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Abstract

In Path Integral control problems a representation of an optimally controlled dynamical
system can be formally computed and serve as a guidepost to learn a parametrized policy.
The Path Integral Cross-Entropy (PICE) method tries to exploit this, but is hampered
by poor sample efficiency. We propose a model-free algorithm called ASPIC (Adaptive
Smoothing of Path Integral Control) that applies an inf-convolution to the cost function to
speedup convergence of policy optimization. We identify PICE as the infinite smoothing
limit of such technique and show that the sample efficiency problems that PICE suffers
disappear for finite levels of smoothing. For zero smoothing, ASPIC becomes a greedy
optimization of the cost, which is the standard approach in current reinforcement learning.
ASPIC adapts the smoothness parameter to keep the variance of the gradient estimator at
a predefined level, independently of the number of samples. We show analytically and em-
pirically that intermediate levels of smoothing are optimal, which renders the new method
superior to both PICE and direct cost optimization.

Keywords: Path Integral Control, Entropy-Regularization, Cost Smoothing

1. Introduction

How to choose an optimal action? For noisy dynamical systems, stochastic optimal control
theory provides a framework to answer this question. Optimal control is framed as an
optimization problem to find the control that minimizes an expected cost function. For
non-linear dynamical systems that are continuous in time and space, this problem in general
hard.
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A method that has proven to work well is to introduce a parametrized policy like a neural
network (Mnih et al., 2015; Levine et al., 2016; Duan et al., 2016; François-Lavet et al., 2018)
and greedily optimize the expected cost using gradient descent (Williams, 1992; Peters and
Schaal, 2008; Schulman et al., 2015; Heess et al., 2017). To achieve a robust decrease of the
expected cost it is important to ensure that in each step, the updated policy stays in the
proximity of the old policy (Duan et al., 2016). This can be achieved by enforcing a trust
region constraint (Peters et al., 2010; Schulman et al., 2015) or using adaptive regularization
that punishes strong deviations of the new policy from the old policy (Heess et al., 2017).

However the applicability of these methods is limited, as in each iteration of the algo-
rithm, samples from the controlled system have to be computed, either from a simulator
or from a real system. We want to increase the convergence rate of policy optimization to
reduce the number of simulations needed.

To this end we consider path integral control problems (Kappen, 2005; Todorov, 2009;
Kappen et al., 2012), that offer an alternative approach to direct cost optimization and
explore if this allows to speed up policy optimization. This class of control problems per-
mits arbitrary non-linear dynamics and state cost, but requires a linear dependence of the
control on the dynamics and a quadratic control cost (Kappen, 2005; Bierkens and Kappen,
2014; Thijssen and Kappen, 2015). These restrictions allow to obtain an explicit expression
for the probability density of optimally controlled system trajectories. Through this, an
information-theoretical measure of the deviation of the current control policy from the op-
timal control can be calculated. The Path Integral Cross-Entropy (PICE) method (Kappen
and Ruiz, 2016) proposes to use this measure as a pseudo-objective for policy optimization.

However, there is yet no comparative study on whether PICE actually offers an advan-
tage over direct cost optimization; and, in its original form (Kappen and Ruiz, 2016), the
PICE method does not scale well to complex problems because the PICE gradient is hard
to estimate if the current controller is not close enough to the optimal control (Ruiz and
Kappen, 2017). Furthermore the PICE method has been introduced with standard gradient
descent and does not use trust regions to ensure robust updates, which has been shown to
be effective for policy optimization (Duan et al., 2016).

In this work we propose and study a new kind of smoothing technique for the cost
function that allows to interpolate between the optimization of the direct cost and the
PICE objective. Optimizing this smoothed cost using a trust-region-based method yields
an approach that is efficient and does not suffer from the feasibility issues of PICE. Our work
is based on recently proposed smoothing techniques to speed up convergence in deep neural
networks (Chaudhari et al., 2018). We adapt this smoothing technique to path integral
control problems. In contrast to Chaudhari et al. (2018), smoothing for path integral
control problems can be solved analytically and we obtain an expression of the gradient
that can directly be computed from Monte Carlo samples. The strength of smoothing can
be regulated by a parameter. Remarkably, this parameter can be determined independently
of the number of samples. In the limits of this smoothing parameter we recover the PICE
method for infinitely strong smoothing and direct cost optimization for zero smoothing,
respectively. As in Chaudhari et al. (2018), the minimum of the smoothed cost, thus the
optimal control policy, remains the same for all levels of smoothing.

We provide a theoretical argument why smoothing is expected to speed up optimization
and conduct numerical experiments on different control tasks, which show this accelerative
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effect in practice. For this we develop an algorithm called ASPIC (Adaptive Smoothing
for Path Integral Control) that uses cost smoothing to speed up policy optimization. The
algorithm adjusts the smoothing parameter in each step to keep the variance of the gradient
estimator at a predefined level. To ensure robust updates of the policy, ASPIC enforces
a trust region constraint; similar to Schulman et al. (2015) this is achieved with natu-
ral gradient updates and an adaptive stepsize. Like other policy gradient based methods
(Williams, 1992; Peters and Schaal, 2008; Schulman et al., 2015; Heess et al., 2017) ASPIC
is model-free.

Many policy optimization algorithms update the control policy based on a direct opti-
mization of the cost; examples are Trust Region Policy Optimization (TRPO) (Schulman
et al., 2015) or Path-Integral Relative Entropy Policy Search (PIREPS) (Gómez et al.,
2014), where the later is particularly developed for path integral control problems. The
main novelty of this work is the application to path integral control problems of the idea
of smoothing, as introduced in Chaudhari et al. (2018). This technique outperforms di-
rect cost optimization, achieving faster convergence rates with only a negligible amount of
computational overhead.

2. Path Integral Control Problems

Consider the (multivariate) dynamical system

ẋt = f(xt, t) + g(xt, t) (u(xt, t) + ξt) , (1)

with initial condition x0. The control policy is implemented in the control function u(x, t),
which is additive to the white noise ξt which has variance ν

dt .
Given a control function u and a time horizon T , this dynamical system induces a

probability distribution pu(τ) over state trajectories τ = {xt|∀t : 0 < t ≤ T} with initial
condition x0.

We define the regularized expected cost

C(pu) = 〈V (τ)〉pu + γKL(pu||p0), (2)

with V (τ) =
∫ T

0 V (xt, t)dt, where the strength of the regularization KL(pu||p0) is controlled
by the parameter γ.

The Kullback-Leibler divergence KL(pu||p0) puts high cost to controls u that bring the
probability distribution pu far away from the uncontrolled dynamics p0 where u(xt, t) = 0.
We can also rewrite the regularizer KL(pu||p0) directly in terms of the control function u
by using the Girsanov theorem (compare Thijssen and Kappen (2015))

log
pu(τ)

p0(τ)
=

1

ν

∫ T

0

(
1

2
u(xt, t)

Tu(xt, t) + u(xt, t)
T ξt

)
dt.

The regularization then takes the form of a quadratic control cost

KL(pu||p0) =

〈
1

ν

∫ T

0

(
1

2
u(xt, t)

Tu(xt, t) + u(xt, t)
T ξt

)
dt

〉
pu

=

〈
1

ν

∫ T

0

1

2
u(xt, t)

Tu(xt, t)dt

〉
pu

,
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where we used that
〈
u(xt, t)

T ξt
〉
pu

= 0. This shows that the regularization KL(pu||p0) puts
higher cost for large values of the controller u.

The path integral control problem is to find the optimal control function u∗ that mini-
mizes the regularized cost C(pu)

u∗ = arg min
u

C(pu). (3)

For a more complete introduction to path integral control problems, see Thijssen and Kap-
pen (2015); Kappen and Ruiz (2016).

2.1 Direct Cost Optimization Using Gradient Descent

A standard approach to find an optimal control function is to introduce a parametrized con-
troller uθ(xt, t) (Williams, 1992; Schulman et al., 2015; Heess et al., 2017). This parametrizes
the path probabilities puθ and allows to optimize the expected cost C(puθ) (2) using stochas-
tic gradient descent on the cost function:

∇θC(puθ) =
〈
Sγpuθ

(τ)∇θ log puθ(τ)
〉
puθ

, (4)

with the stochastic cost Sγpuθ (τ) := V (τ) + γ log
puθ (τ)

p0(τ) (see Appendix A for details).

2.2 The Cross-Entropy Method for Path Integral Control Problems

An alternative approach to direct cost optimization was introduced as the PICE method
in Kappen and Ruiz (2016). It uses that we can obtain an expression for pu∗ , the probability
density of state trajectories induced by a system with the optimal controller u∗:

pu∗ = arg min
pu

C(pu),

with C(pu) given by equation (2). Finding pu∗ is an optimization problem over the space of
all probability distributions pu that are induced by the controlled dynamical system (1). It
has been shown (Bierkens and Kappen, 2014; Thijssen and Kappen, 2015) that we can solve
this by replacing the minimization over pu with a minimization over all path probability
distributions p:

pu∗ ≡ p∗ := arg min
p

C(p) = arg min
p
〈V (τ)〉p + γKL(p||p0) =

1

Z
p0(τ) exp

(
−1

γ
V (τ)

)
, (5)

with the normalization constant Z =
〈

exp
(
− 1
γV (τ)

)〉
p0

. Note that this is not a trivial

statement, as we now take the minimum also over non-Markovian processes with non-
Gaussian noise.

