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Abstract

Despite the rich literature, the linear convergence of alternating direction method of multi-
pliers (ADMM) has not been fully understood even for the convex case. For example, the
linear convergence of ADMM can be empirically observed in a wide range of applications
arising in statistics, machine learning, and related areas, while existing theoretical results
seem to be too stringent to be satisfied or too ambiguous to be checked and thus why the
ADMM performs linear convergence for these applications still seems to be unclear. In
this paper, we systematically study the local linear convergence of ADMM in the context
of convex optimization through the lens of variational analysis. We show that the local
linear convergence of ADMM can be guaranteed without the strong convexity of objective
functions together with the full rank assumption of the coefficient matrices, or the full
polyhedricity assumption of their subdifferential; and it is possible to discern the local lin-
ear convergence for various concrete applications, especially for some representative models
arising in statistical learning. We use some variational analysis techniques sophisticatedly;
and our analysis is conducted in the most general proximal version of ADMM with Fortin
and Glowinski’s larger step size so that all major variants of the ADMM known in the
literature are covered.
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1. Introduction

We consider the convex minimization problem with linear constraints and an objective
function in form of the sum of two functions without coupled variables:

min
x,y

f(x) + g(y)

s.t. Ax+By = b,
(1)

where A ∈ IRm×n1 and B ∈ IRm×n2 are two given matrices, x ∈ IRn1 , y ∈ IRn2 , and
f : IRn1 → (−∞,∞] and g : IRn2 → (−∞,∞] are convex, proper, lower semicontinuous
functions. We work in finite dimensional Euclidean spaces composed by column vectors,
where 〈·, ·〉 denotes the Euclidean inner product and ‖ · ‖ denotes the Euclidean norm.

The abstract model (1) is general enough to capture a number of applications arising
in areas such as statistical learning, image processing, computer vision, and distributed
optimization, in which one of the functions in the objective is a data fidelity term and the
other one is a regularization term.

To solve Problem (1), the alternating direction method of multipliers (ADMM) proposed
in (Chan and Glowinski, 1978; Glowinski and Marroco, 1975) becomes a benchmark solver
because of its features of easy implementability, competitive numerical performance and
wide applicability in various areas. The ADMM has been receiving attention from a broad
spectrum of areas; and various variants have been well studied in the literature. We refer
to (Boyd et al., 2011; Eckstein and Yao, 2015; Glowinski, 2014) for some review papers.
Even though the original ADMM is of our core interest, to capture its various variants
simultaneously, as Han et al. (2017); Li et al. (2016), we study the so-called proximal
version of ADMM with positive semidefinite regularization terms for updating the primal
variables (x, y) and Fortin and Glowinski’s larger step size (see Fortin and Glowinski, 1983)
for updating the dual variable λ, as shown below.

Algorithm 1: Proximal ADMM with Fortin and Glowinski’s larger step size for
(1)

Initial β > 0, G1 � 0, G2 � 0, γ ∈ (0, 1+
√

5
2 ), and choose value x0 ∈ IRn1 , y0 ∈ IRn2 ,

λ0 ∈ IRm.
for k = 0, 1, 2, . . . do

xk+1 ∈ arg min
x

{f(x)− 〈λk, Ax+Byk − b〉+
β

2
‖Ax+Byk − b‖2 +

1

2
‖x− xk‖2G1

},

yk+1 ∈ arg min
y

{g(y)− 〈λk, Axk+1 +By − b〉+
β

2
‖Axk+1 +By − b‖2 +

1

2
‖y − yk‖2G2

},

λk+1 = λk − γβ(Axk+1 +Byk+1 − b),
(2)

end

Algorithm 1 is abbreviated as PADMM-FG hereafter for succinctness. Note that a
number of variants of the ADMM, whose theoretical and algorithmic interests have been
studied individually in the literature, can be recovered by the PADMM-FG (2). Obviously,
the original ADMM in (Chan and Glowinski, 1978; Glowinski and Marroco, 1975) is the
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special case of (2) with G1 = 0, G2 = 0 and γ = 1; the ADMM variant with Fortin and
Glowinski’s larger step size in (Fortin and Glowinski, 1983) is the special case of (2) with

G1 = 0, G2 = 0 and γ ∈ (0, 1+
√

5
2 ); the linearized version of ADMM studied in (Esser

et al., 2010; Wang and Yuan, 2012; Yang and Yuan, 2013) is the special case of (2) where
G1 = rI − βATA with r > β‖ATA‖, G2 = 0 and γ = 1; and more generally, the proximal
version of ADMM in (He et al., 2002) is the special case of (2) with G1 � 0, G2 � 0
and γ = 1. Note that, as in (Han et al., 2017; Li et al., 2016), it is by-default assumed
that βATA + G1 � 0 and βBTB + G2 � 0 if the general PADMM-FG (2) is studied.
We refer to, for example, (Lin et al., 2015; Wang and Yuan, 2012; Yang and Yuan, 2013),
for various applications of the linearized ADMM in areas such as statistical learning and
computer vision, and (Glowinski and Le Tallec, 1989; He et al., 2011; Sun and Zhang, 2010;
Wen et al., 2010) for numerical acceleration performance of Fortin and Glowinski’s larger

step size γ ∈ (0, 1+
√

5
2 ). Furthermore, as found in (Gabay, 1983), the original ADMM is

equivalent to the application of the general Douglas-Rachford splitting method (DRSM)
proposed in (Douglas and Rachford, 1956; Lions and Mercier, 1979) to a stationary system
to the dual of Problem (1); and as analyzed in (Esser et al., 2010; Shefi, 2015), if the special
case of Problem (1) with B = −I and b = 0 is considered, then the linearized ADMM turns
out to be highly relevant to the so-called primal-dual hybrid gradient (PDHG) studied in
(Chambolle and Pock, 2011) for saddle-point problems. Finally, it is worthy mentioning
that in some existing literatures such as (Gabay and Mercier, 1976; Tao and Yuan, 2018b),
convergence of the original ADMM with γ ∈ (0, 2) has been discussed for some special cases
of the model (1) with quadratic or linearity assumptions on the functions f and/or g. But
here we focus on the generic case of f and g in the model (1) and thus do not discuss
the possibility of γ ∈ (0, 2) for the PADMM-FG (2); more rationales can be referred to
(Glowinski, 2013; Tao and Yuan, 2018a).

Our primary purposes are: (1) to discuss the nonergodic local linear convergence of the
original ADMM, the linearized ADMM and the general PADMM-FG (2) through the lens
of variational analysis; and (2) to show that it is possible to discern the linear convergence
behaviors as well as the exact convergence rates of the PADMM-FG (2) for various concrete
applications in statistical and machine learning problems of recent interest. We also deepen
our discussion via the dual perspective and show, as byproducts, how to discern the linear
convergence of other methods which are highly relevant to various variants of the ADMM,
including the DRSM in the general operator form and the PDHG for saddle-point problems.

1.1. State-of-the-art

Under some mild conditions such as the non-emptiness of the solution set of Problem (1),
convergence properties have been well studied in earlier literature for the original ADMM
and its variants; (see, e.g. Eckstein and Bertsekas, 1990, 1992; Fortin and Glowinski, 1983;
Gabay and Mercier, 1976; Glowinski and Marroco, 1975; Glowinski and Le Tallec, 1989;
He and Yang, 1998; Lions and Mercier, 1979). Recently, in (He and Yuan, 2012a, 2015;
Monteiro and Svaiter, 2013), the worst-case O(1/k) sublinear convergence rate measured
by the iteration complexity has been established for the original ADMM and the linearized
ADMM in both ergodic and nonergodic senses, where k is the iteration counter. The linear
convergence of ADMM has also been discussed in the literature under further assumptions
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beyond convexity, typically smoothing and strong convexity assumptions on objective func-
tions; see, e.g., (Davis and Yin, 2017; Deng and Yin, 2016; Nishihara et al., 2015). Below
we try to summarize some representative scenarios in which the global linear convergence
of the PADMM-FG or its special cases is known.1

(S1) If f (Resp. g) is strongly convex, and differentiable with a Lipschitz continuous
gradient, together with full row rank condition of the coefficient matrix A (Resp. B),
then the sequence {(xk, Byk, λk)} (or {(Axk, yk, λk)}) generated by the PADMM-FG
(2) with G1 � 0, G2 � 0 (Resp. G1 � 0, G2 � 0) converges linearly; (see, e.g. Deng
and Yin, 2016; Giselsson and Boyd, 2016).

(S2) If both f and g are strongly convex, and differentiable with Lipschitz continuous
gradients, then the sequence {(xk, yk, λk)} generated by the PADMM-FG (2) with
γ = 1 converges linearly; (see, e.g. Deng and Yin, 2016).

(S3) If f (Resp. g) is strongly convex, g (Resp. f) is differentiable with a Lipschitz
continuous gradient, together with full row rank condition of the coefficient matrix
B (Resp. A), then the sequence {(Axk, Byk, λk)} generated by the original ADMM
converges linearly; (see, e.g. Davis and Yin, 2017).

The strong convexity of objective functions and the full row-rank assumption of coeffi-
cient matrices, however, can be barely satisfied simultaneously for applications. Below, we
show by a very simple application in machine learning that these scenarios (S1)-(S3) might
be too restrictive.

Example 1 Regularization methods for simultaneous variable selection and estimation in
linear regression and more general contexts have received intense interest recently. In par-
ticular, the least absolute shrinkage and selection operator (LASSO) which was proposed in
(Tibshirani et al., 2005) has been used extensively in high-dimensional statistics and ma-
chine learning. It uses the squared error and an `1−norm regularizer which induces sparsity
in the solution. As a result, the features which have non-zero coefficients can be easily
selected.

Consider the LASSO model and its dual form as illustrative examples:

minx∈IRm
1
2‖Lx− b‖

2 + ν‖x‖1
min

y∈IRl
1
2‖y‖

2 − bTy
s.t. ‖LTy‖∞ ≤ ν,

where L ∈ IRl×m with l� m, b ∈ IRl, ν > 0 and ‖x‖1 is the `1-norm defined as
∑m

i=1 |xi|.
By introducing an auxiliary variable z = x for the nonsmooth `1−norm regularizer, the
LASSO model can be reformulated as a special case of Problem (1). Certainly, unless L
is of full column rank , an assumption contradicting with the purpose of variable selection,
the objective function of the reformulated problem is not strongly convex. On the other
hand, in some practices one may employ the ADMM to solve the dual form so as to ensure
the desired strong convexity in the objective function. But, in this case, by introducing an
auxiliary variable z = LTy for the `∞−norm ball constraint, in general LT does not meet
the full row rank assumption.

1. For succinctness, several scenarios discussed in (Davis and Yin, 2017; Deng and Yin, 2016) are not
included because they seem to be less practical to find applications so far.
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Hence, even for the LASSO case, regardless of the degeneracy of L, the well observed
linear convergence of ADMM cannot be justified by scenarios (S1)-(S3). More theories are
urged to justify the repertoire of known practical instances that can be efficiently solved by
the ADMM and its variants with linear convergence.

This observation has well motivated another line of analysis for studying the linear
convergence of the ADMM, apart from the strong convexity assumption on the objective
function and/or the full row-rank assumption on coefficient matrices, but on the metric
subregularity, calmness, or error bound, that relates the distance of a point to the solution
set to a certain optimality residual function.

At the core of variational analysis, the concepts of metric subregularity and calmness
have been playing an important role in various optimization topics.

Definition 1 A set-valued map Ψ : IRn ⇒ IRq is said to be metrically subregular at (ū, ῡ) ∈
gph (Ψ) if, for some ε > 0, there exists κ ≥ 0 such that

dist
(
u,Ψ−1 (ῡ)

)
≤ κdist (ῡ,Ψ (u)) , ∀u ∈ Bε(ū),

where dist(d,D) := inf{‖d − d′‖
∣∣ d′ ∈ D} for a given subset D and vector d in the same

space, and Bε(ū) := {u : ‖u− ū‖ < ε}.

Definition 2 A set-valued map Φ : IRq ⇒ IRn is said to be calm (or pseudo upper-Lipschitz
continuous, (see Rockafellar and Wets, 2009; Ye and Ye, 1997)) around (p̄, x̄) ∈ gphΦ if
there exist a neighborhood Bε1(p̄) of p̄, a neighborhood Bε2(x̄) of x̄ and κ ≥ 0 such that

Φ(p) ∩ Bε2(x̄) ⊆ Φ(p̄) + κ ‖p− p̄‖B, ∀p ∈ Bε1(p̄), (3)

where B denotes the closed unit ball centered at the origin.

The calmness property is a Lipschitz-like property of the corresponding perturbed set-
valued map. It is well-known that a set-valued map is calm if and only if its inverse map is
metrically subregular.

To elucidate on applications to the convergence rate analysis for the ADMM and its
variants, we define the set-valued map TKKT : IRn1+n2+m ⇒ IRn1+n2+m, which is associated
with the Karush-Kuhn-Tucker (KKT) system of Problem (1), as the following:

TKKT (x, y, λ) :=

∂f(x)−ATλ
∂g(y)−BTλ
Ax+By − b

 . (4)

Obviously, any (x, y, λ) satisfying 0 ∈ TKKT (x, y, λ) is a KKT point. In terms of TKKT , we
may define the KKT residue Res(x, y, λ) as

Res(x, y, λ) = dist (0, TKKT (x, y, λ)) (5)

and use Res(x, y, λ) to measure the optimality of the iterate (x, y, λ). In (Yang and Han,
2016), linear convergence of the linearized ADMM is established under the metric subreg-
ularity of TKKT . For the special case of the PADMM-FG (2) with G2 = 0 and γ = 1, it
is known that the second part of the KKT system, i.e., 0 ∈ ∂g(yk) − BTλk, holds for all
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iterates (xk, yk, λk) . Very recently, in (Liu et al., 2018), the authors first take advantage of
this observation to improve the results in (Yang and Han, 2016). In particular, let

Ωg := {(x, y, λ) | 0 ∈ ∂g(y)−BTλ},

it is shown in (Liu et al., 2018) that the linear convergence of the PADMM-FG with G2 = 0
and γ = 1 is guaranteed under the metric subregularity of TKKT over the set Ωg. In the
literature, in addition to TKKT , other KKT mappings have been defined as well for studying
the linear convergence of the ADMM and its variants. For instance, based on the so-called
natural map (see Facchinei and Pang, 2007, page 83) in terms of the Moreau-Yosida proximal
mapping, the following mapping is used in (Han et al., 2017; Han and Yuan, 2013):

T pKKT (x, y, λ) =

x− Proxf (x+ATλ)
y − Proxg(y +BTλ)

Ax+By − b

 , (6)

where Proxh is the proximal mapping associated with the function h, i.e.,

Proxh (a) := arg min
t∈IRn

{
h(t) +

1

2
‖t− a‖2

}
.

Obviously, any (x, y, λ) such that 0 = T pKKT (x, y, λ) is also a KKT point. In (Han et al.,
2017), the linear convergence of PADMM-FG is proved when T pKKT is metrically subregu-
lar. Indeed, it is proved in (Liu et al., 2018) via a perturbation perspective that, despite
the different forms in notation, the metric subregularity conditions of TKKT and T pKKT are
essentially equivalent; it is further justified in (Liu et al., 2018) that the metric subregu-
larity of TKKT is more advantageous than that of T pKKT in sense of analyzing the linear
convergence for the ADMM and its variant.

Recall that a set-valued mapping is called a polyhedral multifunction if its graph is the
union of finitely many convex polyhedra; (see, e.g., Robinson, 1975). Obviously, if both
f and g are piecewise linear-quadratic functions,2 then the desired metric subregularity of
TKKT (as well as T pKKT ) follows immediately from (Robinson, 1980, Proposition 1). As a
consequence, the local linear convergence of PADMM-FG is an immediate assertion in the
following setting of full polyhedricity.

(S4) If Problem (1) satisfies the full polyhedricity, i.e., both f and g fall into the category
of convex piecewise linear-quadratic functions, then

– {(Axk, Byk, λk)} generated by the original ADMM converges linearly, (see, e.g.,
Aspelmeier et al., 2016; Liu et al., 2018);

– {(xk, Byk, λk)} generated by the linearized ADMM converges linearly,(see, e.g.,
Liu et al., 2018; Yang and Han, 2016);

– {(xk, yk, λk)} generated by PADMM-FG with βATA+G1 � 0 and βBTB+G2 �
0 converges linearly, (see, e.g., Han et al., 2017).

2. A function φ : IRn → IR is called piecewise linear-quadratic if dom φ can be represented as the union
of finitely many polyhedral sets, relative to each of which φ(x) is given by an expression of the form
1
2
〈x, Lx〉+ 〈a, x〉+ b for some scalar b ∈ IR, vector a ∈ IRn, and symmetric matrix L ∈ IRn × IRn. φ is

a convex piecewise linear-quadratic function if and only if ∂φ is a polyhedral multifunction.
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It is notable that the desired metric subregularity above is trivially satisfied by the polyhe-
dral case such as the LASSO model. But, the given condition seems too ambiguous to be
checked for a wide range of applications to be shown soon.

1.2. Motivating Examples in Machine Learning

Below we show some concrete applications in machine learning and statistics to which the
ADMM and its variants are usually applied as solution schemes, while they are not the
cases for which any of the scenarios (S1)-(S4) is effective.

Example 2 (Boyd et al., 2011, Section 11.2) Variable selection in `1 regularized logistic
regression (`1 RLR):

min
x

∑
j

(
log
(

1 + eL
T
j x
)
− bjLTj x

)
+ µ‖x‖1,

with Lj the j−th row of L ∈ IRl×m, bj ∈ {0, 1}, a regularization parameter µ and a convex
polyhedral regularizer ‖x‖1. Obviously, it can be reformulated as a special case of Problem
(1) so that the ADMM and its variants can be applied:

min
x,y

∑
j

(
log
(

1 + eL
T
j x
)
− bjLTj x

)
+ µ‖y‖1

s.t. x = y.

(7)

Obviously, for this example, in general the strong convexity does not hold in the objective.
It is easy to see that assumptions S(1)-S(4) do not hold.

Example 3 (James et al., 2013) In spite of the success of unconstrained variable selection
models, e.g., LASSO and RLR, they still suffer from limited information induced by the
regularizer. To address these issues, the constrained models have been proposed in order to
incorporate more informative data. In particular, the penalized and constrained (PAC) re-
gression for computing the penalized coefficient paths on high-dimensional generalized linear
model: 3

min
x,y,z

∑
j

(
− log

(
LTj x

)
+ bjL

T
j x
)

+ µ‖y‖1 + δ
IR
l2
+

(z)

s.t. x = y, Cx+ z = d,

(8)

where L ∈ IRl1×m is the design matrix covariates, b ∈ IRl1
+ is the response vector, C ∈

IRl2×m, µ ∈ IR+ and d ∈ IRl2 are predefined matrices and vectors. It is easy to see that, in
general assumptions S(1)-S(4) do not hold for this example.

The variable selection and estimation in high-dimensional regression with compositional
covariates proposed in (Lin et al., 2014) perfectly fall into the constrained regression model
(8). Compositional data, which consist of the proportions or percentages of a composition,
appear frequently in a wide range of applications; examples include geochemical compositions

3. Hereafter, for succinctness, for the examples to be presented, we directly show the reformulations in form
of Problem (1) with auxiliary variables, instead of the original models without constraints.
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of rocks in geology, household patterns of expenditure in economics, species compositions of
biological communities in ecology, and topic compositions of documents in machine learning;
see, e.g., (James et al., 2013; Lin et al., 2014) for the details. Owing to the special nature
of compositional data that the components of a composition must sum to unity, the usual
unconstrained linear regression model is inappropriate. To this end, a regularized linear log-
contrast model that respects the unique features of compositional data has been formulated
in (Lin et al., 2014) as a constrained convex optimization in the form of (8).

Another important problem in microbiome analysis is to identify the bacterial taxa that
are associated with a response, where the microbiome data are summarized as the composi-
tion of the bacterial taxa at different taxonomic levels. (Shi et al., 2016) considers regression
analysis with compositional data as covariates. Inspired by the modeling procedure in (Lin
et al., 2014), (Shi et al., 2016) also proposed linear models with a set of linear constraints on
the regression coefficients, in order to satisfy the subcompositional coherence of the results.

Example 4 (Yuan and Lin (2006) and Boyd et al. (2011, Sections 11.3)) For high dimen-
sional supervised learning problems where the predictor variables were divided into different
groups, for example in gene expression data these groups may be gene pathways, or factor
level indicators in categorical data, rather than just sparsity in the selected variable, people
would like a solution which uses only a few of the groups. In 2006, (Yuan and Lin, 2006)
introduced the group LASSO in order to allow predefined groups of covariates to be selected
into or out of a model together, so that all the members of a particular group are either
included or not included; the problem is

min
x,y

1

2
‖Lx− b‖2 + µ

∑
J∈J

ωJ‖yJ‖

s.t. x = y,

(9)

where ωJ ≥ 0, J is a partition of {1, . . . , n}. This criterion exploits the non-differentiability
of ‖xJ‖ at xJ = 0; setting groups of coefficients to exactly 0. The sparsity of the solution
is determined by the magnitude of the tuning parameter µ. If the size of each group is 1,
this gives us exactly the regular LASSO solution. In general,

∑
J∈J ωJ‖yJ‖ is not a convex

piecewise linear-quadratic function unless it degenerates to the `1 regularizer.

Example 5 (Friedman et al., 2010; Zhou et al., 2010) While the group LASSO gives a
sparse set of groups, if it includes a group in the model then all coefficients in the group will
be nonzero. Sometimes people would like both sparsity of groups and within each group, for
example if the predictors are genes people would like to identify particularly important genes
in pathways of interest. Toward this end, (Friedman et al., 2010) proposed the sparse-group
LASSO model:

min
x,y

1

2
‖Lx− b‖2 + µ‖y‖1 +

∑
J∈J

ωJ‖yJ‖

s.t. x = y,

(10)

where µ ≥ 0, ωJ ≥ 0 and J is a partition of {1, . . . , n}. This model improves the
group LASSO regularizer for the case where there is a possibility of within-group spar-
sity. Obviously, the regularizer is not convex piecewise linear-quadratic except the case
J = {{1}, {2}, . . . , {n}}.
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Example 6 (Tseng, 2010) The image denoising using total variation (TV) regularization:

min
x,y

1

2
‖Lx− b‖2 + δB(y)

s.t. x = y,

(11)

where L is the adjoint of the discrete (via finite difference) gradient mapping.

The ADMM and its variants have been shown to perform linear convergence for these
applications (see, e.g., Boyd et al., 2011, Sections 11.2,11.3 for ADMM applications on the
`1 regularized logistic regression and the group LASSO), and as shown, existing results fail
to explain the linear convergence. We are thus motivated to answer the following questions:

Besides scenarios (S1) - (S4), is it still possible that the PADMM-FG (2) converges linearly
for practical applications; and if yes, how can we discern the linear convergence?

