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Abstract
We propose graph-dependent implicit regularisation strategies for synchronised distributed stochas-
tic subgradient descent (Distributed SGD) for convex problems in multi-agent learning. Under
the standard assumptions of convexity, Lipschitz continuity, and smoothness, we establish statisti-
cal learning rates that retain, up to logarithmic terms, single-machine serial statistical guarantees
through implicit regularisation (step size tuning and early stopping) with appropriate dependence
on the graph topology. Our approach avoids the need for explicit regularisation in decentralised
learning problems, such as adding constraints to the empirical risk minimisation rule. Particularly
for distributed methods, the use of implicit regularisation allows the algorithm to remain simple,
without projections or dual methods. To prove our results, we establish graph-independent gen-
eralisation bounds for Distributed SGD that match the single-machine serial SGD setting (using
algorithmic stability), and we establish graph-dependent optimisation bounds that are of indepen-
dent interest. We present numerical experiments to show that the qualitative nature of the upper
bounds we derive can be representative of real behaviours.
Keywords: Distributed machine learning, implicit regularisation, generalisation bounds, algorith-
mic stability, multi-agent optimisation.

1. Introduction

In machine learning, a canonical setting involves assuming that training data is made of independent
samples from a certain unknown distribution, and the goal is to construct a model that can perform
well on new unseen data from the same distribution (Vapnik, 1995). Given a certain loss function
that measures the performance of a model against an individual data point, the classical framework
of regularised empirical risk minimisation involves looking for the model that minimises the em-
pirical risk, i.e., the average loss over the training set, under some notions of regularisation, and
investigating the performance of this model on the expected risk or Test Risk, i.e., on the expected
value of the loss function taken with respect to a new data point.

In the distributed setting, data is stored and processed in different locations by different agents.
Each agent is represented by a node in a graph, and synchronised communication is allowed between
neighbouring agents in this graph. In the decentralised setting typical of peer-to-peer networks,
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there is no central authority that can aggregate information from all the nodes and coordinate the
distribution of computations. In sensor networks, for instance, data is collected on different sensors
and each sensor communicates with nearby sensors by sharing model parameters. In the setting
where the distributed data is assumed to be generated from the same unknown distribution, the goal
is to design iterative algorithms so that agents can leverage local exchange of information to learn
models that have better prediction capabilities as compared to the models they would obtain by only
using the data they own.

In recent years, primarily due to the explosion in the size of modern data sets, the decentralised
nature in which modern data is collected, and the rise of distributed computing platforms, the setting
of distributed machine learning has received increased attention. From an optimisation point of
view, problems in decentralised multi-agent learning are typically treated as a particular instance
of consensus optimisation, and a variety of techniques have been developed to address this general
framework, starting from the early work of Tsitsiklis (1984); Tsitsiklis et al. (1986) to more recent
work that relates to the setting that we consider, which includes Johansson et al. (2007); Nedic and
Ozdaglar (2009); Nedić et al. (2009); Johansson et al. (2009); Ram et al. (2010); Lobel and Ozdaglar
(2011); Matei and Baras (2011); Boyd et al. (2011); Duchi et al. (2012); Shi et al. (2015); Mokhtari
and Ribeiro (2016). From a statistical point of view, however, as emphasised in Shamir and Srebro
(2014), distributed learning problems have more structure than general consensus problems, due to
the possible statistical similarities in the data owned by different agents, for instance. Aside from
the client-server (star network) setting where a central aggregator can coordinate the exchange of
information with every other node so that divide and conquer protocols are admissible (Lin and
Cevher, 2018), the literature on statistical guarantees for distributed methods seems to have focused
exclusively on the investigation of models with explicit regularisation, i.e., when constraints and/or
penalty terms are added to the minimisation of the empirical loss function (Agarwal and Duchi,
2011; Zhang et al., 2012; Shamir et al., 2014; Zhang and Lin, 2015; Bijral et al., 2017). The
presence of explicit regularisation typically increases the complexity of both the algorithms and the
resulting theoretical analysis, particularly for the distributed setting (Lian et al., 2017). For example,
constraints can require the need for projection steps which are potentially costly for low-powered
sensors, and deriving error bounds that depend on the graph topology for distributed algorithms
in the presence of constraints is known to be challenging (Duchi et al., 2012). We are not aware
of any result that investigates the performance of distributed and decentralised algorithms (i.e., not
divide and conquer methods) on the Test Risk in the absence of explicit regularisation. This is in
sharp contrast with the single-machine setting, where recent progress has been made giving optimal
statistical learning guarantees for algorithms based on unregularised empirical risk minimisation
via notions of implicit regularisation, i.e., proper tuning of algorithmic parameters (Ying and Pontil,
2008; Tarres and Yao, 2014; Dieuleveut and Bach, 2016; Lin et al., 2016a; Lin and Rosasco, 2017).

1.1. Contributions

This paper investigates the learning capabilities of a simple synchronised distributed first-order
method for multi-agent learning using notions of implicit regularisation that depend on the topology
of the underlying communication graph. We consider the unconstrained and unpenalised empirical
risk minimisation problem in the setting where n agents have access to m independent data points
coming from the same unknown distribution, and where agents can only exchange information with
their neighbours. We consider a synchronised distributed version of stochastic subgradient descent
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(Distributed SGD), which is a stochastic variant of one of the most widely-studied first-order method
in multi-agent optimisation (Nedic and Ozdaglar, 2009). In the implementation that we look at, at
every iteration each agent first performs a standard SGD step, where only one data point is uniformly
sampled with replacement among those individually-owned to compute the local subgradient, and
then performs a classical synchronised consensus step, where a local exchange of information is im-
plemented via an average of the updated iterates across neighbouring agents. We treat Distributed
SGD as a statistical device, and look at its performance on unseen data by bounding the Test Error,
i.e., the expected value of the excess risk defined as the difference between the Test Risk evaluated
at the output of the algorithm and the minimal Test Risk. Under different assumptions on the con-
vex loss function (we consider the standard assumptions of Lipschitz and smoothness) we establish
upper bounds for the Test Error of Distributed SGD that exhibit explicit dependence on both the
algorithmic tuning parameters (the learning rate and the time horizon) and the graph topology (the
spectral gap of the communication matrix). Minimising these upper bounds yields implicit regu-
larisation strategies, allowing to recover the single-machine serial statistical rates by proper tuning
of the learning rates and of the time horizon (a.k.a. early stopping) as a function of the network
topology. In the case of convex, Lipschitz, and smooth losses, we recover, up to logarithmic terms,
the optimal rate of O(1/

√
nm) for single-pass constrained single machine serial SGD (Lan, 2012;

Xiao, 2010). In the case of convex and Lipschitz losses, we recover, up to logarithmic terms, the
best-known rate of O(1/(nm)1/3) for single-machine serial SGD with implicit regularisation Lin
et al. (2016a,b).1 We present numerical experiments to show that the qualitative nature of the upper
bounds we derive can be representative of real behaviours.

To establish learning rates for Distributed SGD, we follow the general framework pioneered
in the single-machine setting by Bousquet and Bottou (2008) and, in particular, by Hardt et al.
(2016). We consider, in the distributed setting, a decomposition of the Test Error which involves
the Generalisation Error (i.e., the expected value of the difference between the loss incurred on
the training data versus the loss incurred on a new data point) and the Optimisation Error (i.e.,
the expected value of the error on the training set). To bound the Generalisation Error, we use
algorithmic stability or sensitivity as initially put forward by Bousquet and Elisseeff (2002) and
later applied for single-machine serial stochastic subgradient descent in Hardt et al. (2016). The
notion of stability that we use measures how much the output of an algorithm differs when a single
observation is resampled. In our case, as the observations are spread throughout the communication
graph, we need to consider stability not only with respect to time (i.e., the iteration time of the
algorithm), but also with respect to space (i.e., the communication graph). This technology allows
us to establish generalisation bounds for Distributed SGD that do not depend on the topology of
the communication graph, and we recover the same type of results that hold in the single machine
serial setting. This is in contrast to optimisation bounds for distributed subgradient methods, which
typically depend on the graph topology, as initially seen in the work of Johansson et al. (2009, 2007);
Duchi et al. (2012). To bound the Optimisation Error, we follow the approach pioneered in Nedic
and Ozdaglar (2009) and compare the behaviour of Distributed SGD with its network average, and
we take inspiration from the analysis of the network term in the work of Duchi et al. (2012) (in the
case of dual methods for constrained problems with Lipschitz losses) to derive upper bounds that
depend on the graph topology via the inverse of the spectral gap of the communication matrix. In
our setting, as we investigate implicit regularisation strategies, we deal with unconstrained problems

1. Lin et al. (2016b) considers implicit regularisation for gradient descent, although they remark that the analysis can
be modified to account for stochastic gradients.
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and the evolution of the network-averaged process admits a simple form that facilitates the analysis.
This approach avoids the difficulties with the nonlinearity of projection that have been previously
challenging in distributed learning models, and that motivated the investigation of dual methods such
as in Duchi et al. (2012). The bounds that we establish for the Optimisation Error of Distributed
SGD seem novel and are of independent interest.

Finally, our results show that one can also think of the graph itself as a regularisation parameter.
To give an example, agents can achieve the same statistical guarantees by trading off communication
against iterations: they can choose to communicate by using a low-energy sparse communication
protocol per iteration (for instance, communicating using a grid-like protocol even if the underlying
topology is that of a complete graph and all agents are connected with each others), but would
need to communicate for a longer time horizon in order to be guaranteed to reach the same level of
statistical accuracy.

The main contributions of this work are here summarised.

1. Graph-dependent implicit regularisation. We propose graph-dependent implicit regulari-
sation strategies for problems in distributed machine learning, specifically, step size tuning
and early stopping as a function of the spectral gap of the communication matrix. Our results
also show that the graph itself can be interpreted as a regularisation parameter.

2. Optimal statistical rates using a simple algorithm. Using implicit regularisation, we show
how a simple, primal, unconstrained, first-order method (Distributed SGD) recovers, up to
logarithmic terms, centralised statistical rates, in particular matching the optimal rates in the
case of smooth loss functions for constrained single-pass serial SGD.

3. To establish statistical rates and control the Test Error of Distributed SGD, we use a distributed
version of the error decomposition proposed in Hardt et al. (2016). We establish error bounds
on the Generalisation Error and Optimisation Error, respectively.

(a) Distributed generalisation bounds. We establish graph-independent Generalisation
Error bounds for Distributed SGD that match those within Hardt et al. (2016) for the
single-machine serial case. In the case of convex losses that are Lipschitz and smooth,
we prove upper bounds that grow linearly with the number of iterations and step size.

(b) Distributed optimisation bounds. We establish graph-dependent Optimisation Error
bounds for Distributed SGD. In the case of convex and Lipschitz loss functions, our
analysis is inspired by Nedic and Ozdaglar (2009); Duchi et al. (2012). When smooth-
ness is considered, our analysis is inspired by Bubeck et al. (2015); Dekel et al. (2012).

The remainder of the work is laid out as follows. Section 2 introduces the framework of multi-
agent learning. Section 3 introduces the Distributed SGD algorithm. Section 4 presents the main
results of this work, Test Error bounds for Distributed SGD with convex, Lipschitz, and either
smooth or non-smooth losses. Section 5 presents the specific Generalisation and Optimisation Error
bounds, as well as the notion of stability that we use. Section 6 gives a simulation study for the
case of smooth losses. Section 7 contains the conclusion. Appendix A provides proofs for all
Generalisation and Test Error bounds. Appendix B gives proofs for Optimisation Error bounds
under a general first-order stochastic oracle model.
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2. Multi-Agent Learning

In this section we introduce the framework of distributed and decentralised machine learning that we
consider. We address the case in which agents or nodes in a network are given their own independent
data sets and they want to cooperate, by iteratively exchanging information with their neighbours,
to develop a good learning model for new unseen data.

Let (V,E) be a simple undirected graph with n nodes, V = {1, . . . , n} ≡ [n] being the vertex
set and E ⊆ V × V being the edge set. Let Z be the space of observations, and to each v ∈ V let
Dv := {Zv,1, . . . , Zv,m} ∈ Zm denote the training set associated to node v, which consists of m
i.i.d. data points sampled from a certain unknown distribution supported on Z . Let D := ∪v∈VDv
denote the collection of all data points, that is, the entire/global training data set. Let d > 0 be a
given positive integer, and define X = Rd. Each agent wants to find a model x? ∈ X that minimises
of the Test Risk r, which is defined as

r(x) := E `(x, Z).

Here, the function ` : X × Z → R is a given loss function, and `(x, Z) represents the loss of the
model x on the random sample Z, which represents a new (unseen, independent) data point from
the same distribution. We assume that the minimum of r can be achieved. As the distribution of
the data is unknown, the expected risk r can not be computed, and a popular approach in machine
learning is to consider the empirical risk as a proxy. In the distributed setting, the global empirical
risk R is defined as

R(x) :=
1

nm

∑
v∈V

m∑
i=1

`(x, Zv,i) =
1

n

∑
v∈V

Rv(x).

Here, we have further defined the local empirical risk Rv(x) := 1
m

∑m
i=1 `(x, Zv,i), for any v ∈

V . Let us denote by X? ∈ argminx∈X R(x) a minimiser of the global empirical risk. In the
decentralised setting that we consider, each agent v ∈ V iteratively exchanges information with
their neighbours for a certain amount of time steps t to construct a model Xt

v ∈ X that can be a
good proxy for the minimiser of the expected risk, i.e., for x? ∈ argminx∈X r(x). A way to assess
the quality of a model Xt

v is to consider the Test Error, which we define as the expected value of the
excess risk r(Xt

v)− r(x?), namely,

E r(Xt
v)− r(x?).

In the next section we introduce the specific distributed algorithm that we consider to generate
the models’ estimates Xt

v’s, and we then present the main results on the bounds for the Test Error.
The general paradigm that we adopt to bound the Test Error is given by a generalisation to the
distributed setting of the error decomposition given in Hardt et al. (2016) for the single-machine
setting. This decomposition allows to bound the Test Error of a model into the sum of two errors:
the Generalisation Error, which controls the difference between the performance of the model on
a new data point and the performance of the model on the training data in D; and the Optimisation
Error, which controls how well the model optimises the empirical risk.