The PICE algorithm (Kappen and Ruiz, 2016) takes advantage of the existence of this
explicit expression for the density of optimally controlled trajectories pu∗ . PICE does not
directly optimize the expected cost, instead it minimizes the KL-divergence KL (p∗||puθ)
which measures the deviation of a parametrized distribution puθ from the optimal one p∗.
Although direct cost optimization and PICE are different methods, their global minimum

4



Adaptive Smoothing for Path Integral Control

is the same if the parametrization of uθ can express the optimal control u∗ = uθ∗ . The
parameters θ∗ of the optimal controller are found using gradient descent:

∇θKL (p∗||puθ) =
1

Zpuθ

〈
exp

(
−1

γ
Sγpuθ

(τ)

)
∇θ log puθ(τ)

〉
puθ

, (6)

where Zpuθ :=
〈

exp
(
− 1
γS

γ
puθ

(τ)
)〉

puθ

.

That PICE uses the optimal density as a guidepost for the policy optimization might
give it an advantage compared to direct cost optimization. In practice however, this method
only works properly if the initial guess of the controller uθ does not deviate too much from
the optimal control, as a high value of KL (p∗||puθ) leads to a high variance of the gradi-
ent estimator and results in bootstrapping problems of the algorithm (Ruiz and Kappen,
2017; Thalmeier et al., 2016). In the next section we introduce a method that interpolates
between direct cost optimization and the PICE method. This allows us to take advan-
tage of the analytical solution of the optimal density without being hampered by the same
bootstrapping problems as PICE.

3. Interpolating Between the two Methods: Smoothing Stochastic
Control Problems

Cost function smoothing was recently introduced as a way to speed up optimization of
neural networks (Chaudhari et al., 2018): optimization of a general cost function f(θ) can
be speeded up by smoothing f(θ) using an inf-convolution with a distance kernel d(θ′, θ).1

The smoothed function

Jα(θ) = inf
θ′
αd(θ′, θ) + f(θ′) (7)

preserves the global minima of the function f(θ). Chaudhari et al. (2018) showed that gra-
dient descent optimization on Jα(θ) instead of f(θ) may significantly speed up convergence.
For that, the authors used a stochastic optimal control interpretation of the smoothing pro-
cess of the cost function. In particular, they looked at the smoothing process as the solution
to a non-viscous Hamiltion-Jacobi partial differential equation.

In this work, we want to use this accelerative effect to find the optimal parametrization
of the controller uθ. Therefore, we smooth the cost function C(puθ) as a function of the
parameters θ. As C(puθ) = 〈V (τ)〉puθ + γKL(puθ ||p0) is a functional on the space of

probability distributions puθ , the natural distance2 is the KL-divergence KL(puθ′ ||puθ). So
we replace

f(θ)→ C(puθ)

d(θ′, θ)→ KL(puθ′ ||puθ)

1. This is a generalized description. Chaudhari et al. (2018) used d(θ′, θ) = |θ′ − θ|2 .
2. Remark: Strictly speaking the KL is not a distance, but a directed divergence.
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and obtain the smoothed cost Jα(θ) as

Jα(θ) = inf
θ′
αKL(puθ′ ||puθ) + C(puθ′ )

= inf
θ′
αKL(puθ′ ||puθ) + γKL(puθ′ ||p0) + 〈V (τ)〉puθ′ . (8)

Note the different roles of α and γ: α penalizes the deviation of puθ′ from puθ , while γ
penalizes the deviation of puθ′ from the uncontrolled dynamics p0.

3.1 Computing the Smoothed Cost and its Gradient

The smoothed cost Jα is expressed as a minimization problem that has to be solved. Here
we show that for path integral control problems this can be done analytically. To do this
we first show that we can replace infθ′ → infp′ and then solve the minimization over p′

analytically. We replace the minimization over θ′ by a minimization over p′ in two steps:
first we state an assumption that allows us to replace infθ′ → infu′ and then proof that for
path integral control problems we can replace infu′ → infp′ .

We assume that for every uθ and any α > 0, the minimizer θ∗α,θ over the parameter
space

θ∗α,θ := arg min
θ′

αKL(puθ′ ||puθ) + C(puθ′ ) (9)

is the parametrization of the minimizer u∗α,θ over the function space

u∗α,θ := arg min
u′

αKL(pu′ ||puθ) + C(pu′),

such that u∗α,θ ≡ uθ∗α,θ . We call this assumption full parametrization. Naturally it is suf-

ficient for full parametrization if uθ(x, t) is a universal function approximator with a fully
observable state space x and the time t as input, although this may be difficult to achieve
in practice. With this assumption we can replace infθ′ → infu′ .

Analogously we replace infu′ → infp′ : in Appendix B we proof that for path integral
control problems the minimizer u∗α,θ over the function space induces the minimizer p∗α,θ over
the space of probability distributions

p∗α,θ := arg min
p′

αKL(p′||puθ) + C(p′), (10)

such that p∗α,θ ≡ pu∗α,θ . This step is similar to the derivation of equation (5) in Section 2.2,

but now we have added an additional term αKL(pu′ ||puθ).
Hence, given a path integral control problem and a controller uθ that satisfies full

parametrization we can replace infθ′ → infp′ and equation (8) becomes

Jα(θ) = inf
p′
αKL(p′||puθ) + γKL(p′||p0) + 〈V (τ)〉p′ . (11)

This can be solved directly: first we compute the minimizer (see Appendix C for details)

p∗α,θ(τ) =
1

Zαpuθ
puθ(τ) exp

(
− 1

γ + α
Sγpuθ

(τ)

)
(12)
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with the normalization constant Zαpuθ
=
〈

exp
(
− 1
γ+αS

γ
puθ

(τ)
)〉

puθ

. We plug this back in

equation (11) and get an expression of the smoothed cost

Jα(θ) = − (γ + α) log

〈
exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
puθ

(13)

and its gradient (for details see Appendix D)

∇θJα(θ) = − α

Zαpuθ

〈
exp

(
− 1

γ + α
Sγpuθ

(τ)

)
∇θ log puθ(τ)

〉
puθ

, (14)

which both can be estimated using samples from the distribution puθ .

3.2 PICE, Direct Cost Optimization and Risk Sensitivity as Limiting Cases of
Smoothed Cost Optimization

The smoothed cost and its gradient depend on the two parameters α and γ, which come
from the smoothing equation (7) and the definition of the control problem (2), respectively.
Although at first glance the two parameters seem to play a similar role, they change different
properties of the smoothed cost Jα(θ) when they are varied.

In the expression for the smoothed cost (13), the parameter α only appears in the
sum γ + α. Varying it changes the effect of the smoothing but leaves the optimum θ∗ =
arg minθ J

α(θ) of the smoothed cost invariant (see Appendix E). We therefore call α the
smoothing parameter.

The larger α, the weaker the smoothing; in the limiting case α → ∞, smoothing is
turned off as we can see from equation (13): for very large α, the exponential and the
logarithmic function linearise, Jα(θ)→ C(puθ) and we recover direct cost optimization. For
the limiting case α→ 0, we recover the PICE method: the optimizer p∗α,θ becomes equal to
the optimal density p∗ and the gradient on the smoothed cost (14) becomes proportional
to the PICE gradient (6):

lim
α→0

1

α
∇θJα(θ) = ∇θKL(p∗||puθ).

Varying γ changes the control problem and thus its optimal solution. For γ → 0, the
control cost becomes zero. In this case the cost only consists of the state cost and arbitrary
large controls are allowed. We get

Jα(θ) = −α log

〈
exp

(
− 1

α
V (τ)

)〉
puθ

.

This expression is identical to the risk sensitive control cost proposed by Fleming and
Sheu (2002); Fleming and McEneaney (1995); van den Broek et al. (2010). Thus, for
γ = 0, the smoothing parameter α controls the risk-sensitivity, resulting in risk seeking
objectives for α > 0 and risk avoiding objectives for α < 0. In the limiting case γ →∞, the
problem becomes trivial; the optimal controlled dynamics becomes equal to the uncontrolled
dynamics: p∗ → p0, see equation (5), and u∗ → 0.
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If both parameters α and γ are small, the problem is hard (see Ruiz and Kappen (2017);
Thalmeier et al. (2016)) as many samples are needed to estimate the smoothed cost. The
problem becomes feasible if either α or γ is increased. Increasing γ however, changes the
control problem, while increasing α weakens the effect of smoothing. In the remainder of
this article we analyze, first theoretically in Section 4 and then numerically in Section 6,
the effect that a finite α > 0 has on the iterative optimization of the control uθ for a fixed
value γ.

4. The Effect of Cost Function Smoothing on Policy Optimization

We introduced smoothing as a way to speed up policy optimization compared to a direct
optimization of the cost. In this section we analyze policy optimization with and without
smoothing and show analytically how smoothing can speed up policy optimization. To
simplify notation, we overload puθ → θ so that we get C(puθ)→ C(θ) and KL(puθ′ ||puθ)→
KL(θ′||θ).

We use a trust region constraint to robustly optimize the policy (compare Peters et al.
(2010); Schulman et al. (2015); Gómez et al. (2014)). There are two options. On the one
hand, we can directly optimize the cost C:

Definition 1 We define the direct update with stepsize E as an update θ → θ′ with θ′ =
ΘC
E (θ) and

ΘC
E (θ) := arg min

θ′
s.t. KL(θ′||θ)≤E

C(θ′).

