC), and stability selection (Meinshausen and Bühlmann, 2010; Liu et al., 2010;
Li et al., 2013). To make matters worse, we have to consider small candidates of the penalty
parameter. As pointed out in Liu et al. (2010), one popular criterion to choose the penalty
parameter is to find the least amount of penalization for which the graph estimates are
suitably stable across samples. The rationale behind is to select a graph that is slightly
denser than the ground truth, since in practice the false positives can be removed in further
analysis whereas false negatives can no longer be recovered as they are buried by the sizable
number of true negatives. In other words, it is essential as well as beneficial to test relatively
small candidates when seeking a proper value of the penalty parameter, since they can
guard against false negatives. Such small candidates, however, can significantly increase
m and so incur a prohibitive computational cost for BIG&QUIC (Hsieh et al., 2013) and
BCDIC (Treister and Turek, 2014), as shown in Treister et al. (2016) and in the results
section of this paper. Consequently, when coupling BIG&QUIC and BCDIC with the
aforementioned regularization selection methods, they will not be able to handle one million
variables. Theoretically, the worst-case time complexity increases cubically with the dimen-
sion, thus jeopardizing their practicality in large-scale problems. Apart from the frequentist
methods, we notice that recently decision theory has been employed for structure learning
in Gaussian graphical models, where the conditional dependence for every pair of variables
in the graph is checked via different hypothesis testings (Lafit et al., 2018; Williams et al.,
2018; Li and Maathuis, 2019; Bernal et al., 2019; Leday and Richardson, 2019; Tatikonda
et al., 2019). Unfortunately, these methods also introduce some tuning parameters, such as
the threshold of edge inclusion in Lafit et al. (2018); Leday and Richardson (2019), and the
threshold of predictive accuracy and the confidence level in Williams et al. (2018). Hence,
they also suffer from the issue of selecting the tuning parameters.

To mitigate the problems of tuning-sensitive methods, a more satisfying tuning-insensitive
approach (TIGER) is proposed in Liu and Wang (2017), where a square root lasso problem
is formulated to select the neighbors for each variable individually. It has been proven
in Liu and Wang (2017) that this method is asymptotically tuning-free but requires a little
effort to tune the penalty parameter among three fixed candidates in the practical finite
sample settings. Unfortunately, TIGER suffers from three pitfalls. First, the neighborhood
selection procedure is a pseudo-likelihood approximation to the original problem. Although
it typically produces a more accurate estimate of the precision matrix, it does not fit the
data well as shown in our numerical experiments, since the true likelihood of the precision
matrix is not maximized. Second, the estimated precision matrix is not guaranteed to be
positive semi-definite. Third, the time complexity is O(min(n, p)p2), where n is the sample
size. Typically, we assume n increases linearly with p, and thus, the time complexity is still
O(p3).

3

Yu, Wu, Xin, and Dauwels

Table 1: Comparison between different methods for automatic Gaussian graphical model
selection.

Methods Tuning-Sensitive Tuning-Insensitive Tuning-free BISN

Brute-force search
Yes

Yes, among only
No No

of penalty parameters three candidates

Guarantee of positive
Yes No Yes Yes

semi-definiteness

Scalability w.r.t. O(p3) O(min(n, p)p2) O(p3) O(p2)
dimension p

The third class of approaches involves Bayesian methods. They regard the penalty
parameters as random variables and infer their posterior distributions along with that of the
precision matrix adaptively from the data. Such methods garner all the benefits from the
Bayesian paradigm, successfully avoiding the complicated tuning problem while considering
the uncertainty associated with parameter estimation. Different priors have been explored,
including the G-Wishart prior (Dobra et al., 2011; Mohammadi and Wit, 2015), the Laplace
prior (Wang, 2012), the spike and slab prior (Wang, 2015), and the horse-shoe prior (Li
et al., 2019). Monte-Carlo Markov Chain (MCMC) algorithms have been developed to learn
the Bayesian model (Dobra et al., 2011; Mohammadi and Wit, 2015; Wang, 2012, 2015;
Li et al., 2019). A key caveat to applying these approaches, however, is that the MCMC
algorithms are quite time-consuming, such that they can only scale up to tens or the lower
hundreds of variables. As a remedy, variational Bayes techniques have been proposed based
on Student t-priors (Marlin and Murphy, 2009; Yu and Dauwels, 2015). To ensure the
positive semi-definiteness of the estimated precision matrix, Dirac delta functions are used as
variational distributions, effectively reducing the problem to point estimation. Unfortunately,
such point estimates can be regarded as solving a marginal MAP problem using variational
Bayes, and they are quite sensitive to local maxima as pointed out in Liu and Ihler (2013).
To alleviate this issue, Wishart distributions are leveraged as the variational distributions
in (Yu et al., 2019). Another drawback associated with all these Bayesian methods is that
their time complexity also scales cubically with the dimension.

In this paper, we propose a novel approach named BISN (Bayesian Inference of Sparse
Networks) for Gaussian graphical model selection. To the best of our knowledge, we are
among the first to develop a tuning-free algorithm whose theoretical time complexity is only
quadratic in the number of variables (i.e., linear in the number of elements in the precision
matrix). To move forward to this goal, we consider the LDL decomposition of the precision
matrix, and derive stochastic variational inference algorithms (Khan et al., 2015; Khan and
Lin, 2017) from this decomposition. Specifically, we assume that the off-diagonal entries of
the precision matrix follow horseshoe priors (Carvalho et al., 2009), which are commonly used
for sparse Bayesian learning (Carvalho et al., 2010). We then approximate the exact posterior
distribution of elements in the LDL decomposition by tractable variational distributions. By
constraining the diagonal entries of D to be non-negative in the variational distributions,
the resulting estimated distribution of the precision matrix is guaranteed to be positive
semi-definite. We further derive a stochastic proximal gradient algorithm (Khan et al., 2015;
Khan and Lin, 2017) to minimize the KL divergence between the variational distribution and

4

BISN: Bayesian Inference of Sparse Networks

the exact posterior. Since it is computationally cheap to evaluate the stochastic gradients,
the computational complexity of BISN per iteration is only O(p2) given p variables. A novel
decaying recursive stochastic gradient (DRSG) method is proposed to reduce the variance of
the stochastic gradient and it is proven that the convergence rate of BISN is independent of
the dimension. As a result, the time complexity only scales quadratically with the dimension.
In our numerical experiments, the computational time of BISN is several orders of magnitude
smaller than that of the state-of-art tuning-sensitive and tuning-insensitive methods (Rolfs
et al., 2012; Hsieh et al., 2013; Liu and Wang, 2017), yet it achieves comparable or better
performance in terms of structure recovery. To summarize, our main contributions are:

1. We propose BISN for Gaussian graphical model selection, a tuning-free algorithm
whose computational cost scales quadratically with the dimension. To highlight the
appeal of BISN, we further compare different methods for automatic Gaussian graphical
model selection in Table 1.

2. We propose to infer the LDL decomposition rather than the precision matrix as in
existing works. This reparameterization highly simplifies the evidence lower bound
(ELBO) in the variational Bayes framework and enables the derivation of the low-
complexity stochastic gradient algorithm to optimize the ELBO (cf. Section 3.5).

3. We propose a novel decaying recursive stochastic gradient (DRSG) approach to speed
up the convergence of the stochastic gradient algorithm. The convergence rate of the
original stochastic gradient algorithm is O(1/ε2), whereas that of DRSG is O(1/ε3/2)
with a fixed step size. The proposed DRSG is applicable to the general finite sum
optimization problems in which the objective function can be decomposed as the
sum of one smooth term that can be nonconvex and one convex term that can be
nonsmooth.

4. We apply BISN to analyze stock, gene, and fMRI data and provide some insights into
the data based on the inferred network.

The remainder of the paper is structured as follows. In Section 2, we introduce the
Bayesian formulation of the proposed model. We then derive the evidence lower bound
(ELBO) and the stochastic proximal gradient algorithm in Section 3. We further propose
methods to reduce the variance and speed up the convergence in Section 4. Theoretical
results for convergence rate and run time guarantee are presented in Section 5. We validate
the proposed approach through synthetic and real data in Section 6. Finally, in Section 7,
we provide concluding remarks.

2. Bayesian Formulation of Gaussian Graphical Models

An undirected graphical model can be defined as a multivariate probability distribution
p(x) that factorizes according to a graph G = (V, E) which consists of nodes V and edges E .
Concretely, each node j ∈ V is associated with a random variable xj . An edge (j, k) ∈ E is
absent if and only if the corresponding two variables xj and xk are conditionally independent:

p(xj , xk|xV|j,k) = p(xj |xV|j,k)p(xk|xV|j,k), (1)

5

Yu, Wu, Xin, and Dauwels

where V|j, k denotes all the nodes except j and k.
If the random variables x = [x1, · · · , xp]T corresponding to the nodes on the graph are

jointly Gaussian, then the graphical model is called a Gaussian graphical model. Let x ∼
N (µ,Σ) with mean vector µ and positive-definite covariance matrix Σ. Since x constitutes
a Gaussian graphical model, the precision matrix (the inverse covariance) K = Σ−1 is sparse
with respect to the graph G, i.e., [K]j,k 6= 0 if and only if the edge (j, k) ∈ E . The Gaussian
graphical model can be written in an equivalent information form N (K−1h,K−1) with a
precision matrix K and a potential vector h = Σ−1µ. The corresponding probability density
function (PDF) can be written as:

p(x) ∝ det(K)
1
2 exp

(
− 1

2
xTKx+ hTx

)
. (2)

Without loss of generality, we assume that µ = 0 in our model, and so h = 0. As such,

p(x) ∝ det(K)
1
2 exp

(
− 1

2
xTKx

)
. (3)

As mentioned in the introduction, we consider here the LDL decomposition of the precision
matrix K. Since K is symmetric, it can be decomposed as K = LDLT , where L is a
lower triangular matrix with ones on the diagonal and D is a diagonal matrix. The above
expression (3) can therefore be equivalently written as:

p(x|L,D) ∝
p∏
j=1

Djj exp
(
− 1

2
xTLDLTx

)
, (4)

where Djj is the j-th diagonal elements of D.
So as to obtain a sparse precision matrix K, we impose horseshoe priors (Carvalho et al.,

2009, 2010) on the off-diagonal entries Kjk of the precision matrix, which can be interpreted
as a scale mixture of Gaussians:

p(Kjk|σjk, ν) = N (0, ν2σ2jk), (5)

p(σjk) = C+(0, 1), (6)

where C+(0, 1) is a standard half-Cauchy distribution on the positive reals, and ν and σjk
are respectively the global and local shrinkage parameters. The global shrinkage parameter
ν shrinks all the entries Kjk to zero, whereas the heavy-tailed half-Cauchy priors for the
local shrinkage parameters σjk allow some Kjk to escape from the shrinkage. Therefore,
the resulting precision matrix K would be sparse. In comparison with other shrinkage
priors, such as Laplacian and Student-t priors, the horseshoe priors are more robust when
dealing with unknown sparsity and large non-zero elements, as demonstrated in Carvalho
et al. (2009) and Bhadra et al. (2017). To facilitate the variational inference, we employ the
parameterization of the horseshoe prior in Neville et al. (2014):

p(Kjk|λjk, ω) = N
(
0, (ωλjk)

−1) ∝√ωλjk exp
(
− 1

2
ωλjkK

2
jk

)
, (7)

p(λjk) =
1

π
λ
− 1

2
jk

(
λjk + 1

)−1
, ∀λjk > 0, (8)

6

BISN: Bayesian Inference of Sparse Networks

where ω = 1/ν2, λjk = 1/σ2jk, and p(λjk) can be regarded as a Beta prime distribution or a
compound Gamma distribution. We further impose a non-informative Jeffreys prior on the
global shrinkage parameter ω, that is, p(ω) ∝ 1/ω1.

On the other hand, for the diagonal elements Kjj , we assume that p(Kjj) ∝ 1. Taken
together, the overall prior on K can be factorized as:

p(K|λ, ω) =

p∏
j=1

p∏
k=j+1

p(Kjk|λjk, ω). (9)

Since we focus on LDLT instead of K, the above prior distribution can be expressed as
follows according to the change-of-variable formula (Kucukelbir et al., 2015):

p(L,D|λ, ω) = |det(J)|
p∏
j=1

p∏
k=j+1

p(Lj,:DL
T
k,:|λjk, ω), (10)

where J is the Jacobian matrix, and Lj,: denotes row j in L. Fortunately, J can be permuted
as an upper triangular matrix and the absolute value of its determinant has a closed-form
expression:

|det(J)| =
p∏
j=1

Dp−j
jj . (11)

The derivation is outlined in Appendix A. We notice that the previous studies on Bayesian
graphical model selection (Dobra et al., 2011; Wang, 2012; Mohammadi and Wit, 2015;
Wang, 2015) revolve around intractable priors without closed-form log-partition functions,
due to the truncation of sparse-promoting priors on the positive semi-definite cone. As a
consequence, only MCMC algorithms can be applied, which are computationally burdensome.
By contrast, the proposed prior facilitates the derivation of efficient variational Bayes
algorithm. Furthermore, although the above prior does not impose any constraints on the
positive definiteness of matrix K, it is straightforward to guarantee that K resulting from
the variational distribution is positive semi-definite by constraining Djj ≥ 0 for all j in
the variational distribution. In addition, we emphasize that we only constrain K to be
sparse but do not impose any constraints on L. Note that there are a handful of methods in
the literature that enforce sparse constraints directly on L (Smith and Kohn, 2002; Huang
et al., 2006), and they are equivalent to learning a sparse acyclic directed graph on x with a
predefined order, as pointed out in Marlin and Murphy (2009). Our method, on the other
hand, does not suffer from this problem. We obtain the prior distribution of L and D (10)
simply from the reparameterization of the distribution of K (9). Depending on the ordering
of the variables in x, the distribution of L and D in (10) will be different. However, the
prior distribution of K in (9) remains the same, regardless of the ordering of the variables.

1. When prior information is available, such as the estimated number of edges in the graph, informative
priors can also be imposed on ω, such as the prior proposed in Piironen et al. (2017).

7

Yu, Wu, Xin, and Dauwels

Finally, given n samples of x, the resulting Bayesian model can be factorized as:

p(x{1:n}, L,D,λ, ω) = p(x{1:n}|L,D)p(L,D|λ, ω)p(λ)p(ω) (12)

=
n∏
i=1

p(x{i}|L,D)| det(J)|
p∏
j=1

p∏
k=j+1

[
p(Lj,:DL

T
k,:|λjk, ω)p(λjk)

]
· p(ω). (13)

3. Proximal-Gradient Stochastic Variational Inference

In this section, we first define the variational Bayes problem to be solved. Next, we introduce
the KL (Kullback-Leibler) proximal gradient algorithm and further apply it to solve our
problem. Additionally, we discuss how to reduce the computational complexity per iteration
from O(p3) to O(p2) via unbiased stochastic approximation.

3.1. Variational Bayes Inference

Our objective is to compute the posterior p(L,D,λ, ω|x{1:n}). Unfortunately, it is intractable
to obtain the posterior in a closed form. Instead, we follow the variational Bayes framework
to approximate the intractable true posterior with a tractable variational distribution
q(L,D,λ, ω) by minimizing the KL divergence KL[q|p] =

∫
q log(q/p). Equivalently, we aim

to maximize the evidence lower bound (ELBO) L of the data likelihood, that is,

log p(x{1:n}) = log

∫
q(L,D,λ, ω)

p(x{1:n}, L,D,λ, ω)

q(L,D,λ, ω)
dLdDdλdω

≥Eq
[

log p(x{1:n}, L,D,λ, ω)− log q(L,D,λ, ω)
]

= L, (14)

where Eq[f(·)] denotes the expectation of the function f(·) over the q distribution. Here,
we apply the mean-field approximation (Beal et al., 2006) and factorize the variational
distribution as:

q(L,D,λ, ω) =

{∏
j

q(Djj)
[∏
k>j

q(Ljk)q(λjk)
]}
q(ω), (15)

where all factors are chosen from the minimal exponential family (Khan and Lin, 2017) and
they can be parameterized by the natural parameters2 as:

q(Djj ;αj , βj) = Ga(αj , βj) ∝ D
(αj−1)
jj exp(−βjDjj), (16)

q(Ljk;hjk, ζjk) = N
(
ζ−1jk hjk, ζ

−1
jk

)
∝
√
ζjk exp

(
− 1

2
ζjkL

2
jk + hjkLjk

)
, (17)

q(ω; a, b) = Ga(a, b) ∝ ω(a−1) exp(−bω), (18)

q(λjk; djk) =
1

E1(djk)

(
λjk + 1

)−1
exp

(
− djk

(
λjk + 1

))
. (19)

2. We actually use the linear transformations of the natural parameters for Gamma and Gaussian distribu-
tions, as they are commonly used in practice.

8

BISN: Bayesian Inference of Sparse Networks

In the above expressions, Ga(a, b) denotes a Gamma distribution with shape parameter
a and rate parameter b. Since q(Djj) is defined on (0,∞), the precision matrix resulting
from the variational inference is guaranteed to be positive definite. Additionally, the
expression of q(λjk) in (19) is derived in Appendix B.1.3 in Neville et al. (2014), where
E1(x) =

∫∞
x exp(−t)/tdt represents the exponential integral function. Note that q(λjk)

belongs to the minimal exponential family and there is a one-to-one mapping between the
natural parameter bjk and the mean parameter Eq[λjk]3:

Eq[λjk] =
1

djk exp(djk)E1(djk)
− 1. (20)

3.2. KL Proximal Gradient

The traditional mean-field variational Bayes (MFVB) approach (Bishop, 2006) and its
stochastic version (Hoffman et al., 2013) take full advantage of the geometry of the posterior
by using natural gradients, resulting in closed-form update rules and faster convergence
than standard gradients. However, they are only applicable to conditionally-conjugate
models. In the proposed model (13), the likelihood and prior of λjk and ω are conjugate,
whereas the other factors are not conjugate. To tackle the non-conjugacy, we instead
employ the KL proximal gradient methods (Khan et al., 2015; Khan and Lin, 2017) to
maximize the lower bound. By using the KL divergence as the proximal term, the resulting
algorithm also accommodates the geometry of the posterior and hence enjoys the advantages
of MFVB (Khan et al., 2016). In particular, this method reduces to using natural gradients
for conjugate pairs of likelihood and prior (Khan and Lin, 2017).

Specifically, suppose that x and z represent the observed and unobserved variables in a
Bayesian model respectively. Under the framework of variational Bayes, we intend to find
a variational distribution q(z|θ) to approximate the true posterior p(z|x) by maximizing
the ELBO L(θ) = Eq[log p(x, z)− log q(z|θ)]. Typically, we select q(z|θ) from the minimal
exponential family such that there is a one-to-one mapping between the natural parameters
θ and the mean parameters µ = Eq[φ(z)] (Khan and Lin, 2017), where φ(z) denotes the
sufficient statistics. As a result, the optimization of the ELBO can also be expressed as a
maximization over the mean parameters µ. The reparameterized ELBO is represented by
L(µ). The KL proximal gradient method (Khan et al., 2015; Khan and Lin, 2017) then
performs the following step until convergence (Khan et al., 2015; Khan and Lin, 2017; Khan
et al., 2016):

µ(κ+1) =argmin
µ

− µT∇µL(µ(κ)) +
1

ρ(κ)
KL[q(z|µ)|q

(
z|µ(κ)

)
], (21)

where ρ(κ) can be regarded as the step size. The above step can also be interpreted as a
mirror descent update, and it has been proven in Khan and Lin (2017) that (21) is equivalent
to updating the natural parameters as:

θ(κ+1) = (1− η(κ))θ(κ) + η(κ)∇µEq[log p(x, z)]|µ=µ(κ) , (22)

3. The product exp(djk)E1(djk) can be calculated efficiently using Lentz’s Algorithm (Lentz, 1976; Neville
et al., 2014) if bjk > 10, while reliable evaluation of both E1(djk) and exp(djk) can be achieved by calling
build-in functions in R, MATLAB, and C/C++ standard library if bjk < 10.