We answer these questions affirmatively, and show particularly how to discern the linear
convergence of PADMM-FG (2) for a wide range of applications that are important in
statistical learning.

1.3. Setting for Discussion

We present the assumptions under which our analysis will be carried on. Throughout, to
avoid triviality, the following nonemptiness assumption is required.

Assumption 1.1 (Standing assumption) The optimal KKT solution set of Problem (1)
is nonempty.

Instead of the general case of (1) without any structure, and as motivated by various
applications including those listed before, we focus on some structured cases of Problem (1)
and make the following assumptions regarding the structure of Problem (1).

Assumption 1.2 (Structured assumption of f) A convex function f : IRn → (−∞,∞]
is said to satisfy the structured assumption if f is a function in form of

f(x) = h(Lx) + 〈q, x〉,

where L is some m×n matrix, q is some vector in IRn, and h : IRm → (−∞,∞] is a convex
proper lsc function with the following properties:

(i) h is essentially locally strongly convex, i.e., for any compact and convex subset K ⊂
dom ∂h, h is strongly convex on K;

(ii) h is essentially differentiable, i.e., int(dom h) is nonempty, h is differentiable on
int(dom h), and limk→∞ |∇h(αk)| = ∞ for any sequence {αk}∞k=1 converging to a
boundary point of int(dom h), and ∇h is locally Lipschitz continuous on int(dom h);

(iii) range (L) ∩ int(dom h) 6= ∅, where range (L) ⊆ IRm denotes the range of matrix L.
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Some commonly used loss functions in statistical learning such as linear regression,
logistic regression and likelihood estimation under Poisson noise all satisfy Assumption
1.2. We summarize these cases in Table 1, where b1 ∈ IRm, b2 ∈ {0, 1}m and b3 ∈ IRm

+

are parameters. Indeed, Part (iii) in Assumption 1.2 fulfills if dom h is an open set and
dom h 6= ∅. It is easy to check that, all the smooth parts of the objective functions in
Examples 2-6 satisfy Assumption 1.2 equipped with the scenarios in Table 1 automatically.

Loss function Linear regression Logistic regression Likelihood estimation

h(y) 1
2
‖y − b1‖

m∑
i=1

log(1 + eyi)− 〈b2, y〉 −
m∑
i=1

log(yi) + 〈b3, y〉

Table 1: Some commonly used loss functions h

Assumption 1.3 (Structured polyhedricity assumption) Problem (1) is said to sat-
isfy the structured polyhedricity assumption if f meets Assumption 1.2 and g is convex
piecewise linear-quadratic function.

Assumption 1.4 (Structured subregularity assumption) Problem (1) is said to sat-
isfy the structured subregularity assumption at a KKT point (x̄, ȳ, λ̄) if f meets Assumption
1.2, ∂(g∗(BTλ)) is calm at the reference point (λ̄,−Ax̄) and

Ω̂x(p) := {x | p = Lx− Lx̄, 0 ∈ ∂(g∗(BT λ̄))−Ax}

is calm at (0, x̄).

We next make some comments on Assumptions 1.3 and 1.4.

Remark 3 It is worthwhile mentioning that the structured polyhedricity assumption, which
is in general stronger than the structured subregularity assumption, is satisfied by some
applications such as the aforementioned RLR model (7) and PAC model (8). Moreover, the
structured subregularity assumption is satisfied at any KKT point (x̄, ȳ, λ̄)

• if g represents the `1,q-norm regularizer with q ∈ [1, 2];

• if g represents the sparse-group LASSO regularizer;

• if g represents the indicator function of a ball constraint, i.e., g = δB(·) and BT λ̄ 6= 0.

More details will be presented in subsection 3.4.

1.4. Contributions in Discerning Local Nonergodic Linear Convergence of
ADMM

As mentioned, our first purpose is to discuss the local nonergodic linear convergence of the
PADMM-FG (2) through the lens of variational analysis. We next present the first contribu-
tion in establishing the local linear convergence of original ADMM, linearized ADMM and
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the general PADMM-FG separately. To measure the optimality of an iterate for Problem
(1), we define two indicators: the objective function value

Val(x, y) = f(x) + g(y)

and the feasibility of constraints

Fea(x, y) = ‖Ax+By − b‖.

For notation simplicity, hereafter, for a generated iterate (xk, yk, λk), we denote the KKT
residue Res(xk, yk, λk) defined in (5) by Resk, the objective function value Val(xk, yk) by
Valk, and the feasibility of constraints Fea(xk, yk) by Feak, respectively. Below we present
the main results to be obtained, and further summarize them in Table 2.

• Discerning the local nonergodic linear convergence of original ADMM. For
the original ADMM where G1 = 0, G2 = 0 and γ = 1 in (2), if Problem (1) satisfies
the structured polyhedricity assumption, then we derive the linear convergence in the
following senses:

– the KKT residues sequence {Resk} converges linearly;

– the sequence of objective function value and constraint feasibility pairs {Valk,Feak}
converges linearly;

– the sequence {λk} converges linearly.

• Discerning the local nonergodic linear convergence of linearized ADMM.
For the linearized ADMM where G1 = rI − βATA with r > β‖ATA‖, G2 = 0 and
γ = 1 in (2), if one of the following assumptions is satisfied:

1. Problem (1) satisfies the structured polyhedricity assumption;

2. Problem (1) satisfies the structured subregularity assumption and A is of full
row rank;

then we derive the linear convergence in the following senses:

– the KKT residues sequence {Resk} converges linearly;

– the sequence of objective function value and constraint feasibility pairs {Valk,Feak}
converges linearly;

– the sequences {(xk, λk)} converges linearly.

• Discerning the local nonergodic linear convergence of the general PADMM-
FG. For the general PADMM-FG with βATA+G1 � 0 and βBTB +G2 � 0, if one
of the following assumptions is satisfied:

1. Problem (1) satisfies the structured polyhedricity assumption;

2. Problem (1) satisfies the structured subregularity assumption, A is of full row
rank and B is of full column rank;

then we derive the local nonergodic linear convergence in the following senses:
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– the KKT residues sequence {Resk} converges linearly;

– the sequence of objective function value and constraint feasibility pairs {Valk,Feak}
converges linearly;

– the sequences {(xk, yk, λk)} converges linearly.

Algorithmic
setting

Regularity beyond convexity

Structured
Polyhedricity

Structured
Subregularity

Full row
rank of A

Full column
rank of B

Linear
convergence

γ = 1, G1 = 0, G2 = 0 X - - - {λk; Resk; Valk,Feak}

γ = 1 with r > β‖ATA‖,
G2 = 0, G1 = rI − βATA

X - - - {(xk, λk); Resk; Valk,Feak}

- X X - {(xk, λk); Resk; Valk,Feak}

γ ∈ (0, 1+
√

5
2

),
βATA+G1 � 0, βBTB +G2 � 0

X - - - {(xk, yk, λk); Resk; Valk,Feak}

- X X X {(xk, yk, λk); Resk; Valk,Feak}

Table 2: Summary of local nonergodic linear convergence for the PADMM-FG (2)

1.5. Contributions to Machine Learning Applications

As mentioned, our second purpose is to discern the linear convergence behaviors as well as
the exact convergence rates of the PADMM-FG (2) for applications. Our results in discern-
ing local linear convergence of ADMM variants are established under two key assumptions,
i.e., the structured polyhericity assumption and the structured subregularity assumption.
These two conditions are actually application-driven, although they seem technical. We
shall develop new techniques that can be used to verify the key assumptions for an array of
concrete models in machine learning and statistics, and hence establish ADMM linear con-
vergence together with our first contribution. Our second contribution is then summarized
as ADMM linear convergence in concrete machine learning applications, with a particular
interest in the mentioned `1 RLR, PAC, group LASSO and sparse-group LASSO models,
which can not be covered by Scenarios (S1)-(S4).

Assuming the structured assumption of f in Assumption 1.2, we then present our results
systematically according to different application-driven scenarios of g.

Scenario 1. When ∂g is a polyhedral multifunction. This setting covers the following
sparse learning regularizers for feature selection in high-dimensional data analysis.

• g(x) represents the `1 regularizer which performs as the sparsity-inducing norms to
force the coefficients of non-important features to be zero.

In the high-dimensional data, the highly correlated features widely exist. However,
the `1 regularized sparse learning methods tend to arbitrarily select only one of them.
Consequently, estimation can be unstable, and the resultant model difficult to interpret.
The grouping of features, on the other hand, is highly beneficial in learning with high-
dimensional data. It reduces the variance in the estimation and improves the stability of
feature selection, leading to improved generalization (see, e.g., Zhong and Kwok, 2012). We
list some representative groups-keeping regularizers which are also covered in this category:

• the elastic net regularizer (see, e.g., Zou and Hastie, 2005), encourages highly corre-
lated covariates to have similar regression coefficients.
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• the fused LASSO regularizer (see, e.g., Tibshirani et al., 2005), directly enforces the
successive feature coefficients to be similar by the regularizer, if the features are or-
dered in some meaningful way.

• the octagonal selection and clustering algorithm for regression (OSCAR) (see, e.g.,
Bondell and Reich, 2008), uses the pairwise `∞ norm to encourage the equality of
coefficients for highly correlated features.

The definitions of the listed polyhedral convex regularizers are summarized in Table 3,
where µ, µ1 and µ2 are given nonnegative parameters.

Regularizers `1−norm elastic net fused LASSO OSCAR

g(x) µ‖x‖1 µ1‖x‖1 + µ2‖x‖2 µ1‖x‖1 + µ2

∑
i

|xi − xi+1| µ1‖x‖1 + µ2

∑
i<j

max{|xi|, |xj |}

Table 3: Polyhedral convex regularizers

Scenario 2. If ∂g is metrically subregular (not necessarily a polyhedral multifunction).
This setting covers two classes of important groups-keeping regularizers, where, different
from those mentioned polyhedral groups-keeping regularizers, some prior information about
the group structure of the underlying solution is assumed to be known in advance:

• the `1,q-norm regularizer with q ∈ [1, 2] (see, e.g., Fornasier and Rauhut, 2008; Kowal-
ski, 2009). In particular, g(y) =

∑
J∈J ωJ‖yJ‖q, where ωJ ≥ 0, J is a partition of

{1, . . . , n} and ‖ · ‖q denotes the `q-norm, i.e., ‖x‖q :=
( n∑
i=1
|xi|q

) 1
q
. When q = 2, the

`1,q-norm reduces to the group LASSO regularizer.

• the sparse-group LASSO regularizer, has been widely applied to different areas, such
as text processing, bioinformatics, signal interpretation, and object tracking.

Motivated by a substantial number of practical applications in statistics and machine
learning, we shall achieve our second contribution within the analysis framework

“structured assumption of f” + “application-driven scenarios of g”.

In Table 4, we further specify our second contribution and list the conditions that can
be used to discern the linear convergence of various specific cases of the PADMM-FG (2).
In this table, “oADMM”, “lADMM” and “pADMM” stand for the original ADMM, the
linearized ADMM and the general PADMM-FG (2) with the conditions βATA + G1 � 0
and βBTB + G2 � 0, respectively. This table serves as a “dictionary” for looking up to
the linear convergence when the ADMM and its variants are employed to solve a number
of popular applications.

Remark 4 In Table 4, we mark with a thick line box the full polyhedricity case where
f(x) = 1

2‖Lx − b‖
2 and g is convex piecewise linear-quadratic. For this full polyhedricity

case, the linear convergence of various cases of the PADMM-FG (2) has been studied in the
literature, (see, e.g., Aspelmeier et al., 2016; Han et al., 2017; Liu et al., 2018; Yang and
Han, 2016). For other applications in this table, it seems to be the first time to obtain the
linear convergence of various cases of the PADMM-FG (2).
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Remark 5 Even for the full polyhedricity case, in (Liu et al., 2018; Yang and Han, 2016),
the linear convergence of {(Axk, Byk, λk)} and {(xk, Byk, λk)} is proved under the assump-
tion of the convergence of the sequence {(xk, yk, λk)} generated by the original ADMM and
the linearized ADMM, respectively. In our analysis, instead of assuming the convergence of
the sequence {(xk, yk, λk)}, we only delineate the sequences that are known to be convergent.
In particular, for the full polyhedricity case, we prove the linear convergence of the sequence
{λk} generated by the original ADMM and the linear convergence of the sequence {(xk, λk)}
generated by the linearized ADMM. It is trivial to deduce that, under similar convergence
assumptions on the sequence {(xk, yk, λk)} as those in (Liu et al., 2018; Yang and Han,
2016), the linear convergence of {(Axk, Byk, λk)} and {(xk, Byk, λk)} can also be obtained
for the original ADMM and the linearized ADMM, respectively.

Remark 6 In (Han et al., 2017), it is noticed that the metric subregularity of the mapping
T pKKT at a KKT point can be used for the sake of proving the linear convergence of the
PADMM-FG (2). It is known that the metric subregularity condition is indeed a pointwise
condition. Therefore, in general, it is too ambiguous to be checked when the reference point is
unknown. What is more meaningful and challenging is finding out appropriate methodologies
that can verify the required metric subregularity so as to discern the linear convergence for
various concrete applications. This issue is out of the scope of (Han et al., 2017). Through
the lens of variational analysis, we shall show that the metric subregularity condition is
not just conceptual, but also verifiable for a wide range of applications arising in statistical
learning. Hence the empirically observed linear convergence of a number of algorithms is
tightly proved with rigorous mathematics; and the understanding of linear convergence of
ADMM and its variants is significantly enhanced.

1.6. Insights

Although the original ADMM and the linearized ADMM are special cases of the general
PADMM-FG (2), we conduct linear convergence analysis separately as shown hierarchically
in the last subsection, rather than just for the general PADMM-FG (2) as a whole. Gener-
ically speaking, it is because treating all variants in the most general form of PADMM-FG
(2) will result in the loss of some special properties owned by the special cases of the original
ADMM and the linearized ADMM. Indeed, we shall show that individual treatments on
the original ADMM and the linearized ADMM enable us to take advantage of their special
algorithmic structures more effectively and thus to derive some specific properties. This is
a striking feature of our study that leads to some new results for the original ADMM and
the linearized ADMM.

We understand that, because the sequence {(xk, yk, λk)} generated by the PADMM-
FG (2) with βATA + G1 � 0, βBTB + G2 � 0 converges to a KKT point (x̄, ȳ, λ̄),
as long as the KKT mapping TKKT is metrically subregular at (x̄, ȳ, λ̄, 0)), the conver-
gence rate of {(xk, yk, λk)} is indeed linear. This can be seen in Proposition 57. On the
other hand, instead of {(xk, yk, λk)}, the original ADMM generates the convergent sequence
{(Axk, Byk, λk)} while the linearized ADMM generates {(xk, Byk, λk)}. Naturally, we focus
on the convergence rate analysis in terms of the sequences {λk} for the original ADMM,
and {(xk, λk)} for the linearized ADMM, respectively. In our recent work (Wang et al.,
2018), we introduce the perturbation analysis technique for analyzing the convergence of an
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algorithm, by appropriately constructing an iteration-tailored perturbed solution set-valued
map and defining a perturbing parameter as the difference of two consecutive iterates of the
algorithm under investigation. Particularly, in this paper we adopt this technique for the
sequence {λk} of the original ADMM, {(xk, λk)} of the linearized ADMM and {(xk, yk, λk)}
of the general PADMM-FG (2), respectively, and accordingly induce different perturbed so-
lution set-valued maps. More details of the difference between those perturbed solution
set-valued maps will be delineated in Sections 2 and 3.

• Insight into algorithmic structure. Therefore, our first insight is that the original
ADMM, the linearized ADMM and the general PADMM-FG (2) should be treated
independently. Then, our main purpose becomes verifying calmness/metric subreg-
ularity of the set-valued maps induced by the perturbation analysis technique which
guarantee the desired linear convergence. Our analysis is conducted case by case us-
ing different techniques, because of the significant differences of the original ADMM,
the linearized ADMM and the general PADMM-FG (2). This analyzing framework
seems novel as it is quite distinct from those in the literature regarding ADMM linear
convergence.

In addition to the need of considering the algorithmic structure, it is commonly known
that the model’s structure should be fully considered when studying the convergence of a
particular algorithm applied to solve the model under investigation. Our analysis is also
based on the understanding that the verification of required subregularity conditions should
be conducted in accordance with the model’s special structure. Indeed, it is well-known that
the verification of subregularity conditions for practical application problems is usually a
challenging task. In the literature, there are various criteria proposed in the generic context
by following standard variational analysis, for ensuring the metric subregularity, (see, e.g.,
Gfrerer, 2011, 2013; Gfrerer and Ye, 2017; Guo et al., 2013; Henrion et al., 2002; Henrion
and Outrata, 2005; Ye and Ye, 1997; Ye and Zhang, 2013). But it seems there is very
little discussion on how to define some model-tailored subregularity conditions that can
inherently make use of the model’s structures for the study of linear convergence of the
ADMM and its variants. This fact limits the application of various existing work, including
(Aspelmeier et al., 2016; Han et al., 2017; Liang et al., 2017; Valkonen, 2014, 2017), to the
theoretical explanation of the linear convergence of the ADMM and its variants for some of
the mentioned models, see, e.g., the motivating examples 2-5.

• Insight into model structure. Therefore, our second insight is that the model’s
structure should be well exploited to initiate new criteria for verifying different types
of metric subregularity conditions that can both ensure the linear convergence of the
ADMM and its variants and be easily verified by an array of concrete machine learning
applications including those listed in Table 4. The new criterion differs significantly
from those discussed in standard variational analysis, which seems to be novel in the
literature.

Motivated by the mentioned insights, we employ perturbation analysis techniques to
identify appropriate forms of the metric subregularity for different cases of the PADMM-FG
(2), and then penetrate the model’s structures to re-characterize the desired subregularity
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conditions step by step to find more verifiable characterizations. The employment of calm
intersection theorem on the re-characterized perturbed solution map allows us to adpot
Robinson’s celebrated result (Robinson, 1981, Proposition 1) and hence calculate the error
bound modulus. Through this roadmap, we uncover the fact that the required calmness
conditions can be indeed verified and the linear convergence of the ADMM and its variants
can be discerned by a number of applications including those shown in Table 4.

1.7. Outline

The remaining part of the paper is organized as following. In Section 2, we focus on
discerning the linear convergence of the original ADMM. In particular, we derive the linear
convergence of the DRSM by studying the dual problem of Problem (1) and then convert
the result to the linear convergence of the original ADMM. In Section 3, we study the
linear convergence of the linearized ADMM for various cases. Particularly, by examining
the dual problem of (1), we show how to discern the linear convergence of the PDHG and
then convert the result to the linear convergence of the linearized ADMM. Then, we discuss
the general PADMM-FG (2) in Section 4 and give some concluding remarks in Section 5.

1.8. Symbols and Notations

The index of notations as well as the corresponding descriptions that will be used in this
paper are listed in Appendix O.

2. Linear Convergence of the Original ADMM

In this section, we shall show that, under Assumption 1.3, i.e., the structured polyhedricity
assumption, the original ADMM converges linearly in sense of the sequences {λk}, {Resk}
and {Valk,Feak}.

2.1. Roadmap of Analysis

We first recall the well-known equivalence between the original ADMM and the DRSM.
This relationship indicates that we just need to show the linear convergence for one of these
two methods. We first concentrate on the linear convergence of the DRSM. As illustrated
in Remark 13, using the perturbation analysis techniques, we introduce the set-valued
mappings T1 defined in (13) and T2 defined in (14) that are tailored for the iterative scheme
of the DRSM. In Proposition 12 and Theorem 14, under the calmness of T1 and T2, we
derive the linear convergence of the DRSM. Furthermore, to verify the calmness of T1, one
subtle step is probing the characterization of the calmness of T1 in terms of the calmness of
the set-valued map ΓDR defined in (17). Taking full advantage of Assumption 1.2, we notice
that the structure of ΓDR helps us investigate the calmness of T1 and it is easily verified
when g is a convex piecewise linear-quadratic function, according to Robinson’s celebrated
result (Robinson, 1981, Proposition 1). Similarly, we re-characterize the calmness of T2 with
the calmness of the structured Γ̃DR defined in (21). With the re-characterization in terms
of ΓDR and Γ̃DR, it then turns out to be easy to verify the calmness of T1 and T2 under the
structured polyhedricity assumption.

To present our analysis more clearly, let us show the roadmap of this section in Figure 1.
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Figure 1: Roadmap to study linear convergence of the original ADMM

Remark 7 In (Aspelmeier et al., 2016), the linear convergence of DRSM is studied under
the metric subregularity of the DR operator TDR (see subsection 2.3.1 for the definition).
Hence, the linear convergence rate of the original ADMM for the full polyhedricity case (S4)
can be derived as well. In our analysis, by noticing that the DR operator is a composite
of two operators, we define the algorithm-tailored perturbed solution set-valued maps (13)
and (14), through which we can discern the linear convergence of the original ADMM for
a much broader spectrum of applications beyond the full polyhedricity case, e.g., the RLR
model (7) and the PAC model (8). On the other hand, the linear convergence of DRSM
is investigated under the strong monotonicity assumption in (Giselsson and Boyd, 2016).
Thus the linear convergence rate of the original ADMM can be recovered under some strong
convexity conditions together with some full rank assumptions of the coefficient matrix.

2.2. Original ADMM on Primal Problem Is Equivalent to DRSM on Dual
Problem

It is clear that the dual of Problem (1) can be written as

(D) min
λ
− bTλ+ f∗(ATλ) + g∗(BTλ),

where f∗ and g∗ denote the conjugates of the convex functions f and g, respectively. Let

φ1(λ) = f∗(ATλ)− bTλ, φ2(λ) = g∗(BTλ),

the dual problem (D) can be represented as the following inclusion problem:

0 ∈ ∂φ1(λ) + ∂φ2(λ).

As analyzed in (Gabay, 1983), applying the original ADMM to the primal Problem (1) is
equivalent to applying the DRSM to its dual problem. We summarize some prerequisites
in the following proposition for further analysis.
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Proposition 8 Let {(xk, yk, λk)} be the sequence generated by the original ADMM. Define
zk := λk + βByk, uk := λk and vk := λk − β(Axk+1 + Byk − b). Then, {(uk, vk, zk)}
coincides with the sequence generated by the DRSM applied to the dual problem (D), with
the following details: 

uk = (I + β∂φ2)−1(zk),

vk = (I + β∂φ1)−1(2uk − zk),
zk+1 = zk − uk + vk.

Proof See Appendix A.

2.3. Linear Convergence of DRSM

Because of the equivalence shown in the preceding subsection, we just need to discuss
the linear convergence of DRSM for solving the dual problem (D) to derive the linear
convergence of the original ADMM for Problem (1).

