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Abstract

Two popular approaches to dimensionality reduction are principal component analysis,
which projects onto a small number of well-chosen but non-interpretable directions, and
feature selection, which selects a small number of the original features. Feature selection
can be abstracted as selecting the subset of columns of a matrix X ∈ RN×d which minimize
the approximation error, i.e., the norm of the residual after projecting X onto the space
spanned by the selected columns. Such a combinatorial optimization is usually imprac-
tical, and there has been interest in polynomial-cost, random subset selection algorithms
that favour small values of this approximation error. We propose sampling from a projec-
tion determinantal point process, a repulsive distribution over column indices that favours
diversity among the selected columns. We bound the ratio of the expected approxima-
tion error over the optimal error of PCA. These bounds improve over the state-of-the-art
bounds of volume sampling when some realistic structural assumptions are satisfied for X.
Numerical experiments suggest that our bounds are tight, and that our algorithms have
comparable performance with the double phase algorithm, often considered the practical
state-of-the-art.
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1. Introduction

Datasets come in always larger dimensions, and dimension reduction is thus often one the
first steps in any machine learning pipeline. Two of the most widespread strategies are prin-
cipal component analysis (PCA) and feature selection. PCA projects the data in directions
of large variance, called principal components. While the initial features (the canonical
coordinates) generally have a direct interpretation, principal components are linear combi-
nations of these original variables, which makes them hard to interpret. On the contrary,
using a selection of original features will preserve interpretability when it is desirable. Once
the data are gathered in an N × d matrix, of which each row is an observation encoded by
d features, feature selection boils down to selecting columns of X. Independently of what
comes after feature selection in the machine learning pipeline, a common performance crite-
rion for feature selection is the approximation error in some norm, that is, the norm of the
residual after projecting X onto the subspace spanned by the selected columns. Optimizing
such a criterion over subsets of {1, . . . , d} requires exhaustive enumeration of all possible
subsets, which is prohibitive in high dimension. One alternative is to use a polynomial-cost,
random subset selection strategy that favours small values of the criterion.

This rationale corresponds to a rich literature on randomized algorithms for column
subset selection (Deshpande and Vempala, 2006; Drineas et al., 2008; Boutsidis et al., 2011).
A prototypal example corresponds to sampling s columns of X i.i.d. from a multinomial
distribution of parameter p ∈ Rd. This parameter p can be the squared norms of each
column (Drineas et al., 2004), for instance, or the more subtle k-leverage scores (Drineas
et al., 2008). While the former only takes O(dN) time to evaluate, it comes with loose
guarantees; see Section 3.2. The k-leverage scores are more expensive to evaluate, since
they call for a truncated SVD of order k, but they come with tight bounds on the ratio of
their expected approximation error over that of PCA.

To minimize approximation error, the subspace spanned by the selected columns should
be as large as possible. Simultaneously, the number of selected columns should be as small
as possible, so that intuitively, diversity among the selected columns is desirable. The
column subset selection problem (CSSP) then becomes a question of designing a discrete
point process over the column indices {1, . . . , d} that favours diversity in terms of directions
covered by the corresponding columns of X. Beyond the problem of designing such a point
process, guarantees on the resulting approximation error are desirable. Since, given a target
dimension k ≤ d after projection, PCA provides the best approximation in Frobenius or
spectral norm, it is often used as a reference: a good CSS algorithm preserves interpretability
of the c selected features while guaranteeing an approximation error not much worse than
that of rank-k PCA, all of this with c not much larger than k.

In this paper, we introduce and analyse a new randomized algorithm for selecting k
diverse columns. Diversity is ensured using a determinantal point process (DPP). DPPs can
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be viewed as the kernel machine of point processes; they were introduced by Macchi (1975)
in quantum optics, and their use widely spread after the 2000s in random matrix theory
(Johansson), machine learning (Kulesza and Taskar, 2012), spatial statistics (Lavancier
et al., 2015), and Monte Carlo methods (Bardenet and Hardy, 2019), among others. In a
sense, the DPP we propose is a nonindependent generalization of the multinomial sampling
with k-leverage scores of Boutsidis et al. (2009). It further naturally connects to volume
sampling, the CSS algorithm that has the best error bounds (Deshpande et al., 2006). We
give error bounds for DPP sampling that exploit sparsity and decay properties of the k-
leverage scores, and outperform volume sampling when these properties hold. Our claim is
backed up by experiments on toy and real datasets.

The paper is organized as follows. Section 2 introduces our notations. Section 3 is a
survey of column subset selection, up to the state of the art to which we later compare.
In Section 4, we discuss determinantal point processes and their connection to volume
sampling. Section 5 contains our main results, in the form of both classical bounds on the
approximation error and risk bounds when CSS is a prelude to linear regression. In Section 6,
we numerically compare CSS algorithms, using in particular a routine that samples random
matrices with prescribed k-leverage scores.

2. Notation

We use [n] to denote the set {1, . . . , n}, and [n : m] for {n, . . . ,m}. We use bold capitals
A,X, . . . to denote matrices. For a matrix A ∈ Rm×n and subsets of indices I ⊂ [m] and
J ⊂ [n], we denote by AI,J the submatrix of A obtained by keeping only the rows indexed
by I and the columns indexed by J . When we mean to take all rows or A, we write A:,J ,
and similarly for all columns. We write rk(A) for the rank ofA, and σi(A), i = 1, . . . , rk(A)
for its singular values, ordered decreasingly. Sometimes, we will need the vectors Σ(A) and
Σ(A)2 with respective entries σi(A) and σ2

i (A), i = 1, . . . , rk(A). Similarly, when A can
be diagonalized, Λ(A) (and Λ(A)2) are vectors with the decreasing eigenvalues (squared
eigenvalues) of A as entries. If A is a symmetric matrix, Sp(A) denotes the vector of its
eigenvalues in decreasing order.

The spectral norm of A is ‖A‖2 = σ1(A), while the Frobenius norm of A is defined by

‖A‖Fr =

√√√√rk(A)∑
i=1

σi(A)2.

For ` ∈ N, we need to introduce the `-th elementary symmetric polynomial on L ∈ N
variables, that is

e`(X1, . . . , XL) =
∑
T⊂[L]
|T |=`

∏
j∈T

Xj . (1)

Finally, we follow Ben-Israel (1992) and denote spanned volumes by

Volq(A) =
√
eq
(
σ1(A)2, . . . , σrk(A)(A)2

)
, q = 1, . . . , rk(A).

Throughout the paper, X will always denote an N × d matrix that we think of as the
original data matrix, of which we want to select k ≤ d columns. We do not make any
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assumption on how N compares to d. Unless otherwise specified, r is the rank of X, and
matrices U ,Σ,V are reserved for the SVD of X, that is,

X = UΣV ᵀ (2)

=
[
Uk Uk⊥

] [ Σk 0

0 Σk⊥

] [
V ᵀ
k

V ᵀ
k⊥

]
, (3)

where U ∈ RN×d and V ∈ Rd×d are orthogonal, and Σ ∈ Rd×d is diagonal. The diagonal
entries of Σ are σi = σi(X), i = 1, . . . , r, and we still assume they are in decreasing order.
We will also need the blocks given in (3), where we separate blocks of size k corresponding
to the largest k singular values. To simplify notation, we abusively write Uk for U:,[k] and
Vk for V:,[k] in (3), among others. Though they will be introduced and discussed at length

in Section 3.3, we also recall here that we denote by `ki = ‖Vi,[k]‖22 the so-called k-leverage
score of the i-th column of X.

We need some notation for the selection of columns. Let S ⊂ [d] be such that |S| = k,
and let S ∈ {0, 1}d×k be the corresponding sampling matrix: S is defined by ∀M ∈
RN×d,MS = M:,S . In the context of column selection, it is often referred to XS = X:,S

as C. We set for convenience Y ᵀ
:,S = (Y:,S)ᵀ.

The result of column subset selection will usually be compared to the result of PCA. We
denote by ΠkX the best rank-k approximation to X. The sense of best can be understood
either in Frobenius or spectral norm, as both give the same result. On the other side, for a
given subset S ⊂ [d] of size |S| = s and ν ∈ {2,Fr}, let

Πν
S,kX = arg min

A
‖X −A‖ν

where the minimum is taken over all matricesA = X:,SB such thatB ∈ Rs×d and rkB ≤ k;
in words, the minimum is taken over matrices of rank at most k that lie in the column space
of C = X:,S . When |S| = k, we simply write Πν

SX = Πν
S,kX. In practice, the Frobenius

projection can be computed as ΠFr
S X = CC+X, where C+ is the Moore-Penrose pseudo

inverse of C , yet there is no simple expression for Π2
SX. However, ΠFr

S X can be used as a
proxy for Π2

SX since

‖X −Π2
SX‖2 ≤ ‖X −ΠFr

S X‖2 ≤
√

2‖X −Π2
SX‖2, (4)

see (Boutsidis et al., 2011, Lemma 2.3). Finally, define

ΠkX = arg min
rkA≤k

‖X −A‖2.

Equivalently, we have

ΠkX = arg min
rkA≤k

‖X −A‖Fr.

3. Related Work

In this section, we survey existing work about column subset selection.
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3.1 Rank-revealing QR decompositions

The first k-CSSP algorithm can be traced back to the article of Golub (1965) on pivoted
QR factorization. This work introduced the concept of rank-revealing QR factorization
(RRQR). The original motivation was to calculate a well-conditioned QR factorization of a
matrix X that reveals its numerical rank (Rudelson and Vershynin, 2007).

Definition 1 Let X ∈ RN×d and k ∈ N (k ≤ d). A RRQR factorization of X is a 3-tuple
(Π,Q,R) with Π ∈ Rd×d a permutation matrix, Q ∈ RN×d an orthogonal matrix, and
R ∈ Rd×d a triangular matrix, such that XΠ = QR, and

σk(X)

p1(k, d)
≤ σk(R[k],[k]) ≤ σk(X) , (5)

and
σk+1(X) ≤ σ1(R[k+1:d],[k+1:d]) ≤ p2(k, d)σk+1(X), (6)

where p1(k, d) and p2(k, d) are controlled.