9

Yu, Wu, Xin, and Dauwels

where η(κ) = ρ(κ)/(1 + ρ(κ)). Interestingly, although we propose an update in the mean-
parameter space (21), the actual updates can be performed in the natural-parameter space
more succinctly (22). In the sequel, we use L1 to denote Eq[log p(x, z)], as it is also the first
term of the ELBO L.

3.3. KL Proximal Gradient for BISN

Owing to the closed-form prior for sparse matrices and the mean-field approximation, L1 of
BISN has an analytical form (see Appendix B for the derivation):

L1 =

p∑
j=1

(n
2

+ p− j
)
〈logDjj〉 −

n

2
tr(MLMDM

T
L S)− n

2
diag(S)TVLMD1

− 1

4
tr
{

Λ
[
(ML ◦ML)(MD ◦MD + VD)V T

L + VL(MD ◦MD + VD)(ML ◦ML)T

+ VL(MD ◦MD + VD)V T
L + (ML ◦ML)VD(ML ◦ML)T + (MLMDM

T
L) ◦ (MLMDM

T
L)
]}

−
p∑
j=1

p∑
k=j+1

〈log(λjk + 1)〉+

[
p(p− 1)

4
− 1

]
〈logω〉+ c, (23)

where 〈f(·)〉 = Eq[f(·)] denotes the expectation of the function f(·) over the q distribution, c
summarizes all irrelevant constants, ◦ denotes Hadamard product, 1 is a column vector of all
ones, S is the empirical covariance of the observed data x{1:n}, ML, VL, MD, and VD denote
the matrices containing the element-wise mean and variance of Ljk and Djj respectively,
and Λ is an off-diagonal matrix with Λjk = 〈ω〉〈λjk〉.

Following the framework of KL proximal gradient (Khan and Lin, 2017), the update
rules for the natural parameters of the variational distributions (16)-(19) are listed below:

h
(κ+1)
jk = (1− η(κ))h(κ)jk + η(κ)

(
∂L1
∂MLjk

− 2MLjk
∂L1
∂VLjk

)
, (24)

ζ
(κ+1)
jk = (1− η(κ))ζ(κ)jk − 2η(κ)

∂L1
∂VLjk

, (25)

α
(κ+1)
j = (1− η(κ))α(κ)

j + η(κ)

{
n

2
+ p− j + 1−

α
(κ)
j

β
(κ)
j

2[
α
(κ)
j ψ′(α

(κ)
j)− 1

] ∂L1
∂VDjj

}
, (26)

β
(κ+1)
j = (1− η(κ))β(κ)j + η(κ)

{
L1

∂MDjj
+

1

β
(κ)
j

[
1 +

α
(κ)
j ψ′(α

(κ)
j)

α
(κ)
j ψ′(α

(κ)
j)− 1

]
∂L1
∂VDjj

}
, (27)

a =
p(p− 1)

4
, (28)

b(κ+1) = (1− η(κ))b(κ) +
η(κ)

4
tr
[
Λ〈(LDLT) ◦ (LDLT)〉

]
, (29)

d
(κ+1)
jk = (1− η(κ))d(κ)jk +

η(κ)〈ω〉
2
〈(LDLT) ◦ (LDLT)〉jk, (30)

10

BISN: Bayesian Inference of Sparse Networks

where ψ′ denotes the trigamma function,

∂L1
MLjk

=
{
− [nS + (MLMDM

T
L) ◦ Λ]MLMD − [ML(MD ◦MD + VD)] ◦ (ΛVL)

− (MLVD) ◦ [Λ(ML ◦ML)]
}
jk
, (31)

∂L1
VLjk

=
{
− n

2
diag(S) diag(MD)T − 1

2
Λ(ML ◦ML + VL)(MD ◦MD + VD)

}
jk
, (32)

∂L1
MDjj

=
{
− 1

2
diag

{
MT
L [nS + (MLMDM

T
L) ◦ Λ]ML

}
− n

2
V T
L diag(S)

− 1

2
diag

[
V T
L Λ(VL + 2ML ◦ML)

]
◦ diag(MD)

}
j
, (33)

∂L1
VDjj

=− 1

4
diag

[
(ML ◦ML + VL)TΛ(ML ◦ML + VL)

]
j
, (34)

and

〈(LDLT) ◦ (LDLT)〉 =(ML ◦ML + VL)(MD ◦MD + VD)(ML ◦ML + VL)T

− (ML ◦ML)(MD ◦MD)(ML ◦ML)T

+ (MLMDM
T
L) ◦ (MLMDM

T
L). (35)

The derivation of the algorithm is provided in Appendix C.

3.4. Stochastic Gradients

The computational bottleneck of the update rules in Eq. (24)-(30) lies in the matrix-matrix
product, whose computational complexity is O(p3). To reduce the computational cost, we
resort to stochastic gradients. More precisely, the product of two p× p matrices A and B
can be estimated unbiasedly as:

AB ≈ p

s

∑
j∈S

Cj , (36)

Cjj,: = Aj,:B, (37)

where Cj denotes a p × p zero matrix except for row j, which equals to Aj,:B, S =
{j1, j2, · · · , js} denotes a minibatch of s indices that are uniformly sampled at random from
{1, 2, · · · , p}, and Aj,: denotes row j of matrix A. Note that the resulting variance of the
stochastic gradients increases linearly with p given fixed s. So as to break the dependence of
the variance on p, we can deal with the normalized ELBO L̃ = L/p instead of L in the KL
proximal gradient algorithm (21), that is,

µ(κ+1) =argmin
µ

− µT∇µL̃(µ(κ)) +
1

ρ(κ)
KL[q(z|µ)|q

(
z|µ(κ)

)
]. (38)

Equivalently, we can replace the step size ρ by ρ/p in (21):

µ(κ+1) =argmin
µ

− µT∇µL(µ(κ)) +
p

ρ(κ)
KL[q(z|µ)|q

(
z|µ(κ)

)
]. (39)

11

Yu, Wu, Xin, and Dauwels

On the other hand, if we fix s as p grows, the computational complexity in each iteration of
BISN is only O(p2).

3.5. Contribution of the LDL Decomposition

It is worth emphasizing that replacing K with LDLT in the Bayesian formulation is
particularly advantageous in BISN. The computational complexity of BISN per iteration
cannot be reduced to beO(p2) without this reparameterization. As BISN utilizes optimization
algorithms to learn the parameters of the variational distribution, we compare BISN with
the frequentist methods (Duchi et al., 2008; Scheinberg et al., 2010; Rolfs et al., 2012; Hsieh
et al., 2014, 2013; Treister and Turek, 2014) below to demonstrate the merits of using the
LDL decomposition. Despite the various optimization algorithms used in the frequentist
methods, they all seek to minimize the same objective function:

K = argmin
K�0

tr(SK)− log detK + λ‖K‖1, (40)

and the update procedure per iteration in the majority of the frequentist methods can be
summarized as: 1) determine the update direction based on the gradients w.r.t. the precision
matrix K, and 2) update K in that direction with a proper step size such that the value of
the objective function (40) is sufficiently decreased and K is positive semi-definite.

First, let us focus on the positive semi-definiteness of K. The frequentist methods have to
check the positive semi-definiteness in every iteration by performing Cholesky or eigenvalue
decomposition. The corresponding computational complexity is O(p3). In BISN, however,
the variational distribution of K is guaranteed to be positive semi-definite after setting the
variational distributions of the diagonal entries in D to be Gamma distributions. BISN
successfully circumvents the computationally burdensome operation of checking the positive
semi-definiteness.

Second, we turn our attention to the objective function. In the frequentist methods, the
computational bottleneck of evaluating the objective function lies in computing log detK,
whose computational cost is O(p3). By contrast, after reparameterizing K by LDLT in
BISN, log detK reduces to

∑
j logDjj and the corresponding terms in the update rules are

also simplified.

Third, we would like to discuss the gradient. The most complicated operation in
the gradients of the frequentist methods is matrix inverse K−1, resulting from the term
log detK in the objective function. The computational complexity of matrix inverse is O(p3).
Unfortunately, there are no unbiased but computationally cheap estimates of matrix inverse
to the best of our knowledge. In other words, stochastic gradients are not applicable in this
setting. As opposed to the frequentist methods, owing to the LDL decomposition, the most
complicated operation in the BISN update rules (24)-(35) is matrix product, which is already
more computationally efficient than matrix inverse. Although the computational complexity
of matrix product is still O(p3), we can easily find an unbiased stochastic estimate of it with
complexity O(p2) and further derive stochastic gradients as discussed in Section 3.4.

12

BISN: Bayesian Inference of Sparse Networks

4. Variance Reduction via Decaying Recursive Stochastic Gradient
(DRSG)

As proven in Khan et al. (2016), if we run t iterations of the above KL proximal stochastic
gradient variational Bayes algorithm (21) with a fixed step size ρ(κ) for all κ ∈ {1, · · · , t}
and define

g(κ) =
1

ρ(κ)
(µ(κ) − µ(κ+1)), (41)

where µ denotes the mean parameters of the variational distributions, then we have

E[‖g(κ)‖2] ≤ 2l[L∗ − L0]
γ2∗t

+
c1σ

2

γ∗
, (42)

where κ is uniformly picked at random from {0, 1, · · · , t}, the expectation E is taken w.r.t.
all kinds of randomness, l is the Lipschitz constant of ∇µEq[log p(x, z)]/p, L∗ and L0 are
respectively the global maximum and the initial value of the ELBO, γ∗ and c1 are constants
satisfying the following constraints:

γ∗ = γ − 1

2c1
, (43)

(µ− µ′)T∇µKL[q(z|µ)|q
(
z|µ(κ)

)
] ≥ γ‖µ− µ′‖2, (44)

γ > 0, (45)

c1 >
1

2γ
, (46)

where σ2 is the variance of the stochastic gradient. In the above convergence analysis,
the second term in (42) does not decrease with the number of iterations. To achieve an
ε-accurate solution (i.e., E[‖g(κ)‖2] < ε), we have to increase the minibatch size s and reduce
the fixed step size ρ as a function of 1/ε (Ghadimi et al., 2016; Reddi et al., 2016). The
resulting number of iterations to reach the ε-accuracy is O(1/ε2) in theory (Ghadimi et al.,
2016; Reddi et al., 2016). Let us define the run time guarantee to be the number of floating
point operations (flops) to reach the ε-accuracy. For BISN, the resulting run time guarantee
under this scenario is O(p2/ε2). However, As pointed out in (Reddi et al., 2016), we typically
use a constant minibatch size s that is invariant w.r.t. ε in practice, and consequently, there
is no guarantee of convergence. Of course using the diminishing step size ρ(κ) that decreases
with the number of iterations κ would trivially ensure convergence, but the algorithm may
terminate before reaching a stationary point.

To mitigate the above issue, we propose a method named KL proximal Decaying Recursive
Stochastic Gradient (DRSG) to reduce the variance and to accelerate the convergence. This
approach does not require increasing the minibatch size s as a function 1/ε. Furthermore,

as proven in Section 5, the run time guarantee of KL proximal DRSG for BISN is O(p2/ε
3
2).

In other words, it takes a fewer number of iterations to reach the ε-accuracy. Concretely, we
borrow the idea from the recursive stochastic gradient algorithm (i.e., SARAH) proposed
in Nguyen et al. (2017). However, we introduce a decaying coefficient r satisfying r < 1
to the recursive gradient, and successfully reduce the number of iterations to achieve the

13

Yu, Wu, Xin, and Dauwels

ε-accuracy from O(1/ε2) in Nguyen et al. (2017) to O(1/ε
3
2). In the sequel, we first introduce

the original recursive stochastic gradient algorithm. We then elaborate on the proposed KL
proximal DRSG algorithm.

The pivotal idea of recursive stochastic gradients is to employ the information of stochastic
gradient estimates in previous iterations to improve the estimate in the current iteration.
Specifically, suppose that our objective is to find µ that minimizes the following finite sum
problem:

f(µ) =
1

p

p∑
j=1

fj(µ), (47)

where fj(µ) is non-convex but l-smooth. The exact gradient can be expressed as:

∇µf(µ) =
1

p

p∑
j=1

∇µfj(µ). (48)

The recursive stochastic gradients then proceeds as follows (Nguyen et al., 2017):

R(0) = ∇µf(µ(0)), (49)

R(κ) =
1

s

∑
j∈S(κ)

∇µfj(µ(κ)) +

[
R(κ−1) − 1

s

∑
j∈S(κ)

∇µfj(µ(κ−1))

]
, (50)

µ(κ+1) = µ(κ) − ρ(κ)R(κ), (51)

where ρ(κ) is the step size in iteration κ, and S(κ) is a minibatch of {1, · · · , p} with cardinal-
ity s. In summary, we compute the recursive stochastic gradient R(κ) in each iteration and
use it to update the parameter µ. More concretely, in each iteration κ, we first randomly
choose a minibatch S(κ). We then update the recursive gradient R(κ) by subtracting the
stochastic gradient 1/s

∑
j∈S(κ) ∇µfj(µ(κ−1)0) w.r.t. µ(κ−1) in the previous iteration κ− 1

and adding the stochastic gradient w.r.t. µ(κ) in the current iteration. Note that R(κ) is an
unbiased estimate of the exact gradient. It has been proven in Nguyen et al. (2017) that the
recursive stochastic gradient algorithm takes O(1/ε2) to achieve an ε-accurate solution if
s = 1, ρ(κ) = ρ is a constant, and ρ = O(1/(l

√
t)). Note that the batch size is invariant with

ε by means of the recursive gradient.
Next, let us focus on the proposed KL proximal DRSG algorithm. We aim to maximize

the normalized ELBO L̃ (i.e., to minimize −L̃). To facilitate our analysis, we make a few
assumptions:

1. The normalized ELBO L̃ is a function of the mean parameters µ of the variational
distributions, and it can be decomposed into a “difficult” term f and an ”easy” term
h as in Khan et al. (2015, 2016):

−L̃ = f(µ) + h(µ). (52)

In BISN, f(µ) denotes the part of L̃ that requires stochastic approximation (i.e., terms
with matrix product), which can be regarded as the mean averaged over p terms, and
h(µ) denotes the remaining terms, which are linear functions of µ. In other words,
h(µ) = µT∇µh(µ).

14

BISN: Bayesian Inference of Sparse Networks

2. f(µ) = 1/p
∑p

j=1 fj(µ) is l-smooth, that is,

‖∇f(µ)−∇f(µ′)‖ ≤ l‖µ− µ′‖. (53)

3. fj(µ) for any j ∈ {1, · · · , p} is also l-smooth.

4. The variance of ∇fj(µ) can be upper bounded as

v(κ) =
1

p

p∑
j=1

‖∇fj(µ(κ))‖2 − ‖∇f(µ(κ))‖2 ≤ σ2, ∀κ, (54)

where σ2 is a constant.

5. There exists γ > 0 such that

(µ− µ′)∇µKL[q(z|µ)|q
(
z|µ(κ)

)
] ≥ γ‖µ− µ′‖2. (55)

This assumption is always satisfied as long as all µ(κ) stay within a compact set (Khan
et al., 2016).

6. Define g(κ) = g(µ(κ), R(κ), ρ(κ)) = (µ(κ) − µ(κ+1))/ρ(κ).

The KL proximal DRSG algorithm is then proceeded by iterating the following step:

µ(κ+1) = argmin
µ

µTR(κ) + h(µ(κ)) +
1

ρ(κ)
KL[q(z|µ)|q

(
z|µ(κ)

)
], (56)

where the decaying recursive gradient is updated as

R(0) = ∇µf(µ(0)), (57)

R(κ) =
1

s

∑
j∈S(κ)

∇µfj(µ(κ)) + r(κ)
[
R(κ−1) − 1

s

∑
j∈S(κ)

∇µfj(µ(κ−1))

]
, (58)

and r(κ) < 1 is the decaying coefficient. Note that Eq. (56) is equivalent to (38), since h(µ)
is a linear function of µ. As a result, there is no need to derive new update rules for the
natural parameters in BISN; we only need to replace the stochastic parts in the update
rules (24)-(30) by the corresponding DRSGs. As proven in the next section, the number of

iterations the KL proximal DRSG algorithm takes to reach the ε-accuracy is O(1/ε
3
2).

We note that classical variance reduced stochastic gradient methods can be also applied
to BISN, such as ProxSVRG/SAGA (Reddi et al., 2016). These methods lead to a run time

guarantee of O(p
8
3 /ε). In comparison with ProxSVRG/SAGA, the proposed KL proximal

DRSG method scales more gracefully with the dimension p as the run time guarantee is
O(p2/ε

3
2). As a summary, we list the run time guarantee of different methods in Table 2.

15

Yu, Wu, Xin, and Dauwels

Table 2: Comparison of the run time guarantee between different algorithms when being
applied to BISN. Note that the original stochastic gradient algorithm is convergent
only with decaying step size, whereas the other methods converge with a constant
step size.

Methods
Exact Gradient Stochastic Gradient ProxSVRG/SAGA SARAH

DRSG
(Khan et al., 2016) (Khan et al., 2016) (Reddi et al., 2016) (Nguyen et al., 2017)

Run Time
O(p3/ε) O(p2/ε2) O(p

8
3 /ε) O(p2/ε2) O(p2/ε

3
2)

Guarantee

5. Convergence Analysis and Run Time Guarantee

In this section, we provide the convergence analysis of the proposed algorithm. We further
derive the run time guarantee, which only scales quadratically with the dimension p (i.e.,
linearly with the number of unknown parameters to be estimated). To the best of our
knowledge, we are among the first to reduce the time complexity from O(p3) to O(p2) for
the problem of Gaussian graphical model selection.

Proposition 1 Suppose the assumptions in Section 4 hold. If we run t iterations of KL
proximal DRSG (56) with a fixed step size ρ > 0, then we have:

−L̃∗ ≤ − L̃0 −
[(
γ − 1

2c1

)
ρ− l

2
ρ2
] t∑
κ=0

E[‖g(κ)‖2] +
c1ρ

2

t−1∑
κ=1

E[‖R(κ) −∇f(µ(κ))‖2], (59)

where c1 is a positive constant, and L̃∗ and L̃0 denotes respectively the maximum and initial
value of the normalized ELBO L̃.

Proof See Appendix D.

Since our objective is to find the upper bound of E[‖g(κ)‖2], we intend to express the third
term on the right hand side (RHS) of (59) as a function of E[‖g(κ)‖2]. That is the objective
of Proposition 2 and 3.