Proposition 1 (Hardt et al. (2016)) For each v ∈ V , t ≥ 1 we have

E r(Xt
v)− r(x?)︸ ︷︷ ︸

Test Error

≤ E[r(Xt
v)−R(Xt

v)]︸ ︷︷ ︸
Generalisation Error

+E[R(Xt
v)−R(X?)]︸ ︷︷ ︸

Optimisation Error

.
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Proof For completeness, the proof from Hardt et al. (2016) is given in Appendix A.1.

By using the error decomposition in Proposition 1, we are able to consider the unregularised
empirical risk minimisation problem introduced above and develop implicit regularisation strategies
for a simple iterative algorithm, which we introduce next.

Remark 2 (Statistical optimisation) From the statistical point of view, the distributed setting where
each agent is given a subset of the data has received a lot of attention in the literature (see intro-
duction), though most of the literature on statistical optimisation has focused on the client-server
(also known as master-slave) architecture typical of data centers, where a central aggregator in the
network (the server) can communicate with every other nodes (the clients) and can thus coordinate
the processing and exchange of information. This amounts to a star network topology that can
be used to model shared-memory protocols. This type of architecture makes divide-and-conquer
strategies possible, and most of the literature on statistical optimisation has focused on investigat-
ing statistical rates on the Test Error for one-shot-averaging techniques. In this work, we focus
on the decentralised setting where all nodes iteratively perform the same type of computations and
communications with respect to the underlying graph structure, without the presence of any special
node. We are not aware of any prior work that directly investigates the statistical performance of
decentralised methods on the Test Error. Most of the literature on decentralised methods seem to
have focused on bounding the Optimisation Error on the training data, as we explain in Remark 3.

Remark 3 (Consensus optimisation) From the optimisation point of view, the literature on multi-
agent learning has largely focused on the investigation of the Optimisation Error via consensus
methods in the presence of explicit regularisation, typically in the form of a convex constraint set
R (see literature review in the introduction). Statistically, this approach is justified, for instance, by
the distributed version of the classical error decomposition given in Bousquet and Bottou (2008):

E r(Xt
v)− r(x?)︸ ︷︷ ︸

Test Error

≤ 2 E sup
x∈R
|r(x)−R(x)|︸ ︷︷ ︸

Uniform Generalisation Error

+ E[R(Xt
v)−R(X?

R)]︸ ︷︷ ︸
Regularised Optimisation Error

+ r(x?R)− r(x?)︸ ︷︷ ︸
Approximation Error

,

with x?R ∈ argminx∈R r(x) and X?
R ∈ argminx∈RR(x). In this setting, consensus optimisation

deals with algorithms that minimise the quantity R(Xt
v)−R(X?

R), where R(x) = 1
n

∑
v∈V Rv(x).

Bounds on the Regularised Optimisation Error can then be combined with bounds on the Uniform
Generalisation Error using notions of complexity for the constraint set R (e.g., VC dimension,
Rademacher complexity, etc.). As highlighted in Shamir and Srebro (2014), and as we mentioned
in the introduction, however, distributed learning problems have more structure than general con-
sensus problems, as the local functions Rv are random and have a specific design. In this work,
we analyse a stochastic algorithm that is tailor-made for distributed learning problems (not for
general consensus problems), and use the error decomposition in Proposition 1 to develop implicit
regularisation strategies for the unregularised empirical risk minimisation problem.

3. Distributed Stochastic Subgradient Descent

The algorithm that we consider to generate the model estimates Xt
v’s assumes that each node v ∈ V

can query subgradients ∂` of the loss function ` with respect to the first parameter, evaluated at
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points in the local data set Dv. We consider the stochastic setting where at each time step agent v
does not evaluate the full subgradient of the local empirical risk Rv, but instead only a subgradient
∂` at a single randomly chosen sample in the locally-owned data set Dv. This is well tailored to
situations where m is large, as this reduces the per-iteration complexity to a constant factor.

The algorithm is defined as follows. Let ∂`(x, Zv,k) represent an element of the subgradient of
`( · , Zv,k) at x, with k ∈ {1, . . . ,m} ≡ [m]. Let P ∈ Rn×n be a doubly stochastic matrix supported
on the graph (V,E), that is, Pij 6= 0 only if {i, j} ∈ E. Distributed stochastic subgradient descent
(Distributed SGD) generates a collections of vectors {Xs

v}v∈V,s≥1 in X as follows. Given initial
vectors {X1

v}v∈V , possibly random, for s ≥ 1,

Xs+1
v =

∑
w∈V

Pvw(Xs
w − η∂`(Xs

w, Zw,Ks+1
w

)), (1)

where for each v ∈ V , {K2
v ,K

3
v , . . .} is a collection of i.i.d. random variables uniform in [m],

and η > 0 is the step size. The above algorithm can be described as performing two steps: a
stochastic gradient update Y s+1

w = Xs
w − η∂`(Xs

w, Zw,Ks+1
w

), and a synchronised consensus step∑
w∈V PvwY

s+1
w . This framework for decentralised optimisation (albeit for a slightly different pro-

tocol, see remark 4) has been largely explored with the early works of Nedic and Ozdaglar (2009);
Ram et al. (2009); Lobel and Ozdaglar (2011); Duchi et al. (2012). The fact that we consider im-
plicit regularisation strategies allows us to focus on the unconstrained risk minimisation problem.
In turn, this allows us to consider an algorithm that is much simpler to analyse than the ones pre-
viously considered in the literature, avoiding projections or dual approaches (see introduction for
the relevant literature review). We also highlight the randomised sampling mechanism in algorithm
(1), which is tailor-made for the machine learning problem at hand and not for generic consensus
problems.

Remark 4 In the stochastic setting, the protocol put forward by Nedic and Ozdaglar (2009) updates
the iterates as Xs+1

v =
∑

w∈V PvwX
s
w − η∂`(Xs

v , Zv,Ks+1
v

), which is slightly different from the
protocol that we consider where also the gradients are averaged across neighbours. The two main
motivations for the original protocol are that it is fully decentralised, in that nodes are only required
to communicate locally, and that it reduces to a consensus protocol to solve network averaging
problems when ` = 0. The protocol (1) that we consider preserves these properties and it makes
the error analyses simpler. The difference between these two protocols in a general setting has been
investigated in the literature, see Sayed (2014) for instance.

In the next section we present results on the performance of Distributed SGD under various assump-
tions on the loss function `.

4. Results

This section presents the main results of this work: Test Error bounds for Distributed SGD with
smooth and non-smooth losses, Section 4.1 and Section 4.2, respectively.

Henceforth, let ‖ · ‖ be the `2 norm. A function f : Rd → R is said to be L-Lipschitz,
with L > 0, if |f(x) − f(y)| ≤ L‖x − y‖ for all x, y ∈ Rd, and β-smooth, with β > 0, if
‖∇f(x) − ∇f(y)‖ ≤ β‖x − y‖ for all x, y ∈ Rd. Let σ2(P ) be the second largest eigenvalue
in absolute value for the matrix P . Unless stated otherwise, we use the big-O notation O( · ) to

7



RICHARDS AND REBESCHINI

denote order of magnitudes up to constants in n and m, and the notation Õ( · ) to denote order of
magnitudes up to both constants and logarithmic terms in n and m. Equality modulo constants and
logarithmic terms is denoted by '.

4.1. Smooth Losses

We analyse the statistical rates for smooth losses. First, we present the Test Error bound in its full
form. Then, we present a corollary that summarises the order of magnitudes of the bounds obtained
under different choices of implicit regularisation, tuning the step size and the stopping time as a
function of the graph topology. Full details are given in Appendix A.

For smooth losses, we present a bound that depends on both the variance of the gradient esti-
mates and the statistical deviations between the local empirical losses {Rv}v∈V . Let σ, κ > 0 be
such that the following holds for any v ∈ V and s ≥ 1,

E
[
‖∇`(Xs

v , Zv,Ks+1
v

)−∇Rv(Xs
v)‖2

]
≤ σ2, (2)

E
[
‖∇`(Xs

v , Zv,Ks+1
v

)− 1

n

∑
w∈V
∇Rw(Xs

w)‖2
]
≤ κ2. (3)

The quantity σ2 in (2) yields a uniform control on the variance of the stochastic gradients, while the
quantity κ2 in (3) yields a uniform control on both the variance of the gradients and the deviation
between local objectives. Note that if `( · , z) is L-Lipschitz for any z ∈ Z , then both σ2 and κ2 are
bounded by 4L2 by the triangle inequality. A detailed discussion of these assumptions is given in
Appendix B in the more general context of stochastic optimisation.

Theorem 5 (Test Error bounds for convex, Lipschitz, and smooth losses) Assume that for any
z ∈ Z the function `( · , z) is convex, L-Lipschitz, β-smooth and satisfies (2) and (3). Let X1

v = 0
for all v ∈ V , ‖X?‖ ≤ G. Then, Distributed SGD with η = 1/(β + 1/ρ), ρ > 0, and ηβ ≤ 2,
yields, for any v ∈ V and t ≥ 1,

E r
(1

t

t∑
s=1

Xs+1
v

)
− r(x?) ≤ L2

nm(β + 1/ρ)
(t+ 1)︸ ︷︷ ︸

Generalisation Error bound

+
ρ

2
σ2 +

(β + 1/ρ)G2

2t
+

3κ

β + 1/ρ

log((t+ 1)
√
n)

1− σ2(P )

(
L+

3

2

β(3 + βρ)κ

β + 1/ρ

log((t+ 1)
√
n)

1− σ2(P )

)
︸ ︷︷ ︸

Optimisation Error bound

.

Proof See Appendix A.5.

We highlight that the Generalisation Error bound is independent of the graph topology, while the
Optimisation Error bound naturally depends upon inverse of the spectral gap of the communication
matrix: 1/(1 − σ2(P )). The following corollary gives the order of magnitudes for the Test Error
bounds obtained with three different choices of step size and corresponding early stopping. The
different choices for the parameter ρ > 0 correspond to the following (modulo the simplifications
used to perform the minimisations, as explained in detail in Section A.6):

• ρ? is the choice for serial SGD, see for instance Dekel et al. (2012); Bubeck et al. (2015);
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• ρ?Opt is the choice that minimises the Optimisation Error bound in Theorem 5;

• ρ?Test is the choice that minimises the Test Error bound in Theorem 5.

Corollary 6 (Implicit regularisation for convex, Lipschitz, and smooth losses) In the setting of
Theorem 5, the following holds for different choices of ρ, function of the time horizon t:

ρ Size Test Error at ρ, t Test Error at ρ, t?(ρ)

ρ? O
(

1√
t

)
Õ
(

1
(1−σ2(P ))

√
t

+
√
t

nm

)
Õ
(

1√
nm(1−σ2(P ))

)
ρ?Opt Õ

(√
1−σ2(P )

t

)
Õ
(

1√
t(1−σ2(P ))

+

√
t(1−σ2(P ))

nm

)
Õ
(

1√
nm

)
ρ?Test Õ

(
1√
t

1√
1

1−σ2(P )
+ t
nm

)
Õ
(

1√
t(1−σ2(P ))

+ 1√
nm

)
Õ
(

1√
nm

)
Table 1: t?(ρ?) ' t?(ρ?Opt) ' t?(ρ?Test) ' nm/(1− σ2(P )).

Proof See Appendix A.6.

We note that the Test Error bound given by the choice ρ?Test is the only one that is guaranteed
to converge as the number of iterations t goes to infinity. With this choice, t?(ρ?Test) ' nm/(1 −
σ2(P )) iterations are guaranteed to reach the rate Õ(1/

√
nm). Minimising (approximately) with

respect to time the Test Error bounds that are obtained with the choices ρ? and ρ?Opt gives early
stopping rules with the same order of iterations, i.e., t?(ρ?) ' t?(ρ?Opt) ' nm/(1 − σ2(P )).
The choices ρ?Test and ρ?Opt with early stopping yield, up to logarithmic terms, the optimal rate
O(1/

√
nm) for single-pass constrained serial SGD (Lan, 2012; Xiao, 2010). On the other hand,

the choice ρ? that aligns with serial SGD, with no dependence on the graph topology, yields a
suboptimal statistical guarantee with a rate Õ(1/

√
nm(1− σ2(P ))).

Remark 7 (Knowledge of Network Spectrum) Algorithmic parameter choices in Table 1 depend
on the network through the spectral gap of the communication matrix 1− σ2(P ). While outside the
scope of this work, this quantity can be estimated in a decentralised manner, see for instance (Yang
et al., 2010; Yang and Tang, 2015) and references therein.

Remark 8 (Early Stopping with a Constant Step Size) When performing early stopping a step
size constant in the number of iterations is commonly chosen so a single instance of single-machine
serial SGD is required. Theorem 5 demonstrates optimal statistical rates up to logarithmic factors
can be achieved for Distributed SGD when choosing the step size ρ = O((1− σ2(P )))/

√
nm) and

iterations t = O(nm/(1− σ2(P ))). For the calculation of this fact see Appendix A.8.

4.2. Non-Smooth Losses

We now analyse the statistical rates for non-smooth losses. Before presenting the results, we intro-
duce and motivate the technical assumptions that we need.

Assumptions 1

9
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(a) There exist constants C ≤ B such that for any z ∈ Z the loss function `( · , z) is bounded from
above at zero, i.e., `(0, z) ≤ B, and is uniformly bounded from below, i.e., C ≤ `(x, z) for any
x ∈ Rd;

(b) There exists a constant D ≥ 0 such that for any z1, . . . , znm ∈ Z and any X̃ ⊆ X we have

E sup
x∈X̃

1

nm

nm∑
i=1

σi`(x, zi) ≤ D
sup

x∈X̃ ‖x‖√
nm

,

where {σi}i∈[nm] is a collection of independent Rademacher random variables, namely, P(σi =
1) = P(σi = −1) = 1/2.

Assumption (a) is a common boundedness assumption for controlling the norm of the iterates of
gradient descent algorithms through a centring argument. Assumption (b) represents a control on the
Rademacher complexity of the function class {`(x, · ) : x ∈ X} with respect to the `2 norm. These
assumptions are satisfied, for instance, in the setting of supervised learning with linear predictors,
bounded data, and hinge loss (with is convex, Lipschitz, and non-smooth). See Remark 11 below.

First, we present the Test Error bound for non-smooth losses under Assumptions 1. Then, we
present a corollary that summarises the order of magnitudes of the bounds obtained under different
choices of implicit regularisation, tuning the step size and the stopping time as a function of the
graph topology. Full details are given in Appendix A.