2.3.1. Linear Convergence of DRSM under DR-iteration Based Error Bound

Recall that the iterative scheme of the DRSM applied to the dual problem (D) reads as
uk = (I + β∂φ2)−1zk,

vk = (I + β∂φ1)−1(2uk − zk),
zk+1 = zk − uk + vk.

Let

TDR :=
1

2
I +

1

2
(2(I + β∂φ1)−1 − I)(2(I + β∂φ2)−1 − I)

represent the DR operator, i.e., zk+1 = TDRz
k. As shown in (He and Yuan, 2012a, 2015),

the sequence {zk} converges to a certain point in Fix(TDR), where Fix(TDR) represents
the fixed point set of TDR, i.e., Fix(TDR) := {z | z = TDR(z)}. Without loss of generality,
we focus on the case where β = 1, because the sequence generated by applying the DRSM
with β = c > 0 to 0 ∈ ∂φ1(λ) + ∂φ2(λ) is the same as that of the DRSM with β = 1 to
0 ∈ ∂(cφ1(λ)) + ∂(cφ2(λ)). Before we present the linear convergence of DRSM, we recall
some preliminary results. The following proposition that can be found in (Bauschke and
Moursi, 2017) as well.

Proposition 9 Define that

Z := (∂φ1 + ∂φ2)−1(0), W := (∂(φ∗1 ◦ −Id) + ∂φ∗2)−1(0).

The following relationships hold:

(1) Z = proxφ2
(Fix(TDR)), and W = proxφ2

∗(Fix(TDR)).

(2) Fix(TDR) = Z +W .
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Proposition 10 (Bauschke and Combettes (2011, Theorem 25.6) and Bauschke and Moursi
(2017, Theorem 2.7)) Let {zk} be the sequence generated by the DRSM.

(1) The sequence {zk} converges to some point z̄ in Fix(TDR).

(2) For any z∗ ∈ Fix(TDR), there holds the following estimation

‖proxφ2
(zk+1)− proxφ2

(z∗)‖2 + ‖proxφ2
∗(zk+1)− proxφ2

∗(z∗)‖2

≤‖proxφ2
(zk)− proxφ2

(z∗)‖2 + ‖proxφ2
∗(zk)− proxφ2

∗(z∗)‖2 − ‖zk+1 − zk‖2, ∀k.
(12)

Definition 11 (DR-iteration-based error bound) Let the sequence {zk} be generated
by the DRSM and z̄ ∈ Fix(TDR) be an accumulation point of {zk}. We say that the DR-
iteration-based error bound holds at z̄ if there exist ε, κ > 0 such that

dist
(

proxφ2
(zk), Z

)
+ dist

(
proxφ2

∗(zk),W
)
≤ κ

∥∥∥zk+1 − zk
∥∥∥ ,

for all k such that zk ∈ B(z̄, ε).

Then, it is easy to prove the linear convergence of DRSM under the just-defined error
bound condition. Let {zk} be the sequence generated by the DRSM applied to the dual
problem (D), according to Proposition 10, {zk} converges to some point z̄ ∈ Fix(TDR).

Proposition 12 (Linear convergence of DRSM under DR-iteration-based error bound)

Let the sequence {zk} be generated by the DRSM, and z̄ ∈ Fix(TDR) be the limit point of
{zk}. Suppose that the DR-iteration-based error bound holds at z̄. The sequence {zk} con-

verges to z̄ linearly, i.e., there exist k0(ε) > 0 and 0 < ρ =
√

1− 1
κ2 < 1 such that, for all

k ≥ k0(ε), it holds

dist
(

proxφ2
(zk+1), Z

)
+ dist

(
proxφ2

∗(zk+1),W
)

≤ ρ
(

dist
(

proxφ2
(zk), Z

)
+ dist

(
proxφ2

∗(zk),W
))

,

and thus there exists C0 > 0 such that

dist
(

proxφ2
(zk), Z

)
+ dist

(
proxφ2

∗(zk),W
)
≤ C0ρ

k, ∀k ≥ k0(ε),

‖zk+1 − zk‖ ≤ C0ρ
k, ∀k ≥ k0(ε),

and
dist

(
zk, F ix(TDR)

)
≤ C0ρ

k, ∀k ≥ k0(ε).

Proof By Propositions 9 and 10 and the closedness of Z and W , we have

dist
(

proxφ2
(zk+1), Z

)2
+ dist

(
proxφ2

∗(zk+1),W
)2

≤dist
(

proxφ2
(zk), Z

)2
+ dist

(
proxφ2

∗(zk),W
)2
−
∥∥∥zk+1 − zk

∥∥∥2
.
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Then, since the DR-iteration-based error bound holds at z̄, there exist ε, κ > 0 such that

dist
(

proxφ2
(zk+1), Z

)2
+ dist

(
proxφ2

∗(zk+1),W
)2

≤(1− 1

κ2
)

(
dist

(
proxφ2

(zk), Z
)2

+ dist
(

proxφ2
∗(zk),W

)2
)

for all k such that zk ∈ B(z̄, ε).

Since {zk} converges to z̄, there exists k0 > 0 such that zk ∈ B(x̄, ε) when k ≥ k0. Therefore,
we have

dist
(

proxφ2
(zk+1), Z

)2
+ dist

(
proxφ2

∗(zk+1),W
)2

≤(1− 1

κ2
)

(
dist

(
proxφ2

(zk), Z
)2

+ dist
(

proxφ2
∗(zk),W

)2
)
∀k ≥ k0,

which implies that

dist
(

proxφ2
(zk), Z

)
+ dist

(
proxφ2

∗(zk),W
)

≤
√

2

√
dist

(
proxφ2

(zk), Z
)2

+ dist
(
proxφ2

∗(zk),W
)2

≤C0ρ
k, ∀k ≥ k0,

where C0 =
√

2
(

dist
(
proxφ2

(zk0), Z
)2

+ dist
(
proxφ2

∗(zk0),W
)2) 1

2
(1 − 1

κ2 )−
k0
2 and ρ =

(1− 1
κ2 )

1
2 . Then, it follows directly from (12) that

‖zk+1 − zk‖ ≤ dist
(

proxφ2
(zk), Z

)
+ dist

(
proxφ2

∗(zk),W
)
≤ C0ρ

k, ∀k ≥ k0.

Note that zk = proxφ2
(zk) + proxφ2

∗(zk) and Fix(TDR) = Z +W . In conclusion,

dist
(
zk, F ix(TDR)

)
≤ C0ρ

k, ∀k ≥ k0,

which completes our proof.

2.3.2. Calmness Conditions to Ensure DR-iteration-based Error Bound

In the last subsection, we show that the DR-iteration-based error bound condition can
conceptually ensure the linear convergence of the DRSM. Generally, this condition cannot
be checked directly. In this subsection, we show that certain calmness conditions which are
independent of the iterative scheme suffice to ensure the DR-iteration-based error bound
condition. This means appropriate conditions on the model itself can guarantee the DR-
iteration-based error bound condition and hence the linear convergence of the DRSM. To
this end, we first define the following two multifunctions:

T1(p) :=
{
λ
∣∣ p ∈ ∂φ1(λ− p) + ∂φ2(λ)

}
, (13)

and
T2(p) :=

{
µ
∣∣ p ∈ ∂(φ∗1 ◦ −Id)(µ− p) + ∂φ∗2(µ)

}
. (14)
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Remark 13 (Perturbation perspective) As aforementioned, the set-valued maps T1 and
T2 are defined from the perturbation perspective. In particular, according to the convergence
result given in (Bauschke and Moursi, 2017), we know that the sequences {uk} and {zk−uk}
converge to some points in Z = T1(0) and W = T2(0), respectively. Additionally, as shown
in the proof of Theorem 14, at each iteration k, we have

uk − vk ∈ ∂φ1(uk − (uk − vk)) + ∂φ2(uk),

uk − vk ∈ ∂(φ1
∗ ◦ −Id)(zk − uk − (zk − zk+1)) + ∂φ2

∗(zk − uk).

Note that the DRSM iterative scheme implies that zk − zk+1 = uk − vk,

zk − zk+1 ∈ ∂φ1(uk − (uk − vk)) + ∂φ2(uk),

zk − zk+1 ∈ ∂(φ1
∗ ◦ −Id)(zk − uk − (zk − zk+1)) + ∂φ2

∗(zk − uk).

Following the perturbation technique introduced in (Wang et al., 2018), if we introduce
perturbation pk to the place where the difference between two consecutive generated points
zk − zk+1 appears, T1 and T2 are therefore defined,

uk ∈ T1(pk),

zk − uk ∈ T2(pk).

We next show that the calmness of T1 and T2 ensures the DR-iteration-based error bound
and hence the linear convergence of the DRSM. Let {zk} be the sequence generated by the
DRSM, and according to Proposition 10, {zk} converges to some point z̄ ∈ Fix(TDR).

Theorem 14 (Linear convergence of DRSM under the calmness of T1 and T2) Let
the sequence {zk} be generated by the DRSM, and z̄ ∈ Fix(TDR) be the limit point of {zk}.
Suppose that T1 is calm at (0, λ̄), where λ̄ = proxφ2

(z̄), and T2 is calm at (0, µ̄), where
µ̄ = proxφ2

∗(z̄). Then the DR-iteration-based error bound holds at z̄ and hence the sequence

{zk} converges to z̄ linearly. That is, there exist k0 > 0 and 0 < ρ =
√

1− 1
κ2 < 1, such

that, for all k ≥ k0, it holds that

dist
(

proxφ2
(zk+1), Z

)
+ dist

(
proxφ2

∗(zk+1),W
)

≤ ρ
(

dist
(

proxφ2
(zk), Z

)
+ dist

(
proxφ2

∗(zk),W
))

.

Furthermore, there exists C0 > 0 such that

dist
(

proxφ2
(zk), Z

)
+ dist

(
proxφ2

∗(zk),W
)
≤ C0ρ

k, ∀k ≥ k0,

‖zk+1 − zk‖ ≤ C0ρ
k, ∀k ≥ k0,

and
dist

(
zk, F ix(TDR)

)
≤ C0ρ

k, ∀k ≥ k0.

Proof See Appendix B.
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2.4. Verification of the Calmness of T1 and T2

It becomes necessary to prove when T1 and T2 meet the calmness conditions. For this
purpose, taking into consideration the problem structure, we shall investigate sufficient
conditions for the calmness of T1 and T2. Before we do so, we establish some preliminary
results.

Lemma 15 Let ψ be a proper, lower semicontinuous, convex function in form of ψ(x) =
h(Lx) + δA(x), where L ∈ IRm×n and A := a + A0 be an affine space in IRn with some
vector a and subspace A0 in IRn. Suppose ψ∗(y) is the conjugate function of ψ(x), and then
dom ψ∗ ⊂ range (LT ) +A⊥0 .

Proof See Appendix C.

For the sake of mathematical generality, we employ L and A to introduce Lemma 15 as
an independent result. When Lemma 15 is applied, in Lemma 21, L and A are specified as
AT and Rm, respectively; while in Lemma 23, L and A play the same roles as K and V,
respectively.

We recall a proposition given in (Goebel and Rockafellar, 2008, Corollary 4.4).

Proposition 16 Let C be the class of all proper, lower semicontinuous, convex function
φ satisfying parts (i) and (ii) of Assumption1.2, i.e., φ is essentially differentiable, ∇φ
is locally Lipschitz continuous and φ is essentially locally strongly convex. φ∗ denotes the
convex conjugate function of φ, i.e., φ∗(x∗) := supx{〈x∗, x〉 − φ(x)}. Then

φ ∈ C if and only if φ∗ ∈ C.

We also need the following proposition given in (Rockafellar, 1970, Theorem 26.1).

Proposition 17 Let φ be a lower semicontinuous, convex function. If φ is essentially
differentiable, then

dom ∂φ = int(dom φ),

and
∂φ(x) = ∇φ(x), when x ∈ int(dom φ).

We are now in the position to present a decomposition for the conjugate of a structured
convex function, which will play an important role in our analysis.

Proposition 18 Let ψ(x) = h(Lx) + δA(x), where h ∈ C, L ∈ IRm×n and A := a + A0

be an affine space in IRn with some vector a and subspace A0 in IRn. Then, the conjugate
function ψ∗ of ψ can be expressed as

ψ∗(y) = h̃∗(L̃y) + 〈y, a〉+ δrange (LT )+A⊥0
(y), ∀y ∈ IRn,

where L̃ is a matrix and h̃ ∈ C. In addition, assume that

∂ψ(x) = LT∇h(Lx) +NA(x), ∀x ∈ IRn, and dom ∂ψ 6= ∅,

then
∂ψ∗(y) = L̃T∇h̃∗(L̃y) + a+Nrange (LT )+A⊥0

(y), ∀y ∈ IRn.
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Proof See Appendix D.

Remark 19 As dom h is not necessarily the entire space IRm, and some affine space A
and x ∈ A such that ∂ψ(x) 6= LT∇h(Lx) + NA(x) may exist. Thus we need to assume
that ∂ψ(x) = LT∇h(Lx) + NA(x),∀x ∈ IRn in order to obtain the exact formula of ∂ψ∗.
int(dom h) ∩ LA 6= ∅ is a sufficient condition for such assumption.

2.4.1. Sufficient Conditions for the Calmness of T1 and T2

With the preliminaries we have introduced, we are now able to characterize some sufficient
conditions to ensure the calmness of T1 and T2, and hence the linear convergence of original
ADMM. Before that, we state a basic result in Lemma 20 inspired by Assumption 1.2.

In particular, according to (Rockafellar, 1970, Theorem 23.8, Theorem 23.9), Assump-
tion 1.2 guarantees that the chain rule for the subdifferential expansion of f under structured
assumption holds strictly.

Lemma 20 Suppose that f meets Assumption 1.2, then ∂f(x) = ∂ (h(Lx))+q = LT∂h(Lx)+
q.

Lemma 21 Assume that f satisfies Assumption 1.2. Moreover, Assumption 1.1 holds.
Then φ1(λ) = f∗(ATλ)− bTλ admits an alternative form of

φ1(λ) = h̃∗ (Kλ− q̃)− bTλ+ δV(λ)

with some h̃ ∈ C, matrix K := L̃AT , vector q̃ := L̃q and affine space V := {λ | ATλ − q ∈
range (LT )}. Furthermore, we have dom ∂φ1 6= ∅,

∂φ1(λ) = KT∇h̃∗ (Kλ− q̃)− b+NV(λ).

Proof See Appendix E.

Since V is an affine space, there must be some v ∈ V and a subspace V0 such that
V = v + V0.

By denoting
φ̃1(λ) := h̃∗ (Kλ− q̃)− bTλ,

we can define a perturbed dual solution set multifunction as follows

S̃D1(p) :=
{
λ
∣∣ p ∈ ∂φ1(λ) + ∂φ2(λ)

}
=
{
λ ∈ V

∣∣ p ∈ ∇φ̃1(λ) + V⊥0 + ∂φ2(λ)
}
.

Note that S̃D1(0) = Z. We next investigate sufficient conditions to ensure the calmness of
T1. To this end, let us recall

T1(p) :=
{
λ
∣∣ p ∈ φ1(λ− p) + ∂φ2(λ)

}
,

=
{
λ− p ∈ V

∣∣ p ∈ ∇φ̃1(λ− p) + V⊥0 + ∂φ2(λ)
}
.
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Proposition 22 For any solution λ̄ to the dual problem (D), the calmness of S̃D1(p) at
(0, λ̄) suffices to ensure the calmness of T1(p) at (0, λ̄).

Proof We define the multifunction

T̃1(p) :=
{
λ ∈ V

∣∣ p ∈ ∇φ̃1(λ) + V⊥0 + ∂φ2(λ+ p)
}
.

It is easy to see that

T̃1(p) = −p+ T1(p).

Straightforwardly, the calmness of T̃1(p) at (0, λ̄) is equivalent to the calmness of T1 at
(0, λ̄).

We next rewrite T̃1(p) as

T̃1(p) =
{
λ ∈ V

∣∣ 0 ∈M (p, λ)
}
, (15)

where

M(p, λ) := G(p, λ) + 0× V⊥0 + gph (∂φ2) , G(p, λ) :=

(
−λ− p

−p+∇φ̃1(λ)

)
.

Following the technique presented in (Gfrerer and Klatte, 2016), we introduce two multi-
functions HM : IRn ⇒ V × IRn and Mp : V ⇒ IRn × IRn defined, respectively, by

HM (p) :=
{

(λ, y)
∣∣ λ ∈ V, y ∈M (p, λ)

}
and Mp (λ) :=

{
y
∣∣ y ∈M (p, λ)

}
.

By (Gfrerer and Klatte, 2016, Theorem 3.3), if M0(λ) :=M(0, λ) is metrically subregular
at (λ̄, 0) and M has the restricted calmness property with respect to p at (0, λ̄, 0), i.e., if
there are reals κ > 0 and ε > 0 such that

dist ((λ, 0) , HM (0)) ≤ κ ‖p‖ , ∀ ‖p‖ ≤ ε,
∥∥λ− λ̄∥∥ ≤ ε, (λ, 0) ∈ HM (p) ,

then T̃1 is calm at (0, λ̄) and thus T1 is calm at (0, λ̄). Based on this theorem, in order
to prove the the calmness of T1 provided the calmness of S̃D1 , we only have to justify the
metric subregularity of M0(λ) and the restricted calmness property of M.

• We first show that M meets the restricted calmness property with respect to p at
(0, λ̄, 0). Indeed, because λ̄ ∈ int(dom φ̃1) and by the locally Lipschitz continuity
of ∇φ̃1, there is a constant L1 > 0 along with neighborhoods U(0) of 0 as well as
U(λ̄) of λ̄ such that G is also Lipschitz continuous with modulus L1 on U(0)× U(x̄).
Given (p, x, 0) where p ∈ U(0), λ ∈ U(λ̄) and (λ, 0) ∈ HM(p), by definition, λ ∈ V and
0 ∈M(p, λ) = G(p, λ)+0×V⊥0 +gph(∂φ2). As a consequence, λ ∈ V, G(0, λ)−G(p, x) ∈
G(0, x) + 0× V⊥0 + gph(∂φ2) and hence (λ,G(0, λ)− G(p, λ)) ∈ HM(0). Therefore we
have the following inequality:

dist ((λ, 0), HM(0)) ≤ ‖(λ, 0)− (λ,G(0, λ)− G(p, λ))‖ ≤ ‖G(0, λ)− G(p, λ)‖ ≤ L1 ‖p‖ ,

which means thatM has the restricted calmness property with respect to p at (0, λ̄, 0);
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• We next show thatM0(λ) :=M(0, λ) is metrically subregular at (λ̄, 0) provided that
SP is calm at (0, λ̄). Indeed, by the the locally Lipschitz continuity of ∇φ̃1 around λ̄
and (Gfrerer and Ye, 2017, Proposition 3),M0(λ) is metrically subregular at (λ̄, (0, 0))
if and only if ∇φ̃1(λ) + V⊥0 + ∂φ2(λ) is metrically subregular relative to V at (λ̄, 0),
which is equivalent to the calmness of S̃D1 at (0, λ̄).

Consequently, T1 is calm at (0, λ̄) provided the calmness of S̃D1 at (0, λ̄).

Naturally, we shall explore sufficient conditions to ensure the calmness of T2. For this
purpose, let us define the multifunction

S̃D2(p) :=
{
µ
∣∣ p ∈ ∂(φ∗1 ◦ −Id)(µ) + ∂φ∗2(µ)

}
.

Note that S̃D2(0) = W . Similar to Lemma 21, we have the following result.

Lemma 23 Assume that f satisfies Assumption 1.2. Moreover, Assumption 1.1 holds.
Then φ1

∗(−µ) admits a form of

φ1
∗(−µ) = ĥ

(
K̂µ+ q̂

)
− 〈v, µ〉+ δV̂(µ) + 〈v, b〉,

with some ĥ ∈ C, matrix K̂, vector q̂ and affine space V̂. Furthermore,

∂ (φ1
∗(−µ)) = K̂T∇ĥ

(
K̂µ+ q̂

)
− v +NV̂(µ).

Proof See Appendix F.

Similar to Proposition 22, Lemma 23 inspires the following sufficiency.

Proposition 24 For any µ̄ ∈ S̃D2(0), the calmness of S̃D2 at (0, µ̄) is sufficient for the
calmness of T2 at (0, µ̄).

2.4.2. Verifying Calmness of T1 and T2 under Structured Assumptions

As mentioned, we want to find verifiable conditions to discern the linear convergence of the
original ADMM. Based on our previous analysis, it is clear that if Problem (1) meets the
structured polyhedricity assumption, then both S̃D1 and S̃D2 are calm, both T1 and T2 are
also calm, and eventually the linear convergence of the original ADMM can be ensured.
To show how to verify the calmness of T1 and T2 under structured assumptions, recall that
under Assumptions 1.2 and 1.1, it holds that

Z = arg min
λ
{φ1(λ) + φ2(λ)} =

{
λ ∈ V

∣∣ 0 ∈ KT∇h̃∗ (Kλ− q̃)− b+ V⊥0 + ∂φ2(λ)
}
.

Lemma 25 If Assumptions 1.1 and 1.2 hold for Problem (1), there exist t̄, ḡ ∈ IRn such
that

Z = {λ ∈ V | Kλ = t̄, 0 ∈ ḡ + V⊥0 + ∂φ2(λ)}. (16)
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Proof See Appendix G.

To facilitate our analysis, we introduce an auxiliary set-valued map:

ΓDR(p1, p2) := Γ1(p1) ∩ Γ2(p2) = {λ ∈ V | p1 = Kλ− t̄, p2 ∈ ḡ + V⊥0 + ∂φ2(λ)}, (17)

where

Γ1(p1) := {λ | p1 = Kλ− t̄}, Γ2(p2) := {λ ∈ V | p2 ∈ ḡ + V⊥0 + ∂φ2(λ)}. (18)

Since ΓDR(0, 0) = Z, ΓDR(p1, p2) can be considered as a set-valued map which perturbs Z
in (16). The following proposition links the metric subregularity of S̃−1

D1
and that of Γ−1

DR,

which thereby allows us to verify the subregularity conditions of Γ−1
DR instead of S̃−1

D1
.

Proposition 26 Suppose that Assumption 1.2 holds for Problem (1). The metric subregu-
larity conditions of Γ−1

DR and S̃−1
D1

are equivalent. Precisely, given λ̄ ∈ SD, the following two
statements are equivalent:

(i) there exist κ1, ε1 > 0 such that dist (λ,ΓDR(0, 0)) ≤ κ1dist
(
0,Γ−1

DR (λ)
)
, ∀λ ∈ Bε1(λ̄);

(ii) there exist κ2, ε2 > 0 such that dist
(
λ, S̃D1(0)

)
≤ κ2dist

(
0, S̃−1

D1
(λ)
)
, ∀λ ∈ Bε2(λ̄).