Proposition 2 Consider R(κ) defined in (58) in the KL proximal DRSG algorithm, then
for any κ > 0,

E[‖R(κ) −∇f(µ(κ))‖2] =

κ∑
m=1

[
κ∏

j=m+1

r(j)
2
(
E[‖R(m) − r(m)R(m−1)‖2]− E[‖∇f(µ(m))

− r(m)∇f(µ(m−1))‖2]
)]

. (60)

Proof See Appendix E.

Given Proposition 2, we then seek the upper bound of the term E[‖R(m) − r(m)R(m−1)‖2]−
E[‖∇f(µ(m))− r(m)∇f(µ(m−1))‖2].

16

BISN: Bayesian Inference of Sparse Networks

Proposition 3 Consider R(m) defined in (58) and v(m) defined in (54), then we can upper
bound E[‖R(m) − r(m)R(m−1)‖2]− E[‖∇f(µ(m))− r(m)∇f(µ(m−1))‖2] as follows:

E[‖R(m) − r(m)R(m−1)‖2]− E[‖∇f(µ(m))− r(m)∇f(µ(m−1))‖2]

≤ 1

s

p− s
p− 1

(
r(m)l2ρ2E[‖g(m−1)‖2] + (1− r(m))v(m) − r(m)(1− r(m))v(m−1)

)
. (61)

Proof See Appendix F.

By substituting the results in Proposition 2 and 3 into Proposition 1 and further relaxing
the bound, we obtain the following theorem:

Theorem 1 Suppose the assumptions in Section 4 hold. If we run t iterations of KL
proximal DRSG (56) with constant decaying coefficient r < 1, and choose the constant c1
and the step size ρ satisfying:

c1 ≥
1

2γ
, (62)

0 < ρ <

√
a21 + 4a2a0 − a1

2a2
, (63)

then we can obtain:

E[‖g(κ)‖2] ≤ L̃∗ − L̃0

tρ(−a2ρ2 − a1ρ+ a0)
+

1

s

p− s
p− 1

1− r
1 + r

c1σ
2

−a2ρ2 − a1ρ+ a0
, (64)

where κ is uniformly chosen at random from {0, · · · , t− 1}, the expectation E is taken w.r.t.
all kinds of randomness, and

a0 = γ − 1

2c1
, (65)

a1 =
l

2
, (66)

a2 =
r

1− r2
c1
2

1

s

p− s
p− 1

l2. (67)

Proof See Appendix G.

Note that by choosing the decaying coefficient r properly, we can decrease the second term
on the RHS of (64) to the desired accuracy ε without increasing the minibatch size s, as
shown in Theorem 2 below.

Theorem 2 Suppose the assumptions in Section 4 hold and we run KL proximal DRSG (56)
with minibatch size s, decaying coefficient r, and step size ρ such that

s =
p

c2(p− 1) + 1
, (68)

r =
1− c3ε
1 + c3ε

, (69)

ρ =

√
a21 + 3a2a0 − a1

3a2
, (70)

17

Yu, Wu, Xin, and Dauwels

where c2 ∈ (0, 1] is a fixed constant, c3 = a0/9c1c2c4σ
2, c4 is a fixed constant satisfying

c4 > max(1, a0ε/9c1c2σ
2), c1 > 1/2γ, and a0, a1, and a2 are defined in (65)-(67). It is

sufficient to run the algorithm for t = O(1/ε
3
2) iterations in order to obtain the ε-accuracy,

that is,

E[‖g(κ)‖2] ≤ ε, (71)

where κ is uniformly chosen at random from {0, · · · , t− 1} and the expectation E is taken
w.r.t. all kinds of randomness.

Proof See Appendix H.

When applying KL proximal DRSG to BISN, the computational cost in each iteration is
O(sp2). Given the specification of s in (68), O(sp2) reduces to O(p2). Additionally, we
notice that we need to compute the full gradient of f(µ) as an initialization of the KL
proximal DRSG algorithm (57). In BISN, the computational complexity of evaluating the
full gradient for dense mean and variance matrix of the L component ML and VL is O(p3),
cf. Eqs. (24)-(30). However, we manage to reduce the computational cost to be O(p2) by
initializing the mean matrix ML to be an identity matrix such that it is easy to compute
those matrix products associated with ML. For the remaining matrix products w.r.t. VL
(e.g., ΛVL and V T

L (MD ◦MD + VD)VL), we initialize the non-zero elements to be the same
respectively in Λ, VL, MD, and VD, thus these products can also be obtained with O(p2)
operations. As a result, we can obtain the following theorem:

Theorem 3 When applying KL proximal DRSG to BISN, the run time guarantee is
O(p2/ε

3
2) and the time complexity in terms of p is O(p2).

Note that the proposed KL proximal DRSG algorithm can also be coupled with different
adaptive step size schemes to further increase the convergence rate. In practice, we specify
an upper bound on the step size ρ(κ) and then exploit the adaptive step size scheme proposed
in Ranganath et al. (2013) to determine ρ(κ).

6. Experimental Results

In this section, we benchmark the proposed BISN method with several start-of-the-art
methods for automatic graphical model selection, including both tuning-sensitive methods
and the tuning-insensitive method, TIGER (Liu and Wang, 2017). Specifically, for tuning-
sensitive methods, we select G-ISTA (Rolfs et al., 2012) and BIG&QUIC (Hsieh et al., 2013).
Both methods maximize the log-likelihood of the precision matrix K with an `1-norm penalty
on K such that the resulting K is sparse. G-ISTA is shown to be the fastest frequentist
method for Gaussian graphical model selection in the literature (Rolfs et al., 2012; Treister
and Turek, 2014) when there is sufficient memory to store the p× p empirical covariance
matrix S. BIG&QUIC is applicable to one million variables as long as the memory is large
enough to store the sparse precision matrix K and the observed data x{1:n}. Since we
have to determine the value of the penalty parameter in these tuning-sensitive methods,
we consider here two methods for regularization selection: BINCO4 (Li et al., 2013) and

4. For BINCO, we bootstrap 100 subsample sets from the original observed samples, and we test 6 candidate
penalty parameters whose logarithm are −5,−4, · · · , 0.

18

BISN: Bayesian Inference of Sparse Networks

StARS5 (Liu et al., 2010). The former selects a stable graph directly from subsampled
or bootstrapped sample sets across a series of candidate penalty parameters, whereas the
latter selects the smallest penalty parameter such that the corresponding graph across
subsample sets are suitably stable. These stability-based methods have been shown to be
superior to traditional methods such as cross validation, AIC, and BIC in terms of structure
learning (Meinshausen and Bühlmann, 2010; Liu et al., 2010; Yu et al., 2012; Li et al., 2013).
In particular for BINCO, after obtaining the graph structure, the non-zero elements in K
are further estimated by maximizing their likelihood. For BISN, we set the minibatch size
s = p/(0.001(p− 1) + 1) and the decaying coefficient r = 0.5. In the sequel, we first present
the results of synthetic data, where the ground truth is given. We then apply the proposed
BISN approach to a variety of real data sets, including stock, gene, and fMRI data.

6.1. Synthetic Data

We generate synthetic data as follows. We first generate a sparse lower triangular matrix C
with positive diagonal and ne non-zero off-diagonal entries. Specifically, the diagonal entries
and the non-zero off-diagonal of C follow a uniform distribution respectively on [1, 1.5]
and [−1,−0.5] ∪ [0.5, 1]. Next, we compute the sparse precision matrix as K = CCT . We
then randomly permute the rows and columns of K simultaneously such that its Cholesky
decomposition is not sparse anymore. We also rescale the rows and columns of K such that
the resulting covariance matrix Σ = K−1 has unit diagonal. Finally, we draw n samples from
the Gaussian distribution with zero mean and precision matrix K. We compare all algorithms
by means of the accuracy of structure estimation, parameter estimation, model fitting, and
computational time. More specifically, for accuracy of graph estimation, we consider three
criteria, including precision, recall, and F1-score. Precision is defined as the proportion of
correctly estimated edges to all the edges in the estimated graph; recall is defined as the
proportion of successfully estimated edges to all the edges in the true graph; F1-score is
defined as 2·precision·recall/(precision+recall). For parameter estimation, we evaluate the
mean squared error (MSE) between the estimated and true precision matrix. Finally, for
model fitting, we evaluate the negative log-likelihood (NegLogLLH) of the observed data
and the BIC score.

We first investigate the scalability of all methods. Concretely, we set n = 4p and ne = 2p
and consider p = 200, 300, 400, 500, 1000, 2000, 5000. The results averaged over 10 trials
are summarized in Table 3. We further plot the computational time as a function of p
in Figure 1, and the estimates of 10 randomly selected off-diagonal elements in the case
of p = 1000 in Figure 2. BISN performs the best in terms of graph structure estimation,
parameter estimation, and data fitting, with the shortest computational time. Moreover,
as demonstrated in Figure 1(b), the slope of the red line (i.e., the logarithm of the BISN
running time v.s. the dimension) is similar to that of the cyan dotted line which represents
the function t = p2 + c, where t is the running time and c is a constant. In other words, the
computational time of BISN scales approximately quadratically with the dimension. On the
other hand, the slopes of the other lines are almost the same as that of the cyan dash-dot

5. For StARS, we follow the implementation in Zhao et al. (2012) and set the number of subsample sets to
be 20 and the variability threshold to be 0.1. We begin with the penalty parameter λ = 1 and decrease
its logarithm by 0.1 until the variability of the graph is below the threshold.

19

Yu, Wu, Xin, and Dauwels

1000 2000 3000 4000 5000

Dimension

0.5

1

1.5

2

2.5

3

3.5

4

R
un

ni
ng

 T
im

e
10 5

(a)

250 500 1000 2000 4000

Dimension

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Lo
ga

rit
hm

 o
f R

un
ni

ng
 T

im
e

to
 b

as
e

10

G-ISTA+BINCO
G-ISTA+StARS

BIG&QUIC+BINCO
BIG&QUIC+StARS
TIGER
BISN

t=p 2 +c
0

t=p 3 +c
0

(b)

Figure 1: Computational time as a function of dimension for different methods.

1 2 3 4 5 6 7 8 9 10

Index

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Va
lu

e

true value

G-ISTA+BINCO

G-ISTA+StARS

BIG&QUIC+StARS

TIGER

BISN

Figure 2: The estimates from the different methods and the true values of 10 randomly
selected non-zero off-diagonal entries from the true precision matrix when p = 1000.

line (i.e., t = p3 + c), implying that the computational time of the state-of-the-art methods
is a cubic function of the dimension.

By contrast, G-ISTA+StARS and BIG&QUIC+StARS perform the worst in terms of
structure recovery. This can be explained by Figure 3(a), in which we depict the precision,
recall, and F1-score resulting from G-ISTA as a function of the penalty parameter λ. Although
StARS (Liu et al., 2010) successfully finds a penalty parameter λ that is close to the one
which gives the highest F1-score, the highest F1-score is around 0.63 no matter how we
tune the penalty parameter. This observation indicates that the frequentist methods that
maximize the penalized likelihood of K including G-ISTA, BIG&QUIC, etc. cannot reliably

20

BISN: Bayesian Inference of Sparse Networks

Table 3: Accuracy and computational time of the state-of-the-art methods and BISN as
p increases. The results are averaged over 10 trials. The corresponding stan-
dard deviation is listed in the brackets. The number of parameters in the
true graphs (i.e., the node number plus the edge number) averaged over the
10 trials is respectively 1.11e3, 1.63e3, 2.22e3, 2.80e3, 5.68e3, 1.14e4, 2.83e4, for
p = 200, 300, 400, 500, 1000, 2000, 5000.

p 200 300 400 500 1000 2000 5000

S
tr

u
ct

u
re

R
ec

ov
er

y

P
re

ci
si

on

G-ISTA+BINCO 0.91 (1.13e-2) 0.91 (1.31e-2) 0.92 (1.74e-2) 0.91 (8.04e-3) 0.91 (4.54e-3) 0.92 (4.27e-3)

G-ISTA+StARS 0.44 (3.00e-2) 0.45 (1.97e-2) 0.47 (1.88e-2) 0.48 (1.40e-2) 0.51 (1.25e-2) 0.54 (7.40e-3) 0.58 (6.88e-3)

BIG&QUIC+BINCO 0.91 (1.13e-2) 0.91 (1.31e-2) 0.92 (1.74e-2)

BIG&QUIC+StARS 0.44 (3.00e-2) 0.45 (1.97e-2) 0.47 (1.88e-2) 0.48 (1.40e-2) 0.51 (1.25e-2) 0.54 (7.40e-3)

TIGER 0.85 (1.58e-2) 0.87 (7.64e-3) 0.88 (9.82e-3) 0.89 (6.49e-3) 0.90 (3.24e-3)

BISN 0.97 (1.01e-2) 0.99 (9.70e-3) 0.99 (4.68e-3) 1.00 (3.43e-3) 1.00 (1.72e-3) 0.99 (6.25e-3) 0.97 (2.15e-2)

R
ec

al
l

G-ISTA+BINCO 0.60 (1.63e-2) 0.68 (1.67e-2) 0.76 (1.12e-1) 0.83 (1.10e-2) 0.84 (4.04e-3) 0.88 (1.54e-3)

G-ISTA+StARS 0.55 (1.32e-2) 0.60 (1.74e-2) 0.64 (1.85e-2) 0.69 (1.68e-2) 0.81 (1.39e-2) 0.90 (7.89e-3) 0.96 (4.43e-3)

BIG&QUIC+BINCO 0.60 (1.63e-2) 0.68 (1.67e-2) 0.76 (1.12e-1)

BIG&QUIC+StARS 0.55 (1.32e-2) 0.60 (1.74e-2) 0.64 (1.85e-2) 0.69 (1.68e-2) 0.81 (1.39e-2) 0.90 (7.89e-3)

TIGER 0.72 (1.43e-2) 0.80 (1.65e-2) 0.84 (1.79e-2) 0.88 (1.38e-2) 0.96 (5.63e-3)

BISN 0.95 (1.23e-2) 0.98 (6.91e-3) 0.99 (3.07e-3) 0.99 (6.77e-3) 1.00 (1.10e-3) 1.00 (1.75e-3) 1.00 (2.81e-4)

F
1
-s

co
re

G-ISTA+BINCO 0.72 (1.29e-2) 0.77 (1.17e-2) 0.83 (7.15e-2) 0.86 (7.62e-3) 0.87 (2.93e-3) 0.90 (2.40e-3)

G-ISTA+StARS 0.49 (1.66e-2) 0.51 (1.07e-2) 0.54 (1.13e-2) 0.57 (1.26e-2) 0.63 (8.83e-3) 0.68 (6.16e-3) 0.72 (4.55e-3)

BIG&QUIC+BINCO 0.72 (1.29e-2) 0.77 (1.17e-2) 0.83 (7.15e-2)

BIG&QUIC+StARS 0.49 (1.66e-2) 0.51 (1.07e-2) 0.54 (1.13e-2) 0.57 (1.26e-2) 0.63 (8.83e-3) 0.68 (6.16e-3)

TIGER 0.78 (1.26e-2) 0.83 (9.92e-3) 0.86 (1.28e-2) 0.89 (7.51e-3) 0.93 (3.41e-3)

BISN 0.96 (5.79e-3) 0.98 (4.73e-3) 0.99 (2.62e-3) 0.99 (3.11e-3) 1.00 (7.74e-4) 0.99 (2.79e-3) 0.99 (1.11e-2)

M
o
d

el
F

it
ti

n
g

&
P

ar
am

et
er

s
E

st
im

at
io

n

M
S

E

G-ISTA+BINCO 4.33e-2 (1.04e-2) 2.69e-2 (5.12e-3) 1.60e-2 (8.23e-3) 9.12e-3 (2.39e-3) 3.61e-3 (6.65e-3) 1.34e-3 (1.78e-3)

G-ISTA+StARS 1.56e-1 (3.00e-2) 1.02e-1 (1.47e-2) 7.86e-2 (8.54e-3) 5.82e-2 (1.01e-2) 2.68e-2 (1.82e-3) 1.23e-2 (5.95e-4) 4.34e-3 (1.22e-4)

BIG&QUIC+BINCO 4.33e-2 (1.04e-2) 2.69e-2 (5.12e-3) 1.60e-2 (8.23e-3)

BIG&QUIC+StARS 1.56e-1 (3.00e-2) 1.02e-1 (1.47e-2) 7.86e-2 (8.54e-3) 5.82e-2 (1.01e-2) 2.68e-2 (1.82e-3) 1.23e-2 (5.95e-4)

TIGER 3.01e-2 (5.86e-3) 1.81e-2 (3.21e-3) 1.25e-2 (1.44e-3) 7.96e-3 (1.09e-3) 2.34e-3 (2.59e-4)

BISN 5.75e-3 (6.35e-3) 3.54e-3 (1.00e-3) 2.84e-3 (8.34e-4) 1.48e-3 (2.93e-4) 5.66e-4 (1.09e-4) 2.77e-4 (3.62e-5) 1.04e-4 (7.31e-6)

N
eg

L
og

L
L

H

G-ISTA+BINCO 3.96e1 (3.04) 5.68e1 (3.29) 7.17e1 (9.55) 8.52e1 (5.00) 1.72e2 (3.89e1) 3.59e2 (3.79e1)

G-ISTA+StARS 5.75e1 (2.35) 8.32e1 (2.18) 1.09e2 (3.65) 1.33e2 (3.21) 2.48e2 (5.37) 4.63e2 (4.80) 1.09e3 (1.36e1)

BIG&QUIC+BINCO 3.96e1 (3.04) 5.68e1 (3.29) 7.17e1 (9.55)

BIG&QUIC+StARS 5.75e1 (2.35) 8.32e1 (2.18) 1.09e2 (3.65) 1.33e2 (3.21) 2.48e2 (5.37) 4.63e2 (4.80)

TIGER 7.46e1 (2.45) 1.03e2 (3.00) 1.34e2 (5.39) 1.56e2 (4.19) 2.59e2 (7.61)

BISN 3.34e1(3.23) 4.851e1 (3.15) 6.57e1 (4.92) 8.31e1 (4.54) 1.63e2 (6.23) 3.31e2 (6.68) 8.55e2 (1.32e1)

P
rm

t
N

o.

