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Abstract
Minimum Error Entropy (MEE) principle is an important approach in Information Theoretical
Learning (ITL). It is widely applied and studied in various fields for its robustness to noise.
In this paper, we study a reproducing kernel-based distributed MEE algorithm, DMEE, which
is designed to work with both fully supervised data and semi-supervised data. The divide-and-
conquer approach is employed, so there is no inter-node communication overhead. Similar as other
distributed algorithms, DMEE significantly reduces the computational complexity and memory
requirement on single computing nodes. With fully supervised data, our proved learning rates
equal the minimax optimal learning rates of the classical pointwise kernel-based regressions. Under
the semi-supervised learning scenarios, we show that DMEE exploits unlabeled data effectively, in
the sense that first, under the settings with weak regularity assumptions, additional unlabeled data
significantly improves the learning rates of DMEE. Second, with sufficient unlabeled data, labeled
data can be distributed to many more computing nodes, that each node takes only O(1) labels,
without spoiling the learning rates in terms of the number of labels. This conclusion overcomes
the saturation phenomenon in unlabeled data size. It parallels a recent results for regularized least
squares (Lin and Zhou, 2018), and suggests that an inflation of unlabeled data is a solution to
the MEE learning problems with decentralized data source for the concerns of privacy protection.
Our work refers to pairwise learning and non-convex loss. The theoretical analysis is achieved by
distributed U-statistics and error decomposition techniques in integral operators.

Keywords: Information theoretic learning, minimum error entropy, distributed method, semi-
supervised data, reproducing kernel Hilbert space

1. Introduction

Pioneered by the work of Principe and his collaborators in Erdogmus and Principe (2000), MEE
principle has been playing an essential role in ITL (Principe, 2010). MEE principle is widely adopted
as a powerful alternative to the traditional least squares method which is suboptimal in the non-
Gaussian situations (Erdogmus and Principe, 2000). The classical least square method minimizes
the variance of the prediction error. Its optimality heavily depends on the assumption of Gaussianity
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due to the use of a second order statistics. When Gaussianity assumption is violated, high order
methods are desired. Entropy is a functional of the probability density function of the error variable
and measures the average information contained in the distribution. Minimizing entropy allows one
to take into account high-order statistical behavior in the learning process and thus is advantageous
in non-Gaussian scenarios. Given an error variable E, Renyi’s entropy and Shannon entropy are
widely used to quantify the information contained in E. In this paper we focus on the quadratic
Renyi’s entropy, which is defined by

H(E) = − logE(pE) = − log

∫
E

p2E(e)de, (1)

where pE is the probability density function of E. MEE employs entropy as a new measurement of
error to substitute the mean squared error

∫
E
e2pE(e)de in the least squares. Renyi’s entropy takes

into consideration all higher moments rather than the variance used by the least squares. Hence,
MEE is capable of dealing with outliers, heavy-tailed noise or skewed noise distribution. Because
of its robustness to non-Gaussian noise, MEE performs well in a large number of applications such
as signal processing, regression analysis, feature selection, and data clustering. See Erdogmus and
Principe (2003); Chen et al. (2010); Gokcay and Principe (2002); Shen and Li (2015); Silva et al.
(2010). Meanwhile, MEE has the nature of pairwise learning (Christmann and Zhou, 2016; Wang
et al., 2012; Ying and Zhou, 2016), which focuses on approximating the difference of labels between
each pair of sample points, incurring high computational complexity. The complexity restricts the
application of MEE algorithms on the problems with large data size. Although there is a series of
work on the theory and applications of MEE (Hu et al., 2015; Fan et al., 2016; Hu et al., 2013), few
works have been done to reduce the computational complexity, which is one of the motivations of
this paper.

In the recent decade, the growth of computing facility power falls way behind the growth of
the scale of data, and the research and practice of privacy protection falls way behind the growing
concerns of privacy. Distributed algorithms have drawn much attention of machine learning and
optimization communities, and are widely implemented in industry. Distributed approaches reduce
computational complexity and memory requirement for single computing nodes, and can also be
applied to the scenarios where data have to be stored and analyzed locally for privacy concerns. In
this paper, we study a distributed MEE algorithm without communication overhead. Specifically,
one first divides a large data set into several subsets, then sends each subset as training sample to
a computing node for a local output function, and finally averages these local output functions to
synthesize the overall output function. Alternatively, different data subsets may directly be used
locally to train local output functions, and the prediction is done by distributing the new instance,
then collecting and averaging the local predictions. This scheme has been developed for a lot of
classical learning algorithms, including kernel ridge regression (Lin et al., 2017; Zhang et al., 2015),
stochastic gradient descent algorithm (Lin and Zhou, 2018; Zinkevich et al., 2010), spectral algorithm
(Mücke and Blanchard, 2018; Guo et al., 2017a), and bias correction (Guo et al., 2017b). For the
applications of MEE algorithm that have privacy concerns, we adopt semi-supervised learning to our
distributed scheme. Semi-supervised learning itself is an active research area, with one of the earliest
ideas stemming from self-learning in classification, known as self-training, self-labeling, or decision-
directed learning (Chapelle et al., 2006), and is later extended in various forms to other applications,
including co-training in text classification (Blum and Mitchell, 1998), graph-based methods (Wang
et al., 2013), and manifold regularization (Belkin and Niyogi, 2004). We focus on improving the
distributed MEE algorithm performance by utilizing unlabeled data.

Most existing works on MEE methods study only linear models. The distributed MEE algorithms
we study employ reproducing kernels and are able to fit nonlinear models. The non-convex and
pairwise loss functions caused the main difficulties in analysis, which we overcome by employing
some decomposition techniques in U-statistics.
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This paper provides three main contributions. First, existing analysis of MEE algorithm in
the literature has largely been improved, and extended losslessly to DMEE. Our obtained learning
rates coincide with the minimax optimal rates of regularized least squares algorithms for pointwise
learning. Second, we prove that unlabeled data can significantly improve learning rates under the
setting with weak regularity assumptions. Third, we prove that with sufficient unlabeled data, the
restriction on the maximum number of computing nodes that labeled data are distributed to is
removed.

The paper is organized as follows. In Section 2, we review the background of MEE learning,
define the DMEE algorithms, and present our main results on learning rates. In Section 3, we
provide detailed discussions and comparisons. Mathematical analysis goes to Sections 4 and 5 for
supervised and semi-supervised data respectively.

2. Backgrounds and main results

In this paper we study regression problems. We assume that the explanatory variable X takes values
in a compact domain X in an Euclidean space, the response variable Y takes values in the output
space Y which is a subset of the real line R, and

Y = g∗(X) + ε,

where g∗ is the target function and ε is the noise in the regression model. Let ρ be a Borel probability
measure on the product space Z = X ×Y. Let ρX and ρ(y|x) denote the marginal distribution of ρ
on X , and the conditional distribution on Y given x ∈ X , respectively. The purpose of regression is

to estimate g∗(X) according to a sample D = {(xi, yi)}|D|i=1 drawn independently from ρ, where |D| is
the sample size, the cardinality of D. Given a hypothesis space of functions g : X → Y, MEE looks
for a good approximation of g∗ by minimizing the entropy of the prediction error E = g(X) − Y .
Here we consider Renyi’s quadratic entropy (1). Denote ei = g(xi)− yi, (xi, yi) ∈ D for 1 ≤ i ≤ |D|
and pE can be estimated by Parzen windowing (Parzen, 1962). Given a windowing function G :
(−∞,+∞)→ [0,+∞) and a scaling parameter h > 0, one gets the density estimator

p̂E(e) =
c

|D|

|D|∑
i=1

Gh(e− ei) =
c

|D|h

|D|∑
i=1

G

(
(e− ei)2

h2

)
,

where c is a normalization constant so that
∫∞
−∞ cGh(t)dt = 1. A typical example is the windowing

function G(a) = exp(−a) with a ≥ 0, associated to which are the constant c = 1√
π

and the Gaussian

kernel cGh(t) = 1√
πh

exp(− t2

h2 ). Then the empirical Renyi’s entropy of (1) is

HD(g) = − log

 1

|D|

|D|∑
i=1

1

|D|h

|D|∑
j=1

G

(
(ei − ej)2

h2

)− log c.

MEE algorithm searches over a suitable hypothesis space H for a minimizer of HD(g). Equivalently,
one can just minimizes the factor

RD(g) =− h2

|D|2

|D|∑
i=1

|D|∑
j=1

G

(
(ei − ej)2

h2

)

=− h2

|D|2
∑

(x,y)∈D
(u,v)∈D

G

(
[(g(x)− y)− (g(u)− v)]2

h2

)
. (2)
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MEE algorithm outputs gD := arg min
g∈H
RD(g) as the estimator of g∗.

In this work, we study the kernel based MEE algorithm, which includes the linear models studied
in the literature as a special case. The learning process of the kernel MEE method is associated with
a pairwise reproducing kernel Hilbert space (RKHS) (Ying and Zhou, 2016) HK on X 2 := X × X .
Denote by K : X 2×X 2 → R a pairwise Mercer kernel, which is continuous, symmetric and positive
semi-definite. The pairwise RKHS HK is defined to be the completion of the linear span of the set of
functions {K(x,u)(·) := K((x, u), (·, ·)) : (x, u) ∈ X 2} with respect to the inner product that satisfies
〈K(x,u),K(x′,u′)〉K = K((x, u), (x′, u′)) for any (x, u), (x′, u′) ∈ X 2.

We replace the hypothesis function difference g(x) − g(u) in (2), by a pairwise function f(x, u)
in HK , and generalize the scheme (2) to the pairwise empirical risk

ED(f) = − h2

|D|2
∑

(x,y)∈D
(u,v)∈D

G

(
[(f(x, u)− y + v)]2

h2

)
.

Our target function is now fρ(x, u) := g∗(x)− g∗(u). It is pointed out in Ying and Zhou (2016) that
by the restriction

K((x, u), (x′, u′)) = W (x, x′) +W (u, u′)−W (x, u′)−W (u, x′) (3)

(where W is a reproducing kernel on X), any pairwise function f ∈ HK has the form of function
difference f(x, u) = g(x) − g(u) with g ∈ HW . However, here we do not impose such restriction
and will give analysis for general pairwise Mercer kernels. To avoid overfitting, we consider the
regularized MEE as follows.

Definition 2.1 Given a labeled data set D = {(xi, yi)}|D|i=1, the regularized MEE algorithm with an
RKHS HK in supervised learning is defined by

fD,λ := arg min
f∈HK

ED(f) + λ‖f‖2K , (4)

where λ > 0 is the regularization parameter.