In practice, a RRQR factorization algorithm interchanges pairs of columns and updates
or builds a QR decomposition on the fly. The link between RRQR factorization and k-CSSP
was first discussed by Boutsidis, Mahoney, and Drineas (2009). The structure of a RRQR
factorization indeed gives a deterministic selection of a subset of k columns of X. More
precisely, if we take C to be the first k columns of XΠ, C is a subset of columns of X and
‖X − ΠFr

S X‖2 = ‖R[k+1:r],[k+1:r]‖2. By (6), any RRQR algorithm thus provides provable
guarantees in spectral norm for k-CSSP.

Following Golub (1965), many papers gave algorithms that improved on p1(k, d) and
p2(k, d) in Definition 1. Table 1 sums up the guarantees of the original algorithm of Golub
(1965) and the state-of-the-art algorithms of Gu and Eisenstat (1996). Note the dependency
of p2(k, d) on the dimension d through the term

√
d− k; this term is common for guarantees

in spectral norm for k-CSSP. We refer to Boutsidis et al. (2009) for an exhaustive survey
on RRQR factorization.

A RRQR factorization gives an example of a deterministic column subset selection with
a spectral guarantee. We present in Section 3.5 a randomized improvement over strong
RRQR, called double phase. As we shall see, randomized algorithms can match the bound
in the bottom row of Table 1 and provide guarantees in Frobenius norm as well.

3.2 Length square importance sampling and additive bounds

Drineas, Frieze, Kannan, Vempala, and Vinay (2004) proposed a randomized CSS algorithm
based on independently sampling s indices S = {i1, . . . , is} from a multinomial distribution

Algorithm p2(k, d) Complexity References

Pivoted QR 2k
√
d− k O(dNk) (Golub and Van Loan, 2013)

Strong RRQR (Alg. 3)
√

(d− k)k + 1 not polynomial (Gu and Eisenstat, 1996)

Strong RRQR (Alg. 4)
√
f2(d− k)k + 1 O(dNk logf (d)) (Gu and Eisenstat, 1996)

Table 1: Examples of some RRQR algorithms and their theoretical performances.
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of parameter p, where

pj =
‖X:,j‖22
‖X‖2Fr

, j ∈ [d]. (7)

The rationale is that columns with large norms should be kept. Let C = X:,S be the
corresponding submatrix. First, we note that some columns of X may appear more than
once in C. Second, (Drineas et al., 2004, Theorem 3) states that

P

(
‖X −ΠFr

S,kX‖2Fr ≤ ‖X −ΠkX‖2Fr + 2

(
1 +

√
8 log

(
2

δ

))√
k

s
‖X‖2Fr

)
≥ 1− δ. (8)

Equation (8) is a high-probability, additive upper bound for ‖X−ΠFr
S X‖2Fr. The drawback

of such bounds is that they can be very loose if the first k singular values of X are large
compared to σk+1. For this reason, multiplicative approximation bounds have been inves-
tigated, using a different distribution that takes into account the geometry of the dataset.

3.3 k-leverage scores sampling and multiplicative bounds

Drineas, Mahoney, and Muthukrishnan (2008) proposed an algorithm with a provable mul-
tiplicative upper bound using multinomial sampling, but this time according to k-leverage
scores.

Definition 2 (k-leverage scores) Let X = UΣV ᵀ ∈ RN×d be the SVD of X. We denote
by Vk = V:,[k] the first k columns of V . For i ∈ [d], the k-leverage score of the i-th column
of X is defined by

`ki =
k∑
j=1

V 2
i,j . (9)

Intuitively, a large value of `ki in (9) indicates that the i-th vector of the canonical basis of
Rd is close to the space spanned by the first k eigenvectors. We shall make this intuition
more precise in Section 3.4. For now, we note that∑

i∈[d]

`ki =
∑
i∈[d]

‖(V ᵀ
k ):,i‖22 = Tr(VkV

ᵀ
k ) = k, (10)

since Vk is an orthogonal matrix. Therefore, one can consider the multinomial distribution
on [d] with parameters

pi =
`ki
k
, i ∈ [d]. (11)

This multinomial is called the k-leverage scores distribution.

Theorem 3 (Drineas et al., 2008, Theorem 3) If the number s of sampled columns
satisfies

s ≥ 3200k2

ε2
, (12)

then, under i.i.d. sampling from the k-leverage scores distribution,

P

(
‖X −ΠFr

S,kX‖2Fr ≤ (1 + ε)‖X −ΠkX‖2Fr

)
≥ 0.7. (13)
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Drineas et al. (2008) also considered replacing multinomial with Bernoulli sampling, still
using the k-leverage scores. The expected number of columns needed for (13) to hold is
then lowered to O(k log k

ε2
). A natural question is then to understand how low the number of

columns can be, while still guaranteeing a multiplicative bound like (13). A partial answer
has been given by Deshpande and Vempala (2006).

Proposition 4 (Deshpande and Vempala, 2006, Proposition 4) Given ε > 0, k, d ∈
N such that dε ≥ 2k, there exists a matrix Xε ∈ Rkd×k(d+1) such that for any S ⊂ [d],

‖Xε −ΠFr
S,kX

ε‖2Fr ≥ (1 + ε)‖Xε −Xε
k‖2Fr. (14)

This suggests that a lower bound for the number of columns is 2k/ε, at least in the worst
case sense of Proposition 4. Interestingly, the k-leverage scores distribution of the matrix
Xε in the proof of Proposition 4 is uniform, so that k-leverage score sampling boils down
to simple uniform sampling.

To match the lower bound of Deshpande and Vempala (2006), Boutsidis, Drineas, and
Magdon-Ismail (2011) proposed a greedy algorithm to select columns. This algorithm is
inspired by the sparsification of orthogonal matrices proposed in Batson et al. (2009). The
full description of this family of algorithms is beyond the scope of this article. We only
recall one of the results of the article.

Theorem 5 (Boutsidis et al., 2011, Theorem 1.5) There exists a randomized greedy
algorithm A that selects at most c = 2k

ε (1 + o(1)) columns of X such that

E ‖X −ΠFr
S,kX‖2Fr ≤ (1 + ε)‖X −ΠkX‖2Fr. (15)

Finally, a deterministic algorithm based on k-leverage score sampling was proposed by
Papailiopoulos, Kyrillidis, and Boutsidis (2014). The algorithm selects the c(θ) columns of
X with the largest k-leverage scores, where

c(θ) ∈ arg min
u

(
u∑
i=1

`ki > θ

)
, (16)

and θ is a free parameter that controls the approximation error. To guarantee that there
exists a matrix of rank k in the subspace spanned by the selected columns, Papailiopoulos
et al. (2014) assume that

0 ≤ k − θ < 1. (17)

Loosely speaking, this condition is satisfied for a low value of c(θ) if the k-leverage scores
(after ordering) are decreasing rapidly enough. The authors give empirical evidence that
this condition is satisfied by many real-world datasets.

Theorem 6 (Papailiopoulos et al., 2014, Theorem 2) Let ε = k − θ ∈ [0, 1), letting
S index the columns with the c(θ) largest k-leverage scores,

‖X −Πν
S,kX‖ν ≤

1

1− ε
‖X −ΠkX‖ν , ν ∈ {2,Fr}. (18)

In particular, if ε ∈ [0, 1
2 ],

‖X −Πν
S,kX‖ν ≤ (1 + 2ε)‖X −ΠkX‖ν , ν ∈ {2,Fr}. (19)

8
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Furthermore, they proved that if the k-leverage scores decay like a power law, the number
of columns needed to obtain a multiplicative bound can actually be smaller than k/ε.

Theorem 7 (Papailiopoulos et al., 2014, Theorem 3) Assume, for η > 0,

`ki =
`k1
iη+1

. (20)

Let ε = k − θ ∈ [0, 1), then

c(θ) = max

{(
4k

ε

) 1
η+1

− 1,

(
4k

ηε

) 1
η

, k

}
. (21)

This complements the fact that the worst case example in Proposition 4 had uniform k-
leverage scores. Loosely speaking, matrices with fast decaying k-leverage scores can be
efficiently subsampled.

3.4 The geometric interpretation of the k-leverage scores

The k-leverage scores can be given a geometric interpretation, the generalization of which
serves as a first motivation for our work.

For i ∈ [d], let ei be the i-th canonical basis vector of Rd. Let further θi be the angle
between ei and the subspace Pk = Span(Vk), and denote by ΠPkei the orthogonal projection
of ei onto the subspace Pk. Then, by the fact that

(ei,ΠPkei) = (ΠPkei,ΠPkei) = ‖ΠPkei‖
2, (22)

we have

cos2(θi) :=
(ei,ΠPkei)

2

‖ei‖2‖ΠPkei‖2
= (ei,ΠPkei) = (ei,

k∑
j=1

Vi,jV:,j) =

k∑
j=1

V 2
i,j = `ki . (23)

A large k-leverage score `ki thus indicates that ei is almost aligned with Pk. Selecting
columns with large k-leverage scores as in Drineas et al. (2008) can thus be interpreted
as replacing the principal eigenspace Pk by a subspace that must contain k of the original
coordinate axes. Intuitively, a closer subspace to the original Pk would be obtained by
selecting columns jointly rather than independently, considering the angle with Pk of the
subspace spanned by these columns. More precisely, consider S ⊂ [d], |S| = k, and denote
PS = Span(ej , j ∈ S). A natural definition of the cosine between Pk and PS is in terms of
the so-called principal angles (Golub and Van Loan, 2013, Section 6.4.4); see Appendix C.
In particular, Proposition 27 in Appendix C yields

cos2(Pk,PS) = Det(VS,[k])
2. (24)

This paper is precisely about sampling k columns proportionally to (24).