Proof Given λ̄ ∈ Z = ΓDR(0, 0), suppose that there exist κ1, ε1 > 0 such that

dist (λ,ΓDR(0, 0)) ≤ κ1dist
(
0,Γ−1

DR (λ)
)
, ∀λ ∈ Bε1(λ̄) ⊂ int(dom φ̃1).

For any λ ∈ Bε1(λ̄) ∩ V, and any ξ ∈ ∇φ̃1(λ) + V⊥0 + ∂φ2(λ), by the locally Lipschitz
continuity of ∇h̃∗ implied by Assumption 1.2, there exists Lh̃∗ > 0 such that

dist (λ, Z) = dist (λ,ΓDR(0, 0))

≤ κ1dist
(
0,Γ−1

DR (λ)
)

≤ κ1

(
‖Kλ− t̄‖+ ‖ξ −∇φ̃1(λ) + ḡ‖

)
≤ κ1

(
‖Kλ− t̄‖+ ‖KT∇h̃∗(Kλ− q̃)−KT∇h̃∗(t̄− q̃)‖+ ‖ξ‖

)
≤ (κ1 + Lh̃∗‖K‖)‖Kλ− t̄‖+ κ1‖ξ‖.

(19)

Let λ̂ be the projection of λ on Z. Since 0 ∈ ḡ + V⊥0 + ∂φ2(λ̂), λ − λ̂ ∈ V0 and ∂φ2 is
monotone, we have

〈ξ −∇φ̃1(λ) + ḡ, λ− λ̂〉 ≥ 0.

Moreover, since ḡ = KT∇h̃∗ (t̄− q̃) − b, Kλ̂ = t̄, and due to the essentially locally strong
convexity of h̃∗ around t̄ again, there exists σ > 0 such that

σ‖Kλ−t̄‖2 ≤ 〈∇h̃∗(Kλ−q̃)−∇h̃∗(t̄−q̃),Kλ−t̄〉 ≤ 〈ξ, λ−λ̂〉 ≤ ‖ξ‖·‖λ−λ̂‖ = ‖ξ‖·dist (λ, Z) .
(20)
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Combining (19) and (20), we obtain

dist (λ, Z) ≤
κ1 + Lh̃∗‖K‖√

σ

√
‖ξ‖dist (λ, Z) + κ1‖ξ‖,

and consequently,
dist (λ, Z) ≤ κ̃‖ξ‖,

where κ̃ = κ1 + 2c2 + 2c
√
κ1 + c2 > 0 and c =

κ1+Lh̃∗‖K‖
2
√
σ

. Because ξ is arbitrarily chosen

in ∇φ̃1(λ) + V⊥0 + ∂φ2(λ), we have

dist
(
λ, S̃D1(0)

)
= dist (λ, Z) ≤ κ̃dist

(
0, S̃−1

D1
(λ)
)
.

For λ ∈ Bε1(λ̄)\V, S̃−1
D1

(λ) = ∅, the above inequality comes directly. Hence, there exists
κ2 = κ̃ > 0 such that

dist
(
λ, S̃D1(0)

)
≤ κ2dist

(
0, S̃−1

D1
(λ)
)
, for all λ ∈ Bε1(λ̄).

Conversely, given λ̄ ∈ Z, suppose that there exist κ2, ε2 > 0 such that

dist
(
λ, S̃D1(0)

)
≤ κ2dist

(
0, S̃−1

D1
(λ)
)
, ∀λ ∈ Bε2(λ̄) ⊂ int(dom φ̃1).

For any fixed λ ∈ Bε2(λ̄) ∩ V, and (p1, p2) ∈ Γ−1
DR (λ), it follows that

p1 = Kλ− t̄,
p2 ∈ KT∇h̃∗ (t̄− q̃)− b+ V⊥0 + ∂φ2(λ).

To summarize, it holds that

p2 +KT∇h̃∗ (Kλ− q̃)−KT∇h̃∗ (Kλ− p1 − q̃) ∈ KT∇h̃∗ (Kλ− q̃)− b+ V⊥0 + ∂φ2(λ).

By virtue of the locally Lipschitz continuity of ∇h̃∗, there exists Lh̃∗ > 0 such that

dist (λ, Z) = dist
(
λ, S̃D1(0)

)
≤ κ2dist

(
0, S̃−1

D1
(λ)
)

≤ κ2‖p2 +KT∇h̃∗ (Kλ− q̃)−KT∇h̃∗ (Kλ− p1 − q̃) ‖
≤ κ2Lh̃∗‖K‖‖p1‖+ κ2‖p2‖.

Moreover, since (p1, p2) can be any element in Γ−1
DR (λ), we have

dist (λ,ΓDR(0, 0)) = dist (λ, Z) ≤ κ2(Lh̃∗‖K‖+ 1)dist
(
0,Γ−1

DR (λ)
)
.

When λ ∈ Bε2(λ̄)\V, Γ−1
DR (λ) = ∅, the above inequality follows directly. Therefore, there

exists κ1 = κ2(Lh̃∗‖K‖+ 1) > 0 such that

dist (λ,ΓDR(0, 0)) ≤ κ1dist
(
0,Γ−1

DR (λ)
)

for all λ ∈ Bε2(λ̄).

The proof is complete.

The equivalence in Proposition 26 further yields a sufficient condition for the calmness
of S̃D1 as shown below; this is the main result of this section.
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Theorem 27 Suppose that Assumptions 1.1 and 1.2 hold and ∂g is a polyhedral multifunc-
tion. Given any λ̄ ∈ S̃D1(0), then S̃D1 is calm at (λ̄, 0).

Proof It is easy to see that both Γ1 and Γ2 are polyhedral multifunctions. Taking into
consideration the fact that the class of polyhedral set-valued maps is closed under (finite)
addition, scalar multiplication, and (finite) composition, we conclude that ΓDR is a polyhe-
dral multifunction and hence clam. By virtue of Proposition 26, S̃D1 is calm at (λ̄, 0).

Combining Proposition 22 and Theorem 27, we are able to verify the desired calmness
of T1 under the structured polyhedricity assumption.

Theorem 28 Suppose that Problem (1) fulfills the structured polyhedricity assumption.
Given any λ̄ ∈ Z, T1 is calm at (0, λ̄).

The last task in this part is to verify the desired calmness of T2 under the structured
polyhedricity assumption. Indeed, analogous to the discussion for deriving Theorem 28,
first with Lemma 23, there exist vector t̂, ĝ and affine space V̂ := v̂ + V̂0 with subspace V̂0,
such that

S̃D2(0) = Γ̃DR(0, 0),

with Γ̃DR defined as

Γ̃DR(p1, p2) := {µ ∈ V̂ | p1 = K̂µ− t̂, p2 ∈ ĝ + V̂⊥0 + ∂φ∗2(µ)} (21)

Then, considering the fact that ∂g is polyhedral multifunction if and only if ∂g∗ be
polyhedral multifunction, we know that ∂φ∗2 is polyhedral multifunction when the structured
polyhedricity assumption is satisfied and we can conclude that Γ̃DR is calm at any point
(0, µ̄) with µ̄ ∈ S̃D2(0). Then, similar to Proposition 26, we can prove that S̃D2 is calm at
any point (0, µ̄) ∈ gph S̃D2 .

Moreover, together with Proposition 24, we have the desired calmness of T2.

Theorem 29 Suppose that Problem (1) fulfills the structured polyhedricity assumption.
Given any µ̄ ∈ S̃D2(0), T2 is calm at (0, µ̄).

2.5. Transporting the Linear Convergence from DRSM to Original ADMM

Previous analysis for the linear convergence of the DRSM can be regarded as preparation
for the analysis for the original ADMM. In this subsection, we show how to convert the
previous analysis to derive the linear convergence of the original ADMM. Recall that the
linear convergence of the DRSM through the lens of variational analysis is summarized in
Theorem 28, Theorem 29, and Theorem 14. Below, we show the linear convergence of the
original ADMM in sense of the dual variable sequence {λk}, the KKT residue sequence
{Resk}, and the objective function value sequence {Valk} together with the constraint
feasibility sequence {Feak}, by simply using Theorem 14.

Theorem 30 Assume that Problem (1) fulfills the structured polyhedricity assumption. Let
{(xk, yk, λk)} be the sequence generated by the original ADMM. Then, the sequence {λk}
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converges to Z linearly, where Z is the solution set of the dual problem (D). That is, there
exist k0 > 0, 0 < ρ < 1 and C0 > 0 such that, for all k ≥ k0, it holds that

dist
(
λk, Z

)
≤ C0ρ

k.

Furthermore, we have

Fea(xk+1, yk+1, λk+1) ≤ C0

β
ρk,

and there exist C̃0 > 0, Ĉ0 > 0 such that for all k ≥ k0 + 1

Res(xk, yk, λk) ≤ C̃0ρ
k,

and

|Val(xk, yk, λk)− V al∗| ≤ C̃0ρ
k,

where V al∗ represents the optimal objective value of Problem (1).

Proof According to Theorem 28, Theorem 29, and Theorem 14, when Problem (1) fulfills
the structured polyhedricity assumption, there exist k0 > 0, C0 > 0 and 0 < ρ < 1, such
that, for all k ≥ k0, it holds that

dist
(

proxφ2
(zk), Z

)
+ dist

(
proxφ2

∗(zk),W
)
≤ C0ρ

k, ∀k ≥ k0. (22)

According to Proposition 8, we know that, λk = proxφ2
(zk). So we get the linear convergence

of {λk}.
Next, according to Proposition 8, we have zk = λk + βByk; and because of

λk+1 = λk − β(Axk+1 +Byk+1 − b),

we have

‖Axk+1 +Byk − b‖ =
1

β
‖zk+1 − zk‖ ≤ C0

β
ρk, ∀k ≥ k0, (23)

where the last inequality follows from Theorem 14. Then, as shown in Proposition 8, we
have BTλk ∈ ∂g(yk) and BTλk+1 ∈ ∂g(yk+1). By the monotonicity of ∂g, it follows that

〈Axk+1 +Byk+1 − b, Byk −Byk+1〉 =
1

β
〈BTλk+1 −BTλk, yk+1 − yk〉 ≥ 0, ∀k ≥ 1.

Combining with (23), we get

‖Axk+1 +Byk+1 − b‖ ≤ C0

β
ρk, ∀k ≥ k0. (24)

From (68) in Proposition 8, we have

TKKT (xk+1, yk+1, λk+1) =

β(ATByk+1 −ATByk)
0

Axk+1 +Byk+1 − b

 .
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Thus, by (24), for all k ≥ k0, we have

Res(xk+1, yk+1, λk+1) ≤ β‖A‖‖Byk+1−Byk‖+‖Axk+1 +Byk+1−b‖ ≤ max(β‖A‖, 1)
C0

β
ρk,

which implies the linear convergence of the KKT residue sequence.
Additionally, note that

β(ATByk+1 −ATByk) +ATλk+1 ∈ ∂f(xk+1)

and
BTλk+1 ∈ ∂g(yk+1).

For any (x∗, y∗, λ∗) ∈ Ω∗, we have

f(x∗) ≥ f(xk+1) + 〈β(ATByk+1 −ATByk) +ATλk+1, x∗ − xk+1〉,
g(y∗) ≥ g(yk+1) + 〈BTλk+1, y∗ − yk+1〉.

Combining above two inequalities, we get

f(x∗) + g(y∗) ≥ f(xk+1) + g(yk+1) + 〈λk+1, Ax∗ +By∗ −Axk+1 −Byk+1〉
+ β〈Byk+1 −Byk, Ax∗ −Axk+1〉
≥ f(xk+1) + g(yk+1) + 〈λk+1, b−Axk+1 −Byk+1〉

+ β〈Byk+1 −Byk, Ax∗ −Axk+1〉,

(25)

where the last inequality follows from Ax∗ + By∗ − b = 0. Similarly, since ATλ∗ ∈ ∂f(x∗)
and BTλ∗ ∈ ∂g(y∗), we have

f(xk+1) + g(yk+1) ≥ f(x∗) + g(y∗) + 〈λ∗, Axk+1 +Byk+1 − b〉. (26)

Combining (25) and (26), we get

|f(xk+1) + g(yk+1)− f(x∗)− g(y∗)|
≤max{‖λk+1‖, ‖λ∗‖}‖Axk+1 +Byk+1 − b‖+ β‖Axk+1 −Ax∗‖‖Byk+1 −Byk‖.

(27)

Then, by the non-emptiness of Ω∗, as proved in (He and Yang, 1998, Theorem 3), there
exists (x̄, ȳ, λ̄) ∈ Ω∗ such that ‖λk− λ̄‖ → 0 and ‖Axk−Ax̄‖ → 0. We may take such KKT
point (x̄, ȳ, λ̄) ∈ Ω∗ in (27) and thus there exists C1 > 0 such that

|f(xk+1) + g(yk+1)− f(x̄)− g(ȳ)| ≤ C1(‖Axk+1 +Byk+1 − b‖+ ‖Byk+1 −Byk‖).

According to (24), we obtain the linear convergence with respect to the objective function
value of Problem (1) straightforwardly.

As analyzed in (Aspelmeier et al., 2016), if Problem (1) meets the full polyhedricity
assumption (S4), matrix A is of full column rank, and B is identity matrix, apart from the
linear convergence of {λk}, the sequences {xk} and {yk} also converge linearly. We next
clarify the relationship between W and the KKT solution set Ω∗. This connection helps
us establish the linear convergence of {xk} and {yk} under the structured polyhedricity
assumption and full rank conditions of A and B as well. Therefore, the linear convergence
results in (Aspelmeier et al., 2016) can be covered by our analysis.
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Corollary 31 In addition to the assumptions in Proposition 30, if the matrices A and B
are both of full column rank, then we have the linear convergence of the sequences {xk} and
{yk}. That is, there exist k0 > 0, 0 < ρ < 1 and C0 > 0, C̃0 > 0 such that, for all k ≥ k0,
it holds that

dist
(
xk,Ω∗x

)
≤ C̃0ρ

k,

and

dist
(
yk,Ω∗y

)
≤ C0ρ

k,

where Ω∗x := {x | ∃y, λ such that (x, y, λ) ∈ Ω∗} and Ω∗y := {y | ∃x, λ such that (x, y, λ) ∈
Ω∗}.

Proof See Appendix H.

3. Linear Convergence Rate of Linearized ADMM

In this section, we focus on the linearized ADMM where G1 = rI−βATA with r > β‖ATA‖,
G2 = 0 and γ = 1 in (2); and discuss its linear convergence in terms of sequences {(xk, λk)},
{Resk} and {Valk,Feak}, under certain structured assumptions.

3.1. Roadmap of Analysis

As aforementioned, for the full polyhedricity case (S4), the linear convergence of the se-
quence {(xk, Byk, λk)} generated by the linearized ADMM can be found in the literature;
(see, e.g., Liu et al., 2018; Yang and Han, 2016). Hence, here we investigate other nontrivial
cases. As well known, the linearized ADMM is highly relevant to the PDHG via a primal
and dual perspective. Their relevance indicates that we can study the linear convergence of
the linearized ADMM through the perspective of the PDHG. As illustrated in Remark 34,
the perturbation analysis consideration inspires us to determine the metric subregularity
of set-valued map T (x, λ) defined in (32) for deriving the linear convergence of the PDHG.
Taking full advantage of Assumption 1.2, we provide a finer characterization of the metric
subregularity of T in terms of the calmness of set-valued map ΓPDHG (see Proposition 40).
When g is further assumed to be a convex piecewise linear-quadratic function, i.e., the
structured polyhedricity assumption holds, the calmness of ΓPDHG follows directly from
Robinson’s celebrated result (Robinson, 1981, Proposition 1).

It is worth mentioning that the main difficulty is the situation where g is not piecewise
linear-quadratic; for instance, the `1,q-norm regularizer with q ∈ (1, 2] and the sparse-
group LASSO regularizer. To this end, we further unearth a underlying property, i.e., the
calmness of ∂(g∗(BTλ)) holds automatically for the `1,q-norm regularizer with q ∈ (1, 2]
and the sparse-group LASSO regularizer. Recall the calm intersection theorem introduced
in (Klatte and Kummer, 2002, Theorem 3.6). The metric subregularity of T is thereby re-
characterized in terms of the calmness of Ω̂x defined in (50). The calmness of Ω̂x eventually
follows directly from (Robinson, 1981, Proposition 1).

To present our analysis more clearly, we summarize the roadmap of analysis in this
section in Figure 2.
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Figure 2: Roadmap to study linear convergence of the linearized ADMM

3.2. Linearized ADMM for Primal Problem Is Equivalent to PDHG for
Min-max Problem

Under Assumption 1.1, Problem (1) is equivalent to the following saddle-point problem
(min-max problem):

min
x

max
λ

θ(x, λ) := f(x)− 〈λ,Ax〉 − g∗(BTλ) + 〈b, λ〉. (28)

We define Ω∗x,λ as the set of saddle-points to the above min-max problem (28). Let us
further denote

θ1(x) = f(x), θ2(λ) = g∗(BTλ)− 〈b, λ〉.

Then (28) can be rewritten into the following compact form

min
x

max
λ

θ(x, λ) := θ1(x)− 〈λ,Ax〉 − θ2(λ). (29)

As analyzed in (Esser et al., 2010; Shefi, 2015), the linearized ADMM applied to Problem
(1) turns out to be highly relevant to the application of the PDHG to the saddle-point
problem (28). In fact, for the iterative (xk, yk, λk) generated by the linearized ADMM at
the k-th iteration, we have

xk+1 = arg min
x

f(x)− 〈λk, Ax〉+ 〈βAT (Axk +Byk − b), x〉+
r

2
‖x− xk‖2.

Since β(Axk +Byk − b) = −λk + λk−1, we know that

xk+1 = arg min
x

f(x)− 〈2λk − λk−1, Ax〉+
r

2
‖x− xk‖2.
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Moreover, since

yk+1 = arg min
y

g(y)− 〈λk, Axk+1 +By − b〉+
β

2
‖Axk+1 +By − b‖2

and λk+1 = λk − β(Axk+1 +Byk+1 − b), we have

0 ∈ ∂g(yk+1)−BTλk+1,

which implies
0 ∈ B∂g∗(BTλk+1)−Byk+1.

Furthermore, since −Byk+1 = 1
β (λk+1 − λk) +Axk+1 − b, we have

0 ∈ B∂g∗(BTλk+1)− b+Axk+1 +
1

β
(λk+1 − λk),

which implies

λk+1 = arg min
λ
g∗(BTλ)− 〈b, λ〉+ 〈Axk+1, λ〉+

1

2β
‖λ− λk‖2.

Because the solution to the above problem is unique, the iterative scheme for λk+1 is equiv-
alent to that in the linearized ADMM

yk+1 = arg min
y

g(y)− 〈λk, Axk+1 +By − b〉+
β

2
‖Axk+1 +By − b‖2

λk+1 = λk − β(Axk+1 +Byk+1 − b).

In summary, the sequence {(xk+1, λk)} generated by the linearized ADMM coincides with
the sequence generated by the PDHG applied to (28), i.e.,

λk = argmin
λ

g∗(BTλ)− 〈b, λ〉+ 〈Axk, λ〉+
1

2τ
‖λ− λk−1‖2,

xk+1 = argmin
x

f(x)− 〈2λk − λk−1, Ax〉+
1

2σ
‖x− xk‖2,

(30)

where τ = β and σ = 1/r. At the k-th iteration of the PDHG, it follows from the optimality
conditions of its subproblems that

0 ∈
(
∂θ1(xk+1)−ATλk
∂θ2(λk) +Axk+1

)
+

(
1
τ I −AT
−A 1

σ

)(
xk+1 − xk
λk − λk−1

)
,

which can be further expressed in a more compact form

0 ∈ T (xk+1, λk) +M[(xk+1, λk)− (xk, λk−1)], (31)

where the matrix M ∈ IR(n1+m)×(n1+m) and the set-valued map T : IRn1+m ⇒ IRn1+m are
defined, respectively, as:

M :=

(
1
τ I −AT
−A 1

σ I

)
and T (x, λ) :=

(
∂θ1(x)−ATλ
∂θ2(λ) +Ax

)
. (32)
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3.3. Linear Convergence of PDHG under Metric Subregularity of T

In this subsection, we shall derive the linear convergence of the PDHG for solving problem
(29) under the metric subregularity of T .

In the literature, there are some results for analyzing the convergence of the PDHG and
its variants, (see, e.g., Bonettini and Ruggiero, 2012; Esser et al., 2010; He et al., 2014; He
and Yuan, 2012b). Among them is He and Yuan (2012b) which is the first work showing the
close connection between the PDHG and the well-known proximal point algorithm (PPA)
proposed in (Martinet, 1970; Rockafellar, 1976), as well as revisiting the PDHG from the
contraction perspective for convergence analysis (see Proposition 36). Research for PDHG’s
faster convergence rates, however, still stays in its infancy. In particular, it is known that,
if both f and g are strongly convex, then the PDHG converges linearly; (see, e.g., Bonettini
and Ruggiero, 2012; Valkonen, 2014).

Our approach to studying the linear convergence of the PDHG is motivated by the
explanation initiated in (He and Yuan, 2012b) of that the PDHG can be regarded as an
application of the PPA. More specifically, let us consider the application of PPA to the
inclusion problem

0 ∈ T (x, λ), (33)

where T is defined as in (32). We define the saddle-point set as Ω∗x,λ := {(x, λ) | 0 ∈ T (x, λ)}.
To proceed, we first establish the linear convergence of the PPA for solving a general

generalized equation 0 ∈ T (x, λ) where T is a maximally monotone operator defined in (32).

0 ∈ T (xk+1) +M(xk+1 − xk), (34)

where xk+1 := (xk+1, λk) andM is a positive definite matrix in form of (32). Based on the
convergence analysis of PPA given in the literature, for example, (Güler, 1991; Rockafellar,
1976; Teboulle, 1997), the sequence {xk} converges to some point x̄ ∈ Ω∗x,λ, and we are

going to derive the linear convergence of {xk} toward Ω∗x,λ under the following error bound

condition. Let the sequence {xk} be generated by the PPA iterative scheme (34); and it
converges to some point x̄ ∈ Ω∗x,λ.

Definition 32 (PPA-iteration-based error bound) Let the sequence {xk} be gener-
ated by the PPA iterative scheme (34), and x̄ ∈ Ω∗x,λ be an accumulation point of {xk}. We
say that the PPA-iteration-based error bound holds at x̄ if there exist ε, κ > 0 such that

distM

(
xk+1,Ω∗x,λ

)
≤ κ‖xk+1 − xk‖M, for all k such that xk ∈ B(x̄, ε),

where ‖d‖M :=
√
dTMd and distM(d,D) := inf{‖d − d′‖M

∣∣ d′ ∈ D} for a given subset D
and vector d in the same space.