The direct update results in the minimal cost that can be achieved after one single update.
We define the optimal one-step cost

C∗E(θ) := min
θ′

s.t. KL(θ′||θ)≤E

C(θ′).

On the other hand we can optimize the smoothed cost Jα:

Definition 2 We define the smoothed update with stepsize E as an update θ → θ′ with
θ′ = ΘJα

E (θ) and

ΘJα

E (θ) := arg min
θ′

s.t. KL(θ′||θ)≤E

Jα(θ′). (15)

While a direct update achieves the minimal cost that can be achieved after a single update,
we show below that a smoothed update can result in a faster cost reduction if more than
one update step is performed.

Definition 3 We define the optimal two-step update θ → Θ′ → Θ′′ as an update that
results in the lowest cost that can be achieved with a two-step update θ → θ′ → θ′′ with fixed
stepsizes E and E ′ respectively:

Θ′,Θ′′ := arg min
θ′,θ′′

s.t. KL(θ′′||θ′)≤E ′
KL(θ′||θ)≤E

C(θ′′)
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and the corresponding optimal two-step cost

C∗E,E ′(θ) := min
θ′

s.t. KL(θ′||θ)≤E

min
θ′′

s.t. KL(θ′′||θ′)≤E ′
C(θ′′)

= min
θ′

s.t. KL(θ′||θ)≤E

C
(
ΘC
E ′(θ

′)
)
. (16)

Figure 1 illustrates how such an optimal two-step update leads to a faster decrease of the
cost than two consecutive direct updates.

Theorem 1 Statement 1: For all E, α there exists an E ′, such that a smoothed update with
stepsize E followed by a direct update with stepsize E ′ is an optimal two-step update:

Θ′ = ΘJα

E (θ)

Θ′′ = ΘC
E ′(Θ

′)

⇒ C
(
Θ′′
)

= C∗E,E ′(θ)

The size of the second step E ′ is a function of θ and α.

Statement 2: E ′ is monotonically decreasing in α.

While it is evident from equation (16) that the second step of the optimal two-step update
must be a direct update, the statement that the first step is a smoothed update is non-trivial.
We proof this and statement 2 in Appendix F.

Direct updates are myopic and do not take into account successive steps and are thus
suboptimal when more than one update is needed. Smoothed updates on the other hand, as
we see on Theorem 1, anticipate a subsequent step and minimize the cost that results from
this two-step update. Hence smoothed updates favour a greater cost reduction in the future
over maximal cost reduction in the current step. The strength of this anticipatory effect
depends on the smoothing strength, which is controlled by the smoothing parameter α:
For large α, smoothing is weak and the size E ′ of this anticipated second step becomes
small. Figure 1(B) illustrates that for this case, when E ′ becomes small, smoothed updates
become more similar to direct updates. In the limiting case α→∞ the difference between
smoothed and direct updates vanishes completely, as Jα(θ)→ C(θ) (see Section 3.2).

We expect that also with multiple update steps due to this anticipatory effect, iterating
smoothed updates leads to a faster decrease of the cost than iterating direct updates. We
will confirm this by numerical studies. Furthermore, we expect that this accelerating effect
of smoothing is stronger for smaller values of α. On the other hand, as we will discuss in
the next section, for smaller values of α it is harder to accurately perform the smoothed
updates. Therefore we expect an optimal performance for an intermediate value of α. Based
on this we build an algorithm in the next section that aims to accelerate policy optimization
by cost function smoothing.

9
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Cost C(θ)

low

highA B

Θ’

θ θ

θ’
θ’

θ’’ θ’’

Θ’

Θ’’Θ’’

Figure 1: Illustration of optimal two-step updates compared with two consecutive direct
updates. Illustrated is a two-dimensional cost landscape C(θ) parametrized by θ.
Dark colors represent low cost, while light colors represent high cost. Green dots
indicate the optimal two-step update θ → Θ′ → Θ′′ while red dots indicate two
consecutive direct updates θ → θ′ → θ′′ with θ′ = ΘC

E (θ) and θ′′ = ΘC
E ′(θ

′). The
dashed circles indicate trust regions. θ′, θ′′ and Θ′′ are the minimizers of the
cost in the trust regions around θ, θ′ and Θ′ respectively. Θ′ is chosen such that
the cost C(Θ′′) after the subsequent direct update is minimized. In both panels,
the final cost after an optimal two-step update C(Θ′′) is smaller than the final
cost after two direct updates C(θ′′). (A) Equal sizes of the update steps, E = E ′.
(B) When the size of the second step becomes small E ′ � E , the smoothed update
θ → Θ′ becomes more similar to the direct update θ → θ′.

5. Numerical Method

In this section we develop an algorithm that takes a parametrized control function uθ with
initial parameters θ0 and updates these parameters in each iteration n using smoothed
updates.

5.1 Smoothed and Direct Updates Using Natural Gradients

So far we have specified the smoothed updates θn+1 = ΘJα

E (θn) (15) in an abstract manner
and left open how to perform this optimization step. To compute an explicit expression
we introduce a Lagrange multiplier β and express the constraint optimization (15) as an
unconstrained optimization

θn+1 = arg min
θ′

Jα(θ′) + βKL(θ′||θn) (17)

Following Schulman et al. (2015) we assume that the trust region size E is small. For small
E � 1 we get β � 1 and can expand Jα(θ′) to first and KL(θ′||θn) to second order (see

10
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Appendix G for the details). This gives

θn+1 = θn − β−1F−1 ∇θ′Jα(θ′)
∣∣
θ′=θn

, (18)

a natural gradient update with the Fisher-matrix F = ∇θ∇TθKL(θ′||θn)
∣∣
θ′=θn

(we use
the conjugate gradient method to approximately compute the natural gradient for high
dimensional parameter spaces. See Appendix J or Schulman et al. (2015) for details). The
parameter β is determined using a line search such that3

KL(θn||θn+1) = E . (19)

Note that for direct updates this derivation is the same, just replace Jα by C.

5.2 Reliable Gradient Estimation Using Adaptive Smoothing

To compute smoothed updates using equation (18) we need the gradient of the smoothed
cost. We assume full parametrization and use equation (14), which can be estimated us-
ing N weighted samples drawn from the distribution puθ :

∇θJα(θ) ≈ α
N∑
i=1

wi∇θ log puθ(τ
i), (20)

with weights given by

wi =
1

Z̃
exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
, Z̃ =

N∑
i=1

exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
.

The variance of this estimator depends sensitively on the entropy of the weights

HN (w) = −
N∑
i=1

wi log(wi).

If the entropy is low, the total weight is concentrated on a few particles. This results
in a poor gradient estimator where only a few of the particles actually contribute. This
concentration is dependent on the smoothing parameter α: for small α, the weights are very
concentrated in a few samples, resulting in a large weight-entropy and thus a high variance
of the gradient estimator. As small α corresponds to strong smoothing, we want α to be as
small as possible, but large enough to allow a reliable gradient estimation. Therefore, we set
a bound to the weight entropy HN (w). To get a bound that is independent of the number of
samples N , we use that in the limit of N →∞ the weight entropy is monotonically related
to the KL-divergence KL(p∗α,uθ ||puθ)

KL(p∗α,uθ ||puθ) = lim
N→∞

logN −HN (w)

3. For practical reasons, we reverse the arguments of the KL-divergence, since it is easier to estimate it
from samples drawn from the first argument. For very small values, the KL is approximately symmetric
in its arguments. Also, the equality in (19) differs from Schulman et al. (2015), which optimizes a value
function within the trust region, e.g., KL(θn||θn+1) ≤ E .
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(see Appendix I). This provides a method for choosing α independently of the number
of samples: we set the constraint KL(p∗α,uθ ||puθ) ≤ ∆ and determine the smallest α that
satisfies this condition using a line search. Large values of ∆ correspond to small values of α
(see Appendix H) and therefore strong smoothing, we thus call ∆ the smoothing strength.

5.3 Formulating a Model-Free Algorithm

We can compute the gradient (20) and the KL-divergence while treating the dynamical
system as a black-box. For this we write the probability distribution puθ over trajectories τ
as a Markov process:

puθ(τ) =
∏

0<t<T

puθ(xt+dt|xt, t),

where the product runs over the time t, which is discretized with time step dt. We define
the noisy action at = u(xt, t) + ξt and formulate the Markov transitions puθ(xt+dt|xt) for
the dynamical system (1) as

puθ(xt+dt|xt) = δ (xt+dt −F (xt, at, t)) · πθ(at|t, xt),

with δ(·) the Dirac delta function. This splits the transitions up into the deterministic
dynamical system F (xt, at, t)

4 and a Gaussian policy πθ(at|t, xt) ∼ N
(
at|uθ(xt, t), νdt

)
with

mean uθ(xt, t) and variance ν
dt . Using this we get a simplified expression for the gradient of

the smoothed cost (20) that is independent of the system dynamics, given samples drawn
from the controlled system puθ :

∇θJα(θ) ≈ α
N∑
i=1

∑
0<t<T

wi∇θ log πθ(a
i
t|t, xit).

Similarly we obtain an expression for the estimator of the KL divergence

KL(θn||θn+1) ≈ 1

N

N∑
i=1

∑
0<t<T

log
πθn(ait|t, xit)
πθn+1(ait|t, xit)

.

