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Abstract

We study the convergence rate of the optimal quantization for a probability measure se-
quence (µn)n∈N∗ on Rd converging in the Wasserstein distance in two aspects: the first one
is the convergence rate of optimal quantizer x(n) ∈ (Rd)K of µn at level K; the other one
is the convergence rate of the distortion function valued at x(n), called the “performance”
of x(n). Moreover, we also study the mean performance of the optimal quantization for the
empirical measure of a distribution µ with finite second moment but possibly unbounded
support. As an application, we show an upper bound with a convergence rate O( logn√

n
) of

the mean performance for the empirical measure of the multidimensional normal distribu-
tion N (m,Σ) and of distributions with hyper-exponential tails. This extends the results
from Biau et al. (2008) obtained for compactly supported distribution. We also derive an
upper bound which is sharper in the quantization level K but suboptimal in n by applying
results in Fournier and Guillin (2015).

Keywords: clustering performance, convergence rate of optimal quantization, distortion
function, empirical measure, optimal quantization

1. Introduction

The K-means clustering procedure in the unsupervised learning area was first introduced by
MacQueen (1967), which consists in partitioning a data set of observations {η1, ..., ηN} ⊂ Rd
into K classes Gk, 1 ≤ k ≤ K with respect to a cluster center x = (x1, ..., xK) in order to
minimize the quadratic distortion function DK,η defined by

x = (x1, ..., xK) ∈ (Rd)K 7→ DK,η(x) :=
1

N

N∑
n=1

min
k=1,...,K

d(ηn, xk)
2, (1)

where d denotes a distance on Rd. The classification of the observations {η1, ..., ηN} ⊂ Rd
in MacQueen (1967) can be described as follows

G1 =
{
ηn ∈ {η1, ..., ηN} : d(ηn, x1) ≤ min

2≤j≤K
d(ηn, xj)

}
,
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G2 =
{
ηn ∈ {η1, ..., ηN} : d(ηn, x2) ≤ min

1≤j≤K,j 6=2
d(ηn, xj)

}
\ G1,

· · ·
GK =

{
ηn ∈ {η1, ..., ηN} : d(ηn, xK) ≤ min

1≤j≤K−1
d(ηn, xj)

}
\
(
GK−1 ∪ · · · ∪ G1

)
. (2)

If a cluster center x∗ = (x∗1, ..., x
∗
K) satisfies DK,η(x∗) = infy∈(Rd)K DK,η(y), we call x∗ an

optimal cluster center (or K-means) for the observation η = (η1, ..., ηN ). Such an optimal
cluster center always exists but is generally not unique.

K-means clustering has a close connection with quadratic optimal quantization, origi-
nally developed as a discretization method for the signal transmission and compression by
the Bell laboratories in the 1950s (see IEEE Transactions on Information Theory (1982)
and Gersho and Gray (2012)). Nowadays, optimal quantization has also become an effi-
cient tool in numerical probability, used to provide a discrete representation of a probability
distribution. To be more precise, let |·| denote the Euclidean norm on Rd induced by the
canonical inner product 〈·|·〉 and let X be an Rd-valued random variable defined on (Ω,F ,P)
with probability distribution µ having a finite second moment. The quantization method
consists in discretely approximating µ by using a K-tuple x = (x1, ..., xK) ∈ (Rd)K and its
weight w = (w1, ..., wK) as follows,

µ ' µ̂x :=
K∑
k=1

wkδxk ,

where δa denotes the Dirac mass at a, the weights wk are computed by wk = µ
(
Ck(x)

)
, k =

1, ...,K, and
(
Ck(x)

)
1≤k≤K is a Voronöı partition induced by x, that is, a Borel partition

on Rd satisfying

Ck(x) ⊂ Vk(x) :=
{
ξ ∈ Rd

∣∣ |ξ − xk| = min
1≤j≤K

|ξ − xj |
}
, k = 1, ...,K.

The value K in the above description is called the quantization level and the K-tuple above
x = (x1, ..., xK) is called a quantizer (or quantization grid, codebook in the literature).
Moreover, we define the (quadratic) quantization error function eK,µ of µ (or of X) at level
K by

x = (x1, ..., xK) ∈ (Rd)K 7−→ eK,µ(x) :=
[ ∫

Rd
min

1≤k≤K
|ξ − x|2 µ(dξ)

]1/2
. (3)

The set argmin eK,µ is not empty (see e.g. Graf and Luschgy, 2000, Theorem 4.12) and any
element x∗ = (x∗1, ..., x

∗
K) in argmin eK,µ is called a (quadratic) optimal quantizer for the

probability distribution µ at level K. Moreover, we call

e∗K,µ = inf
y=(y1,...,yK)∈(Rd)K

eK,µ(y) (4)

the optimal (quadratic) quantization error (optimal error for short) at level K.
The connection between K-means clustering and quadratic optimal quantization is the

following: if the distance d in (1) and (2) is the Euclidean distance and if we consider the
empirical measure µ̄N of the data set {η1, ..., ηN} defined by

µ̄N :=
1

N

N∑
n=1

δηn ,

2
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then the distortion functionDK,η defined in (1) is in fact e2
K,µ̄N

and argminDK,η = argmin eK,µ̄N .
That is, an optimal quantizer of µ̄N is in fact an optimal cluster center for the data set
{η1, ..., ηN}.

In Figure 1, we show an optimal quantizer and its weights for the standard normal
distribution N

(
0, I2

)
in R2 at level 60, where Id denotes the identity matrix of size d × d.

The color of the cells in the figure represents the weight of each point xk in the quantizer
x = (x1, ..., xK). In Figure 2, we show an optimal cluster center at level K = 20 for an i.i.d
simulated sample {η1, ..., η500} of the N (0, I2) distribution.

Figure 1: An optimal quantizer forN
(
0, I2

)
at level 60.

Figure 2: An optimal cluster center (blue
points) for an observation

{η1, ..., η500}
i.i.d∼ N (0, I2) (grey

points).

For p ∈ [1,+∞), let Pp(Rd) denote the set of all probability measures on Rd with a finite
pth-moment. Let µ, ν ∈ Pp(Rd) and let Π(µ, ν) denote the set of all probability measures on
(Rd ×Rd, Bor(Rd)⊗2) with marginals µ and ν, where Bor(Rd) denotes the Borel σ-algebra
on Rd. For p ≥ 1, the Lp-Wasserstein distance Wp on Pp(Rd) is defined by

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
Rd×Rd

|x− y|p π(dx, dy)
) 1
p

= inf
{[

E |X − Y |p
] 1
p
, X, Y : (Ω,A,P)→ (Rd, Bor(Rd)) with PX = µ,PY = ν

}
.

The space Pp(Rd) equipped with the Wasserstein distance Wp is a Polish space, i.e. is
separable and complete (see Bolley, 2008). If µ, ν ∈ Pp(Rd), then for any q ≤ p, Wq(µ, ν) ≤
Wp(µ, ν).

With a slight abuse of notation, we define the distortion function for the optimal quan-
tization as follows.

Definition 1 (Distortion function) Let K ∈ N∗ be the quantization level. Let µ ∈
P2(Rd). The (quadratic) distortion function DK,µ of µ at level K is defined by

x = (x1, ..., xK) ∈ (Rd)K 7−→ DK,µ(x) =

∫
Rd

min
1≤i≤K

|ξ − xi|2 µ(dξ) = e2
K,µ(x).

3
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For a fixed (known) probability distribution µ, its optimal quantizers can be computed
by several algorithms such as the CLVQ algorithm (see e.g. Pagès (2015, Section 3.2))
or the Lloyd I algorithm (see e.g. Lloyd (1982), Kieffer (1982) and Pagès and Yu (2016)).
However, another situation exists: the probability distribution µ is unknown but there exists
a known sequence (µn)n≥1 converging in the Wasserstein distance to µ. A typical example
is the empirical measure of an i.i.d. µ-distributed sequence random vectors (see (5) below).
The empirical measure of non i.i.d. random vectors appears for example when dealing with
the particle method associated to the McKean-Vlasov equations (see Liu, 2019, Section
7.1 and Section 7.5) or the simulation of the invariant measure of the diffusion process
(see Lamberton and Pagès (2002) and Lemaire (2005, Chapter 4)). This leads us to study
the consistency and the convergence rate of the optimal quantization for a Wp-converging
probability distribution sequence (µn)n≥1.

There exist several studies in the literature. The consistency of the optimal quantizers
was first proved in Pollard (1982b).

Theorem (Pollard’s Theorem)1 Let µn ∈ P2(Rd), n ∈ N∗ ∪ {∞} with W2(µn, µ∞) → 0
as n → +∞. Assume card

(
supp(µn)

)
≥ K, for n ∈ N∗ ∪ {+∞}. For n ≥ 1, let x(n) =(

x
(n)
1 , ..., x

(n)
K

)
be a K-optimal quantizer for µn, then the quantizer sequence (x(n))n≥1 is

bounded in Rd and any limiting point of (x(n))n≥1, denoted by x(∞), is an optimal quantizer
of µ∞.

Let µn ∈ P2(Rd), n ∈ N ∪ {∞} with W2(µn, µ∞) → 0 as n → +∞. Let x(n) denote
an optimal quantiser of µn. There are two ways to study the convergence rate of the
optimal quantizers. The first way is to directly evaluate the distance between x(n) and
argminDK,µ∞ . The second way is called the quantization performance, defined by

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x).

This quantity describes the distance between the optimal error of µ∞ and the quantization
error of x(n) considered as a quantizer of µ∞ (even x(n) is obviously not “optimal” for
µ∞). Several results of convergence rate exist in the framework of the empirical measure.
Let X1, ..., Xn, ... be µ-distributed i.i.d. random vectors defined on the probability space
(Ω,A,P) and let

µωn :=
1

n

n∑
i=1

δXi(ω) (5)

be the empirical measure of µ. The almost sure convergence of W2(µωn , µ) has been proved
in Pollard (1982b, Theorem 7). Let x(n),ω denotes an optimal quantizer of µωn at level K.
In Pollard (1982a), the author has proved that if µ has a unique optimal quantizer x at

1. In Pollard (1982b, Theorem 9), the author used

µK ∈ P(K) :=
{
ν ∈ P2(Rd) such that card

(
supp(ν)

)
≤ K

}
to represent a “quantizer” at level K. Such a quantizer µK is called “quadratic optimal” for a probability
measure µ if W2(µK , µ) = e∗K,µ. We propose an alternative proof in Appendix A by using the usual
representation of the quantizer x ∈ (Rd)K but still call this theorem “Pollard’s Theorem”.
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level K, then the convergence rate (convergence in distribution) of
∣∣x(n),ω − x

∣∣ is O(n−1/2)
under appropriate conditions. Moreover, if µ has a support contained in B(0, R), where
B(0, R) denotes the ball in Rd centered at 0 with radius R, an upper bound of the mean
performance has been proved in Biau et al. (2008), shown as follows,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 12K ·R2

√
n

.

Note that there always exists an A-measurable selection ω 7→ x(n),ω relying on the Kura-
towski and Ryll-Nardzewski measurable selection theorem (see e.g. Kuratowski and Ryll-
Nardzewski (1965), Srivastava (1998, Section 5.2) and Graf (1982, Theorem 2.1)). We will
always assume in what follows that we consider such a measurable selection. Otherwise
all the stated results remain true by simply replacing the regular expectation by the inner
expectation in the sense of Van Der Vaart and Wellner (1996).

In this paper, we extend the convergence results in Pollard (1982a) and in Biau et al.
(2008) in two perspectives: first, we give an upper bound of the quantization performance

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x)

and that of related optimal quantizers for any probability distribution sequence (µn)n≥1

converging in the Wasserstein distance. Then, we generalize the clustering performance
results in Biau et al. (2008) to empirical measures in P2(Rd) possibly having an unbounded
support.

Our main results are as follows. We obtain in Section 2 a non-asymptotic upper bound
for the quantization performance: for every n ∈ N∗,

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x) ≤ 4e∗K,µ∞W2(µn, µ∞) + 4W2
2 (µn, µ∞). (6)

Moreover, if DK,µ∞ is twice differentiable at

FK :=
{
x = (x1, ..., xK) ∈ (Rd)K

∣∣ xi 6= xj , if i 6= j
}

(7)

and if the Hessian matrix HDK,µ∞ of DK,µ∞ is positive definite in the neighbourhood of

every K-level optimal quantizer x(∞) of µ∞ having the eigenvalues lower bounded by a
λ∗ > 0, then, for n large enough,

d
(
x(n), GK(µ∞)

)2 ≤ 8

λ∗
e∗K,µ∞ · W2(µn, µ∞) +

8

λ∗
· W2

2 (µn, µ∞),

where d(ξ, A) := mina∈A |ξ − a| denotes the distance between a point ξ ∈ Rd and a set
A ⊂ Rd.

