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Abstract

Curriculum Learning is motivated by human cognition, where teaching often involves
gradually exposing the learner to examples in a meaningful order, from easy to hard. Al-
though methods based on this concept have been empirically shown to improve performance
of several machine learning algorithms, no theoretical analysis has been provided even
for simple cases. To address this shortfall, we start by formulating an ideal definition of
difficulty score - the loss of the optimal hypothesis at a given datapoint. We analyze the
possible contribution of curriculum learning based on this score in two convex problems -
linear regression, and binary classification by hinge loss minimization. We show that in both
cases, the convergence rate of SGD optimization decreases monotonically with the difficulty
score, in accordance with earlier empirical results. We also prove that when the difficulty
score is fixed, the convergence rate of SGD optimization is monotonically increasing with
respect to the loss of the current hypothesis at each point. We discuss how these results
settle some confusion in the literature where two apparently opposing heuristics are reported
to improve performance: curriculum learning in which easier points are given priority, vs
hard data mining where the more difficult points are sought out.

Keywords: curriculum learning, linear regression, hinge loss minimization

1. Introduction

Many popular machine learning algorithms involve sampling of examples from a large labeled
data set and gradually improving the model performance on those examples. In particular,
any algorithm which employs Stochastic Gradient Descent (SGD) falls under this category.
In the standard and most common form of SGD, examples are drawn uniformly from the
training data. This approach is well justified theoretically as it guarantees that the expected
value of the gradient in each step is equal to the gradient of the empirical loss.

Although this approach is both simple and theoretically sound, it differs dramatically
from our intuition of how living organisms learn from examples. Both humans and animals
usually benefit from being exposed to examples in a meaningful order as defined by some
curriculum. The efficacy of learning new concepts is usually improved, or even only made
possible, when the learner is exposed to gradually more difficult examples or more complex
concepts. The learner usually uses the easier examples to acquire capabilities which facilitate
the grasping of the more complex examples. This concept is well grounded in cognitive
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research, where it has been investigated within both a behavioral approach (e.g. Skinner,
1990) and a computational approach (e.g. Elman, 1993).

The idea of incorporating the concept of curriculum learning into the framework of
supervised machine learning has been introduced early on (e.g. Sanger, 1994), while being
identified as a key challenge for machine learning throughout (Mitchell, 1980, 2006; Wang
and Cottrell, 2015). Several formulations have been suggested both in the context of SGD
(Bengio et al., 2009) and in the context of other iterative optimization algorithms (Kumar
et al., 2010). Most empirical studies, involving non-convex problems for the most part,
demonstrated beneficial effects of curriculum learning, including faster convergence rate
and better final performance. Even so, this approach has not been widely adopted by
practitioners (but see Schroff et al., 2015; Oh et al., 2015). Moreover, this idea has not been
theoretically analyzed, and no guarantees have ever been obtained for its success even on
simple learning problems.

One inherent limitation of current curriculum learning approaches is the absence of a
formal definition of the difficulty score of datapoints. In their empirical research, Bengio
et al. (2009) relied on a manually crafted, domain-specific curriculum. This approach fails
when the manual definition of easier sub-tasks or subsets of examples is impossible to acquire,
especially with large scale and complex data. Moreover, even when it is possible to manually
design a curriculum, the scoring of difficulty based on human intuition may not match the
difficulty of the example or sub-problem for a learning algorithm.

The framework of Self Paced learning (SPL) (Kumar et al., 2010) overcomes this limitation
by focusing on the intrinsic information of the learner, namely, the loss with respect to
the learner’s current hypothesis, in order to avoid the need to obtain a curriculum from
an extrinsic source. In this approach, a new optimization problem is introduced where the
training loss is minimized jointly with a regularizing term, which attaches greater significance
to points that better fit the current learner’s hypothesis (namely, incur lower loss). While
SPL obviates the need for a predefined curriculum, new difficulties are introduced as the
new optimization problem is more difficult to solve. Moreover, by relying only on the
learner’s training loss, the optimization is more susceptible to problems such as over-fitting
and training instability. Finally, the SPL heuristics seems to contradict other commonly
used heuristics, which attach greater significance to points that do not fit well with the
current learner’s hypothesis (namely, incur higher loss). Examples include hard data mining
(Shrivastava et al., 2016) and boosting (Schapire et al., 1998).

In this paper, we address those challenges from a theoretical point of view. We first
define a measure for the convergence rate of SGD optimization, and offer a formal definition
of a point’s difficulty score - the loss at the optimal hypothesis with respect to the example.
We then analyze how these two concepts are related, and specifically, how the convergence
rate of SGD optimization changes with the difficulty score. This is done in the context
of two convex optimization problems - linear regression and classification with hinge loss
minimization. Our analysis shows that under some reasonable assumptions, the convergence
rate is expected to decrease monotonically with the difficulty of the sampled examples. This
analysis is consistent with empirical results as discussed above.

Another challenge involves the success of apparently contradictory methods, which are
based on the idea that the more difficult examples should be given higher weight (Shrivastava
et al., 2016; Schapire et al., 1998). We hypothesize that this apparent contradiction can
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be explained in part by some confusion in the literature with respect to how difficulty is
measured. More specifically, we formally differentiate between the global difficulty score as
defined above, and the local difficulty score as defined by the loss at a point with respect to
the current hypothesis. In agreement with the intuition underlying both approaches, we
claim that ideally a learner should follow a curriculum based on extrinsic (global) difficulty,
while not ”wasting time” on examples that are easy for the current (local) learning hypothesis.
In accordance, we formally show that when examples are drawn conditioned on some fixed
global difficulty score, the convergence rate of SGD optimization in linear regression and
hinge loss minimization is monotonically increasing with the local difficulty of the example.