With this we formulate ASPIC (Algorithm 1), a model-free algorithm which optimizes
the parametrized policy πθ by iteratively drawing samples from the controlled system.

6. Numerical Experiments

We now analyze empirically the convergence speed of policy optimization with and without
smoothing and show that smoothing accelerates convergence. For the optimization with
smoothing, we use ASPIC (Algorithm 1) and for the optimization without smoothing, we
use a version of ASPIC where we replaced the gradient of the smoothed cost with the
gradient of the cost itself. We first consider a simple linear-quadratic (LQ) control problem
and then focus on non-linear control tasks, for which we analyze the dependence of ASPIC
on the hyper-parameters. We also compare ASPI to other related RL algorithms. Further
details about the numerical experiments are found in Appendix L.

4. Using the Euler method, we get F (xt, at) = (xt + dt · (f(xt, t) + g(xt, t)at)).

12
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Algorithm 1 ASPIC - Adaptive Smoothing for Path Integral Control

Require: State cost function V (x, t)
control cost parameter γ
base policy that defines uncontrolled dynamics π0

real system or simulator to compute dynamics using a parametrized policy πθ
trust region sizes E
smoothing strength ∆
number of samples per iteration N

initialize θ0

n = 0
repeat

draw state trajectories τ i, i = 1, . . . , N , using parametrized policy πθn
for each sample i compute Sγpuθn

(τ i) =
∑

0<t<T V (xit, t) + γ log
πθn (ait|t,xit)
π0(ait|t,xit)

{Find minimal α such that KL ≤ ∆}
α← 0
repeat

increase α
Siα ← Sγpuθn

(τ i) · 1
γ+α

compute weights wi ← exp(−Siα)
normalize weights wi ← wi∑

i(wi)

compute sample size independent weight entropy KL← logN +
∑

iwi log(wi)
until KL ≤ ∆
{whiten the weights}
ŵi ← wi−mean(wi)

std(wi)

{compute the gradient on the smoothed cost}
g ←

∑
i

∑
t ŵi

∂
∂θ log πθ(a

i
t|t, xit)

∣∣
θ=θn

{compute Fisher matrix}
use conjugate gradient to approximate the natural gradient gF = F−1g (Appendix J)
do line search to compute step size η such KL(θn||θn+1) = E
update parameters θn+1 ← θn + η · gF
n = n+ 1

until convergence

6.1 A Simple Linear-Quadratic Control Problem: Brownian Viapoints

We analyze the convergence speed for different values of the smoothing strength ∆ in the
task of controlling a one-dimensional Brownian particle

ẋ = u(x, t) + ξ. (21)

We define the state cost as a quadratic penalty for deviating from the viapoints xi at the

different times ti: V (x, t) =
∑

i δ (t− ti) (x−xi)2
2σ2 with σ = 0.1. As a parametrized controller

we use a time varying linear feedback controller, i.e., uθ(x, t) = θ1,tx+ θ0,t. This controller
fulfils the requirement of full parametrization for this task (see Appendix K). For further
details of the numerical experiment see Appendix L.1.
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Figure 2: LQ control problem: Brownian viapoints. For each iteration we used N = 100
rollouts to compute the gradient. (A) Number of iterations needed for the cost
to cross a threshold C ≤ 2 · 104 versus the smoothing strength ∆. For ∆ = 0
there is no smoothing. Increasing the smoothing strength results in a faster
decrease of the cost; when ∆ is increased further the performance decreases again.
Errorbars denote mean and standard deviation over 10 runs of the algorithm.
(B) Cost versus the iterations of the algorithm. Direct optimization of the cost
exhibits a slower convergence rate than optimization of the smoothed cost with
∆ = 0.2 log 100.

We apply ASPIC to this control problem and compare its performance for different sizes
of the smoothing strength ∆ (see Figure 2). The results confirm our expectations from our
theoretical analysis (sections 4 and 5.2). As predicted by theory we observe an acceleration
of the policy optimization when smoothing is switched on. This acceleration becomes more
pronounced when ∆ is increased, which we attribute to an increase of the anticipatory effect
of the smoothed updates as smoothing becomes stronger (see Section 4). When ∆ is too
large the performance of the algorithm deteriorates again, in agreement with our discussion
of gradient estimation problems that arise for strong smoothing (see Section 5.2).

6.2 Nonlinear Control Problems

We now consider non-linear control problems, which violate the full parametrization as-
sumption. We focus on the pendulum swing-up task, the Acrobot task, and a 2D Walker
task. The latter was simulated using the OpenAI gym (Brockman et al., 2016). For pen-
dulum swing-up and the Acrobot tasks we used time-varying linear feedback controllers,
whereas for the 2D Walker task we parametrized the control uθ using a neural network.
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Figure 3: (A-C) Smoothed cost optimization (ASPIC) exhibits faster convergence than
direct cost optimization in a variety of tasks. Plots show mean and standard
deviation of the cost per iteration for 10 runs of the algorithm. In all tasks
except 2D Walker, we used N = 500 rollouts and a trust region size E = 0.1. For
ASPIC, the smoothing strength was set to ∆ = 0.5. In the 2D Walker task (C) we
used N = 100 rollouts and ∆ = 0.05 logN . (D) Performance as a function of
the number of iterations for different values of N ∈ {50, 100, 500}. Dashed lines
denote the solution for a total fixed budget of 25K rollouts, i.e., 500, 250, and 50
iterations, respectively. In this case, N = 50 achieves near optimal performance
whereas using larger values of N leads to worse solutions.

Further details are given in Appendix L.2 for the pendulum, L.3 for the Acrobot and L.4
for the 2D Walker.

Convergence Rate of Policy Optimization

Figure 3(A-C) shows the comparison of ASPIC algorithm with smoothing against direct-
cost optimization. In all three tasks, smoothing improves the convergence rate of policy
optimization. Smoothed cost optimization requires less iterations to achieve the same cost
reduction as direct cost optimization, with only a negligible amount of additional compu-
tational steps that do not depend on the complexity of the simulation runs.
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We can thus conclude that even in cases when the parametrized controller does not
strictly meet the requirement of full parametrization, a strong performance boost can also
be achieved.

Dependence on the Number of Rollouts per Iteration N

We now analyze the dependence of the performance of ASPIC on the number of rollouts per
iteration N . In general, using larger values of N allows for more reliable gradient estimates
and achieves convergence in fewer iterations. However, too large N may be inefficient and
lead to suboptimal solutions in the presence of a fixed budget of rollouts.

Figure 3(D) illustrates this trade-off in the Pendulum swing-up task for three values
of N , including the previous one N = 500. For a total budget of 25K rollouts (dashed lines)
the lowest value of N = 50 achieves near optimal performance and is preferable to the other
choices, despite resulting in higher variance estimates and requiring more iterations until
convergence.

Interplay Between Smoothing Strength ∆ and Trust Region Size E

To understand better the relation between the smoothing strength and the trust region
sizes, we analyze empirically the performance of ASPIC as a function of both ∆ and E
parameters. We focus on the Acrobot task and in the setting of N = 500 and intermediate
smoothing strength, when smoothing is most beneficial.

Figure 4 shows the cost as a function of ∆ and E averaged over the first 500 iterations
of the algorithm, and for 10 different runs. Larger (averaged) costs correspond runs where
the algorithm fails to converge. Conversely, the lower the cost, the fastest the convergence.
In general, larger values of E lead to faster convergence. However, the convergence is less
stable for smaller values of ∆. For stronger smoothing, the algorithm is less sensitive to E .

Comparison with other model-free RL algorithms

We finish this experimental analysis with a comparison between ASPIC and other related
model-free RL algorithms. We consider trajectory-based algorithms that use the return of
the entire trajectories, instead of evaluating the gradient at every state within a trajectory.
This setting allows us to disentangle the effect of smoothing in the optimization from other
factors, such as the use of state-dependent baselines. In particular, we compare ASPIC
with following methods:

Policy Gradient (PG): this is the vanilla policy gradient method (Sutton et al., 2000),
and can be seen as direct cost optimization without a trust region constraint.

Policy Gradient with a trust region constraint (PG-TR): this is again a direct cost
optimization method, similar to natural gradient descent (Kakade, 2002), with the main
difference that it can perform multiple gradient steps inside the trust region.

Trajectory-based Trust Region Policy Optimization (TRPO-TB): we consider the original
TRPO (Schulman et al., 2015) without the state-dependent baseline, that is, computing the
gradient estimate over trajectories instead of state-action pairs. We use the same controller
architecture and hyper-parameters as in the original paper.

We evaluate the performance of these algorithms on a set of six tasks from Pybullet,
an open source real-time physics engine (see Appendix L.5 for more details). Figure 5
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Figure 4: Solution cost as a function of the smoothing strength ∆ and the trust region size E
in the Acrobot task. Shown is the cost averaged over the first 500 iterations of
the algorithm, and for 10 different runs. Blue indicates failure to convergence.
White indicates the solutions which converged fastest.

shows the results. For the six tasks, ASPIC systematically converges faster than the other
methods. Remarkably, in the tasks with higher dimensions (Walker2D and Half-Cheetah)
the differences in performance is more pronounced, indicating that ASPIC can also scale
well to higher-dimensional problems.