The efficiency of the regularized MEE (4) in applications has been observed in considerable
experimental results and theoretical analysis have been given in Hu et al. (2016); Fan et al. (2016).
As a byproduct of our main results, we shall prove that the learning rates of (4) equal the minimax
optimal learning rates of the classical pointwise regularized least squares. This greatly improves the
results in the literature (we defer the detailed comparison to Section 3).

For simplicity and without loss of much generality, we formulate the fully supervised data set D
for our distributed MEE algorithm as the union of k independent and equal-sized subsets D1, . . . , Dk,
all drawn independently from (Z, ρ). So,

D =

k⋃
i=1

Di.

For technical simplicity, in this paper we assume

|D1| = . . . = |Dk| =
|D|
k
≥ 4.

A local predicted function fDl,λ is obtained from (4) with Dl. The distributed MEE algorithm
outputs its predicted function f̄D,λ as the average of the local output functions

f̄D,λ =
1

k

k∑
l=1

fDl,λ. (5)
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In this paper we study the convergence of f̄D,λ to fρ in the square integrable space (L2
ρX2

, ‖ · ‖ρ),
where

L2
ρX2

:=

{
f : X 2 → R : ‖f‖2ρ :=

∫
X 2

|f(x, u)|2dρX (x)dρX (u) <∞
}
.

Below we elaborate three important assumptions to carry out the analysis. The first assumption
(6) is about the regularity of the target function fρ. Define the integral operator LK : L2

ρX2
→ L2

ρX2

associated with the pairwise kernel K by

LKf :=

∫
X

∫
X
f(x, u)K(x,u)dρX (x)dρX (u), ∀f ∈ L2

ρX2
.

Since K is a Mercer kernel on the compact domain X 2, LK is of trace class (hence compact) and
positive. So we write LrK as the r-th power of LK for r > 0. Our error bounds are stated in terms
of the regularity of the target function fρ(x, u), given by

fρ = LrK(hρ), for some r > 0 and hρ ∈ L2
ρX2

, (6)

The condition (6) characterizes the regularity of fρ and is directly related to the smoothness of fρ
when HK is a Sobolev space. If (6) holds with r ≥ 1

2 , fρ lies in the space HK .
The second assumption (7) is about the capacity of HK , measured by the effective dimension

(Zhang, 2002; Caponnetto and Yao, 2010; Blanchard and Krämer, 2016)

N (λ) = Trace((LK + λI)−1LK), for λ > 0,

where I is the identity operator on HK . In this paper, we assume that

N (λ) ≤ C0λ
−s for some C0 > 0 and 0 < s ≤ 1. (7)

We postpone some discussions on (7) to Section 3.
The third assumption (8) is about the conditional probability distribution ρ(y|x) on the output

space Y. We only assume that the output variable Y satisfies the moment condition (van der Vaart
and Wellner, 1996, page 103): there exist two positive numbers σ,M > 0, both independent of X,
such that for any integer q ≥ 2,

E (|Y |q|X) ≤ 1

2
q!σ2Mq−2. (8)

The assumption (8) covers many common distributions, for example, Gaussian and the distributions
with compact support.

Throughout the paper, we assume that the windowing function G is differentiable, G′(0) = −1,
and G(a) ≤ G(0) for a > 0. We assume that

CG := sup
a∈(0,∞)

|G′(a)| <∞,

and there exists some p, cp > 0 such that

|G′(a)−G′(0)| ≤ cpap, for any a > 0. (9)

For example, the windowing function G(a) = e−a for Gaussian kernel satisfies the above assumptions
with cp = 1 and p = 1.

Since the convergence requires to select λ → 0 as |D| → ∞, we assume λ ≤ 1 in the sequel to
simplify the notations. Without loss of generality, we also assume

sup
(x,u)∈X 2

√
K((x, u), (x, u)) = 1. (10)
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2.1. Convergence of DMEE with fully supervised data

The following theorem bounds the error of (5) with overwhelming probability.

Theorem 2.2 Assume (6) for r > 0. For any 0 < δ < 1, we have with probability at least 1 − δ
that,

‖f̄D,λ − fρ‖ρ ≤ ‖hρ‖ρλmin{r,1} + (2‖fλ‖K + 8M + 8σ)AD,λ,k log
8

δ

+ 128(‖fλ‖K +M + σ)λ−
1
2

(
log

16k

δ

)4

max
1≤l≤k

(
A2
Dl,λ

λ
+ 1

)
A2
Dl,λ

+ 16cp,σ,M

(
1 + λp+

1
2

)
h−2pλ−p−1

(
log

16k

δ

)3(
log

16|D|
δ

)2p+1

×

(
1 + λ−

1
2 max
1≤l≤k

(
A2
Dl,λ

λ
+ 1

)
ADl,λ

)
(11)

where the constant cp,σ,M is independent of D, δ, or h, and it will be specified later after the bound
(27). Here and in the sequel, b|D|/4c denotes the largest integer not exceeding |D|/4, AD,λ,k :=
k

|D|
√
λ

+ 1
b|D|/4c

√
λ

+
√
N (λ)
b|D|/4c , AD,λ := AD,λ,1, and ADl,λ := ADl,λ,1.

Corollary 2.3 Assume (6) for r > 0 and (7). Let

λ =

{
|D|−

1
1+s , for 0 < r ≤ 1

2 ,

|D|−
1

s+2min{1,r} , for r > 1
2 .

and

k

{
= 1, for 0 < r ≤ 1

2 ,

≤ λ−min{r− 1
2 ,

1
2} log−4 |D|, for r > 1

2 .
(12)

Then for any 0 < δ < 1, with probability 1− δ,

‖f̄D,λ − fρ‖ρ ≤ C1 max
{
λmin{r,1}, h−2pλ−p−1(log |D|)2p+4

}(
log

16

δ

)2p+4

, (13)

where C1 is a constant independent of D, δ, k, or h, and it will be specified in the proof.

As a direct corollary, the following theorem provides the learning rates for DMEE (and hence MEE)
with large h.

Theorem 2.4 Under the same conditions of Corollary 2.3, if one further has

h ≥
[
λ−r−1−p(log |D|)2p+4

] 1
2p , then with probability at least 1− δ,

‖f̄D,λ − fρ‖ρ ≤ C1

{
|D|−

r
s+1
(
log 16

δ

)2p+4
, for 0 < r ≤ 1

2 ,

|D|−min{ r
s+2r ,

1
s+2} (log 16

δ

)2p+4
, for r > 1

2 ,
(14)

where C1 is defined in Corollary 2.3 above. Furthermore, we employ Lemma B.1 in Appendix B to
see that for any real number µ > 0,

[
E(‖f̄D,λ − fρ‖µρ )

]1/µ ≤ [16Γ(µ(2p+ 4) + 1)]
1/µ

C1

{
|D|−

r
s+1 , for 0 < r ≤ 1

2 ,

|D|−min{ r
s+2r ,

1
s+2}, for r > 1

2 .
(15)

In particular, since the only assumption (12) on k permits the case k = 1, the above bounds (14)
and (15) for f̄D,λ also hold for fD,λ.
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Remark 2.5 Theorem 2.4 suggests that as r ∈ (0, 1] increases, the learning rate is improved. How-
ever, further increasing of r beyond 1 may not help to improve the learning rate. This saturation
phenomenon is widely observed in the literature; see e.g. Lo Gerfo et al. (2008); Lin et al. (2017).

Recall the goal of regression analysis is to get a good estimator of g∗. In this work, we aim to
learn the difference of the regression function fρ(x, u) = g∗(x)− g∗(u) based on the idea of pairwise
learning (Ying and Zhou, 2016, 2017). For this purpose, it is natural to adopt pariwise reproducing
kernels, and build the theory in a general way thereupon. To derive an estimator of g∗, we first
consider the following orthogonal projection P on L2

ρX2
(note that ρX 2 is a probability measure)

(Pf)(x, u) = (Mf)(x)− (Mf)(u), where (Mf)(x) =
1

2

∫
X

[f(x, u)− f(u, x)] dρX(u).

In particular, if f(x, u) = g(x)−g(u) for some g ∈ L2
ρX , then Pf = f ,Mf = g−

∫
X g(u)dρX (u), and∫

X (Mf)(x)dρX(x) = 0. So
∥∥f̄D,λ − fρ∥∥2ρ ≥ ∥∥P f̄D,λ − fρ∥∥2ρ = 2

∥∥(Mf̄D,λ + g∗ −Mfρ)− g∗
∥∥2
L2
ρX

.

With data D, one replaces M by MD : C(X 2)→ C(X ),

(MDf)(x) :=
1

2|D|
∑

(u,v)∈D

[f(x, u)− f(u, x)] ,

and replaces the difference g∗ − Mfρ =
∫
X
g∗(x)dρX(x) by its unbiased and efficient estimator

1
|D|
∑

(x,y)∈D y.

2.2. Convergence of DMEE with semi-supervised data

We also study the influence of unlabeled data on the convergence of DMEE. Besides the labeled
data D = ∪kl=1Dl (with disjoint and equal-sized subsets D1, . . . , Dk), assume that we also have an

unlabeled data set D̃ = {x̃i}|D̃|i=1. We assume that the input observations x̃i are drawn independently
from ρX , and D̃ is independent of D. For technical simplicity we assume that D̃ is also divided
randomly into k disjoint and equal-sized subsets D̃ = ∪kl=1D̃l. We define the semi-supervised training

data set by D∗ = ∪kl=1D
∗
l , where for each 1 ≤ l ≤ k, we write Dl = {(xi, yi)}|Dl|i=1 , D̃l = {x̃i}|D̃l|i=1 , and

define D∗l = {(x∗i , y∗i )}|D
∗
l |

i=1 with |D∗l | = |Dl|+ |D̃l| by

(x∗i , y
∗
i ) =

{
(xi,

|D∗l |
|Dl| yi), for 1 ≤ i ≤ |Dl|,

(x̃i−|Dl|, 0), for |Dl|+ 1 ≤ i ≤ |D∗l |.

Here the factor |D∗l |/|Dl| for yi is given to compensate the bias introduced by the “fake” labels 0
for the unlabeled data.

By “faking” the zero labels, there is no need to reform the algorithm itself. The output func-
tion fD∗,λ of the regularized MEE algorithm with semi-supervised data is defined by (4) with D
substituted by D∗. The semi-supervised DMEE outputs the predictive function

f̄D∗,λ =
1

k

k∑
l=1

fD∗l ,λ. (16)

In this subsection, we assume that K is antisymmetric. That is, we assume K(x,u) = −K(u,x).

7
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Theorem 2.6 The following bound holds with probability at least 1− δ.