Theorem 9 (Test Error bounds for convex and Lipschitz losses) Assume that for any z ∈ Z the
loss function `( · , z) is convex and L-Lipschitz. Consider Assumptions 1. Let X1

v = 0 for all v ∈ V ,
‖X?‖ ≤ G. Then, Distributed SGD with η > 0 yields, for any v ∈ V and t ≥ 1,

E r
(1

t

t∑
s=1

Xs
v

)
− r(x?) ≤ 2D

√
(t− 1)(η2L2 + 2η(B − C))

nm︸ ︷︷ ︸
Generalisation Error bound

+
19

2

ηL2 log(t
√
n)

1− σ2(P )
+
G2

2ηt︸ ︷︷ ︸
Optimisation Error bound

.

Proof See Appendix A.5.

The following corollary gives the order of magnitudes for the Test Error bound obtained with three
different choices of step size and corresponding early stopping. The different choices for the step
size η > 0 correspond to the following (modulo the simplifications used to perform the minimisa-
tions, as explained in detail in Section A.7):

• η? is the choice for serial SGD, see for instance Bubeck et al. (2015);

• η?Opt is the choice that minimises the Optimisation Error bound in Theorem 9;

• η?Test is the choice that minimises the Test Error bound in Theorem 9.

Corollary 10 (Implicit regularisation for convex and Lipschitz losses) In the setting of Theorem
9, the following holds for different choices of η, function of the time horizon t:

10
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η Size Test Error at η, t Test Error at η, t?(η)

η? O
(

1√
t

)
Õ
(

1
(1−σ2(P ))

√
t

+

√ √
t

nm

)
Õ
(

1
(nm(1−σ2(P )))1/3

)
η?Opt Õ

(√
1−σ2(P )

t

)
Õ
(

1√
t(1−σ2(P ))

+

√√
t(1−σ2(P ))

nm

)
Õ
(

1
(nm)1/3

)
η?Test Õ

(
1√
t

1√
1

1−σ2(P )
+ t

(nm)2/3

)
Õ
(

1√
t(1−σ2(P ))

+ 1
(nm)1/3

)
Õ
(

1
(nm)1/3

)
Table 2: t?(η?) ' (nm)2/3/(1− σ2(P ))4/3 and t?(η?Opt) ' t?(η?Test) ' (nm)2/3/(1− σ2(P )).

Proof See Appendix A.7.

Corollary 10 shows asymptotic behaviours for the Test Error bounds (as a function of time t upon
different choices of the step size) that are analogous to the ones established in Corollary 6 in the
case of smooth losses. In particular, as in Corollary 6, the step sizes accounting for the graph
topology, i.e., η?Test and η?Opt, give improved statistical rates over the step size independent of the
graph topology η?.

The statistical rate obtained by both η?Test and η?Opt, upon performing early stopping, matches,
up to logarithmic terms, the best-known rate ofO(1/(nm)1/3) obtained by serial SGD with implicit
regularisation (Lin et al., 2016a). Differing from the smooth case, additional iterations with respect
to the graph topology are required for the step size independent of the graph topology η? to achieve
its best statistical rates (as prescribed by our upper bounds), when compared to step sizes accounting
for the topology η?Test and η?Opt. As highlighted in (Lin et al., 2016a), we note that these rates are
not sharp, leaving it to future work to obtain better bounds.

Remark 11 Assumptions 1 is satisfied in the setting of supervised learning with bounded data,
linear predictors, and hinge loss, for instance. In this setting, each observation z ∈ Z decomposes
into a d-dimensional feature vector and a real-valued response, i.e., z = {w, y} with w ∈ W ⊂ Rd
and y ∈ Y ⊂ R such that ‖w‖ ≤ DW < ∞, and |y| ≤ DY < ∞. The linear predictors
are parametrised by x ∈ X̃ ⊆ X = Rd, i.e., w → w>x, and the loss function is of the form
`(x, z) = ˜̀(w>x, y) with the function ˜̀ : Y × Y → R+ measuring the discrepancy between the
predicted response w>x and the observed response y. For the hinge loss, ˜̀(ỹ, y) = max(0, 1− ỹy).
Assumption 1 (a) is satisfied with B = 1 and C = 0. By Talagrand’s contraction lemma and
standard results on the Rademacher complexity of linear predictors, assumption (b) is satisfied with
D = DYDW , as the hinge loss ˜̀( · , y) is |y|-Lipschitz. Also the Lipschitz constant in Theorem 9
reads L = D, as |`(x1, z) − `(x2, z)| ≤ DY |(x1 − x2)>w| ≤ DYDW‖x1 − x2‖ by the Cauchy-
Schwarz’s inequality.

5. Generalisation and Optimisation Error Bounds

In this section we present the Generalisation and Optimisation Error bounds that yield the Test Error
bounds presented within Section 4. Section 5.1 begins with the stability analysis used to derive the
Generalisation Error bounds for smooth losses. This is followed by the Generalisation Error bound
for non-smooth losses in Section 5.2. Finally, Section 5.3 presents Optimisation Error bounds for
both classes of losses.

11
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5.1. Generalisation Error Bound for Smooth Losses through Stability

To bound the Generalisation Error for smooth losses we utilise its link with stability. This has
previously been investigated in Rogers and Wagner (1978); Kearns and Ron (1999); Bousquet and
Elisseeff (2002); Mukherjee et al. (2006); Shalev-Shwartz et al. (2010), with Bousquet and Elisseeff
(2002) and Hardt et al. (2016) providing the work upon which we rely. Specifically, Hardt et al.
(2016) investigated the Generalisation Error of serial SGD in the multi-pass setting, giving, in the
case of convex, Lipschitz, and smooth losses, upper bounds that grow linearly with the number of
iterations and step size. The method used is algorithmic stability (or sensitivity) as introduced in
Bousquet and Elisseeff (2002). This method investigates the deviation of an algorithm when a single
data point in the data setD is resampled. By iterating through all of the observations, accounting for
the deviation in each case, the Generalisation Error is then equal to the average deviation, as we see
next. In our case the observations are spread throughout a graph, so the deviations of the algorithm
depends on the location of the observation that is resampled.

For each w ∈ V and k ∈ [m], let Z̃w,k be a resampled (independent) observation coming from
the same data distribution. Let X̃(w, k)tv denote the output of Distributed SGD at node v after t
iterations when the algorithm is run on the perturbed data set {D\Zw,k} ∪ Z̃w,k in which the k-th
observation for node w, i.e., Zw,k, is replaced by Z̃w,k. The Generalisation Error is then equal to
the average mean deviance of the loss function evaluated at the perturbed outputs.

Proposition 12 For any v ∈ V and t ≥ 1,

E[r(Xt
v)−R(Xt

v)] =
1

nm

∑
w∈V

m∑
k=1

E[`(Xt
v, Z̃w,k)− `(X̃(w, k)tv, Z̃w,k)].

Proof The proof is given in Appendix A.2.

The identity in Proposition 12 involves a double sum over the mean deviations of the algorithm
applied to locally perturbed data sets: one sum relates to the graph location where the perturbation
is supported (w), and the other sum relates to the index of the perturbed data point at that location
(k). Each individual deviation depends on the graph topology via the location of the resampled
observation w relative to the node of reference v. This dependence is captured by the bound that we
give in Proposition 18 in Appendix A.3.2, where we show that the non-expansive property of the
gradient descent update in the smooth case controls the spatial propagation of the deviation across
the network via the term

∑t−1
s=1(P

s)vw. Proposition 12 involves the average across all deviations,
and once the summation over w ∈ V is considered, we get a final bound that increases linearly with
time but does not depend on the graph topology, as we state next.

Lemma 13 (Generalisation Error bound for convex, Lipschitz, and smooth losses) Assume that
for any z ∈ Z the function `( · , z) is convex, L-Lipschitz, and β-smooth. Let X1

v = 0 for all v ∈ V .
Then, Distributed SGD with ηβ ≤ 2 yields, for any v ∈ V and t ≥ 1,

E[r(Xt
v)−R(Xt

v)] ≤
2ηL2

nm
(t− 1).

Proof See Appendix A.3.

For completeness, and to fully establish in the decentralised case the results derived in Hardt et al.

12



GRAPH-DEPENDENT IMPLICIT REGULARISATION FOR DISTRIBUTED SGD

(2016) in the single machine case, we include in Appendix A.3 also the time-uniform Generalisation
Error bound for the constrained and strongly-convex case. In this case, the contraction property of
the gradient descent update controls the spatial propagation of the deviation across the network via
the term

∑t−1
s=1 ι

s(P s)vw, for a given ι < 1. Once the summation over w ∈ V in Proposition 12 is
taken, we get a final bound that does not depend on time, nor on the graph topology. The bounds
that we give are identical to the ones in Hardt et al. (2016) for a single agent with nm observations.

5.2. Generalisation Error Bound for Non-Smooth Losses through Rademacher Complexity

In the case of non-smooth losses we follow the approach used in Lin et al. (2016a) for the single-
machine case that involves controlling the Generalisation Error by using standard Rademacher com-
plexity’s arguments through Assumption 1 (b) and bounding the norm of the iterates ‖Xt

v‖ as a
function of the parameters of the algorithm.

Lemma 14 (Generalisation Error for convex and Lipschitz losses) Assume that for any z ∈ Z
the loss function `( · , z) is convex and L-Lipschitz. Consider Assumptions 1. Let X1

v = 0 for all
v ∈ V . Then, Distributed SGD yields, for any v ∈ V and t ≥ 1,

E[r(Xt
v)−R(Xt

v)] ≤ 2D

√
(t− 1)(η2L2 + 2η(B − C))

nm
.

Proof See Appendix A.4.

We now go on to give Optimisation Error bounds which, once combined the Generalisation Error
bounds in Section 5.1 and 5.2, give the Test Error bounds presented within Section 4.

5.3. Optimisation Error Bounds

In this section we present Optimisation Error bounds for Distributed SGD with convex, Lipschitz,
and either smooth or non-smooth losses. These results follow from theorems proved within Ap-
pendix B under the more general setting of the first-order stochastic oracle model. We note that
constants within these bounds have not been optimised.

The bounds that we derive are proved using the techniques developed in Nedić et al. (2009)
and, in particular, in Duchi et al. (2012), where the evolution of the algorithm Xs

v is compared
against the evolution of its network average Xs

:= 1
n

∑
v∈V X

s
v to derive graph-dependent error

bounds. Appendix B contains the full scheme of the proof, along with the error decomposition
into a network term, an optimisation term, and a gradient noise term (only in the smooth case). As
previously emphasised, the fact that we investigate implicit regularisation strategies allows us to
deal with unconstrained problems, and in this case the evolution of the network-averaged process
X
s admits a simple form that facilitates the analysis. This approach avoids the difficulties with the

nonlinearity of projection that have been previously challenging in distributed learning models, and
that motivated the investigation of dual methods such as in Duchi et al. (2012).

We start with the case of Lipschitz and smooth losses. The proof for this case is inspired from
the proof for serial SGD applied to smooth objectives, specifically, Theorem 6.3 in Bubeck et al.
(2015), itself extracted from Dekel et al. (2012). The bound that we present depends upon both the
quantity σ and the quantity κ defined, respectively, in (2) and (3).

13
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Lemma 15 (Optimisation Error bound for convex, Lipschitz, and smooth losses) Assume that
for any z ∈ Z the function `( · , z) is convex, L-Lipschitz, β-smooth and satisfies (2) and (3). Let
X1
v = 0 for all v ∈ V , ‖X?‖ ≤ G. Then, Distributed SGD with η = 1/(β+1/ρ) and ρ > 0, yields,

for any v ∈ V and t ≥ 1,

E
[
R
(1

t

t∑
s=1

Xs+1
v

)
−R(X?)

]
≤ ρ

2
σ2 +

(β + 1/ρ)G2

2t
+

3κ

β + 1/ρ

log((t+ 1)
√
n)

1− σ2(P )

(
L+

3

2

β(3 + βρ)κ

β + 1/ρ

log((t+ 1)
√
n)

1− σ2(P )

)
.

Proof The result follows from Corollary 27 in Appendix B and from Section B.4.

Next is the Optimisation Error bound for non-smooth losses, inspired from Duchi et al. (2012).

Lemma 16 (Optimisation Error bound for convex and Lipschitz losses) Assume that for any z ∈
Z the function `(·, z) is convex and L-Lipschitz. Let X1

v = 0 for all v ∈ V , ‖X?‖ ≤ G. Then,
Distributed SGD yields, for any v ∈ V and t ≥ 1,

E
[
R
(1

t

t∑
s=1

Xs
v

)
−R(X?)

]
≤ ηL2

2

(
19

log(t
√
n)

1− σ2(P )

)
+
G2

2ηt
.

Proof The result follows from Corollary 25 in Appendix B and from Section B.4.

When optimising either of these bounds with respect to ρ or η, a rate no better than O(1/
√
t) can

be obtained, matching the rate of stochastic gradient descent in the single-machine case. From the
bound in Lemma 15, however, we note that if σ = κ = 0 then the accelerated rate of O(1/t) can
be obtained, matching the rate of full-gradient descent in the single-machine case. For a general
discussion on these lines, we refer to Appendix B and to Remark 22 in particular.

6. Numerical Experiments

In this section we provide a simulation study to investigate if the previously proven bounds can
be representative of real behaviours. Specifically, we investigate the Test Error bounds given in
Corollary 6 for convex, Lipschitz, and smooth losses. We start by introducing the notation and
quantities of interest in Section 6.1, then we present the results of the experiments in Section 6.2.