Several criterions for the positive definiteness of the Hessian matrix HDK,µ of the dis-
tortion function DK,µ are established in Section 3. We show in Section 3.1 the conditions
under which the distortion function DK,µ is twice differentiable in every x ∈ FK and give
the exact formula of the Hessian matrix HDK,µ . Moreover, we also discuss several sufficient
and necessary conditions for the positive definiteness of the Hessian matrix in dimension
d ≥ 2 and in dimension 1.

5
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In Section 4, we give two upper bounds for the clustering performance EDK,µ(x(n), ω)−
infx∈(Rd)K DK,µ(x), where x(n), ω is an optimal quantizer of µωn defined in (5). If µ ∈ Pq(Rd)
for some q > 2, a first upper bound is established in Proposition 13

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x)

≤ Cd,q,µ,K ×


n−1/4 + n−(q−2)/2q if d < 4 and q 6= 4

n−1/4
(

log(1 + n)
)1/2

+ n−(q−2)/2q if d = 4 and q 6= 4

n−1/d + n−(q−2)/2q if d > 4 and q 6= d/(d− 2)

,

where Cd,q,µ,K is a constant depending on d, q, µ and the quantization level K. This result
is a direct application of the non-asymptotic upper bound (6) combined with results in
Fournier and Guillin (2015) about the mean convergence rate of the empirical measure for
the Wasserstein distance. If d ≥ 4 and q > 2d

d−2 , this constant Cd,q,µ,K is roughly decreasing

as K−1/d (see Remark 14). This upper bound is sharper in K compared with the upper
bound (8) below, although it suffers from the curse of dimensionality.

Meanwhile, we establish another upper bound for the clustering performance in Theorem
15, which is sharper in n but increasing faster than linearly in K. This upper bound is

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 2K√
n

[
r2

2n + ρK(µ)2 + 2r1

(
r2n + ρK(µ)

)]
, (8)

where rn :=
∥∥max1≤i≤n |Xi|

∥∥
2

and ρK(µ) is the maximum radius of optimal quantizers for
µ, defined by

ρK(µ) := max
{

max
1≤k≤K

|x∗k| , (x∗1, ..., x
∗
K) is an optimal quantizer of µ at level K

}
. (9)

In particular, we give a precise upper bound for µ = N (m,Σ), the multidimensionnal normal
distribution

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ Cµ ·
2K√
n

[
1 + log n+ γK logK

(
1 +

2

d

)]
,

where lim supK γK = 1 and Cµ = 12 ·
[
1 ∨ log

(
2
∫
Rd exp(1

4 |ξ|
4)µ(dξ)

)]
. If µ = N (0, Id),

Cµ = 12(1 + d
2) · log 2.

We start our discussion with a brief review on the properties of optimal quantization.

1.1. Classical Properties of Optimal Quantization

Let GK(µ) = argminDK,µ denote the set of all optimal quantizers at level K of µ and let
e∗K,µ denote the optimal quantization error of µ defined in (4).

Proposition 2 Let K ∈ N∗. Let µ ∈ P2(Rd) and card
(
supp(µ)

)
≥ K.

(i) If K ≥ 2, then e∗K,µ < e∗K−1, µ.

6
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(ii) (Existence and boundedness of optimal quantizers) The set GK(µ) is nonempty and
compact so that ρK(µ) defined in (9) is finite for any fixed K. Moreover, if x =
(x1, ..., xK) is an optimal quantizer of µ, then x ∈ FK , where FK is defined in (7).

(iii) If the support of µ, denoted by supp(µ), is a compact, then for every optimal quantizer
x = (x1, ..., xK) ∈ GK(µ), its elements xk, 1 ≤ k ≤ K are contained in the closure of

convex hull of supp(µ), denoted by Hµ := conv
(
supp(µ)

)
.

For the proof of Proposition 2-(i) and (ii), we refer to Graf and Luschgy (2000, Theorem
4.12) and for the proof of (iii) to Appendix B. Now we present an upper bound of the
optimal quantization error (see Luschgy et al. (2008) and Pagès (2018, Theorem 5.2))).

Theorem (Non-asymptotic Zador’s Theorem) Let η > 0. If µ ∈ P2+η(Rd), then for
every quantization level K, there exists a constant Cd,η ∈ (0,+∞) which depends only on d
and η such that

e∗K,µ ≤ Cd,η · σ2+η(µ)K−1/d, (10)

where for r ∈ (0,+∞), σr(µ) = mina∈Rd
[ ∫

Rd |ξ − a|
r µ(dξ)

]1/r
.

When µ has an unbounded support, we know from Pagès and Sagna (2012) that
limK ρK(µ) = +∞. The same paper also gives an asymptotic upper bound of ρK when
µ has a polynomial tail or a hyper-exponential tail.

Theorem (Pagès and Sagna, 2012, Theorem 1.2)Let µ ∈ Pp(Rd) be absolutely contin-
uous with respect to the Lebesgue measure λd on Rd and let f denote its density function.

(i) Polynomial tail. For p ≥ 2, if µ has a c-th polynomial tail with c > d+ p in the sense
that there exists τ > 0, β ∈ R and A > 0 such that ∀ξ ∈ Rd, |ξ| ≥ A =⇒ f(ξ) =
τ
|ξ|c (log |ξ|)β, then

lim
K

log ρK
logK

=
p+ d

d(c− p− d)
. (11)

(ii) Hyper-exponential tail. If µ has a (ϑ, κ)-hyper-exponential tail in the sense that there
exists τ > 0, κ, ϑ > 0, c > −d and A > 0 such that ∀ξ ∈ Rd, |ξ| ≥ A =⇒ f(ξ) =
τ |ξ|c e−ϑ|ξ|

κ

, then

lim sup
K

ρK

(logK)1/κ
≤ 2ϑ−1/κ

(
1 +

2

d

)1/κ
. (12)

Furthermore, if d = 1, limK
ρK

(logK)1/κ
=
(

3
ϑ

)1/κ
.

We give now the definition of the radially controlled distribution, which will be useful
to control the convergence rate of the density function f(x) to 0 when x converges in every
direction to infinity.

Definition 3 Let µ ∈ P2(Rd) be absolutely continuous with respect to the Lebesgue measure
λd on Rd having a continuous density function f . We call µ is k-radially controlled on Rd
if there exists A > 0 and a continuous non-increasing function g : R+ → R+ such that

∀ξ ∈ Rd, |ξ| ≥ A, f(ξ) ≤ g(|ξ|) and

∫
R+

xd−1+kg(x)dx < +∞.

7
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Note that the c-th polynomial tail with c > k + d and the hyper-exponential tail are
sufficient conditions to satisfy the k-radially controlled assumption. A typical example of
hyper-exponential tail is the multidimensional normal distribution N (m,Σ).

For µ, ν ∈ P2(Rd) and for every K ∈ N∗, we have

‖eK,µ − eK,ν‖sup
:= sup

x∈(Rd)K
|eK,µ(x)− eK, ν(x)| ≤ W2(µ, ν)

by a simple application of the triangle inequality for the L2−norm (see e.g. Graf and
Luschgy, 2000, Formula (4.4) and Lemma 3.4). Hence, if (µn)n≥1 is a sequence in P2(Rd)
converging for the W2-distance to µ∞ ∈ P2(Rd), then for every K ∈ N∗,

‖eK,µn − eK,µ∞‖sup ≤ W2(µn, µ∞)
n→+∞−−−−−→ 0. (13)

2. General Case

In this section, we first establish in Theorem 4 a non-asymptotic upper bound of the quan-
tization performance DK,µ∞(x(n))− infx∈(Rd)K DK,µ∞(x). Then we discuss the convergence
rate of the optimal quantizer sequence in Theorem 5.

Theorem 4 (Non-asymptotic upper bound for the quantization performance) Let
K ∈ N∗ be the quantization level. For every n ∈ N∗ ∪ {∞}, let µn ∈ P2(Rd) with
card

(
supp(µn)

)
≥ K. Assume that W2(µn, µ∞) → 0 as n → +∞. For every n ∈ N∗,

let x(n) be an optimal quantizer of µn. Then

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x) ≤ 4e∗K,µ∞W2(µn, µ∞) + 4W2
2 (µn, µ∞),

where e∗K,µ∞ is the optimal error of µ∞ at level K defined in (4).

Proof Let x(∞) be an optimal quantizer of µ∞. Remark that here we do not need that
x(∞) is the limit of x(n). First, we have (see e.g. Györfi, 2002, Corollary 4.1)

eK,µ∞(x(n))− e∗K,µ∞ = eK,µ∞(x(n))− eK,µn(x(n)) + eK,µn(x(n))− eK,µ∞(x(∞))

≤ 2 ‖eK,µ∞ − eK,µn‖sup ≤ 2W2(µn, µ∞), (14)

where the first inequality is due to the fact that for any µ, ν ∈ P2(Rd) with respective
K-level optimal quantizers xµ and xν , if eK,µ(xµ) ≥ eK,ν(xν), we have

|eK,µ(xµ)− eK,ν(xν)| = eK,µ(xµ)− eK,ν(xν) ≤ eK,µ(xν)− eK,ν(xν) ≤ ‖eK,µ∞ − eK,µn‖sup .

If eK,µ(xµ) ≤ eK,ν(xν), we have the same inequality by the same reasoning.

Moreover,

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x) = DK,µ∞(x(n))−DK,µ∞(x(∞))

≤
[
eK,µ∞(x(n)) + eK,µ∞(x(∞))

](
eK,µ∞(x(n))− eK,µ∞(x(∞))

)
8
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≤ 2
[
eK,µ∞(x(n))− eK,µ∞(x(∞)) + 2eK,µ∞(x(∞))

]
· W2(µn, µ∞)

(
by (14)

)
≤ 4
[
W2(µn, µ∞) + e∗K,µ∞

]
· W2(µn, µ∞)

(
by (14)

)
≤ 4e∗K,µ∞W2(µn, µ∞) + 4W2

2 (µn, µ∞).

Let B(x, r) denote the ball centered at x with radius r. Recall that FK :=
{
x =

(x1, ..., xK) ∈ (Rd)K
∣∣ xi 6= xj , if i 6= j

}
. Remark that if x ∈ FK , then every y ∈

B
(
x, 1

3 min1≤i,j≤K,i6=j |xi − xj |
)

still lies in FK . In the following theorem, we give an esti-

mate of the convergence rate of the optimal quantizer sequence x(n), n ∈ N∗.

Theorem 5 (Convergence rate of optimal quantizers) Let K ∈ N∗ be the quantiza-
tion level. For every n ∈ N∗ ∪ {∞}, let µn ∈ P2(Rd) with card

(
supp(µn)

)
≥ K. Assume

that W2(µn, µ∞)→ 0 as n→ +∞. For every n ∈ N∗, let x(n) be an optimal quantizer of µn
and let GK(µ∞) denote the set of all optimal quantizers of µ∞. If the following assumptions
hold

(a) the distortion function DK,µ∞ is twice differentiable at every x ∈ FK ;

(b) card
(
GK(µ∞)

)
< +∞;

(c) for every x(∞) ∈ GK(µ∞), the Hessian matrix of DK,µ∞, denoted by HDK,µ∞ , is positive

definite in the neighbourhood of x(∞) having eigenvalues lower bounded by some λ∗ > 0,

then, for n large enough,

d
(
x(n), GK(µ∞)

)2 ≤ 8

λ∗
e∗K,µ∞ · W2(µn, µ∞) +

8

λ∗
· W2

2 (µn, µ∞).

Remark 6 Section 3 provides a detailed discussion of the conditions in Theorem 5 and
their relation between each other.
(1) First, in Section 3, we establish that if µ∞ is 1-radially controlled, then its distortion
function DK,µ∞ is twice continuously differentiable at every x ∈ FK and give an exact
formula of the Hessian matrix HDK,µ∞ (x) in Proposition 8. Thus, one may obtain Condition
(c) either by an explicit computation or by numerical methods. Moreover, if HDK,µ is
positive definite at x ∈ FK , it is also positive definite in its neighbourhood. In Section
3.2, we establish several sufficient conditions for the positive definiteness of the Hessian
matrix HDK,µ∞ in the neighbourhood of x(∞) ∈ GK(µ∞) in one dimension.

(2) If the distribution µ∞ is 1-radially controlled, a necessary condition for Condition (c)
is Condition (b) (see Lemma 9). Thus, if card

(
GK(µ∞)

)
= +∞, it is more reasonable

to consider the non-asymptotic upper bound of the performance (Theorem 4) to study the
convergence rate of the optimal quantization. A typical example is the standard multidimen-
sional normal distribution µ∞ = N (0, Id): it is 1-radially controlled and any rotation of an
optimal quantizer x is still optimal so that card

(
GK(µ∞)

)
= +∞.