‖f̄D∗,λ − fρ‖ρ ≤‖hρ‖ρλmin{r,1} + 256(1 +M + σ)λ−1/2
(

log
16k

δ

)4

× max
1≤l≤k

(
A2
D∗l ,λ

λ
+ 1

)
AD∗l ,λ

(
AD∗l ,λ‖fλ‖K +ADl,D∗l ,λ

)
+ 16λ−1/2C2h

−2p
(

log
16k

δ

)3

max
1≤l≤k

[(
A2
D∗l ,λ

λ
+ 1

)
AD∗l ,λλ

−1/2 + 1

]

×∆Dl,D∗l ,λ

(
log

16|D|
δ

)2p+1

+ (2AD∗,λ,k‖fλ‖K + 8(M + σ)AD,D∗,λ,k) log
16

δ
, (17)

where AD∗l ,λ is defined in the same way as AD,λ in Theorem 2.2 by substituting D with D∗l ,

AD,D∗,λ,k = k
|D∗|
√
λ

+ 1
b|D|/4c

√
λ

+
√
N (λ)
b|D|/4c , AD,D∗,λ = AD,D∗,λ,1,

∆D,D∗,λ =

(
|D∗|
λ|D|

)p+ 1
2

+

(
|D∗|
|D|

)2p+1

,

and C2 is a constant independent of D, D∗, k, h, or δ, and it will be specified in the proof.

To demonstrate the idea of Theorem 2.6, we give the following corollary, which suggests that,
with sufficient unlabeled data, the number k of the computing nodes is only technically bounded from

above by the assumption |Dl| = |D|
k ≥ 4. Similar results for distributed regularized least squares

are obtained in Lin and Zhou (2018). Note that this increase of computing nodes does not help
to reduce single-node time or space complexity, but significantly improves the learning rates under
the scenario that the regression function fρ has low regularity 0 < r < 1

2 , therefore our analysis
suggests the semi-supervised scheme for learning less regular target functions. Another scenario of
such learning rate improvement is when locally stored data can not be centralized due to privacy
concerns, and therefore our analysis suggests an “inflation of unlabeled data” solution to DMEE for
privacy-sensitive distributed learning. We will elaborate the details in Section 3.

Corollary 2.7 Assume (8), (9), (6) for r > 0, r + s ≥ 1
2 , and |D∗| ≥ max{|D|

s+1
2min{r,1}+s , 2|D|}.

Let λ = |D|−
1

2min{r,1}+s , and

k ≤ (log |D|)−4 min
{√
|D∗|λ1+s, (|D∗|λ2−2min{r,1}−s)1/3

}
. (18)

Then with probability at least 1− δ, one has

‖f̄D∗,λ − fρ‖ρ ≤C3 max

{
|D|−min{ r

2r+s ,
1

2+s}, ∆D,D∗,λ (log |D|)2p+4

√
λh2p

}
log

(
16

δ

)2p+4

,

where C3 is a constant independent of D, D∗, k, h, or δ, and will be specified in the proof.

Theorem 2.8 Under the same conditions of Corollary 2.7, if one further has

h ≥
[
|D|

3
2+s∆D,D∗,λ (log |D|)2p+4

] 1
2p

, (19)
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then with probability 1− δ,

‖f̄D∗,λ − fρ‖ρ ≤ C3|D|−min{ r
2r+s ,

1
2+s}

(
log

16

δ

)2p+4

, (20)

where C3 is the constant defined in Corollary (2.7). Furthermore, we employ Lemma B.1 in Appendix
B to see that for any real number µ > 0,[

E
(
‖f̄D∗,λ − fρ‖µρ

)]1/µ ≤ [16Γ((2p+ 4)µ+ 1)]
1/µ

C3|D|−min{ r
2r+s ,

1
2+s}. (21)

In particular, since the only assumption (18) on k permits the case k = 1, the above bounds (20)
and (21) for f̄D∗,λ also holds for fD∗,λ.

3. Discussion and comparison with other works

The condition (7) is widely adopted in the literature to characterize the capacity of HK (Lin et al.,
2017; Caponnetto and De Vito, 2007; Zhang, 2002; Blanchard and Krämer, 2010). We see that since
LK is of trace class, the condition (7) always holds with s = 1. When the eigenvalues of LK decay
faster, one can have (7) with a smaller s. In particular, if the eigenvalues {γi}∞i=1 of the operator

LK decay as γi ≤ C0i
− 1
b for some 0 < b < 1 and C0 > 0, then

N (λ) =

∞∑
i=1

γi
γi + λ

≤
∫ ∞
0

C0

C0 + λt
1
b

dt ≤ 2
1
bCb0λ

−b
∫ ∞
0

1

(1 + t)
1
b

dt =
2

1
bCb0b

1− b
λ−b.

The condition (7) roughly measures the smoothness of K. For example, if K ∈ Cα(X 2 × X 2) with
some integer α ≥ 1, and X 2 is locally the graph of a Lipschitz function, then (7) is satisfied with

s =
(

α
2dim(X ) + 1

2

)−1
(Mendelson and Neeman, 2010). There are some other capacity characteristics,

for example covering numbers (Zhou, 2002) and entropy numbers (Steinwart et al., 2009). Compared
to the regularity assumptions, capacity assumption is not necessary for deriving learning rates, and
there are works on capacity independent analysis in the literature; see e.g. Smale and Zhou (2007).

r

s

1

1/2

1/2 1

123

4

Figure 1: To organize the discussion of DMEE learning rates, we divide the space of regularity and
capacity parameters into several parts. As we discussed at the beginning of Section 3, one
always has N (λ) ≤ C0λ

−1, so we exclude the area s > 1.

We organize the following discussions around Figure 1. In Area 1, our analysis suggests the
saturation phenomenon of DMEE with respect to regularity, as shared also by regularized least

9
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squares (Lin et al., 2017). That is, when the regularity index r exceeds 1, its further increasing
does not help to improve the algorithm convergence. This saturation is proved overcome by spectral
algorithms (Lo Gerfo et al., 2008; Mücke and Blanchard, 2018; Blanchard and Mücke, 2018; Guo
et al., 2017a), bias corrected approach (Guo et al., 2017b), or a gradient descent approach for MEE
(Hu et al., 2020) without Tikhonov regularization.

In Area 2, DMEE achieves the learning rates which equal the minimax optimal rates O(|D|−
r

2r+s )
for pointwise regression learning (Steinwart et al., 2009; Caponnetto and De Vito, 2007; Bauer
et al., 2007; Blanchard and Mücke, 2018). Without spoiling the learning rates, unlabeled data
help to essentially remove the restriction of the maximum number of computing nodes DMEE
can be distributed to. Note that, while allowing a “more distributed” computation, unlabeled
data may increase the single-node computational complexity and memory requirement. This being
said, the removal of the restriction on maximum computing nodes has significant impact on the
applications where for privacy reasons, data can not be centralized and must be processed locally.
For these applications, computational complexity and memory requirement are usually not the
concern, and our analysis suggests a solution of inflating data subsets with unlabeled data to improve
generalization power. Similar observations are reported for pointwise regularized least squares (Lin
and Zhou, 2018).

For fully supervised data, Theorem 2.4 suggests that without spoiling the learning rate, DMEE

can at most reduce the single-node data size, from |D| to |D|1−
r−(1/2)
s+2r log4 |D| for Area 2, and to

|D|1−
1/2
s+2 log4 |D| for Area 1, respectively. However, For Area 3 and Area 4, Theorem 2.4 suggests

that DMEE could not indeed reduce single-node computational complexity without sacrificing the
learning rates. For the semi-supervised data, unlabeled data serve mainly for the purpose of relaxing
the restriction of the maximum number of computing nodes for privacy protection, and improving
the learning performance under weak regularity conditions. In fact, for Areas 1 and 2, our analysis
suggests that to maintain the best possible learning rates that DMEE can achieve with fully su-
pervised data, if one relaxes the restriction of the maximum number of computing nodes by adding
unlabeled data, then the single-node sample size will be increased.

In Area 3, the optimal lower bound O(|D|−
r

2r+s ) for point kernel-based regression for 0 < r < 1
2

is derived in Steinwart et al. (2009) with the boundedness assumption of LrK : L2 → L∞. Fully
supervised DMEE does not achieve this lower bound. Unlabeled data improves DMEE in two
ways. First, semi-supervised DMEE achieves the learning rates O(|D|−

r
2r+s ). Second, again, semi-

supervised DMEE has essentially no restriction on the maximum number of computing nodes. The
coverage of Area 3 is also one of the important improvements we have in this paper, compared with
Hu et al. (2020), and even Lin and Zhou (2018).

In Area 4, the learning rate of fully supervised DMEE is O(|D|−
r
s+1 ), and our analysis of semi-

supervised DMEE fails to improve the rate to O(|D|−
r

2r+s ). The learning rates are only provided for
fully supervised DMEE. Nevertheless, Area 4 seems to be the situation that one should avoid. In fact,
with a less regular target function, typically one needs a larger hypothesis space, which corresponds
to a larger s. It is unknown to us at this moment whether the suboptimal rates in Areas 3 for
fully supervised DMEE and in Area 4 for semi-supervised DMEE are the inherent features of these
algorithms or the consequences as limited by the analysis tools. It will be an interesting future
research topic.

It is worth mentioning that all the error bounds and convergence rates obtained in this paper
apply to non-distributed MEE, which corresponds to the case k = 1, and they improve some existing
results in the literature. Most studies on MEE algorithms in the literature are carried out empirically.
Theoretical results are relatively sparse. In Chen et al. (2010), the consistency of MEE is proved in
the local region and no explicit learning rate was given. In our earlier works (Hu et al., 2015; Fan
et al., 2016), we studied MEE algorithms in the empirical risk minimization (ERM) and regularized
ERM frameworks respectively. The main results include that if the target function lies in the
hypothesis space H, |y| ≤ M and the logarithm of the covering number of the hypothesis space H

10
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by C(X ) balls of radius ε grows no faster than ε−p for some index p > 0 when ε decays to zero,

then with high probability the learning rate is of order O
(
|D|−

1
2(1+p)

)
. To elaborate it clearly,

assume H to be an RKHS induced either by a pointwise kernel W ∈ Cα(X × X ) or a pairwise
kernel K ∈ Cα(X 2 × X 2) and X ⊂ Rd satisfied certain mild regularity conditions. By Cucker and
Zhou (2007, page 72, Theorem 5.1) and Mendelson and Neeman (2010), the covering number index
p = 2d/α while the effective dimension index s = 2d/(d+ α). When target function lies in HK , i.e.

r ≥ 1
2 , the rate O

(
|D|−

1
2(1+p)

)
in (Hu et al., 2015) is always inferior to O

(
|D|−

r
2r+s

)
in (14).