6.1. Setup

As we want to minimise the expected risk r(x) = E `(x, Z) but a closed form expression is typically
not available, we use a Monte Carlo approximation constructed from an independent out of sample
data set {Zj}j∈[N̂ ]

, namely, r̂(x) := 1

N̂

∑N̂
j=1 `(x, Zj). Given t iterations of the Distributed SGD

algorithm, we denote the ergodic average of the iterates by X̂t
v := 1

t

∑t
s=1X

s
v , for v ∈ V . We

investigate the Out of Sample Risk defined as maxv∈V r̂(X̂
t
v), which is set to be a proxy for the

Test Risk for Distributed SGD, as defined in Section 2. We recall that the Test Error is defined
as the expectation of the Test Risk minus the minimum expected risk r(x?), which is a constant.
Therefore, modulo a constant shift, Out of Sample Risk is also a proxy for the Test Error.
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Given a graph (V,E) with n = |V | nodes, let A ∈ Rn×n be its adjacency matrix defined as
Avw := 1 if {v, w} ∈ E and Avw := 0 otherwise. For each v ∈ V , let dv =

∑
w∈V Avw denote the

degree of node v, dmax = maxv∈V dv the maximum degree, andD = diag(d1, . . . , dn) the diagonal
degree matrix. We consider the doubly stochastic matrix P = I − 1

dmax+1(D − A). This choice is
standard in distributed optimisation (see Shah (2009), for instance). In this case, the spectral gap is
known to be of the following orders (see Duchi et al. (2012), for instance):

O

(
1√

1− σ2(P )

)
=


n Cycle
√
n Grid

1 Complete Graph

We adopt the following parametrisation: O(1/
√

1− σ2(P )) = O(nα), for α ≥ 0. These topolo-
gies are typical of those used in decentralised networks (Shah, 2009; Dimakis et al., 2010).

We consider an instance of logistic regression in supervised learning, where for a given positive
integer d, we have Z = {W,Y } with the feature vector W ∈ Rd and the label Y ∈ {−1, 1}, and
the parameter of interest is X ∈ Rd. The loss function in this case is given by

`(X,Z) = log(1 + e−Y×〈X,W 〉),

where 〈X,W 〉 = X>W =
∑d

i=1XiWi. Given the node count n and m locally-owned data
points, a simulated data set with a total of N = mn observations {Zi}i∈[N ] are sampled following
the experiment within Duchi et al. (2012). Specifically, a true parameter X?? is sampled from a
standard d-dimensional Gaussian N (0, I), the feature vectors Wi’s are sampled uniformly from
the unit sphere {w ∈ Rd : ‖w‖ ≤ 1}, and the responses are set as Yi = sign(〈Wi, X

??〉) where
sign(a) = 1 if a ≥ 0 and −1 if a < 0. The data set is then randomly spread across the graph
with each node getting m samples. It can easily be seen that the Lipschitz parameter is L = 1 and
the smoothness parameter is β = 1/4. Parameters depending upon the gradient noise were upper
bounded by distribution-independent quantities and set to σ2 → 4L2 and κ→ L (see Proposition 23
in Appendix B for the interplay between L and κ as far as bounding the network term is concerned).
A solution X? to the empirical risk minimisation rule is calculated with tolerance 10−15 using
the lbfgs solver within the LogisticRegression function of the python library scikit
(Pedregosa et al., 2011). We set G = ‖X?‖. Dimension and Monte Carlo estimate size are set to
d = 100 and N̂ = 1000, respectively. We investigate the performance of Distributed SGD in two
sample size regimes m = 2 and m = 100, which we now go on to describe in more detail.

6.2. Experimental Results - Small Sample Regime

This setting explores the small sample size regime where by agent receive m = 2 samples each.
Distributed SGD is run for 15 different time horizons t, between 102 and either 107 or 106.5 for
graph sizes n = 32 or n = 102, respectively. All runs are initialised from X1

v = 0 for all v ∈ V .
Comparisons are made for three choices of the step size, as prescribed in Corollary 6, and for three
choices of the graph topology: complete graph (α = 0), grid (α = 1/2), and cycle (α = 1).
Referring to the upper bounds in Corollary 6, we outline what we expect to see plotting the Test
Error against the time horizon t, with log− log scales, across the three different step sizes:

• ρ? - For small t, linear decrease with graph-dependent intercept; for large t, linear increase
with intercept independent of the graph topology. Minimum attained is graph-dependent;
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• ρ?Opt - For small and large t, respectively, linear decrease and increase with graph-dependent
intercept. Minimum attained is independent of graph topology;

• ρ?Test - Linear decrease with graph-dependent intercept up to a threshold independent of the
graph topology.

Figure 1 presents log− log plots of the Out of Sample Risk against the time horizon t, using the
step sizes stated in Corollary 6. All of the behaviours described above, as suggested by our upper
bounds, are observed. In particular, recall that our bounds suggest the sub-optimality of the sample
rate achieved by the step size aligned with serial SGD (ρ?), as opposed to the other two choices
(ρ?Opt and ρ?Test) that depend on the graph topology. Corollary 6 states that the Test Error for ρ?

yields the rate Õ(nα/
√
nm), as opposed to the rate Õ(1/

√
nm) achieved by the other two choices.

The former rate is worse (i.e., larger) than the latter for the cycle (α = 1) and the grid (α = 1/2),
while it is of the same order for the complete graph (α = 0). Evidence of this behaviour is observed
in Figure 1 for n = 100, where the Out of Sample Risk related to the cycle and grid is seen to
achieve a lower minimum when the step sizes that account for the graph topology are used.

102 103 104 105 106 107

Iteration

100

7 × 10 1
8 × 10 1
9 × 10 1

102 103 104 105 106 107

Iteration

Opt

102 103 104 105 106 107

Iteration

Test
Cycle ( = 1)
Grid ( = 0.5)
Complete ( = 0)
AllData 

Out of Sample Risk (n = 9)

102 103 104 105 106

Iteration

4 × 10 1
5 × 10 1
6 × 10 1
7 × 10 18 × 10 19 × 10 1

102 103 104 105 106

Iteration

Opt

102 103 104 105 106

Iteration

Test
Cycle ( = 1)
Grid ( = 0.5)
Complete ( = 0)
AllData 

Out of Sample Risk (n = 100)

Figure 1: Out of Sample Risk against time horizon for different choices of step size: ρ?, ρ?Opt, and
ρ?Test. Scales are log− log. Graph size n = 9 (top), 100 (bottom). Simulations run for 15 values
of t from 102 to 107 (top) or 106.5 (bottom). Each point is an average over 10 (top) or 4 (bottom)
replications with error bars representing 2 standard deviations before taking the log scale (error
bars are not visible for large t due to the small variance between repeated runs). AllData: serial
SGD run on the full data set of 18 (top) or 200 (bottom) samples with ρ? = ρ?Opt = O(1/

√
t) and

ρ?Test = O(1/(
√
t
√

1 + t/m). The behaviour of serial SGD is seen to correspond to the behaviour
of Distributed SGD on the complete graph, as expected.

6.3. Experimental Results - Large Sample Regime

In this section a larger sample regime (n = 100, m = 25) is investigated. Due to the number
of iterations scaling with the total number of data points i.e. stopping time being of the order t ∼
nm/(1 − σ2(P )), following Remark 8, a fixed step size is used to save running multiple instances
of Distributed SGD and save on computational cost. Specifically, the two fixed step size choices
considered are: ρ?Const = O(1/

√
nm), to align with serial single-machine SGD; and ρ?ConstNet =

O((1−σ2(P ))/
√
nm), the step size suggested by Theorem 5 Remark 8 that adjusts for the network
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topology. Furthermore, the true underlying optimal parameter X?? has its first
√
d co-ordinates

fixed to zero in order to simulate an over parameterised setting. The resulting Out of Sample Risks
have been presented within Figure 2.

100 101 102 103 104 105 106 107

Iteration

10 1

Const

100 101 102 103 104 105 106 107

Iteration

ConstNet
Cycle ( = 1)
Grid ( = 0.5)
Complete ( = 0)
AllData

Out of Sample Risk (n = 100)

Figure 2: Out of Sample Risk for Distributed SGD with step sizes ρ?Const (Left) and ρ?ConstNet (Right)
for graph topologies Cycle, Grid and Complete. Each run for 107 iterations, while Distributed SGD
on cycle topology with ρ?ConstNet run for 107.5 iterations. Quantity plotted is for a single instance of
Distributed SGD. AllData: single-machine serial SGD run for 15 different iterations t between 10
and 107 with decreasing step size ρ = O(1/

√
t). Both x-axis and y-axis are logarithmic scales.

Firstly, observe that the minimum Out of Sample Risk achieved by Distributed SGD with
ρ?ConstNet matches the minimum achieved by Serial Single-Machine SGD with decreasing step size
(Dashed Red line with markers). Secondly, aligning with the small sample regime in Section 6.2,
the minimum out of sample risk (0.0442) for a cycle topology with a constant single-machine serial
step size ρ?Const is higher than the minimum out of sample risk (0.0436) attained with the constant
step size adjusted for the network topology ρ?ConstNet. We note the simulation for the cycle topology
with ρ?ConstNet were stopped early at 107.5 iterations due to computational cost.

7. Conclusion

We have proposed and investigated graph-dependent implicit regularisation strategies for synchro-
nised Distributed SGD for convex problems in multi-agent learning. Specifically, we have shown
how Distributed SGD can retain single-machine serial statistical guarantees by proper tuning of the
algorithmic parameters as a function of the graph topology. For convex, Lipschitz, and smooth
losses, we showed that Distributed SGD recovers, up to logarithmic terms, the optimal rate of
O(1/

√
nm) for single-pass constrained serial SGD (Lan, 2012; Xiao, 2010). For convex and Lips-

chitz losses, we showed that Distributed SGD recovers, up to logarithmic terms, the best-known rate
of O(1/(nm)1/3) for single-machine serial SGD with implicit regularisation (Lin et al., 2016b). To
obtain these results we: proved Generalisation Error bounds that do not depend on the graph topol-
ogy and match the bounds in the single-machine serial setting; and derived Optimisation Error
bounds that depend on the graph topology. We provided numerical simulations showing that our
bounds can be representative of real behaviours.

Our work motivates further investigation of graph-dependent implicit regularisation strategies
for decentralised protocols. Since synchronisation and communication are often a dominant bot-
tleneck in distributed computations, further research is needed to investigate the improvement on
the communicational and computational complexity that can be obtained by exploiting the interplay
between the statistical regularities of the local objective functions and schemes involving mini-
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batching, acceleration, and graph sparsification. The latter relates to Gossip protocols where only a
random subset of nodes communicate at each iteration (Dimakis et al., 2010). Another direction for
future investigation lies in the analysis of adaptive schemes that can contemplate time-dependent
step sizes and that can automatically infer the algorithmic parameters of interests, in primis the
spectral gap of the communication matrix.

Appendix A. Proofs of Generalisation and Test Error Bounds

This appendix provides the proofs for the Generalisation and Test Error bounds presented within the
main body of this paper. First, for completeness, we include the proofs of Proposition 1 and Propo-
sition 12 in Section A.1 and Section A.2, respectively. These results generalise to the distributed
setting the Test Error decomposition and the Generalisation Error decomposition via stability used in
the single-machine setting, and the proofs follow the exact same arguments as in the single-machine
case. Second, we present the proofs of the Generalisation Error bounds for smooth and non-smooth
losses in Section A.3 and Section A.4, respectively. For completeness, Section A.3 also includes
the proof of stability for the strongly convex case with constraints, which is not covered in the main
body but is here presented as it fully generalises the results in Hardt et al. (2016) for Distributed
SGD. Third, in Section A.5 we present the proofs of Test Error bounds for smooth and non-smooth
losses, referring to Theorem 5 and Theorem 9 within the main body of the work. Finally, in Section
A.6 and Section A.7 we give the calculations deriving the rates presented in Corollary 6 and Corol-
lary 10 for smooth and non-smooth losses, respectively. Throughout, we use the notations .,',&,
to indicate ≤,=,≥ modulo constants and log terms.

A.1. Proof of Proposition 1

The proof is analogous to the one given in Hardt et al. (2016) for the single-machine case.

Proof [Proposition 1] We have r(Xt
v)−r(x?) = r(Xt

v)−R(Xt
v)+R(Xt

v)−R(X?)+R(X?)−r(x?).
Note that ER(X?) ≤ r(x?), as for any x we have R(X?) ≤ R(x) so that ER(X?) ≤ ER(x) =
r(x),which holds for x = x?. Thus, E r(Xt

v)−r(x?) ≤ E[r(Xt
v)−R(Xt

v)]+E[R(Xt
v)−R(X?)].

A.2. Proof of Proposition 12

The proof follows the ideas in Bousquet and Elisseeff (2002) and Hardt et al. (2016) for the single-
machine case.

Proof [Proposition 12] As the resampled observation Z̃w,k has the same distribution than Z and is
independent of both Xt

v and D, we have E r(Xt
v) = 1

nm

∑
w∈V

∑m
k=1E `(X

t
v, Z̃w,k). As the pair

(Xt
v, Zw,k) has the same distribution as the pair (X̃(w, k)tv, Z̃w,k), the expectation of the empir-

ical risk can be written as ER(Xt
v) = 1

nm

∑
w∈V

∑m
k=1E `(X̃(w, k)tv, Z̃w,k). Thus, E[r(Xt

v) −
R(Xt

v)] = 1
nm

∑
w∈V

∑m
k=1E[`(Xt

v, Z̃w,k)− `(X̃(w, k)tv, Z̃w,k)].
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A.3. Proof of Generalisation Error Bounds for Smooth Losses

In this section we prove the Generalisation Error bound presented in Lemma 13 for smooth losses,
and we establish a Generalisation Error bound for strongly convex functions. The proof that we
present follows the spirit of the proof in Hardt et al. (2016) for the single-machine setting, using
algorithmic stability. Specifically, deviations of the algorithm are studied when a single data point
in the entire data set is resampled. In the distributed setting that we consider, the training data
is spread throughout the communication graph, and we need to consider stability not only with
respect to time (i.e., the iteration time of the algorithm), but also with respect to space (i.e., the
communication graph). As established in Proposition 12, the Generalisation Error is the average of
these deviations. Intermediate steps show that the individual deviations have a dependence on the
graph topology, as encoded by the communication matrix P . However, once the average over all
deviations is taken, we get results that do not depend on the graph topology.

First, in Section A.3.1 we describe the setup for the stability analysis. Then, in Section A.3.2
we present the proof for the case of convex, Lipschitz, and smooth losses. Finally, in Section A.3.3
we present the case of Lipschitz, smooth, and strongly-convex losses with constraints.

A.3.1. SETUP

For any w ∈ V and k ∈ [m], let D̃(w, k) := {D\Zw,k} ∪ Z̃w,k be the data set in which node w has
the k-th observation resampled. Recall that X̃(w, k)tv denotes the output at node v and time step
t of Distributed SGD (1) run with respect to the data set D̃(w, k). From Proposition 12, the link
between the Generalisation Error and the `2 deviation

δ(w, k)tv := ‖X̃(w, k)tv −Xt
v‖

can be made explicit when the loss function ` is L-Lipschitz in the first coordinate (uniformly in the
second). Specifically, each term in the double sum

∑m
k=1

∑
w∈V in Proposition 12 is bounded by

`(Xt
v, Z̃w,k)− `(X̃(w, k)tv, Z̃w,k) ≤ Lδ(w, k)tv.