Proof [Proof of Theorem 5] Since the quantization level K is fixed throughout the proof,
we will drop the subscripts K and µ of the distortion function DK,µ and we will denote by
Dn (respectively, D∞) the distortion function of µn (resp. µ∞).

9
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After Pollard’s theorem, (x(n))n∈N∗ is bounded and any limiting point of x(n) lies in
GK(µ∞). We may assume that, up to the extraction of a subsequence of x(n), still denoted
by x(n), we have x(n) → x(∞) ∈ GK(µ∞). Hence d

(
x(n), GK(µ∞)

)
≤
∣∣x(n) − x(∞)

∣∣.
Proposition 2 implies that x(∞) ∈ FK . As D∞ is twice differentiable at x(∞), the second

order Taylor expansion of D∞ at x(∞) reads:

D∞(x(n)) = D∞(x(∞)) +
〈
∇D∞(x(∞)) | x(n) − x(∞)

〉
+

1

2
HD∞(ζ(n))(x(n) − x(∞))⊗2,

where HD∞ denotes the Hessian matrix of D∞, ζ(n) lies in the geometric segment (x(n), x(∞))
and for a matrix A and a vector u, Au⊗2 stands for uTAu.

As x(∞) ∈ GK(µ∞) = argminD∞ and card
(
supp(µ∞)

)
≥ K, one has ∇D∞(x(∞)) = 0.

Hence

D∞(x(n))−D∞(x(∞)) =
1

2
HD∞(ζ(n))(x(n) − x(∞))⊗2.

It follows from Theorem 4 that

HD∞(ζ(n))(x(n) − x(∞))⊗2 = 2
(
D∞(x(n))−D∞(x(∞))

)
≤ 8e∗K,µ∞W2(µn, µ∞) + 8W2

2 (µn, µ∞).

By Condition (c), HD∞ is assumed to be positive definite in the neighbourhood of all
x(∞) ∈ GK(µ∞) having eigenvalues lower bounded by some λ∗ > 0. As ζ(n) lies in the
geometric segment (x(n), x(∞)) and x(n) → x(∞), there exists an n0(x(∞)) such that for all
n ≥ n0, HD∞(ζ(n)) is a positive definite matrix. It follows that, for n ≥ n0,

λ∗
∣∣∣x(n) − x(∞)

∣∣∣2 ≤ HD∞(ζ(n))(x(n) − x(∞))⊗2

≤ 8e∗K,µ∞W2(µn, µ∞) + 8W2
2 (µn, µ∞).

Thus, one can directly conclude by multiplying at each side of the above inequality by 1
λ∗ .

Based on conditions in Theorem 5, if we know the exact limit of the optimal quantizer
sequence x(n), we have the following result whose proof is similar to that of Theorem 5.

Corollary 7 Let K ∈ N∗ be the quantization level. For every n ∈ N∗ ∪ {∞}, let µn ∈
P2(Rd) with card

(
supp(µn)

)
≥ K. Assume that W2(µn, µ∞) → 0 as n → +∞. Let

x(n) ∈ argmin DK,µn such that limn x
(n) → x(∞). If the Hessian matrix of DK,µ∞ is

positive definite in the neighbourhood of x(∞), then, for n large enough,∣∣∣x(n) − x(∞)
∣∣∣2 ≤ C(1)

µ∞ · W2(µn, µ∞) + C(2)
µ∞ · W

2
2 (µn, µ∞),

where C
(1)
µ∞ and C

(2)
µ∞ are real constants only depending on µ∞.

3. Hessian Matrix HDK,µ of the Distortion Function DK,µ
Let µ ∈ P2(Rd) with card

(
supp(µ)

)
≥ K and let x∗ be an optimal quantizer of µ at

level K. In Section 3.1, we show conditions under which the distortion function DK,µ is
twice differentiable and give the exact formula of its Hessian matrix HDK,µ . In Section 3.2,
we give several criterions for the positive definiteness of the Hessian matrix HDK,µ in the
neighbourhood of an optimal quantizer x∗ in dimension 1.

10
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3.1. Hessian Matrix HDK,µ on Rd

If µ is absolutely continuous with respect to the Lebesgue measure λd on Rd with the density
function f , then the distortion function DK,µ is differentiable (see Pagès, 1998) at all point
x = (x1, ..., xK) ∈ FK with

∂DK,µ
∂xi

(x) = 2

∫
Vi(x)

(xi − ξ)f(ξ)λd(dξ), for i = 1, ...,K. (15)

In the following Proposition, we give a criterion for the twice differentiability of the distor-
tion function DK,µ.

Proposition 8 Let µ ∈ P2(Rd) be absolutely continuous with respect to the Lebesgue mea-
sure λd on Rd with a continuous density function f . If µ is 1-radially controlled, then

(i) the distortion function DK,µ is twice differentiable at every x ∈ FK and the Hessian

matrix HDK,µ(x) =
[
∂2DK,µ
∂xj∂xi

(x)
]

1≤i≤j≤K
is defined by

∂2DK,µ
∂xj∂xi

(x) = 2

∫
Vi(x)∩Vj(x)

(xi − ξ)⊗ (xj − ξ) ·
1

|xj − xi|
f(ξ)λijx (dξ), if j 6= i, (16)

∂2DK,µ
∂x2i

(x) = 2
[
µ
(
Vi(x)

)
Id −

∑
i 6=j

1≤j≤K

∫
Vi(x)∩Vj(x)

(xi − ξ)⊗ (xi − ξ) ·
1

|xj − xi|
f(ξ)λijx (dξ)

]
,

(17)

where in (16) and (17), u⊗ v := [uivj ]1≤i,j≤d for any two vectors u = (u1, ..., ud) and
v = (v1, ..., vd) in Rd;

(ii) every element
∂2DK,µ
∂xj∂xi

of the Hessian matrix HDK,µ is continuous at every x ∈ FK .

The proof of Proposition 8 is postponed to Appendix C. The following lemma shows
that under the condition of Proposition 8, Condition (c) in Theorem 5 implies Condition
(b).

Lemma 9 Let µ ∈ P2(Rd) be absolutely continuous with the respect to the Lebesgue mea-
sure λd on Rd with a continuous density function f . If µ∞ is 1-radially controlled and
card

(
GK(µ∞)

)
= +∞, then there exists a point x ∈ GK(µ∞) such that the Hessian matrix

HDK,µ∞ of DK,µ∞ at x has an eigenvalue 0.

Proof We denote by HD∞ instead of HDK,µ∞ to simplify the notation. Proposition 2

implies that GK(µ∞) is a compact set. If card
(
GK(µ∞)

)
= +∞, there exists x, x(k) ∈

GK(µ∞), k ∈ N∗ such that x(k) → x when k → +∞. Set uk := x(k)−x
|x(k)−x| , k ≥ 1, then we

have |uk| = 1 for all k ∈ N∗. Hence, there exists a subsequence ϕ(k) of k such that uϕ(k)

converges to some ũ with |ũ| = 1.
The Taylor expansion of DK,µ∞ at x reads:

DK,µ∞(xϕ(k)) = DK,µ∞(x) +
〈
∇DK,µ∞(x)

∣∣ xϕ(k) − x
〉

+
1

2
HD∞(ζϕ(k))(xϕ(k) − x)⊗2,

11
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where ζϕ(k) lies in the geometric segment (xϕ(k), x). Since x, x(k), k ∈ N∗ ∈ GK(µ∞), then
∇DK,µ∞(x) = 0 and for any k ∈ N∗, DK,µ∞(xϕ(k)) = DK,µ∞(x). Hence, for any k ∈ N∗,
HD∞(ζϕ(k))(xϕ(k) − x)⊗2 = 0. Consequently, for any k ∈ N∗,

HD∞(ζϕ(k))
( xϕ(k) − x∣∣xϕ(k) − x

∣∣)⊗2
= 0.

Thus we have HD∞(x)ũ⊗2 = 0 by letting k → +∞, so that HD∞(x) has an eigenvalue 0.

3.2. A Criterion for Positive Definiteness of HD∞(x∗) in 1-dimension

Let µ ∈ P2(R) with card
(
supp(µ)

)
≥ K. Assume that µ is absolutely continuous with

respect to the Lebesgue measure having a density function f . In the one-dimensional case,
it is useful to point out a sufficient condition for the uniqueness of optimal quantizer. A
probability distribution µ is called strongly unimodal if its density function f satisfies that
I = {f > 0} is an open (possibly unbounded) interval and log f is concave on I. Let
F+
K :=

{
x = (x1, ..., xK) ∈ RK | −∞ < x1 < x2 < ... < xK < +∞

}
.

Lemma 10 For K ∈ N∗, if µ is strongly unimodal with card
(
supp(µ)

)
≥ K, then there is

only one stationary (then optimal) quantizer of level K in F+
K .

We refer to Kieffer (1983), Trushkin (1982), Bouton and Pagès (1993) and Graf and
Luschgy (2000, Theorem 5.1) for the proof of Lemma 10 and for more details.

Given a K-tuple x = (x1, ..., xK) ∈ F+
K , the Voronoi region Vi(x) can be explicitly

written: V1(x) = (−∞, x1+x2
2 ], VK(x) = [

xK−1+xK
2 ,+∞) and Vi(x) = [xi−1+xi

2 , xi+xi+1

2 ] for
i = 2, ...,K − 1. For all x ∈ F+

K , DK,µ is differentiable at x and by (15) and

∇DK,µ(x) =

[∫
Vi(x)

2(xi − ξ)f(ξ)dξ

]
i=1,...,K

.

Therefore, as ∇DK,µ(x∗) = 0, one can solve the optimal quantizer x∗ ∈ F+
K as follows,

x∗i =

∫
Vi(x∗)

ξf(ξ)dξ

µ
(
Vi(x∗)

) , for i = 1, ...,K. (18)

For any x ∈ F+
K , the Hessian matrix HDK,µ of DK,µ at x is a tridiagonal symmetry

matrix and can be calculated as follows,

HDK,µ(x) =



A1 −B1,2 −B1,2

. . .

−Bi−1,i Ai −Bi−1,i −Bi,i+1 −Bi,i+1

. . .

−BK−1,K AK −BK−1,K

 ,

(19)

12
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where Ai = 2µ
(
Ci(x)

)
for 1 ≤ i ≤ K and Bi,j = 1

2(xj −xi)f(
xi+xj

2 ) for 1 ≤ i < j ≤ K. Let
Fµ be the cumulative distribution function of µ, then

A1 = 2µ
(
C1(x)

)
= 2Fµ

(x1 + x2

2

)
,

Ai = 2µ
(
Ci(x)

)
= 2
[
Fµ

(xi+1 + xi
2

)
− Fµ

(xi−1 + xi
2

)]
, for i = 2, ...,K − 1,

AK = 2µ
(
CK(x)

)
= 2
[
1− Fµ

(xK−1 + xK
2

)]
.

Then the continuity of each term in the matrix HDK,µ(x) can be directly derived from the
continuity of Fµ.

For 1 ≤ i ≤ K, we define Li(x) :=
K∑
j=1

∂2DK,µ
∂xi∂xj

(x). The following proposition gives

sufficient conditions to obtain the positive definiteness of HDK,µ(x∗).

Proposition 11 Let µ ∈ P2(R) with card
(
supp(µ)

)
≥ K. Assume that µ is absolutely

continuous with respect to the Lebesgue measure having a density function f . Any of the
following two conditions implies the positive definiteness of HDK,µ(x∗),

(i) µ is the uniform distribution,

(ii) f is differentiable and log f is strictly concave.

In particular, (ii) also implies that Li(x
∗) > 0, i = 1, ...,K.

Proposition 11 is proved in Appendix D. Remark that, under the conditions of Propo-
sition 11, µ is strongly unimodal so that there is exactly one optimal quantizer in F+

K for µ
at level K. The conditions in Proposition 11 directly imply the following convergence rate
results.

Theorem 12 Let K ∈ N∗ be the quantization level. For every n ∈ N∗∪{∞}, let µn ∈ P2(R)
with card

(
supp(µn)

)
≥ K be such that W2(µn, µ∞) → 0 as n → +∞. Assume that µ∞ is

absolutely continuous with respect to the Lebesgue measure, written µ∞(dξ) = f(ξ)dξ. Let
x(n) be an optimal quantizer of µn converging to x(∞). Then any one of the following two
conditions

(i) µ∞ is the uniform distribution

(ii) f is differentiable and log f is strictly concave

implies the existence of constants C
(1)
µ∞ and C

(2)
µ∞ only depending on µ∞ such that for n large

enough, ∣∣∣x(n) − x(∞)
∣∣∣2 ≤ C(1)

µ∞ · W2(µn, µ∞) + C(2)
µ∞ · W

2
2 (µn, µ∞).