7. Discussion

For path integral control problems the optimal control policy can serve as a guidepost for
policy optimization. This is used in the PICE algorithm (Kappen and Ruiz, 2016). One
might hope that a representation of optimal control can help to find a parametrized policy
and surpass the more general approach of direct cost optimization. In practice however, the
PICE algorithm suffers from problems with sample efficiency (Ruiz and Kappen, 2017). We
introduced a smoothing technique using an inf-convolution which preserves global minima.
Remarkably, for path integral control problems, minimization in the inf-convolution can be
solved analytically. We used this result to interpolate between direct cost optimization and
the PICE method. In between these extremes we have found a method that is superior to
direct cost optimization while remaining feasible.

We conducted a theoretical analysis of the optimization of smoothed cost-functions and
showed that minimizing the smoothed cost can accelerate policy optimization by having
less myopic updates that favour stronger cost reduction in subsequent updates over im-
mediate cost reduction in the current step. This prediction is confirmed by our numerical
experiments, which show that smoothing the cost accelerates the convergence of policy op-
timization. While the theoretical analysis only makes statements for optimizations with
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Figure 5: Pybullet experiments: comparison between ASPIC and other related methods
(see main text for details). Curves show mean and standard deviation of the cost
per iteration for 5 different runs. The panel titles show the task name as well as
the number of action/state dimensions in parenthesis. ASPIC converges faster
than the other methods in all tasks, specially in high-dimensional ones.

a total of two update steps, the numerical experiments show that the acceleration effect
persists when more than two update steps are performed.

Because direct cost optimization and the PICE method are recovered in the limits of
weak and strong smoothing respectively, we examined smoothed cost optimization for dif-
ferent levels of smoothing. The result shows in both limits the performance of the algorithm
deteriorates. For weak smoothing this can be explained with the disappearance of the ac-
celerating effect that is caused by smoothing. The deterioration of performance for strong
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smoothing may be attributed to the higher variance of the sample weights that result in
gradient estimation problems which also appear in PICE (Ruiz and Kappen, 2017). These
problems appear for strong smoothing, while the accelerative effect stays noticeable when
smoothing is weak.

The explanatory power of the theoretical results regarding the numerical experiments
is limited through the fact that our derivation of the smoothed cost and its gradient re-
quires an assumption on the representational power of the parametrized control policy. In
principle, a universal function approximator, like an infinitely large neural network, would
be sufficient to satisfy this full parametrization assumption. However in practice, where
we have to rely on function approximators with a finite number of parameters, this is dif-
ficult to obtain. Nevertheless, the qualitative behaviour, that smoothing speeds up policy
optimization, persists despite this deviation of the numerical methods from the theoretical
assumptions.

To conduct the numerical studies we used the algorithm ASPIC that we developed based
on our theoretical results. ASPIC uses robust updates and an adaptive adjustment of the
smoothing parameter to ensure that the gradient on the smoothed cost stays computable
with a finite amount of samples. This procedure bears similarities to an adaptive annealing
scheme, with the smoothing parameter playing the role of an artificial temperature. In
contrast to classical annealing schemes, such as simulated annealing, changing the smoothing
parameter does not change the optimization target: the minimum of the smoothed cost
remains the optimal control solution for all levels of smoothing.

In the weak smoothing limit, ASPIC directly optimizes the cost using trust region con-
strained updates, similar to the TRPO algorithm (Schulman et al., 2015). TRPO differs
from ASPIC’s weak smoothing limit by additionally using certain variance reduction tech-
niques for the gradient estimator: they replace the stochastic cost in the gradient estimator
by the easier-to-estimate advantage function, which has a state dependent baseline and only
takes into account future expected cost. Since this depends on the linearity of the gradient
in the stochastic cost and this dependence is non-linear for the gradient of the smoothed
cost, we cannot directly incorporate these variance reduction techniques in ASPIC.

In the strong smoothing limit ASPIC becomes a version of PICE (Kappen and Ruiz,
2016) that—unlike the plain PICE algorithm—uses a trust region constraint to achieve
robust updates. The gradient estimation problem that appears in the PICE algorithm was
previously addressed in Ruiz and Kappen (2017): they proposed a heuristic that allows
to reduce the variance of the gradient estimator by adjusting the particle weights used to
compute the policy gradient. Ruiz and Kappen (2017) introduced this heuristic as an ad
hoc fix of the sampling problem and the adjustment of the weights introduces a bias with
possible unknown side effects. Our study sheds a new light on this, as adjusting the particle
weights corresponds to a change of the smoothing parameter in our case. The theoretical
results we derived can however not directly be transferred to Ruiz and Kappen (2017), since
we assume the use of trust regions to bound the updates of the policy optimization.

Especially when samples are expensive to compute it is important to squeeze out as much
information from them as possible. We showed that for path integral control problems a
smoothed version of the cost function and its gradient can directly be computed from the
samples and allows to make less myopic policy updates than cost-greedy methods (like
TRPO and PIREPS) and thereby accelerate convergence. We believe this can potentially
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be useful for variational inference in other areas of machine learning (Arenz et al., 2018). To
fully benefit from this, it is important future work to develop variance reduction techniques
for the gradient of the smoothed cost similar to the techniques already used for methods
that directly optimize the cost. A possible way to achieve this would be control variates that
are tailored to the gradient estimator of the smoothed cost (Papini et al., 2018; Ranganath
et al., 2014; Glasserman, 2013). Another important future work is to develop a deeper
understanding of the full parametrization assumption and how its violation impacts the
performance of the algorithm. Minimizing this impact might be an important lever to
boost the performance of policy optimization for path integral control problems.
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Appendix A. Derivation of the Policy Gradient

Here we derive equation (4). We write C(puθ) = 〈Sγuθ(τ)〉puθ , with Sγuθ(τ) := V (τ) +

γ log
puθ (τ)

p0(τ) and take the derivative of equation (2):

∇θ
〈
Sγuθ(τ)

〉
puθ

= ∇θ
〈
V (τ) + γ log

puθ(τ)

p0(τ)

〉
puθ

Now we introduce the importance sampler puθ′ and correct for it.

∇θ
〈
Sγuθ(τ)

〉
puθ

= ∇θ
〈
puθ(τ)

puθ′ (τ)

(
V (τ) + γ log

puθ(τ)

p0(τ)

)〉
puθ′

This is true for all θ′ as long as puθ(τ) and puθ′ (τ) are absolutely continuous to each other.
Taking the derivative we get:

∇θ
〈
Sγuθ(τ)

〉
puθ

=

〈
∇θpuθ(τ)

puθ′ (τ)

(
V (τ) + γ log

puθ(τ)

p0(τ)

)〉
puθ′

+

〈
puθ(τ)

puθ′ (τ)

(
γ

1

puθ(τ)
∇θpuθ(τ)

)〉
puθ′

=

〈
(∇θ log puθ(τ))

(
V (τ) + γ log

puθ(τ)

p0(τ)

)〉
puθ

+ γ∇θ
〈

1

puθ′ (τ)
puθ(τ)

〉
puθ′

=
〈
Sγuθ(τ)∇θ log puθ(τ)

〉
puθ

+ γ∇θ 〈1〉puθ
=
〈
Sγuθ(τ)∇θ log puθ(τ)

〉
puθ

.

Appendix B. Replacing Minimization Over u by Minimization Over p′

Here we show that for

Jα(θ) = inf
u′
αKL(pu′ ||puθ) + γKL(pu′ ||p0) + 〈V (τ)〉p′ (22)

we can replace the minimization over u by a minimization over p′ to obtain equation (11).
For this, we need to show that the minimizer p∗α,θ of equation (11) is induced by u∗α,θ, the
minimizer of equation (22):

p∗α,θ ≡ pu∗α,θ .

The solution to (11) is given by (see Appendix C)

p∗α,θ =
1

Z
puθ(τ) exp

(
− 1

γ + α
Sγpuθ

(τ)

)
=

1

Z
puθ(τ)

(
p0(τ)

puθ(τ)

) γ
γ+α

exp

(
− 1

γ + α
V (τ)

)
.

We rewrite

p0(τ)

(
puθ(τ)

p0(τ)

)1− γ
γ+α

= p0(τ) exp

((
1− γ

γ + α

)∫ T

0

(
1

2
uθ(xt, t)

Tuθ(xt, t) + uθ(xt, t)
T ξt

)
dt

)
,
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where we used the Girsanov theorem (Bierkens and Kappen, 2014; Thijssen and Kappen,

2015) (and set ν = 1 for simpler notation). With ũθ(xt, t) :=
(

1− γ
γ+α

)
uθ(xt, t) this gives

p0(τ)

(
puθ(τ)

p0(τ)

)1− γ
γ+α

= p0(τ) exp

(∫ T

0

(
1

2
ũθ(xt, t)

T ũθ(xt, t) + ũθ(xt, t)
T ξt

)
dt

)
·

· exp

(∫ T

0

(
1

2

γ

α
ũθ(xt, t)

T ũθ(xt, t)

)
dt

)
= pũθ(τ) exp

(∫ T

0

(
1

2

γ

α
ũθ(xt, t)

T ũθ(xt, t)

)
dt

)
.

So we get

p∗α,θ =
1

Z
pũθ(τ) exp

(∫ T

0

(
1

2

γ

α
ũθ(xt, t)

T ũθ(xt, t)

)
dt

)
exp

(
− 1

γ + α
V (τ)

)
.