The rest of the paper is organized as follows: We start by introducing some notations and
definitions in Section 2. In Sections 3 and 4 we develop the theory and prove the main results
for the two convex problems of linear regression and hinge loss classification, respectively.

Related Work. Jiang et al. (2017) addressed the automatic generation of curriculum by
developing a general framework for the joint training of two deep neural networks, where
one network (the MentorNet) is trained to generate an adaptive curriculum for the other
network. In their work, they show both empirically and theoretically that the data-driven
generation of curriculum by MentorNet can improve the learner robustness to noisy data.

The apparent contradiction in empirical reports, showing the advantage of both cur-
riculum learning and hard example mining, motivated Chang et al. (2017) to suggest the
active bias method. This method circumvents the problem of ”easy vs. hard” by focusing on
certainty instead of difficulty. In their approach, the training schedule is designed according
to the model’s prediction variance over the previous training steps, where distribution is
biased in favor of examples with high prediction variance.

Our approach differs from these two ideas in that it addresses the question of difficulty
definition directly. In contrast, MentorNet and active bias can, in theory, learn to generate
biases over the data distribution which do not necessarily reflect a difficulty based curriculum.
Future work should examine whether any curriculum generated by these methods complies
with the intuition derived from our theoretic results. Namely, a curriculum should rank
the examples so that they are negatively correlated with some global difficulty score, and
positively correlated with the local difficulty.

We note that in practice, there is no easy way to define a curriculum based on the
concept of global difficulty score, since the optimal hypothesis is not known to the learner.
Nevertheless, many practical scenarios that employ machine learning involve a sequence of
iterations of model improvement. In such scenarios, results from earlier iterations can be
used to generate a curriculum for subsequent iterations. Another scenario involves transfer
learning from a strong learner to a weaker learner. Thus, it has been shown by Hacohen
and Weinshall (2019) that curriculum based on the stronger model’s difficulty scores can be
used to train the weak model faster, and lead it to a better solution.

2. Notations and Definitions

Let X = {[xi, yi]}ni=1 denote the set of the training examples, where xi ∈ Rd denotes the
i-th data point and yi its corresponding label. Examples are drawn from a distribution D.
Let H denote a set of hypotheses {hw} defined by some parameter vector w. Let L(Xi, h)
denote the loss of hypothesis h at point Xi = [xi, yi]. In the risk Minimization framework,
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we seek a hypothesis h̄ that minimizes the expected loss LD(h)

LD(h) = EXi∼D(L(Xi, h))

w̄ = argmin
w

LD(hw), h̄ = hw̄
(1)

2.1 Convergence rate of SGD optimization

When LD(h) is convex, h̄ can be found using Gradient Descent or Stochastic Gradient
Descent. In pure SGD optimization, at time t ∈ [T ] a single example Xt = [xt, yt] is drawn
from distribution D and used to estimate the gradient step. In practice, optimization is
often achieved using mini-batch stochastic gradient descent, where at each time t a set of
examples is drawn and jointly used to estimate the gradient step.

Our analysis assumes pure SGD optimization as defined above. Given a sequence {Xt}Tt=1,
this optimization method generates a sequence of estimators {wt}Tt=1. Although in practice
many variations on SGD are used, we analyze here the basic form in which the update rule
is defined as follows

wt+1 = wt − η
∂L(Xt,w)

∂w

∣∣∣∣
w=wt

(2)

where η is a hyper-parameter that controls the learning rate of the algorithm.

We can now define the convergence rate of SGD at time t:

Definition 1 (Convergence Rate) The improvement achieved by SGD using point Xt is
measured by the change in the distance between the current estimate of the optimal hypothesis
and the optimal hypothesis ‖wt − w̄‖. The convergence rate of SGD at time t is measured
by the average change in this divergence measure over all points, namely

∆ = EXt∼D[‖wt − w̄‖2 − ‖wt+1 − w̄‖2] (3)

2.2 Measuring the difficulty score

Definition 2 (Difficulty Score)

• The global Difficulty Score of example X is defined as

Ψ(X) = g(L(X, h̄)) (4)

where g(·) is some monotonic function.

• The local Difficulty Score of example X is defined as

Υ(X) = g(L(X, hwt)) (5)

where wt is the current hypothesis, and g(·) is the same function as in (4).

For clarity, in the rest of this paper we will omit the index t when it is clear from context.
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2.3 Outline of the main results

In general, SGD is only guaranteed to converge to a local minimum of the loss function. We
therefore limit our analysis to simple convex problems, one continuous - linear regression,
and one discrete - binary classification with hinge loss minimization.

In these two study cases, we analyze the convergence of SGD as defined above. First we
define the conditional convergence rate, ∆ from (3) conditioned on example difficulty Ψ or
Υ. We then investigate the differential change in the conditional convergence rate as the
difficulty score changes. We show two results: (1) This differential change is monotonically
decreasing with the global difficulty score Ψ, namely, SGD converges faster when given easier
examples. (2) When Ψ is fixed, this differential change is monotonically increasing with the
local difficulty score Υ, namely, SGD converges faster when given examples that are more
challenging for the current hypothesis wt.