G-ISTA+BINCO 7.32e2 (1.29e1) 1.22e3 (1.85e1) 1.83e3 (1.79e2) 2.55e3 (3.88e1) 5.24e3 (7.84e1) 1.09e4 (8.08e1)

G-ISTA+StARS 1.32e3 (8.44e1) 2.09e3 (8.11e1) 2.93e3 (1.08e2) 3.85e3 (8.06e1) 8.33e3 (1.74e2) 4.36e4 (3.38e2)

BIG&QUIC+BINCO 7.32e2 (1.29e1) 1.22e3 (1.85e1) 1.83e3 (1.79e2)

BIG&QUIC+StARS 1.32e3 (8.44e1) 2.09e3 (8.11e1) 2.93e3 (1.08e2) 3.85e3 (8.06e1) 8.33e3 (1.74e2) 4.36e4 (3.38e2)

TIGER 9.55e2 (1.26e1) 1.54e3 (2.19e1) 2.16e3 (2.19e1) 2.79e3 (2.33e1) 5.94e3 (6.77e1)

BISN 1.08e3 (1.65e1) 1.65e3 (3.82e1) 2.24e3 (3.99e1) 2.80e3 (4.53e1) 5.64e3 (7.20e1) 1.14e4 (1.26e2) 2.90e4 (5.63e2)

B
IC

S
co

re

G-ISTA+BINCO 6.83e4 (4.86e3) 1.45e5 (7.79e3) 2.43e5 (2.93e4) 3.59e5 (1.99e4) 1.42e6 (3.12e5) 5.84e6 (6.06e5)

G-ISTA+StARS 1.01e5 (3.26e3) 2.15e5 (4.72e3) 3.71e5 (1.11e4) 5.62e5 (1.24e4) 2.05e6 (4.16e4) 7.56e6 (7.60e4) 4.41e7 (5.41e5)

BIG&QUIC+BINCO 6.83e4 (4.86e3) 1.45e5 (7.79e3) 2.43e5 (2.93e4)

BIG&QUIC+StARS 1.01e5 (3.26e3) 2.15e5 (4.72e3) 3.71e5 (1.11e4) 5.62e5 (1.24e4) 2.05e6 (4.16e4) 7.56e6 (7.60e4)

TIGER 1.26e5 (3.96e3) 2.60e5 (7.28e3) 4.45e5 (2.16e3) 6.46e5 (1.68e4) 2.15e6 (6.14e4)

BISN 6.07e4 (5.17e3) 1.28e5 (7.59e3) 2.27e5 (1.60e4) 3.54e5 (1.82e4) 1.35e6 (5.01e4) 5.41e6 (1.07e5) 3.45e7 (5.26e5)

C
om

p
u

ta
ti

on
a
l

T
im

e
(s

)

G-ISTA+BINCO 5.73e2 (1.10e2) 1.73e3 (4.36e2) 4.22e3 (1.02e3) 6.44e3 (1.54e3) 4.64e4 (8.39e3) 4.30e5 (3.64e4)

G-ISTA+StARS 2.95e1 (7.23) 8.63e1 (9.05) 2.11e2 (2.86e1) 4.23e2 (8.53e1) 2.92e3 (1.76e2) 2.73e4 (2.79e3) 4.24e5 (7.40e4)

BIG&QUIC+BINCO 5.44e3 (5.98e2) 1.73e4 (2.11e3) 4.28e4 (5.03e3)

BIG&QUIC+StARS 3.48e2 (6.02e1) 1.01e3 (8.01e2) 2.73e3 (2.75e2) 5.23e3 (7.09e2) 3.79e4 (1.72e3) 3.64e5 (3.67e4)

TIGER 1.72e3 (9.41e1) 5.67e3 (2.67e2) 1.44e4 (7.85e2) 3.12e4 (1.87e3) 3.00e5 (8.05e3)

BISN 6.24 (9.72e-1) 1.27e1 (7.32e-1) 2.60e1 (1.04) 4.77e1 (6.75) 2.30e2 (7.16) 1.09e3 (4.99e1) 9.36e3 (3.04e2)

M
em

or
y

C
os

t
(M

B
)

G-ISTA+BINCO 5.47e1 (2.34e-1) 1.19e2 (3.78e-1) 2.08e2 (8..85e-1) 3.20e2 (1.07) 1.20e3 (2.91) 4.49e3(5.33)

G-ISTA+StARS 3.20 (5.88e-3) 7.15 (6.99e-3) 1.27e1 (9.02e-3) 1.98e1 (2.01e-2) 7.88e1 (4.02e-2) 3.14e2 (1.95e-1) 2.02e3 (3.04e-1)

BIG&QUIC+BINCO 5.57e1 (2.92e-1) 1.21e2 (3.18e-1) 2.11e2 (5.46e-1)

BIG&QUIC+StARS 7.63 (6.93e-3) 1.72e1 (1.58e-3) 3.06e1 (2.41e-3) 4.79e1 (7.30e-3) 1.92e2 (9.43e-2)

TIGER 4.54 (1.08e-3) 1.02e1 (8.50e-4) 1.82e1 (1.52e-3) 2.85e1 (1.77e-3) 1.14e2 (3.06e-3)

BISN 6.29 (1.33e-3) 1.42e1 (1.89e-3) 2.53e1 (2.28e-3) 3.94e1 (2.54e-3) 1.56e2 (1.64e-2) 6.11e2 (3.98e-2) 3.27e3 (2.59e-1)

21

Yu, Wu, Xin, and Dauwels

0 0.2 0.4 0.6 0.8 1

Value of the penalty parameter 6

0

0.2

0.4

0.6

0.8

1
precision
recall
F

1
-score

(a) n = 4p.

0 0.2 0.4 0.6 0.8 1

Value of the penalty parameter 6

0

0.2

0.4

0.6

0.8

1
precision
recall
F

1
-score

(b) n = 40p.

Figure 3: Precision, recall, and F1-score as a function of the penalty parameter λ in the
G-ISTA algorithm when p = 1000: (a) the data set used in Table 3 in which
n = 4p; the black line denotes the penalty parameter λ determined by StARS;
(b) we further increase the sample size to n = 40p. BIG&QUIC has the same
performance curves as G-ISTA for this dataset (not shown here).

recover the true graph given the limited number of observed samples n = 4p. In Figure 3(b),
we further increase the sample size by a factor of 10. Although the highest F1-score increases,
it is still much lower than 0.99 resulting from the proposed BISN approach. Different from
the frequentist methods that impose the same amount of penalty on all elements in K,
the sparse-promoting penalties on the elements of K in BISN can be different from each
other, and they are learned adaptively from the data. As a result, in order to recover the
true graph, BISN would require a much smaller sample size than these frequentist methods.
Furthermore, due to the `1-norm penalty in the objective function, the parameter estimation
is biased towards zero as shown in Figure 2, and the likelihood of the data is not maximized.
This explains the worst performance of G-ISTA+StARS and BIG&QUIC+StARS in terms
of MSE compared with other methods.

In addition, it can be seen from Table 3 that BINCO (i.e., stability selection) helps to
improve the performance of G-ISTA and BIG&QUIC. As pointed out in (Meinshausen and
Bühlmann, 2010; Liu et al., 2010; Yu et al., 2012; Li et al., 2013), the stability (i.e., the
existing frequency among the subsampled or bootstrapped sample sets) of the elements in
the precision matrix provides a better distinction between true and false edges than the
estimated elements themselves. Moreover, since we re-estimate the non-zero entries in the
precision matrix via maximum likelihood after learning the structure, the performance of
parameter estimation and model fitting also improves a lot. However, it is prohibitive to
apply BINCO to high-dimensional graphical model selection, since BINCO is already quite
time-consuming even for low-dimensional problems with a few hundred variables, even if it
is coupled with BIG&QUIC.

It should be stressed that BIG&QUIC is not applicable to one million variables when
coupled with regularization selection methods such as StARS and BINCO. All regularization

22

BISN: Bayesian Inference of Sparse Networks

0 0.1 0.2 0.3 0.4 0.5 0.6

Value of the penalty parameter

0

1

2

3

4

Lo
ga

rit
hm

 o
f R

un
ni

ng
 T

im
e

to
 b

as
e

10

BIG&QUIC

G-ISTA

Figure 4: The computational time of BIG&QUIC and G-ISTA as a function of the penalty
parameter λ when p = 2000.

selection methods require testing small candidates of penalty parameters to guard against
false negatives in the estimated edge set of the resulting graphical model. When running
BIG&QUIC with small penalty parameters, the resulting precision matrix in most of the
iterations would be dense, and so it is impossible to store the precision matrix as BIG&QUIC
does in the memory when p is large. Moreover, as mentioned in Section 1, the time complexity
of the computational bottleneck of BIG&QUIC is O(pm), where m is the number of non-zero
entries in the precision matrix. When the penalty parameter is small, m can easily grow
quadratically with p. The resulting time complexity of BIG&QUIC is O(p3). Figure 4 shows
the running time of BIG&QUIC and G-ISTA as a function of the penalty parameter. We can
see that the running time grows dramatically as λ decreases, since the number of elements
in K increases. When coupling with the regularization selection methods, tests on small λ
would dominate the overall computational time. This explains the cubic increasing trend of
BIG&QUIC w.r.t. p in Figure 1(b). Additionally, it can be observed that BIG&QUIC is
much slower than G-ISTA when λ is small. Consequently, when coupling with StARS and
BINCO, BIG&QUIC is slower than G-ISTA as shown in Table 3.

Now let us focus on the tuning-insensitive method TIGER. It produces the second best
results for structure estimation. The parameter estimation is also more accurate than that of
G-ISTA and BIG&QUIC. However, the time complexity of TIGER is O(min(n, p)p2). When
n is a linear function of p, the time complexity can be simplified as O(p3). In comparison
with BISN, the computational time of TIGER is at least two orders of magnitude larger,
as shown in Figure 1. Furthermore, as demonstrated in Table 3, although the number of
parameters given by TIGER is larger than that given by BINCO, the likelihood resulting
from TIGER is smaller than that of BINCO. This can be explained by the fact that TIGER
maximizes the pseudo likelihood instead of the true likelihood. Indeed, TIGER performs
the worst in terms of NegLogLLH and BIC. By comparing all methods from the perspective
of data fitting, we can tell that BISN fits the data well in an automated fashion. However,

23

Yu, Wu, Xin, and Dauwels

Table 4: The graph recovery performance of the state-of-the-art methods and BISN on
synthetic data averaged over 10 trials when the sample size n decreases for p = 1000.
The corresponding standard deviation is listed in the brackets.

Sample Size n n = 2p n = p n = p/2 n = p/4 n = p/8

S
tr

u
ct

u
re

R
ec

ov
er

y P
re

ci
si

o
n BINCO 0.92 (3.44e-3) 0.94 (4.57e-3) 0.96 (2.38e-3) 0.98 (3.19e-3) 0.98 (5.10e-3)

StARS 0.48 (1.07e-2) 0.36 (2.13e-2) 0.23 (3.10e-3) 0.09 (5.98e-3) 0.05 (5.03e-4)

TIGER 0.88 (3.81e-3) 0.84 (7.28e-3) 0.77 (8.36e-3) 0.68 (7.87e-3) 0.59 (1.18e-2)

BISN 0.99 (8.50e-3) 0.96 (3.73e-3) 0.91 (4.73e-2) 0.84 (3.31e-2) 0.86 (2.48e-2)

R
ec

al
l

BINCO 0.74 (6.52e-3) 0.63 (1.21e-2) 0.50 (1.09e-2) 0.39 (9.42e-3) 0.23 (7.32e-3)

StARS 0.70 (1.48e-2) 0.64 (2.78e-2) 0.55 (1.08e-2) 0.55 (1.92e-2) 0.52 (9.01e-3)

TIGER 0.87 (1.11e-2) 0.70 (1.11e-2) 0.54 (8.43e-3) 0.44 (9.08e-3) 0.37 (8.99e-3)

BISN 0.99 (5.31e-3) 0.89 (9.12e-3) 0.57 (3.10e-2) 0.40 (1.01e-2) 0.28 (1.49e-2)

F
1
-s

co
re

BINCO 0.82 (3.70e-3) 0.76 (8.41e-3) 0.66 (9.33e-3) 0.56 (9.93e-3) 0.37 (9.48e-3)

StARS 0.57 (7.34e-3) 0.46 (8.92e-3) 0.33 (2.90e-3) 0.16 (7.54e-3) 0.09 (9.60e-4)

TIGER 0.87 (6.77e-3) 0.77 (8.44e-3) 0.64 (7.90e-3) 0.53 (8.75e-3) 0.45 (9.42e-3)

BISN 0.99 (2.37e-3) 0.92 (4.74e-3) 0.70 (1.57e-2) 0.54 (7.83e-3) 0.43 (1.51e-2)

R
u
n
n
in

g

T
im

e
(s

) BINCO 3.74e4 (3.47e3) 5.24e4 (1.14e4) 6.10e4 (6.11e3) 7.59e4 (1.01e4) 8.47e4 (2.52e4)

StARS 1.67e3 (1.44e2) 1.57e3 (1.74e2) 1.24e3 (9.74e1) 1.29e3 (1.37e2) 1.58e3 (1.69e2)

TIGER 3.13e5 (6.31e4) 8.48e4 (1.82e4) 5.14e4 (1.24e3) 1.92e4 (1.18e3) 8.01e3 (3.52e2)

BISN 2.06e2 (1.84e1) 3.03e2 (6.74) 4.29e2 (9.06) 4.79e2 (1.33e1) 5.95e2 (5.22)

for TIGER, BIG&QUIC, and G-ISTA, it is recommended to refit the estimated graph to
the data after applying these algorithms.

We also summarize the memory cost of all algorithms at the bottom of Table 3. The
theoretical space complexity of all these methods is O(p2) and we can observe that the
actual memory cost is approximately a quadratic function of the dimension p. Moreover,
the memory cost of BISN is comparable to that of the state-of-the-art methods.

Next, we discuss the performance of the methods when the sample size decreases. In
Table 4, we show the results for graph structure recovery. Note that the results from G-ISTA
and BIG&QUIC are identical, therefore, we only present the results of G-ISTA. We can find
that the performance of all methods deteriorates as the sample size decreases, as expected.
Moreover, BISN achieves the best performance in terms of recall and F1-score when n ≥ p/2.
Its performance is still comparable to the benchmark methods when n < p/2. Under this
scenario all the methods fail to reliably recover the true graph. On the other hand, BISN
takes the least amount of time to obtain the graphical models. Its computational time
increases with the decrease of the sample size, probably because there is less evidence in
data as sample size decreases and it becomes more difficult for BISN to separate the true
edges from the false ones. The same phenomenon also occurs for BINCO. As opposed to
BISN and BINCO, the running time of TIGER decreases as the sample size becomes smaller,
since its time complexity is O(min(n, p)p2). However, its computational time is still at least
one order of magnitude larger than that of BISN.

6.2. Stock Data

In this section, we analyze the daily stock returns data of the S&P500 companies during
the 2008 financial crisis (from 2007 to 2011). We only consider 453 stocks, since the

24

BISN: Bayesian Inference of Sparse Networks

Table 5: Quantitative comparison of BINCO, StARS, TIGER, and BISN for stock data

Period n p Methods No. of Edges
Precision Running

Time (s)BINCO StARS TIGER BISN

Pre-Crisis
2006-2007

501 453

BINCO 635 1 1.00 0.92 0.44 6.74e4

StARS 8487 0.07 1 0.43 0.04 1.71e3

TIGER 4130 0.14 0.89 1 0.08 2.87e4

BISN 322 0.87 0.99 0.99 1 3.21e2

Crisis
2008-2009

505 453

BINCO 1015 1 1.00 0.84 0.75 7.61e4

StARS 11595 0.09 1 0.29 0.14 2.20e3

TIGER 3755 0.23 0.90 1 0.46 3.93e4

BISN 2054 0.37 0.83 0.84 1 3.68e2

Post-Crisis
2010-2011

504 453

BINCO 784 1 1.00 0.71 0.56 8.73e4

StARS 10479 0.07 1 0.22 0.09 2.18e3

TIGER 3849 0.14 0.61 1 0.32 4.58e4

BISN 1306 0.34 0.78 0.93 1 3.63e2

data for the remaining stocks are missing in the first few years. The 2008 financial crisis
is known to be the most severe financial crisis after the Great Depression of the 1930s.
Research on financial networks for system risk modeling has surged in the aftermath of this
financial crisis, since such networks can be exploited to analyze the interactions between
financial institutions, to detect channels of risk contagion that can impair the stability of
the entire system, and to further establish which institutions are more contagious or subject
to contagion (Billio et al., 2012; Ahelegbey and Giudici, 2014; Barigozzi and Brownlees,
2019). Gaussian graphical models have been applied to infer financial networks in the fields
of both machine learning (Choi et al., 2009; Chandrasekaran et al., 2012; Fan et al., 2016;
Tarzanagh and Michailidis, 2018; Yang and Peng, 2019; Yu et al., 2019) and finance (Cont
et al., 2010; Ahelegbey and Giudici, 2014; Ahelegbey et al., 2016; Hashem and Giudici, 2016;
Cerchiello et al., 2017; Bianchi et al., 2019).

In order to check how the financial network changes during the financial crisis, we
partition the data into three parts: pre-crisis (2006-2007), crisis (2008-2009), and post-crisis
(2010-2011), according to the Federal Reserve Bank of St. Louis’ Financial Crisis Timeline.
We then apply the four methods BINCO, StARS, TIGER, and BISN to infer financial
networks for all the three parts of data. Since the ground truth network structure is not
available, we “cross validate” the results of the four methods. The results are listed in
Table 5. For entry (i, j) in the columns of precision, we compute the precision by regarding
the graph Gi resulting from method i as the estimated graph and the graph Gj resulting from
method j as the true graph. According to the definition, the precision can be calculated as
the ratio between the number of common edges in Gi and Gj and the number of edges in Gi.
In other words, it can be interpreted as the proportion of the edges in the graph estimated
by method i that can also be detected by method j. As an example, we can find that for
the pre-crisis data, the number of edges in the estimated graphs increases in the order of
BISN, BINCO, TIGER, and StARS. Moreover, we can observe that 87% of edges in the
BISN graph are also detected by BINCO and 99% of edges in the BISN graph are identified
by TIGER and StARS. Although these methods yield graphs with different sparsity, the
denser graph typically contains most of the edges in the sparser graph, indicating that these

25

Yu, Wu, Xin, and Dauwels

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●
●

●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

● ● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

● ●● ●
●

●

●

●

●

●
●

●

●
● ●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●
●

●●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●● ●

●

●
●

● ●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

(a) Pre-Crisis (322 edges)

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●
●

●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

● ● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

● ●● ●
●

●

●

●

●

●
●

●

●
● ●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●
●

●●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●● ●

●

●
●

● ●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

(b) Crisis (2054 edges)

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●
●

●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

● ● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

● ●● ●
●

●

●

●

●

●
●

●

●
● ●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●
●

●●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●● ●

●

●
●

● ●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

(c) Post-Crisis (1306 edges)

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●
●

●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

● ● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

● ●● ●
●

●

●

●

●

●
●

●

●
● ●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●
●

●●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●● ●

●

●
●

● ●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●
●
●
●
●
●
●
●
●
●

CD
CS
E
F
HC
I
IT
M
RE
TS
U

Figure 5: Financial networks resulting from BISN before, during, and after the 2008 financial
crisis.

results are consistent with each other. This conclusion also holds for the crisis and post-crisis
data in Table 5. Again, we underline that BISN achieves comparable performance to the
state-of-the-art methods with the least amount of computational time.

Now let us focus on the financial networks resulting from BISN as shown in Fig. 5. The
453 stocks can be categorized into 11 sectors according to the Global Industry Classification
Standard (GICS), namely, Consumer Discretionary (CD), Consumer Staples (CS), Energy
(E), Financials (F), Health Care (HC), Industrials (I), Information Technology (IT) Materials
(M), Real Estate (RE), Telecommunication Services (TS), and Utilities (U). By comparing
Fig. 5(a) to Fig. 5(b), we can see that the financial network becomes much denser during
the financial crisis. After the financial crisis (see Fig. 5(c), the network is sparser but is still
denser than the one before the financial crisis. Similar phenomena are observed in Yang
and Peng (2019) and Bianchi et al. (2019) where time-varying graphical models are applied
to analyze the stock returns data of 283 stocks and S&P 100 respectively. Due to risk
contagion, all companies are exposed to the economy turndown and market unrest during the
crisis period, leading to similar stock price movement and business response to the system
risk (Bullard et al., 2009). This explains the increased number of connections between
the stocks. In the post-crisis period, interactions between stocks decreases but stocks still
have more connections than in the pre-crisis period, suggesting the significant evolution of
financial structure due to the crisis (Yang and Peng, 2019).