In Appendix A, we contribute a different interpretation of k-leverage scores, which
relates them to the length-square distribution of Section 3.2.
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3.5 Negative correlation: volume sampling and the double phase algorithm

In this section, we survey algorithms that randomly sample exactly k columns from X,
further requiring the columns to be somehow negatively correlated to avoid redundancy.
This is to be compared to the multinomial sampling schemes of Sections 3.2 and 3.3, which
ignore the joint structure of X and typically require more than k columns.

Deshpande, Rademacher, Vempala, and Wang (2006) obtained a multiplicative bound
on the expected approximation error, with only k columns, using the so-called volume
sampling.

Theorem 8 (Deshpande et al., 2006) Let S be a random subset of [d], chosen with
probability

PVS(S) = Z−1 Det(Xᵀ
:,SX:,S) 1{|S|=k}, (25)

where Z =
∑
|S|=k

Det(Xᵀ
:,SX:,S). Then

EVS ‖X −ΠFr
S X‖2Fr ≤ (k + 1)‖X −ΠkX‖2Fr (26)

and

EVS ‖X −Π2
SX‖22 ≤ (d− k)(k + 1)‖X −ΠkX‖22. (27)

Later, sampling according to (25) was shown to be doable in polynomial time (Desh-
pande and Rademacher, 2010). Using a worst case example, Deshpande et al. (2006) proved
that the k + 1 factor in (26) cannot be improved.

Proposition 9 (Deshpande et al., 2006) Let ε > 0. There exists a (k + 1) × (k + 1)
matrix Xε such that for every subset S of k columns of Xε,

‖Xε −ΠFr
S X

ε‖2Fr > (1− ε)(k + 1)‖Xε −ΠkX
ε‖2Fr. (28)

A more precise description of the approximation error under volume sampling was given by
Guruswami and Sinop (2012).

Theorem 10 (Theorem 3.1, Guruswami and Sinop, 2012) Let X ∈ RN×d, and let
σ ∈ Rd be the vector containing the squares of the singular values of X. The function

σ 7→ EVS‖X −ΠSX‖2Fr = (k + 1)
ek(σ)

ek−1(σ)
(29)

is Schur-concave.

In other words, the expected approximation error under the distribution of volume sampling
for the Frobenius norm is low for flat spectrum and it is large otherwise.

We note that there has been recent interest in a similar but different distribution called
dual volume sampling (Avron and Boutsidis, 2013; Li, Jegelka, and Sra, 2017a; Derezin-
ski and Warmuth, 2018), sometimes also confusingly termed volume sampling. The main
application of dual VS is row subset selection of a matrix X for linear regression on label
budget constraints.

10
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Boutsidis et al. (2009) proposed a k-CSSP algorithm, called double phase, that combines
ideas from multinomial sampling and RRQR factorization. The motivating idea is that the
theoretical performance of RRQR factorizations depends on the dimension through a factor√
d− k; see Table 1. To improve on that, the authors propose to first reduce the dimension

d to c by preselecting a large number of columns c > k using multinomial sampling from
the k-leverage scores distribution, as in Section 3.3. Then only, they perform a RRQR
factorization of the reduced matrix V ᵀ

k S1D1 ∈ Rk×c, where S1 ∈ Rd×c is the sampling
matrix of the multinomial phase and D1 ∈ Rc×c is a scaling matrix.

Theorem 11 (Boutsidis et al., 2009) Let S be the output of the double phase algorithm
with c = 1600c2

0k log(800c2
0k). Then

PDPh

(
‖X −ΠFr

S X‖Fr ≤ (1 + 8
√

2k(c− k) + 1)‖X −ΠkX‖Fr

)
≥ 0.8 , (30)

and

PDPh

(
‖X −Π2

SX‖2 ≤
(
1+2

√
2k(c− k) + 1

)
‖X −ΠkX‖2

+
8
√

2k(c− k) + 1

c1/4
‖X −ΠkX‖Fr

)
≥ 0.8 . (31)

We note that c0 is an unknown constant from Rudelson and Vershynin (2007). Although
not explicitly stated by Boutsidis et al. (2009), the spectral bound (31) easily follows from
their result using (4). We also note that to obtain their spectral bound, Boutsidis et al.
(2009) use a slight modification of the leverage scores in the random phase.

3.6 Excess risk in sketched linear regression

So far, we have focused on approximation bounds in spectral or Frobenius norm for the
residual X − Πν

S,kX. This is a reasonable generic measure of error as long as it is not
known what the practitioner wants to do with the submatrix X:,S . In this section, we
assume that the ultimate goal is to perform linear regression of some y ∈ RN onto X.

3.6.1 Linear regression with unsupervised column subset selection

In this section, we further assume that y is not yet known at the time the columns must
be selected, or that there are several y’s to be regressed, so that we focus on unsuper-
vised column subset selection. Supervised column subset selection is discussed shortly in
Section 3.6.2.

Other measures of performance then become of interest, such as the excess risk incurred
by regressing ontoX:,S rather thanX. We use here the framework of Slawski (2018), further
assuming well-specification for simplicity. For every i ∈ [N ], assume yi = Xi,:w

∗+ξi, where
the noises ξi are i.i.d. real variables with mean 0 and variance v. For a given estimator
w = w(X,y), the excess risk is defined as

E(w) = Eξ

[
‖Xw∗ −Xw‖22

N

]
. (32)

11
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In particular, it is easy to show that the ordinary least squares (OLS) estimator ŵ = X+y
has excess risk

E(ŵ) = v × rk(X)

N
. (33)

Selecting k columns indexed by S in X prior to performing linear regression yields wS =
(XS)+y ∈ Rk. We are interested in the excess risk of the corresponding sparse vector

ŵS := SwS = S(XS)+y ∈ Rd

which has all coordinates zero, except those indexed by S.

Proposition 12 (Theorem 9, Mor-Yosef and Avron, 2019) Let S ⊂ [d], such that
|S| = k. Let (θi(S))i∈[k] be the principal angles between SpanS and SpanVk, see Ap-
pendix C. Then

E(ŵS) ≤ 1

N

(
1 + max

i∈[k]
tan2 θi(S)

)
‖w∗‖2σ2

k+1 +
vk

N
. (34)

Compared to the excess risk (33) of the OLS estimator, the second term of the right-hand
side of (34) replaces rkX by k. But the price is the first term of the right-hand side of (34),
which we loosely term bias. To interpret this bias term, we first look at the excess risk of
the principal component regressor (PCR)

w∗k ∈ arg min
w∈SpanVk

Eξ
[
‖y −Xw‖2/N

]
. (35)

Proposition 13 (Corollary 11, Mor-Yosef and Avron, 2019)

E(w∗k) ≤
‖w∗‖2σ2

k+1

N
+
vk

N
. (36)

The right-hand side of (36) is almost that of (34), except that the bias term in the CSS
risk (34) is larger by a factor that measures how well the subspace spanned by S is aligned
with the principal eigenspace Vk. This makes intuitive sense: the performance of CSS will
match PCR if selecting columns yields almost the same eigenspace.

The excess risk (34) is yet another motivation to investigate DPPs for column subset
selection. We shall see in Section 5.2 that the expectation of (34) under a well-chosen DPP
for S has a particularly simple bias term.

Finally, as mentioned in Section 3.6.1, probability distributions similar to volume sam-
pling but for row subset selection were investigated in the context of regression (Derezinski
and Warmuth, 2017; Derezinski et al., 2018), under the name of dual volume sampling1.
Selecting rows in linear regression is akin to experimental design, and applies to cases where
all features are to be used, but only a few labels can be observed due to budget constraints.
We emphasize that the two problems are related, but they are not simple transpositions

1. Derezinski and Warmuth (2017) actually talk of volume sampling. To avoid confusion, we rather stick
to volume sampling describing the column subset selection algorithm in (Deshpande et al., 2006) and
discussed in Section 3.6.1.
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of each other. In particular, the excess risk for the regularized dual volume sampling of
Derezinski and Warmuth (2018) scales as O(1/k) using all d features and k observations,
while the excess risk in the results of Section 3.6.1 rather scales as O(1/N) using k features
and N observations.

3.6.2 Comparing to supervised column subset selection

Our focus in this paper is on unsupervised column subset selection, but it is useful to bear
in mind the bounds that are achievable in the supervised case. There is a vast literature on
variable selection that depends on the label y. We refrain from a thorough survey, but we
rather present the recent results on orthogonal matching pursuit (OMP) as a representative
example.

Orthogonal Matching Pursuit is a greedy selection algorithm proposed first in (Pati
et al., 1993) and (Davis et al., 1997) for sparse atomic decomposition in signal processing.
The algorithm aims to recover the support of w, i.e., the subset of non vanishing elements
S ⊂ [d]. The theoretical analysis of support recovery of OMP was carried out in Tropp
(2004) in the noiseless regime (ν = 0), for matrices X that satisfy an algebraic condition
known as low mutual coherence. For such matrices, the constraint N = Ω(s2) is required 2

in order to recover the support using OMP. For random matrices filled such as Gaussian or
Bernoulli matrices, this rate was improved by Tropp and Gilbert (2007) to N = O(s log d).
Later, an extension of this guarantee was proved by Davenport and Wakin (2010) for every
matrix satisfying the Restricted Isometry Property (RIP).

In the noisy regime, additionally to support recovery guarantees, one can investigate
upper bounds on the excess risk. Under a low coherence condition, Donoho et al. (2005)
prove an upper bound that scales proportionally to the noise variance, as O(sv/N). Zhang
(2011) proved an excess risk bound under a condition weaker than RIP, namely Restricted
Strong Convexity. We refer to Somani et al. (2018) for a modern survey on upper bounds
for the excess risk of OMP. Now, while in signal processing there is some freedom to choose
the matrix X to satisfy conditions like RIP, machine learning applications usually consider
fixed designs. In general, checking RIP for a matrix X is NP-Hard (Bandeira et al., 2013;
Tillmann and Pfetsch, 2013). Therefore, it might be difficult to guarantee the validity of
the aforementioned excess risk bounds for OMP in applications where X is given.