This has the form of an optimally controlled distribution with dynamics

ẋt = f(xt, t) + g(xt, t) (ũθ(xt, t) + û(xt, t) + ξt) (23)

and cost〈∫ T

0

1

γ + α
V (xt, t)−

1

2

γ

α
ũθ(xt, t)

T ũθ(xt, t)dt+

∫ T

0

(
1

2
û(xt, t)

T û(xt, t) + û(xt, t)
T ξt

)
dt

〉
pû

.

This is a path integral control problem with state cost
∫ T

0
1

γ+αV (xt, t)−1
2
γ
α ũθ(xt, t)

T ũθ(xt, t)dt

which is well defined with ũθ(xt, t) =
(

1− γ
γ+α

)
uθ(xt, t).

Let û∗ be the optimal control of this path integral control problem. Then p∗α,θ is induced
by equation (23) with û = û∗. This is equivalent to say that p∗α,θ is induced by equation (1).
As p∗α,θ is the density that minimizes equation (11), ũθ + û∗ is minimizing equation (22).

Appendix C. Minimizer of the Smoothed Cost

Here we want to proof equation (12):

p∗α,θ(τ) := arg min
p′

αKL(p′||puθ) +
〈
Sγpuθ

(τ)
〉
p′

= arg min
p′

〈
α log

p′(τ)

puθ(τ)
+ V (τ) + γ log

p′(τ)

p0(τ)

〉
p′
.

For this we take the variational derivative and set it to zero:

0 =
δ

δp′(τ)

〈
α log

p′(τ)

puθ(τ)
+ V (τ) + γ log

p′(τ)

p0(τ)
+ κ

〉
p′

∣∣∣∣∣
p′=p∗α,θ

,

where we added a Lagrange multiplier κ to ensure normalization. We get

0 = α log
p′(τ)

puθ(τ)
+ V (τ) + γ log

p′(τ)

p0(τ)
+ κ

∣∣∣∣
p′=p∗α,θ

,
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from which follows

p∗α,θ(τ) = exp

(
κ

α+ γ

)
puθ(τ)

α
α+γ p0(τ)

γ
α+γ exp

(
− 1

γ + α
V (τ)

)
= exp

(
κ

α+ γ

)
puθ(τ) exp

(
− 1

γ + α
V (τ)− γ

α+ γ
log

puθ(τ)

p0(τ)

)
= exp

(
κ

α+ γ

)
puθ(τ) exp

(
− 1

γ + α
Sγpuθ

(τ)

)
,

where κ is chosen such that the distribution is normalized.

Appendix D. Derivation of the Gradient of the Smoothed Cost Function

Here we derive equation (14) by taking the derivative of equation (13):

∇θJα(θ) = − (γ + α)∇θ log

〈
exp

(
− 1

γ + α

(
V (τ) + γ log

puθ(τ)

p0(τ)

))〉
puθ

= −γ + α

Zαpuθ
∇θ
〈

exp

(
− 1

γ + α

(
V (τ) + γ log

puθ(τ)

p0(τ)

))〉
puθ

.

Now we introduce the importance sampler puθ′ and correct for it.

∇θJα(θ) = −γ + α

Zαpuθ
∇θ
〈
puθ(τ)

puθ′ (τ)
exp

(
− 1

γ + α

(
V (τ) + γ log

puθ(τ)

p0(τ)

))〉
puθ′

= −γ + α

Zαpuθ
∇θ

〈
p0(τ)

γ
γ+α

puθ′ (τ)
(puθ(τ))

α
γ+α exp

(
− 1

γ + α
V (τ)

)〉
puθ′

= − α

Zαpuθ

〈
1

puθ′ (τ)

(
puθ(τ)

p0(τ)

)− γ
γ+α

exp

(
− 1

γ + α
V (τ)

)
∇θpuθ

〉
puθ′

= − α

Zαpuθ

〈
exp

(
− 1

γ + α
Sγpuθ

(τ)

)
∇θ log puθ(τ)

〉
puθ

.

Appendix E. Global Minimum is Preserved Under Full Parametrization

Here we show that smoothing leaves the global optimum of the cost C(puθ) invariant.

Proof As KL(puθ′ ||puθ) ≥ 0 we have that

Jα(θ) = inf
θ′
C(puθ′ ) + αKL(puθ′ ||puθ) ≥ inf

θ′
C(puθ′ ) = C(puθ∗ ).

To show that the global minimum θ∗ of C is also the global minimum of Jα, it is thus
sufficient to show that

Jα(θ∗) ≤ C(puθ∗ ).
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We have

Jα(θ∗) = inf
θ′
C(puθ′ ) + αKL(puθ′ ||puθ∗ ).

Using that the minimum of a sum of terms is never larger than the sum of the minimum of
terms, we get

Jα(θ∗) ≤
(

inf
θ′
C(puθ′ )

)
+

(
inf
θ′
αKL(puθ′ ||puθ∗ )

)
= C(puθ∗ ) + αKL(puθ∗ ||puθ∗ )
= C(puθ∗ ).

We also expect local minima to be also preserved for large-enough smoothing parameter α.
This would correspond to small time smoothing by the associated Hamilton-Jacobi partial
differential equation (Chaudhari et al., 2018).

Appendix F. Smoothing Theorem

Here we proof Theorem 1. We split the proof into three subsections: in the first subsection,
we state and proof a lemma that we need to proof statement 1. In the second subsection,
we proof statement 1 and in the third subsection, we proof statement 2.

F.1 Lemma

Lemma 2 With θ∗α,θ defined as in equation (9) and Eα(θ) = KL(θ∗α,θ||θ) we can rewrite
Jα(θ):

Jα(θ) = C
(
ΘC
E ′(θ)

)∣∣
E ′=Eα(θ)

+ αEα(θ). (24)

Proof With the definition of θ∗α,θ as the minimizer of C(θ′) +αKL(θ′||θ) (see (9)) we have

Jα(θ) = C
(
θ∗α,θ

)
+ αKL(θ∗α,θ||θ)

= C
(
θ∗α,θ

)
+ αEα(θ).

What is left to show is that

θ∗α,θ ≡ ΘC
Eα(θ)(θ).

As ΘC
Eα(θ)(θ) is the minimizer of the cost C within the trust region defined by {θ′ : KL(θ′||θ) ≤ Eα(θ)}

we have to show that

1. θ∗α,θ lies within this trust region,

2. C(θ∗α,θ) is a minimizer of the cost C within this trust region.
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The first point is trivially true as KL(θ∗α,θ||θ) = Eα(θ) by definition. Hence θ∗α,θ lies at the
boundary of this trust region and therefore in it, as the boundary belongs to the trust region.
The second point we proof by contradiction: Given θ∗α,θ is not minimizing the cost within the

trust region, then there exists a θ̂ with C(θ̂) < C(θ∗α,θ) and KL(θ̂||θ) ≤ Eα(θ) = KL(θ∗α,θ||θ).
Therefore it must hold that

C(θ̂) + αKL(θ̂||θ) < C(θ∗α,θ) + αKL(θ∗α,θ, θ)

which is a contradiction, as θ∗α,θ is the minimizer of C(θ′) + αKL(θ′||θ).

F.2 Proof of Statement 1

Here we show that for every α and θ there exists an E ′ = E∗α(θ) such that

C
(
ΘC
E ′
(
ΘJα

E (θ)
))∣∣
E ′=E∗α(θ)

= C∗E,E ′
∣∣
E ′=E∗α(θ)

. (25)

Proof As Jα(θ) is the infimum of C(θ′) + αKL(θ′||θ), we have for any E ′ > 0

Jα(θ) ≤ C
(
ΘC
E ′(θ)

)
+ αKL

(
ΘC
E ′(θ)||θ

)
.

Further, as ΘC
E ′(θ) lies in the trust region {θ′ : KL(θ′||θ) ≤ E ′} we have thatKL

(
ΘC
E ′(θ)||θ

)
≤ E ′,

so we can write

C
(
ΘC
E ′(θ)

)
+ αKL

(
ΘC
E ′(θ)||θ

)
≤ C

(
ΘC
E ′(θ)

)
+ αE ′

and thus

Jα(θ) ≤ C
(
ΘC
E ′(θ)

)
+ αE ′.

Next we minimize both sides of this inequality within the trust region {θ′ : KL(θ′||θ) ≤ E}.
We use that

Jα
(
ΘJα

E (θ)
)

= min
θ′

s.t. KL(θ′||θ)≤E

Jα(θ′)

and get

Jα
(
ΘJα

E (θ)
)
≤ min

θ′
s.t. KL(θ′||θ)≤E

(
C
(
ΘC
E ′(θ

′)
)

+ αE ′
)
. (26)

Now we use Lemma 2 and rewrite the left hand side of this inequality.

Jα
(
ΘJα

E (θ)
)

= C
(
ΘC
E ′
(
ΘJα

E (θ)
))∣∣
E ′=E∗α(θ)

+ αE∗α(θ)

with E∗α(θ) := Eα(ΘJα

E (θ)). Plugging this back to (26) we get

C
(
ΘC
E ′
(
ΘJα

E (θ)
))∣∣
E ′=E∗α(θ)

+ αE∗α(θ) ≤ min
θ′

s.t. KL(θ′||θ)≤E

(
C
(
ΘC
E ′(θ

′)
)

+ αE ′
)
.
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As this inequality holds for any E ′ > 0 we can plug in E∗α(θ) on the right hand side of this
inequality and obtain

C
(
ΘC
E ′
(
ΘJα

E (θ)
))∣∣
E ′=E∗α(θ)

+ αE∗α(θ) ≤ min
θ′

s.t. KL(θ′||θ)≤E

C
(
ΘC
E ′(θ

′)
)∣∣
E ′=E∗α(θ)

+ αE∗α(θ).