We further compute the total number of edges within each sector and between different
sectors as shown in the last column of Table 6. It can be observed that the inner-sector
connections dominate the total number of connections. In other words, stocks from the same
sector are clustered together by BISN, especially when the network is sparse (cf. Fig. 5(a)).
Indeed, companies in the same GICS sector are supposed to have more connections. However,
the ratios between the number of the inner-sector edges and the total number of edges before,
during, and after the financial crisis are respectively 0.94, 0.57, and 0.73. The proportion
of the inner-sector edges decreases during the financial crisis, due to the greatly increased
number of the inter-sector edges. Such patterns are also found in Yang and Peng (2019). It

26

BISN: Bayesian Inference of Sparse Networks

Table 6: Number edges within the sector and connected from other sectors (i.e., inner and
inter-sector edges) for each of the 11 sectors in the BISN graphs.

Sector CD CS E F HC I IT M RE TS U All Sectors

No. of Nodes 72 32 32 59 54 62 58 23 28 6 27 453

Pre-Crisis
2006-2007

No. of Inner-Sector Edges 14 5 57 77 11 38 12 7 47 1 35 304

No. of Inter-Sector Edges 5 5 2 5 5 5 2 4 1 1 1 18

Total No. of Edges 19 10 59 82 16 43 14 11 48 2 36 322

Crisis
2008-2009

No. of Inner-Sector Edges 138 48 122 203 117 153 124 44 102 7 106 1164

No. of Inter-Sector Edges 239 124 86 289 221 288 241 141 72 25 54 890

Total No. of Edges 377 172 208 492 338 441 365 185 174 32 160 2054

Post-Crisis
2010-2011

No. of Inner-Sector Edges 110 34 88 176 107 133 102 27 83 3 86 949

No. of Inter-Sector Edges 84 58 50 72 82 156 112 5 11 19 16 357

Total No. of Edges 194 92 138 248 189 289 214 81 94 22 102 1306

Table 7: Increased percentage of the inter-sector edges for the 11 sectors.

Sector IT RE F I U CD HC E M TS CS

Increased Percentage of Inter-sector Edges (%) 119.5 71 56.8 56.6 53 46.8 43.2 42 34.25 24 23.8

No. of Nodes 58 28 59 62 62 72 54 32 23 6 32

seems that the financial crisis has a larger influence on the inter-sector connections. On the
other hand, we are also interested in the number of the inter-sector connections, since they
provide us a measure of how vulnerable or contagious one sector is in the entire financial
system. According to the theory of system risk, financial institutions with more connections
are more sensitive to the financial crisis, or conversely, their failure is more likely to cause the
breakdown of the entire system (Billio et al., 2012; Ahelegbey and Giudici, 2014; Barigozzi
and Brownlees, 2019). To this end, we compute the number of edges between one sector and
the other sectors excluding this one for each of the 11 sectors in Table 6. We further calculate
the increased percentage of the inter-sector edges for each sector during the financial crisis
by comparing the seventh row with the fourth row in Table 6, and then sort all sectors
in the descending order of the increased percentage in Table 7. As demonstrated in the
table, the increased percentage is typically larger for sectors with more stocks. There are
two exceptions though, i.e., RE (Real Estate) and CS (Consumer Staples). The increased
percentage of the inter-sector edges for RE is large, whereas the number of nodes in the
RE sector is small, indicating that RE is more risk contagious in the system during the
financial crisis. In fact, RE is known as the trigger of the 2008 financial crisis (Williams,
2010). On the other hand, although there is a relatively large number of stocks in the CS
sector, its increased percentage is small. Note that the companies in the CS sector typically
produce or distribute goods that people buy out of necessity regardless of the economic
conditions (Asinas, 2018). Thus, this sector is more robust to the financial crisis.

27

Yu, Wu, Xin, and Dauwels

 and cellular ion homeostasis

proteolysis involved in cellular protein catabolic process

rRNA processing

rRNA processing and proteolysis involved in cellular
protein catabolic process

cellular amino acid metabolic process

cellular ion homeostasis

proteolysis involved in cellular protein catabolic process
and cellular ion homeostasis

Figure 6: Gene regulatory network among genes associated with four biological processes:
rRNA processing, proteolysis involved in cellular protein catabolic process, cellular
amino acid metabolic process, and cellular ion homeostasis.

6.3. Gene Data

In this section, we exploit BISN to learn gene regulatory networks form the Rosetta
Inpharmatics Compendium of gene expression profiles (Hughes et al., 2000). The data set
contains the 300 expression profiles of the yeast Saccharomyces cerevisiae for 6316 genes. As
mentioned in Section 1, reliable estimation of gene regulatory networks plays an indispensable
role in systematically understanding the molecular mechanism, providing meaningful insights
into the mechanism of diseases that occur when cellular processes are dysregulated, and
further finding the possible therapeutic targets for the diseases (Su et al., 2018; Jia and
Liang, 2018; Zhao and Duan, 2019). Due to the high dimensionality and complexity of the
gene data, inference of gene regulatory networks typically resort to statistical methods. The
Gaussian graphical model has proven itself as a useful tool in this field (Banerjee et al., 2008;
Fitch and Jones, 2009; Rolfs et al., 2012; Hsieh et al., 2014; Chun et al., 2015; Fan et al.,
2016; Tarzanagh and Michailidis, 2018; Deng et al., 2018; Zhao and Duan, 2019).

We notice that the three benchmark methods, BINCO, StARS, and TIGER, can barely
scale up to 5000 thousand variables. Therefore, we only present the gene regulatory
network yielded by BISN. Also, 1.61% data are missing at random, and so we infer the
variational distribution of these missing data along with that of the precision matrix. The
resulting network only has 4306 edges, which is quite sparse, since the sample size n is much
smaller than the dimension p in this data set. According to the gene ontology database
(http://www.yeastgenome.org), different genes are involved in different biological processes.
Note that some genes have more than one functional category. Here we choose four biological
processes with a small number of shared genes between each other, that is, rRNA processing,

28

BISN: Bayesian Inference of Sparse Networks

proteolysis involved in cellular protein catabolic process, cellular amino acid metabolic
process, and cellular ion homeostasis. The subgraph corresponding to the genes involved in
these four processes is depicted in Fig. 6. We can see that genes with the same annotations
are clustered together in an automatic fashion. In addition, the network also shows how genes
with different annotations are connected. Such edges represent crosstalks between genes.
Crosstalks are known to happen among the genes of the yeast Saccharomyces cerevisiae, and
are essential to understanding how a cell integrate internal and external stimuli and adjust
cellular metabolism, growth and proliferation (Simpson-Lavy et al., 2015; Shashkova et al.,
2015).

6.4. Functional Magnetic Resonance Imaging (fMRI) data

In this section, we apply BISN to infer functional brain networks based on fMRI data. Recent
studies in neural science have shown that functional brain networks typically undergo changes
during different cognitive activities (Liang et al., 2016) and development (Cao et al., 2016),
as well as in neurological and mental disorders, such as epileptic seizures (Evangelisti et al.,
2018), Alzheimer’s disease (Schumacher et al., 2018), autism spectrum disorder (Keown
et al., 2017), and hyperactivity disorder (van den Heuvel et al., 2017). Learning and
understanding the brain networks and their changes can shed light upon the biological
mechanisms underlying human cognition, as well as health and disease (Karwowski et al.,
2019). These networks can also help to differentiate between different cognitive tasks and
between patients and healthy people. Gaussian graphical models are of widespread utility
for inferring functional brain networks (Dauwels et al., 2012; Xu and Lindquist, 2015; Ortiz
et al., 2015; Belilovsky et al., 2016; Yu and Dauwels, 2016, 2018; Zhang et al., 2018a, 2019),
due to their simplicity and scalability.

Here we consider the fMRI-based mind-state classification problem described in Mitchell
et al. (2004). The data set consists of 40 experiments for each of the 6 subjects in half of which
the subject is given a sentence and in the other half a picture. In each experiment, there are
16 fMRI images recorded when the subject is looking at the sentence or the picture, each
with around 5000 voxels. These voxels can be divided into 24 anatomical regions of interest
(ROIs). They are calcarine sulcus (CALC), dorsolateral prefrontal cortex - left & right
(LDLPFC, RDLPFC), frontal eye fields left & right (LFEF, RFEF), inferior parietal lobule
left & right (LIPL, RIPL), intraparietal sulcus left & right (LIPS, RIPS), opercularis left
& right (LOPER, ROPER), posterior precentral sulcus left & right (LPPREC, RPPREC),
supramarginal gyrus left & right (LSGA, RSGA), superior parietal lobule left & right
(LSPL, RSPL), temporal lobe left & right (LT, RT), triangularis left & right (LTRIA,
RTRIA), supplementary motor areas (SMA), inferior temporal lobule left & right (LIT,
RIT). The objective is to differentiate whether a subject is looking at the sentence or the
picture given the fMRI images.

We first combine the fMRI images respectively for the sentence and the picture stimulus
for each subject, and correspondingly apply BISN to infer the functional brain network for
all observed voxels. The results are summarized in Table 8. We can find that for all subjects
and for both cognitive tasks, voxels from the same ROIs have more connections than those
from different ROIs, since the neurons within each ROI are supposed to work together more
closely. We then count the number of different edges inside each ROI and between every

29

Yu, Wu, Xin, and Dauwels

Table 8: Number of inner and inter-region edges for the 6 subjects when the subject is
looking at a sentence and a picture.

Subject ID 04799 04820 04847 05675 05680 05710

No. of Voxels 4949 5015 4698 5135 5062 4634

No. of Inner-region Edges (Sentence) 5746 4088 4550 4550 3622 4229

No. of Inter-region Edges (Sentence) 1634 660 1940 671 399 836

No. of Inner-region Edges (Picture) 6048 4639 5221 4829 4089 4029

No. of Inter-region Edges (Picture) 1755 736 2113 736 471 823

Table 9: 10 Regions with the largest number of different edges for each of the 6 subjects.
(LDLPFC, RLDPFC) denotes the connectivity between LDLPFC and RLDPFC.

Subject ID 10 Regions Sorted in Descending Order of the No. of Different Edges

04799 LDLPFC, RDLPFC, LIT, RT, LT, CALC, RIPL, RIT, LIPL, (LDLPFC, RLDPFC)

04820 LT, LDLPFC, RT, CALC, RDLPFC, LSPL, RSPL, RTRIA, LIT, SMA

04847 LDLPFC, SMA, RDLPFC, CALC, LT, LSPL, LIT, RT, RIT, LIPS

05675 LT, LDLPFC, CALC, RT, RDLPFC, LSPL, LIPL, RIT, RIPL, RSPL

05680 LDLPFC, LT, CALC, RDLPFC, RT, LSPL, LIPL, ROPER, LOPER, RIPS

05710 LDLPFC, LT, RDLPFC, RT, RIT, LIPL, RIPL, CALC, (LDLPFC, RLDPFC), LIT

pair of ROIs, and list the 10 regions with the largest number of different edges for each
subject in Table 9. It can be observed that the commonly chosen regions for all subjects are
CALC, LDLPFC, LT, RDLPFC, and RT. In Do and Yang (2014), a Gaussian Naive Bayes
(GNB) classifier is trained based on the most active voxels from each ROI, and 7 regions
that produce the highest classification accuracy are selected. They are CALC, LDLPFC,
LIPL, LIPS, LOPER, LT, and LTRIA. Three out of the five regions selected by BISN are
also selected in Do and Yang (2014). Interestingly, besides the left part of the dorsolateral
prefrontal cortex and the temporal lobe (i.e., LDLPFC and LT), BISN also includes the
right part of these two regions, RDLPFC and RT. In neural science, there exists evidence
showing that RDLPFC is involved in visual working memory (Wang et al., 2018), while RL
contributes to visual signal processing (Doyon and Milner, 1991; Milner, 2003). This may
explain why the interactions in these two regions yielded by BISN are quite different for the
two cognitive tasks.

Next, we employ BISN to learn a brain network for each of the 40 experiments and
for each of the five selected regions individually, and use the network structure to train a
random forest (RF) classifier in order to distinguish between the sentence and the picture
stimulus. In other words, the input to the classifier is the zero pattern of the BISN precision
matrices. We apply leave-one-out cross validation to test the performance of the classifier
based on graph structure and show the resulting classification accuracy in the second row in
Table 10. Gaussian graphical models have been applied to classification for three subjects in

30

BISN: Bayesian Inference of Sparse Networks

Table 10: Classification accuracy resulting from different methods.

Subject ID 04799 04820 04847 05675 05680 05710

RF Classifier based on brain connectivity inferred by BISN 92.5% 95% 100% 92.5% 97.5% 90%

Classifier based on likelihood (Rish and Grabarnik, 2014) N.A. 95% 95% N.A. 95% N.A.

SVM Classifier based on voxel values (Rish and Grabarnik, 2014) N.A. 90% 97.5% N.A. 87.5% N.A.

GNB Classifier based on voxel values (Do and Yang, 2014) 92.5% 97.5% 100% 98.75% 95% 95%

this data set in Rish and Grabarnik (2014). Up to 300 voxels from the 7 regions selected
in Do and Yang (2014) that have the highest discriminative ability are chosen. The graphical
models for both stimuli are then estimated from the training data by solving the penalized
maximum likelihood problem (40) using the frequentist method SINCO (Scheinberg and
Rish, 2010). The penalty parameter is selected manually. The testing data is classified into
the class with a larger likelihood. As a benchmark, the support vector machine (SVM) is also
applied for classification in Rish and Grabarnik (2014). The results from the two classifiers
in Rish and Grabarnik (2014) and the GNB classifier in Do and Yang (2014) are listed in
the bottom rows in Table 10. We can tell from the table that the accuracy given by the
proposed method is comparable to the three benchmark methods. Different from the other
three methods, we do not select voxels that are the most active or most discriminative from
the selected regions as in Do and Yang (2014) and Rish and Grabarnik (2014). Instead, we
use all voxels and then BISN learns sparse networks between them. The high classification
accuracy suggests that the brain network resulting from BISN also provides an effective tool
for determining the mind state.

7. Conclusion and Future Work

We introduced BISN for Gaussian graphical model selection, which is tuning-free and has a low
time complexity that is quadratic in dimension. Numerical results show that BISN achieves
comparable or better performance than the state-of-the-art methods, within a computational
time that is several orders of magnitude smaller for large-scale problems. Moreover, BISN
can be extended to handle missing data and latent variables in a straightforward manner.

Since BISN copes with the LDL decomposition of the precision matrix, the L matrix
can be dense even if the true precision matrix is sparse. Moreover, BISN is a Bayesian
method, and therefore, we need to store the mean and the variance of every element in L,
regardless of whether the true value is zero or not. Indeed, given 32 GB of memory, BISN
can tackle around 15,000 variables, whereas BIG&QUIC can deal with one million variables
if the penalty parameter is known and the graph is very sparse (Hsieh et al., 2013). In other
words, if the prior information or expert knowledge is available of the penalty parameter in
the tuning-sensitive methods (e.g., G-ISTA and BIG&QUIC), these methods can be faster
and more memory efficient than BISN, since they only store a sparse precision matrix in the
memory and take advantage of the sparsity to simplify the learning process. On the other
hand, when such information is unknown, which is often the case in practice, BISN provides
an effective and efficient tool to learn the structure of the graphical model from data. In

31

Yu, Wu, Xin, and Dauwels

future work, we intend to make use of the sparsity of the estimated precision matrix to
further reduce the time and space complexity of BISN.

In addition, BISN can only deal with Gaussian distributed variables so far. In future
work, we plan to extend BISN for non-Gaussian data by coupling it with copulas (Liu et al.,
2009; Yu et al., 2012; Dauwels et al., 2013).

We also emphasize that the KL proximal DRSG algorithm proposed in this paper can be
applied to general finite sum problems in which the objective function can be decomposed
as the sum of one smooth term that can be nonconvex and one convex term that can be
nonsmooth. Furthermore, the KL divergence can be replaced by the more general Bregman
divergence in the proof. Such finite sum problems arise frequently in the field of machine
learning, cf. (Reddi et al., 2016). KL proximal DRSG offers a computationally attractive
alternative to solve these problems when the number of terms in the finite sum is large. In
future work, it is interesting to prove whether the convergence rate of DRSG can be further
improved when applied to (strongly) convex and smooth problems.

Acknowledgments

We are grateful for the constructive comments from Prof. Peter Spirtes and three anony-
mous reviewers. We would also like to acknowledge the support for this project from
MOE (Singapore) project 2017-T2-2-126 and the NAM Advanced Biomedical Imaging
Program (FY2016) between Nanyang Technological University, Singapore and Medical
University of Vienna, Austria. The MATLAB C++ MEX code of BISN is available at
https://github.com/fhlyhv/BISN. The major part of the code is implemented using the
Armadillo C++ template library (Sanderson and Curtin, 2016)

Appendix A. Derivation of the Jacobian Matrix and the Absolute Value
of Its Determinant

The Jacobian matrix J contains the partial derivative of all lower triangular entries in K
with regard to Ljk and Djj for j = 1, · · · , p and k < j, which can be written as:

J =

∂K11

∂D11

∂K21

∂D11

∂K22

∂D11

∂K31

∂D11
· · · ∂Kp−1,p

∂D11

∂Kpp

∂D11
∂K11

∂L21

∂K21

∂L21

∂K22

∂L21

∂K31

∂L21
· · · ∂Kp−1,p

∂L21

∂Kpp

∂L21
∂K11

∂D22

∂K21

∂D22

∂K22

∂D22

∂K31

∂D22
· · · ∂Kp−1,p

∂D22

∂Kpp

∂D22
∂K11

∂L31

∂K21

∂L31

∂K22

∂L31

∂K31

∂L31
· · · ∂Kp−1,p

∂L31

∂Kpp

∂L31
...

...
...

...
. . .

...
...

∂K11

∂Lp−1,p

∂K21

∂Lp−1,p

∂K22

∂Lp−1,p

∂K31

∂Lp−1,p
· · · ∂Kp−1,p

∂Lp−1,p

∂Kpp

∂Lp−1,p
∂K11

∂Dpp

∂K21

∂Dpp

∂K22

∂Dpp

∂K31

∂Dpp
· · · ∂Kp−1,p

∂Dpp

∂Kpp

∂Dpp

. (72)

32

BISN: Bayesian Inference of Sparse Networks

In the above expression, the indices of both the denominators and nominators in the partial
derivatives follow the column-major order of non-zero entries in a lower triangular matrix.
Note that Ljj = 1 for all j are constant and Djj is the argument we focus on.