4. Determinantal Point Processes

In this section, we introduce discrete determinantal point processes (DPPs) and the related
k-DPPs, of which volume sampling is an example. DPPs were introduced by Macchi (1975)
as probabilistic models for beams of fermions in quantum optics. Since then, DPPs have
been thoroughly studied in random matrix theory (Johansson), and have more recently
been adopted in machine learning (Kulesza and Taskar, 2012), spatial statistics (Lavancier,
Møller, and Rubak, 2015), and Monte Carlo methods (Bardenet and Hardy, 2019).

2. The recovery result of Tropp (2004) is expressed in terms of the mutual coherence of X. We report here
for ease of comparison a lower bound Ω(s2), which follows from a lower bound by Welch (1974).
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4.1 Definitions

For all the definitions in this section, we refer the reader to (Kulesza and Taskar, 2012).
Recall that [d] = {1, . . . , d}.

Definition 14 (DPP) Let K ∈ Rd×d be a positive semi-definite matrix. A random subset
Y ⊆ [d] is drawn from a DPP of marginal kernel K if and only if

∀S ⊆ [d], P(S ⊆ Y ) = Det(KS), (37)

where KS = [Ki,j ]i,j∈S. We take as a convention Det(K∅) = 1.

For a given matrix K, it is not obvious that (37) consistently defines a point process. One
sufficient condition is that K is symmetric and its spectrum is in [0, 1]; see (Macchi, 1975)
and (Soshnikov, 2000)[Theorem 3]. In particular, when the spectrum of K is included in
{0, 1}, we callK a projection kernel and the corresponding DPP a projection DPP3. Letting
r be the number of unit eigenvalues of its kernel, samples from a projection DPP have fixed
cardinality r with probability 1 (Hough, Krishnapur, Peres, and Virág, 2006, Lemma 17).

For symmetric kernels K, a DPP can be seen as a repulsive distribution, in the sense
that for all i, j ∈ [d],

P({i, j} ⊆ Y ) = Ki,iKj,j −K2
i,j (38)

= P({i} ⊆ Y ) P({j} ⊆ Y )−K2
i,j (39)

≤ P({i} ⊆ Y ) P({j} ⊆ Y ). (40)

Besides projection DPPs, there is another natural way of using a kernel matrix to define
a random subset of [d] with prespecified cardinality k.

Definition 15 (k-DPP) Let L ∈ Rd×d be a positive semidefinite matrix. A random subset
Y ⊆ [d] is drawn from a k-DPP of kernel L if and only if

∀S ⊆ [d], P(Y = S) ∝ 1{|S|=k}Det(LS) (41)

where LS = [Li,j ]i,j∈S.

DPPs and k-DPPs are closely related but different objects. For starters, k-DPPs are always
well-defined provided L has a nonzero minor of size k.

4.2 Sampling from a DPP and a k-DPP

Let K ∈ Rd×d be a symmetric, positive semi-definite matrix, with eigenvalues in [0, 1], so
that K is the marginal kernel of a DPP on [d]. Let us diagonalize it as K = V Diag(λi)V

ᵀ.
Hough et al. (2006) established that sampling from the DPP with kernel K can be done
by (i) sampling independent Bernoulli Bi, i = 1, . . . , d, with respective parameters λi, (ii)
forming the submatrix V:,B of V corresponding to columns i such that Bi = 1, and (iii)
sampling from the projection DPP with kernel

Kproj = V:,BV
ᵀ

:,B.

3. All projection DPPs in this paper have symmetric kernels
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The only nontrivial step is sampling from a projection DPP, for which we give pseudocode
in Figure 1; see (Hough et al., 2006, Theorem 7) or (Kulesza and Taskar, 2012, Theorem
2.3) for a proof. For a survey of variants of the algorithm, we also refer to (Tremblay,
Barthelmé, and Amblard, 2018) and the documentation of the DPPy toolbox4 (Gautier,
Bardenet, and Valko, 2019). For our purposes, it is enough to remark that general DPPs
are mixtures of projection DPPs of different ranks, and that the cardinality of a general
DPP is a sum of independent Bernoulli random variables.

ProjectionDPP
(
Kproj = V V ᵀ)

1 Y ←− ∅
2 W ←− V
3 while rk(W ) > 0

4 Sample i from Ω with probability ∝ ‖Wi,:‖22 . Chain rule

5 Y ←− Y ∪ {i}
6 V ←− V⊥ an orthonormal basis of Span(V ∩ e⊥i )

7 return Y

Figure 1: Pseudocode for sampling from a DPP of marginal kernel K.

The next proposition establishes that k-DPPs also are mixtures of projection DPPs.

Proposition 16 (Kulesza and Taskar (2012, Section 5.2.2)) Let Y be a random subset
of [d] sampled from a k-DPP with kernel L. We further assume that L is symmetric, we
denote its rank by r and its diagonalization by L = V ΛV ᵀ. Finally, let k ≤ r. It holds

P(Y = S) =
∑
T⊆[r]
|T |=k

µT

[
1

k!
Det

(
VT,SV

ᵀ
T,S

)]
(42)

where

µT =

∏
i∈T λi∑

U⊆[r]
|U |=k

∏
i∈U λi

. (43)

Each mixture component in square brackets in (42) is a projection DPP with cardinality
k. Sampling a k-DPP can thus be done by (i) sampling a multinomial distribution with
parameters (43), and (ii) sampling from the corresponding projection DPP using the al-
gorithm in Figure 1. The main difference between k-DPPs and DPPs is that all mixture
components in (42) have the same cardinality k. In particular, projection DPPs are the
only DPPs that are also k-DPPs.

A fundamental example of k-DPPs is volume sampling, as defined in Section 3.5. Its
kernel is the Gram matrix of the data L = XᵀX. In general, L is not an orthogonal
projection matrix, so that volume sampling is not a DPP. In particular, draws from volume
sampling have fixed cardinality, and thus cannot be written as a sum of non trivial Bernoulli
random variables.

4. http://github.com/guilgautier/DPPy
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X

=

U Σ Vᵀ

(a) SVD of X

Vᵀ =

Step 1 (VS)

Step 1 (DPP)

Step 2

Step 2

Step 3

Step 3

(b) Sampling k columns according to VS and the projection DPP of marginal kernel VkV
ᵀ
k .

Figure 2: A graphical depiction of the sampling algorithms for volume sampling (VS) and
the DPP with marginal kernel VkV

ᵀ
k . (a) Both algorithms start with an SVD. (b) In Step 1,

VS randomly selects k rows of V ᵀ, while our DPP always picks the first k rows. Step 2 is the
same for both algorithms: jointly sample k columns of the subsampled V ᵀ, proportionally to
their squared volume. Finally, Step 3 is simply the extraction of the corresponding columns
of X.

4.3 Motivations for column subset selection using projection DPPs

Volume sampling has been successfully used for column subset selection, see Section 3.5.
Our motivation to investigate projection DPPs instead of volume sampling is twofold.

Following (42), volume sampling can be seen as a mixture of projection DPPs indexed by
T ⊆ [d], |T | = k, with marginal kernels KT = V:,TV

ᵀ
:,T and mixture weights µT ∝

∏
i∈T σ

2
i .

The component with the highest weight thus corresponds to the k largest singular values,
that is, the projection DPP with marginal kernel K := VkV

ᵀ
k . This paper is about column

subset selection using precisely this DPP. Alternately, we could motivate the study of this
DPP by remarking that its marginals P(i ∈ Y ) are the k-leverage scores introduced in
Section 3.3. Since K is symmetric, this DPP can be seen as a repulsive generalization of
leverage score sampling.

Finally, we recap the difference between volume sampling and the DPP with kernel K
with a graphical depiction in Figure 2 of the two procedures to sample from them that we
introduced in Section 4.2. Figure 2 is another illustration of the decomposition of volume
sampling as a mixture of projection DPPs.
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5. Main Results

In this section, we prove bounds for EDPP ‖X − Πν
SX‖2ν under the projection DPP of

marginal kernel K = VkV
ᵀ
k presented in Section 4. Throughout, we compare our bounds

to the state-of-the-art bounds of volume sampling obtained by Deshpande et al. (2006); see
Theorem 8 and Section 3.5. For clarity, we defer the proofs of our results from this section
to Appendix D.

5.1 Multiplicative bounds in spectral and Frobenius norm

Let S be a random subset of k columns of X chosen with probability:

PDPP(S) = Det(VS,[k])
2. (44)

First, without any further assumption, we have the following result.

Proposition 17 Under the projection DPP of marginal kernel VkV
ᵀ
k , it holds that

EDPP ‖X −Πν
SX‖2ν ≤ k(d+ 1− k)‖X −ΠkX‖2ν , ν ∈ {2,Fr}. (45)

For the spectral norm, the bound is practically the same as that of volume sampling (27).
However, our bound for the Frobenius norm is worse than (26) by a factor (d− k). In the
rest of this section, we sharpen our bounds by taking into account the sparsity level of the
k-leverage scores and the decay of singular values.

In terms of sparsity, we first replace the dimension d in (45) by the number p ∈ [d] of
non zero k-leverage scores

p =
∣∣{i ∈ [d],Vi,[k] 6= 0}

∣∣ . (46)

To quantify the decay of the singular values, we define the flatness parameter

β = σ2
k+1

 1

d− k
∑
j≥k+1

σ2
j

−1

. (47)

In words, β ∈ [1, d − k] measures the flatness of the spectrum of X below the cut-off at
k + 1. Indeed, (47) is the ratio of the largest term in a mean to that mean. The closer β is
to 1, the more similar the terms in the sum in the denominator of (47) to their maximum
value σ2

k+1. At the extreme, β = d− k when σ2
k+1 > 0 while σ2

j = 0, ∀j ≥ k+ 2. Finally, we
also note that β is (d−k) times the inverse of the numerical rank (Rudelson and Vershynin,
2007) of the residual matrix X −ΠkX.