The results that we derive directly bound the deviation δ(w, k)tv. Henceforth, for a given matrix
M ∈ Rn×n we use the notation M s

vw to represent the quantity (M s)vw, where M s is the s-th power
of M , and the notation Mv to represent the v-th row of M . Hence, for a given vector x, we write
Mvx to indicate

∑
w∈V Mvwxw. For any x, y ∈ Rd, we let 〈x, y〉 = x>y =

∑d
i=1 xiyi.

Before proceeding to the main proofs we require some standard results relating to the expansive
properties of gradient descent updates with smooth and either convex or strongly convex functions.
Specifically, for a sufficiently small step size, a result showing that gradient descent updates with
smooth and convex function are non-expansive. Meanwhile, for additionally strongly-convex func-
tions, a result showing that gradient descent updates are contractive. The proof can be found in
Appendix A of Hardt et al. (2016) and it utilises the co-coercivity of gradients for smooth and
convex functions (Nesterov, 2013).

Lemma 17 Let f be a β-smooth function, convex, and ηβ ≤ 2 with η > 0. Then, for any x, y ∈ R,

‖x− y − η(∇f(x)−∇f(y))‖ ≤ ‖x− y‖.

Let f be a β-smooth function, γ-strongly convex, and η ≤ 2/(β + γ). Then, for any x, y ∈ R,

‖x− y − η(∇f(x)−∇f(y))‖ ≤
(

1− ηβγ

β + γ

)
‖x− y‖.
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A.3.2. CONVEX, LIPSCHITZ, AND SMOOTH LOSSES

We start by stating Proposition 18 that establishes a bound on the deviation δ(w, k)tv that explicitly
depends on the graph topology. This is followed by the proof of Lemma 13.

Proposition 18 (Stability for convex, Lipschitz, and smooth losses) Assume the setting of Lemma
13. Then, for any v, w ∈ V, k ∈ [m] and t ≥ 1,

E δ(w, k)tv = E‖X̃(w, k)tv −Xt
v‖ ≤

2ηL

m

t−1∑
s=1

P svw.

Proof [Proposition 18] Let F1 be the σ-algebra generated by D and D̃ := {D̃(w, k)}w∈V,k∈[m].
For any t ≥ 2, let Ft be the σ-algebra generated by the data sets D and D̃, and by the collection
of uniform random variables {K2

v , . . . ,K
t
v}v∈V . Plugging the algorithm updates (1) into δ(w, k)tv,

applying the triangle inequality and using the fact that {Xt−1
v }v∈V , {X̃(w, k)t−1v }v∈V , D, and D̃

are measurable with respect to Ft−1, we get

E[δ(w, k)tv|Ft−1]

≤
∑
l 6=w

PvlE
[∥∥∥X̃(w, k)t−1l −X

t−1
l −η

(
∇`(X̃(w, k)t−1l , Zl,Kt

l
)−∇`(Xt−1

l , Zl,Kt
l
)
)∥∥∥∣∣∣Ft−1] (4)

+
Pvw
m

∑
i 6=k

∥∥∥X̃(w, k)t−1w −Xt−1
w − η

(
∇`(X̃(w, k)t−1w , Zw,i)−∇`(Xt−1

w , Zw,i)
)∥∥∥ (5)

+
Pvw
m

∥∥∥X̃(w, k)t−1w −Xt−1
w − η

(
∇`(X̃(w, k)t−1w , Z̃w,k)−∇`(Xt−1

w , Zw,k)
)∥∥∥. (6)

The above decomposition is in three parts: (4), the terms aligning with agents who do not have a
resample datapoint ∀`, ` 6= w; (5), the terms atw conditioned on not picking the resample datapoint;
and (6), the term at w when picking the resample datapoint. In particular (6) is the only one to
involve the difference of two gradients evaluated at different data points (Z̃w,k and Zw,k). To bound
this term, we use the Lipschitz property, ‖∇`( · , z)‖ ≤ L for all z ∈ Z , and get

(6) ≤
(
δ(w, k)t−1w + 2ηL

)Pvw
m

.

To bound terms (4) and (5), we use the non-expansive property of the gradient updates arising
from the convexity and smoothness of `( · , z), specifically, the inequality ‖x − y − η(∇`(x, z) −
∇`(y, z))‖ ≤ ‖x− y‖ for x, y ∈ Rd, z ∈ Z in Lemma 17. In particular we have

(4) ≤
∑
6̀=w

Pv`δ(w, k)t−1`

(5) ≤ Pvw
m

∑
i 6=k

δ(w, k)t−1w =
Pvw
m

(m− 1)δ(w, k)t−1w .

This yields

E[δ(w, k)tv|Ft−1] ≤
∑
l 6=w

Pvlδ(w, k)t−1l +
(

1− 1

m

)
Pvwδ(w, k)t−1w +

(
δ(w, k)t−1w + 2ηL

)Pvw
m

=
∑
l∈V

Pvlδ(w, k)t−1l +
2ηL

m
Pvw.
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Let ev ∈ Rn be the vector with 1 in the coordinate aligning with node v and 0 everywhere else.
Recursively applying the bound above in vector form with δ(w, k)t = {δ(w, k)tv}v∈V ∈ Rn yields
(the inequality is meant coordinate-wise)

E δ(w, k)t = E[E[δ(w, k)t|Ft−1]] ≤ P E δ(w, k)t−1 +
2ηL

m
Pew ≤

2ηL

m

t−1∑
s=1

P sew,

where we used δ(w, k)1l = ‖X̃(w, k)1l −X1
l ‖ = 0 for all l ∈ V . Recall (P sew)v = P svw.

The bound in Proposition 18 shows that the expected deviation between the algorithms remains
zero until the number of iterations exceeds the natural distance in the graph between node v and
node w. This bound naturally reflects the graph topology and captures the propagation of the devi-
ation due to resampling a data point in a specific location of the graph. When combined with the
summation over w ∈ V in Proposition 12, this bound yields a Generalisation Error bound that does
not depend on the graph topology: Lemma 13.

Proof [Lemma 13] Plugging the bound from Proposition 18 into the identity from Proposition 12,
using that the rows of the matrix P sum to 1, we get

E[r(Xt
v)−R(Xt

v)] ≤
L

nm

∑
w∈V

m∑
k=1

E δ(w, k)tv ≤
2ηL2

nm

t−1∑
s=1

∑
w∈V

P svw =
2ηL2

nm
(t− 1).

A.3.3. STRONGLY CONVEX, LIPSCHITZ, AND SMOOTH LOSSES

This section presents a Generalisation Error bound for Distributed SGD when the loss function is
strongly convex, smooth, and Lipschitz continuous, generalising the results in Hardt et al. (2016)
to the distributed setting. Recall that a differentiable function f : Rd → R is γ-strongly convex,
with γ > 0, if f(x) − f(y) ≥ ∇f(y)>(x − y) + γ‖x − y‖2/2 for all x, y ∈ Rd. As strongly
convex functions have unbounded gradients on Rd, we consider the setting where parameters are
constrained to be on a compact convex set X ⊂ Rd. Let x → Π(x) = arg miny∈X ‖x − y‖ be the
Euclidean projection on X . Then, iteration (1) becomes, for s ≥ 1,

Xs+1
v = Π

(∑
w∈V

Pvw(Xs
w − η∇`(Xs

w, Zw,Ks+1
w

)
)
. (7)

We refer to this variant as Distributed Projected SGD.
To motivate these assumptions, consider the specific case of Tikhonov regularisation, as done in

Hardt et al. (2016). If the loss function ` is convex, β-smooth, and L-Lipschitz, then the penalised
loss function x → `(x, z) + γ

2‖x‖
2 is γ-strongly convex, (β + γ)-smooth, and (L+ γr)-Lipschitz

when the constraint set is contained in a ball of radius r, i.e., X ⊆ {x ∈ Rd : ‖x‖ ≤ r}. The next
result is the analogue of Lemma 13 with the additional assumption of strong convexity.
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Lemma 19 (Generalisation Error bound for strongly-convex, Lipschitz, and smooth losses)
Assume that for any z ∈ Z the function `( · , z) is γ-strongly convex, L-Lipschitz, and β-smooth.
Let X1

v = 0 for all v ∈ V . Then, Distributed Projected SGD run on a compact, convex set X with
η ≤ 2/(β + γ) yields, for any v ∈ V and t ≥ 1,

E[r(Xt
v)−R(Xt

v)] ≤
2L2

mn

β + γ

βγ
.

Observe that, for a sufficiently small step size η ≤ 2/(β + γ), the bound obtained is independent
of the step size η and number of iterations t. As for the convex and smooth case of Lemma 13, also
this bound aligns with the one given in Hardt et al. (2016) for a single agent with nm observations.

The next result is the analogue of Proposition 18.

Proposition 20 (Stability for strongly-convex, Lipschitz, and smooth losses) Assume the setting
of Lemma 19. Then, for any v, w ∈ V, k ∈ [m] and t ≥ 1,

E δ(w, k)tv = E ‖X̃(w, k)tv −Xt
v‖ ≤

2ηL

m

t−1∑
s=1

(
1− ηβγ

β + γ

)s−1
P svw.

Proof [Proposition 20]
The proof follows the same outline for the proof of Proposition 18. Consider the same setup and

notation there defined. Using the non-expansive property of the Euclidean projection, the triangle
inequality, and the fact that {Xt−1

v }v∈V , {X̃(w, k)t−1v }v∈V , D, and D̃ are measurable with respect
to Ft−1, we get

E[δ(w, k)tv|Ft−1] ≤ E‖X̃(w, k)tv −Xt
v‖

≤
∑
l 6=w

PvlE
[∥∥∥X̃(w, k)t−1l −X

t−1
l −η

(
∇`(X̃(w, k)t−1l , Zl,Kt

l
)−∇`(Xt−1

l , Zl,Kt
l
)
)∥∥∥∣∣∣Ft−1] (8)

+
Pvw
m

∑
i 6=k

∥∥∥X̃(w, k)t−1w −Xt−1
w − η

(
∇`(X̃(w, k)t−1w , Zw,i)−∇`(Xt−1

w , Zw,i)
)∥∥∥ (9)

+
Pvw
m

∥∥∥X̃(w, k)t−1w −Xt−1
w − η

(
∇`(X̃(w, k)t−1w , Z̃w,k)−∇`(Xt−1

w , Zw,k)
)∥∥∥. (10)

Term (10) is the only one to involve the difference of two gradients evaluated at different data points
(Z̃w,k and Zw,k). To use the contraction property arising from strong convexity, add and subtract
the term η∇`(X̃(w, k)t−1w , Zw,k) inside the norm, and use the Lipschitz property to get

(10) ≤ Pvw
m

∥∥∥X̃(w, k)t−1w −Xt−1
w − η

(
∇`(X̃(w, k)t−1w , Zw,k)−∇`(Xt−1

w , Zw,k)
)∥∥∥+

2ηL

m
Pvw.

To bound terms (8) and (9), as well as the bound above for (10), we use the contraction property of
the gradient updates from Lemma 17, specifically, the inequality ‖x−y−η(∇`(x, z)−∇`(y, z))‖ ≤
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(1− ηβγ
β+γ )‖x− y‖ for x, y ∈ Rd, z ∈ Z , and η ≤ 2

β+γ . In particular,

(8) ≤
(

1− ηβγ

β + γ

)∑
` 6=w

Pv`δ(w, k)t−1`

(9) ≤
(

1− ηβγ

β + γ

)Pvw
m

∑
i 6=k

δ(w, k)t−1w =
(

1− ηβγ

β + γ

)Pvw
m

(m− 1)δ(w, k)t−1w

(10) ≤
(

1− ηβγ

β + γ

)Pvw
m

δ(w, k)t−1w +
2ηL

m
Pvw

This yields

E[δ(w, k)tv|Ft−1]

≤
(

1− ηβγ

β + γ

)[∑
l 6=w

Pvlδ(w, k)t−1l +
(

1− 1

m

)
Pvwδ(w, k)t−1w +

1

m
Pvwδ(w, k)t−1w

]
+

2ηL

m
Pvw

=
(

1− ηβγ

β + γ

)∑
l∈V

Pvlδ(w, k)t−1l +
2ηL

m
Pvw.

In vector notation, the above reads

E δ(w, k)t ≤
(

1− ηβγ

β + γ

)
P E δ(w, k)t−1 +

2ηL

m
Pew ≤

2ηL

m

t−1∑
s=1

(
1− ηβγ

β + γ

)s−1
P sew

where we used δ(w, k)1l = ‖X̃(w, k)1l −X1
l ‖ = 0 for all l ∈ V and recursively applied the above

bound to E[δ(w, k)t].

With Proposition 20 in hand, we prove Lemma 19.

Proof [Lemma 19] Plugging the bound from Proposition 20 into the identity from Proposition 12,
using that the rows of the matrix P sum to 1, we get

E[r(Xt
v)−R(Xt

v)] ≤
L

nm

∑
w∈V

m∑
k=1

E δ(w, k)tv ≤
2ηL2

mn

t−1∑
s=1

(
1− ηβγ

β + γ

)s−1
,

and the proof is concluded by summing the geometric projection for t going to infinity, using that
the assumption η ≤ 2

β+γ implies that ηβγ
β+γ < 1.

A.4. Proof of Generalisation Error Bound for Non-Smooth Losses

This section presents Generalisation Error bounds for Distributed SGD when losses are assumed to
be non-smooth, aligning with Lemma 14 within the main body of the text. In this case we follow
the approach in (Lin et al., 2016a, Appendix B) that involves controlling the Generalisation Error
by using standard Rademacher complexity’s arguments through Assumption 1 (b) and bounding the
norm of the iterates through Assumption 1 (a). We start by presenting Lemma 21 which bounds the
iterates produced by the Distributed SGD. This is followed by the proof for the Generalisation Error
bound for non-smooth losses Lemma 14.
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Lemma 21 Assume there exist C ≤ B such that for each z ∈ Z the function `( · , z) is convex,
L-Lipschitz, bounded above at zero `(0, z) ≤ B, and bound uniformly from below `(x, z) ≥ C for
x ∈ Rd. Let X1

v = 0 for all v ∈ V . Then, Distributed SGD yields, for any v ∈ V and t ≥ 1,

‖Xt
v‖ ≤

√
(t− 1)(η2L2 + 2η(B − C)).