The following PPA linear convergence relies heavily on (Leventhal, 2009). The proof is
needed for our further discussion and hence stated here.

Theorem 33 Let the sequence {xk} be generated by the PPA iterative scheme (34), and
x̄ ∈ Ω∗x,λ be the limit point of {xk}. Assume that the PPA-iteration-based error bound holds
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at x̄, and then the sequence {xk} converges to Ω∗x,λ linearly. That is, there exist k0 > 0 and

0 < ρ =
√

κ2

1+κ2 < 1 such that, for all k ≥ k0, it holds that

distM

(
xk+1,Ω∗x,λ

)
≤ ρdistM

(
xk,Ω∗x,λ

)
. (35)

Furthermore, there exists C0 > 0 such that, for all k ≥ k0, it holds that

dist
(
xk,Ω∗x,λ

)
≤ C0ρ

k, (36)

and

‖xk+1 − xk‖ ≤ C0ρ
k. (37)

Proof See Appendix I.

We have shown that the PPA-iteration-based error bound condition can conceptually
ensure the linear convergence of the PPA. We next show that certain metric subregularity
conditions which are independent of the iterative scheme suffice to ensure the PPA-iteration-
based error bound condition.

Remark 34 (Perturbation perspective) Following the perturbation analysis technique
in (Wang et al., 2018), we introduce perturbation pk to the place where the difference between
two consecutive generated points xk+1 − xk appears, i.e.,

pk = xk+1 − xk,

which further induces the canonically perturbed system

−Mpk ∈ T (xk+1).

Thus we consider the metric subregularity of set-valued mapping T in Theorem 35.

Theorem 35 Let the sequence {xk} be generated by the PPA iterative scheme (34), and
x̄ ∈ Ω∗x,λ be the limit point of {xk}. If T is metrically subregular at (x̄, 0), then the PPA-

iteration-based error bound holds at x̄ and hence the sequence {xk} converges to Ω∗x,λ lin-
early. That is, there exist k0 > 0 and 0 < ρ < 1 such that, for all k ≥ k0, it holds that

distM

(
xk+1,Ω∗x,λ

)
≤ ρdistM

(
xk,Ω∗x,λ

)
. (38)

Furthermore, there exists C0 > 0 such that, for all k ≥ k0, it holds that

dist
(
xk,Ω∗x,λ

)
≤ C0ρ

k, (39)

and

‖xk+1 − xk‖ ≤ C0ρ
k. (40)
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Proof See Appendix J.

Our main purpose in this subsection is discussing the linear convergence of the PDHG.
As a prerequisite of the analysis to be delineated, the convergence of the PDHG can be
given by the following proposition.

Proposition 36 (Chambolle and Pock, 2011; He and Yuan, 2012b) Let {(xk, λk−1)} be the
sequence generated by the PDHG applied to the saddle-point problem (29) as in (30). If
τσ < 1

‖ATA‖ , then the sequence {(xk, λk−1)} converges to some point (x̄, λ̄) ∈ Ω∗x,λ.

With the given convergence of the sequence {(xk, λk−1)} generated by the PDHG applied
to (29), the linear convergence of {(xk, λk−1)} can be achieved according to Theorem 35,
with the consideration that {(xk, λk−1)} can also be regarded as the sequence generated
by the PPA applied to (33). Note that when τσ < 1

‖ATA‖ , M defined by (32) is positive

definite. Then, the desired linear convergence of the PDHG follows immediately from the
discussion above.

Theorem 37 Suppose the sequence {(xk, λk−1)} generated by PDHG in (30) with τσ <
1

‖ATA‖ . Then according to Proposition36, {(xk, λk−1)} converges to some point (x̄, λ̄) ∈ Ω∗x,λ.

If T defined by (32) is metrically subregular at (x̄, λ̄, 0) with modulus κ, then the sequence

{(xk, λk−1)} converges to Ω∗x,λ linearly. That is, there exist k0 > 0 and 0 < ρ =
√

κ2

1+κ2 < 1

such that, for all k ≥ k0, it holds that

distM

(
(xk+1, λk),Ω∗x,λ

)
≤ ρdistM

(
(xk, λk−1),Ω∗x,λ

)
. (41)

Furthermore, there exists C0 > 0 such that, for all k ≥ k0, it holds that

dist
(

(xk+1, λk),Ω∗x,λ

)
≤ C0ρ

k, (42)

and
‖xk+1 − xk‖+ ‖λk − λk−1‖ ≤ C0ρ

k. (43)

3.4. Verification of Metric Subregularity of T

We have shown in the preceding section that the PDHG converges linearly under the met-
ric subregularity of T . Then, we need to answer the question of which T satisfies the
metric subregularity. For this purpose, taking into consideration the problem structure, we
shall characterize equivalent or sufficient conditions for the metric subregularity of T . The
following property is useful for developing our main results.

Proposition 38 (Bertsekas et al., 2003, Proposition 2.6.1) When a saddle-point of the
min-max problem (29) exists, the set of saddle-points Ω∗x,λ for (29) can be characterized by
X × Λ with

X := arg min
x
{sup

λ
θ(x, λ)} = arg min

x
{θ1(x) + θ∗2(−Ax)}

and
Λ := arg max

λ
{inf
x

θ(x, λ)} = arg min
λ
{θ∗1(ATλ) + θ2(λ)}.

Furthermore, we have (x∗, λ∗) ∈ X × Λ if and only if 0 ∈ T (x∗, λ∗).
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3.4.1. Equivalent Characterization for the Metric Subregularity of T

In general, Proposition 38 provides a characterization of the saddle-point set. Thanks to
the structure of f imposed in Assumption 1.2, we present an alternative characterization of
the saddle-point set Ω∗x,λ.

Proposition 39 When Problem (1) meets Assumption 1.2, the saddle-point set Ω∗x,λ can
be characterized as

Ω∗x,λ = {(x, λ) | Lx = t̃, ATλ = g̃, 0 ∈ ∂θ2(λ) +Ax}, (44)

with some vector t̃ ∈ IRl such that Lx = t̃ for all x ∈ X and g̃ := LT∇h(t̃) + q.

Proof See Appendix K.

To facilitate our analysis, we introduce an auxiliary perturbed set-valued map with
perturbation p = (p1, p2, p3) associated with the saddle-point-set characterization (44):

ΓPDHG(p) := {(x, λ) | p1 = Lx− t̃, p2 = g̃ −ATλ, p3 ∈ ∂θ2(λ) +Ax}.

Obviously, ΓPDHG(p) coincides with Ω∗x,λ when p = 0. Similar to (Ye et al., 2018, Proposi-
tion 4.1), we have following equivalence.

Proposition 40 Assume that Assumption 1.2 is satisfied. Then the metric subregularity
conditions of Γ−1

PDHG and T are equivalent. Precisely, given (x̄, λ̄) ∈ Ω∗x,λ, the following two
statements are equivalent:

(i) There exist κ1, ε1 > 0 such that

dist ((x, λ),ΓPDHG(0)) ≤ κ1dist
(
0,Γ−1

PDHG (x, λ)
)
, ∀(x, λ) ∈ Bε1(x̄, λ̄).

(ii) There exist κ2, ε2 > 0 such that

dist
(
(x, λ),Ω∗x,λ

)
≤ κ2dist (0, T (x, λ)) , ∀(x, λ) ∈ Bε2(x̄, λ̄).

Proof Given any (x̄, λ̄) ∈ Ω∗x,λ. Suppose that there exist κ1, ε1 > 0 such that

dist ((x, λ),ΓPDHG(0, 0)) ≤ κ1dist
(
0,Γ−1

PDHG (x, λ)
)
, ∀(x, λ) ∈ Bε1(x̄, λ̄).

Due to the essentially locally strongly convexity of h and the locally Lipschitz continuity
of ∇h, without loss of generality, we assume that ε1 is small enough so that ∇h is strongly
monotone and Lipschitz continuous on {Lx | (x, λ) ∈ Bε1(x̄, λ̄)}. For any (x, λ) ∈ Bε1(x̄, λ̄),
and any (ξ, η) ∈ T (x, λ)

ξ = ∂θ1(x)−ATλ = LT∇h(Lx) + q −ATλ, (45)

η ∈ ∂θ2(λ) +Ax, (46)
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and by the local Lipschitz continuity of ∇h, there exists Lh > 0 such that

dist
(
(x, λ),Ω∗x,λ

)
= dist ((x, λ),ΓPDHG(0))

≤ κ1dist
(
0,Γ−1

PDHG (x, λ)
)

≤ κ1

(
‖Lx− t̃‖+ ‖ξ + g̃ − LT∇h(Lx)− q‖+ ‖η‖

)
≤ κ1

(
‖Lx− t̃‖+ ‖L‖‖∇h(t̃)−∇h(Lx)‖+ ‖ξ‖+ ‖η‖

)
≤ κ1

(
(1 + ‖L‖Lh)‖Lx− t̃‖+ ‖ξ‖+ ‖η‖

)
.

(47)

Let (x̂, λ̂) be the projection of (x, λ) on Ω∗x,λ and then (x̂, λ̂) ∈ Bε1(x̄, λ̄). Since 0 ∈ ∂θ2(λ̂)+
Ax̂ and ∂θ2 is monotone, we have

〈η −Ax+Ax̂, λ− λ̂〉 ≥ 0,

and subsequently,
〈η, λ− λ̂〉 ≥ 〈ATλ−AT λ̂, x− x̂〉.

Moreover, since ξ = LT∇h(Lx)+q−ATλ, 0 = g̃−AT λ̂, thanks to the local strong convexity
of h, there exists σ > 0 such that

〈ξ, x− x̂〉+ 〈η, λ− λ̂〉 ≥ 〈LT∇h(Lx)− LT∇h(t̄), x− x̂〉
= 〈∇h(Lx)−∇h(Lx̂), Lx− Lx̂〉
≥ σ‖Lx− Lx̂‖2 = σ‖Lx− t̄‖2.

(48)

Combining (47) and (48), we obtain that

dist((x, λ),Ω∗x,λ) ≤ c1

√
‖(ξ, η)‖ · dist((x, λ),Ω∗x,λ) + c2‖(ξ, η)‖,

with c1 = κ1(1 + ‖L‖Lh)/
√
σ, c2 =

√
2κ1, and consequently,

dist((x, λ),Ω∗x,λ) ≤ κ̃‖(ξ, η)‖, where κ̃ =

(
c1 +

√
c2

1 + 4c2

2

)2

> 0.

Because ξ and η are arbitrarily chosen in T (x, λ), we have

dist
(
(x, λ), T−1(0)

)
= dist((x, λ),Ω∗x,λ) ≤ κ̃dist (0, T (x, λ)) .

Hence, there exists κ2 = κ̃ > 0 such that

dist
(
(x, λ),Ω∗x,λ

)
≤ κ2dist (0, T (x, λ)) , ∀(x, λ) ∈ Bε2(x̄, λ̄).

Conversely, given any (x̄, λ̄) ∈ Ω∗x,λ, suppose that there exist κ2, ε2 > 0 such that

dist
(
(x, λ),Ω∗x,λ

)
≤ κ2dist (0, T (x, λ)) , ∀(x, λ) ∈ Bε2(x̄, λ̄).

For any fixed (x, λ) ∈ Bε2(x̄, λ̄), and (p1, p2, p3) ∈ Γ−1
PDHG (x, λ), it follows that

p1 = Lx− t̄, p2 = g̃ −ATλ, p3 ∈ ∂θ2(λ) +Ax.
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To summarize, we have

p2 + LT∇h(Lx)− LT∇h(Lx− p1) = ∂θ1(x)−ATλ,
p3 ∈ ∂θ2(λ) +Ax.

By virtue of the locally Lipschitz continuity of ∇h, there exists Lh > 0 such that

dist
(
(x, λ),Ω∗x,λ

)
≤ κ2dist (0, T (x, λ))

≤ κ2

(
‖p2 + LT∇h(Lx)− LT∇h(Lx− p1)‖+ ‖p3‖

)
≤ κ2Lh‖L‖‖p1‖+ κ2‖p2‖+ κ2‖p3‖.

Moreover, since (p1, p2, p3) can be any element in Γ−1
PDHG (x, λ), we have

dist ((x, λ),ΓPDHG(0)) = dist
(
(x, λ),Ω∗x,λ

)
≤ κ2(Lh‖L‖+ 2)dist

(
0,Γ−1

PDHG (x, λ)
)
.

Therefore, there exists κ1 = κ2(Lh‖L‖+ 2) > 0 such that

dist ((x, λ),ΓPDHG(0)) ≤ κ1dist
(
0,Γ−1

PDHG(x, λ)
)
, ∀(x, λ) ∈ Bε2(x̄, λ̄).

3.4.2. Sufficient Condition for the Metric Subregularity of T

Thanks to Proposition 39, when A is of full row rank, we can easily obtain another charac-
terization of Ω∗x,λ.

Proposition 41 Suppose that Assumption 1.2 is satisfied and A is of full row rank. The
saddle-point set Ω∗x,λ can be characterized as

Ω∗x,λ = {(x, λ) | Lx = t̃, λ = λ̄, 0 ∈ D +Ax}, (49)

with λ̄ ∈ Λ, closed set D := ∂θ2(λ̄) and some vector t̃ ∈ IRl.

We introduce an auxiliary set-valued map associated with characterization of Ω∗x,λ in
(49):

Γ0(p) := {(x, λ) | p1 = Lx− t̃, p2 = −λ̄+ λ, p3 ∈ D +Ax}.

A useful connection is clarified below.

Proposition 42 Suppose that Assumption 1.2 is satisfied and A is of full row rank. Then,
given (x̄, λ̄) ∈ Ω∗x,λ, if ∂θ2 is calm at (λ̄,−Ax̄) and there exist κ1, ε1 > 0 such that

dist ((x, λ),Γ0(0)) ≤ κ1dist
(
0,Γ−1

0 (x, λ)
)
, ∀(x, λ) ∈ Bε1(x̄, λ̄),

then there exist κ2, ε2 > 0 such that

dist
(
(x, λ),Ω∗x,λ

)
≤ κ2dist (0, T (x, λ)) , ∀(x, y) ∈ Bε2(x̄, λ̄).
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Proof See Appendix L.

It can be observed easily that the calmness of Γ0(p) at (0, x̄, λ̄) is equivalent to the
calmness of the set-valued map Ωx(p) defined by

Ωx(p) := {x | p1 = Lx− t̃, p2 ∈ D +Ax}

at (0, x̄). For studying the calmness of Ωx, we recall the calm intersection theorem intro-
duced in (Klatte and Kummer, 2002, Theorem 3.6),

Proposition 43 (Calm intersection theorem) Let T1 : IRq1 ⇒ IRn and T2 : IRq2 ⇒ IRn

be two set-valued maps. Define set-valued maps:

T̃ (p1, p2) := T1(p1) ∩ T2(p2),

T̂ (p1) := T1(p1) ∩ T2(0).

Let x̃ ∈ T (0, 0). Suppose that both set-valued maps T1 and T2 are calm at (0, x̃) and T−1
1 is

pseudo-Lipschitz at (x̃, 0). Then T̃ is calm at (0, 0, x̃) if and only if T̂ is calm at (0, x̃).

By expressing Ωx(p) as
Ωx(p) := Ω1

x(p1) ∩ Ω2
x(p2),

where
Ω1
x(p1) := {x | p1 = Lx− t̃} and Ω2

x(p2) := {x | p2 ∈ D +Ax}.

Before studying the metric subregularity of Γ0, we present a lemma.

Lemma 44 If D ⊆ range (A), the multifunction Ω2
x(p) := {x | p ∈ D + Ax} is calm at

(0, x̄) for any x̄ ∈ Ω2
x(0) = {x | 0 ∈ D +Ax}.

Proof See Appendix M.

First, according to (Ye et al., 2018), (Ω1
x)−1 is metrically subregular and pseudo-Lipschitz

continuous at any point on its graph. Combining Lemma 44, Propositions 42 and 43, we
obtain a sufficient condition for the metric subregularity of T .

Theorem 45 Suppose that Assumption 1.2 is satisfied and A is of full row rank. Given
(x̄, λ̄) ∈ Ω∗x,λ, if ∂θ2 is calm at (λ̄,−Ax̄) with modulus κ2 and

Ω̂x(p1) := {x | p1 = Lx− t̄, 0 ∈ D +Ax} (50)

is calm at (0, x̄) with modulus κ, then T is metrically subregular at (x̄, λ̄, 0) with modulus

κT = max{ 1

‖A‖
, κ̄},

where

κ̄ =

(
c1 +

√
c2

1 + 4c2

2

)2

> 0.
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In particular,

c1 = κ1(σmin(AT ) + (1 + κ2)Lh‖L‖)/(
√
σσmin(AT )), c2 =

√
2κ1,

κ1 = max{κ̂, 1}, κ̂ = (1 + 2κ‖L‖) max{ 1

σ̃min(L)
,

1

σ̃min(A)
},

where σ and Lh are the strong convexity modulus of h and Lipschitz continuity constant of
∇h on {Lx | (x, λ) ∈ Bε(x̄, λ̄)} for some ε > 0, respectively, where σ̃min(L) and σ̃min(A)
denotes the smallest nonzero singular value of L and A, respectively.

Proof The metric subregularity of T follows directly from Lemma 44, Propositions 42
and 43. We next estimate the metric subregularity modulus of T . Firstly, according to the
proof of Lemma 44, we understand that Ω2

x is calm at (0, x̄) with modulus 1
σ̃min(A) , where

σ̃min(A) denotes the smallest nonzero singular value of A. Inspired by the proof of (Ye
et al., 2018, Theorem 7), according to the calm intersection theorem, we shall estimate the
calmness modulus of Ωx in terms of the calmness modulus of Ω̂x, i.e., Ωx is calm at (0, x̄)
with modulus

κ̂ = (1 + 2κ‖L‖) max{ 1

σ̃min(L)
,

1

σ̃min(A)
}.

Immediately, Γ0 is metrically subregular at (x̄, ū, 0) with modulus κ1 = max{κ̂, 1}. Thanks
to the essentially locally strongly convexity of h and the locally Lipschitz continuity of ∇h,
without loss of generality, we shall assume that ε is small enough so that ∇h is strongly
monotone and Lipschitz continuous on {Lx | (x, λ) ∈ Bε(x̄, λ̄)} with modulus σ and Lh,
respectively. Thanks to the proof of Propositions 42, T is metrically subregular at (x̄, λ̄, 0)
with modulus κT = max{ 1

‖A‖ , κ̄}, where

κ̄ =

(
c1 +

√
c2

1 + 4c2

2

)2

> 0.

In particular, c1 = κ1(σmin(AT ) + (1 + κ2)Lh‖L‖)/(
√
σσmin(AT )) and c2 =

√
2κ1.

3.4.3. Verifying Metric Subregularity of T under Structured Assumptions

As long as ∂g is a polyhedral multifunction, ∂θ2 and hence ΓPDHG are polyhedral multi-
functions as well. Therefore, Proposition 40, together with Theorem 45, straightforwardly
yields the following criteria for the metric subregularity of T .

Theorem 46 The metric subregularity of T at (x̄, λ̄, 0) where (x̄, λ̄) ∈ Ω∗x,λ holds if one of
the following statements is satisfied:

(1) Problem (1) meets the structured polyhedricity assumption;

(2) Problem (1) meets the structured subregularity assumption at (x̄, ȳ, λ̄) which is a KKT
point, and A is of full row rank.

Before giving applications of the criteria in Theorem 46, we need the following lemma.
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Lemma 47 Assume that ∂g is metrically subregular for some (ȳ, v̄) ∈ gph ∂g with modulus
κ. Then

(1) ∂g∗ is calm at (v̄, ȳ) ∈ gph ∂g∗ with modulus κ;

(2) for any matrix B, let z̄ be any vector satisfying BT z̄ = v̄, then B∂g∗BT is calm at
(z̄, Bȳ) with modulus κ‖B‖2;

(3) in addition, when range (BT ) ∩ ri(dom g∗) 6= ∅, we have

∂θ2(λ) = B∂g∗(BTλ)− b,

and thus ∂θ2 is calm at (z̄, Bȳ − b) with modulus κ‖B‖2.

Proof See Appendix N.

Let t ∈ (0,+∞) be given, we define the multi-function ϕt : Rn ⇒ Rn as

ϕt(x) :=
(

sign(x1) · |x1|t; · · · ; sign(xn) · |xn|t
)
.

Lemma 48 (Zhu et al., 2018) Let g represent the `1,q-norm regularizer, i.e., g(x) :=∑
J∈J wJ ‖xJ‖q with q ∈ [1, 2] where J is a non-overlapping partition of the index set

{1, · · · , n}, wJ ≥ 0 for J ∈ J .

(1) For any fixed s ∈ IRn, (∂g)−1(s) is a polyhedral convex set if it is nonempty.

(2) ∂g is metrically subregular at any (x̄, s̄) ∈ gph(∂g), namely, there exists ε > 0 such
that for any x ∈ Bε(x̄),

dist
(
x, (∂g)−1(s̄)

)
≤ κg · dist (s̄, ∂g(x)) , (51)

where

κg := max
J∈J
{κJ} with κJ =


1 if wJ = 0,

1 if wJ > 0 and ‖s̄J‖q < wJ ,

κJ,1 · κJ,2 · w−1
J if wJ > 0 and ‖s̄J‖q = wJ ,

and κJ,1 denotes the Lipschitz constant of ϕ q
p
(·) at Bε

(
ϕ p
q
(x̄J)

)
, κJ,2 denotes the

supremum of ‖ϕ p
q
(·)‖q at Bε (x̄J).

Lemma 49 (Zhu et al., 2018) Let g denote the sparse-group LASSO regularizer, i.e.,
g(x) :=

∑
J∈J wJ ‖xJ‖2 + µ · ‖x‖1 where J be a non-overlapping partition of the index

set {1, · · · , n}, wJ ≥ 0 for J ∈ J and µ ≥ 0 be given parameters.

(1) For any fixed s ∈ IRn, (∂g)−1(s) is a polyhedral convex set if it is nonempty.
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(2) ∂g is metrically subregular at any (x̄, s̄) ∈ gph(∂g), i.e., there exist ε > 0 such that
for any x ∈ Bε(x̄),

dist
(
x, (∂g)−1(s̄)

)
≤ κg(λ) · dist (s̄, ∂g(x)) . (52)

where

κg(µ) := max
J∈J
{κJ(µ)}

with

κJ(µ) =


1 if wJ = 0,

1 if wJ > 0 and ‖Tµ(s̄J)‖q < wJ ,

κJ,1(µ) · κJ,2(µ) · w−1
J if wJ > 0 and ‖Tµ(s̄J)‖q = wJ ,

and κJ,1(µ) denotes the Lipschitz constant of ϕ q
p
(·) at Bε

(
ϕ p
q
(x̄J)

)
, κJ,2(µ) denotes

the supremum of ‖ϕ p
q
(·)‖q at Bε (x̄J).