Proof Let DK,µ∞ denote the distortion function of µ∞ and let HD∞ denote the Hessian
matrix of DK,µ∞ .

13
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(i) Let gk(x) be the k-th leading principal minor of HD∞(x) defined in (19), then gk(x), k =
1, ...,K, are continuous functions in x since every element in this matrix is continuous.
Proposition 11 implies gk(x

(∞)) > 0, thus there exists r > 0 such that for every x ∈
B(x(∞), r), gk(x

(∞)) > 0 so that HD∞(x) is positive definite. What remains can be directly
proved by Corollary 7.

(ii) The function Li(x) :=
K∑
j=1

∂2DK,µ∞
∂xi∂xj

(x) is continuous on x and Proposition 11 implies

that Li(x
(∞)) > 0. Hence, there exists r > 0 such that ∀x ∈ B(x(∞), r), Li(x) > 0. From

(19), one can remark that the i-th diagonal elements in HD∞(x) is always larger than Li(x)
for any x ∈ RK , then after Gershgorin Circle theorem, we derive that HD∞(x) is positive
definite for every x ∈ B(x(∞), r). What remains can be directly proved by Corollary 7.

4. Empirical Measure Case

LetK ∈ N∗ be the quantization level. Let µ ∈ P2+ε(Rd) for some ε > 0 and card
(
supp(µ)

)
≥

K. Let X be a random variable with distribution µ and let (Xn)n≥1 be a sequence of in-
dependent identically distributed Rd-valued random variables with probability distribution
µ. The empirical measure is defined for every n ∈ N∗ by

µωn :=
1

n

n∑
i=1

δXi(ω), ω ∈ Ω, (20)

where δa is the Dirac mass at a. For n ≥ 1, let x(n),ω be an optimal quantizer of µωn .
The superscript ω is to emphasize that both µωn and x(n),ω are random and we will drop ω
when there is no ambiguity. We cite two results of the convergence of W2(µωn , µ) among so
many researches in this topic: the a.s. convergence in Pollard (1982b, Theorem 7) and the
Lp-convergence rate of Wp(µ

ω
n , µ) in Fournier and Guillin (2015).

Theorem (Fournier and Guillin, 2015, Theorem 1) Let p > 0 and let µ ∈ Pq(Rd)
for some q > p. Let µωn denote the empirical measure of µ defined in (20). There exists a
constant C only depending on p, d, q such that, for all n ≥ 1,

E
(
Wp
p (µωn , µ)

)
≤ CMp/q

q (µ)×


n−1/2 + n−(q−p)/q if p > d/2 and q 6= 2p

n−1/2 log(1 + n) + n−(q−p)/q if p = d/2 and q 6= 2p

n−p/d + n−(q−p)/q if p ∈ (0, d/2) and q 6= d/(d− p)
,

(21)

where Mq(µ) =
∫
Rd |ξ|

q µ(dξ).

Let DK,µ denote the distortion function of µ and let DK,µn denote the distortion fuction
of µωn for any n ∈ N∗. Recall by Definition 1 that for c = (c1, ..., cK) ∈ (Rd)K ,

DK,µ(c) = E min
1≤k≤K

|X − ck|2 = E
[
|X|2 + min

1≤k≤K

(
− 2〈X|ck〉+ |ck|2

)]
,

and DK,µn(c) =
1

n

n∑
i=1

min
1≤k≤K

|Xi − ck|2 =
1

n

n∑
i=1

|Xi|2 + min
1≤k≤K

(
− 2

n

n∑
i=1

〈Xi|ck〉+ |ck|2
)
.
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The a.s. convergence of optimal quantizers for the empirical measure has been proved
in Pollard (1981). We give a first upper bound of the clustering performance by applying
directly Theorem 4 and (21).

Proposition 13 Let K ∈ N∗ be the quantization level. Let µ ∈ Pq(Rd) for some q > 2 with
card(supp(µ)) ≥ K and let µωn be the empirical measure of µ defined in (20). Let x(n),ω be
an optimal quantizer at level K of µωn. Then for any n > K,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x)

≤ Cd,q,µ,K ×


n−1/4 + n−(q−2)/2q if d < 4 and q 6= 4

n−1/4
(

log(1 + n)
)1/2

+ n−(q−2)/2q if d = 4 and q 6= 4

n−1/d + n−(q−2)/2q if d > 4 and q 6= d/(d− 2)

.

where Cd,q,µ,K is a constant depending on d, q, µ and the quantization level K.

The reason why we only consider n > K is that for a fixed n ∈ N∗, the empirical
measure µn defined in (20) is supported by n points, which implies that, if n ≤ K, the
optimal quantizer of µn at level K, viewed as a set, is in fact supp(µn). This makes the
above bound of no interest. Following the remark after Theorem 1 in Fournier and Guillin
(2015), one can remark that if the probability distribution µ has sufficiently large moments
(namely if q > 4 when d ≤ 4 and q > 2d/(d − 2) when d > 4), then the term n−(q−2)/2q is
negligible and can be removed.

Proof [Proof of Proposition 13] For every ω ∈ Ω and for every n > K, Theorem 4 implies
that

DK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗K,µW2(µωn , µ) + 4W2
2 (µωn , µ).

Thus,
EDK,µ(x(n),ω)− inf

x∈(Rd)K
DK,µ(x) ≤ 4e∗K,µEW2(µωn , µ) + 4EW2

2 (µωn , µ).

It follows from (21) applied with p = 2 that

EW2
2 (µωn , µ) ≤ Cd,q,µ ×


n−1/2 + n−(q−2)/q if d < 4 and q 6= 4

n−1/2 log(1 + n) + n−(q−2)/q if d = 4 and q 6= 4

n−2/d + n−(q−2)/q if d > 4 and q 6= d/(d− 2)

, (22)

where Cd,q,µ = C ·M2/q
q (µ) and C is the constant in (21). Moreover, as EW2(µωn , µ) ≤(

EW2
2 (µωn , µ)

)1/2
and
√
a+ b ≤

√
a+
√
b for any a, b ∈ R+, Inequality (21) also implies

EW2(µωn , µ) ≤ C1/2
d,q,µ ×


n−1/4 + n−(q−2)/2q if d < 4 and q 6= 4

n−1/4
(

log(1 + n)
)1/2

+ n−(q−2)/2q if d = 4 and q 6= 4

n−1/d + n−(q−2)/2q if d > 4 and q 6= d/(d− 2)

.

Consequently,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗K,µEW2(µωn , µ) + 4EW2
2 (µωn , µ).
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≤ 8(C
1/2
d,q,µe

∗
K,µ ∨ Cd,q,µ)×

n−1/4 + n−(q−2)/2q if d < 4 and q 6= 4

n−1/4
(

log(1 + n)
)1/2

+ n−(q−2)/2q if d = 4 and q 6= 4

n−1/d + n−(q−2)/2q if d > 4 and q 6= d/(d− 2)

. (23)

One can conclude by setting Cd,q,µ,K := 8(C
1/2
d,q,µe

∗
K,µ ∨ Cd,q,µ).

Remark 14 When d ≥ 4, if q−2
q > 2

d i.e. q > 2d
d−2 , Inequality (22) can be upper bounded

as follows,

EW2
2 (µωn , µ) ≤ 2Cd,q,µn

−1/d ×

{
n−

1
4 log(1 + n) if d = 4 and q 6= 4

n−
1
d if d > 4 and q 6= d/(d− 2)

≤ 2Cd,q,µK
−1/d ×

{
n−

1
4 log(1 + n) if d = 4 and q 6= 4

n−
1
d if d > 4 and q 6= d/(d− 2)

,

since we consider only n ≥ K and if q > 2d
d−2 , the term n−(q−2)/2q becomes negligible as n

grows. Consequently, (23) can be bounded by

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗K,µEW2(µωn , µ) + 4EW2
2 (µωn , µ).

≤ 8(C
1/2
d,q,µe

∗
K,µ ∨ 2Cd,q,µK

−1/d)×{
n−

1
4

[
(log(1 + n))

1
2 + log(1 + n)

]
if d = 4 and q 6= 4

2n−
1
d if d > 4 and q 6= d/(d− 2)

. (24)

By the non-asymptotic Zador theorem (10), one has

e∗K,µ ≤ Cd,q(µ)σq(µ)K−1/d

with σq(µ) = mina∈Rd
[∫

Rd |ξ − a|
q µ(dξ)

]1/q
. Thus, Inequality (24) can be upper-bounded

as follows,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗K,µEW2(µωn , µ) + 4EW2
2 (µωn , µ).

≤ 8K−1/d
(
C

1/2
d,q,µCd,q(µ)σq(µ) ∨ 2Cd,q,µ

)
×{

n−
1
4

[
(log(1 + n))

1
2 + log(1 + n)

]
if d = 4 and q 6= 4

2n−
1
d if d > 4 and q 6= d/(d− 2)

,

from which one can remark that the constant Cd,q,µ,K in Proposition 13 is roughly decreasing
as K−1/d.

A second upper bound of the clustering performance is provided in the following theorem.
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Theorem 15 Let K ∈ N∗ be the quantization level. Let µ ∈ P2(Rd) with card(supp(µ)) ≥
K and let µωn be the empirical measures of µ defined in (20), generated by i.i.d observations
X1, ..., Xn, .... We denote by x(n),ω ∈ (Rd)K an optimal quantizer of µωn at level K. Then,

(a) General upper bound of the performance.

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 2K√
n

[
r2

2n + ρK(µ)2 + 2r1

(
r2n + ρK(µ)

)]
,

where rn :=
∥∥max1≤i≤n |Xi|

∥∥
2

and ρK(µ) is the maximum radius of optimal quantizers
of µ, defined in (9).

(b) Asymptotic upper bound for distribution with polynomial tail. For p > 2, if µ has a
c-th polynomial tail with c > d+ p, then

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ K√
n

[
Cµ,p n

2/p + 6K
2(p+d)
d(c−p−d)γK

]
,

where Cµ,p is a constant depending µ, p and limK γK = 1.

(c) Asymptotic upper bound for distribution with hyper-exponential tail. Recall that µ has
a hyper-exponential tail if µ = f · λd and there exists τ > 0, κ, ϑ > 0, c > −d and A > 0
such that ∀ξ ∈ Rd, |ξ| ≥ A ⇒ f(ξ) = τ |ξ|c e−ϑ|ξ|

κ

. If κ ≥ 2, we can obtain a more
precise upper bound of the performance

E
[
DK,µ(x(n),ω)− inf

x∈(Rd)K
DK,µ(x)

]
≤ Cϑ,κ,µ·

K√
n

[
1+(log n)2/κ+γK(logK)2/κ

(
1+

2

d

)2/κ]
,

where Cϑ,κ,µ is a constant depending ϑ, κ, µ and lim supK γK = 1.
In particular, if µ = N (m,Σ), the multidimensional normal distribution, we have

E
[
DK,µ(x(n),ω)− inf

x∈(Rd)K
DK,µ(x)

]
≤ Cµ ·

K√
n

[
1 + log n+ γK · (logK)

(
1 +

2

d

)]
,

where lim supK γK = 1 and Cµ = 24 ·
(
1 ∨ log 2Ee|X|

2/4
)

where X is a random variable

with distribution µ. Moreover, when µ = N (0, Id), Cµ = 24(1 + d
2) · log 2.

The proof of Theorem 15 relies on the Rademacher process theory. A Rademacher
sequence (σi)i∈{1,...,n} is a sequence of i.i.d random variables with a symmetric {±1}-valued
Bernoulli distribution, independent of (X1, ..., Xn) and we define the Rademacher process
Rn(f), f ∈ F by Rn(f) := 1

n

∑n
i=1 σif(Xi). Remark that the Rademacher process Rn(f)

depends on the sample {X1, ..., Xn} of the probability measure µ.

Theorem (Symmetrization inequalites) For any class F of µ-integrable functions, we
have

E ‖µn − µ‖F ≤ 2E ‖Rn‖F ,

where for a probability distribution ν, ‖ν‖F := supf∈F |ν(f)| := supf∈F
∣∣∫

Rd fdν
∣∣ and

‖Rn‖F := supf∈F |Rn(f)|.
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For the proof of the above theorem, we refer to Koltchinskii (2011, Theorem 2.1). An-
other more detailed reference is Van Der Vaart and Wellner (1996, Lemma 2.3.1). We will
also introduce the Contraction principle in the following theorem and we refer to Boucheron
et al. (2013, Theorem 11.6) for the proof.