3. Linear Regression

In linear regression, the learner’s goal is to predict a real value y = h(x) for x ∈ Rd, where
h ∈ H is a linear function of x and the loss is defined by the sum of least squares. Formally,
using the notations above, the loss function can be written as

L(X,w) = (a · x + b− y)2

.
= (x ·w − y)2

(6)

where w
.
= [a, b]t ∈ Rd+1 denotes the linear separator concatenated with the bias term. With

some abuse of notation, x henceforth will denote the vector [x, 1]t ∈ Rd+1. Let s denote the
gradient vector at time t. We obtain from (2) and (6)

wt+1 = wt − 2η(x ·w − y)x = wt + s

s
.
= −2η(x ·w − y)x

(7)

3.1 Convergence rate decreases with global difficulty

The main theorem in this section states that the conditional convergence rate of SGD is
monotonically decreasing with the global Difficulty Score of sample Xt. We prove it below
for the gradient vector as defined in (7). We note in passing that if the size of the gradient
step is fixed at η, a somewhat stronger theorem can be obtained where the constraint on
the step size being small is not required.

Recall that x,w ∈ Rd+1. The analysis in carried out in the parameter space w ∈ Rd+1,
where parameter vector w corresponds to a point, and data vector x describes a hyperplane.
In this space, let Ωx denote the hyperplane on which the gradient s vanishes, i.e. s = 0. It
follows from (7) that this hyperplane is defined by x ·w = y, namely, x defines its normal
direction. This implies that the gradient vector at time t is perpendicular to Ωx as illustrated
in Fig. 1. Let z̄ denote the projection of w̄, the parameters of the optimal hypothesis, on
Ωx.

Due to the nature of the regression loss, which is based on the squared Euclidean distance,
we use g(x) =

√
x in (4), to obtain the difficulty score Ψ(X) =

√
L(X, w̄).
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Figure 1: The geometry of the gradient step at time t, where wt → wt+1.

Lemma 1 The Difficulty Score (squared) of X is Ψ2 = ‖x‖2‖w̄ − z̄‖2.

Proof

Ψ(X)2 = L(X, w̄) = L(X, z̄ + (w̄ − z̄))

= [x · z̄ + x · (w̄ − z̄)− y]2

= [x · (w̄ − z̄)]2

= ‖x‖2‖w̄ − z̄‖2

(8)

The transition in the third line follows from z̄ ∈ Ωx =⇒ x · z̄− y = 0. The last transition
follows from the fact that both x and (w̄ − z̄) are perpendicular to Ωx, and are therefore
parallel to each other.

Next, we embed the data points in the parameters space, representing each datapoint x
using a hyperspherical coordinate system [r, ϑ,Φ], with pole (origin) fixed at w̄ and polar axis
(zenith direction) ~O = w̄ −wt (see Fig. 2). r denotes the vector’s length, while 0 ≤ ϑ ≤ π
denotes the polar angle with respect to ~O. Let Φ = [ϕ1, . . . , ϕd−1] denote the remaining
polar angles.

To illustrate, Fig. 2 shows a planar section of the parameter space - the 2D plane formed
by the two intersecting lines ~O and z̄− w̄. The gradient vector s points from wt towards Ωx.
Ωx is perpendicular to x, which is parallel to z̄− w̄ and to s, and therefore Ωx is projected
onto a line in this plane. We introduce the notation λ = ‖w̄ −wt‖.

Let sO denote the projection of the gradient vector s on the polar axis ~O, and let s⊥
denote the perpendicular component. From (7) and the definition of Ψ

s = −2ηx(x ·wt − y)

= −2ηx[x · (wt − w̄)±Ψ]
(9)

and

sO = s · w̄ −wt

λ

= 2
η

λ
[r2λ2 cos2 ϑ∓Ψrλ cosϑ]

(10)
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Figure 2: The 2D planar section defined by the vectors ~O = w̄ −wt and z̄− w̄. The circle
centered on w̄ has radius ‖w̄ − z̄‖ = Ψ

‖x‖ from Lemma 1. It traces the location of

z̄ at points x for which Ψ
‖x‖ is constant.

Assumption 1 (independence assumption) Assume that the probability of label y de-
pends only on the error |y − xt · w̄|, and that the error probability is independent of x.

With this assumption1 we can introduce the following notation for the density of D

fD(X)
.
= f(x)g(|y − xt · w̄|) (11)

where
∫
f(x)dx = 1.

The following analysis requires the conditional distribution of the data given difficulty
score Ψ. Note that when the difficulty score is fixed, the label y must take one of the
following two values: y1 = x · w̄ + Ψ or y2 = x · w̄ −Ψ. By Assumption 1 both labels are
equally likely, where from (11) fD|Ψ(X) ∝ 2f(x)g(Ψ). Let x = (r, ϑ,Φ). It follows that

fD|Ψ(X) = f(x) = f(r, ϑ,Φ) (12)

Based on (3), let ∆(Ψ) denote the conditional convergence rate at wt given Ψ:

∆(Ψ) = EXt∼D|Ψ[‖wt − w̄‖2 − ‖wt+1 − w̄‖2] (13)

Lemma 2
∆(Ψ) = 2λEXt∼D|Ψ[sO]− EXt∼D|Ψ[s2] (14)