Given that K = LDLT , we can obtain that for the lower triangular off-diagonal entries
in J :

∂Kjk

∂Lab
= 0 ∀a 6= j or b > k, (73)

∂Kjk

∂Daa
= 0 ∀a > k. (74)

As a result, J is an upper triangular matrix, and therefore, its determinant equals the
product of its diagonal entries. For the diagonal entries of J , we have:

∂Kjk

∂Ljk
=Dkk, (75)

∂Kjj

∂Djj
= 1. (76)

Taken together, the absolute value of the determinant is:

|det(J)| =
p∏
j=1

Dp−j
jj . (77)

Note that the Jacobian matrix can also be formulated by permuting columns and rows
of J in (72) simultaneously, but permutation does not change the absolute value of the
determinant.

Appendix B. Derivation of the Closed-Form Expression of L1

As mentioned in the main body of the paper, the original Bayesian model can be factorized
as (13):

p(x{1:n}, L,D,λ, ω) = p(x{1:n}|L,D)p(L,D|λ, ω)p(λ)p(ω) (78)

=
n∏
i=1

p(x{i}|L,D)| det(J)|
p∏
j=1

p∏
k=j+1

[
p(Lj,:DL

T
k,:|λjk, ω)p(λjk)

]
· p(ω), (79)

where

p(x{i}|L,D) ∝ exp
(
− 1

2
x{i}

T
LDLTx{i}

)
, (80)

p(Lj,:DL
T
k,:|λjk, ω) ∝

√
ωλjk exp

(
− 1

2
ωλjk

(
p(Lj,:DL

T
k,:

)2)
, (81)

p(λjk) =
1

π
λ
− 1

2
jk

(
λjk + 1

)−1
, ∀λjk > 0, (82)

p(ω) ∝ 1

w
. (83)

33

Yu, Wu, Xin, and Dauwels

The variational distributions are specified as in Eq. (16)-(19).
The expectation L1 can be decomposed as:

L1 =Eq
[

log p(x{1:n}, L,D,λ, ω)
]

=Eq
[

log p(x{1:n}|L,D)
]

+ Eq
[

log p(L,D|z, λ0, ω)
]

+ Eq
[

log p(λ)
]

+ Eq
[

log p(ω)
]
.
(84)

We then turn our attention to each term in L1 (84).

Eq
[

log p(x{1:n}|L,D)

]
=
n

2

n∑
i=1

〈logDjj〉 −
1

2
〈
n∑
i=1

x{i}
T
LDLTx{i}〉+ c (85)

=
n

2

n∑
i=1

〈logDjj〉 −
n

2
tr(MLMDM

T
L S)− n

2
diag(S)TVLMD1 + c,

(86)

where c summarizes all irrelevant constants and

〈logDjj〉 =ψ(αj)− log(βj), (87)

MLjk = 〈Ljk〉 =
hjk
ζjk

, (88)

VLjk = 〈L2
jk〉 − 〈Ljk〉2 =

1

ζjk
, (89)

MDjj = 〈Djj〉 =
αj
βj
, (90)

VDjj = 〈D2
jj〉 − 〈Djj〉2 =

αj
β2j
. (91)

Next, for p(Lj,:DL
T
k,:|λjk, ω),

Eq[log p(L,D|z, λ0, ω)] =

p∑
j=1

(p− j)〈logDjj〉+
p(p− 1)

4
〈logω〉

+
1

2

p∑
j=1

p∑
k=j+1

[
〈log λjk〉 − 〈ω〉〈λjk〉〈(LDLT) ◦ (LDLT)〉jk

]
+ c,

(92)

where c summarizes all irrelevant constants, and

〈λjk〉 =
1

djk exp(djk)E1(djk)
− 1, (93)

〈ω〉 =
a

b
. (94)

We next focus on the term 〈(LDLT)◦(LDLT)〉jk. According to the properties of second-order
moments,

〈(LDLT) ◦ (LDLT)〉jk = 〈LDL〉2jk + V[LDL]jk = [MLMDML]2jk + V[LDL]jk, (95)

34

BISN: Bayesian Inference of Sparse Networks

where V[LDL]jk represents the variance of [LDL]jk. Note that [LDLT]jk =
∑p

i=1DiiLjiLik
and we have assumed that Ljk and Djj are independent for all j and k in the variational
distribution. Thus, the off-diagonal elements in the product LDLT are given by the sum of
the product of independence variables. Moreover, for two independent variables X and Y ,
we have

V[XY] = 〈X〉2V[Y] + V[X]〈Y 〉2 + V[X]V[Y]. (96)

It follows from the above equality that:

V[LDL]jk = V[

p∑
j=1

DjjL:,jL
T
:,j]jk =

p∑
j=1

V[DjjL:,jL
T
:,j]jk

=

p∑
j=1

{
〈Djj〉2V[L:,jL

T
:,j]jk + V[Djj]〈L:,jL

T
:,j〉2jk + V[Djj]V[L:,jL

T
:,j]jk

}
, (97)

where V[L:,jL
T
:,j]jk can be further expanded as:

V[L:,jL
T
:,j]jk =

{
(〈L:,j〉 ◦ 〈L:,j〉)V[L:,j]

T + V[L:,j](〈L:,j〉 ◦ 〈L:,j〉)T

+ V[L:,j]V[L:,j]
T
}
jk
. (98)

As a result,

〈(LDLT) ◦ (LDLT)〉jk =
[
(MLMDM

T
L) ◦ (MLMDM

T
L) + (ML ◦ML)(MD ◦MD + VD)V T

L

+ VL(MD ◦MD + VD)(ML ◦ML)T + VL(MD ◦MD + VD)V T
L

+ (ML ◦ML)VD(ML ◦ML)T
]
jk
. (99)

The expectation Eq[log p(Lj,:DL
T
k,:|λjk, ω)] can be expressed as:

Eq[log p(L,D|z, ω, λ0)]

=

p∑
j=1

(p− j)〈logDjj〉+
p(p− 1)

4
〈logω〉+

1

2

p∑
j=1

p∑
k=j+1

〈log λjk〉

− 1

4
tr
{

Λ
[
(MLMDM

T
L) ◦ (MLMDM

T
L) + (ML ◦ML)(MD ◦MD + VD)V T

L

+ VL(MD ◦MD + VD)(ML ◦ML)T + VL(MD ◦MD + VD)V T
L

+ (ML ◦ML)VD(ML ◦ML)T
]}

+ c, (100)

where Λjk = 〈ω〉〈λjk〉. Note that the summation in the last term in (92) can be equivalently
written as the trace in the above expression due to the fact that Λjj = 0 for all j.

The remaining expectations can be evaluated as:

Eq[log p(λ)] = − 1

2

p∑
j=1

p∑
k=j+1

〈log λjk〉 −
p∑
j=1

p∑
k=j+1

〈log(λjk + 1)〉+ c, (101)

Eq[log p(ω)] = − 〈logω〉. (102)

Taken together, we can obtain L1 in (23).

35

Yu, Wu, Xin, and Dauwels

Appendix C. Derivation of the Update Rules

As the variational distributions in BISN are in the minimal exponential family, the corre-
sponding natural parameters θ can be updated as follows according to the framework of the
KL proximal gradient method [20]:

θ(κ+1) = (1− η(κ))θ(κ) + η(κ)∇µL1|µ=µ(κ) , (103)

where η(κ) is the step size, and µ denotes the mean parameters of the variational distributions.
In order to obtain the update rules, we first need to calculate the gradient ∇µL1 of L1

with respect to the mean parameters µ. In the proposed model, the mean parameters are
〈Ljk〉 and 〈L2

jk〉 for q(Ljk), 〈logDjj〉 and 〈Djj〉 for q(Djj), 〈zjk〉 for q(zjk), 〈log πjk〉 and
〈log(1− πjk)〉 for q(πjk), 〈logω〉 and 〈log(1− ω)〉 for q(ω), and 〈log λ0〉 and 〈λ0〉 for q(λ0).
The corresponding gradient ∇µL1 for these mean parameters can be derived as:

∂L1
∂〈Ljk〉
∂L1
∂〈L2

jk〉

 =

∂〈Ljk〉
∂MLjk

∂〈L2
jk〉

∂MLjk

∂〈Ljk〉
∂VLjk

∂〈L2
jk〉

∂VLjk

−1

∂L1
∂MLjk
∂L1
∂VLjk

 =

∂L1
∂MLjk

− 2MLjk
∂L1
∂VLjk

∂L1
∂VLjk

 , (104)

∂L1
∂〈Djj〉
∂L1

∂〈logDjj〉

 =

∂〈Djj〉
∂αj

∂〈logDjj〉
∂αj

∂〈Djj〉
∂βj

∂〈logDjj〉
∂βj

−1

∂MDjj

∂αj

∂VDjj
∂αj

∂MDjj

∂βj

∂VDjj
∂βj

∂L1
∂MDjj
∂L1
∂VDjj

=

∂L1

∂MDjj
+

1

βj

(
1 +

αjψ
′(αj)

αjψ′(αj)− 1

) ∂L1
∂VDjj

n

2
+ p− j − αj

β2j (αjψ′(αj)− 1)

∂L1
∂VDjj

 , (105)

∂L1
∂〈logω〉

=
p(p− 1)

4
− 1, (106)

∂L1
∂〈ω〉

= − 1

2

p∑
j=1

p∑
k=j+1

〈λjk〉〈(LDLT) ◦ (LDLT)〉jk, (107)

∂L1
∂〈λjk〉

= − 1

2
〈ω〉〈(LDLT) ◦ (LDLT)〉jk, (108)

where

∂L1
MLjk

=
{
− [nS + (MLMDM

T
L) ◦ Λ]MLMD − [ML(MD ◦MD + VD)] ◦ (ΛVL)

− (MLVD) ◦ [Λ(ML ◦ML)]
}
jk
, (109)

∂L1
VLjk

=
{
− n

2
diag(S) diag(MD)T − 1

2
Λ(ML ◦ML + VL)(MD ◦MD + VD)

}
jk
, (110)

∂L1
MDjj

=
{
− 1

2
diag

{
MT
L [nS + (MLMDM

T
L) ◦ Λ]ML

}
− n

2
V T
L diag(S)

− 1

2
diag

[
V T
L Λ(VL + 2ML ◦ML)

]
◦ diag(MD)

}
j
, (111)

36

BISN: Bayesian Inference of Sparse Networks

∂L1
VDjj

=− 1

4
diag

[
(ML ◦ML + VL)TΛ(ML ◦ML + VL)

]
j
, (112)

and

〈(LDLT) ◦ (LDLT)〉
= (MLMDM

T
L) ◦ (MLMDM

T
L) + (ML ◦ML)(MD ◦MD + VD)V T

L

+ VL(MD ◦MD + VD)(ML ◦ML)T + VL(MD ◦MD + VD)V T
L + (ML ◦ML)VD(ML ◦ML)T

= (MLMDM
T
L) ◦ (MLMDM

T
L) + (ML ◦ML + VL)(MD ◦MD + VD)(ML ◦ML + VL)T

− (ML ◦ML)(MD ◦MD)(ML ◦ML)T . (113)

Given the gradients, the updated rules for all natural parameters can then be derived as:

h
(κ+1)
jk = (1− η(κ))h(κ)jk + η(κ)

∂L1
∂〈Ljk〉

, (114)

ζ
(κ+1)
jk = (1− η(κ))ζ(κ)jk − 2η(κ)

∂L1
∂〈L2

jk〉
, (115)

α
(κ+1)
j = (1− η(κ))α(κ)

j + η(κ)
(∂L1
∂〈logDjj〉

+ 1
)
, (116)

β
(κ+1)
j = (1− η(κ))β(κ)j − η

(κ) ∂L1
∂〈Djj〉

, (117)

ε
(κ+1)
j = (1− η(κ))ε(κ)j + η(κ)

∂L1
∂〈zjk〉

, (118)

a(κ+1) = (1− η(κ))a(κ)0 + η(κ)
(∂L1
∂〈logω〉

+ 1
)
, (119)

b(κ+1) = (1− η(κ))b(κ)0 − η
(κ) ∂L1
∂〈ω〉

, (120)

d
(κ+1)
jk = (1− η(κ))d(κ)jk − η

(κ) ∂L1
∂〈λjk〉

. (121)

Substitute (104)-(108) into (114)-(121) and we can obtain the update rules in Eqs. (24)-(30)
in the main body.

Appendix D. Proof of Proposition 1

Before proving Proposition 1, we would like to introduce a lemma:

Lemma 1 (Khan et al., 2016) Suppose all assumptions in Section 4 are satisfied. Then
the following holds for µ(κ) in its domain, any real-valued column vector R, ρ > 0, and
g(κ) = g(µ(κ), R, ρ):

RTg(κ) ≥ γ‖g(κ)‖2 +
1

ρ
[h(µ(κ+1) − h(µ(κ))], (122)

where γ is defined in (55).

37

Yu, Wu, Xin, and Dauwels

Next, let us return to the main thread. Since f(µ) is l-smooth, we have:

f(µ(κ+1)) ≤ f(µ(κ)) +∇f(µ(κ))T (µ(κ+1) − µ(κ)) +
l

2
‖µ(κ+1) − µ(κ)‖2. (123)

It follows from the definition g(κ) = (µ(κ) − µ(κ+1))/ρ that

f(µ(κ+1)) ≤ f(µ(κ))− ρ∇f(µ(κ))Tg(κ) +
lρ2

2
‖g(κ)‖2. (124)

Note that we assume that the step size is a constant ρ in Proposition 1. We further expand
the second term on the right hand side (RHS) and obtain:

f(µ(κ+1)) ≤ f(µ(κ))− ρR(κ)Tg(κ) + ρ[R(κ) −∇f(µ(κ))]Tg(κ) +
lρ2

2
‖g(κ)‖2. (125)

Substituting Lemma 1 into the above inequality yields:

f(µ(κ+1)) ≤ f(µ(κ))− [γρ‖g(κ)‖2 + h(µ(κ+1))− h(µ(κ))] + ρ[R(κ) −∇f(µ(κ))]Tg(κ)

+
lρ2

2
‖g(κ)‖2. (126)

Recall that −L̃(µ) = f(µ) + h(µ), and therefore,

−L̃(µ(κ+1)) ≤ − L̃(µ(κ))− γρ‖g(κ)‖2 + ρ[R(κ) −∇f(µ(κ))]Tg(κ) +
lρ2

2
‖g(κ)‖2. (127)

By applying Cauchy-Schwarz and Young’s inequality to the product ρ[R(κ)−∇f(µ(κ))]Tg(κ),
for any c1 > 0, we have:

−L̃(µ(κ+1)) ≤ − L̃(µ(κ))− γρ‖g(κ)‖2 +
ρ

2c1
‖g(κ)‖2 +

ρc1
2
‖R(κ) −∇f(µ(κ))‖2 +

lρ2

2
‖g(κ)‖2.

(128)

Summing both sides of the above inequality from κ = 0 to κ = t gives:

−L̃(µ(t)) ≤ − L̃0 −
[(
γ − 1

2c1

)
ρ− l

2
ρ2
] t−1∑
κ=0

‖g(κ)‖2 +
ρc1
2

t−1∑
κ=0

‖R(κ) −∇f(µ(κ))‖2, (129)

where L̃0 = L̃(µ(0)). Since L̃∗ ≥ L̃(µ(t)), by taking expectation over the distribution of
the random subsets S(κ) on both sides of the above inequality and noticing that ‖R(0) −
∇f(µ(0))‖2 = 0, we can obtain the results in Proposition 1.

Appendix E. Proof of Proposition 2

Next, let us turn our attention to E[‖R(κ) −∇f(µ(κ))‖2], which can be expanded as:

E[‖R(κ) −∇f(µ(κ))‖2]
=E[‖R(κ) −∇f(µ(κ))− r(κ)(R(κ−1) −∇f(µ(κ−1))) + r(κ)(R(κ−1) −∇f(µ(κ−1)))‖2]

38

BISN: Bayesian Inference of Sparse Networks

=E[‖R(κ) − r(κ)R(κ−1) − (∇f(µ(κ))− r(κ)∇f(µ(κ−1))) + r(κ)(R(κ−1) −∇f(µ(κ−1)))‖2]
=E[‖R(κ) − r(κ)R(κ−1)‖2] + E[‖∇f(µ(κ))− r(κ)∇f(µ(κ−1))‖2]

+ r(κ)
2
E[‖R(κ−1) −∇f(µ(κ−1)‖2]− 2E[(R(κ) − r(κ)R(κ−1))T (∇f(µ(κ))− r(κ)∇f(µ(κ−1)))]

+ 2r(κ)E[R(κ) − r(κ)R(κ−1)]TE[R(κ−1) −∇f(µ(κ−1))]

− 2r(κ)E[∇f(µ(κ))− r(κ)∇f(µ(κ−1))]TE[R(κ−1) −∇f(µ(κ−1))]. (130)

According to the definition of R(κ) in (58),

E[(R(κ) − r(κ)R(κ−1))T (∇f(µ(κ))− r(κ)∇f(µ(κ−1)))] = E[‖∇f(µ(κ))− r(κ)∇f(µ(κ−1))‖2],
E[R(κ−1) −∇f(µ(κ−1))] = 0.

As a result, E[‖R(κ) −∇f(µ(κ))‖2] can be written as:

E[‖R(κ) −∇f(µ(κ))‖2] =E[‖R(κ) − r(κ)R(κ−1)‖2]− E[‖∇f(µ(κ))− r(κ)∇f(µ(κ−1)‖2]

+ r(κ)
2
E[‖R(κ−1) −∇f(µ(κ−1)‖2]. (131)

By applying the above equation recursively w.r.t. κ, we can obtain:

E[‖R(κ) −∇f(µ(κ))‖2] =
κ∑

m=1

[
κ∏

j=m+1

r(j)
2
(
E[‖R(m) − r(m)R(m−1)‖2]− E[‖∇f(µ(m))

− r(m)∇f(µ(m−1))‖2]
)]

+
κ∏
j=1

r(j)
2
E[‖R(0) −∇f(µ(0))‖2].

(132)

Since we compute the exact gradient in the first step, E[‖R(0) −∇f(µ(0))‖2] = 0 and we
can obtain the results in Proposition 2.

Appendix F. Proof of Proposition 3

In this appendix, we start with a lemma on the variance of R(κ) − r(κ)R(κ−1).

Lemma 2 Given the definition of the recursive gradient R(κ) in (58), we can obtain the
following equality:

E[‖R(κ) − r(κ)R(κ−1)‖2]− E[‖∇f(µ(κ))− r(κ)∇f(µ(κ−1))‖2]

=
1

s

p− s
p− 1

[
1

p

p∑
j=1

‖∇fj(µ(κ))− r(κ)∇fj(µ(κ−1))‖2 − ‖∇f(µ(κ))− r(κ)∇f(µ(κ−1))‖2
]
.