We subtract αE∗α(θ) on both sides

C
(
ΘC
E ′
(
ΘJα

E (θ)
))∣∣
E ′=E∗α(θ)

≤ min
θ′

s.t. KL(θ′||θ)≤E

C
(
ΘC
E ′(θ

′)
)∣∣
E ′=E∗α(θ)

.

Using equation (16) gives

C
(
ΘC
E ′
(
ΘJα

E (θ)
))∣∣
E ′=E∗α(θ)

≤ C∗E,E ′(θ)
∣∣
E ′=E∗α(θ)

,

which concludes the proof.

F.3 Proof of Statement 2

Here we show that E ′ = E∗α(θ) is a monotonically decreasing function of α. E∗α(θ) is given
by

E∗α(θ) = Eα
(
ΘJα

E (θ)
)

= KL(θ∗α,θ′ ||θ′)
∣∣
θ′=RJ

α
E (θ)

.

We have(
αKL(θ∗α,θ′ ||θ′) + C

(
θ∗α,θ′

))∣∣
θ′=RJ

α
E (θ)

=

(
inf
θ′′
αKL(θ′′||θ′) + C(θ′′)

)∣∣∣∣
θ′=RJ

α
E (θ)

= min
θ′

s.t. KL(θ′||θ)≤E

inf
θ′′
αKL(θ′′||θ′) + C(θ′′).

For convenience we introduce a shorthand notation for the minimizers

θα := ΘJα

E (θ)

θ′α := θ∗α,θ′ |θ′=ΘJ
α
E (θ).

We compare α1 ≥ 0 with E∗α1
(θ) := KL(θ′α1

||θα1) and α2 ≥ 0 with E∗α2
(θ) := KL(θ′α2

||θα2)
and assume that E∗α1

(θ) < E∗α2
(θ). We show that from this it follows that α1 > α2.

Proof As θ′α1
,θα1 minimize α1KL(θ′||θ) + C(θ′) we have

α1KL(θ′α1
||θα1) + C(θ′α1

) ≤ α1KL(θ′α2
||θα2) + C(θ′α2

)

⇒ α1Eα1(θ) + C(θ′α1
) ≤ α1Eα2(θ) + C(θ′α2

)

and analogous for α2

α2KL(θ′α1
||θα1) + C(θ′α1

) ≥ α2KL(θ′α2
||θα2) + C(θ′α2

)

⇒ α2Eα1(θ) + C(θ′α1
) ≥ α2Eα2(θ) + C(θ′α2

)
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With Eα1(θ) < Eα2(θ) we get

α1 ≥
C(θ′α1

)− C(θ′α2
)

Eα2(θ)− Eα1(θ)
≥ α2.

We showed that from Eα1(θ) < Eα2(θ) it follows that α1 ≥ α2 which proofs that Eα(θ) is
monotonously decreasing in α.

Appendix G. Smoothed Updates for Small Update Steps E

We want to compute equation (17) for small E which corresponds to large β. Assuming a
smooth dependence of puθ on θ, bounding KL(θ||θn) to a very small value allows us to do
a Taylor expansion which we truncate at second order:

arg min
θ′

Jα(θ′) + βKL(θ′||θn) ≈

≈ arg min
θ′

(θ′ − θn)T∇θ′Jα(θ′) +
1

2
(θ′ − θn)T (H + βF ) (θ′ − θn)

= θn − β−1F−1 ∇θ′Jα(θ′)
∣∣
θ′=θn

+O(β−2)

with

H = ∇θ′∇Tθ′Jα(θ′)
∣∣
θ′=θn

F = ∇θ′∇Tθ′KL(θ′||θn)
∣∣
θ′=θn

.

See also Martens (2014). We used that E � 1⇔ β � 1. With this the Fisher information
F dominates over the Hessian H and thus the Hessian does not appear anymore in the
update equation. This defines a natural gradient update with stepsize β−1.
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Appendix H. ∆s Monotonic in α

Now we show that ∆ = KL(p∗α,θ||puθ) is a monotonic function of α.

∂

∂α
KL(p∗α,θ||puθ) =

∂

∂α

〈
ln
p∗α,θ
puθ

〉
p∗α,θ

=
∂

∂α

〈
p∗α,θ
puθ

ln
p∗α,θ
puθ

〉
puθ

=

〈(
∂

∂α

p∗α,θ
puθ

)
ln
p∗α,θ
puθ

〉
puθ

+

〈
p∗α,θ
puθ

∂

∂α
ln
p∗α,θ
puθ

〉
puθ

=

〈(
∂

∂α

p∗α,θ
puθ

)
ln
p∗α,θ
puθ

〉
puθ

+

〈
1

puθ

∂

∂α
p∗α,θ

〉
puθ

=

〈(
∂

∂α

p∗α,θ
puθ

)
ln
p∗α,θ
puθ

〉
puθ

+
∂

∂α
〈1〉p∗α,θ

=

〈(
∂

∂α

p∗α,θ
puθ

)
ln
p∗α,θ
puθ

〉
puθ

.

Now let us look at

∂

∂α

p∗α,θ
puθ

=
∂

∂α

(
1

Zαpuθ
exp

(
− 1

γ + α
Sγpuθ

(τ)

))

Zαpuθ
=

〈
exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
puθ

.

we get

∂

∂α

p∗α,θ
puθ

=
1

(γ + α)2S
γ
puθ

(τ)
p∗α,θ
puθ
−
p∗α,θ
puθ

1

Zαpuθ

∂

∂α
Zαpuθ

∂

∂α
Zαpuθ

=

〈
1

(γ + α)2S
γ
puθ

exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
puθ

.

and thus

∂

∂α

p∗α,θ
puθ

=
1

(γ + α)2S
γ
puθ

(τ)
p∗α,θ
puθ
−
p∗α,θ
puθ

1

(γ + α)2

〈
Sγpuθ

〉
p∗α,θ

=
1

(γ + α)2

p∗α,θ
puθ

(
Sγpuθ

(τ)−
〈
Sγpuθ

〉
p∗α,θ

)
.
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So finally we get

∂

∂α
KL(p∗α,θ||puθ) =

1

(γ + α)2

〈
p∗α,θ
puθ

(
Sγpuθ

(τ)−
〈
Sγpuθ

〉
p∗α,θ

)
ln
p∗α,θ
puθ

〉
puθ

=
1

(γ + α)2

〈
p∗α,θ
puθ

(
Sγpuθ

(τ)−
〈
Sγpuθ

〉
p∗α,θ

)(
− 1

γ + α
Sγpuθ

(τ)− logZαpuθ

)〉
puθ

=
1

(γ + α)2

〈(
Sγpuθ

(τ)−
〈
Sγpuθ

〉
p∗α,θ

)(
− 1

γ + α
Sγpuθ

(τ)− logZαpuθ

)〉
p∗α,θ

= − 1

(γ + α)3

(〈(
Sγpuθ

)2
〉
p∗α,θ

−
〈
Sγpuθ

〉2

p∗α,θ

)

= − 1

(γ + α)3 Var
(
Sγpuθ

)
≤ 0.

Therefore ∆ = KL(p∗α,θ||puθ) is a monotonically decreasing function of α.

Appendix I. Proof for Equivalence of Weight Entropy and KL-Divergence

We want to show that

lim
N→∞

logN −HN (w) = lim
N→∞

logN +
N∑
i=1

wi log(wi)

= KL(p∗α,θ||puθ),

where the samples i are drawn from puθ and the wi are given by

wi =
1∑N

i exp
(
− 1
γ+αSpuθ (τ i)

) exp

(
− 1

γ + α
Spuθ (τ i)

)
.
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We get

lim
N→∞

logN +
N∑
i=1

wi log(wi) =

= lim
N→∞

logN +
N∑
i=1

1∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
·

· log

 1∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
= lim

N→∞
logN +

1

N

N∑
i=1

1

1
N

∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
·

· log

 1
N

1
N

∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
= lim

N→∞

1

N

N∑
i=1

1

1
N

∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
·

· log

 1

1
N

∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)

Now we replace in the limit N →∞, 1
N

∑N
i → 〈〉puθ :

=

〈
1〈

exp
(
− 1
γ+αS

γ
puθ

(τ)
)〉

puθ

exp

(
− 1

γ + α
Sγpuθ

(τ)

)
·

· log

 1〈
exp

(
− 1
γ+αS

γ
puθ

(τ)
)〉

puθ

exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
puθ
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Using equation (12) this gives

=

〈
log

 1〈
exp

(
− 1
γ+αS

γ
puθ

(τ)
)〉

puθ

exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
p∗α,θ

=

〈
log

 1〈
exp

(
− 1
γ+αS

γ
puθ

(τ)
)〉

puθ

exp

(
− 1

γ + α
Sγpuθ

(τ)

)
puθ(τ)

puθ(τ)

〉
p∗α,θ

=

〈
log

p∗α,θ(τ)

puθ(τ)

〉
p∗α,θ

= KL(p∗α,θ||puθ).