Proof From (13), using Cartesian coordinates in the planar section shown in Fig. 2 where
s = [sO, s⊥], wt − w̄ = [−λ, 0] and wt+1 − w̄ = [−λ+ sO, s⊥], it follows that

∆(Ψ) = (−λ)2 − EXt∼D|Ψ[(−λ+ sO)2 + s2
⊥]

= λ2 − (λ2 − 2λEXt∼D|Ψ[sO] + EXt∼D|Ψ[s2
O])− EXt∼D|Ψ[s2

⊥]

= 2λEXt∼D|Ψ[sO]− EXt∼D|Ψ[s2]

1. In Appendix A we show that in a Bayesian framework, this assumption can be replaced by Efv [fD([x,x ·
w̄ + u])] = Efv [fD([x,x · w̄ − u])] ∀u, where expectation is taken with respect to some prior distribution
fv over D.
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To simplify the notations, henceforth E stands for EXt∼D|Ψ. In addition, we define a
shorthand notation (±Ψ) to be used inside the expectation operator E[·]. It conveys that
the operand of E[] should be multiplied by either +Ψ or −Ψ, depending on whether the
label y equals x · w̄ + Ψ or x · w̄−Ψ respectively. When expectation is computed, each case
is assigned the conditional probability of the corresponding label as defined above. Using
this notation and Lemma 2, it follows from (9),(10),(14) that

1

4
∆(Ψ) = ηE[r2λ2 cos2 ϑ]− η2E[r4λ2 cos2 ϑ]− η2Ψ2E[r2]− ηE[(±Ψ)rλ cosϑ]

− 2η2E[(±Ψ)r3λ cosϑ] (15)

Invoking Assumption 1 and using (12), it can be readily shown that

E[(±Ψ)rλ cosϑ] = E[(±Ψ)r3λ cosϑ] = 0

from which it follows that

1

4
∆(Ψ) = ηE[r2λ2 cos2 ϑ]− η2E[r4λ2 cos2 ϑ]− η2Ψ2E[r2] (16)

We can now state the main theorem of this section.

Theorem 3 Given Assumption 1, the conditional convergence rate ∆(Ψ) is monotonically
decreasing with the Difficulty Score Ψ. If the step size coefficient is sufficiently small so

that η ≤ E[r2 cos2 ϑ]
E[r4 cos2 ϑ]

, it is likewise monotonically increasing with the distance λ between the

current estimate of the hypothesis wt and the optimal hypothesis w̄.

Proof From (16)
∂∆(Ψ)

∂Ψ
= −8η2E[r2]Ψ ≤ 0

which proves the first statement. In addition,

∂∆(Ψ)

∂λ
= 8ηλ

(
E[r2 cos2 ϑ]− ηE[r4 cos2 ϑ]

)
If η ≤ E[r2 cos2 ϑ]

E[r4 cos2 ϑ]
then ∂∆(Ψ)

∂λ ≥ 0, and the second statement follows.

Corollary 3.1 Although ∆(Ψ) may be negative, wt always converges faster to w̄ when the
training points are sampled from easier examples with smaller difficulty score Ψ.

Corollary 3.2 If the step size coefficient η is small enough so that η ≤ E[r2 cos2 ϑ]
E[r4 cos2 ϑ]

, we should

expect faster convergence at the beginning of curriculum-based learning.

We note, outside the scope of the present discussion, that the predictions of these two
corollaries have been observed in simulations with deep CNN network, where the loss function
is far from being convex, see (Weinshall et al., 2018; Hacohen and Weinshall, 2019).
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3.2 Convergence rate increases with local difficulty

The main theorem in this section states that for a fixed global difficulty score Ψ, when
the gradient step is small enough, convergence is monotonically increasing with the local
difficulty, or the loss of the point with respect to the current hypothesis. This is not true in
general. The second theorem in this section shows that when the difficulty score is not fixed,
there exist hypotheses w ∈ H for which the convergence rate is decreasing with the local
difficulty.

Given (5), let Υ2 = L(X,wt) denote the loss of X with respect to the current hypothesis
wt. Define the angle β ∈ [0, π2 ) as follows (see Fig. 2):

β = β(r,Ψ, λ) = arccos(min(
Ψ

λr
, 1)) (17)

Lemma 4 The relation between Υ,Ψ, r, ϑ can be written separately in 4 regions as follows
(see Fig. 2):

A1 0 ≤ ϑ ≤ π − β, y = x · w̄ + Ψ =⇒ y = x ·wt + Υ, λr cosϑ = x · (w̄ −wt) = −Ψ + Υ

A2 π − β ≤ ϑ ≤ π, y = x · w̄ + Ψ =⇒ y = x ·wt −Υ, λr cosϑ = −Ψ−Υ

A3 0 ≤ ϑ ≤ β, y = x · w̄ −Ψ =⇒ y = x ·wt + Υ, λr cosϑ = Ψ + Υ

A4 β ≤ ϑ ≤ π, y = x · w̄ −Ψ =⇒ y = x ·wt −Υ, λr cosϑ = Ψ−Υ

Proof We keep in mind that ∀x and Ψ, there are 2 possible labels y whose probability is
equal from assumption (12). Recall that z̄ denotes the projection of w̄ on Ωx. Thus, on the
planar section shown in Fig. 2:

• z̄ lies in the upper half space ⇐⇒ y = x · w̄ + Ψ

• z̄ lies in the lower half space ⇐⇒ y = x · w̄ −Ψ

This follows from 3 observations: (i) x̄ lies in the upper half space by the definition of the
polar coordinate system; (ii) x · w̄− y = ±Ψ; and (iii) 0 = x · z̄− y = x · (z̄− w̄) + x · w̄− y.