Proof Let x ∈ Rd. By the Distributed SGD update (1) we get

‖Xt
v − x‖ ≤

∑
w∈V

Pvw‖Xt−1
w − η∂`(Xt−1

w , Zw,Kt
w

)− x‖. (11)

The convexity of `( · , z) yields

〈∂`(Xt−1
w , Zw,Kt

w
), x−Xt−1

w 〉 ≤ `(x, Zw,Kt
w

)− `(Xt−1
w , Zw,Kt

w
),

and the Lipschitz continuity of `( · , z) yields ‖∂`(Xt−1
w , Zw,Kt

w
)‖ ≤ L. Thus,

‖Xt−1
w − η∂`(Xt−1

w , Zw,Kt
w

)− x‖2

= ‖Xt−1
w − x‖2 + η2‖∂`(Xt−1

w , Zw,Kt
w

)‖2 + 2η〈∂`(Xt−1
w , Zw,Kt

w
), x−Xt−1

w 〉
≤ ‖Xt−1

w − x‖2 + η2L2 + 2η(`(x, Zw,Kt
w

)− `(Xt−1
w , Zw,Kt

w
)).

Setting x = 0, using that `(Xt−1
w , Zw,Kt

w
) ≥ C as well as the assumption `(0, Zw,Kt

w
) ≤ B, we get

‖Xt−1
w − η∂`(Xt−1

w , Zw,Kt
w

)‖2 ≤ ‖Xt−1
w ‖2 + η2L2 + 2η(B − C).

Using that the matrix P is doubly stochastic, the bound (11) yields the recursion

max
v∈V
‖Xt

v‖2 ≤ max
w∈V
‖Xt−1

w − η∂`(Xt−1
w , Zw,Kt

w
)‖2 ≤ max

v∈V
‖Xt−1

v ‖2 + η2L2 + 2η(B − C),

so recursively applying the above bound and taking square root gives

‖Xt
v‖ ≤ max

v∈V
‖Xt

v‖ ≤
√

(t− 1)(η2L2 + 2η(B − C)).

Proof [Lemma 14] Standard Rademacher complexity’s arguments utilising the symmetrisation tech-
nique and Assumption 1 (b) yield, for any X̃ ⊆ X ,

E sup
x∈X̃

(r(x)−R(x)) ≤ 2E sup
x∈X̃

1

nm

nm∑
i=1

σi`(x, zi) ≤ 2D
sup

x∈X̃ ‖x‖√
nm

.

By Lemma 21 we know that the iterates are contained in the ball X̃ = {x ∈ Rd : ‖x‖ ≤√
(t− 1)(η2L2 + 2η(B − C))}, so that

E[r(Xt
v)−R(Xt

v)] ≤ E sup
x∈X̃

(r(x)−R(x)) ≤ 2D

√
(t− 1)(η2L2 + 2η(B − C))

nm
.
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A.5. Proof of Test Error Bounds for Smooth and Non-Smooth Losses

This section gives the proofs of the Test Error bounds presented within the main body of the work,
namely Theorem 5 for convex, Lipschitz, and smooth losses, and Theorem 9 for convex and Lip-
schitz losses. This is achieved by using the error decomposition given in Proposition 1, and by
bringing together the Generalisation Error bounds and the Optimisation Error bounds in Section 5.

Proof [Theorem 5] By the convexity of the Test Risk r, using Proposition 1, we get

E r
(1

t

t∑
s=1

Xs+1
v

)
− r(x?) ≤ 1

t

t∑
s=1

(
E[r(Xs+1

v )−R(Xs+1
v )]︸ ︷︷ ︸

Generalisation Error

+E[R(Xs+1
v )−R(X?)]︸ ︷︷ ︸

Optimisation Error

)
.

The proof follows by applying Lemma 13 for the Generalisation Error, which yields

1

t

t∑
s=1

E[r(Xs+1
v )−R(Xs+1

v )] ≤ 2ηL2

nm

1

t

t∑
s=1

s =
ηL2

nm
(t+ 1),

and by the Optimisation Error bound from Lemma 15.

Proof [Theorem 9] By the convexity of the Test Risk r, using Proposition 1, we get

E r
(1

t

t∑
s=1

Xs
v

)
− r(x?) ≤ 1

t

t∑
s=1

(
E[r(Xs

v)−R(Xs
v)]︸ ︷︷ ︸

Generalisation Error

+E[R(Xs
v)−R(X?)]︸ ︷︷ ︸

Optimisation Error

)
.

The proof follows by applying Lemma 14 for the Generalisation Error, which yields

1

t

t∑
s=1

E[r(Xs
v)−R(Xs

v)] ≤ 2D

√
(t− 1)(η2L2 + 2η(B − C))

nm
,

and by the Optimisation Error bound from Lemma 16.

A.6. Calculations for Corollary 6 (Convex, Lipschitz, and Smooth)

This section presents the calculations needed to populate the table of rates in Corollary 6 in the case
of convex, Lipschitz, and smooth losses. The simplification 1/(β+ 1/ρ) ≤ ρ is used. Additionally,
minimisations are performed up to first-order terms in ρ, possibly neglecting logarithmic terms.
This section is divided into four parts:

• Optimisation Error calculates the step size ρ?Opt minimising the Optimisation Error bound;

• Test Error calculates the step size ρ?Test that minimises the Test Error bound;

• Early Stopping Optimisation calculates the number of iterations that minimises the Test
Error bound when the step size ρ?Opt is used;

• Early Stopping Single-Machine Serial calculates the number of iterations that minimises
the Test Error bound when the step size ρ? = O(1/

√
t) is used.
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Optimisation Error. Optimising over first-order terms in ρ in the Optimisation Error bound of
Lemma 15 with 1/(β + 1/ρ) ≤ ρ we get

ρ?Opt = argminρ

{ρ
2
σ2 +

G2

2tρ
+ 3Lκρ

log((t+ 1)
√
n)

1− σ2(P )

}
=

G√
t

1√
6Lκ log((t+1)

√
n)

1−σ2(P ) + σ2
,

which yields with 3+βρ
β+1/ρ ≤ 4ρ from 3/(β + 1/ρ) ≤ 3ρ and β/(β + 1/ρ) ≤ ρ the Optimisation

Error bound

E
[
R
(1

t

t∑
s=1

Xs+1
v

)
−R(X?)

]

≤ G√
t

√
6Lκ

log((t+ 1)
√
n)

1− σ2(P )
+ σ2 +

βG2

2t
+ 18κ2βρ2Opt

( log((t+ 1)
√
n)

1− σ2(P )

)2

≤ G√
t

√
6Lκ

log((t+ 1)
√
n)

1− σ2(P )
+ σ2 +

βG2

2t

[
1 +

6κ

L

(
log((t+1)

√
n)

1−σ2(P )

)2
log((t+1)

√
n)

1−σ2(P ) + σ2

6Lκ

]
.

This bound is Õ(1/
√

(1− σ2(P ))t) as the second term is Õ(1/((1− σ2(P ))t)).

Test Error. Consider the Test Error bound in Theorem 5 with 1/(β + 1/ρ) ≤ ρ. Optimising over
first-order terms in ρ we get

ρ?Test = argminρ

{ρ
2
σ2 +

G2

2tρ
+ 3Lκρ

log((t+ 1)
√
n)

1− σ2(P )
+
ρL2

nm
(t+ 1)

}
=

G√
t

1√
6Lκ log((t+1)

√
n)

1−σ2(P ) + σ2 + 2L2(t+1)
nm

,

which yields with with 3+βρ
β+1/ρ ≤ 4ρ from 3/(β + 1/ρ) ≤ 3ρ and β/(β + 1/ρ) ≤ ρ the Test Error

bound

E r
(1

t

t∑
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Xs+1
v

)
− r(x?)

≤ G√
t

√
6Lκ

log((t+ 1)
√
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+ σ2 +
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nm
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βG2

2t
+ 18κ2βρ2Test

( log((t+ 1)
√
n)

1− σ2(P )

)2
≤ G√

t

√
6Lκ

log((t+ 1)
√
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1− σ2(P )
+ σ2 +

2L2

nm
(t+ 1)

+
βG2

2t

[
1 +

6κ

L

(
log((t+1)

√
n)

1−σ2(P )

)2
log((t+1)

√
n)

1−σ2(P ) + 1
6Lκ(σ2 + 2L2

nm (t+ 1))

]
.

This bound is Õ
(√

1
t(1−σ2(P )) + 1

nm

)
as the second term is Õ(1/((1−σ2(P ))t)). This is Õ( 1√

nm
)

when t & nm/(1− σ2(P )).
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Early Stopping Optimisation. Considering the Test Error bound from Theorem 5 with step size
ρ = ρ?Opt and 1/(β + 1/ρ) ≤ ρ we get

E r
(1
t

t∑
s=1

Xs+1
v

)
−r(x?) ≤ G

[
1√
t

√
6Lκ

log((t+ 1)
√
n)

1− σ2(P )
+ σ2+

2L2
√
t

nm

√√√√ 1

6Lκ log((t+1)
√
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1−σ2(P ) + σ2

]

+
βG2

2t

[
1 +

6κ
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(
log((t+1)

√
n)

1−σ2(P )

)2
log((t+1)

√
n)

1−σ2(P ) + σ2

6Lκ

]
,

where (t+1)/
√
t ≤ 2

√
twas used. The first term is dominant andO

(√
log(t

√
n)

t(1−σ2(P ))+
1
nm

√
t(1−σ2(P ))
log(t

√
n)

)
while the second term is Õ(1/(1− σ2(P )t)). To minimise the first term with respect to t, consider
the more tractable form

1√
t

√
6Lκ

log((t+ 1)
√
n)

1− σ2(P )
+ σ2 +

2L2
√
t

nm

√√√√ 1

6Lκ log((t+1)
√
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≤ σ√
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√
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log((t+ 1)
√
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t(1− σ2(P ))
+

2L2

nm

√
t(1− σ2(P ))

6Lκ log((t+ 1)
√
n)
.

An approximate minimiser in t neglecting the log((t+ 1)
√
n) in the denominator is given by

t

log((t+ 1)
√
n)

= argminc≥0

{√
6Lκ

c(1− σ2(P ))
+

2L2

nm

√
c(1− σ2(P ))

6Lκ

}
= 3

κ

L

nm
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.

This choice yields the Test Error bound

E r
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t
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v

)
− r(x?) ≤ G√
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[
σ

√
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√
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[
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L

(
log((t+1)

√
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1−σ2(P )

)2
log((t+1)

√
n)

1−σ2(P ) + σ2

6Lκ

]

which is a Õ( 1√
nm

) Test Error bound obtained with t ' nm/(1− σ2(P )) iterations.

Early Stopping Single-Machine Serial. Considering the Test Error bound of Theorem 5 with
1/β + 1/ρ ≤ ρ and ρ = ρ? = G

Lc
√
t

for some constant c > 0. Plugging in we get

E r
(1

t

t∑
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v

)
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[
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,
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where (t+ 1)/
√
t ≤ 2

√
t for t ≥ 1 was used on the Generalisation Error bound. The above bound

is dominated by the first term which is Õ
(

1
(1−σ2(P ))

√
t

+
√
t

nm

)
. Minimising up to log terms yields

t =
3κ

2L

nm

1− σ2(P )
.

This choice yields the Test Error bound

E r
(1

t

t∑
s=1

Xs+1
v

)
− r(x?) ≤ G

c

√
6κL

nm(1− σ2(P ))

[
log((t+ 1)

√
n) + 1

]
+

√
L(1− σ2(P ))

6κnm

(σ2
cL

+ cL
)

+
LβG2(1− σ2(P ))

3κnm

[
1 +

9(3 + βρ)κ2

c2L2

log2((t+ 1)
√
n)

(1− σ2(P ))2

]
,

which is dominated by the first term that is Õ
(

1√
nm(1−σ2(P ))

)
, as the third term is Õ

(
1

nm(1−σ2(P ))

)
.

Regarding the choice of constant c, note the above is decreasing up to c = (1−σ2(P ))−1/2, in which
case the O(1/

√
nm) rate for ρ?Opt is recovered.

A.7. Calculations for Corollary 10 (Convex and Lipschitz)

This section presents the calculations needed to populate the table of rates in Corollary 10 in the
case of convex and Lipschitz losses. This section is divided into four parts:

• Optimisation Error calculates the step size η?Opt minimising the Optimisation Error bound;

• Test Error calculates the step size η?Test that minimises the Test Error bound;

• Early Stopping Optimisation calculates the number of iterations that minimises the Test
Error bound when the step size η?Opt is used;

• Early Stopping Single-Machine Serial calculates the number of iterations that minimises
the Test Error when the step size η? = O(1/

√
t) is used.

Optimisation Error. Minimising the Optimisation Error bound in Lemma 16 with respect to the

step size yields η = η?Opt = G
L
√
19t

√
1−σ2(P )
log(t

√
n)

and

E
[
R
(1

t

t∑
s=1

Xs
v

)
−R(X?)

]
≤
√

19
GL√
t

√
log(t

√
n)

1− σ2(P )
.

Test Error. In this section the step size

η = η?Test =
G

L
√
t

1√
19
2

log(t
√
n)

1−σ2(P ) + t
(nm)2/3

is shown to ensure that the Test Error bound in Theorem 9 converges in a time uniform manner to a
quantity of order Õ(1/(nm)1/3). We consider the Optimisation and Generalisation Error separately.
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The Optimisation Error bound with this step size yields
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which is Õ( 1
(nm)1/3

) when the number of iterations satisfies t ≥ 19
2 log(t

√
n)(nm)2/3/(1−σ2(P )).

We split the Generalisation Error bound term into two parts

2D

√
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and bounded each part separately. The first quantity in (12) with the step size η = η?Test becomes
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which is O(1/
√
nm), and thus O(1/(nm)1/3). For the second quantity in (12), its square yields
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Therefore, when using step size η?Test with t & (nm)2/3/(1− σ2(P )) the Test Error is bounded by
the sum of three quantities each of which are Õ(1/(nm)1/3).