To our best knowledge, various MEE algorithms in the existing literature are implemented by
gradient descent-based methods. Note that in general, Algorithm (4) is not a convex optimization
problem, and a comprehensive discussion about the global/local optimal, the dependence of conver-
gence on the initial value of variables, and the convergence speed, go beyond the scope of this paper,
and are interesting questions for future research. While our analysis is given for general pairwise
reproducing kernels, the design (3) is usually adopted in practice (Ying and Zhou, 2016, 2017). We
point out that under the design (3), Algorithm (4) is reduced to a smooth (though not convex)

optimization problem with |D| − 1 variables. In fact, for any x ∈ X , write W (x) = (W (x, xi))
|D|
i=1 a

column vector of dimension |D|. Write C = (ci,j)
|D|
i,j=1 the coefficient matrix of the function

fC(x, u) =

|D|∑
i=1

|D|∑
j=1

ci,jK((xi, xj), (x, u)). (22)

By the representer theorem, the solution to (4) takes the form of (22). Meanwhile, we write 1 =
(1, . . . , 1)T ∈ R|D| and use the kernel structure (3) to obtain that fC(x, u) = cT (W (x) −W (u)),

where c = (C − CT )1 ∈ R|D|. We also have ‖fC‖2K = cTWc, where W = (W (xi, xj))
|D|
i,j=1. So,

Algorithm (3) is reduced to an optimization problem of a smooth function of c. Since 1T c = 0,
the vector c has only |D| − 1 free variables. The gradient vector and the Hessian matrix of the
target function can be directly computed. The computational complexity can further be reduced for
DMEE.

4. Estimates in supervised learning

Now we are in a position to prove the consistency results stated in Section 2. First, we will estimate
the bound of fD,λ defined by (4). In the sequel, for notational simplicity, write w = (x, y) and
z = (u, v). Define the empirical operator LK,D : HK → HK by

LK,D :=
1

|D|2
∑
w,z∈D

〈·,K(x,u)〉KK(x,u),

so for any f ∈ HK , LK,Df =
1

|D|2
∑
w,z∈D

f(x, u)K(x,u). Then we have the following representation

for fD,λ.

Lemma 4.1 Define fD,λ by (4). Then it satisfies

fD,λ = (LK,D + λI)−1f̂ρ,D + (LK,D + λI)−1ED,λ (23)

where

f̂ρ,D =
1

|D|2
∑
w,z∈D

(y − v)K(x,u)

11
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and

ED,λ =
1

|D|2
∑
w,z∈D

[
G′
(

(fD,λ(x, u)− y + v)2

h2

)
−G′(0)

]
(fD,λ(x, u)− y + v)K(x,u).

Proof. Since fD,λ is the minimizer of algorithm (4), we take the gradient of the regularized functional
on HK in (4) to give

− 1

|D|2
∑
w,z∈D

G′
(

(fD,λ(x, u)− y + v)2

h2

)
(fD,λ(x, u)− y + v)K(x,u) + λfD,λ = 0,

or equivalently (recall the assumption G′(0) = −1),

1

|D|2
∑
w,z∈D

(fD,λ(x, u)− y + v)K(x,u) + λfD,λ − ED,λ = 0,

which is (LK,D + λI)fD,λ − f̂ρ,D − ED,λ = 0. The proof is completed.

4.1. Bounds of fD,λ and ED,λ

Under the moment condition (8), similar to (Wang and Hu, 2019, Proposition 3) we can prove that,
with probability at least 1− δ, there holds

max{|y| : there exists an x ∈ X , such that (x, y) ∈ D} ≤ (4M + 5σ) log
|D|
δ
. (24)

By the definition of fD,λ in (4), we have that ED(fD,λ) + λ‖fD,λ‖2K ≤ ED(0). Recall that
CG = supa |G′(a)|. With the fact G(a) < G(0) for all a > 0 and Taylor expansion,

λ‖fD,λ‖2K ≤ED(0)− ED(fD,λ) ≤ − h2

|D|2
∑
w,z∈D

G

(
(y − v)2

h2

)
+ h2G(0)

≤ CG
|D|2

∑
w,z∈D

(y − v)2 ≤ CG
|D|2

∑
w,z∈D

2(y2 + v2) ≤ 4CG max
w∈D

|y|2.

It follows that

‖fD,λ‖K ≤ 2
√
CGλ

− 1
2 max
w∈D

|y|. (25)

By (9), we see that

‖ED,λ‖K ≤ cph−2p
1

|D|2
∑
w,z∈D

(‖fD,λ‖K + |y − v|)2p+1

≤ 22pcph
−2p 1

|D|2
∑
w,z∈D

(
‖fD,λ‖2p+1

K + |y − v|2p+1
)

≤ 22pcph
−2p

(
‖fD,λ‖2p+1

K + 22p+1 max
w∈D

|y|2p+1

)
. (26)

This in combination with the bounds (24) and (25) gives that, with probability at least 1− δ,

‖ED,λ‖K ≤ cp,σ,M
(
λ−(p+

1
2 ) + 1

)
h−2p

(
log
|D|
δ

)2p+1

(27)

where cp,σ,M := 24p+1cp(C
p+ 1

2

G + 1)(4M + 5σ)2p+1.

12
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4.2. Two error decompositions in MEE algorithms

To derive the explicit learning rate of the distributed algorithm (5) and (16), we introduce the
regularization function fλ in HK , defined by

fλ := arg min
f∈HK

Els(f) + λ‖f‖2K ,

where Els(f) =
∫
Z2(f(x, u)−y+v)2dρ(x, y)dρ(u, v) is the expected risk associated with the pairwise

square loss. Similar to the argument in Smale and Zhou (2007), we can verify that

fλ = (LK + λI)−1LKfρ, (28)

so fλ−fρ = −λ(LK +λI)−1fρ. We have used the property that the operator norm of LK on L2
ρX2

is

no greater than 1, thanks to the assumption (10). Under the regularity assumption (6) with r > 0,

‖fλ − fρ‖ρ ≤
{
‖hρ‖ρλr, when 0 < r ≤ 1,
‖hρ‖ρλ, when r > 1,

(29)

and

‖fλ‖K ≤

{
‖hρ‖ρλr−

1
2 , when 0 < r < 1/2,

‖hρ‖ρ, when r ≥ 1/2.
(30)

Now we state two error decompositions for fD,λ − fλ. By (28), −LK,Dfλ − λfλ = −LK,Dfλ +
LKfλ − LKfρ, so

−fλ = (LK,D + λI)−1[(LK − LK,D)fλ − LKfρ], (31)

and we obtain the first decomposition by adding (23) and (31),

fD,λ − fλ =(LK,D + λI)−1(LK − LK,D)fλ + (LK,D + λI)−1
(
f̂ρ,D − LKfρ

)
+ (LK,D + λI)−1ED,λ. (32)

Recall that λfD,λ = −LK,DfD,λ + f̂ρ,D + ED,λ, so

(LK + λI)fD,λ = (LK − LK,D)(fD,λ − fλ) + (LK − LK,D)fλ + f̂ρ,D + ED,λ,

and we obtain the second decomposition

fD,λ − fλ = fD,λ − (LK + λI)−1LKfρ = (LK + λI)−1[(LK + λI)fD,λ − LKfρ]
= (LK + λI)−1(LK − LK,D)(fD,λ − fλ) + (LK + λI)−1(LK − LK,D)fλ

+ (LK + λI)−1(f̂ρ,D − LKfρ) + (LK + λI)−1ED,λ. (33)

In the sequel, we denote by ‖ · ‖op the operator norm from HK to itself, and

BD,λ = ‖(LK,D + λI)−1(LK + λI)‖op,

CD,λ = ‖(LK + λI)−
1
2 (LK − LK,D)‖op,

DD,λ =

∥∥∥∥∥1

k

k∑
l=1

(LK + λI)−
1
2 (LK − LK,Dl)

∥∥∥∥∥
op

,

FD,λ =

∥∥∥∥∥1

k

k∑
l=1

(LK + λI)−
1
2 (f̂ρ,Dl − LKfρ)

∥∥∥∥∥
K

,

GD,λ = ‖(LK + λI)−
1
2 (f̂ρ,D − LKfρ)‖K .

We cite the following lemma from Blanchard and Krämer (2010, Lemma E.4), which was proved for
positive definite matrices in Bhatia (1997, pages 255–256, Theorems IX.2.1-2).
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Lemma 4.2 Let A and B be positive definite operators on a separable Hilbert space H. Let ‖·‖op(H)

denote the operator norm. Then

‖AsBs‖op(H) ≤ ‖AB‖sop(H), for any 0 ≤ s ≤ 1.

Noting that for any f ∈ HK ,

max{‖f‖ρ,
√
λ‖f‖K} ≤ ‖(LK + λI)

1
2 f‖K (34)

by the fact ‖f‖ρ = ‖L
1
2

Kf‖K , one gets a bound for the sample error ‖f̄D,λ − fλ‖ρ by the two
decompositions (32) and (33) above.

Proposition 4.3 Define f̄D,λ by (5). Then there holds

‖f̄D,λ − fλ‖ρ ≤ S1 + S2 +DD,λ‖fλ‖K + FD,λ, (35)

where
S1 = max

1≤l≤k

(
BDl,λC2Dl,λ‖fλ‖Kλ

− 1
2 + BDl,λCDl,λGDl,λλ−

1
2

)
and

S2 = max
1≤l≤k

(
BDl,λCDl,λλ−1‖EDl,λ‖K +

1√
λ
‖EDl,λ‖K

)
.

Proof. Let I1, I2, and I3 denote the three terms on the right-hand side of (32), respectively.
Consider the HK norm of

(LK + λI)1/2(fD,λ − fλ) = (LK + λI)1/2(I1 + I2 + I3).

By Lemma 4.2,

‖(LK + λI)1/2I1‖K
≤‖(LK + λI)1/2(LK,D + λI)−1/2‖op‖(LK,D + λI)−1/2(LK + λI)1/2‖op
× ‖(LK + λI)−1/2(LK − LK,D)‖op‖fλ‖K

≤BD,λCD,λ‖fλ‖K .

Similarly,

‖(LK + λI)1/2I2‖K
≤‖(LK + λI)1/2(LK,D + λI)−1(LK + λI)1/2‖op‖(LK + λI)−1/2(f̂ρ,D − LKfρ)‖K
≤BD,λGD,λ,

and

‖(LK + λI)1/2I3‖K

≤‖(LK + λI)1/2(LK,D + λI)−1(LK + λI)1/2‖op
1√
λ
‖ED,λ‖K

≤λ−1/2BD,λ‖ED,λ‖K .