Next, let zt denote the projection of wt on Ωx. Then

0 = x · zt − y = x · (zt −wt) + x ·wt − y

When z̄ lies in the upper half space, the following can be verified geometrically from Fig. 2:

0 ≤ ϑ ≤ π − β =⇒ x · (zt −wt) ≥ 0 =⇒ y = x ·wt + Υ

π − β ≤ ϑ ≤ π =⇒ x · (zt −wt) ≤ 0 =⇒ y = x ·wt −Υ

Next we analyze how the conditional convergence rate changes with Υ. Let ∆(Ψ,Υ)
denote the conditional convergence rate at wt, given fixed global difficulty Ψ and local
difficulty Υ. From (16)

∆(Ψ,Υ) = 4ηEXt∼D|Ψ,Υ[r2λ2 cos2 ϑ] +O(η2)

9
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It is easier to analyze ∆(Ψ,Υ) in a Cartesian coordinates system, rather than polar.
We focus again on the 2D plane defined by the vectors ~O = w̄ − wt and z̄ − w̄ (see
Fig. 2), where we define u = r cosϑ, v = r sinϑ. The 4 cases listed in Lemma 4 can
be readily transformed to this coordinate system as follows: {0 ≤ ϑ ≤ β} ⇔ {λu ≥ Ψ},
{β ≤ ϑ ≤ π − β} ⇔ {−Ψ ≤ λu ≤ Ψ}, and {π − β ≤ ϑ ≤ π} ⇔ {λu ≤ −Ψ}:

A1 λu ≥ −Ψ =⇒ λu = −Ψ + Υ

A2 λu ≤ −Ψ =⇒ λu = −Ψ−Υ

A3 λu ≥ Ψ =⇒ λu = Ψ + Υ

A4 λu ≤ Ψ =⇒ λu = Ψ−Υ

Define

∇ =
f(Ψ+Υ

λ )− f(Ψ−Υ
λ )− f(−Ψ+Υ

λ ) + f(−Ψ−Υ
λ )

f(Ψ+Υ
λ ) + f(Ψ−Υ

λ ) + f(−Ψ+Υ
λ ) + f(−Ψ−Υ

λ )

Clearly −1 ≤ ∇ ≤ 1.

Theorem 5 Assume that the gradient step size is small enough so that second order terms
O(η2) can be neglected. Assume that ∂∇

∂Υ ≥
Ψ
Υ −

Υ
Ψ ∀Υ, and invoke Assumption 1. Fix

the difficulty score at Ψ. Then the conditional convergence rate ∆(Ψ,Υ) is monotonically
increasing with the local difficulty Υ.

Proof In the coordinate system defined above ∆(Ψ,Υ) = 4ηEXt∼D|Ψ,Υ[λ2u2] +O(η2). We
compute ∆(Ψ,Υ) separately in each region, marginalizing out v based on the following∫ ∫ ∞

0
λ2u2vd−1fD|Ψ,Υ(u, v)dvdu =

∫
λ2u2f(u)du

where f(u) denotes the conditional marginal distribution of u.
Let ui denote the value of u corresponding to score Υ in each region A1-A4, and 1

2f(ui)
its density. ∆(Ψ,Υ) takes on 4 discrete values, one in each region, and its expected value is

therefore ∆(Ψ,Υ) = 4η
∑4

i=1 λ
2u2
i

f(ui)∑4
i=1 f(ui)

. It can be readily shown that

1

4η
∆(Ψ,Υ) = Ψ2 + Υ2 + 2ΨΥ∇ (18)

and therefore

1

4η

∂∆(Ψ,Υ)

∂Υ
= 2Υ + 2ΨΥ

∂∇
∂Υ

+ 2Ψ ∇

≥ 2Υ + 2ΨΥ
∂∇
∂Υ
− 2Ψ

(19)

From the assumption that ∂∇
∂Υ ≥

Ψ
Υ −

Υ
Ψ ∀Υ, it follows that

1

8η

∂∆(Ψ,Υ)

∂Υ
≥ Υ + ΨΥ

Ψ−Υ

ΨΥ
−Ψ = 0
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Corollary 5.1 For any c ∈ R+, if ∇ is (c− 1
c )-Lipschitz then ∂∆(Ψ,Υ)

∂Υ ≥ 0 for any Υ ≥ c Ψ.

Corollary 5.2 If the conditional distribution D|Ψ = k(Ψ) (i.e., constant for a given Ψ)
over a compact region and η small enough, then ∇ = 0 and ∂∇

∂Υ = 0 ∀Υ excluding the

boundaries of the compact region. If in addition Υ ≥ Ψ ∀x,wt, then ∂∆(Ψ,Υ)
∂Υ ≥ 0 almost

surely.

Theorem 6 Assume D(X) is continuous and w̄ is realizable, and invoke Assumption 1.
Then there are always hypotheses w ∈ H for which the conditional convergence rate under
fD|Ψ,Υ is monotonically decreasing with the local difficulty Υ.