Theorem (Contraction principle) Let x1, ..., xn be vectors whose real-valued components
are indexed by T , that is, xi = (xi,s)s∈T . For each i = 1, ..., n, let ϕi : R → R be a
Lipschitz function such that ϕi(0) = 0. Let σ1, ..., σn be independent Rademacher random

variables and let cL = max1≤i≤n supx,y∈R
x 6=y

∣∣∣ϕi(x)−ϕi(y)
x−y

∣∣∣ be the uniform Lipschitz constant of

the function ϕi. Then

E
[

sup
s∈T

n∑
i=1

σiϕi(xi,s)
]
≤ cL · E

[
sup
s∈T

n∑
i=1

σixi,s

]
. (25)

Remark that, if we consider random variables (Y1,s, ..., Yn,s)s∈T independent of (σ1, ..., σn)
and for all s ∈ T and i ∈ {1, ..., n}, Yi,s is valued in R, then (25) implies that

E
[

sup
s∈T

n∑
i=1

σiϕi(Yi,s)
]

= E
{
E
[

sup
s∈T

n∑
i=1

σiϕi(Yi,s) | (Y1,s, ..., Yn,s)s∈T

]}
≤cL · E

{
E
[

sup
s∈T

n∑
i=1

σiYi,s | (Y1,s, ..., Yn,s)s∈T

]}
≤ cL · E

[
sup
s∈T

n∑
i=1

σiYi,s
]
. (26)

The proof of Theorem 15 is inspired by that of Theorem 2.1 in Biau et al. (2008).

Proof [Proof of Theorem 15] (a) In order to simplify the notation, we will denote by D
(respectively Dn) instead of DK,µ (resp. DK,µn) the distortion function of µ (resp. µn). For
any c = (c1, ..., cK) ∈ (Rd)K , note that the distortion function D(c) of µ can be written as

D(c) = E
[

min
1≤k≤K

|X − ck|2
]

= E
[
|X|2 + min

1≤k≤K
(−2〈X|ck〉+ |ck|2)

]
.

We define D(c) := min1≤k≤K
(
− 2〈X|ck〉+ |ck|2

)
. Similarly, for the distortion function Dn

of the empirical measure µn,

Dn(c) =
1

n

n∑
i=1

min
1≤k≤K

|Xi − ck|2 =
1

n

n∑
i=1

|Xi|2 + min
1≤k≤K

(
− 2

n

n∑
i=1

〈Xi|ck〉+ |ck|2
)
,

we define Dn(c) := min1≤k≤K
(
− 2
n

∑n
i=1〈Xi|ck〉+|ck|2

)
. We will drop ω in x(n),ω to alleviate

the notation throughout the proof. Let x ∈ argminDK,µ. It follows that

E
[
D(x(n))−D(x)

]
= E

[
D(x(n))−D(x)

]
= E

[
D(x(n))−Dn(x(n))

]
+ E

[
Dn(x(n))−D(x)

]
≤ E

[
D(x(n))−Dn(x(n))

]
+ E

[
Dn(x)−D(x)

]
.

Define for η, x ∈ Rd, fη(x) := −2〈η|x〉+ |η|2.
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Part (i): Upper bound of E[D(x(n)) − Dn(x(n))]. Let Rn(ω) := max1≤i≤n |Xi(ω)|. Remark
that for every ω ∈ Ω, Rn(ω) is invariant with the respect to all permutations of the com-
ponents of (X1, ..., Xn). Let BR denote the ball centred at 0 with radius R. Then, owing

to Proposition 2-(iii), x(n) = (x
(n)
1 , ..., x

(n)
K ) ∈ BK

Rn
. Hence,

E [D(x(n))−Dn(x(n))] ≤ E sup
c∈BKRn

(
D(c)−Dn(c)

)
= E

[
sup

c∈BKRn

(
E min

1≤k≤K
fck(X)− 1

n

n∑
i=1

min
1≤k≤K

fck(Xi)
)]

= E
[

sup
c∈BKRn

E
[ 1

n

n∑
i=1

min
1≤k≤K

fck(X ′i)−
1

n

n∑
i=1

min
1≤k≤K

fck(Xi)
∣∣X1, ..., Xn

]]
, (27)

whereX ′1, ..., X
′
n are i.i.d random variable with the distribution µ, independent of (X1, ..., Xn).

Let R2n := max1≤i≤n |Xi| ∨ |X ′i|, then (27) becomes

E [D(x(n))−Dn(x(n))] ≤ E
[

sup
c∈BKR2n

E
[ 1

n

n∑
i=1

min
1≤k≤K

fck(X ′i)−
1

n

n∑
i=1

min
1≤k≤K

fck(Xi)
∣∣X1, ..., Xn

]]
≤ E

[
E
[

sup
c∈BKR2n

( 1

n

n∑
i=1

min
1≤k≤K

fck(X ′i)−
1

n

n∑
i=1

min
1≤k≤K

fck(Xi)
)∣∣X1, ..., Xn

]]
= E

[
sup

c∈BKR2n

1

n

n∑
i=1

(
min

1≤k≤K
fck(X ′i)− min

1≤k≤K
fck(Xi)

)]
.

The distribution of (X1, ..., Xn, X
′
1, ..., X

′
n) and that of R2n are invariant with the respect

to all permutation of the components in (X1, ..., Xn, X
′
1, ..., X

′
n). Hence,

E [D(x(n))−Dn(x(n))] = E
[

sup
c∈BKR2n

1

n

n∑
i=1

σi
(

min
1≤k≤K

fck(X ′i)− min
1≤k≤K

fck(Xi)
)]

≤ E
[

sup
c∈BKR2n

1

n

n∑
i=1

σi min
1≤k≤K

fck(X ′i)
]

+ E
[

sup
c∈B

RK2n

1

n

n∑
i=1

σi min
1≤k≤K

fck(Xi)
]

= 2E
[

sup
c∈BKR2n

1

n

n∑
i=1

σi min
1≤k≤K

fck(Xi)
]
. (28)

In the second line of (28), we can change the sign before the second term since −σi has
the same distribution of σi, and we will continue to use this property throughout the proof.

Let SK = E
[

sup
c∈BKR2n

1

n

n∑
i=1

σi min
1≤k≤K

fck(Xi)
]

and we provide an upper bound for SK by

induction on K in what follows.

I For K = 1,

S1 = E
[

sup
c∈BR2n

1

n

n∑
i=1

σi min
1≤k≤K

fc(Xi)
]

= E
[

sup
c∈BR2n

1

n

n∑
i=1

σi
(
− 2〈c|Xi〉+ |c|2

)]
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≤ 2E
[

sup
c∈BR2n

1

n

n∑
i=1

σi〈c|Xi〉
]

+ E
[

sup
c∈BR2n

1

n

n∑
i=1

σi |c|2
]

≤ 2

n
E
[

sup
c∈BR2n

〈c|
n∑
i=1

σiXi〉
]

+
1

n
E
[ ∣∣∣∣∣

n∑
i=1

σi

∣∣∣∣∣ · |R2n|2
]

≤ 2

n
E
[

sup
c∈BR2n

∣∣∣∣∣
n∑
i=1

σiXi

∣∣∣∣∣ · |c| ]+
1

n
E

∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣ · E |R2n|2

(by Cauchy-Schwarz inequality and independence of σi and Xi)

≤ 2

n

∥∥∥∥∥
n∑
i=1

σiXi

∥∥∥∥∥
2

· ‖R2n‖2 +
1

n

∥∥∥∥∥
n∑
i=1

σi

∥∥∥∥∥
2

2

· ‖R2n‖22

≤ 2

n

√
n ‖X1‖2 · ‖R2n‖2 +

1√
n
‖R2n‖22 ≤

‖R2n‖2√
n

(
2 ‖X1‖2 + ‖R2n‖2

)
. (29)

The first inequality of the last line of (29) follows from E |
∑n

i=1 σiXi|2 = E
∑n

i=1 σ
2
iX

2
i =

nEX2
1 since the (σ1, ..., σn) is independent of (X1, ..., Xn) and Eσi = 0. For n ∈ N∗,

define rn := ‖max1≤i≤n |Yi|‖2, where Y1, ..., Yn are i.i.d random variables with probabil-
ity distribution µ. Hence, r2n = ‖R2n‖2, since (Y1, ..., Y2n) has the same distribution as
(X1, ..., Xn, X

′
1, ..., X

′
n). Therefore,

S1 ≤
r2n√
n

(
2 ‖X1‖2 + r2n

)
.

I For K = 2,

S2 = E
[

sup
c=(c1,c2)∈B2

R2n

1

n

n∑
i=1

σi
(
fc1(Xi) ∧ fc2(Xi)

)]
=

1

2
E
[

sup
c∈B2

R2n

1

n

n∑
i=1

σi
(
fc1(Xi) + fc2(Xi)− |fc1(Xi)− fc2(Xi)|

)]
(as a ∧ b =

a+ b

2
− |a− b|

2
)

≤ 1

2

{
E
[

sup
c∈B2

R2n

1

n

n∑
i=1

σi
(
fc1(Xi) + fc2(Xi)

)]
+ E

[
sup

c∈B2
R2n

1

n

n∑
i=1

σi |fc1(Xi)− fc2(Xi)|
]}

≤ 1

2

{
2S1 + E

[
sup

c∈B2
R2n

1

n

n∑
i=1

σi
(
fc1(Xi)− fc2(Xi)

)]} (
by (26)

)
≤ 1

2

{
2S1 + E

[
sup

c1∈BR2n

1

n

n∑
i=1

σifc1(Xi)
]

+ E
[

sup
c2∈BR2n

1

n

n∑
i=1

σifc2(Xi)
]}
≤ 2S1.

I Next, we will show by induction that SK ≤ KS1 for every K ∈ N∗. Assume that
SK ≤ KS1, for K + 1,

SK+1 = E
[

sup
c∈BK+1

R2n

1

n

n∑
i=1

σi min
1≤k≤K+1

fck(Xi)
]
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= E
[

sup
c∈BK+1

R2n

1

n

n∑
i=1

σi
(

min
1≤k≤K

fck(Xi) ∧ fcK+1(Xi)
)]

≤ 1

2
E
{

sup
c∈BK+1

R2n

1

n

n∑
i=1

σi

[(
min

1≤k≤K
fck(Xi) + fcK+1(Xi)

)
−
∣∣∣∣ min
1≤k≤K

fck(Xi)− fcK+1(Xi)

∣∣∣∣ ]}

≤ 1

2
E
{

sup
c∈BK+1

R2n

1

n

n∑
i=1

σi
(

min
1≤k≤K

fck(Xi) + fcK+1(Xi)
)

+ sup
c∈BK+1

R2n

1

n

n∑
i=1

σi

∣∣∣∣ min
1≤k≤K

fck(Xi)− fcK+1(Xi)

∣∣∣∣ }
≤ 1

2
(SK + S1 + SK + S1) ≤ SK + S1 ≤ (K + 1)S1.

Hence,

E [D(x(n))−Dn(x(n))] ≤ 2SK ≤ 2KS1 ≤
2K · r2n√

n

(
2 ‖X1‖2 + r2n

)
.

Part (ii): Upper bound of E [Dn(x)−D(x)]. As x = (x1, ..., xK) is an optimal quantizer of
µ, we have max1≤k≤K |xk| ≤ ρK(µ) owing to the definition of ρK(µ) in (9). Consequently,

E
[
Dn(x)−D(x)

]
≤ E sup

c∈BK
ρK (µ)

[
Dn(c)−D(c)

]
By the same reasoning of Part (I), we have E

[
Dn(x)−D(x)

]
≤ 2K√

n
ρK(µ)

(
2 ‖X1‖2 +ρK(µ)

)
.

Hence

E
[
D(x(n))−D(x)

]
≤ 2K√

n
r2n

(
2 ‖X1‖2 + r2n

)
+

2K√
n
ρK(µ)

(
2 ‖X1‖2 + ρK(µ)

)
≤ 2K√

n

[
r2

2n + ρ2
K(µ) + 2r1

(
r2n + ρK(µ)

)]
. (30)

The proof of (b) and (c) is postponed in Appendix E.

Appendix A: Proof of Pollard’s Theorem

Proof Since the quantization level K is fixed, in this proof, we drop the subscript K of
the distortion function and denote by Dn (respectively, D∞) the distortion function of µn
(resp. µ∞).

We know x(n) ∈ argmin Dn owing to Proposition 2, that is, for all y ∈ (y1, ..., yK) ∈
(Rd)K , we have Dn(x(n)) ≤ Dn(y). For every fixed y = (y1, ..., yK), we have Dn(y)→ D∞(y)
after (13) so that

lim sup
n

Dn(x(n)) ≤ inf
y∈(Rd)K

D∞(y). (31)

Assume that there exists an index set I ⊂ {1, ...,K} and Ic 6= ∅ such that (x
(n)
i )i∈I,n≥1

is bounded and (x
(n)
i )i∈Ic,n≥1 is not bounded. Then there exists a subsequence ψ(n) of n
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such that {
x
ψ(n)
i → x̃

(∞)
i , i ∈ I,∣∣∣xψ(n)

i

∣∣∣→ +∞, i ∈ Ic.