Proposition 18 Under the projection DPP of marginal kernel VkV
ᵀ
k , it holds that

EDPP ‖X −Π2
SX‖22 ≤ (1 + k(p− k))‖X −ΠkX‖22 (48)

and

EDPP ‖X −ΠFr
S X‖2Fr ≤

(
1 + β

p− k
d− k

k

)
‖X −ΠkX‖2Fr. (49)
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The bound in (48) compares favourably with volume sampling (27) since the dimension d
has been replaced by the sparsity level p. For β close to 1, the bound in (49) is better
than the bound (26) of volume sampling since (p− k)/(d− k) ≤ 1. Again, the sparser the
k-leverage scores, the smaller the bounds. Finally, if needed, bounds in high probability
easily follow from Proposition 18 using Markov’s inequality.

Now, one could argue that, in practice, sparsity is never exact: it can well be that p = d
while there still are a lot of small k-leverage scores. We will demonstrate in Section 6 that
the DPP still performs better than volume sampling in this setting, which Proposition 18
doesn’t reflect. We introduce two ideas to further tighten the bounds of Proposition 18.
First, we define an effective sparsity level in the vein of Papailiopoulos et al. (2014), see
Section 3.3. Second, we condition the DPP on a favourable event with controlled probability.

Theorem 19 Let π be a permutation of [d] such that leverage scores are reordered

`kπ1
≥ `kπ2

≥ ... ≥ `kπd . (50)

For δ ∈ [d], let Tδ = [πδ, . . . , πd]. Let θ ≥ 1 and

peff(θ) = min

q ∈ [d] |
∑
i≤q

`kπi ≥ k − 1 +
1

θ

 . (51)

Finally, let Aθ be the event {S ∩Tpeff(θ) = ∅}. Then, the probability of Aθ is lower bounded

PDPP (Aθ) ≥
1

θ
, (52)

and conditionally on Aθ,

EDPP

[
‖X −Π2

SX‖22
∣∣Aθ] ≤ (1 + (peff(θ)− k + 1)(k − 1 + θ))‖X −ΠkX‖22 (53)

and

EDPP

[
‖X −ΠFr

S X‖2Fr

∣∣Aθ] ≤ (1 + β
(peff(θ) + 1− k)

d− k
(k − 1 + θ)

)
‖X −ΠkX‖2Fr. (54)

In Theorem 19, the effective sparsity level peff(θ) replaces the sparsity level p of Proposi-
tion 18. The key is to condition on S not containing any index corresponding to a column
with too small k-leverage score, that is, the event Aθ. In practice, this is achieved by rejec-
tion sampling: we repeatedly and independently sample S ∼ DPP(K) until S∩Tpeff

(θ) = ∅.
The caveat of any rejection sampling procedure is a potentially large number of samples
required before acceptance. But in the present case, Equation (52) guarantees that the ex-
pectation of that number of samples is less than θ. The free parameter θ thus interestingly
controls both the “energy” threshold in (51), and the complexity of the rejection sampling.
The approximation bounds suggest picking θ close to 1, which implies a compromise with
the value of peff(θ) that should not be too large either. We have empirically observed that
the performance of the DPP is relatively insensitive to the choice of θ.
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In order to compare with some of the previous results in Section 3, we quickly derive
from Theorem 19 a bound in probability. We do so for the Frobenius norm, and the proof
is similar for the spectral norm. Let λ > 0. It holds that

PDPP

(
‖X −Π2

SX‖Fr ≤ λ‖X −ΠkX‖Fr

∣∣Aθ) (55)

≥ 1−

(
1 + β (peff(θ)+1−k)

d−k (k − 1 + θ)
)

λ2
, (56)

where the last inequality follows from Theorem 19 and Markov’s inequality. Now, for

λ ≥

√
5

(
1 + β

(peff(θ) + 1− k)

d− k
(k − 1 + θ)

)
,

it holds that

PDPP

(
‖X −ΠFr

S X‖Fr ≤ λ‖X −ΠkX‖Fr|Aθ
)
≥ 0.8. (57)

Compare this bound with the result (30) of Boutsidis et al. (2009) for the double phase
algorithm, namely

PDPh

(
‖X−ΠFr

S X‖Fr ≤ (1+8
√

2k(c− k) + 1)‖X−ΠkX‖Fr

)
≥ 0.8 , c = Θ(k log k). (58)

In particular, (peff(θ)− k + 1)/(d− k) ≤ 1 ≤ c− k, so that if

β(peff(θ)− k + 1)/(d− k) ≤ c− k, (59)

then √
5

(
1 + β

(peff(θ)− k + 1)

d− k
(k − 1 + θ)

)
≤ 1 + 8

√
2k(c− k) + 1. (60)

and the DPP with rejection of Theorem 19 has a smaller bound than the double phase
algorithm. The key condition (59) can be expected to hold quite widely as both the decay
of the singular values and the leverage scores contribute to make the left-hand side small.
In particular, even when β equals its upper bound d−k, it is enough to have peff(θ) = Θ(k).

We can prove a similar bound in probability for the spectral norm, but comparing to
double phase becomes trickier, because of the Frobenius norm that appears in the bound
(31) for double phase.

Finally, we note that using Bayes’ theorem, Theorem 19 also yields bounds in probability
for the projection DPP algorithm used without rejection. For instance, let λ > 0. It holds
that

PDPP

(
‖X −Π2

SX‖Fr ≤ λ‖X −ΠkX‖Fr

)
(61)

≥ PDPP

({
‖X −Π2

SX‖Fr ≤ λ‖X −ΠkX‖Fr

}
∩ Aθ

)
(62)

≥ 1

θ

1−

(
1 + β (peff(θ)+1−k)

d−k (k − 1 + θ)
)

λ2

 . (63)
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Such bounds are more flexible than those of double phase, in the sense that we can vary
the parameters θ and λ independently, while the bounds of the double phase algorithm are
constrained by c ≥ 1600c2

0k log(800c2
0k).

5.2 Bounds for the excess risk in sketched linear regression

In Section 3.6, we surveyed bounds on the excess risk of ordinary least squares estimators
that relied on a subsample of the columns of X. Importantly, the generic bound (34) of
Mor-Yosef and Avron (2019) has a bias term that depends on the maximum squared tangent
of the principal angles between Span(S) and Span(Vk). When |S| = k, this quantity is hard
to control without making strong assumptions on the matrix Vk. But it turns out that, in
expectation under the same DPP as in Section 5.1, this bias term drastically simplifies.

Proposition 20 We use the notation of Section 3.6. Under the projection DPP with
marginal kernel VkV

ᵀ
k , it holds that

EDPP

[
E(wS)

]
≤
(
1 + k(p− k)

)‖w∗‖2σ2
k+1

N
+
vk

N
. (64)

The sparsity level p appears again in the bound (64): The sparser the k-leverage scores
distribution, the smaller the bias term. The bound (64) only features an additional (1 +
k(p−k)) factor in the bias term, compared to the bound obtained by Mor-Yosef and Avron
(2019) for PCR, see Proposition 13. Loosely speaking, this factor is to be seen as the price
we accept to pay in order to get more interpretable features than principal components in
the linear regression problem. Finally, a natural question is to investigate the choice of k
to minimize the bound in (64), but this is out of the scope of this paper.

As in Theorem 19, for practical purposes, it can be desirable to bypass the need for the
exact sparsity level p in Proposition 20. We give a bound that replaces p with the effective
sparsity level peff(θ) introduced in (51).

Theorem 21 Using the notation of Section 3.6 for linear regression, and of Theorem 19
for leverage scores and their indices, it holds that

EDPP

[
E(ŵS)

∣∣Aθ] ≤ [1 +
(
k − 1 + θ

)(
peff(θ)− k + 1

)]‖w∗‖2σ2
k+1

N
+
vk

N
. (65)

In practice, the same rejection sampling routine as in Theorem 19 can be used to sample
conditionally on Aθ. Finally, to the best of our knowledge, bounding the excess risk in
linear regression has not been investigated under volume sampling.

In summary, we have obtained two sets of results. We have proven a set of multiplicative
bounds in spectral and Frobenius norm for EDPP ‖X − Πν

SX‖2ν , ν ∈ {2,Fr}, under the
projection DPP of marginal kernel K = VkV

ᵀ
k , see Propositions 17 & 18 and Theorem 19.

As far as the linear regression problem is concerned, we have proven bounds for the excess
risk in sketched linear regression, see Proposition 20 and Theorem 21.
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Algorithm Pre-processing Memory One sample complexity

Our algorithm O(min(Nd2, N2d)) O(dk) O(dk2)

Volume sampling O(min(Nd2, N2d)) O(dr) O(dk2)

Double phase O(min(Nd2, N2d)) O(dk) O(ck2 log2(k))

Table 2: Complexity of the three CSS algorithms.

5.3 Complexity analysis

We compare in this section the time and space complexity of our projection DPP, volume
sampling and double phase. All three algorithms require the computation of the right eigen-
vectors of the matrix X as a pre-processing, which can be achieved in O(min(Nd2, dN2))
operations. Our algorithm requires to keep the first k right eigenvectors Vk, which means
O(dk) memory cost; every sample costs O(dk2) time using the implementation of Tremblay
et al. (2018). In comparison, volume sampling requires to keep all the right eigenvectors
with non vanishing singular values of X: the memory cost is O(rd), where r is the rank of
X. Indeed, every sample from VS requires to run 2 steps: 1) sampling the set T of singular
values using Algorithm 7 in (Kulesza and Taskar, 2012), which runs in O(rk) = O(dk2)
operations, followed by 2) sampling from a projection DPP of marginal kernel V:,TV

ᵀ
:,T , this

time in O(dk2). Similarly, for the double phase algorithm, given the singular decomposi-
tion of X, the complexity of one sample is dominated by the second phase, which runs in
O(ck2 log2(k)). The discussion is summarized in Table 2.