Theorem 50 Suppose that Assumption 1.2 is satisfied. Given (x̄, λ̄) ∈ Ω∗x,λ, we have the
desired metric subregularity of T as follows

(1) when g is a convex piecewise linear-quadratic function, then T is metrically subregular
at (x̄, λ̄, 0);

(2) when A is of full row rank, and g represents the `1,q-norm regularizer with q ∈ [1, 2],
then T is metrically subregular at (x̄, λ̄, 0);

(3) when A is of full row rank, and g represents the sparse-group LASSO regularizer, then
T is metrically subregular at (x̄, λ̄, 0);

(4) when A is of full row rank, and g represent the indicator function of a ball constraint,
i.e., g = δB(·) and BT λ̄ 6= 0, then T is metrically subregular at (x̄, λ̄, 0).

Proof The first assertion coincides with nothing but the structured polyhedricity assump-
tion. We just focus on the others.

For Parts (2) and (3), according to Lemma 48, ∂g is metrically subregular at any point on
its graph, since ∂g∗ = (∂g)−1, ∂g∗ is calm everywhere on its graph. As θ2(λ) = g∗(BTλ),
and 0 ∈ ri(dom g∗), we surely have range (BT ) ∩ ri(dom g∗) 6= ∅. Then, according to
Lemma 47, ∂θ2 is also calm everywhere on its graph. Note that, for any fixed η, from
Lemma 48, ∂g∗(η) = (∂g)−1(η) is a convex polyhedral set, straightforwardly ∂θ2(η) is convex
polyhedral. Consequently, the structured subregularity assumption is satisfied everywhere
on the KKT solution set automatically.

For Part (4), as g = δB(·), θ2 = g∗(BT y) with g∗(z) = ‖z‖. Since ∂g∗ = ∂‖ · ‖ is
calm everywhere on its graph, and 0 ∈ ri(dom g∗), range (BT ) ∩ ri(dom g∗) 6= ∅, then
by Lemma 47, ∂θ2 is also calm everywhere on its graph. Moreover, since ∂‖η‖ is a convex
polyhedral set whenever η 6= 0, easily ∂θ2 is a polyhedral set if η 6= 0. As a consequence, the
structured subregularity assumption is satisfied on the KKT solution (x̄, ȳ, λ̄) if BT λ̄ 6= 0.
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3.5. Calculus of Metric Subregularity Modulus of T

So far we have verified the metric subregularity of T for some popular applications in
Theorem 50. We next focus on calculating the metric subregularity modulus of T . Noting
that D = ∂θ2(λ̄), Theorem 51 then follows directly from Lemma 47 and Theorem 45.

Theorem 51 Suppose that Assumption 1.2 is satisfied and A is of full row rank. Given
(x̄, λ̄) ∈ Ω∗x,λ, if ∂g is metrically subregular at (ȳ, BT λ̄) with modulus κg for some ȳ such

that Bȳ = b−Ax̄, ∂θ2(λ̄) = B∂g∗(BT λ̄)− b and

Ω̂x(p1) := {x | p1 = Lx− t̃, −Ax ∈ B∂g−1(BT λ̄)− b}

is calm at (0, x̄) with modulus κ, then T is metrically subregular at (x̄, λ̄, 0) with modulus

κT = max{ 1

‖A‖
, κ̄},

where

κ̄ =

(
c1 +

√
c2

1 + 4c2

2

)2

> 0.

In particular,

c1 = κ1(σmin(AT ) + (1 + κg)Lh‖L‖)/(
√
σσmin(AT )), c2 =

√
2κ1,

κ1 = max{κ̂, 1}, κ̂ = (1 + 2κ‖L‖) max{ 1

σ̃min(L)
,

1

σ̃min(A)
},

where σ̃min(L) and σ̃min(A) denotes the smallest nonzero singular value of L and A, respec-
tively, σ and Lh are the strong convexity modulus of h and Lipschitz continuity constant of
∇h on {Lx | (x, λ) ∈ Bε(x̄, λ̄)} for some ε > 0, respectively.

Thanks to Theorem 51, suppose that Assumption 1.2 is satisfied and A is of full row
rank, once we know the metric subregularity modulus of ∂g and the calmness modulus of
Ω̂x, the modulus of the metric subregularity of T can be estimated. The essential difficulty is
associated with the estimation of the calmness modulus of Ω̂x. According to its definition in
(50), under Assumption 1.2 and full row rank of A, Ω̂x represents a perturbed linear system
on a convex polyhedral set for a wide range of applications, including scenarios where g
denotes the LASSO, the elastic net, the fused LASSO, the OSCAR, the group LASSO and
the sparse-group LASSO. Hence, the calmness modulus of Ω̂x is achievable through the
Hoffman’s error bound theory or its variant (see Ye et al., 2018, Lemma 8).

We next show how to calculate the calmness modulus on specific application problems.
We take the variable selection in regularized logistic regression (RLR) as an illustrative
example while the extension to other problems is purely technical and hence omitted.

Calculus of the metric subregularity modulus of T for the `1 RLR: we consider
the RLR problem with `1 norm regularizer

min
x,y

∑
j

(
− log

(
LTj x

)
+ bjL

T
j x
)

+ µ‖y‖1

s.t. x = y,

(53)
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where L ∈ IRl1×m, and b ∈ IRl1
+ are predefined matrices and vectors.

Denote that g(y) = µ‖y‖1, µ > 0. Suppose the reference point we are considering is
(x̄, λ̄). We may let ȳ = x̄, then according to (Ye et al., 2018, Lemma 4, Lemma 5), ∂g(y)
is metrically subregular at (ȳ,−λ̄) with modulus κg =

κ−λ̄/µ
µ , where κ−λ̄/µ is the metric

subregularity modulus of ∂‖ · ‖1 at (ȳ,−λ̄/µ). Therefore, thanks again to (Ye et al., 2018,
Lemma 4, Lemma 5),

κg ≤
2‖ȳ‖

µ(1− c̄)
,

c̄ = max
{i:|−λ̄i/µ|<1}

| − λ̄i/µ|; c̄ = 0 if {i : | − λ̄i/µ|<1} = ∅.

In order to calculate the metric subregularity modulus of T , according to Theorem 51, we
are left to estimate the calmness modulus of Ω̂x. Again under the setting that g(y) = µ‖y‖1
for some µ > 0, given λ̄, we shall define index sets

I+ := {i ∈ {1, . . . ,m} | λ̄i = µ},
I− := {i ∈ {1, . . . ,m} | λ̄i = −µ},
I0 := {i ∈ {1, . . . ,m} | |λ̄i| < µ}.

Moreover, we shall need the following notations.

• ei ∈ IRm denotes the vector whose ith entry is 1 and other entries are zero,

• D ∈ IRm×(|I+|+|I−|) denotes a matrix whose columns are {−ei}i∈I+ ∪ {ei}i∈I− .

Ω̂x can be rewritten as a partially perturbed system of linear equality and inequality
constraints:

Ω̂x(p1) := {x | p1 = Lx− Lx̄, −x = −Dα,α ≥ 0} (54)

We are in the position to apply Lemma 52 taken from (Ye et al., 2018) to calculate the
calmness modulus of Ω̂x. In fact, Lemma 52 can be regarded as a variant of Hoffman’s error
bound theory.

Lemma 52 (Partial error bound over a convex cone) Let P be a polyhedral set P :=
{x ∈ IRn | Ãx = b̃, K̃x+ c̃ ∈ D}, where Ã is a matrix of size m× n, K̃ is a matrix of size
p× n, b̃ ∈ IRm, c̃ ∈ IRp, D := {z | z =

∑l
i=1 αidi, αi ≥ 0}, and {di}li=1 ⊆ IRp. Then

dist (x, P ) ≤ θ̄(M)
∥∥∥Ãx− b̃∥∥∥ , ∀x ∈ D,

whereM :=

[
ÃT −K̃T 0

0 D̃T −I

]
, I and 0 are identity and zero matrices of appropriate order,

D̃ ∈ IRp×l is the matrix whose columns are {di}li=1 and

θ̄(M) := sup
λ,µ,ν

‖λ‖
∣∣∣∣∣∣
‖M(λ, µ, ν)‖ = 1, ν ≥ 0,
The corresponding rows of M to λ, µ, ν’s
non-zero elements are linearly independent.

 . (55)
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Applying Lemma 52 to Ω̂x in (54), we obtain the following result.

Proposition 53 For the RLR problem (53), Ω̂x is globally calm with modulus θ̄(M), i.e.,

dist
(
x, Ω̂x(0)

)
≤ θ̄(M)dist

(
0, (Ω̂x)−1(x)

)
, ∀x,

where

M :=

[
LT I 0
0 −DT −I

]
,

and θ̄(M) is defined as in (55).

Theorem 54 Consider the RLR problem (53). Suppose that − log is strongly convex on
some neighborhood Uj of LTj x̄ for each j with uniform modulus σ and ∇(− log) is Lipschitz
continuous on Uj for each j with uniform constant Lh, then T is metrically subregular at
(x̄, λ̄, 0) with modulus κT = max{1, κ̄}, where

κ̄ =

(
c1 +

√
c2

1 + 4c2

2

)2

> 0.

In particular,
c1 = κ1(1 + (1 + κg)Lh‖L‖)/

√
σ, c2 =

√
2κ1,

κ1 = max{κ̂, 1}, κ̂ = (1 + 2θ̄(M)‖L‖) max{ 1

σ̃min(L)
, 1},

where σ̃min(L) denotes the smallest nonzero singular value of L, κg = 2‖x̄‖
µ(1−c̄) with

c̄ = max
{i:|−λ̄i/µ|<1}

| − λ̄i/µ|; c̄ = 0 if {i : | − λ̄i/µ|<1} = ∅.

3.6. Transporting the Convergence from PDHG to Linearized ADMM with
Quantifiable Linear Convergence Rate

Based on the analysis in the preceding subsections for the linear convergence of the PDHG,
we are able to convert the result to derive the linear convergence of the linearized ADMM.
Let {(xk, yk, λk)} be the sequence generated by the linearized ADMM. Then, according to
Proposition36, {(xk, λk−1)} converges to some point (x̄, λ̄) ∈ Ω∗x,λ. We next show the linear

convergence of the linearized ADMM in sense of the sequences {(xk, λk−1)}, {(xk, λk)},
{Resk}, {Valk} and {Feak}.

Theorem 55 If T is metrically subregular at (x̄, λ̄, 0) with modulus κ, then both the se-
quence {(xk, λk−1)} and {(xk, λk)} converge to Ω∗x,λ linearly. That is, there exist k0 > 0,
C0 > 0 and

0 < ρ =

√
κ2

1 + κ2
< 1

such that, for all k ≥ k0, it holds that

dist
(

(xk+1, λk),Ω∗x,λ

)
≤ ρdist

(
(xk, λk−1),Ω∗x,λ

)
,
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dist
(

(xk, λk),Ω∗x,λ

)
≤ 2C0ρ

k,

and

Fea(xk, yk, λk) = ‖Axk +Byk − b‖ ≤ C0

β
ρk.

Furthermore, there exist k̃0 > 0, C̃0 > 0, and Ĉ0 > 0 such that, for all k ≥ k̃0, it holds that

Res(xk, yk, λk) ≤ C̃0ρ
k,

and
|Val(xk, yk, λk)− V al∗| ≤ Ĉ0ρ

k.

Proof From Theorem 37, we know that there exist k0 > 0 and 0 < ρ =
√

κ2

1+κ2 < 1 such

that, for all k ≥ k0, it holds that

distM

(
(xk+1, λk),Ω∗x,λ

)
≤ ρdistM

(
(xk, λk−1); Ω∗x,λ

)
, (56)

and there exists C0 > 0 such that, for all k ≥ k0, it holds that

dist
(

(xk, λk−1),Ω∗x,λ

)
≤ C0ρ

k,

‖xk+1 − xk‖+ ‖λk − λk−1‖ ≤ C0ρ
k,

(57)

and therefore

dist
(

(xk, λk),Ω∗x,λ

)
≤ dist

(
(xk, λk−1),Ω∗x,λ

)
+ ‖λk − λk−1‖ ≤ 2C0ρ

k.

Since λk+1 = λk − β(Axk+1 +Byk+1 − b), we have

Fea(xk+1, yk+1, λk+1) = ‖Axk+1 +Byk+1 − b‖ =
1

β
‖λk+1 − λk‖ ≤ C0

β
ρk+1. (58)

From the optimality conditions of the subproblems of each iteration generated by the lin-
earized ADMM, we have

TKKT (xk+1, yk+1, λk+1) =

β(ATByk+1 −ATByk)− r(xk+1 − xk)
0

Axk+1 +Byk+1 − b

 .

Thus, by (57), (58) and

Byk+1 −Byk =
1

β
(λk − λk+1) +

1

β
(λk − λk−1) +A(xk − xk+1),

we know that, for all k ≥ k0 + 1, it holds that

Res(xk+1, yk+1, λk+1) ≤ β‖A‖‖Byk+1 −Byk‖+ r‖xk+1 − xk‖+ ‖Axk+1 +Byk+1 − b‖
≤ ‖A‖(‖λk+1 − λk‖+ ‖λk − λk−1‖+ β‖A‖‖xk+1 − xk‖)

+ r‖xk+1 − xk‖+ ‖Axk+1 +Byk+1 − b‖
≤ max(β‖A‖2 + r, ρ‖A‖+ ‖A‖+ ρ/β)C0ρ

k.

48



The Linear Convergence of ADMM for Structured Convex Optimization

Additionally, similar to the proof in Theorem 30, since

β(ATByk+1 −ATByk)− r(xk+1 − xk) +ATλk+1 ∈ ∂f(xk+1)

and
BTλk+1 ∈ ∂g(yk+1),

for any (x∗, y∗, λ∗) ∈ Ω∗, we have

f(x∗) + g(y∗) ≥ f(xk+1) + g(yk+1) + 〈λk+1, b−Axk+1 −Byk+1〉
+ β〈Byk+1 −Byk, Ax∗ −Axk+1〉 − r〈xk+1 − xk, x∗ − xk+1〉

(59)

Furthermore, since ATλ∗ ∈ ∂f(x∗) and BTλ∗ ∈ ∂g(y∗), we have

f(xk+1) + g(yk+1) ≥ f(x∗) + g(y∗) + 〈λ∗, Axk+1 +Byk+1 − b〉. (60)

Combining (25) and (26), we get

|f(xk+1) + g(yk+1)− f(x∗)− g(y∗)| ≤ max{‖λk+1‖, ‖λ∗‖}‖Axk+1 +Byk+1 − b‖
+ β‖Axk+1 −Ax∗‖‖Byk+1 −Byk‖
+ r‖xk+1 − x∗‖‖xk+1 − xk‖.

(61)

According to (73) (see also He and Yuan, 2012b), fixing any (x̄, ȳ, λ̄) ∈ Ω∗, for any k,
{‖(xk, λk−1)− (x̄, λ̄)‖} is bounded, and so is {‖Axk+1 −Ax̄‖}. Note that

Byk+1 −Byk =
1

β
(λk − λk+1) +

1

β
(λk − λk−1) +A(xk − xk+1).

Hence, there exists C1 > 0 such that

|f(xk+1) + g(yk+1)− f(x̄)− g(ȳ)| ≤ C1(‖xk+1 − xk‖+ ‖λk+1 − λk‖+ ‖λk − λk−1‖).

According to (57), we obtain the linear convergence in terms of the objective function value
of Problem (1) straightforwardly.

Let {(xk, yk, λk)} be the sequence generated by the linearized ADMM. Theorems 50 and
55 motivate the following corollary directly.

Corollary 56 Suppose Assumption 1.2 is satisfied. If one of the following statements is
satisfied:

(1) g is convex piecewise linear-quadratic function;

(2) A is of full row rank, and g represents the `1,q-norm regularizer with q ∈ [1, 2];

(3) A is of full row rank, and g represents the sparse-group LASSO regularizer;

(4) A is of full row rank, and g represent the indicator function of a ball constraint and
BT λ̄ 6= 0;
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then both the sequence {(xk, λk−1)} and {(xk, λk)} converge to Ω∗x,λ linearly. That is, there
exist k0 > 0, C0 > 0 and computable 0 < ρ < 1 such that, for all k ≥ k0, it holds that

dist
(

(xk+1, λk),Ω∗x,λ

)
≤ ρdist

(
(xk, λk−1),Ω∗x,λ

)
,

dist
(

(xk, λk),Ω∗x,λ

)
≤ 2C0ρ

k,

and

Fea(xk, yk, λk) = ‖Axk +Byk − b‖ ≤ C0

β
ρk.

Furthermore, there exist k̃0 > 0, C̃0 > 0, and Ĉ0 > 0 such that for, all k ≥ k̃0, it holds that

Res(xk, yk, λk) ≤ C̃0ρ
k

and
|Val(xk, yk, λk)− V al∗| ≤ Ĉ0ρ

k.

4. Linear Convergence Rate of PADMM-FG

In the literature (Liu et al., 2018; Han et al., 2017; Yang and Han, 2016), linear convergence
of the general PADMM-FG (2) is conceptually derived under the metric subregularity of
TKKT . It is noticed that essentially only the full polyhedral case (S4), in which the metric
subregularity of TKKT is trivially fulfilled, is discussed therein. As mentioned, the essential
difficulty is how to verify the desired metric subregularity. In Theorem 60, we show the
rather surprising fact that the metric subregularity of T is equivalent to that of TKKT when
B is of full column rank. This interesting observation allows us to apply all the established
results known for the linearized ADMM to the general PADMM-FG (2). Indeed, by this
line of analysis, in this section, we show that the subregularity conditions of TKKT can be
verified and thus the linear convergence of the PADMM-FG (2) in sense of {(xk, yk, λk)},
{Resk} and {(Feak,Valk)} can be guaranteed for a wide range of applications including the
RLR model (7), the `1,q-norm regularized regression with 1 ≤ q ≤ 2 (9) and sparse-group
LASSO (10).

4.1. Linear Convergence of PADMM-FG under Metric Subregularity of TKKT

The linear convergence of PADMM-FG (2) is shown in (Han et al., 2017, Theorem 2) when
the metric subregularity of T pKKT defined in (6) is assumed at the limit point of the sequence.
According to the equivalence between the metric subregularity of T pKKT and TKKT proved
in (Liu et al., 2018), we have the following result.

Theorem 57 When βATA+G1 � 0 and βBTB+G2 � 0, there exists (x̄, ȳ, λ̄) ∈ Ω∗ with Ω∗

being the set consisting of KKT points of Problem (1) such that the sequence {(xk, yk, λk)}
generated by PADMM-FG converges to (x̄, ȳ, λ̄). If, additionally, the multifunction TKKT is
metrically subregular at (ū,0) with modulus cKKT , then the sequence {(xk, yk, λk)} converges
to Ω∗ linearly. That is, there exist M̃ � 0, k0 > 0 and 0 < ρ < 1 such that, for all k ≥ k0,
it holds that

dist2
M̃

(
(xk+1, yk+1, λk+1),Ω∗

)
+‖yk+1−yk‖2G2

≤ ρ
[
dist2

M̃

(
(xk, yk, λk),Ω∗

)
+ ‖yk − yk−1‖2G2

]
,
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where the explicit expression of ρ which is characterized in terms of cKKT can be found in
(Han et al., 2017, Theorem 2). Furthermore, there exist k̃0 > 0, C0 > 0, C̃0 > 0, and
Ĉ0 > 0 such that, for all k ≥ k̃0, it holds that

Fea(xk, yk, λk) ≤ C0ρ
k,

Res(xk, yk, λk) ≤ C̃0ρ
k,

and

|Val(xk, yk, λk)− V al∗| ≤ Ĉ0ρ
k.

4.2. Verification of Metric Subregularity of TKKT

We understand that PADMM-FG (2) converges linearly under the metric subregularity of
TKKT . We next answer the question when TKKT satisfies the metric subregularity.

4.2.1. Metric Subregularity of TKKT under Structured Polyhedricity
Assumption

We first verify the metric subregularity of TKKT under the structured polyhedricity as-
sumption. In fact, when Problem (1) meets Assumption 1.2, similar to Proposition 39, we
can have following characterization of Ω∗,

Ω∗ = {(x, y, λ) | Lx = t̃, 0 = g̃ −ATλ, 0 ∈ ∂g(y)−BTλ, 0 = Ax+By − b}, (62)

with some vector t̃ ∈ IRl for which Lx = t̃ for all x ∈ X and g̃ := LT∇h(t̃)+q. We introduce
an auxiliary perturbed set-valued map with perturbation p = (p1, p2, p3, p4) associated with
the characterization (62):

ΓKKT (p) := {(x, y, λ) | p1 = Lx− t̃, p2 = g̃ −ATλ, p3 ∈ ∂g(y)−BTλ, p4 = Ax+By − b}.

Obviously, ΓKKT (p) coincides with Ω∗ when p = 0. Highly similar to Proposition 40, we
have following equivalence.

Proposition 58 Assume that Assumption 1.2 is satisfied. Then the metric subregularity
conditions of Γ−1

KKT and TKKT are equivalent. Precisely, given (x̄, ȳ, λ̄) ∈ Ω∗, the following
two statements are equivalent:

(i) There exist κ1, ε1 > 0 such that

dist ((x, y, λ),ΓKKT (0)) ≤ κ1dist
(
0,Γ−1

KKT (x, y, λ)
)
, ∀(x, y, λ) ∈ Bε1(x̄, ȳ, λ̄).

(ii) There exist κ2, ε2 > 0 such that

dist ((x, y, λ),Ω∗) ≤ κ2dist (0, TKKT (x, y, λ)) , ∀(x, y, λ) ∈ Bε2(x̄, ȳ, λ̄).

Proof Given any (x̄, ȳ, λ̄) ∈ Ω∗. Suppose that there exist κ1, ε1 > 0 such that

dist ((x, y, λ),ΓKKT (0, 0)) ≤ κ1dist
(
0,Γ−1

KKT (x, y, λ)
)
, ∀(x, y, λ) ∈ Bε1(x̄, λ̄).
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Due to the essentially locally strongly convexity of h and the locally Lipschitz continuity
of ∇h, without loss of generality, we assume that ε1 is small enough so that ∇h is strongly
monotone and Lipschitz continuous on {Lx | (x, y, λ) ∈ Bε1(x̄, ȳ, λ̄)}. For any (x, y, λ) ∈
Bε1(x̄, ȳ, λ̄), and any (ξ, η, ζ) ∈ TKKT (x, y, λ)

ξ = ∂f(x)−ATλ = LT∇h(Lx) + q −ATλ, (63)

η ∈ ∂g(y)−BTλ, (64)

ζ = Ax+By − b, (65)

and by the local Lipschitz continuity of ∇h, there exists Lh > 0 such that

dist ((x, y, λ),Ω∗) = dist ((x, y, λ),ΓKKT (0))

≤ κ1dist
(
0,Γ−1

KKT (x, y, λ)
)

≤ κ1

(
‖Lx− t̃‖+ ‖ξ + g̃ − LT∇h(Lx)− q‖+ ‖η‖+ ‖ζ‖

)
≤ κ1

(
‖Lx− t̃‖+ ‖L‖‖∇h(t̃)−∇h(Lx)‖+ ‖ξ‖+ ‖η‖+ ‖ζ‖

)
≤ κ1

(
(1 + ‖L‖Lh)‖Lx− t̃‖+ ‖ξ‖+ ‖η‖+ ‖ζ‖

)
.