After (13), we have Dψ(n)(x
(ψ(n)))1/2 ≥ D∞(x(ψ(n)))1/2 −W2(µψ(n), µ∞). Hence,

lim inf
n
Dψ(n)(x

(ψ(n)))1/2 ≥ lim inf
n
D∞(x(ψ(n)))1/2

so that

lim inf
n
Dψ(n)(x

(ψ(n)))1/2 ≥ lim inf
n
D∞(x(ψ(n)))1/2

=
[

lim inf
n

∫
min

i∈{1,...,K}

∣∣∣x(ψ(n))
i − ξ

∣∣∣2 µ∞(dξ)
]1/2

≥
[ ∫

lim inf
n

min
i∈{1,...,K}

∣∣∣x(ψ(n))
i − ξ

∣∣∣2 µ∞(dξ)
]1/2

=
[ ∫

min
i∈I

∣∣∣x(∞)
i − ξ

∣∣∣2 µ∞(dξ)
]1/2

, (32)

where we used Fatou’s Lemma in the third line. Thus, (31) and (32) imply that∫
min
i∈I

∣∣∣x(∞)
i − ξ

∣∣∣2 µ∞(dξ) ≤ inf
y∈(Rd)K

D∞(y). (33)

This implies that I = {1, ...,K} after Proposition 2 (otherwise, (33) implies that e|I|,∗(µ∞) ≤
eK,∗(µ∞) with |I| < K, which is contradictory to Proposition 2-(i)). Therefore, (x(n)) is
bounded and any limiting point x(∞) ∈ argminx∈(Rd)KD∞(x).

Appendix B: Proof of Proposition 2 - (iii)

We define the open Voronöı cell generated by xi with respect to the Euclidean norm | · | by

V o
xi(x) =

{
ξ ∈ Rd

∣∣ |ξ − xi| < min
1≤j≤K,j 6=i

|ξ − xj |
}
.

It follows from Graf and Luschgy (2000, Proposition 1.3) that intVxi(x) = V o
xi(x), where

intA denotes the interior of a set A. Moreover, if we denote by λd the Lebesgue measure on
Rd, we have λd

(
∂Vxi(x)

)
= 0, where ∂A denotes the boundary of A (see Graf and Luschgy,

2000, Theorem 1.5). If µ ∈ P2(Rd) and x∗ is an optimal quantizer of µ, even if µ is not
absolutely continuous with the respect of λd, we have µ

(
∂Vxi(x

∗)
)

= 0 for all i ∈ {1, ...,K}
(see Graf and Luschgy, 2000, Theorem 4.2).
Proof Assume that there exists an x∗ = (x∗1, ..., x

∗
K) ∈ GK(µ) in which there exists

k ∈ {1, ...,K} such that x∗k /∈ Hµ.

Case (I): µ
(
V o
x∗k

(Γ∗) ∩ supp(µ)
)

= 0. The distortion function can be written as

DK,µ(x∗) =

K∑
i=1

∫
Cxi (x)

|ξ − x∗i |
2 µ(dξ) =

K∑
i=1

∫
V oxi (x)

|ξ − x∗i |
2 µ(dξ)
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(since x∗ is optimal and |·| is Euclidean, µ
(
∂Vxi(Γ

∗)
)

= 0 and intVxi(Γ) = V o
xi(Γ))

=
K∑

i=1,i 6=k

∫
V oxi (x)

|ξ − x∗i |
2 µ(dξ) = DK,µ(x̃),

where x̃ = (x∗1, ..., x
∗
k−1, x

∗
k+1, ..., x

∗
K). Therefore, Γ̃ = {x∗1, ..., x∗k−1, x

∗
k+1, ..., x

∗
K} is also a

K-level optimal quantizer with card(Γ̃) < K, contradictory to Proposition 2 - (i).

Case (II): µ
(
V o
x∗k

(Γ∗) ∩ supp(µ)
)
> 0. Since x∗k 6= Hµ, there exists a hyperplane H strictly

separating x∗k and Hµ. Let x̂∗k be the orthogonal projection of x∗k on H. For any z ∈ Hµ, let
b denote the point in the segment joining z and x∗k which lies on H, then 〈b−x̂∗k|x∗k−x̂∗k〉 = 0.
Hence,

|x∗k − b|
2 = |x̂∗k − b|

2 + |x∗k − x̂∗k|
2 > |x̂∗k − b|

2 .

Therefore, |z − x̂∗k| ≤ |z − b|+ |b− x̂∗k| < |z − b|+ |x∗k − b| = |z − x∗k|.
Let B(x, r) denote the ball on Rd centered at x with radius r. Since µ

(
V o
x∗k

(Γ∗) ∩
supp(µ)

)
> 0, there exists α ∈ V o

x∗k
(Γ∗) ∩ supp(µ) such that ∃ r ≥ 0, µ

(
B(α, r)

)
> 0 (when

r = 0, B(α, r) = {r}). Moreover,

∀β ∈ B(α, r), |β − x̂∗k| < |β − x∗k| < min
i 6=k
|β − x̂∗i | . (34)

Let x̂ := (x∗1, ..., x
∗
k−1, x̂

∗
k, x
∗
k+1, ..., x

∗
K), (34) implies DK,µ(x̂) < DK,µ(x∗). This is contra-

dictory with the fact that x∗ is an optimal quantizer. Hence, x∗ ∈ Hµ.

Appendix C: Proof of Proposition 8

We use Lemma 11 in Fort and Pagès (1995) to compute the Hessian matrix HDK,µ of DK,µ.

Lemma 16 (Fort and Pagès, 1995, Lemma 11) Let ϕ be a countinous R-valued function

defined on [0, 1]d. For every x ∈ DK :=
{
y ∈

(
[0, 1]d

)K | yi 6= yj if i 6= j
}

, let Φi(x) :=∫
Vi(x) ϕ(ω)dω. Then Φi is continuously differentiable on DK and

∀i 6= j,
∂Φi

∂xj
(x) =

∫
Vi(x)∩Vj(x)

ϕ(ξ)
{1

2
−→n ij
x +

1

|xj − xi|
× (

xi + xj
2

− ξ)
}
λijx (dξ)

and
∂Φi

∂xi
(x) = −

∑
1≤j≤K,j 6=i

∂Φj

∂xi
(x),

where −→n ij
x :=

xj−xi
|xj−xi| ,

Mx
ij :=

{
u ∈ Rd | 〈u− xi + xj

2
| xi − xj〉 = 0

}
(35)

and λijx (dξ) denotes the Lebesgue measure on the affine hyperplane Mx
ij.
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Note that one can simplify the result of Lemma 16 as follows,

∀i 6= j,
∂Φi

∂xj
(x) =

∫
Vi(x)∩Vj(x)

ϕ(ξ)
{1

2

xj − xi
|xj − xi|

+
1

|xj − xi|
(
xi + xj

2
− ξ)

}
λijx (dξ)

=

∫
Vi(x)∩Vj(x)

ϕ(ξ)
1

|xj − xi|
{xj − xi

2
+
xi + xj

2
− ξ
}
λijx (dξ)

=

∫
Vi(x)∩Vj(x)

ϕ(ξ)
1

|xj − xi|
(xj − ξ)λijx (dξ). (36)

Proof [Proof of Proposition 8] (i) Set ϕi,M (ξ) = (xi − ξ)f(ξ)χM (ξ) with

χM (ξ) :=


1 |ξ| ≤M
M + 1− |ξ| M < |ξ| ≤M + 1

0 |ξ| > M + 1

.

Set ΦM
i (x) =

∫
Vi(x) ϕ

i,M (ξ)dξ and Φi(x) =
∫
Vi(x)(xi − ξ)f(ξ)dξ for i = 1, ...,K. Then (15)

implies that
∂DK,µ
∂xi

= 2Φi, i = 1, ...,K.
For j = 1, ...,K and j 6= i, it follows from (36) that

∂ΦM
i

∂xj
(x) =

∫
Vi(x)∩Vj(x)

(xi − ξ)⊗ (xj − ξ) ·
1

|xj − xi|
f(ξ)χM (ξ)λijx (dξ), (37)

and for i = 1, ...,K,

∂ΦMi
∂xi

(x) =
[( ∫

Vi(ξ)

f(ξ)χM (ξ)dξ
)
Id−

∑
i 6=j

1≤j≤K

∫
Vi(x)∩Vj(x)

(xi−ξ)⊗(xi−ξ)·
1

|xj − xi|
f(ξ)χM (ξ)λijx (dξ)

]
,

(38)

where in (37) and (38), u ⊗ v := [uivj ]1≤i,j≤d for any two vectors u = (u1, ..., ud) and
v = (v1, ..., vd) in Rd.

We prove now the differentiability of Φi in three steps.
I Step 1 : We prove in this part that for every x ∈ FK ,

hij(x) :=

∫
Vi(x)∩Vj(x)

(xi − ξ)⊗ (xj − ξ) ·
1

|xj − xi|
f(ξ)λijx (dξ) < +∞.

If Vi(x)∩Vj(x) = ∅, it is obvious that hij(x) = 0 < +∞. Now we assume that Vi(x)∩Vj(x) 6=
∅. Without loss of generality, we assume that V1(x) ∩ V2(x) = ∅ and we prove in the
following h12 is well defined i.e. (h12(x) ∈ R.

Let

α(x, ξ) := (x1 − ξ)⊗ (x2 − ξ) ·
1

|x2 − x1|
f(ξ). (39)

Then

h12(x) =

∫
V1(x)∩V2(x)

α(x, ξ)λ12
x (dξ).

Let (e1, ..., ed) denote the canonical basis of Rd. Set ux = x1−x2
|x1−x2| . As x1 6= x2, there

exists at least one i0 ∈ {1, ..., d} s.t. 〈ux | ei0〉 6= 0. Then (ux, ei, 1 ≤ i ≤ d, i 6= i0) forms a
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new basis of Rd. Applying the Gram-Schmidt orthonormalization procedure, we derive the
existence of a new orthonormal basis (ux1 , ..., u

x
d) of Rd such that ux1 = ux. Moreover, the

Gram-Schmidt orthonormalization procedure also implies that uxi , 1 ≤ i ≤ d is continuous
in x. With respect to this new basis (ux1 , ..., u

x
d), the hyperplane Mx

12 defined in (35) can be
written by

Mx
12 =

x1 + x2

2
+ span

(
uxi , i = 2, ..., d

)
,

where span(S) denotes the vector subspace of Rd spanned by S. Moreover, note that

V1(x) ∩ V2(x) =
{
ξ ∈Mx

12

∣∣ min
k=3,...,K

|xk − ξ| ≥ |x1 − ξ| = |x2 − ξ|
}
.

Then, for every fixed ξ /∈ ∂
(
V1(x) ∩ V2(x)

)
, the function x 7→ 1V1(x)∩V2(x)(ξ) is continuous

in x ∈ FK and

λ12
x

(
∂
(
V1(x) ∩ V2(x)

))
= 0 (40)

since V1(x) ∩ V2(x) is a polyhedral convex set in Mx
12.

Now by a change of variable ξ = x1+x2
2 +

∑d
i=2 riu

x
i ,

h12(x) =

∫
Rd−1

1V12(x)

(
(r2, ..., rd)

)
α
(
x,
x1 + x2

2
+

d∑
i=2

riu
x
i

)
dr2...drd, (41)

where

V12(x) :=
{

(r2, ..., rd) ∈ Rd−1
∣∣∣ min

3≤k≤K

∣∣∣xk − x1 + x2

2
−

d∑
i=2

riu
x
i

∣∣∣ ≥ ∣∣∣x1 − x2

2
−

d∑
i=2

riu
x
i

∣∣∣}.
(42)

Let ∂V12(x) be the boundary of V12(x) given by

∂V12(x) :=
{

(r2, ..., rd) ∈ Rd−1
∣∣∣ min

3≤k≤K

∣∣∣xk − x1 + x2

2
−

d∑
i=2

riu
x
i

∣∣∣ =
∣∣∣x1 − x2

2
−

d∑
i=2

riu
x
i

∣∣∣}.
Then (40) implies that λRd−1

(
∂V12(x)

)
= 0 where λRd−1 denotes the Lebesgue measure of

the subspace span
(
uxi , i = 2, ..., d

)
.