(133)

Proof Define

ξj = ∇fj(µ(κ))− r(κ)∇fj(µ(κ−1)), (134)

39

Yu, Wu, Xin, and Dauwels

and we can express E[‖R(κ)− r(κ)R(κ−1)‖2]−E[‖∇f(µ(κ))− r(κ)∇f(µ(κ−1))‖2] as a function
of ξj :

E[‖R(κ) − r(κ)R(κ−1)‖2]− E[‖∇f(µ(κ))− r(κ)∇f(µ(κ−1))‖2]

=E

[∥∥∥∥1

s

∑
j∈S(κ)

ξ

∥∥∥∥2
]
− 1

p

p∑
j=1

ξj (135)

=E

[∥∥∥∥1

s

∑
j∈S(κ)

ξ

∥∥∥∥2
]
− E[ξ] (136)

=E

[∥∥∥∥1

s

∑
j∈S(κ)

(
ξj − E[ξ]

)∥∥∥∥2
]
, (137)

where S(κ) is a random subset of {1, · · · , p} with cardinality s as defined in (58). On the
other hand, (137) can be rewritten as:

1

s

∑
j∈S(κ)

(
ξj − E[ξ]

)
=

1

s

p∑
j=1

wj
(
ξj − E[ξ]

)
, (138)

where wj = 1 only if j ∈ S(κ) and wj = 0 otherwise. It is easy to see that

E[w2
j] = E[wj] =

s

p
, (139)

E[wjwk] =
s(s− 1)

p(p− 1)
, ∀j 6= k. (140)

As such, we can express the LHS of (133) as:

E[‖R(κ) − r(κ)R(κ−1)‖2]− E[‖∇f(µ(κ))− r(κ)∇f(µ(κ−1))‖2]

=E

[∥∥∥∥1

s

p∑
j=1

wj
(
ξj − E[ξ]

)∥∥∥∥2
]

=
1

s2

(
p∑
j=1

E[w2
j]
∥∥ξj − E[ξ]

∥∥2 +

p∑
j=1

∑
k 6=j

E[wjwk]
(
ξj − E[ξ]

)T (
ξk − E[ξ]

))
(141)

=
1

s2

(
s

p

p∑
j=1

∥∥ξj − E[ξ]
∥∥2 +

s(s− 1)

p(p− 1)

p∑
j=1

∑
k 6=j

(
ξj − E[ξ]

)T (
ξk − E[ξ]

))
(142)

=
1

s2

[(
s

p
− s(s− 1)

p(p− 1)

) p∑
j=1

∥∥ξj − E[ξ]
∥∥2 +

s(s− 1)

p(p− 1)

∥∥∥∥ p∑
j=1

(
ξj − E[ξ]

)∥∥∥∥2
]

(143)

=
1

s2

(
s

p
− s(s− 1)

p(p− 1)

) p∑
j=1

∥∥ξj − E[ξ]
∥∥2 (144)

=
1

s

p− s
p− 1

1

p

p∑
j=1

∥∥ξj − E[ξ]
∥∥2 (145)

40

BISN: Bayesian Inference of Sparse Networks

=
1

s

p− s
p− 1

(
1

p

p∑
j=1

∥∥ξj∥∥2 − E[ξ]2

)
. (146)

Based on Lemma 2, we can further express E[‖R(m) − r(m)R(m−1)‖2] − E[‖∇f(µ(m)) −
r(m)∇f(µ(m−1))‖2] as:

E[‖R(m) − r(m)R(m−1)‖2]− E[‖∇f(µ(m))− r(m)∇f(µ(m−1))‖2]

=
1

s

p− s
p− 1

[
1

p

p∑
j=1

‖∇fj(µ(m))− r(m)∇fj(µ(m−1))‖2 − ‖∇f(µ(m))− r(m)∇f(µ(m−1))‖2
]

=
1

s

p− s
p− 1

[
1

p

p∑
j=1

(
r(m)‖∇fj(µ(m))−∇fj(µ(m−1))‖2 + (1− r(m))‖∇fj(µ(m))‖2

− r(m)(1− r(m))‖∇fj(µ(m−1))‖2
)
−
(
r(m)‖∇f(µ(m))−∇f(µ(m−1))‖2

+ (1− r(m))‖∇f(µ(m))‖2 − r(m)(1− r(m))‖∇f(µ(m−1))‖2
)]
. (147)

Let

v(m) =
1

p

p∑
j=1

‖∇fj(µ(m))‖2 − ‖∇f(µ(m))‖2, (148)

and ignore the term r(m)‖∇f(µ(m)) − ∇f(µ(m−1))‖2, we can find the upper bound of
E[‖R(m) − r(m)R(m−1)‖2]− E[‖∇f(µ(m))− r(m)∇f(µ(m−1))‖2], that is,

E[‖R(m) − r(m)R(m−1)‖2]− E[‖∇f(µ(m))− r(m)∇f(µ(m−1))‖2]

≤ 1

s

p− s
p− 1

(
r(m) 1

p

p∑
j=1

‖∇fj(µ(m))−∇fj(µ(m−1))‖2 + (1− r(m))v(m) − r(m)(1− r(m))v(m−1)

)
.

Recall that we assume fj(µ
(m)) is l-smooth and so

‖∇fj(µ(m))−∇fj(µ(m−1))‖2 ≤ l2‖µ(m) − µ(m−1)‖2 = l2ρ2‖g(m−1)‖2. (149)

As a result, we can obtain

E[‖R(m) − r(m)R(m−1)‖2]− E[‖∇f(µ(m))− r(m)∇f(µ(m−1))‖2]

≤ 1

s

p− s
p− 1

(
r(m)l2ρ2E[‖g(m−1)‖2] + (1− r(m))v(m) − r(m)(1− r(m))v(m−1)

)
. (150)

This closes the proof.

41

Yu, Wu, Xin, and Dauwels

Appendix G. Proof of Theorem 1

Put together Proposition 2 and 3 and assume that the decaying coefficient r(κ) = r is a
constant, we can have:

E[‖R(κ) −∇f(µ(κ))‖2]

=
κ∑

m=1

(κ∏
j=m+1

r2
)(

E[‖R(m) − rR(m−1)‖2]− E[‖∇f(µ(m))− r∇f(µ(m−1))‖2]
)

≤ 1

s

p− s
p− 1

rl2ρ2
κ−1∑
m=0

r2(κ−m−1)E[‖g(m)‖] +
1

s

p− s
p− 1

κ∑
m=1

r2(κ−m)
[
(1− r)v(m) − r(1− r)v(m−1)

]
.

(151)

Substituting (151) into Proposition 1 yields:

− L̃∗ ≤ −L̃0 −
[(
γ − 1

2c1

)
ρ− l

2
ρ2
] t−1∑
κ=0

E[‖g(κ)‖2] +
c1ρ

2

t−1∑
κ=1

E[‖R(κ) −∇f(µ(κ))‖2]

≤ −L̃0 −
[(
γ − 1

2c1

)
ρ− l

2
ρ2
] t−1∑
κ=0

E[‖g(κ)‖2] +
c1ρ

2

t−1∑
κ=1

{
1

s

p− s
p− 1

rl2ρ2
κ−1∑
m=0

r2(κ−m−1)E[‖g(m)‖]

+
1

s

p− s
p− 1

κ∑
m=1

r2(κ−m)
[
(1− r)v(m) − r(1− r)v(m−1)

]}
(152)

= −L̃0 −
[(
γ − 1

2c1

)
ρ− l

2
ρ2
] t−1∑
κ=0

E[‖g(κ)‖2] +
c1
2

1

s

p− s
p− 1

rl2ρ3
t−1∑
κ=1

κ−1∑
m=0

r2(κ−m−1)E[‖g(m)‖]

+
c1
2

1

s

p− s
p− 1

ρ
t−1∑
κ=1

κ∑
m=1

r2(κ−m)
[
(1− r)v(m) − r(1− r)v(m−1)

]
= −L̃0 −

[(
γ − 1

2c1

)
ρ− l

2
ρ2
] t−1∑
κ=0

E[‖g(κ)‖2] +
c1
2

1

s

p− s
p− 1

rl2ρ3
t−2∑
κ=0

1− r2(t−κ−1)

1− r2
E[‖g(κ)‖]

+
c1
2

1

s

p− s
p− 1

ρ
t−1∑
κ=1

1− r2(t−κ)

1− r2
[
(1− r)v(κ) − r(1− r)v(κ−1)

]
= −L̃0 −

[(
γ − 1

2c1

)
ρ− l

2
ρ2
] t−1∑
κ=0

E[‖g(κ)‖2] +
c1
2

1

s

p− s
p− 1

rl2ρ3
t−2∑
κ=0

1− r2(t−κ−1)

1− r2
E[‖g(κ)‖]

+
c1
2

1

s

p− s
p− 1

ρ

t−1∑
κ=1

(1− r)(1− r2(t−κ))
1− r2

v(κ) − c1
2

1

s

p− s
p− 1

ρ

t−2∑
κ=0

r(1− r)(1− r2(t−κ−1))
1− r2

v(κ)

= −L̃0 −
[(
γ − 1

2c1

)
ρ− l

2
ρ2
] t−1∑
κ=0

E[‖g(κ)‖2] +
c1
2

1

s

p− s
p− 1

rl2ρ3
t−2∑
κ=0

1− r2(t−κ−1)

1− r2
E[‖g(κ)‖]

+
c1
2

1

s

p− s
p− 1

ρ(1− r)v(t−1) +
c1
2

1

s

p− s
p− 1

ρ
1− r
1 + r

t−2∑
κ=1

(
1 + r2(t−κ)−1

)
v(κ)

42

BISN: Bayesian Inference of Sparse Networks

− c1
2

1

s

p− s
p− 1

ρ
r(1− r2(t−1))

1 + r
v0 (153)

≤ −L̃0 −
[(
γ − 1

2c1

)
ρ− l

2
ρ2
] t−1∑
κ=0

E[‖g(κ)‖2] +
c1
2

1

s

p− s
p− 1

rl2ρ3
t−2∑
κ=0

1

1− r2
E[‖g(κ)‖]

+
c1
2

1

s

p− s
p− 1

ρ(1− r)v(t−1) + c1
1

s

p− s
p− 1

ρ
1− r
1 + r

t−2∑
κ=1

v(κ) (154)

≤ −L̃0 −
[(
γ − 1

2c1

)
ρ− l

2
ρ2
] t−1∑
κ=0

E[‖g(κ)‖2] +
c1
2

1

s

p− s
p− 1

r

1− r2
l2ρ3

t−1∑
κ=0

E[‖g(κ)‖]

+ c1
1

s

p− s
p− 1

ρ
1− r
1 + r

tσ2, (155)

where (154) holds since 1− r2(t−κ−1) < 1 and we ignore the last term on RHS of (153) that
is non-positive, and (155) holds since we use the assumption that v(κ) is upper bound by σ2

for all κ (54). It follows that

ρ

[
− c1

2

1

s

p− s
p− 1

r

1− r2
l2ρ2 − l

2
ρ+

(
γ − 1

2c1

)] t−1∑
κ=0

E[‖g(κ)‖2]

≤L̃∗ − L̃0 + c1
1

s

p− s
p− 1

1− r
1 + r

tσ2ρ. (156)

Let

a0 = γ − 1

2c1
> 0, (157)

a1 =
l

2
> 0, (158)

a2 =
r

1− r2
c1
2

1

s

p− s
p− 1

l2 > 0, (159)

we can equivalently write (156) as:

ρ(−a2ρ2 − a1ρ+ a0)

t−1∑
κ=0

E[‖g(κ)‖2] ≤ L̃∗ − L̃0 + c1
1

s

p− s
p− 1

1− r
1 + r

ρtσ2. (160)

Note that a0 > 0 since it is assumed that c1 > 1/2γ. In order to find the upper bound on
E[‖g(κ)‖2], we need to ensure that

ρ(−a2ρ2 − a1ρ+ a0) > 0. (161)

To this end, ρ should be chosen such that

0 < ρ <

√
a21 + 4a2a0 − a1

2a2
. (162)

43

Yu, Wu, Xin, and Dauwels

Finally, E[‖g(κ)‖2] can be upper bounded as:

1

t

t−1∑
κ=0

E[‖g(κ)‖2] ≤ L̃∗ − L̃0

tρ(−a2ρ2 − a1ρ+ a0)
+

1

s

p− s
p− 1

1− r
1 + r

c1σ
2

−a2ρ2 − a1ρ+ a0
. (163)

Suppose that κ is uniformly chosen at random from {0, · · · , t− 1}, the above inequality can
be equivalently expressed as:

E[‖g(κ)‖2] ≤ L̃∗ − L̃0

tρ(−a2ρ2 − a1ρ+ a0)
+

1

s

p− s
p− 1

1− r
1 + r

c1σ
2

−a2ρ2 − a1ρ+ a0
, (164)

where the E is taken w.r.t. all kinds of randomness.

Appendix H. Proof of Theorem 2

Given the specific value of ρ, that is,

ρ =

√
a21 + 3a2a0 − a1

3a2
, (165)

we can lower bound (−a2ρ2 − a1ρ+ a0) as:

(−a2ρ2 − a1ρ+ a0) = −a2
(
ρ+

a1 −
√
a21 + 4a2a0
2a2

)(
ρ+

a1 +
√
a21 + 4a2a0
2a2

)
= − a2

(√
a21 + 3a2a0 − a1

3a2
+
a1 −

√
a21 + 4a2a0
2a2

)(√
a21 + 3a2a0 − a1

3a2
+
a1 +

√
a21 + 4a2a0
2a2

)
= a2

(
−a1 − 2

√
a21 + 3a2a0 + 3

√
a21 + 4a2a0

6a2

)(
a1 + 2

√
a21 + 3a2a0 + 3

√
a21 + 4a2a0

6a2

)
≥ a2

(
−a1 − 2

√
a21 + 4a2a0 + 3

√
a21 + 4a2a0

6a2

)(
a1 + 2

√
a21 + 3a2a0 + 3

√
a21 + 4a2a0

6a2

)
= a2

(
−a1 +

√
a21 + 4a2a0

6a2

)(
a1 + 2

√
a21 + 3a2a0 + 3

√
a21 + 4a2a0

6a2

)
≥ a2

(
−a1 +

√
a21 + 4a2a0

6a2

)(
a1 +

√
a21 + 4a2a0
6a2

)
=
a0
9
. (166)

As a result, we can further relax the upper bound of E[‖g(κ)‖2] as:

E[‖g(κ)‖2] ≤ L̃∗ − L̃0

tρ(−a2ρ2 − a1ρ+ a0)
+

1

s

p− s
p− 1

1− r
1 + r

c1σ
2

−a2ρ2 − a1ρ+ a0
(167)

≤ 9(L̃∗ − L̃0)
ta0ρ

+
1

s

p− s
p− 1

1− r
1 + r

9c1σ
2

a0
. (168)

Recall that

s =
p

c2(p− 1) + 1
, (169)

44

BISN: Bayesian Inference of Sparse Networks

where c2 ∈ (0, 1] is a fixed constant, and therefore, the ratio

1

s

p− s
p− 1

= c2 (170)

is fixed. The upper bound in (168) can be equivalently written as:

E[‖g(κ)‖2] ≤ 9(L̃∗ − L̃0)
ta0ρ

+
1− r
1 + r

9c1c2σ
2

a0
. (171)

So as to obtain E[‖g(κ)‖2] ≤ ε, we set

9(L̃∗ − L̃0)
ta0ρ

+
1− r
1 + r

9c1c2σ
2

a0
= ε, (172)

Given the specific values of r, that is,

r =
1− c3ε
1 + c3ε

, (173)

where

c3 =
a0

9c1c2c4σ2
, (174)

and c4 is an arbitrary but fixed constant satisfying

c4 > max
(

1,
a0ε

9c1c2σ2

)
, (175)

we can have

1− r
1 + r

9c1c2σ
2

a0
=

ε

c4
. (176)

Therefore, to achieve the ε-accuracy, the following equality must hold:

9(L̃∗ − L̃0)
ta0ρ

=
(

1− 1

c4

)
ε, (177)

where (1− 1/c4) > 0 given the definition of c4. We then replace ρ in the above equation by
its specific value in (165):

27a2(L̃∗ − L̃0)
ta0(

√
a21 + 3a2a0 − a1)

=
(

1− 1

c4

)
ε, (178)

9(L̃∗ − L̃0)(
√
a21 + 3a2a0 + a1)

ta20
=
(

1− 1

c4

)
ε, (179)

Let

c5 =
9(L̃∗ − L̃0)
a20
(
1− 1

c4

) , (180)

45

Yu, Wu, Xin, and Dauwels

we can have

t =
c5(
√
a21 + 3a2a0 + a1)

ε
. (181)

Substituting (173), (170), and (67) into (181) gives

t =

c5

(√
a21 +

3

2
a0c1c2l2

1− c23ε2

4c3ε
+ a1

)
ε

. (182)

On the other hand, c3ε < 1 according to the definition of c3 and c4, hence,

t ≤
c5

(√
a21 +

3

2
a0c1c2l2

1

4c3ε
+ a1

)
ε

(183)

=

c5

(√
4a21c3ε+

3

2
a0c1c2l2 + 2a1

√
c3ε

)
2
√
c3ε

3
2

(184)

≤
c5

(√
4a21 +

3

2
a0c1c2l2 + 2a1

)
2
√
c3ε

3
2

= O
(

1

ε
3
2

)
. (185)

Note that the constants c1, c2, c3, c5, a0, and a1 are independent of p and ε.

References

Daniel Felix Ahelegbey and Paolo Giudici. Hierarchical graphical models with application
to systemic risk. University Ca’Foscari of Venice, Dept. of Economics Research Paper
Series No, 1, 2014.

Daniel Felix Ahelegbey, Monica Billio, and Roberto Casarin. Bayesian graphical models
for structural vector autoregressive processes. Journal of Applied Econometrics, 31(2):
357–386, 2016.

Mark Adrian S Asinas. Stock market betas for cyclical and defensive sectors: A practitioners
perspective. Philippine Management Review, 25, 2018.

Onureena Banerjee, Laurent El Ghaoui, and Alexandre dAspremont. Model selection through
sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal
of Machine learning research, 9(3):485–516, 2008.

Matteo Barigozzi and Christian Brownlees. Nets: Network estimation for time series. Journal
of Applied Econometrics, 34(3):347–364, 2019.

Matthew J Beal, Zoubin Ghahramani, et al. Variational bayesian learning of directed
graphical models with hidden variables. Bayesian Analysis, 1(4):793–831, 2006.

46

BISN: Bayesian Inference of Sparse Networks

Eugene Belilovsky, Gaël Varoquaux, and Matthew B Blaschko. Testing for differences in
gaussian graphical models: applications to brain connectivity. In Advances in Neural
Information Processing Systems, pages 595–603, 2016.

Victor Bernal, Rainer Bischoff, Victor Guryev, Marco Grzegorczyk, and Peter Horvatovich.
Exact hypothesis testing for shrinkage based gaussian graphical models. Bioinformatics,
2019.

Anindya Bhadra, Jyotishka Datta, Nicholas G Polson, and Brandon Willard. The horseshoe+
estimator of ultra-sparse signals. Bayesian Analysis, 12(4):1105–1131, 2017.

Daniele Bianchi, Monica Billio, Roberto Casarin, and Massimo Guidolin. Modeling systemic
risk with markov switching graphical sur models. Journal of Econometrics, 210(1):58–74,
2019.

Monica Billio, Mila Getmansky, Andrew W Lo, and Loriana Pelizzon. Econometric measures
of connectedness and systemic risk in the finance and insurance sectors. Journal of
financial economics, 104(3):535–559, 2012.

Christopher M. Bishop. Pattern recognition and machine learning. Springer, 2006.

Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. Large-scale
sparse inverse covariance matrix estimation. SIAM Journal on Scientific Computing, 41
(1):A380–A401, 2019.

James Bullard, Christopher J Neely, and David C Wheelock. Systemic risk and the financial
crisis: a primer. Federal Reserve Bank of St. Louis Review, 91(September/October 2009),
2009.