With the above bounds, we use (34) to obtain

‖fD,λ − fλ‖ρ ≤ BD,λCD,λ‖fλ‖K + BD,λGD,λ + λ−
1
2BD,λ‖ED,λ‖K

14



Distributed Minimum Error Entropy Algorithms

and

‖fD,λ − fλ‖K ≤ BD,λCD,λ‖fλ‖Kλ−
1
2 + BD,λGD,λλ−

1
2 + λ−1BD,λ‖ED,λ‖K . (36)

By the fact f̄D,λ − fλ = 1
k

∑k
l=1(fDl,λ − fλ) and the second decomposition (33), one obtains that

‖f̄D,λ − fλ‖ρ ≤
1

k

k∑
l=1

‖(LK + λI)−
1
2 (LK − LK,Dl)(fDl,λ − fλ)‖K

+

∥∥∥∥∥1

k

k∑
l=1

(LK + λI)−
1
2 (LK − LK,Dl)fλ

∥∥∥∥∥
K

+

∥∥∥∥∥1

k

k∑
l=1

(LK + λI)−
1
2

(
f̂ρ,Dl − LKfρ

)∥∥∥∥∥
K

+ λ−
1
2

1

k

k∑
l=1

‖EDl,λ‖K

≤ DD,λ‖fλ‖K + FD,λ + max
1≤l≤k

(
CDl,λ‖fDl,λ − fλ‖K + λ−

1
2 ‖EDl,λ‖K

)
.

Plugging (36) into the above bounds (with substitution of D by Dl) completes the proof.

4.3. Estimates in distributed U-statistics

To present the learning power of the algorithm (5), we will make use of Proposition 4.3, that is
related to the quantities BD,λ, CD,λ,DD,λ,FD,λ and GD,λ. By the work in Hu et al. (2020), we can
see that the following bounds hold.

Proposition 4.4 Each of the following three bounds holds with probability 1− δ.

BD,λ ≤ 2

(
2AD,λ log 2

δ√
λ

)2

+ 2, CD,λ ≤ 2AD,λ log
2

δ
, and

DD,λ ≤ 2AD,λ,k log
2

δ
.

For other two quantities FD,λ and GD,λ, they are both involved with the unbounded condition (8),
which brings difficulties in pairwise distributed concentration inequalities. We will handle them by
some decomposition techniques in U-statistics.

Proposition 4.5 Each of the following two bounds holds with probability 1− δ.

FD,λ ≤ 8(M + σ)AD,λ,k log
2

δ
, and GD,λ ≤ 8(M + σ)AD,λ log

2

δ
.

Proof. Define a random variable

ξ(w, z) = (y − v)(LK + λI)−
1
2K(x,u)

with w = (x, y) and z = (u, v). The moment condition (8) implies that,

E‖ξ‖K ≤ 2λ−
1
2E|Y | ≤ 2λ−

1
2 (E|Y |2)

1
2 ≤ 2σλ−

1
2 . (37)

One applies Hölder’s inequality to have that for any q ≥ 2, (E‖ξ‖K)q ≤ E(‖ξ‖qK). Note the equation
E[‖(LK +λI)−1/2K(x,u)‖2K ] = N (λ) for λ > 0 (Lin et al., 2017, Lemma 18). We obtain the following
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bound for any integer q ≥ 2.

E[‖ξ − Eξ‖qK ] ≤ 2q−1E[‖ξ‖qK ] + 2q−1‖Eξ‖qK ≤ 2qE[‖ξ‖qK ]

≤ 22q sup
x′,u′∈X

‖(LK + λI)−1/2K(x′,u′)‖q−2K E
[
|Y |q‖(LK + λI)−1/2K(x,u)‖2K

]
≤ 22q

(
1√
λ

)q−2
E
[
E(|Y |q|X)‖(LK + λI)−1/2K(x,u)‖2K

]
≤ 22q

(
1√
λ

)q−2
1

2
q!σ2Mq−2N (λ)

= 8q!σ2N (λ)(4M/
√
λ)q−2.

Let π be a permutation of the set {1, . . . , |Dl| = |D|/k} of integers. Then {zlπ(1), . . . , z
l
π(|Dl|)} is the

associate permutation of Dl = {zli = (xli, y
l
i)}
|Dl|
i=1 . Let

U lπ =
1

b|Dl|/2c

b|Dl|/2c∑
i=1

ξ(zlπ(2i−1), z
l
π(2i)).

Since ξ(z, z) = 0, the average (LK + λI)−1/2f̂ρ,Dl = 1
|Dl|2

∑
w,z∈Dl ξ(w, z) can be written as

(LK + λI)−1/2f̂ρ,Dl =
|Dl| − 1

|Dl|
1

|Dl|(|Dl| − 1)

∑
w,z∈Dl

ξ(w, z) =
|Dl| − 1

|Dl|
1

|Dl|!
∑
π

U lπ,

where the last sum is taken over all the |Dl|! permutations π of {1, . . . , |Dl|}. Since |D1| = . . . = |Dk|,

1

k

k∑
l=1

(LK + λI)−1/2f̂ρ,Dl =
|D1| − 1

|D1|
1

|D1|!
∑
π

1

k

k∑
l=1

U lπ.

By definition, it is easy to see that E[ξ] = (LK + λI)−1/2LKfρ. One applies (37) to obtain

FD,λ ≤
|D1| − 1

|D1|

∥∥∥∥∥ 1

|D1|!
∑
π

1

k

k∑
l=1

U lπ − Eξ

∥∥∥∥∥
K

+
1

|D1|
‖Eξ‖K

≤

∥∥∥∥∥ 1

|D1|!
∑
π

1

k

k∑
l=1

U lπ − Eξ

∥∥∥∥∥
K

+
2σk

|D|
√
λ
. (38)

We observe that for each π, 1
k

∑k
l=1 U

l
π is the average of kb|D1|/2c independent copies of ξ(z, z′)

with z and z′ independently drawn from ρ, and kb|D1|/2c ≥ b|D|/4c (in fact, recall our assumption
|D1| ≥ 4 and k|D1| = |D|, obviously when |D1| is even, kb|D1|/2c = k|D1|/2 = |D|/2 ≥ b|D|/4c,
and when |D1| is odd, one still has kb|D1|/2c = k(|D1| − 1)/2 ≥ k|D1|/4 ≥ b|D|/4c). Note that the
hyperbolic function cosh(x) = (ex + e−x)/2 is convex. To estimate the first term on the right-hand
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side of (38), we apply Lemma A.2 to obtain that for any ε > 0,

Prob

{∥∥∥∥∥ 1

|D1|!
∑
π

1

k

k∑
l=1

U lπ − Eξ

∥∥∥∥∥
K

≥ ε

}

≤ inf
c>0

E

[
cosh

(
c

∥∥∥∥∥ 1

|D1|!
∑
π

1

k

k∑
l=1

U lπ − Eξ

∥∥∥∥∥
K

)]
/ cosh(cε)

≤ inf
c>0

1

|D1|!
∑
π

E

[
cosh

(
c

∥∥∥∥∥1

k

k∑
l=1

U lπ − Eξ

∥∥∥∥∥
K

)]
/ cosh(cε)

≤ 2 exp

− b|D|/4cε2

2
(

16N (λ)σ2 + 4λ−
1
2Mε

)
 . (39)

One takes the right-hand side of (39) as δ and recalls (38) to have that with probability 1− δ,

FD,λ ≤
2σk

|D|
√
λ

+
8M log(2/δ)

b|D|/4c
√
λ

+

√
32N (λ)σ2 log(2/δ)

b|D|/4c
.

Note that GD,λ equals FD,λ when k = 1. The proof is complete.

4.4. Proof of learning rates in supervised learning

Proof of Theorem 2.2 We can decompose ‖f̄D,λ − fρ‖ρ as the sample error ‖f̄D,λ − fλ‖ρ and the
approximation error ‖fλ − fρ‖ρ. As stated in (29), ‖fλ − fρ‖ρ ≤ λr‖hρ‖ρ for 0 < r ≤ 1. Thus, we
just estimate ‖f̄D,λ − fλ‖ρ by Proposition 4.3.

By Propositions 4.4 and 4.5, and the bound (27), we get that for any fixed l, with probability at
least 1− 4δ, the following three bounds hold simultaneously,

BDl,λC2Dl,λλ
− 1

2 ≤ 32

(
A2
Dl,λ

λ
+ 1

)
A2
Dl,λ

λ−
1
2 log4 2

δ
,

BDl,λCDl,λGDl,λλ−
1
2 ≤ 128(M + σ)

(
A2
Dl,λ

λ
+ 1

)
A2
Dl,λ

λ−
1
2 log4 2

δ
,

and

BDl,λCDl,λλ−1‖EDl,λ‖K

≤16cp,σ,M (1 + λp+
1
2 )

(
A2
Dl,λ

λ
+ 1

)
ADl,λλ−(p+

3
2 )h−2p

(
log

2

δ

)3(
log
|Dl|
δ

)2p+1

.

With the notations in (35), it follows that with probability at least 1−4kδ, the following two bounds
hold true simultaneously,

S1 ≤ 128(‖fλ‖K +M + σ) max
1≤l≤k

(
A2
Dl,λ

λ
+ 1

)
A2
Dl,λ

λ−
1
2 log4 2

δ
(40)

and

S2 ≤ 16cp,σ,M (1 + λp+
1
2 )h−2pλ−p−1

(
log3 2

δ

)(
log
|D1|
δ

)2p+1

×

[
1 + λ−

1
2 max
1≤l≤k

(
A2
Dl,λ

λ
+ 1

)
ADl,λ

]
. (41)
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By Proposition 4.4 and 4.5 again, we see that with probability at least 1− δ
2 , the following bounds

hold simultaneously,

DD,λ ≤ 2AD,λ,k log
8

δ
and FD,λ ≤ 8(M + σ)AD,λ,k log

8

δ
.

Substitute δ by δ
8k in (40) and (41), one has with probability at least 1− δ that

‖f̄D,λ − fρ‖ρ ≤ ‖f̄D,λ − fλ‖ρ + ‖fλ − fρ‖ρ
≤ ‖hρ‖ρλr + S1 + S2 +DD,λ‖fλ‖K + FD,λ

≤ ‖hρ‖ρλr + 128(‖fλ‖K +M + σ)λ−
1
2

(
log4 16k

δ

)
max
1≤l≤k

(
A2
Dl,λ

λ
+ 1

)
A2
Dl,λ

+ 16cp,σ,M (1 + λp+
1
2 )h−2pλ−p−1

(
log3 16k

δ

)(
log

16|D|
δ

)2p+1

×

(
1 + λ−

1
2 max
1≤l≤k

(
A2
Dl,λ

λ
+ 1

)
ADl,λ

)
+ (2‖fλ‖K + 8(M + σ))AD,λ,k log

8

δ
.

The proof is complete.
Proof of Corollary 2.3. Our assumption |D| ≥ 4 implies b|D|/4c ≥ |D|/7 and log |D| > 1. By
(7),

AD,λ,k =
k

|D|
√
λ

+
1

b|D|/4c
√
λ

+

√
N (λ)

b|D|/4c
≤ 8k

|D|
√
λ

+

√
7C0λ−s

|D|

≤(8 +
√

7C0)
λ−s/2√
|D|

(
k√
|D|

λ
s−1
2 + 1

)
.