Proof We shift to a hyperspherical coordinate system in Rd+1 similar as before, but now
the pole (origin) is fixed at wt. For the gradient vector s, it can be shown that:

s = − sgn (x ·wt − y)2ηxΥ

sO = s · w̄ −wt

λ
= ±2η

λ
rλ cosϑ Υ

(20)

Let ∆(Υ) denote the conditional convergence rate at wt given Υ. From Lemma 2

∆(Υ) = 2ηΥ

(
E[r cosϑ|x ·wt − y = −Υ]− E[r cosϑ|x ·wt − y = Υ]

)
− E[(2ηrΥ)2]

.
= 2ηΥQ(r, ϑ,wt)− 4η2Υ2E[r2]

If w = w̄, then Q(r, ϑ,w) = 0 from the symmetry implied in Assumption 1. From the con-
tinuity ofD(X), there exists δ > 0 such that if ‖w−w̄‖2 < δ, then ‖Q(r, ϑ,w)−Q(r, ϑ, w̄)‖2 <
ηΥE[r2], which implies that ∆(Υ) < −2η2Υ2E[r2] < 0.

4. Classification with the Hinge Loss

In this section we analyze the hinge loss optimization in the context of binary classification.
As in (6), we adopt the notation where x denotes the vector [x, 1]t ∈ Rd+1. The hypothesis
w ∈ Rd+1 defines a linear separator which includes a bias term, and the predicted class for
example x is y = sign(x ·w). The hinge loss function is defined as:

L(X,w) = max(1− (x ·w)y, 0) (21)

Since in (21) the margin is fixed at 1, it is desirable (and customarily done) to impose
a constraint over the length of the parameter vector ‖w‖. Without loss of generality we
use the constraint ‖w‖2 = 1 (the relaxation of this constraint is discussed in Appendix B).
Introducing a Lagrange multiplier λ, the solution w̄ to the ensuing optimization problem is:

w̄ = argmin
w

[
max(1− (x ·w)y, 0) + λ‖w‖2

]
(22)

Note that (22) defines the soft-margin SVM classifier.

11
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When using GD, instead of minimizing the argument of (22), one can minimize (21)
directly in each step and subsequently project the solution onto the feasible set (aka projected
gradient descent). This is the procedure we analyze here, with an update rule similar to (7):

wt+1 = wt + ηs, s =

{
xy (x ·w)y ≤ 1

0 elsewhere

}
(23)

A projection wt+1 = wt+1

‖wt+1‖ follows this gradient step.

Given the normalization constraint on the parameter vector w, a suitable metric for
comparing two such vectors is the cosine similarity between them (or their normalized inner
product), in preference over the Euclidean distance between the vectors. We therefore define
the conditional convergence rate for a given Difficulty Score Ψ as

∆(Ψ) = EXt∼D|Ψ

[
wt+1 · w̄
‖wt+1‖‖w̄‖

− wt · w̄
‖wt‖‖w̄‖

]
Note that by definition ‖w̄‖ = ‖wt‖ = 1. Because the hinge loss is piece-wise linear, we insert
the identity function g(x) = x into (4)-(5), so that Ψ(X) = L(X, w̄) and Υ(X) = L(X,wt).

Figure 3: The geometry of the gradient step at time t (see text).

In the following analysis we use a fixed Cartesian coordinate system where the first
coordinate axis is defined by w̄, while the plane defined by the first and second axes is the
subspace spanned by w̄ and wt (see Fig. 3). We assume w.l.o.g that yt = 1 (similar analysis
can be repeated in the symmetrical case of yt = −1). By definition, in this coordinate system
we have

w̄ = [1, 0, . . .]t, wt = [cosϑ, sinϑ . . .]t (24)

where 0 ≤ ϑ ≤ π denotes the angle between w̄ and wt.

12



Theory of Curriculum Learning

It follows that all the points with Difficulty Score Ψ > 0 lie on a hyperplane defined by
x · w̄ = 1−Ψ, where from (24)

x|Ψ = [1−Ψ, x2, · · · , xd+1]t (25)

The conditional convergence rate can now be written as follows

∆(Ψ) = EXt∼D|Ψ

[
cosϑ+ η(1−Ψ)

‖wt+1‖
− cosϑ

]
(26)

4.1 Convergence rate decreases with global difficulty

The main theorem in this section states that when minimizing the hinge loss, the conditional
convergence rate decreases with the global difficulty score Ψ.

Before stating the first lemma, we note that from (23)-(25)

‖wt+1‖ =
√

1 + 2η[(1−Ψ) cosϑ+ x2 sinϑ] + η2‖x‖2 (27)

and

w̄ ·wt+1 = cosϑ+ η(1−Ψ)

Lemma 7 Let X = [x, y] denote some example with Difficulty Score Ψ > 0, and let

B(Ψ)
.
=

Ψ− 1

tanϑ
+

1

sinϑ
(28)

then

x ·wt < 1 ⇐⇒ x2 < B(Ψ) (29)

Proof From (24)-(25) it follows that

x ·wt = (1−Ψ) cosϑ+ x2 sinϑ

and therefore

x ·wt < 1 ⇐⇒ cosϑ

sinϑ
(1−Ψ) + x2 <

1

sinϑ

Lemma 7 defines the range of x2 for which Υ > 0, namely, the local Difficulty Score is
positive (see Fig. 3), while the global Difficulty Score is fixed at Ψ. This can be used to
compute ∆(Ψ) from (26) and obtain

Lemma 8 Assume η is small enough, then

∆(Ψ) =

∫ B(Ψ)

−∞
η[(1−Ψ) sin2 ϑ− x2 sinϑ cosϑ] · f(x2)dx2 +O(η2)

where f(x2) denotes the conditional marginal distribution of x over the second axis.