Volume sampling and projection DPP have comparable time complexities and a slightly
lower memory requirement for the DPP. Double phase shares the same pre-processing and
space complexity, but the time complexity of obtaining one sample is harder to compare.
Remembering the condition on c = 1600c2

0k log(800c2
0k) for double phase (from Theorem 11),

the bound on the time complexity can be relatively large, although only cubic in k.

6. Numerical experiments

In this section, we empirically compare our algorithm, the projection DPP with kernel
K = VkV

ᵀ
k , to the state of the art in column subset selection. In Section 6.1, the projection

DPP with kernel K = VkV
ᵀ
k and volume sampling are compared on toy datasets. In

Section 6.2, several column subset selection algorithms are compared to the projection
DPP on four real datasets from genomics and text processing. In particular, the numerical
simulations demonstrate the favourable influence of the sparsity of the k-leverage scores
on the performance of our algorithm both on toy datasets and real datasets. Finally, we
packaged all CSS algorithms in this section in a publicly available Python toolbox5.

6.1 Toy datasets

This section is devoted to comparing the expected approximation error E‖X−ΠFr
S X‖2Fr for

the projection DPP and volume sampling. We focus on the Frobenius norm to avoid effects
due to different choices of the projection Πν

S , see (4).

5. http://github.com/AyoubBelhadji/CSSPy
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MatrixGenerator
(
` ∈ Rd+, Σ ∈ Rd×d, p ∈ [k + 1 : d])

1 Sample U from the Haar measure ON (R).

2 Generate a matrix Vk with the k-leverage-scores profile `.

3 Extend the matrix Vk to an orthogonal matrix V .

4 return X ←− UΣV ᵀ

Figure 3: The pseudocode of the algorithm generating a matrix X with prescribed profile
of k-leverage scores.

In order to be able to evaluate the expected errors exactly, we generate matrices of low
dimension (d = 20) so that the subsets of [d] can be exhaustively enumerated. Furthermore,
to investigate the role of leverage scores and singular values on the performance of CSS
algorithms, we need to generate datasets X with prescribed spectra and k-leverage scores.

6.1.1 Generating toy datasets

Recall that the SVD of X ∈ RN×d reads X = UΣV ᵀ, where Σ is a diagonal matrix
and U and V are orthogonal matrices. To sample a matrix X, we first let U correspond
to the first r columns of an N × N sample from the Haar measure on ON (R). Then,
Σ is chosen among a few deterministic diagonal matrices that illustrate various spectral
properties. Sampling the matrix V is trickier if k-leverage scores are to be prescribed. The
first k columns of V are constrained as follows: the number of non vanishing rows of Vk is
equal to p and the norms of the nonvanishing rows are prescribed by a vector `. We thus
propose an algorithm that takes as input a leverage scores profile ` and a spectrum σ2, and
outputs a corresponding random orthogonal matrix Vk; see Appendix E. This algorithm is
a randomization6 of the algorithm proposed by Fickus, Mixon, Poteet, and Strawn (2013).
Finally, the matrix Vk ∈ Rd×k is completed by applying the Gram-Schmidt procedure to
d − k additional i.i.d. unit Gaussian vectors, resulting in a matrix V ∈ Rd×d. Figure 3
summarizes the algorithm we use to generate matrices X with a k-leverage scores profile `,
spectrum Σ, and a sparsity level p.

6.1.2 Volume sampling vs projection DPP

This section sums up the results of numerical simulations on toy datasets. The number
of observations is fixed to N = 100, the dimension to d = 20, and the number of selected
columns to k ∈ {3, 5}. Singular values are chosen from the following profiles: a spectrum
with a cutoff called the projection spectrum,

Σk=3,proj = 100

3∑
i=1

eie
ᵀ
i + 0.1

20∑
i=4

eie
ᵀ
i ,

Σk=5,proj = 100

5∑
i=1

eie
ᵀ
i + 0.1

20∑
i=6

eie
ᵀ
i .

6. http://github.com/AyoubBelhadji/FrameBuilder
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a smooth spectrum

Σk=3,smooth = 100e1e
ᵀ
1 + 10e2e

ᵀ
2 + e3e

ᵀ
3 + 0.1

20∑
i=4

eie
ᵀ
i ,

Σk=5,smooth = 10000e1e
ᵀ
1 + 1000e2e

ᵀ
2 + 100e3e

ᵀ
3 + 10e4e

ᵀ
4 + e5e

ᵀ
5 + 0.1

20∑
i=6

eie
ᵀ
i ,

and a flat spectrum with all singular values equal to 1

Σidentity =
20∑
i=1

eie
ᵀ
i .

Note that all profiles satisfy β = 1; see (47). We discuss the case β > 1 at the end of
the section. In each experiment, for each spectrum, we sample 200 independent leverage
score profiles that satisfy the sparsity constraints p =

∣∣{i ∈ [d],Vi,[k] 6= 0}
∣∣ from a Dirichlet

distribution of dimension p with concentration parameter 1 and equal means. For each
leverage score profile, we sample a matrix X from the algorithm in Figure 3.

Figure 4 compares, on the one hand, the theoretical bounds in Theorem 8 for volume
sampling and Proposition 18 for the projection DPP, to the numerical evaluation of the
expected error for sampled toy datasets on the other hand. The x-axis indicates various
sparsity levels p. The unit on the y-axis is the error of PCA. There are 400 crosses on each
subplot: each of the 200 matrices appears once for both algorithms. The 200 matrices are
spread evenly across the values of p.

Used as a reference, the VS bounds are proportional to (k + 1) and independent of p.
In fact, by Theorem 10, the expected value of the Frobenius norm of the approximation
error only depends on the spectrum of the matrix X; in particular, it does not involve the
matrix V . These bounds appear to be tight for projection spectra, and looser for smooth
spectra.

For the projection DPP, the bound 1 + k p−kd−k is linear in p, and can thus be much lower
than the bound of VS. The numerical evaluations of the error also suggest that this DPP
bound is tight for a projection spectrum and looser in the smooth case. We emphasize
that, in both cases, the bound is representative of the actual behaviour of the algorithm.
The bottom row of Figure 4 displays the same results for identity spectra, again for k = 3
and k = 5. This setting is extremely nonsparse and represents an arbitrarily bad scenario
where even PCA would not make much practical sense. Then both VS and DPP sampling
perform the same as PCA: all crosses superimpose at y = 1. In this particular case, our
linear bound in p is not representative of the actual behaviour of the error. This observation
can be explained for volume sampling using Theorem 10, which states that the expected
squared error under VS is Schur-concave, and is thus minimized for flat spectra. We have
no similar result for the projection DPP.

Figure 5 provides a similar comparison for the two smooth spectra Σ3,smooth and Σ5,smooth,
but this time using the effective sparsity level peff(θ) introduced in Theorem 19. Qualita-
tively, we have observed the results to be robust to the choice of θ: we use θ = 2. The 200
sampled matrices are now unevenly spread across the x-axis, since we do not control peff(θ).
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(d) Σ5,proj, k = 5
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(b) Σ3,smooth, k = 3
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(e) Σ5,smooth, k = 5
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(c) Σidentity, k = 3
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Figure 4: Realizations and bounds for E‖X − ΠFr
S X‖2Fr as a function of the sparsity level

p.
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Figure 5: Realizations and bounds for E‖X−ΠFr
S X‖2Fr as a function of the effective sparsity

level peff(2).
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Figure 6: Realizations and bounds for the avoiding probability P(S ∩ Tpeff(θ) = ∅) in Theo-
rem 19 as a function of θ.
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Note finally that the DPP here is conditioned on the event {S ∩ Tpeff(θ) = ∅}, and sampled
using an additional rejection sampling routine as detailed below Theorem 19.

For the DPP, the bound is again linear on the effective sparsity level peff(2), and can
again be much lower than the VS bound. The behaviours of both VS and the projection
DPP are similar to the exact sparsity setting of Figure 4: the DPP has uniformly better
bounds and actual errors, and the bound reflects the actual behaviour, relatively loosely
when peff(2) is large.

Figure 6 compares the theoretical bound in Theorem 19 for the avoiding probability
P(S ∩ Tpeff(θ) = ∅) with 200 realizations, as a function of θ. More precisely, we drew 200
matrices X, and then for each X, we computed exactly – by enumeration – the value
P(S ∩ Tpeff(θ) = ∅) for all values of θ. The only randomness is thus in the sampling of X,
not the evaluation of the probability. Again, the results suggest that the bound is relatively
tight.

Finally, we examine relaxing β = 1. We have observed our results to be robust with
respect to β. At the extreme, in Figure 7, we compare the errors for two additional spectra
Σ̂3,proj and Σ̂3,smooth such that β is close to its maximum value d− k = 17:

Σ̂k=3,proj = 100

3∑
i=1

eie
ᵀ
i + 0.1e4e

ᵀ
4 + 10−4

20∑
i=5

ei e
ᵀ
i ,

and

Σ̂k=3,smooth = 100e1e
ᵀ
1 + 10e2e

ᵀ
2 + e3e

ᵀ
3 + 0.1e4e

ᵀ
4 + 10−4

20∑
i=5

ei e
ᵀ
i .

While the bound for such a large β would be almost vertical and does not reflect anymore the
actual behaviour of the algorithm, we observe that the algorithm still performs comparably
to the setting where β = 1, although with more variance, and that the bound with β = 1
(in red) still represents the behaviour of the algorithm. This is a hint that there is room for
improvement in our bounds in the large β regime. The search for a new bound that would
be independent of β is nontrivial and a subject of future work.