It is obvious that for any a = (a1, ..., ad), b = (b1, ..., bd) ∈ Rd, we have |aibj | ≤ |a| |b| , 1 ≤
i, j ≤ d. Thus the absolute value of every term in the matrix

α(x,
x1 + x2

2
+

d∑
i=2

riu
x
i )

=

(
x1−x2

2 −
∑d

i=2 riu
x
i

)
⊗
(
x2−x1

2 −
∑d

i=2 riu
x
i

)
|x2 − x1|

f
(x1 + x2

2
+

d∑
i=2

riu
x
i

)
can be upper-bounded by∣∣x1−x2

2 −
∑d

i=2 riu
x
i

∣∣∣∣x2−x1
2 −

∑d
i=2 riu

x
i

∣∣
|x2 − x1|

f
(x1 + x2

2
+

d∑
i=2

riu
x
i

)
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≤

(∣∣x1−x2
2

∣∣+
∣∣∑d

i=2 riu
x
i

∣∣)2

|x2 − x1|
f
(x1 + x2

2
+

d∑
i=2

riu
x
i

)
≤ Cx(1 +

d∑
i=2

r2
i )f
(x1 + x2

2
+

d∑
i=2

riu
x
i

)
(43)

where Cx > 0 is a constant depending only on x.
The distribution µ is assumed to be 1-radially controlled i.e. there exist a constant

A > 0 and a continuous and decreasing function g : R+ → R+ such that

∀ξ ∈ Rd, |ξ| ≥ A, f(ξ) ≤ g(|ξ|) and

∫
R+

xdg(x)dx < +∞. (44)

Now let K := 1
2 |x1 + x2| ∨ A and let r :=

∑d
i=2 riu

x
i . As g is a non-increasing function, it

follows that

Cx(1 +
d∑
i=2

r2
i )f
(x1 + x2

2
+

d∑
i=2

riu
x
i

)
≤ Cx(1 + |r|2) sup

ξ∈B(0,3K)
f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g

(∣∣∣x(n)
1 + x

(n)
2

2
+

d∑
i=2

riu
x
i

∣∣∣)1{|r|≥2K}.

≤ Cx(1 + |r|2) sup
ξ∈B(0,3K)

f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g
(
|r| −K

)
1{|r|≥2K}.

Switching to polar coordinates, one obtains by letting s = |r|∫
Rd−1

Cx |r|2 g
(
|r| −K

)
1{|r|≥2K}dr2...drd

≤ Cx,d
∫
R+

s2g(s−K)1{s≥2K}s
d−2ds ≤ Cx,d

∫ ∞
K

(s+K)dg(s)ds

≤ 2dCx,d

∫ ∞
K

(Kd + sd)g(s)ds < +∞,

where the last inequality follows from (44). Thus one obtains∫
Rd−1

[
Cx(1+|r|2) sup

ξ∈B(0,3K)
f(ξ)1{|r|≤2K}+Cx(1+|r|2)g

(
|r|−K

)
1{|r|≥2K}

]
dr2...drd < +∞.

Hence h12 is well-defined since∫
V1(x)∩V2(x)

|α(x, ξ)|λ12
x (dξ) < +∞. (45)

I Step 2 : Now we prove that for any x ∈ FK ,

sup
y∈B(x, εx)

∣∣∣∣∂ΦM
i

∂xj
(y)− hij(y)

∣∣∣∣ M→+∞−−−−−→ 0, (46)
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where εx = 1
3 min1≤i<j≤K |xi − xj | and (46) means every term in the matrix converges to 0.

First, for every fixed y ∈ B(x, εx), the absolute value of every term in the following
matrix

∂ΦM
i

∂xj
(y)− hij(y) =

∫
Vi(y)∩Vj(y)

(yi − ξ)⊗ (yj − ξ)
|yj − yi|

f(ξ)
(
1− χM (ξ)

)
λijy (dξ)

can be upper bounded by

fM (y) :=

∫
Vi(y)∩Vj(y)∩

(
Rd\B(0,M+1)

) |yi − ξ||yj − ξ||yj − yi|
f(ξ)λijy (dξ).

Moreover, the inequality (45) implies that fM (y) converges to 0 for every y ∈ B(x, εx) as
M → +∞. As (fM )M is a monotonically decreasing sequence, one can obtain

sup
y∈B(x,ε)

∣∣fM (y)
∣∣→ 0

owing to Dini’s theorem, which in turn implies the convergence in (46).

I Step 3 : It is obvious that ΦM
i (x) converges to Φi(x) for every x ∈ Rd as M → +∞ since

µ ∈ P2(Rd). Hence ∂Φ1
∂x2

(x) = h12(x). Then one can directly obtain (16) since
∂DK,µ
∂xjxi

=

2∂Φi
∂xj

= 2hij by applying (15). The proof for (17) is similar.

(ii) We will only prove the continuity of
∂2DK,µ
∂x1∂x2

and
∂2DK,µ
∂x21

at a point x ∈ FK . The proof

for
∂2DK,µ
∂xi∂xj

for others i, j ∈ {1, ...,K} is similar. We take the same definition of α(x, ξ) in

(39), then
∂2DK,µ
∂x1∂x2

(x) = 2

∫
V1(x)∩V2(x)

α(x, ξ)λ12
x (dξ)

and by the same change of variable (41) as in (i), we have

∂2DK,µ
∂x1∂x2

(x) = 2

∫
Rd−1

1V12(x)

(
(r2, ..., rd)

)
α
(
x,
x1 + x2

2
+

d∑
i=2

riu
x
i

)
dr2...drd

with the same definition of V12(x) as in (42).

Let us now consider a sequence x(n) = (x
(n)
1 , ..., x

(n)
K ) ∈ (Rd)K converging to a point

x = (x1, ..., xK) ∈ FK satisfying that for every n ∈ N∗,∣∣x(n) − x
∣∣ ≤ δx :=

1

3
min

1≤i,j≤K,i6=j
|xi − xj | , (47)

so that x(n) ∈ FK for every n ∈ N∗. For a fixed (r2, ..., rd) ∈ Rd−1, the continuity of
x 7→ α(x, x1+x2

2 +
∑d

i=2 riu
x
i ) in FK can be obtained by the continuity of (x, ξ) 7→ α(x, ξ)

and the continuity of Gram-Schmidt orthonormalization procedure.
By the same reasoning as in (43), the absolute value of every term in the matrix

α
(
x(n),

x
(n)
1 + x

(n)
2

2
+

d∑
i=2

r
(n)
i ux

(n)

i

)
27



Liu and Pagès

can be upper bounded by(∣∣x(n)1 −x
(n)
2

2

∣∣+
∣∣∑d

i=2 riu
x(n)
i

∣∣)2∣∣∣x(n)
2 − x(n)

1

∣∣∣ f
(x(n)

1 + x
(n)
2

2
+

d∑
i=2

r
(n)
i ux

(n)

i

)
,

where there exists a constant Cx depending only on x such that(∣∣x(n)1 −x
(n)
2

2

∣∣+
∣∣∑d

i=2 riu
x(n)
i

∣∣)2∣∣∣x(n)
2 − x(n)

1

∣∣∣ ≤ Cx(1 +
d∑
i=2

r2
i )

since by (47), one can get

∀n ∈ N∗,∀i, j ∈ {1, ...,K} with i 6= j, δx ≤
∣∣∣x(n)
i − x

(n)
j

∣∣∣ ≤ max
1≤i,j≤K

|xi − xj |+ 2δx.

Moreover, if we take K := 1
2 supn

∣∣∣x(n)
1 + x

(n)
2

∣∣∣ ∨A and take rn :=
∑d

i=2 riu
x(n)
i , then

Cx(1 +
d∑
i=2

r2
i )f
(x(n)

1 + x
(n)
2

2
+

d∑
i=2

riu
x(n)

i

)
≤ Cx(1 + |r|2) sup

ξ∈B(0,3K)
f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g

(∣∣∣x(n)
1 + x

(n)
2

2
+

d∑
i=2

riu
x(n)

i

∣∣∣)1{|r|≥2K}.

≤ Cx(1 + |r|2) sup
ξ∈B(0,3K)

f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g
(
|r| −K

)
1{|r|≥2K}.

By the same reasoning as in (i)-Step 1, we have∫
Rd−1

[
Cx(1+|r|2) sup

ξ∈B(0,3K)
f(ξ)1{|r|≤2K}+Cx(1+|r|2)g

(
|r|−K

)
1{|r|≥2K}

]
dr2...drd < +∞,

which implies
∂2DK,µ
∂x1∂x2

(x(n)) → ∂2DK,µ
∂x1∂x2

(x) as n → +∞ by applying Lebesgue’s dominated

convergence theorem. Thus
∂2DK,µ
∂x1∂x2

is continuous at x ∈ FK .

It remains to prove the continuity of x 7→ µ
(
V1(x)

)
=
∫
Rd 1V1(x)(ξ)f(ξ)λd(dξ) to obtain

the continuity of
∂2DK,µ
∂x21

defined in (17). Remark that

V1(x) =
{
ξ ∈ Rd

∣∣ |ξ − x1| ≤ min
1≤j≤K

|ξ − xj |
}
,

and by Graf and Luschgy (2000, Proposition 1.3),

∂V1(x) =
{
ξ ∈ Rd

∣∣ |ξ − x1| = min
1≤j≤K

|ξ − xj |
}
.

Then for any ξ /∈ ∂V1(x), the function x 7→ 1V1(x)(ξ) is continuous. As the norm |·| is the
Euclidean norm, then λd(∂Vi(x)) = 0 (see Graf and Luschgy, 2000, Proposition 1.3 and The-
orem 1.5). For any x ∈ FK and a sequence x(n) converging to x, we have 1V1(x(n))(ξ)f(ξ) ≤
f(ξ) ∈ L1(λd). Thus the continuity of x 7→ µ

(
V1(x)

)
=
∫
Rd 1V1(x)(ξ)f(ξ)λd(dξ) is a direct

application of Lebesgue’s dominated convergence theorem.
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Appendix D: Proof of Proposition 11

Proof [Proof of Proposition 11] (i) We will only deal with the uniform distribution U([0, 1]).
The proof is similar for other uniform distributions.

In Graf and Luschgy (2000, Example 4.17 and 5.5) and Benäım et al. (1998), the authors
show that Γ∗ = {2i−1

2K : i − 1, ...,K} is the unique optimal quantizers of U([0, 1]). Let
x∗ = ( 1

2K , ...,
2i−1
2K , ..., 2K−1

2K ), then one can compute explicitly HD(x∗):

HD(x∗) =



3
2K − 1

2K 0
. . .

. . .
. . .

− 1
2K

1
K − 1

2K
. . .

. . .
. . .

0 − 1
2K

3
2K

 ,

The matrix HD(x∗) is tridiagonal. If we denote by fk(x
∗) its k-th leading principal

minor and we define f0(x∗) = 1, then

fk(x
∗) =

1

K
fk−1(x∗)− 1

4K2
fk−2(x∗) for k = 2, ...,K − 1, (48)

and f1(x∗) = 3
2K and fK(x∗) = |HD(x∗)| = 3

K fK−1(x∗) − 1
4K2 fK−2(x∗) (see El-Mikkawy,

2003). One can solve from the three-term recurrence relation that

fk(x
∗) =

2k + 1

2kKk
, for k = 1, ...,K − 1

and fK(x∗) =
2K + 1

2KKK
+

1

2K
fK−1. (49)

In fact, (49) is true for k = 1. Suppose (49) holds for k ≤ K − 2, then owing to (48)

fk+1(x∗) =
1

K
· 2k + 1

2kKk
− 1

4K2
· 2(k − 1) + 1

2k−1Kk−1
=

2(k + 1) + 1

2k+1Kk+1
.

Then it is obvious that fk(x
∗) > 0 for k = 1, ...,K. Thus, HD(x∗) is positive definite.

(ii) We define for i = 2, ...,K, x̃∗i =
x∗i−1+x∗i

2 , then the Voronoi region Vi(x
∗) = [x̃∗i , x̃

∗
i+1] for

i = 2, ...,K − 1, V1(x∗) = (−∞, x̃∗2] and VK(x∗) = [x̃∗K ,+∞).
For 2 ≤ i ≤ K − 1,

Li(x
∗) = Ai − 2Bi−1,i − 2Bi,i+1

= 2µ
(
Vi(x

∗)
)
− (x∗i − x∗i−1)f(

x∗i−1 + x∗i
2

)− (x∗i+1 − x∗i )f(
x∗i + x∗i+1

2
)

= 2µ
(
Vi(x

∗)
)
− 2(x∗i − x̃∗i )f(x̃∗i )− 2(x̃∗i+1 − x∗i )f(x̃∗i+1)

=
2

µ
(
Vi(x∗)

){µ(Vi(x∗))2 − [x∗iµ
(
Vi(x

∗)
)

− x̃∗iµ
(
Vi(x

∗)
)
]f(x̃∗i )− [x̃∗i+1µ

(
Vi(x

∗)
)
− x∗iµ

(
Vi(x

∗)
)
]f(x̃∗i+1)

}
=

2

µ
(
Vi(x∗)

){µ(Vi(x∗))2 − [

∫
Vi(x∗)

ξf(ξ)dξ − x̃∗i
∫
Vi(x∗)

f(ξ)dξ]f(x̃∗i )
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− [x̃∗i+1

∫
Vi(x∗)

f(ξ)dξ −
∫
Vi(x∗)

ξf(ξ)dξ]f(x̃∗i+1)
} (

owing to (18)
)

=
2

µ
(
Vi(x∗)

){µ(Vi(x∗))2 − f(x̃∗i )

∫
Vi(x∗)

(ξ − x̃∗i )f(ξ)dξ + f(x̃∗i+1)

∫
Vi(x∗)

(ξ − x̃∗i+1)f(ξ)dξ
}
.