13
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Proof Recall that the first coordinate of x with Difficulty Score fixed at Ψ > 0 is constant
at x1 = 1−Ψ. We compute ∆(Ψ) using (26) and Lemma 7:

∆(Ψ) =

∫ B(Ψ)

−∞

∫
. . .

∫
I fD|Ψ(x)dxd+1 . . . dx3dx2

I =
cosϑ+ (1−Ψ) · η

‖wt+1‖
− cosϑ

(30)

where ‖wt+1‖ is defined in (27).

Under the assumption that η is small enough, we approximate the integrand I in (30)
using the first terms of its Taylor expansion at η = 0, which yields

I ≈ η
[
(1−Ψ)−

2
(
(1−Ψ) cosϑ+ x2 sinϑ

)
cosϑ

2

]
= η[(1− cos2 ϑ)(1−Ψ)− x2 sinϑ cosϑ]

= η[(1−Ψ) sin2 ϑ− x2 sinϑ cosϑ]

Note that I only depends on x2, and we can therefore integrate out the remaining integration
variables x3, . . . , xd+1. Let f(x2) denote the marginal distribution of x2 given x1 = 1−Ψ.
Then

∆(Ψ) ≈
∫ B(Ψ)

−∞
η[(1−Ψ) sin2 ϑ− x2 sinϑ cosϑ]f(x2)dx2

The derivation above relies on the assumption that the resulting integral is finite, as is
the integral in Rd+1 of the remaining terms in the Taylor expansion corresponding to O(η2).

We can now state the main theorem of this section:

Theorem 9 Assume that the gradient step size is small enough so that second order terms
O(η2) can be neglected. The conditional convergence rate ∆(Ψ) decreases monotonically as
a function of Ψ for every Ψ > (1 − cosϑ) when cosϑ > 0 (i.e., w̄ and wt are positively
correlated), and for every Ψ < (1 − cosϑ) when cosϑ < 0 (i.e., w̄ and wt are negatively
correlated). Monotonicity holds ∀Ψ when cosϑ = 0.

Proof Using Lemma 8 and the Leibniz Theorem for derivation under the integral sign, we
get

∂∆(Ψ)

∂Ψ
= ∆1 + ∆2

where

∆1 =η[(1−Ψ) sin2 ϑ− x sinϑ cosϑ]f(B(Ψ))
∂B(Ψ)

∂Ψ
and

∂B(Ψ)

∂Ψ
=

cosϑ

sinϑ

∆2 =

∫ B(Ψ)

−∞

∂

∂Ψ
η[(1−Ψ) sin2 ϑ− x2 sinϑ cosϑ]f(x2)dx2

=

∫ B(Ψ)

−∞
−η sin2 ϑf(x2)dx2

14
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Clearly ∆2 ≤ 0. It therefore suffices to prove the sufficient condition ∆1 ≤ 0 in order to
conclude the proof.

Case 1: cosϑ = 0, where ∆1 = 0 =⇒ ∂∆(Ψ)
∂Ψ < 0 ∀Ψ.

Case 2: cosϑ > 0. Since f(x) ≥ 0 (a density function), ∆1 ≤ 0 iff the first multiplicand
in the expression describing ∆1 above is non-negative. Using inequality (29) and substituting
B(Ψ) into this term, we get the following upper bound:

(1−Ψ) sin2 ϑ− B(Ψ) sinϑ cosϑ = (1−Ψ) sin2 ϑ− [(Ψ− 1) cosϑ+ 1] cosϑ

= 1− cosϑ−Ψ

Clearly ∀ Ψ > (1− cosϑ) this term is negative.
Case 3: cosϑ < 0. Using the same line of reasoning, now Ψ < (1− cosϑ) =⇒ ∆1 < 0

since ∂B(Ψ)
∂Ψ < 0.

Early in the training procedure we expect Case 2, when cosϑ > 0 and w̄,wt are
positively correlated, to dominate SGD learning. This is because in a high dimensional
space, two randomly picked vectors are expected to be almost orthogonal to each other, and
therefore only a small step towards the optimal hypothesis is needed in order to satisfy this
condition. Now the relevant condition is Ψ > 1 − cosϑ, defining a range which includes
almost all the training examples with non-zero Difficulty Score.

The condition on Ψ in the theorem is necessary. To see this, we next show that when
cosϑ > 0 and 0 < Ψ < 1 − cosϑ, there are cases for which the theorem does not hold.
Similar construction exists when cosϑ < 0 and Ψ > 1− cosϑ.

Theorem 10 For all wt and when cosϑ > 0, there exists D for which ∆(Ψ) is not mono-
tonically decreasing with Ψ in the range [0, 1− cosϑ].

Proof Let 0 < Ψ1 < Ψ2 < 1− cosϑ. Assume that f(x2) = 0 ∀x2 ≤ B(Ψ1), thus ∆(Ψ1) = 0.
It remains to show that ∆(Ψ2) > 0. From Lemma 8 and neglecting second order terms in η

∆(Ψ2) ≈ η
∫ B(Ψ2)

B(Ψ1)
J (x2)f(x2)dx2

J (x2) = (1−Ψ2) sin2 ϑ− x2 sinϑ cosϑ

We next observe that J (x) > 0 ∀x where B(Ψ1) ≤ x ≤ B(Ψ2). This is because J (x) is
monotonically decreasing with x, and B(Ψ2) > 0 for Ψ2 < 1 − cosϑ. It thus follows that
∆(Ψ2) > 0, which concludes the proof.