Early Stopping Optimisation. Setting η = η?Opt in the Test Error bound in Theorem 9 and using
(12) to split the Generalisation Error we get
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This isO
(√

log(t
√
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t(1−σ2(P ))
log(t

√
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)
as the second term is dominated by the first and third.

Neglecting the log(t
√
n) term and approximately minimising in t yields
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This is a O(1/(nm)1/3) Test Error bound obtained with t ' (nm)2/3/(1− σ2(P )) iterations.

Early Stopping Single-Machine Serial. Setting η = η? = G
L
√
19t

in the Test Error bound in
Theorem 9 and using (12) to split the Generalisation Error gives
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which is Õ
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as the second term is dominated by the first and third. Ne-

glecting the log(t
√
n) term and approximately minimising the above with respect to the number of

iterations t yields

t = argminc>0
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with the resulting bound
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This is Õ(1/(nm(1− σ2(P ))1/3) and is obtained with t ' (nm)2/3/(1− σ2(P ))4/3 iterations.

A.8. Calculation for Remark 8

In this section it is shown that Distributed SGD with step size choice ρ = O((1 − σ2(P ))/
√
nm)

and iterations t = O(nm/(1 − σ2(P ))) achieves optimal statistical rates up to logarithmic factors
for convex, smooth and Lipschitz losses.
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Begin by plugging ρ = G(1 − σ2(P ))/(L
√
nm) into the Test Error bound of Theorem 5 with

1/(β + 1/ρ) ≤ ρ and (3 + βρ)/(β + 1/ρ) ≤ 4ρ, the latter arising from 3/(β + 1/ρ) ≤ 3ρ and
βρ/(β + 1/ρ) ≤ ρ. This then yields the Test Error bound

E r
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t

t∑
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Xs+1
v

)
− r(x?) ≤ 2(1− σ2(P ))GLt
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3Gκ log((t+ 1)
√
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nm
+ 18

βG2 log2((t+ 1)
√
n)

L2nm
.

Choosing t = (nm)/(1− σ2(P )) we see that the first and fourth terms become O(1/
√
nm) while

the remaining terms are in this case Õ(1/
√
nm).

Appendix B. Proofs of Optimisation Error bounds

This appendix presents Optimisation Error bounds for the Distributed Stochastic Subgradient De-
scent algorithm. Here we consider the general setting of stochastic first-order oracles. The Opti-
misation Error bounds presented within the main body of this work, specifically Lemma 15 and
Lemma 16 for smooth and non-smooth losses, follow from Corollary 27 and Corollary 25 within
this appendix.

B.1. Setup

Let (V,E) be a simple undirected graph with n nodes, and let P ∈ Rn×n be a doubly stochastic
matrix supported on the graph, i.e., Pij 6= 0 only if {i, j} ∈ E. For each v ∈ V , let Fv : Rd → R
be a random convex function. We consider the problem of minimizing the function x → F (x) :=
1
n

∑
v∈V Fv(x) over x ∈ Rd. Let X? be a minimum of F . Assume that E[‖X?‖2] ≤ G2 for a

positive constant G. Given the initial vectors {X1
v = 0}v∈V , throughout this appendix, we consider

the following update for s ≥ 1:

Xs+1
v =

∑
w∈V

Pvw(Xs
w − ηGs+1

w ), (13)

where η > 0 is the step size, and each Gs+1
v ∈ Rd is an estimator of the subgradient of Fv evaluated

at Xs
v . Specifically, for each s ≥ 1 let Fs be the σ-algebra generated by the random functions

{Fv}v∈V and by the estimators {Gkv}k∈{2,...,s}. We have, for any s ≥ 1, v ∈ V ,

E[Gs+1
v |Fs] ∈ ∂Fv(Xs

v). (14)

Note that both {Xs
v}v∈V and X? are measurable with respect to Fs. Assume, for any s ≥ 1, v ∈ V ,

E[‖Gs+1
v ‖2|Fs] ≤ L2. (15)

Section B.2 presents results for the setting just introduced under the additional assumption that the
functions {Fv}v∈V are L-Lipschitz. Section B.3 presents results for the case where the functions
{Fv}v∈V are smooth (Lipschitz continuity is not assumed in this case). Finally, Section B.4 checks
that the assumptions of this general setting are satisfied for the specific case of algorithm (1).

31



RICHARDS AND REBESCHINI

The bounds that we derive are proved controlling the deviation of the output of the algorithm
Xs
v from its network average Xs

:= 1
n

∑
v∈V X

s
v on the one hand (network term), and bounding

the deviation of Xs from the solution X? on the other end (optimisation term). This strategy was
originally proposed in Nedić et al. (2009) and used in Duchi et al. (2012) to get bounds that depend
on the graph topology for a dual method in constrained optimisation. In the smooth case, we present
a bound that also depends on the noise of the gradient (gradient noise term).

Remark 22 The bounds that we derive naturally generalise the bounds in the single-machine set-
ting. If no gradient noise is present and all the functions {Fv}v∈V are the same, then the network
terms vanish as there is no difference between Xs

v and Xs (recall that the initial conditions are the
same for each node, i.e., X1

v = 0 for all v ∈ V ) and optimal tuning of the step sizes recovers the
same rates as for serial SGD: O(1/

√
t) for the Lipschitz case and O(1/t) for the smooth case.

As the matrix P is doubly stochastic, the network averageXs admits the following simple evolution:

X
s+1

= X
s − η 1

n

∑
v∈V

Gs+1
v . (16)

In particular, note that by rearranging the previous expression we get

1

n

∑
v∈V

Gs+1
v =

1

η
(X

s −Xs+1
), (17)

which will be used in the proofs in the next sections.
Before moving on to the next sections and presenting the Optimisation Error bounds, we estab-

lish bounds on the network terms that hold in the setting introduced so far. The next proposition
bounds the deviation of Xs

v from X
s as a function of the second largest eigenvalue in magnitude

of the matrix P , i.e., σ2(P ). We present different bounds, that either depend on the Lipschitz pa-
rameter L or on a Gradient Noise and Function Deviation Term κ, as defined in (18). If no gradient
noise is present and all the functions {Fv}v∈V are the same, then κ = 0, reflecting the comment in
Remark 22.

Proposition 23 (Network term) Consider the assumptions of Section B.1. Let κ2 be such that, for
any v ∈ V, s ≥ 1,

E
[∥∥∥Gs+1

v − 1

n

n∑
`=1

∇F`(Xs
` )
∥∥∥2]︸ ︷︷ ︸

Gradient Noise and Function Deviation Term

≤ κ2. (18)

For any v ∈ V, s ≥ 1, we have

E[‖Xs
v −X

s‖2] ≤ η2 min{L2, κ2}
(

2
log(s

√
n)

1− σ2(P )
+ 1

)2

.

Proof Fix v ∈ V, s ≥ 1. By unraveling the updates in (13) and (16), using that X1
v = 0 for all

v ∈ V , we get

Xs
v = −η

s−1∑
k=1

∑
w∈V

P kvwG
s−k+1
w , X

s
= −η

s−1∑
k=1

∑
w∈V

( 1
n11>)vwG

s−k+1
w ,
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where 1 ∈ Rn is the all-one vector. Using that the rows of the matrix P sum to one, note that for
any collection of vectors {νk}s−1k=1 in Rd we have

Xs
v −X

s
= η

s−1∑
k=1

∑
w∈V

(P k − 1
n11>)vw(Gs−k+1

w − νs−k).

We have
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s
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By Cauchy-Schwarz’s inequality and Hölder’s inequality,
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By choosing νk = 0 and using (15), we get

E[‖Xs
v −X

s‖2] ≤ η2L2
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∑
w∈V
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.

By choosing νk = 1
n

∑n
`=1∇F`(Xk

` ) and using the assumption of the proposition, we get
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Note that
∑s−1

k=1

∑
w∈V |(P k −

1
n11>)vw| =

∑s−1
k=1 ‖e>v P k −

1
n1>‖1, where ev ∈ Rn is the vector

with 1 in the coordinate aligning with node v and 0 everywhere else, and ‖ · ‖1 denotes the `1 norm.
Standard results from Perron-Frobenius theory yield, for any k ≥ 1,

‖e>v P k − 1
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√
n‖e>v P k − 1

n1>‖ ≤
√
nσ2(P )k.

To bound the quantity
∑s−1

k=1 ‖e>v P k −
1
n1>‖1, break the sum and bound each part separately. For

the first half use ‖e>v P k − 1
n1>‖1 ≤ ‖e>v P k‖1 + ‖ 1n1>‖1 = 2 so

s−1∑
k=1

‖e>v P k − 1
n1>‖1 =

s̃∑
k=1

‖e>v P k − 1
n1>‖1 +

s−1∑
k=s̃+1

‖e>v P k − 1
n1>‖1 ≤ 2s̃+

√
n

s−1∑
k=s̃+1

σ2(P )k.

Requiring σ2(P )k ≤ 1
s
√
n

for k between s̃ + 1 and s − 1, set s̃ = b log(s
√
n)

log(σ2(P )−1)
c. As there are no

more than s terms in the sum, using that log(x−1) ≥ 1− x, we get
s−1∑
k=1

‖e>v P k − 1
n1>‖1 ≤ 2s̃+ 1 ≤ 2

log(s
√
n)

1− σ2(P )
+ 1.
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B.2. Convex and Lipschitz

The following result controls the evolution of algorithm (13) in the setting defined in Section B.1,
under the additional assumption of Lipschitz continuity. The proof is inspired from the analysis in
Duchi et al. (2012),

Theorem 24 (Optimisation bound for convex and Lipschitz objectives) Consider the setting of
Section B.1. Let the functions {Fv}v∈V be L-Lipschitz. Then, Distributed SGD yields, for any
v ∈ V and t ≥ 1,

E
[
F
(1

t

t∑
s=1

Xs
v

)
− F (X?)

]
≤ 1

t

t∑
s=1

E[F (Xs
v)− F (X?)]

≤ 3L

t
max
w∈V

t∑
s=1

E‖Xs
w−X

s‖︸ ︷︷ ︸
Network Term

+
1

t

t∑
s=1

1

n

∑
w∈V

E〈Gs+1
w , X

s −X?〉︸ ︷︷ ︸
Optimisation Term

.

and the Optimisation Term is upper bounded by G2

2ηt + ηL2

2 .

Proof For any s ≥ 1 and v ∈ V , adding and subtracting the term 1
n

∑
w∈V Fw(Xs

w), we find

E[F (Xs
v)− F (X?)] =

1

n

∑
w∈V

E[Fw(Xs
v)− Fw(Xs

w)] +
1

n

∑
w∈V

E[Fw(Xs
w)− Fw(X?)]

≤ 1

n

∑
w∈V

LE‖Xs
v −Xs

w‖+
1

n

∑
w∈V

E〈Gs+1
w , Xs

w −X?〉,

where for the first summand we used the Lipschitz property, and for the second summand we used
convexity, assumption (14), and that both {Xs

v}v∈V and X? are measurable with respect to Fs. In
fact, for any w ∈ V , we have

Fw(Xs
w)−Fw(X?)≤〈∂Fw(Xs

w), Xs
w−X?〉=〈E[Gs+1

w |Fs], Xs
w−X?〉=E[〈Gs+1

w , Xs
w−X?〉|Fs],

so that E[Fw(Xs
w)− Fw(X?)] ≤ E〈Gs+1

w , Xs
w −X?〉 by the tower property of conditional expec-

tations. By adding and subtracting Xs and applying the Cauchy-Schwarz’s inequality, we have

E〈Gs+1
w , Xs

w −X?〉 ≤ E[‖Gs+1
w ‖‖Xs

w −X
s‖] + E〈Gs+1

w , X
s −X?〉,

and the first term on the right-hand side is further bounded by using Jensen’s inequality and the fact
that (Xs

w −X
s
) is Fs-measurable, along with assumption (15), giving

E[‖Gs+1
w ‖‖Xs

w −X
s‖] ≤ E[(E[‖Gs+1

w ‖2|Fs])1/2‖Xs
w −X

s‖] ≤ LE‖Xs
w −X

s‖.

All together with ‖Xt
v −Xs

w‖ ≤ 2 maxw′∈V ‖Xs
w′ −X

s‖ we have

1

t

t∑
s=1

E[F (Xs
v)− F (X?)] ≤ 3L

t
max
w∈V

t∑
s=1

E‖Xs
w−X

s‖+
1

t

t∑
s=1

1

n

∑
w∈V

E〈Gs+1
w , X

s−X?〉.
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To bound the Optimisation Term we proceed as follows. Using (17) and that 〈a, b〉 = (‖a‖2 +
‖b‖2 − ‖a− b‖2)/2 we obtain

1

n

∑
w∈V

E〈Gs+1
w , X

s −X?〉 =
1

η
E〈Xs −Xs+1

, X
s −X?〉

=
1

2η
(E[‖Xs+1 −Xs‖2] + E[‖Xs −X?‖2]−E[‖Xs+1 −X?‖2])

≤ 1

2η

(
E[‖Xs −X?‖2]−E[‖Xs+1 −X?‖2] + η2E

[∥∥∥ 1

n

∑
w∈V

Gs+1
w

∥∥∥2])
≤ 1

2η
(E[‖Xs −X?‖2]−E[‖Xs+1 −X?‖2] + η2L2),

where we used Cauchy-Schwarz’s and Hölder’s inequalities, along with assumption (15), to get

E
[∥∥∥ 1

n

∑
w∈V

Gs+1
w

∥∥∥2] =
1

n2

∑
u,w∈V

E〈Gs+1
u , Gs+1

w 〉 ≤ 1

n2

∑
u,w∈V

E[‖Gs+1
u ‖‖Gs+1

w ‖]

≤ 1

n2

∑
u,w∈V

√
E[‖Gs+1

u ‖2]
√

E[‖Gs+1
w ‖2] ≤ L2. (19)

Summing over s, using that X1
v = 0 for all v ∈ V and that E[‖X?‖2] ≤ G2, we get the following

bound for the Optimisation Term

1

t

t∑
s=1

1

n

∑
w∈V

E〈Gs+1
w , X

s −X?〉 ≤ 1

2ηt
E[‖X1 −X?‖2] +

ηL2

2
≤ G2

2ηt
+
ηL2

2
.

Corollary 25 Consider the assumptions of Section B.1. Let the functions {Fv}v∈V be L-Lipschitz.
Then, Distributed SGD yields, for any v ∈ V and t ≥ 1,

E
[
F
(1

t

t∑
s=1

Xs
v

)
− F (X?)