Miao Cao, Hao Huang, Yun Peng, Qi Dong, and Yong He. Toward developmental connec-
tomics of the human brain. Frontiers in neuroanatomy, 10:25, 2016.

Carlos M Carvalho, Nicholas G Polson, and James G Scott. Handling sparsity via the
horseshoe. In Artificial Intelligence and Statistics, pages 73–80, 2009.

Carlos M Carvalho, Nicholas G Polson, and James G Scott. The horseshoe estimator for
sparse signals. Biometrika, 97(2):465–480, 2010.

Paola Cerchiello, Paolo Giudici, and Giancarlo Nicola. Twitter data models for bank risk
contagion. Neurocomputing, 264:50–56, 2017.

Venkat Chandrasekaran, Pablo A Parrilo, Alan S Willsky, et al. Latent variable graphical
model selection via convex optimization. The Annals of Statistics, 40(4):1935–1967, 2012.

Myung Jin Choi, Venkat Chandrasekaran, and Alan S Willsky. Gaussian multiresolution
models: Exploiting sparse markov and covariance structure. IEEE Transactions on Signal
Processing, 58(3):1012–1024, 2009.

Hyonho Chun, Xianghua Zhang, and Hongyu Zhao. Gene regulation network inference with
joint sparse gaussian graphical models. Journal of Computational and Graphical Statistics,
24(4):954–974, 2015.

47

Yu, Wu, Xin, and Dauwels

Rama Cont, Amal Moussa, et al. Network structure and systemic risk in banking systems.
Edson Bastos e, Network Structure and Systemic Risk in Banking Systems (December 1,
2010), 2010.

Justin Dauwels, Hang Yu, Xueou Wang, Francois Vialatte, Charles Latchoumane, Jaeseung
Jeong, and Andrzej Cichocki. Inferring brain networks through graphical models with
hidden variables. In Machine Learning and Interpretation in Neuroimaging, pages 194–201.
Springer, 2012.

Justin Dauwels, Hang Yu, Shiyan Xu, and Xueou Wang. Copula gaussian graphical model
for discrete data. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 6283–6287. IEEE, 2013.

Wenping Deng, Kui Zhang, Sanzhen Liu, Patrick X Zhao, Shizhong Xu, and Hairong Wei.
Jrmgrn: joint reconstruction of multiple gene regulatory networks with common hub genes
using data from multiple tissues or conditions. Bioinformatics, 34(20):3470–3478, 2018.

Luu-Ngoc Do and Hyung-Jeong Yang. A robust feature selection method for classification
of cognitive states with fmri data. In Advances in computer science and its applications,
pages 71–76. Springer, 2014.

Adrian Dobra, Alex Lenkoski, and Abel Rodriguez. Bayesian inference for general gaussian
graphical models with application to multivariate lattice data. Journal of the American
Statistical Association, 106(496):1418–1433, 2011.

Julien Doyon and Brenda Milner. Right temporal-lobe contribution to global visual processing.
Neuropsychologia, 29(5):343–360, 1991.

John Duchi, Stephen Gould, and Daphne Koller. Projected subgradient methods for learning
sparse gaussians. In Proceedings of the Twenty-Fourth Conference on Uncertainty in
Artificial Intelligence, pages 153–160. AUAI Press, 2008.

Stefania Evangelisti, Claudia Testa, Lorenzo Ferri, Laura Ludovica Gramegna, David Neil
Manners, Giovanni Rizzo, Daniel Remondini, Gastone Castellani, Ilaria Naldi, Francesca
Bisulli, et al. Brain functional connectivity in sleep-related hypermotor epilepsy. Neu-
roImage: Clinical, 17:873–881, 2018.

Jianqing Fan, Yuan Liao, and Han Liu. Approaches to high-dimensional covariance and
precision matrix estimations. Financial Signal Processing and Machine Learning, pages
100–134, 2016.

Alireza Farasat, Alexander Nikolaev, Sargur N Srihari, and Rachael Hageman Blair. Proba-
bilistic graphical models in modern social network analysis. Social Network Analysis and
Mining, 5(1):62, 2015.

A Marie Fitch and M Beatrix Jones. Shortest path analysis using partial correlations for
classifying gene functions from gene expression data. Bioinformatics, 25(1):42–47, 2009.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

48

BISN: Bayesian Inference of Sparse Networks

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization. Mathematical Programming,
155(1-2):267–305, 2016.

Shatha Qamhieh Hashem and Paolo Giudici. Systemic risk of conventional and islamic
banks: comparison with graphical network models. Applied Mathematics, 7(17):2079–96,
2016.

Matthew D Hoffman, David M Blei, Chong Wang, and John William Paisley. Stochastic
variational inference. Journal of Machine Learning Research, 14(1):1303–1347, 2013.

Cho-Jui Hsieh, Mátyás A Sustik, Inderjit S Dhillon, Pradeep K Ravikumar, and Russell
Poldrack. Big & quic: Sparse inverse covariance estimation for a million variables. In
Advances in Neural Information Processing Systems, pages 3165–3173, 2013.

Cho-Jui Hsieh, Mátyás A Sustik, Inderjit S Dhillon, and Pradeep Ravikumar. Quic: quadratic
approximation for sparse inverse covariance estimation. Journal of Machine Learning
Research, 15(1):2911–2947, 2014.

Jianhua Z Huang, Naiping Liu, Mohsen Pourahmadi, and Linxu Liu. Covariance matrix
selection and estimation via penalised normal likelihood. Biometrika, 93(1):85–98, 2006.

Timothy R Hughes, Matthew J Marton, Allan R Jones, Christopher J Roberts, Roland
Stoughton, Christopher D Armour, Holly A Bennett, Ernest Coffey, Hongyue Dai,
Yudong D He, et al. Functional discovery via a compendium of expression profiles.
Cell, 102(1):109–126, 2000.

Bochao Jia and Faming Liang. Learning gene regulatory networks with high-dimensional
heterogeneous data. In New Frontiers of Biostatistics and Bioinformatics, pages 305–327.
Springer, 2018.

Waldemar Karwowski, Farzad Vasheghani Farahani, and Nichole Lighthall. Application of
graph theory for identifying connectivity patterns in human brain networks: A systematic
review. Frontiers in Neuroscience, 13:585, 2019.

Christopher L Keown, Michael C Datko, Colleen P Chen, Jose Omar Maximo, Afrooz
Jahedi, and Ralph-Axel Müller. Network organization is globally atypical in autism: a
graph theory study of intrinsic functional connectivity. Biological Psychiatry: Cognitive
Neuroscience and Neuroimaging, 2(1):66–75, 2017.

Mohammad E Khan, Pierre Baqué, François Fleuret, and Pascal Fua. Kullback-leibler
proximal variational inference. In Advances in Neural Information Processing Systems,
pages 3402–3410, 2015.

Mohammad Emtiyaz Khan and Wu Lin. Conjugate-computation variational inference:
Converting variational inference in non-conjugate models to inferences in conjugate models.
In Proceedings of the Twentieth Conference on Artificial Intelligence and Statistics, 2017.

49

Yu, Wu, Xin, and Dauwels

Mohammad Emtiyaz Khan, Reza Babanezhad, Wu Lin, Mark Schmidt, and Masashi
Sugiyama. Faster stochastic variational inference using proximal-gradient methods with
general divergence functions. In Proceedings of the Thirty-Second Conference on Uncer-
tainty in Artificial Intelligence, pages 319–328. AUAI Press, 2016.

Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David Blei. Automatic variational
inference in stan. In Advances in neural information processing systems, pages 568–576,
2015.

Ginette Lafit, Francisco J Nogales, Marcelo Ruiz, and Ruben H Zamar. A stepwise approach
for high-dimensional gaussian graphical models. arXiv preprint arXiv:1808.06016, 2018.

Gwenaël GR Leday and Sylvia Richardson. Fast bayesian inference in large gaussian graphical
models. Biometrics, 75(4):1288–1298, 2019.

William J Lentz. Generating bessel functions in mie scattering calculations using continued
fractions. Applied Optics, 15(3):668–671, 1976.

Jinzhou Li and Marloes H Maathuis. Nodewise knockoffs: False discovery rate control for
gaussian graphical models. arXiv preprint arXiv:1908.11611, 2019.

Shuang Li, Li Hsu, Jie Peng, and Pei Wang. Bootstrap inference for network construction
with an application to a breast cancer microarray study. The annals of applied statistics,
7(1):391, 2013.

Yunfan Li, Bruce A Craig, and Anindya Bhadra. The graphical horseshoe estimator for
inverse covariance matrices. Journal of Computational and Graphical Statistics, pages
1–24, 2019.

Xia Liang, Qihong Zou, Yong He, and Yihong Yang. Topologically reorganized connectivity
architecture of default-mode, executive-control, and salience networks across working
memory task loads. Cerebral cortex, 26(4):1501–1511, 2016.

Han Liu and Lie Wang. Tiger: A tuning-insensitive approach for optimally estimating
gaussian graphical models. Electronic Journal of Statistics, 11(1):241–294, 2017.

Han Liu, John Lafferty, and Larry Wasserman. The nonparanormal: Semiparametric
estimation of high dimensional undirected graphs. Journal of Machine Learning Research,
10(Oct):2295–2328, 2009.

Han Liu, Kathryn Roeder, and Larry Wasserman. Stability approach to regularization
selection (stars) for high dimensional graphical models. In Advances in neural information
processing systems, pages 1432–1440, 2010.

Qiang Liu and Alexander T Ihler. Variational algorithms for marginal map. Journal of
Machine Learning Research, 14(1):3165–3200, 2013.

Benjamin M Marlin and Kevin P Murphy. Sparse gaussian graphical models with unknown
block structure. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 705–712. ACM, 2009.

50

BISN: Bayesian Inference of Sparse Networks

Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection
with the lasso. The annals of statistics, pages 1436–1462, 2006.

Nicolai Meinshausen and Peter Bühlmann. Stability selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 72(4):417–473, 2010.

Brenda Milner. Visual recognition and recall after right temporal-lobe excision in man.
Epilepsy & Behavior, 4(6):799–812, 2003.

Tom M Mitchell, Rebecca Hutchinson, Radu S Niculescu, Francisco Pereira, Xuerui Wang,
Marcel Just, and Sharlene Newman. Learning to decode cognitive states from brain images.
Machine learning, 57(1):145–175, 2004.

Abdolreza Mohammadi and Ernst C Wit. Bayesian structure learning in sparse gaussian
graphical models. Bayesian Analysis, 10(1):109–138, 2015.

Sarah E Neville, John T Ormerod, and MP Wand. Mean field variational bayes for continuous
sparse signal shrinkage: pitfalls and remedies. Electronic Journal of Statistics, 8(1):1113–
1151, 2014.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Stochastic recursive gradient
algorithm for nonconvex optimization. arXiv preprint arXiv:1705.07261, 2017.

Andrés Ortiz, Jorge Munilla, Ignacio Álvarez-Illán, Juan M Górriz, Javier Ramı́rez,
Alzheimer’s Disease Neuroimaging Initiative, et al. Exploratory graphical models of
functional and structural connectivity patterns for alzheimer’s disease diagnosis. Frontiers
in computational neuroscience, 9:132, 2015.

Juho Piironen, Aki Vehtari, et al. Sparsity information and regularization in the horseshoe
and other shrinkage priors. Electronic Journal of Statistics, 11(2):5018–5051, 2017.

Rajesh Ranganath, Chong Wang, Blei David, and Eric Xing. An adaptive learning rate for
stochastic variational inference. In International Conference on Machine Learning, pages
298–306, 2013.

Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal stochastic
methods for nonsmooth nonconvex finite-sum optimization. In Advances in Neural
Information Processing Systems, pages 1145–1153, 2016.

Irina Rish and Genady Grabarnik. Sparse modeling: theory, algorithms, and applications.
CRC press, 2014.

Benjamin Rolfs, Bala Rajaratnam, Dominique Guillot, Ian Wong, and Arian Maleki. Iterative
thresholding algorithm for sparse inverse covariance estimation. In Advances in Neural
Information Processing Systems, pages 1574–1582, 2012.

Conrad Sanderson and Ryan Curtin. Armadillo: a template-based c++ library for linear
algebra. Journal of Open Source Software, 1(2):26, 2016.

51

Yu, Wu, Xin, and Dauwels

Katya Scheinberg and Irina Rish. Learning sparse gaussian markov networks using a greedy
coordinate ascent approach. Machine Learning and Knowledge Discovery in Databases,
pages 196–212, 2010.

Katya Scheinberg, Shiqian Ma, and Donald Goldfarb. Sparse inverse covariance selection via
alternating linearization methods. In Advances in neural information processing systems,
pages 2101–2109, 2010.

Julia Schumacher, Luis R Peraza, Michael Firbank, Alan J Thomas, Marcus Kaiser, Peter
Gallagher, John T O’Brien, Andrew M Blamire, and John-Paul Taylor. Functional
connectivity in dementia with lewy bodies: A within-and between-network analysis.
Human brain mapping, 39(3):1118–1129, 2018.

Sviatlana Shashkova, Niek Welkenhuysen, and Stefan Hohmann. Molecular communication:
crosstalk between the snf1 and other signaling pathways. FEMS yeast research, 15(4),
2015.

Kobi J Simpson-Lavy, Alex Bronstein, Martin Kupiec, and Mark Johnston. Cross-talk
between carbon metabolism and the dna damage response in s. cerevisiae. Cell reports, 12
(11):1865–1875, 2015.

Michael Smith and Robert Kohn. Parsimonious covariance matrix estimation for longitudinal
data. Journal of the American Statistical Association, 97(460):1141–1153, 2002.

Lingtao Su, Xiangyu Meng, Qingshan Ma, Tian Bai, and Guixia Liu. Lprp: a gene–gene
interaction network construction algorithm and its application in breast cancer data
analysis. Interdisciplinary Sciences: Computational Life Sciences, 10(1):131–142, 2018.

Davoud Ataee Tarzanagh and George Michailidis. Estimation of graphical models through
structured norm minimization. The Journal of Machine Learning Research, 18(1):7692–
7739, 2018.

Sekhar Tatikonda et al. Learning unfaithful k-separable gaussian graphical models. Journal
of Machine Learning Research, 20(109):1–30, 2019.

Eran Treister and Javier S Turek. A block-coordinate descent approach for large-scale sparse
inverse covariance estimation. In Advances in neural information processing systems, pages
927–935, 2014.

Eran Treister, Javier S Turek, and Irad Yavneh. A multilevel framework for sparse opti-
mization with application to inverse covariance estimation and logistic regression. SIAM
Journal on Scientific Computing, 38(5):S566–S592, 2016.

Martijn P van den Heuvel, Siemon C de Lange, Andrew Zalesky, Caio Seguin, BT Thomas
Yeo, and Ruben Schmidt. Proportional thresholding in resting-state fmri functional
connectivity networks and consequences for patient-control connectome studies: Issues
and recommendations. Neuroimage, 152:437–449, 2017.

Hao Wang. Bayesian graphical lasso models and efficient posterior computation. Bayesian
Analysis, 7(4):867–886, 2012.

52

BISN: Bayesian Inference of Sparse Networks

Hao Wang. Scaling it up: Stochastic search structure learning in graphical models. Bayesian
Analysis, 10(2):351–377, 2015.

Min Wang, Ping Yang, Chaoyang Wan, Zhenlan Jin, Junjun Zhang, and Ling Li. Evaluating
the role of the dorsolateral prefrontal cortex and posterior parietal cortex in memory-
guided attention with repetitive transcranial magnetic stimulation. Frontiers in human
neuroscience, 12, 2018.

Donald R Williams, Juho Piironen, Aki Vehtari, and Philippe Rast. Bayesian estima-
tion of gaussian graphical models with predictive covariance selection. arXiv preprint
arXiv:1801.05725, 2018.

Mark Williams. Uncontrolled risk: lessons of Lehman brothers and how systemic risk can
still bring down the world financial system. McGraw Hill Professional, 2010.

Yuting Xu and Martin A Lindquist. Dynamic connectivity detection: an algorithm for
determining functional connectivity change points in fmri data. Frontiers in neuroscience,
9:285, 2015.

Jilei Yang and Jie Peng. Estimating time-varying graphical models. Journal of Computational
and Graphical Statistics, pages 1–12, 2019.

Hang Yu and Justin Dauwels. Variational bayes learning of graphical models with hidden
variables. In 2015 IEEE 25th International Workshop on Machine Learning for Signal
Processing (MLSP), pages 1–6. IEEE, 2015.

Hang Yu and Justin Dauwels. Variational bayes learning of time-varying graphical models. In
Machine Learning for Signal Processing (MLSP), 2016 IEEE 26th International Workshop
on, pages 1–6. IEEE, 2016.

Hang Yu and Justin Dauwels. Modeling functional networks via piecewise-stationary
graphical models. In Signal Processing and Machine Learning for Biomedical Big Data,
pages 193–208. CRC Press, 2018.

Hang Yu, Justin Dauwels, and Xueou Wang. Copula gaussian graphical models with
hidden variables. In 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2177–2180. IEEE, 2012.

Hang Yu, Luyin Xin, and Justin Dauwels. Variational wishart approximation for graph-
ical model selection: Monoscale and multiscale models. IEEE Transactions on Signal
Processing, 67(24):6468–6482, 2019.

Aiying Zhang, Jian Fang, Faming Liang, Vince D Calhoun, and Yuping Wang. Aberrant
brain connectivity in schizophrenia detected via a fast gaussian graphical model. IEEE
journal of biomedical and health informatics, 2018a.

Aiying Zhang, Biao Cai, Wenxing Hu, Bochao Jia, Faming Liang, Tony W Wilson, Julia M
Stephen, Vince D Calhoun, and Yu-Ping Wang. Joint bayesian-incorporating estimation of
multiple gaussian graphical models to study brain connectivity development in adolescence.
IEEE transactions on medical imaging, 2019.

53

Yu, Wu, Xin, and Dauwels

Richard Zhang, Salar Fattahi, and Somayeh Sojoudi. Large-scale sparse inverse covariance
estimation via thresholding and max-det matrix completion. In International Conference
on Machine Learning, pages 5761–5770, 2018b.

Haitao Zhao and Zhong-Hui Duan. Cancer genetic network inference using gaussian graphical
models. Bioinformatics and biology insights, 13:1177932219839402, 2019.

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman. The huge package
for high-dimensional undirected graph estimation in r. Journal of Machine Learning
Research, 13(Apr):1059–1062, 2012.

54

	Introduction
	Bayesian Formulation of Gaussian Graphical Models
	Proximal-Gradient Stochastic Variational Inference
	Variational Bayes Inference
	KL Proximal Gradient
	KL Proximal Gradient for BISN
	Stochastic Gradients
	Contribution of the LDL Decomposition

	Variance Reduction via Decaying Recursive Stochastic Gradient (DRSG)
	Convergence Analysis and Run Time Guarantee
	Experimental Results
	Synthetic Data
	Stock Data
	Gene Data
	Functional Magnetic Resonance Imaging (fMRI) data

	Conclusion and Future Work
	Derivation of the Jacobian Matrix and the Absolute Value of Its Determinant
	Derivation of the Closed-Form Expression of L1
	Derivation of the Update Rules
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 1
	Proof of Theorem 2