4.2 Convergence rate increases with local difficulty

In a similar manner to the case of linear regression and under the same assumptions, we show
that when Ψ is fixed, the conditional convergence rate with respect to the local difficulty Υ
is increasing, opposite to its trend with Ψ.

As in Section 3.2, we define:

∆(Ψ,Υ) = EXt∼D|Ψ,Υ

[
wt+1 · w̄
‖wt+1‖ ‖w̄‖

− wt · w̄
‖wt‖ ‖w̄‖

]
15
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Theorem 11 Assume that the gradient step size is small enough so that we can neglect
second order terms O(η2). Assume further that cosϑ ≥ 0. Fixing Ψ and ∀Ψ, the conditional
convergence rate is monotonically increasing with Υ for every Υ > 0.

Proof From Fig. 3 we see that when Ψ,Υ are given, the projection of data point x onto
X1 ×X2 is a point where x1 = 1−Ψ, and

(cosϑ, sinϑ) · (1−Ψ, x2) = 1−Υ

=⇒ x2
.
= X (Ψ,Υ) =

Ψ− 1

tanϑ
+

1−Υ

sinϑ

In the same manner used to prove Lemma 8, we can show that

∆(Ψ,Υ) = η[(1−Ψ) sin2 ϑ−X (Ψ,Υ) sinϑ cosϑ] +O(η2)

It follows that
∂∆(Ψ,Υ)

∂Υ
= η cosϑ ≥ 0

which concludes the proof.

5. Summary and Discussion

This paper offers the first theoretical investigation of curriculum learning, in the context of
convex optimization. In its simplest form, curriculum learning can be viewed as a variant
of stochastic gradient descent, where easy examples are more frequently sampled at the
beginning of training. In order to formalize this intuition, we must first define how to
measure difficulty. Here we define the global Difficulty Score of a point as its loss with respect
to the optimal hypothesis. This definition allows us to analyze the benefits of curriculum
learning in two representative convex optimization problems - binary classification with
hinge loss minimization, and linear regression. In the context of these two optimization
problems we show that curriculum learning, with an initial bias in favor of training points
whose loss with respect to the optimal hypothesis is lower, accelerates learning. We also
show that when the Difficulty Score is fixed, convergence of SGD optimization is accelerated
when preferring training points whose loss with respect to the current hypothesis (local
Difficulty Score) is higher.

These theoretical results can direct us towards the development of new practical methods
which will incorporate both global and local scores in order to balance between easy and hard
examples. One simple approach to achieve this end may control the pace of the curriculum
schedule by employing the local score. More sophisticated algorithms can combine biases
based on both scores.

Our results suggest that the correlation between local and global difficulty scores can
predict whether methods like SPL that favor currently easier examples, or rather methods
like hard example mining that favor currently hard examples, should be preferred in specific
tasks. For example, when learning from noisy data, we expect to see high correlation between
the local and global difficulty scores, and therefore preference towards examples with low
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local score will also bias towards examples with low global difficulty score. In such cases SPL,
which gives preference to examples with lower local score, is predicted by our theoretical
analysis to improve convergence. On the other hand, if the local and global difficulty scores
are not correlated, hard data mining is likely to perform better based on our theoretical
analysis.
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Appendix A. Bayesian Formulation

The results in Section 3 depend on the assumption that the two remaining labels when
the difficulty score is fixed, y1(x) = x · w̄ + Ψ and y2(x) = x · w̄ − Ψ, are equally likely:
fD([x, yi(x)]) = 1

2f(r, ϑ,Φ). We now describe how this assumption can be relaxed in a
Bayesian framework.

Let v denote an additional (vector) hyper-parameter of the distribution D(X), such that
fD|Ψ = fv(r, ϑ,Φ, y). Let q(v) denote the distribution of v. Assume that the conditional
marginal distribution of the data over v does not depend on the label, namely∫

fv(r, θ,Φ, y)q(v)dv = f(r, ϑ,Φ) ∀Ψ (31)

It follow that the marginal conditional distribution of the data satisfies the required condition∫
fD|Ψ(x, y)dy =

∫
fv(r, θ,Φ, y)q(v)dv = f(r, ϑ,Φ)

Thus assumption (31) suffices for Theorems 3 and 5 to hold true in a Bayesian framework,
when taking the average over all hyper-parameter values.

Appendix B. Normalization of the Parameter Vector

Throughout the analysis in Section 4 we assumed the constraint ‖w‖ = 1, but the results
also apply to any norm A where ‖w‖ = A. To see this, let us define x′ = Ax. Define the
following distribution D′ on X′

∀x′, y : D′([x′, y]) = D([Ax, y])

We note that

argmin
w, s.t.‖w‖=A

max(1− (x ·w)y, 0) = argmin
w, s.t.‖w‖=1

max(1− (Ax ·w)y, 0)

= argmin
w, s.t.‖w‖=1

max(1− x′ ·w)y, 0)

The latter is the problem we have analyzed for any distribution on the training examples,
including D′. Thus the theorems we have proved hold true for this problem as well.
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