By (12),

k√
|D|

λ
s−1
2 ≤

{
λ
s−1
2 + 1+s

2 , when 0 < r < 1
2

λ
1
2−r+

s−1
2 +r+ s

2 , when 1
2 ≤ r ≤ 1

}
= λs ≤ 1. (42)

By (30), ‖fλ‖K ≤ ‖hρ‖ρ(1 + λr−
1
2 ) for 0 < r ≤ 1. Since 1

|D| = λs+max{2r,1}, the second term on the

right-hand side of (11) is bounded by

J2 :=(2‖fλ‖K + 8M + 8σ)AD,λ,k log
8

δ
≤ C1

1 (1 + λr−
1
2 )
λ−s/2√
|D|

log
8

δ

=C1
1 (1 + λr−

1
2 )λ−

s
2+

s
2+max{r, 12} log

8

δ
≤ 2C1

1λ
r log

8

δ
,

where C1
1 = (4‖hρ‖ρ + 8M + 8σ)× 2(8 +

√
7C0). By definition and the assumption |Dl| ≥ 4 (hence

b|Dl|/4c ≥ |Dl|/7),

ADl,λ =
1

|Dl|
√
λ

+
1

b|Dl|/4c
√
λ

+

√
N (λ)

b|Dl|/4c
≤ 8k

|D|
√
λ

+

√
7C0λ−sk

|D|

≤(8 +
√

7C0)

√
kλ−s

|D|

(√
k

|D|
λ
s−1
2 + 1

)
≤ 2(8 +

√
7C0)

√
kλ−s

|D|
,
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where the last step follows from (42). Since

kλ−s−1

|D|
≤
{

1λ−s−1λs+1 = 1, when 0 < r < 1
2

λ
1
2−rλ−1−sλ2r+s = λr−

1
2 , when 1

2 ≤ r ≤ 1

}
≤ 1, (43)

we have A2
Dl,λ

/λ ≤ 4(8 +
√

7C0)2kλ−s−1/|D| ≤ 4(8 +
√

7C0)2.
Now we bound the third term on the right-hand side of (11).

J3 := 128(‖fλ‖K +M + σ)λ−
1
2

(
log4 16k

δ

)
max
1≤l≤k

(
A2
Dl,λ

λ
+ 1

)
A2
Dl,λ

.

When 0 < r < 1
2 , k = 1 and 1

|D| = λ1+s,

J3 ≤ C2
1λ

r−1
(

log4 16

δ

)
kλ−s

|D|
= C2

1λ
r log4 16

δ
, (44)

where C2
1 = 128(‖hρ‖ρ + M + σ)[4(8 +

√
7C0)2 + 1] × 4(8 +

√
7C0)2. When 1

2 ≤ r ≤ 1, k ≤
λ

1
2−r log−4 |D| and 1

|D| = λ2r+s. Recall that |D| ≥ 4 which implies log 16k
δ ≤ log 16|D|

δ ≤ 2(log |D|) log 16
δ .

So

J3 ≤ C3
1λ
− 1

2

(
log4 |D|

)(
log4 16

δ

)
λ

1
2−r

(
log−4 |D|

)
λ−sλ2r+s = C3

1λ
r log4 16

δ
, (45)

where C3
1 := 128(‖hρ‖ρ +M + σ)× 24[4(8 +

√
7C0)2 + 1]× 4(8 +

√
7C0)2.

The last term on the right-hand side of (11) is bounded as follows.

J4 :=16cp,σ,M (1 + λp+
1
2 )h−2pλ−p−1

(
log3 16k

δ

)(
log

16|D|
δ

)2p+1

×

(
1 + λ−

1
2 max
1≤l≤k

(
A2
Dl,λ

λ
+ 1

)
ADl,λ

)

≤C4
1h
−2pλ−p−1 (log |D|)2p+4

(
log

16

δ

)2p+4

,

where C4
1 := 16cp,σ,M × 22p+5 × [1 + (4(8 +

√
7C0)2 + 1)× 2(8 +

√
7C0)]. One completes the proof

by letting C1 := ‖hρ‖ρ + 2C1
1 + max{C2

1 , C
3
1}+ C4

1 .

5. Estimates in semi-supervised learning

To derive the optimal learning rate in semi-supervised learning, we give the following proposition
by taking similar procedures in the proof of Proposition 4.3.

Corollary 5.1 Let f̄D∗,λ be defined in (16). One has

‖f̄D∗,λ − fλ‖K ≤ S∗1 + S∗2 +DD∗,λ‖fλ‖K + FD∗,λ, (46)

where
S∗1 = max

1≤l≤k

(
BD∗l ,λC

2
D∗l ,λ
‖fλ‖Kλ−

1
2 + BD∗l ,λCD∗l ,λGD∗l ,λλ

− 1
2

)
,

and
S∗2 = max

1≤l≤k

(
BD∗l ,λCD∗l ,λλ

−1 + λ−
1
2

)
‖ED∗l ,λ‖K .
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To quantify the above bounds, we get the following probability inequalities about BD∗,λ, CD∗,λ,DD∗,λ,
whose proofs can be found in the earlier work in Hu et al. (2020).

Corollary 5.2 Each of the following three bounds holds with probability 1− δ.

BD∗,λ ≤ 2

(
2AD∗,λ log 2

δ√
λ

)2

+ 2, CD∗,λ ≤ 2AD∗,λ log
2

δ
,

and DD∗,λ ≤ 2AD∗,λ,k log
2

δ
,

where AD∗,λ,k = k
|D∗|
√
λ

+ 1
b|D∗|/4c

√
λ

+
√

N (λ)
b|D∗|/4c and AD∗,λ = AD∗,λ,1, which are consistent with

the notations AD,λ,k and AD,λ we defined in Theorem 2.2.

5.1. Distributed U-statistics with unlabeled data and unbounded sampling

Next we turn to the bounds of FD∗,λ and GD∗,λ, which are more involved in semi-supervised learning.
To this end, we need the following lemma.

Lemma 5.3 Let (H, ‖ · ‖) be a separable Hilbert space. Let ξ(w, z) be an H-valued random variable
defined on (W ×Z, ρW × ρZ). Assume that there exist two constants σ > 0 and M > 0, such that
for any integer q ≥ 2,

E [‖ξ − Eξ‖q] ≤ 1

2
q!σ2Mq−2.

Suppose that from (W, ρW), one draws independently a sample D = {w1, . . . , w|D|}, which is evenly

divided to k disjoint subsets D = ∪kl=1Dl with |D1| = · · · = |Dk| = |D|/k. Suppose that similarly,

one divides another sample D̃ = ∪kl=1D̃l independently drawn from (Z, ρZ) such that the subsets

D̃l’s are disjoint and |D̃1| = · · · = |D̃k| = |D̃|/k. Assume that |D| ≤ |D̃|. Then with probability at
least 1− δ, there holds∥∥∥∥∥∥1

k

k∑
l=1

1

|D̃l||Dl|

∑
w∈Dl

∑
z∈D̃l

ξ(w, z)− Eξ

∥∥∥∥∥∥ ≤ 2M log(2/δ)

|D|
+

√
2σ2 log(2/δ)

|D|
.

Proof. Let π be a permutation of the set {1, . . . , |Dl|} of integers, so {wlπ(1), . . . , w
l
π(|Dl|)} is the asso-

ciated permutation of Dl = {wli}
|Dl|
i=1 . Let ψ be a permutation of {1, . . . , |D̃l|}, so {zlψ(1), . . . , z

l
ψ(|D̃l|)

}

is the associated permutation of D̃l = {zli}
|D̃l|
i=1 . For any 1 ≤ l ≤ k, we write U lπ,ψ = 1

|Dl|
∑|Dl|
i=1 ξ(w

l
π(i), z

l
ψ(i))

to obtain

1

|Dl||D̃l|

∑
w∈Dl

∑
z∈D̃l

ξ(w, z) =
1

|Dl|!|D̃l|!

∑
π

∑
ψ

U lπ,ψ, (47)

where the last two sums are taken over all the |Dl|! permutations π of {1, . . . , |Dl|} and all the |D̃l|!
permutations ψ of {1, . . . , |D̃l|}, respectively. Note that |D1| = · · · = |Dl| = |D|

k and |D̃1| = · · · =

|D̃l| = |D̃|
k . One takes the average of (47) over 1 ≤ l ≤ k, to give

1

k

k∑
l=1

1

|Dl||D̃l|

∑
w∈Dl

∑
z∈D̃l

ξ(w, z) =
1

k

k∑
l=1

1

|Dl|!|D̃l|!

∑
π,ψ

U lπ,ψ

=
1

|D1|!|D̃1|!

∑
π,ψ

1

k

k∑
l=1

U lπ,ψ,
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where

1

k

k∑
l=1

U lπ,ψ =
1

k

k∑
l=1

1

|Dl|

|Dl|∑
i=1

ξ(wlπ(i), z
l
ψ(i)) =

1

|D|

k∑
l=1

|Dl|∑
i=1

ξ(wlπ(i), z
l
ψ(i)).

By the convexity of the function cosh(t), we obtain that for any c, ε > 0,

Prob


∥∥∥∥∥∥1

k

k∑
l=1

1

|Dl||D̃l|

∑
w∈Dl

∑
z∈D̃l

ξ(w, z)− Eξ

∥∥∥∥∥∥ ≥ ε


≤E cosh

c
∥∥∥∥∥∥1

k

k∑
l=1

1

|Dl|!|D̃l|!

∑
π

∑
ψ

U lπ,ψ − Eξ

∥∥∥∥∥∥
 / cosh(cε)

=E cosh

c
∥∥∥∥∥∥ 1

|D1|!|D̃1|!

∑
π,ψ

[
1

k

k∑
l=1

U lπ,ψ − Eξ

]∥∥∥∥∥∥
 / cosh(cε)

≤ 1

|D1|!|D̃1|!

∑
π,ψ

E cosh

c
∥∥∥∥∥∥ 1

|D|

k∑
l=1

|Dl|∑
i=1

ξ(wlπ(i), z
l
ψ(i))− Eξ

∥∥∥∥∥∥
 / cosh(cε).

One employs Lemma A.2 in Appendix to obtain

Prob


∥∥∥∥∥∥1

k

k∑
l=1

1

|Dl||D̃l|

∑
w∈Dl

∑
z∈D̃l

ξ(w, z)− Eξ

∥∥∥∥∥∥ ≥ ε
 ≤ 2 exp

{
− |D|ε2

2(σ2 +Mε)

}
.

We take δ = 2 exp
{
− |D|ε2

2(σ2+Mε)

}
to complete the proof.