(66)

Let (x̂, ŷ, λ̂) be the projection of (x, y, λ) on Ω∗ and then (x̂, ŷ, λ̂) ∈ Bε1(x̄, ȳ, λ̄). Since
0 ∈ ∂g(ŷ)−BT λ̂ and ∂g is monotone, we have

〈η +BTλ−BT λ̂, y − ŷ〉 ≥ 0,

and combining with (65) that,

〈η, y − ŷ〉 ≥ −〈BTλ−BT λ̂, y − ŷ〉
= −〈λ− λ̂, By −Bŷ〉
= −〈ζ, λ− λ̂〉+ 〈λ− λ̂, Ax−Ax̂〉.

Moreover, since ξ = LT∇h(Lx) + q − ATλ, 0 = LT∇h(t̃) + q − AT λ̂, thanks to the local
strong convexity of h, there exists σ > 0 such that

〈ξ, x− x̂〉+ 〈η, y − ŷ〉+ 〈ζ, λ− λ̂〉 ≥ 〈LT∇h(Lx)− LT∇h(t̃), x− x̂〉
= 〈∇h(Lx)−∇h(Lx̂), Lx− Lx̂〉
≥ σ‖Lx− Lx̂‖2 = σ‖Lx− t̃‖2.

(67)

Combining (66) and (67), we obtain that

dist((x, y, λ),Ω∗) ≤ c1

√
‖(ξ, η, ζ)‖ · dist((x, y, λ),Ω∗) + c2‖(ξ, η, ζ)‖,

with c1 = κ1(1 + ‖L‖Lh)/
√
σ, c2 =

√
3κ1, and consequently,

dist((x, y, λ),Ω∗) ≤ κ̃‖(ξ, η, ζ)‖, where κ̃ =

(
c1 +

√
c2

1 + 4c2

2

)2

> 0.

Because (ξ, η, ζ) is arbitrarily chosen in TKKT (x, y, λ), we have

dist
(
(x, y, λ), T−1

KKT (0)
)

= dist((x, y, λ),Ω∗) ≤ κ̃dist (0, TKKT (x, y, λ)) .
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Hence, there exists κ2 = κ̃ > 0 such that

dist ((x, y, λ),Ω∗) ≤ κ2dist (0, TKKT (x, y, λ)) , ∀(x, y, λ) ∈ Bε1(x̄, ȳ, λ̄).

Conversely, given any (x̄, ȳ, λ̄) ∈ Ω∗, suppose that there exist κ2, ε2 > 0 such that

dist ((x, y, λ),Ω∗) ≤ κ2dist (0, TKKT (x, y, λ)) , ∀(x, y, λ) ∈ Bε2(x̄, ȳ, λ̄).

For any fixed (x, y, λ) ∈ Bε2(x̄, ȳ, λ̄), and (p1, p2, p3, p4) ∈ Γ−1
KKT (x, y, λ), it follows that

p1 = Lx− t̃, p2 = g̃ −ATλ, p3 ∈ ∂g(y)−BTλ, p4 = Ax+By − b.

To summarize, we have

p2 + LT∇h(Lx)− LT∇h(Lx− p1) = ∂f(x)−ATλ,
p3 ∈ ∂g(y)−BTλ,

p4 = Ax+By − b.

By virtue of the locally Lipschitz continuity of ∇h, there exists Lh > 0 such that

dist ((x, y, λ),Ω∗) ≤ κ2dist (0, TKKT (x, y, λ))

≤ κ2

(
‖p2 + LT∇h(Lx)− LT∇h(Lx− p1)‖+ ‖p3‖+ ‖p4‖

)
≤ κ2Lh‖L‖‖p1‖+ κ2‖p2‖+ κ2‖p3‖+ κ2‖p4‖.

Moreover, since (p1, p2, p3, p4) can be any element in Γ−1
KKT (x, y, λ), we have

dist ((x, y, λ),ΓKKT (0)) = dist ((x, y, λ),Ω∗) ≤ κ2(Lh‖L‖+ 3)dist
(
0,Γ−1

KKT (x, y, λ)
)
.

Therefore, there exists κ1 = κ2(Lh‖L‖+ 4) > 0 such that

dist ((x, y, λ),ΓKKT (0)) ≤ κ1dist
(
0,Γ−1

KKT (x, y, λ)
)
, ∀(x, y, λ) ∈ Bε2(x̄, ȳ, λ̄),

which completes the converse direction.

As a consequence, when Problem (1) meets the structured polyhedricity assumption,
ΓKKT is obvisouly a polyhedral multifunction, we obtain following result directly.

Theorem 59 The metric subregularity of TKKT at (x̄, ȳ, λ̄, 0) where (x̄, ȳ, λ̄) ∈ Ω∗ holds if
Problem (1) meets the structured polyhedricity assumption.

4.2.2. Metric Subregularity of TKKT under Structured Subregularity
Assumption

We next justify the metric subregularity of TKKT under the structured subregularity as-
sumption. To this end, we shall clarify the relationship between the metric subregularity of
TKKT and metric subregularity of T . Therefore, this connection, together with the char-
acterization for the metric subregularity of T , will serve as a sufficient condition to justify
the metric subregularity of TKKT .
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Theorem 60 For any point (x̄, λ̄) ∈ T−1(0), if there exists ȳ ∈ ∂g∗(BT λ̄) such that TKKT
is metrically subregular at (x̄, ȳ, λ̄, 0), then T is metrically subregular at (x̄, λ̄, 0). Addi-
tionally, if B is of full column rank, for any KKT point (x̄, ȳ, λ̄) ∈ (TKKT )−1(0) and T
is metrically subregular at (x̄, λ̄, 0) with modulus κ, then TKKT is metrically subregular at
(x̄, ȳ, λ̄, 0) with modulus

cKKT = κ(2 +
‖A‖

σmin(B)
)2 +

2

σmin(B)
.

Proof For any (x, λ) such that p ∈ T (x, λ), that is,{
p1 ∈ ∂f(x)−ATλ,
p2 ∈ B∂g∗(BTλ)− b+Ax,

there exists y ∈ ∂g∗(BTλ) such that p2 = By − b+ Ax. Taking into consideration the fact
that y ∈ ∂g∗(BTλ) if and only if BTλ ∈ ∂g(y), we have

p1 ∈ ∂f(x)−ATλ,
0 ∈ ∂g(y)−BTλ,

p2 = Ax+By − b.

Apparently, T is metrically subregular at (x̄, λ̄, 0) provided the metric subregularity of TKKT
at (x̄, ȳ, λ̄, 0).

Suppose B is of full column rank,. We next show that the metric subregularity of T
implies that of TKKT . In fact, for (x, y, λ) such that p ∈ TKKT (x, y, λ), i.e.,

p1 ∈ ∂f(x)−ATλ,
p2 ∈ ∂g(y)−BTλ,

p3 = Ax+By − b,

and because of p2 ∈ ∂θ2(y)−BTλ, we have

0 ∈ ∂g∗(BTλ+ p2)− y,

and hence that

0 ∈ B∂g∗(BTλ+ p2)−By.

Combining with p3 = Ax+By − b, we get

p3 ∈ B∂g∗(BTλ+ p2)− b+Ax.

Since B is of full column rank, p̃2 := B(BTB)−1p2 is well defined and it satisfies BT p̃2 = p2.
Denoting λ̃ = λ+ p̃2, we have

p1 −AT p̃2 ∈ ∂f(x)−AT λ̃,
p3 ∈ B∂g∗(BT λ̃)− b+Ax,
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that is
(p1 −AT p̃2, p3) ∈ T (x, λ̃).

By virtue of the metric subregularity of T at (x̄, λ̄, 0), there exist κ, ε > 0 such that

dist
(
(x, λ),Ω∗x,λ

)
≤ κdist (0, T (x, λ)) , ∀(x, y) ∈ Bε(x̄, λ̄).

We now assume that (x, y, λ) ∈ Bε1(x̄, ȳ, λ̄) with

ε1 = ε/2, ‖p2‖ ≤ ε/(2‖B(BTB)−1‖)= εσmin(B)/2

where σmin(B) denotes the smallest nonzero singular value of B. Then, ‖p̃2‖ ≤ ε and
‖λ̃− λ̄‖ ≤ ‖λ− λ̄‖+ ‖p̃2‖ ≤ ε. Thus, by the metric subregularity of T at (x̄, λ̄, 0)

dist((x, λ̃),Ω∗x,λ) ≤ κ(‖p1 −AT p̃2‖+ ‖p3‖)
≤ κ(‖p1‖+ ‖A‖‖p̃2‖+ ‖p3‖)
≤ κ(2 + ‖A‖‖B(BTB)−1‖)‖p‖

= κ

(
2 +

‖A‖
σmin(B)

)
‖p‖.

Let (x0, λ0) be the projection of (x, λ̃) on Ω∗x,λ := T−1(0). Then with the full row rank

of BT , we have

0 ∈ ∂(g∗(BTλ0))− b+Ax0 = B∂g∗(BTλ0)− b+Ax0.

Thus, we can find y0 ∈ ∂g∗(BTλ0) such that 0 = By0−b+Ax0. Noting that p3 = Ax+By−b,
and σmin(B) > 0 which follows from the full column rank assumption of B, there holds that

‖y − y0‖ = ‖(BTB)−1BT (p3 −A(x− x0))‖ ≤ 1

σmin(B)
‖p3‖+

‖A‖
σmin(B)

‖x− x0‖.

Since (x0, y0, λ0) ∈ T−1
KKT (0), we have

dist((x, y, λ), T−1
KKT (0)) ≤ ‖x− x0‖+ ‖λ̃− λ0‖+ ‖λ− λ̃‖+ ‖y − y0‖

≤ (1 +
‖A‖

σmin(B)
)‖x− x0‖+ ‖λ̃− λ0‖+

1

σmin(B)
‖p2‖+

1

σmin(B)
‖p3‖

≤ (2 +
‖A‖

σmin(B)
)dist((x, λ̃),Ω∗x,λ) +

1

σmin(B)
‖p2‖+

1

σmin(B)
‖p3‖

≤ κ(2 +
‖A‖

σmin(B)
)2‖p‖+

1

σmin(B)
‖p2‖+

1

σmin(B)
‖p3‖

≤ cKKT ‖p‖,

where the second inequality follows from λ̃ = λ+ p̃2 and

cKKT = κ(2 +
‖A‖

σmin(B)
)2 +

2

σmin(B)
.

Theorems 46 and 60 straightforwardly inspire the following criteria for the metric sub-
regularity of TKKT .
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Theorem 61 Provided the full column rank of B, the metric subregularity of TKKT at
(x̄, ȳ, λ̄, 0) where (x̄, ȳ, λ̄) ∈ Ω∗ holds if A is of full row rank, and Problem (1) meets the
structured subregularity assumption at (x̄, ȳ, λ̄).

Motivated by the proof in Theorem 50, the linear convergence of the general PADMM-
FG (2) can be obtained easily.

Theorem 62 Suppose that Assumption 1.2 is satisfied. Then the metric subregularity of
TKKT at (x̄, ȳ, λ̄, 0) where (x̄, ȳ, λ̄) ∈ Ω∗ holds, and hence the sequence {(xk, yk, λk)} gener-
ated by the PADMM-FG (2) converges to Ω∗ linearly if one of the following statements is
satisfied:

(1) g is convex piecewise linear-quadratic function;

(2) A is of full row rank and B is of full column rank, and g represents the `1,q-norm
regularizer with q ∈ [1, 2];

(3) A is of full row rank and B is of full column rank, and g represents the sparse-group
LASSO regularizer;

(4) A is of full row rank and B is of full column rank, and g represent the indicator
function of a ball constraint and BT λ̄ 6= 0.

We are left to calculate the metric subregularity modulus of TKKT on specific appli-
cations. In fact, we have presented with illustrate examples how to calculate the metric
subregularity modulus of T in Section 3.5. According to Theorem 60, the metric subregu-
larity modulus of TKKT is easily computable as long as the metric subregularity modulus
of T is calculated on specific applications.

5. Conclusions

In this paper, we further discuss the linear convergence of the alternating direction method
of multipliers (ADMM) and its variants for some structured convex optimization problems,
and develop a rather complete methodology to discern the linear convergence for a wide
range of concrete applications. Through the lens of variational analysis, we show that the
linear convergence of ADMM and its variants can be guaranteed without the strong con-
vexity of objective functions together with the full rank assumption of coefficient matrices,
or the full polyhedricity of their subdifferentials. The understanding of linear convergence
of the ADMM and its variants is thus substantially enhanced, and the scope of the ADMM
with efficient performance in sense of guaranteed linear convergence is essentially broad-
ened. Indeed, for a number of models arising in statistics and machine learning such as the
RLR, PAC, `1,q-norm with q ∈ [1, 2] and sparse-group LASSO models, current results in the
literature fail to explain why the ADMM and its variants perform linear convergence, and
rigorous theory is provided for the first time. The gap between empirically observed numer-
ical performance and checkable theoretical conditions is essentially filled in. Our techniques
are entirely relied on variational analysis, and they are tailored for both special properties
of the models and structures of the iterative schemes under investigation.
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Appendix A. Proof of Proposition 8

For the k-th iteration (xk, yk, λk) generated by the original ADMM, it follows from the
optimality condition of the subproblems that

0 ∈ ∂g(yk)−BTλk,

0 ∈ ∂f(xk+1)−AT (λk − β(Axk+1 +Byk − b)),
λk+1 = λk − β(Axk+1 +Byk+1 − b).

(68)

Since (∂f)−1 = ∂f∗ and (∂g)−1 = ∂g∗, we have
yk ∈ ∂g∗(BTλk),

xk+1 ∈ ∂f∗(AT (λk − β(Axk+1 +Byk − b))),
λk+1 = λk − β(Axk+1 +Byk+1 − b).

Furthermore, it is easy to see that
λk + βByk ∈ λk + βB∂g∗(BTλk) ⊆ (I + β∂φ2)(λk),

λk − βByk ∈ λk − β(Axk+1 +Byk − b) + βA∂f∗(AT (λk − β(Axk+1 +Byk − b)))− βb
⊆ (I + β∂φ1)(λk − β(Axk+1 +Byk − b)),

λk+1 + βByk+1 = λk + βByk − λk + λk − β(Axk+1 +Byk − b).

Therefore, we have
λk = (I + β∂φ2)−1(λk + βByk),

λk − β(Axk+1 +Byk − b) = (I + β∂φ1)−1(λk − βByk),
λk+1 + βByk+1 = λk + βByk − λk + λk − β(Axk+1 +Byk − b).

(69)

Setting uk = λk, vk = λk − β(Axk+1 +Byk − b) and zk = λk + βByk, we get
uk = (I + β∂φ2)−1(zk),

vk = (I + β∂φ1)−1(2uk − zk),
zk+1 = zk − uk + vk,

(70)

and the conclusion follows.
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Appendix B. Proof of Theorem 14

According to the iterative scheme of the DRSM, at each iteration k, we have

zk ∈ uk + ∂φ2(uk), 2uk − zk ∈ vk + ∂φ1(vk),

and subsequently,

zk − uk ∈ ∂φ2(uk), 2uk − zk − vk ∈ ∂φ1(vk). (71)

Summing these two equations, we have

uk − vk ∈ ∂φ1(uk − (uk − vk)) + ∂φ2(uk),

which implies
uk ∈ T1(uk − vk).

Since T1 is calm at (0, λ̄), there exist ε1, κ1 > 0 such that

dist(uk, Z) ≤ κ1‖uk − vk‖, when uk ∈ Bε1(λ̄). (72)

Also, since uk = proxφ2
(zk), and ‖uk − λ̄‖ = ‖proxφ2

(zk) − proxφ2
(z̄)‖ ≤ ‖zk − z̄‖, which

comes from the nonexpansiveness of proxφ2
, substituting uk−vk = zk−zk+1 in (72) enables

us to obtain

dist(proxφ2
(zk), Z) ≤ κ1‖zk+1 − zk‖, when zk ∈ Bε1(z̄).

Again, by (71) and uk − vk = zk − zk+1, we have

zk − uk ∈ ∂φ2(uk), uk − zk+1 ∈ ∂φ1(vk).

and then

uk ∈ ∂φ2
∗(zk − uk), vk ∈ ∂φ1

∗(uk − zk+1).

Combining the inclusions together, we have

zk − zk+1 = uk − vk ∈ ∂(φ1
∗ ◦ −Id)(zk − uk − (zk − zk+1)) + ∂φ2

∗(zk − uk),

which implies
zk − uk ∈ T2(zk − zk+1).

Then, since T2 is calm at (0, µ̄), there exist ε2, κ2 > 0 such that

dist(zk − uk,W ) ≤ κ2‖zk − zk+1‖, when zk − uk ∈ Bε2(µ̄).

Since zk − uk = proxφ2
∗(zk), and

‖zk − uk − µ̄‖ = ‖proxφ2
∗(zk)− proxφ2

∗(z̄)‖ ≤ ‖zk − z̄‖,

which comes from the nonexpansiveness of proxφ2
∗ , we have

dist(proxφ2
∗(zk),W ) ≤ κ2‖zk+1 − zk‖, when zk ∈ Bε2(z̄).

Then, there exist ε, κ > 0 such that, for all k satisfying zk ∈ B(z̄, ε), we have

dist
(

proxφ2
(zk), Z

)
+ dist

(
proxφ2

∗(zk),W
)
≤ κ

∥∥∥zk+1 − zk
∥∥∥ ,

where κ = κ1 + κ2. According to Proposition 12, the sequence {zk} converges to z̄ linearly.
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Appendix C. Proof of Lemma 15

For any y /∈ range (LT )+A⊥0 , y can be expressed as y = y1+y2, where y1 ∈ range (LT )+A⊥0 ,
y2 ∈ null (L) ∩ A0 and y2 6= 0. Then, we have

ψ∗(y) = sup
x
{〈y, x〉 − h(Lx)− δA(x)}

= sup
x
{〈y1 + y2, x〉 − h(Lx)− δA(x)}

≥ sup
α
{〈y1 + y2, a+ αy2〉 − h(La+ αLy2)− δA(a+ αy2)}

= sup
α
{〈y1 + y2, a〉 − h(La) + α‖y2‖2} = +∞.

That is, dom ψ∗ ⊂ range (LT ) +A⊥0 .

Appendix D. Proof of Proposition 18

Consider the singular value decomposition of matrix L. Let L = UΣV T , where U ∈ IRm×r,
V ∈ IRn×r and Σ ∈ IRr×r,Σ � 0. Let QA0 be the matrix whose columns are normal
orthogonal basis of A0. Next, we consider the singular value decomposition of matrix
LQA0 , i.e.,

LQA0 = UL(A0)ΣL(A0)V
T
L(A0),

where UL(A0) ∈ IRm×r1 , VL(A0) ∈ IRm1×r1 and ΣL(A0) ∈ IRr1×r1 ,ΣL(A0) � 0.

Define further that h̃ : IRr1 → IR as h̃(z) := h(La + UL(A0)z). According to the

assumptions that h ∈ C and UL(A0) is of full column rank, we observe that h̃ ∈ C. Denoting

the conjugate of h̃ as
h̃∗(z∗) := sup

z∈IRr
{〈z∗, z〉 − h̃(z)},

then, by virtue of Proposition 16, we have h̃∗ ∈ C.
Next, for each vector y taken from range (LT ) +A⊥0 , y admits a decomposition that

y = Projrange (LT )y + (I − Projrange (LT ))y.

Denote H := [LT , Ap] where Ap ∈ IRn×l is the matrix whose columns are bases of A⊥0 and l
is the dimension of A⊥0 . Let H = UHΣHV

T
H be the singular value decomposition of matrix

H, where UH ∈ IRn×r2 , VH ∈ IR(m+l)×r2 and ΣH ∈ IRr2×r2 , ΣH � 0, then H† := VHΣ−1
H UTH .

Denote further that E1 is the matrix whose rows are the first m rows of the identity matrix
in IR(m+l)×(m+l) and E2 is the matrix whose rows are the last l rows of the identity matrix
in IR(m+l)×(m+l). We therefore have the decomposition of y ∈ range (LT ) +A⊥0 as

y = ỹ + ŷ,

where ỹ := LTFy ∈ range (LT ) with

F := UΣ−1V T + E1H
†(I − LTUΣ−1V T ),

and
ŷ := ApE2H

†(I − LTUΣ−1V T )y ∈ A⊥0 .
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Plugging in this decomposition of y into the conjugate of ψ∗,

ψ∗(y) = sup
x∈IRn

{〈y, x〉 − h(Lx)− δA(x)}

= sup
x∈IRn

{〈ỹ, x〉+ 〈ŷ, x〉 − h(Lx)− δA(x)}

= sup
x∈IRn

{〈Fy,Lx〉+ 〈ŷ, x〉 − h(Lx)− δA(x)}

= sup
z∈IRr

{〈ỹ, a〉+ 〈Fy, UL(A0)z〉 − h(La+ UL(A0)z)}

= sup
z∈IRr

{〈y, a〉+ 〈Fy, UL(A0)z〉 − h(La+ UL(A0)z)}

= sup
z∈IRr

{〈y, a〉+ 〈UTL(A0)Fy, z〉 − h̃(z)}

= h̃∗(UTL(A0)Fy) + 〈y, a〉,

where the fourth equality follows from the fact that for any x ∈ A, there exists

z ∈ range (ΣL(A0)V
T
L(A0)) = IRr1

such that Lx = La+ UL(A0)z. Finally, according to Lemma 15, we understand that

dom ψ∗ ⊂ range (LT ) +A⊥0 .

We therefore conclude that, for all y ∈ IRn, it holds that

ψ∗(y) = sup
x∈IRn

{〈y, x〉 − h(Lx)− δA(x)} = h̃∗(L̃y) + 〈y, a〉+ δrange (LT )+A⊥0
(y),

where L̃ := UTL(A0)F = UTL(A0)

(
UΣ−1V T + E1H

†(I − LTUΣ−1V T )
)
.

We next prove the second argument. In fact, if ∂ψ(x) = LT∇h(Lx) + NA(x) and
dom ∂ψ 6= ∅, then there exists x̂ such that

∂ψ(x̂) = LT∇h(Lx̂) +NA(x̂) 6= ∅.