6.2 Real datasets

Dataset Application domain N × d References

Colon genomics 62× 2000 (Alon et al., 1999)

Leukemia genomics 72× 7129 (Golub et al., 1999)

Basehock text processing 1993× 4862 (Li et al., 2017b)

Relathe text processing 1427× 4322 (Li et al., 2017b)

Table 3: Datasets used in the experimental section.

The datasets described in Table 3 are illustrative of two extreme situations regarding
the sparsity of the k-leverage scores. For instance, the dataset Basehock has a very sparse
profile of k-leverage scores, while the dataset Colon has a quasi-uniform distribution of k-
leverage scores, see Figures 8a & 8b. This section compares the empirical performances of
several column subset selection algorithms on these datasets.
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Figure 7: Realizations and bounds for E‖X −ΠFr
S X‖2Fr as a function of the sparsity level p

in the case β > 1.

We consider the following algorithms presented in Section 3: 1) the projection DPP with
marginal kernel K = VkV

ᵀ
k , 2) volume sampling, 3) deterministically picking the largest

k-leverage scores, 4) pivoted QR as in Golub (1965), although the only known bounds for
this algorithm are for the spectral norm, and 5) double phase, with c manually tuned to
optimize the performance, usually around c ≈ 10k.

The rest of Figure 8 sums up the empirical results of these algorithms on the Colon
and Basehock datasets. Figures 8c & 8d illustrate the results of the five algorithms in the
following setting. An ensemble of 50 subsets are sampled using each algorithm. We give
the corresponding boxplots for the Frobenius errors, on Colon and Basehock respectively.
Deterministic methods (largest leverage scores and pivoted QR) perform well compared with
other algorithms on the Basehock dataset; in contrast, they display very bad performance
on the Colon dataset.

Focusing now on the three random sampling methods, we first make sure that the
observed differences in Frobenius error are statistically significant at level α = 0.05. To
that end, we report in Table 4 the p-values of the three pairwise Mann-Whitney tests
between the three algorithms. More precisely, let FX denote the CDF of the Frobenius
errors for algorithm X ∈ {DPh,DPP,VS}. We test H0:“FX = FY” against the so-called
one-sided alternative H1 that X is better than Y, in the sense that if you independently run
algorithms X and Y, it is more likely that the Frobenius error of X is the smaller of the two.
Now, we want to jointly test whether all three pairs of algorithms within {DPh,DPP,VS}
perform differently, so we use a Bonferroni correction (Wasserman, 2013). Looking at
Table 4 for dataset Colon, all three p-values are smaller than α/3 = 0.05/3, so that we
simultaneously reject that FDPh = FDPP, FDPh = FVS and FDPP = FVS, and we declare the
differences among algorithms to be statistically significant. The same can be said for dataset
Basehock. In particular, we observe that the increase in performance using the projection
DPP compared to volume sampling is more important for the Basehock dataset than for the
Colon dataset: this improvement can be explained by the sparsity of the k-leverage scores
as predicted by our approximation bounds. The double phase algorithm has the best results
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on both datasets. However its theoretical guarantees cannot predict such an improvement,
as noted in Section 3. The performance of the projection DPP is comparable to double
phase and makes it a close second, with a slightly larger gap on the Colon dataset. We
emphasize that our approximation bounds are sharp compared to numerical observations.

Figures 8e & 8f show results obtained using a classical boosting technique for randomized
algorithms. We repeat 20 times the following procedure: sample 50 subsets (Si)i∈[50] and
take the subset Smin that minimizes the approximation error among the elements of the
batch (Si)i∈[50]. Displayed boxplots are for these 20 best results. The same comparisons
apply as without boosting, with p-values given in Table 5.

Figure 9 calls again for similar comments, comparing this time the datasets Relathe
(with concentrated profile of k-leverage scores) and Leukemia (with almost uniform profile
of k-leverage scores). This time, the same test as for Colon vs. Basehock in Table 4 further
reveals that we cannot reject the hypothesis that FDPh = FDPP on Relathe. In other words,
there is no hint that the performance of the double phase is different from that of DPP on
that particular dataset (at level α = 0.05). The same is true for the boosted version of the
algorithms; see Table 5.

Dataset \ X vs. Y DPP vs. VS DPh vs. VS DPh vs. DPP

Colon 6.10−6 9.10−18 2.10−16

Leukemia 5.10−5 4.10−13 2.10−5

Basehock 10−17 10−17 3.10−5

Relathe 9.10−18 10−17 0.15

Table 4: p-values for Mann–Whitney U -test comparisons.

Dataset \ X vs. Y DPP vs. VS DPh vs. VS DPh vs. DPP

Colon 4.10−8 10−4 4.10−8

Leukemia 3.10−6 3.10−8 3.10−6

Basehock 3.10−8 3.10−8 7.10−7

Relathe 3.10−8 3.10−8 0.053

Table 5: p-values for Mann–Whitney U -test comparisons, for the boosted algorithms.

6.3 Regression with unsupervised column subset selection

This section compares the empirical performance of several column subset selection algo-
rithms for regression tasks on the datasets in Table 3. We compare unsupervised column
subset selection algorithms on synthetic regression vectors.

We consider the following algorithms: 1) the projection DPP with marginal kernel
K = VkV

ᵀ
k , 2) volume sampling, 3) double phase with c = 10k and 4) principal component

regression (PCR).
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(a) k-leverage scores profile and cumulative profile
for the dataset Basehock (k=10).
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(b) k-leverage scores profile and cumulative profile
for the dataset Colon (k=10).
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S X‖Fr on a batch of 50

samples for the five algorithms on the dataset
Basehock (k=10).
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(d) Boxplots of ‖X −ΠFr
S X‖Fr on a batch of 50

samples for the five algorithms on the dataset Colon
(k=10).

Volu
me S

.

Pro
jec

tio
n D

PP

Lar
ge

st 
lvs

Piv
ote

d Q
R

Dou
ble

 Ph
ase

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

||X
Fr S

X|
| Fr

||X
kX

|| F
r

(e) Boxplots of ‖X −ΠFr
S X‖Fr on a batch of 50

samples for the boosting of randomized algorithms
on the dataset Basehock (k=10).
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(f) Boxplots of ‖X −ΠFr
S X‖Fr on a batch of 50

samples for the boosting of randomized algorithms
on the dataset Colon (k=10).

Figure 8: Comparison of several column subset selection algorithms for two datasets with
different leverage score profiles: Basehock and Colon.
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(a) k-leverage scores profile and cumulative profile
for the dataset Relathe (k=10).
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(b) k-leverage scores profile and cumulative profile
for the dataset Leukemia (k=10).
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(c) Boxplots of ‖X −ΠFr
S X‖Fr on a batch of 50

samples for the five algorithms on the dataset
Relathe (k=10).
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(d) Boxplots of ‖X −ΠFr
S X‖Fr on a batch of 50

samples for the five algorithms on the dataset
Leukemia (k=10).
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(e) Boxplots of ‖X −ΠFr
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samples for the boosting of randomized algorithms
on the dataset Relathe (k=10).
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Figure 9: Comparison of several column subset selection algorithms for two datasets with
different leverage score profiles: Relathe and Leukemia.
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To investigate the effect of the alignment of y with the principal subspaces of X, we use
two different label vectors y. More precisely, we define a principal subpsace of dimension
k0 = 20 and define two directions

y1 ∝
1

k0

∑
i∈[k0]

U:,i, (66)

and

y2 ∝
1

d− k0

∑
i∈[k0+1:d]

U:,i. (67)

that are respectively aligned with or orthogonal to the principal subspace of dimension k0.
We take y1 and y2 to be normed vectors, and we note that y1 ∈ Span(U:,i)i∈[k0], while
y2 ∈ Span(U:,i)i∈[k0+1:d]. Adapted PCR with k = k0 is expected to perform perfectly well
for y1 and badly for y2.

Figure 10 illustrates the results of the four algorithms in the following setting. An
ensemble of 50 subsets are sampled from each randomized algorithm. We give the corre-
sponding approximation errors ‖yi−XŵS‖2, on Colon and Basehock respectively, for every
value of k ∈ {10, 15, 20, 25, 30}.

First, we observe that the relative performance of the column selection algorithms com-
pared to PCR depends on the regressed vector yi. As expected, for y1, PCR has the
best approximation error. In particular, the approximation error for PCR is 0 for k ≥ k0,
while, for the column subset selection algorithms, the approximation error decreases with
k without vanishing. On the other hand, PCR has the worst error for y2.

Now, comparing column subset selection algorithms, we observe that the relative per-
formances depend on yi and the leverage score profile. Double phase and the projection
DPP perform similarly in all cases. Volume sampling displays minimal error for y2 but
has the worst performance for y1. Similarly to previous observations, the differences be-
tween VS and the rest are amplified on the dataset with concentrated leverage score profile
(Basehock).

6.4 Comparing supervised and the unsupervised algorithms

In this section, we further compare unsupervised column subset selection algorithms (pro-
jection DPP, volume sampling, double phase and PCR) with orthogonal matching pursuit,
see Section 3.6.2. While the comparison is fundamentally unfair, we believe it is interesting
to investigate the performance gap in two tasks. We first compare the algorithms on a re-
gression task, where a supervised algorithm like OMP will naturally have an edge. Maybe
more surprisingly, we also compare the same algorithms on low-rank approximation: after
all, OMP with random labels also yields an unsupervised column subset selection. This
experiment will permit to study in more details the gap between deterministic and random
subset selection algorithms.

6.4.1 Comparing to OMP on regression
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Figure 10: Comparison of several column subset selection algorithms for the datasets Base-
hock and Colon on a regression task.
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Figure 11: Comparison of several column subset selection algorithms for the dataset Colon
on a regression task.