Noting that if f(x, u) = −f(u, x) for any (x, u) ∈ X 2, then K(x,u) is antisymmetric, i.e., K(x,u) =
−K(u,x) for any (x, u) ∈ X 2. The quantities FD∗,λ and GD∗,λ are involved with unlabeled data, and
we will handle them by the feature of antisymmetry of K and get the bounds as follows.

Proposition 5.4 Each of the following two bounds holds with probability at least 1− δ.

FD∗,λ ≤ 8(M + σ)AD,D∗,λ,k log
4

δ
, and GD∗,λ ≤ 8(M + σ)AD,D∗,λ log

4

δ
.

Proof. Recall that K is antisymmetric. So

LKfρ =

∫
Z

∫
Z

(y − v)K(x,u)dρ(x, y)dρ(u, v)

=

∫
Z

∫
Z
yK(x,u)dρ(x, y)dρ(u, v)−

∫
Z

∫
Z
vK(x,u)dρ(x, y)dρ(u, v)

=

∫
Z

∫
Z

2yK(x,u)dρ(x, y)dρ(u, v).

Recall that we have the relation (x, y) 7→ (x, |D
∗|
|D| y) when we embed D to D∗. Write w = (x, y) and

z = (u, v). We have the following decomposition

f̂ρ,D∗ :=
1

|D∗|2
∑

w,z∈D∗
(y − v)K(x,u)

=
1

|D∗|2
∑
w,z∈D

|D∗|
|D|

(y − v)K(x,u) +
2

|D∗|2
∑

w∈D,z∈D̃

|D∗|
|D|

yK(x,u)

=
|D|
|D∗|

f̂ρ,D +
|D̃|
|D∗|

f̂ρ,D,D̃,
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where f̂ρ,D is defined in Lemma 4.1 and f̂ρ,D,D̃ = 1
|D||D̃|

∑
w∈D,z∈D̃ 2yK(x,u). Below, f̂ρ,Dl and

f̂ρ,Dl,D̃l are similarly defined by substituting D and D̃ with Dl and D̃l, respectively. Note that both

f̂ρ,D and f̂ρ,D,D̃ are empirical analogs of LKfρ. We have

FD∗,λ ≤
|D|
|D∗|

∥∥∥∥∥1

k

k∑
l=1

(LK + λI)−
1
2 (f̂ρ,Dl − LKfρ)

∥∥∥∥∥
K

+
|D̃|
|D∗|

∥∥∥∥∥1

k

k∑
l=1

(LK + λI)−
1
2 (f̂ρ,Dl,D̃l − LKfρ)

∥∥∥∥∥
K

.

For the first term, it has been proved that with probability at least 1− δ
2 , there holds

FD,λ =

∥∥∥∥∥1

k

k∑
l=1

(LK + λI)−
1
2 (f̂ρ,Dl − LKfρ)

∥∥∥∥∥
K

≤ 8(M + σ)AD,λ,k log
4

δ
.

For the second term, let ξ(w, z) = (LK +λI)−
1
2 2yK(x,u) with w = (x, y) ∈ D and z = (u, v) ∈ D̃, so

(LK + λI)−1/2f̂ρ,Dl,D̃l =
1

|D||D̃|

∑
w∈D

∑
z∈D̃

ξ(w, z),

and (LK + λI)−1/2LKfρ = Eξ. With (8), for any integer q ≥ 2,

E[‖ξ − Eξ‖qK ] ≤2q−1E[‖ξ‖qK ] + 2q−1‖Eξ‖qK ≤ 2qE[‖ξ‖qK ]

≤22q sup
x′,u′∈X

‖(LK + λI)−1/2K(x′,u′)‖q−2K E
[
|Y |q‖(LK + λI)−1/2K(x,u)‖2K

]
≤22q

(
1√
λ

)q−2
E
[
E(|Y |q|X)‖(LK + λI)−1/2K(x,u)‖2K

]
≤22q

(
1√
λ

)q−2
1

2
q!σ2Mq−2N (λ) =

1

2
q![16σ2N (λ)](4M/

√
λ)q−2.

Applying Lemma 5.3, one gets that with probability at least 1− δ
2 ,∥∥∥∥∥1

k

k∑
l=1

(LK + λI)−
1
2 (f̂ρ,Dl,D̃l − LKfρ)

∥∥∥∥∥
K

≤ 8(M + σ)

(
1

|D|
√
λ

+

√
N (λ)√
|D|

)
log

4

δ
.

Recall that |D|+ |D̃| = |D∗|. We combine the analysis above by

|D|
|D∗|
AD,λ,k +

|D̃|
|D∗|

(
1

|D|
√
λ

+

√
N (λ)

|D|

)

≤ |D|
|D∗|

k

|D|
√
λ

+

(
1

b|D|/4c
√
λ

+

√
N (λ)

b|D|/4c

)(
|D|
|D∗|

+
|D̃|
|D∗|

)

=
k

|D∗|
√
λ

+
1

b|D|/4c
√
λ

+

√
N (λ)

b|D|/4c
= AD,D∗,λ,k.

One completes the proof by observing that GD∗,λ is a special case of FD∗,λ with k = 1.
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5.2. Proof of learning rates in semi-supervised learning

Proof of Theorem 2.6. We can decompose ‖f̄D∗,λ − fρ‖ρ as the sample error ‖f̄D∗,λ − fλ‖ρ and
the approximation error ‖fλ − fρ‖ρ. As stated in (29), ‖fλ − fρ‖ρ ≤ λr‖hρ‖ρ for 0 < r ≤ 1. Thus,
we just estimate the sample error by Corollary 5.1 and bound the right-hand side of (46) term by
term.

Recall the definition of D∗ in Section 2.2. One has

λ‖fD∗,λ‖2K ≤ ED∗(0)− ED∗(fD∗,λ) ≤ − h2

|D∗|2
∑

w,z∈D∗
G

(
(y − v)2

h2

)
+ h2G(0)

≤ CG
|D∗|2

∑
w,z∈D∗

(y − v)2 =
CG
|D∗|2

 ∑
w,z∈D

(
|D∗|
|D|

y − |D
∗|
|D|

v

)2

+ 2
∑

w∈D,z∈D̃

(
|D∗|
|D|

y

)2


≤ 4CG

(
1

|D|
∑
w∈D

y2 +
|D̃|
|D|
· 1

|D|
∑
w∈D

y2

)

≤ 4CG

(
1 +
|D̃|
|D|

)
max
w∈D

y2 = 4CG
|D∗|
|D|

max
w∈D

y2.

Thus, ‖fD∗,λ‖K ≤ 2
(
CG|D∗|
λ|D|

)1/2
maxw∈D |y|. Similar to the estimation (26),

‖ED∗,λ‖K

≤cph−2p
1

|D∗|2
∑

w,z∈D∗
(‖fD∗,λ‖K + |y − v|)2p+1

≤22pcph
−2p

(
‖fD∗,λ‖2p+1

K + 22p+1 max
w∈D∗

|y|2p+1

)
≤22pcph

−2p

(
22p+1

(
CG|D∗|
λ|D|

)p+ 1
2

max
w∈D

|y|2p+1 + 22p+1

(
|D∗|
|D|

)2p+1

max
w∈D

|y|2p+1

)

≤24p+1cph
−2p(C

p+ 1
2

G + 1)∆D,D∗,λ(4M + 5σ)2p+1 log2p+1 |D|
δ
,

where ∆D,D∗,λ =
(
|D∗|
λ|D|

)p+ 1
2

+
(
|D∗|
|D|

)2p+1

. Therefore with probability 1− δ,

‖ED∗,λ‖K ≤ C2∆D,D∗,λh
−2p log2p+1 |D|

δ
,

where C2 = 24p+1cp(C
p+ 1

2

G +1)(4M+5σ)2p+1. The following part of the proof is similar to the proof
of Theorem 2.2. We include it for the sake of completeness.

Recall Corollary 5.2 and Proposition 5.4. For each fixed l = 1, . . . , k, with probability at least
1− 4δ, the following three bounds hold true simultaneously.

BD∗l ,λC
2
D∗l ,λ

λ−1/2 ≤8

(
A2
D∗l ,λ

λ
+ 1

)(
log2 2

δ

)
× 4A2

D∗l ,λ

(
log2 2

δ

)
λ−1/2

=32

(
A2
D∗l ,λ

λ
+ 1

)
A2
D∗l ,λ

λ−1/2 log4 2

δ
,
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BD∗l ,λCD∗l ,λλ
−1‖ED∗l ,λ‖K

≤8

(
A2
D∗l ,λ

λ
+ 1

)(
log2 2

δ

)
× 2AD∗l ,λ

(
log

2

δ

)
λ−1C2h

−2p∆Dl,D∗l ,λ
log2p+1 |Dl|

δ

=16C2∆Dl,D∗l ,λ
h−2pλ−1

(
A2
D∗l ,λ

λ
+ 1

)
AD∗l ,λ

(
log3 2

δ

)
log2p+1 |Dl|

δ
,

and

BD∗l ,λCD∗l ,λGD∗l ,λλ
−1/2

≤8

(
A2
D∗l ,λ

λ
+ 1

)(
log2 2

δ

)
× 2AD∗l ,λ

(
log

2

δ

)
× 8(M + σ)ADl,D∗l ,λ

(
log

4

δ

)
λ−1/2

≤256(M + σ)

(
A2
D∗l ,λ

λ
+ 1

)
AD∗l ,λADl,D∗l ,λλ

−1/2 log4 2

δ
,

where we used log 4
δ ≤ 2 log 2

δ , which follows from 4/δ ≤ 4/δ2. Therefore, with probability at least
1− 4kδ, the following two bounds hold true simultaneously.

S∗1 ≤256(1 +M + σ)λ−1/2
(

log4 2

δ

)
× max

1≤l≤k

(
A2
D∗l ,λ

λ
+ 1

)
AD∗l ,λ

(
AD∗l ,λ‖fλ‖K +ADl,D∗l ,λ

)
, (48)

S∗2 ≤16λ−1/2C2∆Dl,D∗l ,λ
h−2p

(
log3 2

δ

)
× max

1≤l≤k

[(
A2
D∗l ,λ

λ
+ 1

)
AD∗l ,λλ

−1/2 + 1

]
log2p+1 |Dl|

δ
. (49)

By Corollary 5.2 and Proposition 5.4, we see that with probability at least 1− δ
2 , the following two

bounds hold simultaneously.

DD∗,λ ≤2AD∗,λ,k log
8

δ
, (50)

FD∗,λ ≤8(M + σ)AD,D∗,λ,k log
16

δ
. (51)

The proof is completed by scaling δ to δ
8k in (48) and (49), and combining them with (50) and (51).