Thus, x̂ ∈ A and there exists ξ̂ such that

ξ̂ = ∇h(Lx̂).

Taking into consideration that

UTL(A0) = Σ−1
L(A0)V

T
L(A0)Q

T
A0

LT = Σ−1
L(A0)V

T
L(A0)Q

T
A0
V ΣUT ,

we have
L̃LT ξ̂ = UTL(A0)

(
UΣ−1V T + E1H

†(I − LTUΣ−1V T )
)
LT ξ̂

= UTL(A0)UΣ−1V TLT ξ̂ + E1H
†(I − Projrange (LT ))LT ξ̂

= UTL(A0)UΣ−1V TLT ξ̂

= UTL(A0)UΣ−1V TV ΣUT ξ̂

= UTL(A0)ξ̂ = UTL(A0)∇h(Lx̂).
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On the other hand, because x̂ ∈ A, there exists ẑ such that Lx̂ = La+ UL(A0)ẑ, and thus

L̃LT ξ̂ = UTL(A0)∇h(Lx̂) = UTL(A0)∇h(La+ UL(A0)ẑ) ∈ ∂h̃(ẑ).

Recall the fact that h̃∗ ∈ C. By Proposition 17 and (Rockafellar, 1970, Corollary 23.5.1),
we have

L̃LT ξ̂ ∈ dom ∂h̃∗ = int(dom h̃∗),

which implies
L̃(range (LT ) +A⊥0 ) ∩ int(dom h̃∗) 6= ∅.

To the end, according to (Rockafellar, 1970, Theorem 23.8, Theorem 23.9) and Proposition
17, we have

∂ψ∗(y) = L̃T∂h̃∗(L̃y) + a+Nrange (LT )+A⊥0
(y) = L̃T∇h̃∗(L̃y) + a+Nrange (LT )+A⊥0

(y),

and therefore obtain the desired expression for ∂ψ∗.

Appendix E. Proof of Lemma 21

According to Assumption 1.2, f(x) = h(Lx) + 〈q, x〉 with h ∈ C, then

f∗(y) = sup
x
{〈y, x〉 − h(Lx)− 〈q, x〉}

= sup
x
{〈y − q, x〉 − h(Lx)}.

Then, by Proposition 18, there exist h̃∗ ∈ C and matrix L̃ such that

f∗(y) = h̃∗
(
L̃(y − q)

)
+ δrange (LT )(y − q),

and thus

φ1(λ) = f∗(ATλ)− bTλ = h̃∗
(
L̃ATλ− L̃q

)
− bTλ+ δrange (LT )(A

Tλ− q).

Denoting K := L̃AT , q̃ := L̃q and V := {λ | ATλ − q ∈ range (LT )}, we therefore have
shown the first assertion.

To prove the second argument, noting that Assumption 1.1 holds, by virtue of Lemma
20, we find that there exist x∗ and λ∗ satisfying

0 ∈ ∂f(x∗) +ATλ∗ = LT∇h(Lx∗) + q +ATλ∗.

Then, by Proposition 18, we have

∂f∗(y) = L̃T∇h̃∗
(
L̃(y − q)

)
+Nrange (LT )(y − q).

We may now obverse that any vector y ∈ dom ∂f∗ if and only if L̃(y − q) ∈ dom ∇h̃∗
and y − q ∈ range (LT ). Since h̃∗ is essentially differentiable, thanks to Proposition 17, we
understand that y ∈ dom ∂f∗ if and only if L̃(y− q) ∈ int(dom h̃∗) and y− q ∈ range (LT ).
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According to the expression of f∗, we immediately know that dom ∂f∗ ⊆ ri(dom f∗).
Noting that −ATλ∗ ∈ ∂f(x∗), we may conclude that

−ATλ∗ ∈ ∂f(x∗) ⊆ dom ∂f∗ ⊆ ri(dom f∗),

which further implies that

range (AT ) ∩ ri(dom f∗) 6= ∅.

According to (Rockafellar, 1970, Theorem 23.9), immediately, λ∗ ∈ dom ∂φ1 and hence

∂φ1(λ) = A∂f∗(ATλ)− b = KT∇h̃∗ (Kλ− q̃)− b+NV(λ).

Appendix F. Proof of Lemma 23

By Lemma 21, we know that

φ1(λ) = h̃∗ (Kλ− q̃)− bTλ+ δV(λ)

with some h̃∗ ∈ C, matrix K, vector q̃ and affine space V. Then, it holds that

φ1
∗(µ) = sup

λ
{〈µ, λ〉 − h̃∗ (Kλ− q̃) + 〈b, λ〉 − δV(λ)}

= sup
λ
{〈µ+ b, λ〉 − h̃∗ (Kλ− q̃)− δV(λ)}.

By introducing ĥ∗0(ν) := h̃∗ (ν − q̃) ∈ C and ĥ∗(λ) := ĥ∗0(Kλ) + δV(λ), we have φ1
∗(µ) =

(ĥ∗)∗(µ+ b). By Proposition 18, there exist ĥ ∈ C, matrix L̂ and affine space V̂1 such that

φ1
∗(µ) = ĥ

(
L̂(µ+ b)

)
+ 〈v, µ+ b〉+ δV̂1

(µ+ b),

Letting K̂ := −L̂, q̂ := L̂b and V̂ := {µ | − µ+ b ∈ V̂1}, we obtain the first conclusion.
Furthermore, from Lemma 21, we know that dom ∂φ1 6= ∅

∂φ1(λ) = KT∇h̃∗ (Kλ− q̃)− b+NV(λ).

Then, by Proposition 18, we have

∂ (φ1
∗(−µ)) = K̂T∇ĥ

(
K̂µ+ q̂

)
− v +NV̂(µ).

Appendix G. Proof of Lemma 25

Motivated by (Luo and Tseng, 1992, Lemma 2.1), we first prove that there exists t̄ such
that Kλ = t̄ for all λ ∈ Z. On the contrary, suppose the existence of λ1, λ2 ∈ Z such
that t1 = Kλ1, t2 = Kλ2, and t1 6= t2. Let us assume that λ1 and λ2 are sufficiently close;
otherwise we can replace λ2 by λ̃2 = αλ2 + (1 − α)λ1 with sufficiently small α > 0, and
t̃2 = Kλ̃2 6= t1. Then, since h̃∗ is essentially locally strongly convex and t1 ∈ dom ∇h̃∗,
there exists σ > 0 such that

φ1(λ1) + φ2(λ1) ≥ φ1(λ2) + φ2(λ2) +
σ

2
‖t1 − t2‖2 > φ1(λ2) + φ2(λ2),

which is a contradiction. The desirable result then follows by taking ḡ := KT∇h̃∗ (t̄− q̃)−b.
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Appendix H. Proof of Corollary 31

For any µ ∈W , it follows from the definition of W that

0 ∈ −∂φ∗1 ◦ (−µ) + ∂φ∗2(µ),

and thus there exists λ ∈ ∂φ∗2(µ) such that λ ∈ ∂φ∗1 ◦ (−µ). Since ∂φ∗1 = (∂φ1)−1 and
∂φ∗2 = (∂φ2)−1, we have 0 ∈ ∂φ1(λ) + ∂φ2(λ), i.e., λ ∈ Z, and

0 ∈ ∂φ1(λ) + µ,

0 ∈ ∂φ2(λ)− µ.

Then, since φ1(λ) = f∗(ATλ) − bTλ and φ2(λ) = g∗(BTλ), it follows from the full column
rank of A and B and (Rockafellar, 1970, Theorem 23.9) that ∂φ1(λ) = A∂f∗(ATλ)− b and
∂φ2(λ) = B∂g∗(BTλ). Thus, we have

0 ∈ A∂f∗(ATλ)− b+ µ,

0 ∈ B∂g∗(BTλ)− µ,

which implies that there exist x̂ ∈ ∂f∗(ATλ) and ŷ ∈ ∂g∗(BTλ) such that Ax̂ − b + µ = 0
and µ = Bŷ. Next, by the fact that ∂f∗ = (∂f)−1, ∂g∗ = (∂g)−1, we have

0 ∈ ∂f(x̂)−ATλ,
0 ∈ ∂g(ŷ)−BTλ,

Ax̂+Bŷ − b = 0,

and thus (x̂, ŷ, λ) ∈ Ω∗, ŷ ∈ Ω∗y. Therefore, we have W j BΩ∗y := {By | ∃(x, y, λ) ∈ Ω∗}.
Similarly, employing the above argument from the opposite direction, we can also show that
BΩ∗y ⊆W . In summary, we have W = BΩ∗y.

We are now ready to prove the linear convergence of the sequences {xk} and {yk}. By
Proposition 8, we know proxφ2

∗(zk) = Byk. Following (22) in Proposition 30, since B is of
full column rank, we know that there exist k0 > 0, 0 < ρ < 1 and C0 > 0 such that, for all
k ≥ k0, it holds that

dist
(
yk,Ω∗y

)
≤ C0ρ

k.

Furthermore, from Proposition 30, there exist k̃0 ≥ k0 > 0, C̃0 > 0 such that, for all k ≥ k̃0,
it holds that

‖Axk +Byk − b‖ ≤ C̃0ρ
k.

From the above arguments, we know that for each k ≥ k0, there exists (x̂k, ŷk, λ̂k) ∈ Ω∗

such that
‖yk − ŷk‖ ≤ C0ρ

k,

and then

‖Axk −Ax̂k‖ ≤ ‖Axk +Byk − b‖+ ‖Byk −Bŷk‖ ≤ (C̃0 + C0‖B‖)ρk.

According to the full column rank of A, we get the conclusion.
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Appendix I. Proof of Theorem 33

At each iteration, the PPA iterative scheme (34) reads also as

−M(xk+1 − xk) ∈ T (xk+1).

Therefore, for any x∗ ∈ Ω∗x,λ, it follows from the monotonicity of T that

‖xk+1 − x∗‖2M ≤ ‖xk − x∗‖2M − ‖xk+1 − xk‖2M. (73)

Since x∗ can be taken arbitrarily in Ω∗x,λ, we immediately have

dist2
M

(
xk+1,Ω∗x,λ

)
≤ dist2

M

(
xk,Ω∗x,λ

)
− ‖xk+1 − xk‖2M. (74)

Because of the PPA-iteration-based error bound, there exist ε, κ > 0 such that

distM

(
xk+1,Ω∗x,λ

)
≤ κ‖xk+1 − xk‖M, for all k such that xk ∈ B(x̄, ε).

Given this ε, with the by-default given proximity of the sequence {xk} generated by the
PPA to x̄ ∈ Ω∗x,λ, there exists k0 > 0 such that xk ∈ Bε(x̄) for k ≥ k0. Therefore, we have

dist2
M

(
xk+1,Ω∗x,λ

)
≤ κ2

1 + κ2
dist2

M

(
xk,Ω∗x,λ

)
, ∀k ≥ k0,

and thus there exists C > 0 such that

distM

(
xk,Ω∗x,λ

)
≤ Cρk, ∀k ≥ k0,

with ρ =
√

κ2

1+κ2 . Moreover, according to (74), we get

‖xk+1 − xk‖M ≤ Cρk, ∀k ≥ k0.

The desired linear convergence then follows from the positive definiteness of matrix M.

Appendix J. Proof of Theorem 35

Because of the metric subregularity of T at (x̄, 0), there exist κ > 0, ε > 0 such that

dist
(
x̄, T−1(0)

)
≤ κdist(0, T (x̄)), ∀x̄ ∈ Bε(x̄).

Note that T−1(0) = Ω∗x,λ. The metric subregularity of T at (x̄, 0) allows us to estimate the

distance from xk+1 to Ω∗x,λ in terms of scaled optimality residual at xk+1, i.e., for all k such

that xk ∈ B(x̄, ε),

distM

(
xk+1,Ω∗x,λ

)
≤
√
ρ(M)dist

(
xk+1,Ω∗x,λ

)
≤ κ

√
ρ(M)‖M(xk+1 − xk)‖

≤ κρ(M)‖xk+1 − xk‖M,

(75)

where ρ(M) represents the spectral radius of matrix M. Thus, the PPA-iteration-based
error bound holds at x̄. The conclusion then follows from Theorem 33.
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Appendix K. Proof of Proposition 39

According to Proposition 38, we have

X = arg min
x
{θ1(x) + θ∗2(−Ax)}.

Thanks to Assumption 1.2, there exists t̃ ∈ IRl such that Lx = t̃ for all x ∈ X. Moreover,
for any (x, λ) ∈ Ω∗x,λ, we have

0 ∈ ∂θ2(λ) +Ax

0 ∈ ∂θ1(x)−ATλ = LT∇h(Lx) + q −ATλ = LT∇h(t̃) + q −ATλ = g̃ −ATλ,

where g̃ := LT∇h(t̃) + q. Therefore, the following inclusion holds

Ω∗x,λ ⊆ {(x, λ) | Lx = t̃, ATλ = g̃, 0 ∈ ∂θ2(λ) +Ax}.

It is easy to obtain the reverse direction. The proof is complete.

Appendix L. Proof of Proposition 42

Given any (x̄, λ̄) ∈ Ω∗x,λ. Suppose that there exist κ1, ε1 > 0 such that

dist ((x, λ),Γ0(0)) ≤ κ1dist
(
0,Γ−1

0 (x, λ)
)
, ∀(x, λ) ∈ Bε1(x̄, λ̄).

Due to the essentially locally strongly convexity of h and the locally Lipschitz continuity
of ∇h, without loss of generality, we assume that ε1 is small enough so that ∇h is strongly
monotone and Lipschitz continuous on {Lx | (x, λ) ∈ Bε1(x̄, λ̄)}. For any (x, λ) ∈ Bε1(x̄, λ̄),
and any (ξ, η) ∈ T (x, λ)

ξ = LT∇h(Lx) + q −ATλ,
η ∈ ∂θ2(λ) +Ax,

since 0 ∈ LT∇h(
tildet)+q−AT λ̄, and by the local Lipschitz continuity of ∇h, there exists Lh > 0 such that

‖ATλ−AT λ̄‖ ≤ ‖L‖‖∇h(Lx)−∇h(t̃)‖ ≤ Lh‖L‖‖Lx− t̃‖.

Moreover, noting that AT is of full column rank, the smallest singular value of AT is strictly
positive, i.e., σmin(AT ) > 0. Therefore

‖λ− λ̄‖ ≤ 1

σmin(AT )
‖ATλ−AT λ̄‖ ≤ Lh‖L‖

σmin(AT )
‖Lx− t̃‖. (76)

According to the calmness of ∂θ2 at (λ̄,−Ax̄), there exist ε3, κ3 > 0 such that

dist
(
v, ∂θ2(λ̄)

)
≤ κ3dist

(
λ̄, (∂θ2)−1(v)

)
, ∀v ∈ Bε3(−Ax̄).

We now assume that (x, λ) ∈ Bε2(x̄, λ̄) with ε2 := min{ε1, ε3/(2‖A‖)} and ‖η‖ ≤ ε3/2.
Since η ∈ ∂θ2(λ) +Ax and thus

η −Ax ∈ ∂θ2(λ), ‖η −Ax+Ax̄‖ ≤ ‖η‖+ ‖A‖‖x− x̄‖ ≤ ε3.
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Then, by the calmness of ∂θ2 at (λ̄,−Ax̄), we have

dist (0, D +Ax) ≤ ‖η‖+ dist (η −Ax,D) ≤ ‖η‖+ κ3‖λ− λ̄‖. (77)

By (76) and (77), we have

dist
(
(x, λ),Ω∗x,λ

)
= dist ((x, λ),Γ0(0)) ≤ κ1dist

(
0,Γ−1

0 (x, λ)
)

≤ κ1

(
‖Lx− t̃‖+ ‖λ− λ̄‖+ dist (0, D +Ax)

)
≤ κ1

(
‖Lx− t̃‖+

(1 + κ3)Lh‖L‖
σmin(AT )

‖Lx− t̃‖+ ‖η‖
)

≤ κ1

(
(1 +

(1 + κ3)Lh‖L‖
σmin(AT )

)‖Lx− t̃‖+ ‖ξ‖+ ‖η‖
)
.

(78)
Then, similar to the proof of Proposition 40, there exists σ > 0 such that

σ‖Lx− t̃‖2 ≤ 〈ξ, x− x̂〉+ 〈η, λ− λ̂〉, (79)

where (x̂, λ̂) is the projection of (x, λ) on Ω∗x,λ. Upon combining (78) and (79), inspired by
the proof of Proposition 40, we prove the conclusion with

ε2 = min{ε1, ε3/(2‖A‖)}, κ2 = max{ 1

‖A‖
, κ̃},

where

κ̃ =

(
c1 +

√
c2

1 + 4c2

2

)2

> 0,

and

c1 = κ1(σmin(AT ) + (1 + κ3)Lh‖L‖)/(
√
σσmin(AT )), c2 =

√
2κ1.

Appendix M. Proof of Lemma 44

Since D := ∂θ2(λ̄) is closed and D ⊆ range (A), for any x, there exists xD such that

dist (0, D +Ax) = ‖Ax−AxD‖

and AxD ∈ D. Define Fx := {z | Az = AxD}, according to Hoffman error bound (see, e.g.,
Hoffman, 1952),

dist (x,Fx) ≤ 1

σ̃min(A)
‖Ax−AxD‖,

where σ̃min(A) denotes the smallest nonzero singular value of A. Since Fx ⊆ Ω2
x(0) for any

x, we have

dist
(
x,Ω2

x(0)
)
≤ dist (x,Fx) ≤ 1

σ̃min(A)
‖Ax−AxD‖ =

1

σ̃min(A)
dist (0, D +Ax) ,

which implies the calmness of Ω2
x.
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Appendix N. Proof of Lemma 47

The first assertion follows directly from the fact that (∂g)−1 = ∂g∗. We focus on the second
assertion. Since ∂g∗ is known to be calm at (v̄, ȳ) with modulus κ, there exist ε > 0 such
that

∂g∗(v) ∩ Bε(ȳ) ⊆ ∂g∗(v̄) + κ‖v − v̄‖B, v ∈ Bε(v̄).

Also, there exists ε1 > 0 such that {BT z | z ∈ Bε1(z̄)} ⊆ Bε(v̄) and range (B) ∩ Bε1(Bȳ) ⊆
{By | y ∈ Bε(ȳ)}. For any z ∈ Bε1(z̄), we have

B∂g∗(BT z) ∩ Bε1(Bȳ) ⊆ B
(
∂g∗(BT z) ∩ Bε(ȳ)

)
⊆ B

(
∂g∗(v̄) + κ‖BT z − v̄‖B

)
⊆ B

(
∂g∗(BT z̄) + κ‖B‖‖z − z̄‖B

)
⊆ B∂g∗(BT z̄) + κ‖B‖2‖z − z̄‖B.

The second assertion is then proved.
For the third assertion, it directly follows from (Rockafellar, 1970, Theorem 23.8, The-

orem 23.9). The proof is complete.

Appendix O. Symbols and Notation

IRn The standard n-dimensional Euclidean space

〈·, ·〉 Scalar product in n-dimensional Euclidean space

‖ · ‖ The Euclidean norm

‖ · ‖1 `1 norm

‖ · ‖∞ `∞ norm

B Open unit ball centered at the origin

B Closed unit ball centered at the origin

Br(x) Open ball around x with radius r > 0

int D Interior of set D
ri D Relative interior of set D
bd D Boundary of set D
dist(·,D) Distance function to set D
δD(x) Indicator function of set D
ND Normal cone operator of set D
V⊥0 Orthogonal complement of V0

A+ B Minkowski sum given by {a+ b : a ∈ A, b ∈ B}
range (A) Range of matrix A

null (A) Null space of matrix A

‖A‖ maxx 6=0
‖Ax‖
‖x‖

∂φ Subdifferential of φ, i.e., ∂φ(x) := {ξ | f(y) ≥ f(x) + 〈ξ, y−x〉, ∀y}
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dom φ Domain of φ, i.e., dom φ := {x | φ(x) < +∞}
φ∗ Conjugate of φ, i.e., φ∗(µ) := supx{〈µ, x〉 − φ(x)}
gph (Φ) Graph of set-valued map (multifunction) Φ,

i.e., gph (Φ) := {(x, υ) ∈ IRn × IRq | υ ∈ Φ(x)}
Φ−1 Inverse mapping of set-valued map (multifunction) Φ,

i.e., Φ−1(υ) := {x ∈ IRn | υ ∈ Φ(x)}

Specific notations, descriptions and references:

TKKT TKKT (x, y, λ) :=


∂f(x)−ATλ

∂g(y)−BTλ

Ax+By − b

 (4) in Section 1.1

φ1 φ1(λ) := f∗(ATλ)− bTλ Section2.2

φ2 φ2(λ) := g∗(BTλ) Section2.2

T1 T1(p) :=
{
λ
∣∣ p ∈ ∂φ1(λ− p) + ∂φ2(λ)

}
(13) in Section2.3.2

T2 T2(p) :=
{
µ
∣∣ p ∈ ∂(φ∗1 ◦ −Id)(µ− p) + ∂φ∗2(µ)

}
(14) in Section2.3.2

S̃D1 S̃D1(p) :=
{
λ
∣∣ p ∈ ∂φ1(λ) + ∂φ2(λ)

}
Section2.4.1

S̃D2 S̃D2(p) :=
{
µ
∣∣ p ∈ ∂(φ∗1 ◦ −Id)(µ) + ∂φ∗2(µ)

}
Section2.4.1

ΓDR ΓDR(p1, p2) := {λ ∈ V | p1 = Kλ− t̄, p2 ∈ ḡ + V⊥0 + ∂φ2(λ)} (17) in Section 2.4.2

Γ̃DR Γ̃DR(p1, p2) := {µ ∈ V̂ | p1 = K̂µ− t̂, p2 ∈ ĝ + V̂⊥0 + ∂φ∗2(µ)} (21) in Section 2.4.2

θ1 θ1(x) := f(x) Section 3.2

θ2 θ2(λ) := g∗(BTλ)− 〈b, λ〉 Section 3.2

M M :=

 1
τ
I −AT

−A 1
σ
I

 (32) in Section 3.2

T T (x, λ) :=

∂θ1(x)−ATλ

∂θ2(λ) +Ax

 (32) in Section 3.2

ΓPDHG ΓPDHG(p) := {(x, λ) | p1 = Lx− t̃, p2 = g̃−ATλ, p3 ∈ ∂θ2(λ)+Ax} Section 3.4.1

Γ0 Γ0(p) := {(x, λ) | p1 = Lx− t̃, p2 = −λ̄+ λ, p3 ∈ D +Ax} Section 3.4.2

ΓKKT ΓKKT (p) := {(x, y, λ) | p1 = Lx − t̃, p2 = g̃ − ATλ, p3 ∈ ∂g(y) −
BTλ, p4 = Ax+By − b}

Section 4.2
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