Appendix J. Inversion of the Fisher Matrix

We compute an approximation to the natural gradient gf = F−1g by approximately solv-
ing the linear equation Fgf = g using truncated conjugate gradient. With the standard
gradient g and the Fisher matrix F = ∇θ∇TθKL(puθ ||puθn ) (see Appendix G).

We use an efficient way to compute the Fisher vector product Fy (Schulman et al.,
2015) using an automated differentiation package: first for each rollout i and timepoint t
the symbolic expression for the gradient on the KL multiplied by a vector y is computed:

ai,t(θn+1) =

(
∇Tθn+1

log
πθn(ait|t, xit)
πθn+1(ait|t, xit)

)
y.

Then we take the second derivative on this scalar quantity, sum over all times and
average over the samples. This gives the Fisher vector

Fy =
1

N

N∑
i=1

∑
0<t<T

∇θn+1ai,t(θn+1).

Appendix K. Full Parametrization in LQ Problems

Here we discuss why for a linear quadratic problem a time varying linear controller is a full
parametrization. We want to show that for every

p∗α,θ0 =
1

Z
pu0(τ) exp

(
− 1

γ + α
Sγpuθ0

(τ)

)
(27)

there is a time varying linear controller uθ∗α,θ0
such that puθ∗

α,θ0

= p∗α,θ0 . We assume that uθ0

is a time varying linear controller. In Appendix B we have shown that u∗α,θ0 is the solution
to the path integral control problem with dynamics

ẋt = f(xt, t) + g(xt, t) (ũ(xt, t) + û(xt, t) + ξt)
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and cost〈∫ T

0

1

γ
V (xt, t)−

1

2

γ

α
ũ(xt, t)

T ũ(xt, t)dt+

∫ T

0

(
1

2
û(xt, t)

T û(xt, t) + û(xt, t)
T ξt

)
dt

〉
pû

,

with ũ =
(

1− γ
γ+α

)
uθ0(xt, t).

It is now easy to see that if uθ0 is a time varying linear controller, thus a linear function
of the state, the cost is a quadratic function of the state x (note that V (xt, t) is quadratic
in the LQ case). Thus for all values of α, u∗α,θ0 is the solution to a linear quadratic control
problem and thus a time varying linear controller (see, e.g., Kwakernaak and Sivan (1972)).
Therefore a time varying linear controller is a full parametrization.

Appendix L. Details for the Numerical Experiments

L.1 Linear-Quadratic Control Task

Dynamics: the dynamics are ODEs integrated by an Euler scheme (see Section 6.1). The
differential equation is initialized at x = 0 and dt = 0.1.

Control problem: Regularization γ = 1. Time-Horizon T = 10s. State-Cost function:
see Section 6.1. (x0, t0) = (−10, 1), (x1, t1) = (10, 2), (x2, t2) = (−10, 3), (x3, t3) = (−20, 4),
(x4, t4) = (−100, 5), (x5, t5) = (−50, 6), (x6, t6) = (10, 7), (x7, t7) = (20, 8), (x8, t8) =
(30, 9). Variance of uncontrolled dynamics ν = 1.

Algorithm: Batchsize: N = 100, trust region E = 0.1, smoothing strength ∆ = 0.2 log 100,
conjugate gradient iterations: 2 (for each time step separately). The parametrized controller
was initialized at θ0 = 0.

L.2 Pendulum Task

Dynamics: the differential equation for the pendulum is

ẍ+ cω0ẋ+ ω2
0 sin(x) = λ (u+ ξ) ,

with cω0 = 0.1 [s−1], ω2
0 = 10 [s−2], and λ = 0.2.

We implemented this differential equation as a first order differential equation and in-
tegrated it with an Euler scheme (dt = 0.01). The pendulum is initially resting at the
bottom:

ẋ = 0, x = 0.

As a parametrized controller we use a time varying linear feedback controller:

uθ(x, ẋ, t) = θ3,t cos(x) + θ2,t sin(x) + θ1,tẋ+ θ0,t.

The parametrized controller was initialized at θ = 0.

Control-problem: the regularization is set to γ = 1 and the time-horizon T = 3.0s. The
state-cost function has end-cost only:

V (x, ẋ, t) = δ(t− T )
(
−500Y + 10ẋ2

)
,

with Y = − cos(x) (height of tip). The variance of uncontrolled dynamics is ν = 1.
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Algorithm: batchsize: N = 500, trust region E = 0.1, smoothing strength ∆ = 0.5. The
Fisher-matrix was inverted for each time step separately using the scipy pseudo-inverse with
rcond=10−4.

L.3 Acrobot Task

Dynamics: we use the definition of the acrobot as in Spong (1995). The differential
equations for the acrobot are

d11(x)ẍ1 + d12(x)ẍ2 + h1(x, ẋ) + φ1(x) = 0

d21(x)ẍ1 + d22ẍ2 + h2(x, ẋ) + φ2(x) = λ · (u+ ξ)

with

d11 = m1l
2
c1 +m2

(
l21 + l2c2 + 2l1lc2 cos(x2)

)
+ I1 + I2

d12 = m2

(
l2c2 + l1lc2 cos(x2)

)
+ I2

d21 = d12

d22 = m2l
2
c2 + I2

h1 = −m2l1lc2 sin(x2)
(
ẋ2

2 + 2ẋ1ẋ2

)
h2 = m2l1lc2 sin(x2)ẋ2

1

φ2 = m2lc2G cos (x1 + x2)

φ1 = (m1lc1 +m2l1)g cos (x1) + φ2

and parameter values

• G = 9.8

• l1 = 1. [m]

• l2 = 2. [m]

• m1 = 1. [kg] mass of link 1

• m2 = 1. [kg] mass of link 2

• lc1 = 0.5 [m] position of the center of mass of link 1

• lc2 = 1.0 [m] position of the center of mass of link 2

• I1 = 0.083 moments of inertia for both links

• I2 = 0.33 moments of inertia for both links

• λ = 0.2
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We implemented this differential equation as a first order differential equation and inte-
grated it with an Euler scheme (dt = 0.01). The acrobot is initially resting at the bottom:

ẋ1 = 0, ẋ2 = 0, x1 = −1

2
π, x2 = 0.

As a parametrized controller we use a time varying linear feedback controller:

uθ(x, ẋ, t) =θ8,t cos(x1) + θ7,t sin(x2) + θ6,t cos(x2) + θ5,t sin(x2)+

+ θ4,t sin(x1 + x2) + θ3,t cos(x1 + x2) + θ2,tẋ1 + θ1,tẋ2 + θ0,t.

The parametrized controller was initialized at θ = 0.

Control-problem: regularization γ = 1, time-horizon T = 3.0s, and state-cost function
has end-cost only:

V (x, ẋ, t) = δ(t− T )
(
−500Y + 10(ẋ1

2 + ẋ2
2)
)
,

with Y = −l1 cos(x1)−l2 cos(x1+x2) (height of tip). The variance of uncontrolled dynamics
is ν = 1.

Algorithm: batchsize N = 500, trust region E = 0.1, and smoothing strenght ∆ = 0.5.
The Fisher-matrix was inverted for each time step separately using the scipy pseudo-inverse
with rcond=10−4.

L.4 Walker Task

For dynamics and the state cost function we used “BipedalWalker-v2” from the OpenAI
gym (Brockman et al., 2016). The policy was a Gaussian policy, with static variance σ2 = 1.
The state dependent mean of the Gaussian policy was a neural network controller with two
hidden layers with 32 neurons, each. The activation function is a tanh. For the initialization
we used Glorot Uniform (Glorot and Bengio, 2010). The inputs to the neural network was
the observation space provided by OpenAI gym task “BipedalWalker-v2”: State consists of
hull angle speed, angular velocity, horizontal speed, vertical speed, position of joints and
joints angular speed, legs contact with ground, and 10 lidar rangefinder measurements.

Control-problem:

• γ = 0

• Time-Horizon: defined by OpenAI gym task “BipedalWalker-v2”

• State-Cost function defined by OpenAI gym task “BipedalWalker-v2”: Reward is
given for moving forward, total +300 points up to the far end. If the robot falls, it
gets −100. Applying motor torque costs a small amount of points, more optimal agent
will get better score.

Algorithm: batchsizeN = 100, trust region E = 0.01, smoothing strength ∆ = 0.05 log 100,
and 10 conjugate gradient iterations.
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Hyperparameters Value

Number of rollouts (N) 50
Total number of rollouts 50 000
Smoothing strength (∆) {0.1.0.5}
Trust region size (E) {0.025, 0.075}
Mini batch size 256
Units per layer 32
Number of hidden layers 1
Learning rate 7e-4
Activation function tanh
Action distribution Isotropic Gaussian

Table 1: Hyperparameters for the experiments using Pybullet.

L.5 Pybullet Experiments

For these experiments we use the Pybullet open source engine.5 In all tasks, we used
N = 50 rollouts per iteration. The choice of controller as well as the hyperparameters
for the conjugate gradient step were optimized as in Schulman et al. (2015). For PG-TR,
we also used the same values of the trust region size ε = 0.01 and hyperparameters for
the conjugate gradient optimizer. For ASPIC, we considered two values of the smoothing
strength ∆ = {0.1.0.5} and two trust region sizes E = {0.025, 0.075}.6
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