Proof of Corollary 2.7. We have |D∗| ≥ |D|
s+1
2r+s = λ−s−1 when 0 < r < 1

2 , and |D∗| ≥ |D| =
λ−2r−s when 1

2 ≤ r ≤ 1. By (30),

‖fλ‖K√
|D∗|

≤
{
‖hρ‖ρλr−

1
2+

s
2+

1
2 , when 0 < r < 1

2

‖hρ‖ρ/
√
|D|, when 1

2 ≤ r ≤ 1

}
= ‖hρ‖ρλr+

s
2 . (52)

For any 1 ≤ l ≤ k, the assumption |D∗l | ≥ |Dl| ≥ 4 implies b|D∗l |/4c ≥ |D∗l |/7. The assumption

k ≤
√
|D∗|λ1+s implies k√

|D∗|
λ−(1+s)/2 ≤ 1. Recall N (λ) ≤ C0λ

−s. We have

AD∗l ,λ =
1

|D∗l |
√
λ

+
1

b|D∗l |/4c
√
λ

+

√
N (λ)

b|D∗l |/4c
≤ 8k

|D∗|
√
λ

+

√
7C0λ−sk

|D∗|

≤(8 +
√

7C0)

√
k

|D∗|λs

(√
k

|D∗|
λ
s
2−

1
2 + 1

)
≤ 2(8 +

√
7C0)

√
k

|D∗|λs
.
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So,

A2
D∗l ,λ

λ
+ 1 ≤ 4(8 +

√
7C0)2

k

|D∗|
λ−s−1 + 1 ≤ C1

3 ,

where C1
3 := 4(8 +

√
7C0)2 + 1. From definition,

ADl,D∗l ,λ =
1

|D∗l |
√
λ

+
1

b|Dl|/4c
√
λ

+

√
N (λ)

b|Dl|/4c

≤ 8k

|D|
√
λ

+

√
7C0λ−sk

|D|
= 8kλ2r+s−

1
2 +

√
7C0kλ

r.

So, for any 1 ≤ l ≤ k,

AD∗l ,λ‖fλ‖K +ADl,D∗l ,λ ≤2(8 +
√

7C0)
√
kλ−s

‖fλ‖K√
|D∗|

+ADl,D∗l ,λ

≤2(8 +
√

7C0)‖hρ‖ρ
√
kλr + 8kλ2r+s−

1
2 +

√
7C0kλ

r

≤C2
3

(√
kλr + kλ2r+s−

1
2

)
,

where C2
3 := 2(8 +

√
7C0)‖hρ‖ρ + 8 +

√
7C0.

Recall log 16k
δ ≤ log 16|D|

δ ≤ 2(log |D|) log 16
δ . We summarize the analysis above to give the bound

of the second term on the right-hand side of (17).

J∗2 :=256(1 +M + σ)λ−1/2
(

log4 16k

δ

)
× max

1≤l≤k

(
A2
D∗l ,λ

λ
+ 1

)
AD∗l ,λ

(
AD∗l ,λ‖fλ‖K +ADl,D∗l ,λ

)
=
C3

3√
λ

(
log4 |D|

)(
log4 16

δ

)√
k

|D∗|λs
(√

kλr + kλ2r+s−
1
2

)
,

where C3
3 := 256(1 +M + σ)× 24C1

3 × 2(8 +
√

7C0)C2
3 . We use the assumption (18) to obtain

kλr log4 |D|√
|D∗|λs+1

≤ λr,

k3/2λ2r+s−1√
|D∗|λs

log4 |D| ≤

(
|D∗| 13λ 2−2r−s

3

)3/2
λ2r+s−1√

|D∗|λs
≤ λr.

So J∗2 ≤ 2C3
3λ

r log4 16
δ .
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Next, it is easy to see that for 1 ≤ l ≤ k, ∆Dl,D∗l ,λ
= ∆D,D∗,λ. Note that a ≤ a2 + 1 for a ≥ 0.

We have

J∗3 :=16λ−1/2C2h
−2p

(
log3 16k

δ

)
× max

1≤l≤k

[(
A2
D∗l ,λ

λ
+ 1

)
AD∗l ,λ√

λ
+ 1

]
∆Dl,D∗l ,λ

log2p+1 16|D|
δ

≤ 16C2h
−2p × 23

(
log3 |D|

)(
log3 16

δ

)
λ−1/2

(
(C1

3 )2 + 1
)

×∆D,D∗,λ × 22p+1 (log |D|)2p+1

(
log

16

δ

)2p+1

= C4
3h
−2pλ−1/2∆D,D∗,λ (log |D|)2p+4

(
log

16

δ

)2p+4

,

where C4
3 := 16C2 × 22p+4

(
(C1

3 )2 + 1
)
.

Now we bound the last term on the right-hand side of (17). By definition and the bound (52)
above,

AD∗,λ,k‖fλ‖K =‖fλ‖K

(
k

|D∗|
√
λ

+
1

b|D∗|/4c
√
λ

+

√
N (λ)

b|D∗|/4c

)

≤‖hρ‖ρλr+
s
2

(
8k√
λ|D∗|

+
√

7C0λ−s

)
.

The assumption (18) of k implies k√
λ|D∗|

≤ λs/2 ≤ 1. So AD∗,λ,k‖fλ‖K ≤ ‖hρ‖ρ(8 +
√

7C0)λr. By

the assumption |D∗| ≥ λ−1−s, k ≤
√
|D∗|λ1+s, and r + s ≥ 1

2 ,

AD,D∗,λ,k =
k

|D∗|
√
λ

+
1

b|D|/4c
√
λ

+

√
N (λ)

b|D|/4c

≤

√
λs

|D|
+ 7λ2r+s−

1
2 +

√
7C0λ

− s2+r+
s
2 ≤ (8 +

√
7C0)λr.

We summarize the above analysis and use (17) to obtain that with probability 1− δ,

‖f̄D∗,λ − fρ‖ρ ≤‖hρ‖ρλr + 2C3
3λ

r log4 16

δ

+ C4
3h
−2pλ−1/2∆D,D∗,λ (log |D|)2p+4

(
log

16

δ

)2p+4

+ (2‖hρ‖ρ + 8M + 8σ)(8 +
√

7C0)λr log
16

δ
,

which yields the conclusion with C3 := ‖hρ‖ρ + 2C3
3 + C4

3 + (2‖hρ‖ρ + 8M + 8σ)(8 +
√

7C0).
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Appendix A. Concentration inequalities

Lemma A.1 (Pinelis and Sakhanenko, 1986, Theorem 3) Let {ηi}ni=1 be a be a sequence of inde-
pendent random variables with values in a separable Hilbert space (H, ‖ · ‖) and E(ηi) = 0 for each
i = 1 · · · , n. Then for any c > 0, there holds

E

[
cosh

(
c

∥∥∥∥∥
n∑
i=1

ηi

∥∥∥∥∥
)]
≤

n∏
i=1

E
(
ec‖ηi‖ − c‖ηi‖

)
.

Lemma A.2 Let ξ(z) be a random variable defined on (Z, ρ) with values in a separable Hilbert space
(H, ‖ · ‖). Assume that there are two positive constants σ > 0 and M > 0 such that for any integer
q ≥ 2,

E[‖ξ(z)− Eξ‖q] ≤ 1

2
q!σ2Mq−2, (53)

then for any ε > 0 and any positive integer n, there holds

inf
c>0

E

[
cosh

(
c

∥∥∥∥∥ 1

n

n∑
i=1

ξ(zi)− E(ξ)

∥∥∥∥∥
)]

/ cosh(cε) ≤ 2 exp

{
− nε2

2(σ2 +Mε)

}
. (54)

Proof. Applying Lemma A.1 with ηi = 1
n [ξ(zi)− E(ξ)], we get that

E

[
cosh

(
c

∥∥∥∥∥ 1

n

n∑
i=1

ξ(zi)− E(ξ)

∥∥∥∥∥
)]
≤

n∏
i=1

E
(
e
c‖ξ(zi)−E(ξ)‖

n − c‖ξ(zi)− E(ξ)‖
n

)
.

For each 1 ≤ i ≤ n and any c > 0, by Taylor expansion and the elementary inequality 1 + a ≤ ea

for any a ∈ R, we have

E
(
e
c‖ξ(zi)−E(ξ)‖

n − c‖ξ(zi)− E(ξ)‖
n

)
=

∞∑
q=2

cqE[‖ξ(z)− E(ξ)‖q]
nqq!

+ 1

≤ exp

{ ∞∑
q=2

cqE[‖ξ(z)− E(ξ)‖q]
nqq!

}
.

We set 0 < c < n/M and recall (53) to obtain,

E
(
e
c‖ξ(zi)−E(ξ)‖

n − c‖ξ(zi)− E(ξ)‖
n

)
≤ exp

{
σ2

2

∞∑
q=2

cqMq−2

nq

}
= exp

{
σ2c2

2n(n− cM)

}
.

Therefore,

E

[
cosh

(
c

∥∥∥∥∥ 1

n

n∑
i=1

ξ(zi)− E(ξ)

∥∥∥∥∥
)]
≤ exp

{
σ2c2

2(n− cM)

}
.

Taking c = nε
σ2+Mε ∈ (0, n/M) and noting that cosh(cε) ≥ ecε

2 , the conclusion is obtained.
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Appendix B. A technical lemma

The following lemma is straightforward, and is used in the literature to yield learning rates in
expectation, from the learning rates with probability. We include it just for completeness.

Lemma B.1 Let R be a non-negative random variable. Let α, γ > 0 and β ≥ 1. If for any
0 < δ < 1, with probability at least 1− δ,

R ≤ α logγ
β

δ
,

then for any real number µ > 0,

[E(Rµ)]
1/µ ≤ α [βΓ(µγ + 1)]

1/µ
,

where Γ(t) =
∫∞
0
e−uut−1du is the Gamma function.

Proof. For any real number µ > 0 and 0 < δ < 1, we have Prob(Rµ > αµ logµγ β
δ ) ≤ δ. Let

t = αµ logµγ β
δ > αµ logµγ β to give δ = β exp

{
− (t/αµ)

1
µγ

}
. So, when t > αµ logµγ β,

Prob {Rµ > t} ≤ β exp
{
− (t/αµ)

1
µγ

}
. (55)

When 0 < t < αµ logµγ β, the bound (55) also holds true because its right-hand side is greater than
1,

β exp
{
− (t/αµ)

1
µγ

}
> β exp {− log β} = 1.

Therefore

E[Rµ] =

∫ ∞
0

Prob(Rµ > t)dt ≤ β
∫ ∞
0

exp
{
− (t/αµ)

1
µγ

}
dt

uµγ=t/αµ

====== βαµµγ

∫ ∞
0

e−uuµγ−1du = αµβΓ(µγ + 1).

The proof is complete.
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