In order to study the positivity of Li(x
∗), we define a function ϕi(u) for any i ∈ {1, ...,K}

and for any u = (u1, ..., uK+1) ∈ F+
K+1 by

ϕi(u) :=
[ ∫ ui+1

ui

f(ξ)dξ
]2−f(ui)

∫ ui+1

ui

(ξ−ui)f(ξ)dξ+f(ui+1)

∫ ui+1

ui

(ξ−ui+1)f(ξ)dξ, (50)

Lemma 17 If f is positive and differentiable and if log f is strictly concave, then for all
u = (u1, ..., uK+1) ∈ F+

K+1, we have the following results for ϕi(u) defined in (50),

(a) for every i = 1, ...,K, ϕi(u) > 0;

(b) ∂ϕ1

∂u1
(u) < 0;

(c) ∂ϕK
∂uK+1

(u) > 0.

Proof [Proof of lemma 17] For a fixed i ∈ {1, ...,K}, the partial derivatives of ϕi are

∂ϕi
∂ui

(u) = −2
[ ∫ ui+1

ui

f(ξ)dξ
]
f(ui)− f ′(ui)

∫ ui+1

ui

(ξ − ui)f(ξ)dξ + f(ui)f(ui+1)(ui+1 − ui)

∂ϕi
∂ui+1

(u) = 2
[ ∫ ui+1

ui

f(ξ)dξ
]
f(ui+1) + f ′(ui+1)

∫ ui+1

ui

(ξ − ui+1)f(ξ)dξ

− f(ui)f(ui+1)(ui+1 − ui)
∂ϕi
∂ul

(u) = 0, for all l 6= i and l 6= i+ 1.

The second derivatives of ϕi are

∂2ϕi
∂ui+1∂ui

(u) =
∂2ϕi

∂ui∂ui+1
(u) = −f(ui+1)f(ui) + (ui+1 − ui)

(
f(ui)f

′(ui+1)− f ′(ui)f(ui+1)
)

∂2ϕi
∂ul∂ui

(u) =
∂2ϕi
∂ui∂ul

(u) = 0 for all l 6= i and l 6= i+ 1.

If log f is strictly concave, then (log f)′ =
f ′

f
is strictly decreasing. For u ∈ F+

K+1, we

have ui+1 > ui, then

f ′(ui+1)

f(ui+1)
− f ′(ui)

f(ui)
=

f ′(ui+1)f(ui)− f(ui+1)f ′(ui)

f(ui)f(ui+1)
< 0.

Thus f ′(ui+1)f(ui)− f(ui+1)f ′(ui) < 0 and from which one can get
∂2ϕi

∂ui+1∂ui
(u) < 0.

In fact, ϕi,
∂ϕi
∂ui

, ∂ϕi
∂ui+1

and ∂2ϕi
∂ui+1∂ui

only depend on the variables ui and ui+1.
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(a) For 1 ≤ i ≤ K, ϕi(ui+1, ui+1) = 0. After the Mean value theorem, there exists γ ∈
(ui, ui+1) such that

1

ui − ui+1

(
ϕi(ui, ui+1)− ϕi(ui+1, ui+1)

)
=
∂ϕi
∂ui

(γ, ui+1). (51)

Moreover, there exists ζ ∈ (γ, ui+1) such that

1

ui+1 − γ
(∂ϕi
∂ui

(γ, ui+1)− ∂ϕi
∂ui

(γ, γ)
)

=
∂2ϕi

∂ui+1∂ui
(γ, ζ).

As γ < ζ,
∂2ϕi

∂ui+1∂ui
(γ, ζ) < 0. Thus

∂ϕi
∂ui

(γ, ui+1) < 0, since
∂ϕi
∂ui

(γ, γ) = 0. Then

ϕi(ui, ui+1) > 0 by applying
∂ϕi
∂ui

(γ, ui+1) < 0 in (51).

(b) After the Mean value theorem, there exists γ′ ∈ (u1, u2) such that

∂2ϕ1

∂u1∂u2
(u1, γ

′) =
1

u2 − u1

(∂ϕ1

∂u1
(u1, u2)− ∂ϕ1

∂u1
(u1, u1)

)
.

As
∂2ϕ1

∂u1∂u2
(u1, γ

′) < 0 and
∂ϕ1

∂u1
(u1, u1) = 0, one can get

∂ϕ1

∂u1
(u1, u2) < 0.

(c) In the same way, there exists ζ ′ ∈ (uK , uK+1) such that

∂2ϕK
∂uK∂uK+1

(ζ ′, uK+1) =
1

uK − uK+1

( ∂ϕK
∂uK+1

(uK , uK+1)− ∂ϕK
∂uK+1

(uK+1, uK+1)
)
.

As
∂2ϕK

∂uK∂uK+1
(ζ ′, uK+1) < 0 and

∂ϕK
∂uK+1

(uK+1, uK+1) = 0, one gets
∂ϕK
∂uK+1

(uK , uK+1) >

0.

Proof [Proof of Proposition 11, continuation]
We set x̃∗,M := (−M, x̃∗2, ..., x̃

∗
K ,M) with M large enough such that x̃∗,M ∈ F+

K+1, then

for 2 ≤ i ≤ K − 1, Li(x
∗) = 2

µ(Vi(x∗))
ϕi(x̃

∗,M ). Thus Li(x
∗) > 0, i = 2, ...,K − 1 owing to

Lemma 17-(a).
For i = 1,

L1(x∗) = A1(x∗)− 2B1,2(x∗)

=
2

µ
(
V1(x∗)

){µ(V1(x∗)
)2 − f(x̃∗2)

∫
V1(x∗)

(x̃∗2 − ξ)f(ξ)dξ
}
.

If we denote D1(x∗) := µ
(
V1(x∗)

)2 − f(x̃∗2)
∫
V1(x∗)(x̃

∗
2 − ξ)f(ξ)dξ, then

D1(x∗) = lim
M→+∞

ϕ1(x̃∗,M ) + f(−M)

∫
VM1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ,

where VM
1 (x∗) = [−M, x̃∗2].
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For all M such that −M < x̃∗2, f(−M)

∫
VM1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ > 0, then

lim
M→+∞

f(−M)

∫
VM1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ ≥ 0.

It follows from Lemma 17-(b) that
∂ϕ1

∂u1
(u) < 0 for u ∈ F+

K+1, so that for a fixed M1 such

that x̃∗,M1 ∈ F+
K+1, we have ϕ1(x̃∗,M1) ≤ lim

M→+∞
ϕ1(x̃∗,M ). We also have ϕ1(x̃∗,M1) > 0 by

applying Lemma 17-(a). It follows that

D1(x∗) = lim
M→+∞

ϕ1(x̃∗,M ) + lim
M→+∞

f(−M)

∫
VM1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ

≥ ϕ1(x̃∗,M1) + lim
M→+∞

f(−M)

∫
VM1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ

> 0.

Then L1(x∗) =
2

µ
(
V1(x∗)

)D1(x∗) > 0.

The proof of LK(x∗) is similar by applying Lemma 17-(c). Thus HD(x∗) is positive
definite owing to Gershgorin circle theorem.

Appendix E: Proof of Theorem 15 - (b) and (c)

Proof (b) If µ has a c-th polynomial tail with c > d+p, then µ ∈ Pp(Rd). Let X,X1, ..., Xn

be i.i.d random variable with probability distribution µ. Then,

rn = ‖Rn‖22 = E
[

max (|X1| , ..., |Xn|)2
]

= E
[

max(|X1|p , ..., |Xn|p)2/p
]

≤E
([ n∑

i=1

|Xi|p
]2/p) ≤ [E( n∑

i=1

|Xi|p
)]2/p

=
[
nE |X|p

]2/p
= n2/p ‖X‖2p ,

where the last line is due to the fact that X1, ..., Xn have the same distribution as X.
Moreover, we have

ρK(µ) = K
p+d

d(c−p−d)γK with lim
K→+∞

γK = 1 (52)

owing to (11). It follows from (30) that

E
[
D(x(n))−D(x)

]
≤ 2K√

n

[
3r2

2n +
(
(2m2) ∨ ρK(µ)

)
· ρK(µ)

]
since r2n ≥ m2 after the definitions of r2n and m2. In addition, (52) implies that ρK(µ)→
+∞ as K → +∞ and, for large enough K, ρK(µ) ≥ 2m2. Therefore,

E
[
D(x(n))−D(x)

]
≤2K√

n

(
3 · (2n)2/p ‖X‖2p + 3K

p+d
d(c−p−d)γK

)
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=
K√
n

(
Cµ,p n

2/p + 6K
p+d

d(c−p−d)γK
)
,

where Cµ,p = 6 · 22/p ‖X‖2p and limK γK = 1.
(c) The distribution µ is assumed to have a hyper-exponential tail, that is, µ = f · λd with
f(ξ) = τ |ξ|c e−ϑ|ξ|

κ

for |ξ| large enough with c > −d. The real constant κ is assumed to
be greater than or equal to 2. Let X be a random variable with probability distribution µ.
Therefore, for every λ ∈ (0, ϑ), E eλ|X|

κ

< +∞ and

rn = ‖Rn‖22 = E
[

max(|X1| , ..., |Xn|)2
]

= E
[

max(|X1|κ , ..., |Xn|κ)2/κ
]

=E
([ 1

λ
log
(

max(eλ|X1|κ , ..., eλ|Xn|
κ

)
)]2/κ)

≤
(

1

λ

)2/κ [
logEmax(eλ|X1|κ , ..., eλ|Xn|

κ

)
]2/κ

≤
(

1

λ

)2/κ {
logE

[ n∑
i=1

eλ|Xi|
κ
]}2/κ

=

(
1

λ

)2/κ {
log(nE eλ|X|

κ

)
}2/κ

=

(
1

λ

)2/κ (
logE eλ|X|

κ

+ log n
)2/κ

, (53)

where the last line of (53) is due to the fact that X1, ..., Xn have the same distribution than
X. Under the same assumption as before, it follows from (12) that

ρK(µ) ≤ γK(logK)1/κ · 2ϑ−1/κ
(
1 +

2

d

)1/κ
with lim sup

K→+∞
γK ≤ 1. (54)

Moreover, it follows from (30) that

E
[
D(x(n))−D(x)

]
≤ 2K√

n

[
3r2

2n +
(
(2m2) ∨ ρK(µ)

)
· ρK(µ)

]
since r2n ≥ m2 after the definitions of r2n and m2. In addition, (54) implies that ρK(µ)→
+∞ as K → +∞ and, for large enough K, ρK(µ) ≥ 2m2. Therefore,

E
[
D(x(n))−D(x)

]
≤2K√

n

{
3 ·
(

1 ∨ log
(
2E eλ|X|

κ) )2/κ( 1

λ

)2/κ[
(log n)2/κ + 1

]}
+ 4ϑ−2/κγK(logK)2/κ

(
1 +

2

d

)2/κ
. (55)

Inequality (55) is true for all λ ∈ (0, ϑ). We may take λ = ϑ
2 . It follows that

E
[
D(x(n))−D(x)

]
≤ Cϑ,κ,µ ·

K√
n

[
1 + (log n)2/κ + γK(logK)2/κ

(
1 +

2

d

)2/κ]
,

where Cϑ,κ,µ =
[
6
(

2
ϑ

)2/κ · (1 ∨ log 2E eϑ|X|
κ/2)

]
∨ 8ϑ−2/κ and lim supK γK = 1.

Multi-dimensional normal distribution is a special case of hyper-exponential tail distri-
bution, i.e. if µ = N (m,Σ), we have κ = 2, ϑ = 1

2 and c = 0. By the same reasoning as
before,

E
[
D(x(n))−D(x)

]
≤ Cµ ·

K√
n

[
1 + log n+ γK logK

(
1 +

2

d

)]
,

where Cµ = 24 ·
(
1 ∨ log 2E e|X|

2/4
)
. When µ = N (0, Id), Cµ = 24(1 + d

2) · log 2, since

E e|X|
2/4 = 2d/2 by the moment-generating function of a χ2 distribution.

33



Liu and Pagès

References
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