]
≤ 1

t

t∑
s=1

E[F (Xs
v)− F (X?)] ≤ ηL2

2

(
19

log(t
√
n)

1− σ2(P )

)
+
G2

2ηt
.

Proof It follows from Theorem 24 and Proposition 23, as E‖Xs
v −X

s‖ ≤
√
E[‖Xs

v −X
s‖2] by

Jensen’s inequality.

B.3. Convex and Smooth

The following result controls the evolution of algorithm (13) in the setting defined in Section B.1,
under the additional assumption of smoothness. The proof is inspired by the one given Dekel et al.
(2012) for single-machine serial SGD applied to smooth losses, the specific exposition of which
more closely follows Bubeck et al. (2015). The bound that we give is made of three components:
the Optimisation Term that decays like 1/t; the Gradient Noise Term that captures the average noise
of the gradient across the graph; the Network Term that controls the deviation of the algorithm from
its network average.
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Theorem 26 (Optimisation bound for convex and smooth objectives) Consider the Assumptions
of Section B.1. Let the functions {Fv}v∈V be β-smooth. Then, Distributed SGD with η = 1/(β +
1/ρ) and ρ ≥ 0, yields, for any v ∈ V and t ≥ 1,

E
[
F
(1

t

t∑
s=1

Xs+1
v

)
− F (X?)

]
≤ 1

t

t∑
s=1

E[F (Xs+1
v )− F (X?)]

≤ 1

t

t∑
s=1

(
LE‖Xs+1

v −Xs+1‖+βmax
w∈V

E[‖Xs+1
w −Xs+1‖2]+β

2

(
1+βρ

)
max
w∈V

E[‖Xs
w−X

s‖2]︸ ︷︷ ︸
Network Term

)

+
ρ

2

1

t

t∑
s=1

E
[∥∥∥ 1

n

∑
w∈V

(Gs+1
w −∇Fw(Xs

w))
∥∥∥2]︸ ︷︷ ︸

Gradient Noise Term

+
1

t

t∑
s=1

(
1

n

∑
w∈V

E〈Gs+1
w , X

s+1 −X?〉+
1

2

(
β +

1

ρ

)
E[‖Xs+1 −Xs‖2]

)
︸ ︷︷ ︸

Optimisation Term

,

and the Optimisation Term is upper bounded by 1
2(β + 1

ρ)G
2

t .

Proof Recall that if a function f : Rd → R is β-smooth then for any x, y ∈ Rd we have (Nesterov,
2013) f(x) − f(y) ≤ 〈∇f(y), x − y〉 + β

2 ‖x − y‖
2. Fix s ≥ 1, v ∈ V . Consider the following

decomposition.

F (Xs+1
v )− F (X?) = F (Xs+1

v )− F (X
s+1

)︸ ︷︷ ︸
Term (a)

+F (X
s+1

)− F (X?)︸ ︷︷ ︸
Term (b)

. (20)

Term (a). To bound Term (a), we use smoothness and convexity to get

F (Xs+1
v )− F (X

s+1
) =

1

n

∑
w∈V

(
Fw(Xs+1

v )− Fw(Xs+1
w ) + Fw(Xs+1

w )− Fw(X
s+1

)
)

≤ 1

n

∑
w∈V

(
〈∇Fw(Xs+1

w ), Xs+1
v −Xs+1

w 〉+β

2
‖Xs+1

v −Xs+1
w ‖2 + 〈∇Fw(Xs+1

w ), Xs+1
w −Xs+1〉

)
=

1

n

∑
w∈V

(
〈∇Fw(Xs+1

w ), Xs+1
v −Xs+1〉+

β

2
‖Xs+1

v −Xs+1
w ‖2

)
.

As∇Fw(Xs+1
w ) = E[Gs+2

w |Fs+1] and {Xs+1
w }w∈V are Fs+1-measurable, we get

〈∇Fw(Xs+1
w ), Xs+1

v −Xs+1〉 = E[〈Gs+2
w , Xs+1

v −Xs+1〉|Fs+1]

≤ E[‖Gs+2
w ‖‖Xs+1

v −Xs+1‖|Fs+1]

≤
√
E[‖Gs+2

w ‖2|Fs+1]‖Xs+1
v −Xs+1‖

≤ L‖Xs+1
v −Xs+1‖,
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where we used Cauchy-Schwarz’s inequality, Jensen’s inequality, and E[‖Gs+2
w ‖2|Fs+1] ≤ L2.

Thus,

E[F (Xs+1
v )− F (X

s+1
)] ≤ LE‖Xs+1

v −Xs+1‖+ βmax
w∈V

E[‖Xs+1
w −Xs+1‖2]. (21)

Term (b). To bound Term (b), we use smoothness to find a bound that involves a telescoping sum
whose terms cancel out when we take the summation over time s. Using smoothness, adding and
subtracting 〈Gs+1

w , X
s+1

, X
s〉 = 〈Gs+1

w , X
s+1 − X?〉 + 〈Gs+1

w , X? − Xs+1〉 and using Cauchy-
Schwarz’s inequality (2〈a, b〉 ≤ ρ‖a‖2 + ‖b‖2/ρ for ρ ≥ 0) we get

F (X
s+1

)− F (X
s
) ≤ 1

n

∑
w∈V
〈∇Fw(X

s
), X

s+1 −Xs〉+
β

2
‖Xs+1 −Xs‖2

=
〈 1

n

∑
w∈V

(∇Fw(X
s
)−Gs+1

w ), X
s+1 −Xs

〉
+

1

n

∑
w∈V
〈Gs+1

w , X
s+1 −X?〉

+
1

n

∑
w∈V
〈Gs+1

w , X? −Xs〉+
β

2
‖Xs+1 −Xs‖2

≤ ρ

2

∥∥∥ 1

n

∑
w∈V

(∇Fw(X
s
)−Gs+1

w )
∥∥∥2 +

1

n

∑
w∈V
〈Gs+1

w , X
s+1 −X?〉

+
1

n

∑
w∈V
〈Gs+1

w , X? −Xs〉+
1

2

(
β +

1

ρ

)
‖Xs+1 −Xs‖2. (22)

Adding F (X
s
) to both sides, taking expectation, using that {Xs

w}w∈V and X? are Fs-measurable,
and that E〈[Gs+1

w , X? −Xs〉|Fs] = 〈∇Fw(Xs
w), X? −Xs〉, we get

E[F (X
s+1

)− F (X?)] ≤ E[F (X
s
)− F (X?)] +

ρ

2
E
[∥∥∥ 1

n

∑
w∈V

(∇Fw(X
s
)−Gs+1

w )
∥∥∥2]

+
1

n

∑
w∈V

E〈Gs+1
w , X

s+1 −X?〉+
1

2

(
β +

1

ρ

)
E[‖Xs+1 −Xs‖2]

+
1

n

∑
w∈V

E〈∇Fw(Xs
w), X? −Xs〉. (23)

To bound the first term on the right-hand side of bound (23) and cancel the dependence on X? from
the term 〈∇Fw(Xs

w), X? −Xs〉, note that by convexity and smoothness we get

E[F (X
s
)− F (X?)] =

1

n

∑
w∈V

E[Fw(X
s
)− Fw(Xs

w) + Fw(Xs
w)− Fw(X?)]

=
1

n

∑
w∈V

E[Fw(X
s
)−Fw(Xs

w)+〈∇Fw(Xs
w), Xs

w−X
s〉+〈∇Fw(Xs

w), X
s−X?〉]

≤ β

2
max
w∈V

E‖Xs
w−X

s‖2 +
1

n

∑
w∈V

E〈∇Fw(Xs
w), X

s−X?〉. (24)
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To bound the second term on the right-hand side of bound (23), note that

E
[∥∥∥ 1

n

∑
w∈V

(∇Fw(X
s
)−Gs+1

w )
∥∥∥2]=E

[∥∥∥ 1

n

∑
w∈V

(
∇Fw(X

s
)−∇Fw(Xs

w)+∇Fw(Xs
w)−Gs+1

w

)∥∥∥2]
= E

[∥∥∥ 1

n

∑
w∈V

(∇Fw(X
s
)−∇Fw(Xs

w))
∥∥∥2]+ E

[∥∥∥ 1

n

∑
w∈V

(∇Fw(Xs
w)−Gs+1

w )
∥∥∥2], (25)

where we used that the cross terms are zero as E[Gs+1
w |Fs] = ∇Fw(Xs

w) and both {Fw}w∈V and
{Xs

w}w∈V are Fs-measurable. The first term in (25) can be bounded as follows:

E
[∥∥∥ 1

n

∑
w∈V

(∇Fw(Xs
w)−∇Fw(X

s
))
∥∥∥2]

=
1

n2

∑
w,l∈V

E〈∇Fw(Xs
w)−∇Fw(X

s
),∇Fl(Xs

l )−∇Fl(X
s
)〉

≤ 1

n2

∑
w,l∈V

E
[
‖∇Fw(Xs

w)−∇Fw(X
s
)‖‖∇Fl(Xs

l )−∇Fl(X
s
)‖
]

≤ β2

n2

∑
w,l∈V

E
[
‖Xs

w −X
s‖‖Xs

l −X
s‖
]

≤ β2

n2

∑
w,l∈V

√
E
[
‖Xs

w −X
s‖2
]√

E
[
‖Xs

l −X
s‖2
]

≤ β2 max
w∈V

E
[
‖Xs

w −X
s‖2
]
, (26)

where applied Cauchy-Schwarz’s inequality, smoothness, and Hölder’s inequality. Plugging (24),
(25), and (26) into (23) we get the following bound for the expected value of term (b):

E[F (X
s+1

)−F (X?)] ≤ β

2

(
1+βρ

)
max
w∈V

E[‖Xs
w−X

s‖2] +
ρ

2
E
[∥∥∥ 1

n

∑
w∈V

(∇Fw(Xs
w)−Gs+1

w )
∥∥∥2]

+
1

n

∑
w∈V

E〈Gs+1
w , X

s+1 −X?〉+
1

2

(
β +

1

ρ

)
E[‖Xs+1 −Xs‖2]. (27)

Term (a) + Term (b). The main result in the theorem follows by using bounds (21) and (27) to
bound Term (a) and Term (b) in (20), taking the summation over time from s = 1 to s = t.

To bound the Optimisation Term, use (17) and that 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2 so that

1

n

∑
w∈V
〈Gs+1

w , X
s+1 −X?〉 =

1

η
〈Xs −Xs+1

, X
s+1 −X?〉

= −1

η
〈Xs+1 −Xs

, X
s+1 −X?〉

=
1

2η

(
− ‖Xs+1 −Xs‖2 − ‖Xs+1 −X?‖2 + ‖Xs −X?‖2

)
.

The choice η = 1
β+1/ρ leads to the cancellation of the quantity ‖Xs+1 − Xs‖2 in the Optimisa-

tion Term. The telescoping sum over time, using that X1
w = 0 for all w ∈ V and the assumption
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E[‖X?‖2] ≤ G2, yields the final result.

As for single-machine serial SGD (Dekel et al., 2012), the error bound that we give in Theorem
26 for the smooth case exhibits explicit dependence on the gradient noise, which in our setting
is averaged out across the network. As far as the following corollary is concerned, we assume a
time-uniform control on the gradient noise, namely,

E
[∥∥∥ 1

n

∑
w∈V

(Gs+1
w −∇Fw(Xs

w))
∥∥∥2] ≤ σ2 (28)

for any s ≥ 1.

Corollary 27 Consider the Assumptions of Section B.1. Let the functions {Fv}v∈V be β-smooth
and satisfy both (18) and (28). Then, Distributed SGD with η = 1/(β + 1/ρ) and ρ ≥ 0, yields, for
any v ∈ V and t ≥ 1,

E
[
F
(1

t

t∑
s=1

Xs+1
v

)
− F (X?)

]
≤ 1

t

t∑
s=1

E[F (Xs+1
v )− F (X?)]

≤ ρ

2
σ2 +

(β + 1/ρ)G2

2t
+

3κ

β + 1/ρ

log((t+ 1)
√
n)

1− σ2(P )

(
L+

3

2

β(3 + βρ)κ

β + 1/ρ

log((t+ 1)
√
n)

1− σ2(P )

)
Proof It follows from Theorem 26 and Proposition 23.

B.4. Assumptions for Distributed SGD (1)

This section verifies that the more general assumptions considered in this Appendix for Distributed
SGD (13) are satisfied within the context of the main body of this work, that is, for Distributed
SGD (1) as described within Section 3. This is performed by placing Distributed SGD (1) into the
context Distributed SGD (13) as follows. Let the random objective functions be Fv(x) = Rv(x) =
1
m

∑m
k=1 `(x, Zv,k) for v ∈ V , which yields the network average F (x) = R(x). Consider the

following stochastic gradients, for v ∈ V and s ≥ 1,

Gs+1
v = ∂`(Xs

v , Zv,Ks+1
v

),

where Ks
v is a uniform random variable on [m]. Let F1 be the σ-algebra generated by the data sets

D. For any s ≥ 2, let Fs contain the σ-algebra generated by the data setsD and the uniform random
variables up to time s {K2

v , . . . ,K
s
v}v∈V . The random functions {Fv}v∈V and their optimal value

X? are Fs-measurable, as Fs contains the σ-algebra generated byD. The iterates {Xk
v }k≤s,v∈V are

also Fs-measurable, as Fs contains the σ-algebra generated by {K2
v , . . . ,K

s
v}v∈V . We now check

that assumption (14) and assumption (15) are satisfied. The following hold for any s ≥ 1.

• Assumption (14) on the unbiasedness of the subgradient estimators is satisfied as for any
v ∈ V we have

E[Gs+1
v |Fs] = E[∂`(Xs

v , Zv,Ks+1
v

)
∣∣Fs] =

1

m

m∑
k=1

∂`(Xs
v , Zv,k) ∈ ∂Fv(Xs

v),

where have used that the sum of subgradients belong to the subgradient of sums.
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• Assumption (15) on the boundedness of the second moment of the subgradients is satisfied as
for any v ∈ V we have

E[‖Gs+1
v ‖2|Fs] = E[‖∂`(Xs

v , Zv,Ks+1
v

)‖2
∣∣Fs] =

1

m

m∑
k=1

‖∂`(Xs
v , Zv,k)‖2 ≤ L2,

where we have used that the function `( · , z) is L-Lipschitz for all z ∈ Z.
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