Consider regressing a random vector z = Xc, with c ∼ N (0, Id), onto the datasets Colon
and Basehock again. Figure 11 illustrates the results of the four unsupervised algorithms
compared to OMP in the following setting. An ensemble of 50 subsets are sampled from
each randomized algorithm. We give the corresponding approximation errors ‖z−XŵS‖2,
on Colon and Basehock respectively for every value of k ∈ {10, 15, 20, 25, 30}. As for OMP,
we report ‖z−XŵS‖2 where ŵS is computed using the subset of columns selected by OMP
for the vector z.

As expected, we observe that OMP gives the best performance on both datasets, then
comes PCA, and then only the randomized column subset selection algorithms. Volume
sampling further falls behind on Basehock, failing to make use of the concentrated lever-
age score profile. Finally, we stress that we have observed (not shown) the same results
across different realizations of the random regressed vector z. Now, of course, it is possible
to carefully pick deterministic z’s that will favour PCR over OMP. We conclude, without
surprise, that OMP and PCR outperform unsupervised random subset selection when com-
pared on regression error; OMP because it has access to labels, and PCR because it is less
constrained. But unsupervised CSS algorithms still capture substantial information from
the data structure with respect to a regression task, with VS becoming less competitive
when leverage scores are concentrated.

6.4.2 Low-rank approximation

Finally, we propose to consider the problem of low-rank approximation. For comparison
between the set of approaches studied so far, we also investigate empirically the performance
of two randomized versions of OMP. The first one, denoted by OMP-mixcol, consists in
outputting the columns S selected by OMP with the target vector z = Xc, where c ∼
N (0, Id). The second variant, called OMP-isotropic, consists in regressing z ∼ N (0, IN ).

Figure 12 illustrates the results of the unsupervised algorithms compared to OMP mix-
col/isotropic in the following setting. An ensemble of 50 subsets are sampled from each
randomized algorithm. We give the ratios of the corresponding approximation errors
‖X − ΠFr

S X‖Fr/‖X − ΠkX‖Fr both on Colon and Basehock, for k ∈ {10, 15, 20, 25, 30}.
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Figure 12: Comparison of several column subset selection algorithms for the datasets Colon
and Basehock.

We report ‖X−ΠFr
S X‖Fr/‖X−ΠkX‖Fr for 50 subsets on Colon and Basehock respectively

for every value of k ∈ {10, 15, 20, 25, 30}.
We observe that OMP-isotropic has the largest error for both datasets. OMP-mixcol has

the second worst performance for the Colon dataset but its performance is similar to volume
sampling on the dataset Basehock. Double-phase always takes the lead, in particular for
the Colon dataset with almost uniform k-leverage scores, but note that projection DPP and
double phase algorithms have similar performance for the dataset Basehock with concen-
trated k-leverage scores. Once again, projection DPP takes advantage from the sparsity of
the k-leverage scores, which volume sampling does not.

We conclude that the unsupervised algorithms, projection DPP and double phase, have
the best approximation errors for the low rank approximation task, as illustrated by the
comparison with randomized versions of OMP trained on a random mixture of columns.
The key is that these projection DPP and double phase algorithms select subsets of columns
with spectral properties similar to those of the initial matrix X. In contrast, OMP mix-
col/isotropic select subsets of columns that depend on the one regressed vector that is
used. Having this vector in the columnspace as in OMP-mixcol does not make the selected
columns close enough to the principal subspace of the matrix X.

6.5 Discussion

The performance of our projection DPP algorithm has been compared to state-of-the-art
column subset selection algorithms. We emphasize that the theoretical performance of
the proposed approach takes advantage from the sparsity of the k-leverage scores, as in
Proposition 18, or their fast decrease, as in Proposition 19. The actual behaviour of the
algorithm is in very good agreement with our theoretical bounds when the spectrum is
flat above k (i.e., β is close to 1). In contrast, state-of-the-art algorithms like volume
sampling come with both looser bounds and worse performance; double phase displays
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great performance but has overly pessimistic theoretical bounds. When β is large, our
bounds become pessimistic even though the behaviour of the DPP selection remains very
competitive for low-rank approximation.

Finally, for the purpose of a specific one-shot regression task with a single known re-
gressed vector, it is clear that supervised algorithms like OMP should still be preferred.
However, in an unsupervised setting, comparisons with OMP applied to a randomized re-
gressed vector, which yields an unsupervised version of OMP, show that random subset
selection algorithms such as the proposed projection DPP and double phase are the most
efficient in capturing relevant information from the data for regression.

7. Conclusion

We have proposed, analysed, and empirically investigated a new randomized column subset
selection (CSS) algorithm. The crux of our algorithm is a discrete determinantal point
process (DPP) that selects a diverse set of k columns of a matrix X. This DPP is tailored
to CSS through its parametrization by the marginal kernel K = VkV

ᵀ
k , where Vk are the

first k right singular vectors of the matrix X. This specific kernel is related to volume
sampling, the state-of-the-art for CSS guarantees in Frobenius and spectral norm.

We have identified generic conditions on the matrix X under which our algorithm has
bounds that improve on volume sampling. In particular, our bounds highlight the impor-
tance of the sparsity and the decay of the k-leverage scores on the approximation perfor-
mance of our algorithm. We have further numerically illustrated this relation to the sparsity
and decay of the k-leverage scores using toy and real datasets. In these experiments, our
algorithm performs comparably well to the so-called double phase algorithm, which is the
empirical state-of-the-art for CSS despite more conservative theoretical guarantees than vol-
ume sampling. Thus, our DPP sampling inherits both favourable theoretical bounds and
increased empirical performance under sparsity or fast decay of the k-leverage scores. Both
are common features of real datasets.

As detected in the experimental section, our bounds are sharp except in the large β
regime. Surprisingly, the actual behaviour of the algorithm remains very close to the case
β = 1, which further speaks in favour for the DPP approach. This is a hint that our bounds
can probably be refined to more sharply account for large βs.

In terms of computational cost, our algorithms scale with the cost of finding the k first
right singular vectors, which is currently the main bottleneck. In line with Drineas et al.
(2012) and Boutsidis et al. (2011), where the authors estimate the k-leverage scores using
random projections, we plan to investigate the impact of random projections to estimate
the full matrix K on the approximation guarantees of our algorithms.

Although generally studied as an independent task, in practice CSS is often a prelude
to a learning algorithm. We have considered linear regression and we have given a bound
on the excess risk of a regression performed on the selected columns only. In particular,
the sparsity and decay of the k-leverage scores are again involved: the more localized the
k-leverage scores, the smaller the excess risk bounds. Such an analysis of the excess risk
in regression further highlights the interest of the DPP: it would be difficult to conduct for
either volume sampling or double phase. Future work in this direction includes investigating
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the importance of the sparsity of the k-leverage scores on the performance of other learning
algorithms such as spectral clustering or support vector machines.

Finally, in our experimental section, we used an adhoc randomized algorithm inspired by
Fickus et al. (2013) to sample toy datasets with a prescribed profile of k-leverage scores. An
interesting question would be to characterize the distribution of the output of our algorithm.
In particular, sampling from the uniform measure on the set of symmetric matrices with
prescribed spectrum and leverage scores is an open problem (Dhillon, Heath, Sustik, and
Tropp, 2005).
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Appendix A. Another interpretation of the k-leverage scores

For i ∈ [d], the SVD of X yields

X:,i =
r∑
`=1

Vi,`f`, (68)

where f` = σ`U:,`, ` ∈ [r], are orthogonal. Thus

Xᵀ
:,ifj = Vi,j‖fj‖2 = Vi,jσ

2
j . (69)

Then
Vi,j
‖X:,i‖

=
Xᵀ

:,ifj

σj‖X:,i‖‖fj‖
=:

cos ηi,j
σj

, (70)

where ηi,j ∈ [0, π/2] is the angle formed by X:,i and fj . Finally, (69) also yields

`ki = ‖X:,i‖2
k∑
j=1

cos2 ηi,j
σ2
j

. (71)

Compared to the length-square distribution in Section 3.2, k-leverage scores thus favour
columns that are aligned with the principal features. The weight 1/σ2

j corrects the fact
that features associated with large singular values are typically aligned with more columns.
One could also imagine more arbitrary weights wj/σ

2
j in lieu of 1/σ2

j , or, equivalently,
modified k-leverage scores

`ki (w) =
k∑
j=1

wjV
2
i,j .

However, the projection DPP with marginal kernel K = VkV
ᵀ
k that we study in this paper

is invariant to such reweightings. Indeed, let Y be a random subset of [d] following the
distribution of the k-DPP of kernel Kw = VkDiag(w[k])V

ᵀ
k such that for all i ∈ [k], wi 6= 0.

For any S ⊂ [d] of cardinality k,

P(Y = S) ∝ Det
[
VS,[k] Diag(w[k])V

ᵀ
[k],S

]
= Det(VS,[k])

2
∏
j∈[k]

w2
j ∝ Det(VS,[k])

2. (72)

Such a scaling is thus not a free parameter in K.

Appendix B. Majorization and Schur convexity

This section recalls some definitions and results from the theory of majorization and the
notions of Schur-convexity and Schur-concavity. We refer to (Marshall et al., 2011) for
further details. In this section, a subset D ⊂ Rd is a symmetric domain if D is stable under
coordinate permutations. Furthermore, a function f defined on a symmetric domain D is
called symmetric if it is stable under coordinate permutations.
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Definition 22 Let p, q ∈ Rd+. p is said to majorize q according to Schur order and we
note q ≺S p if 

qi1 ≤ pj1
qi1 + qi2 ≤ pj1 + pj2
...
d−1∑
k=1

qik ≤
d−1∑
k=1

pjk

d∑
k=1

qik =
d∑

k=1

pjk

(73)

where p, q are reordered so that pid ≤ ... ≤ pi1 and qjd ≤ ... ≤ qj1.

The majorization order has an algebraic characterization using doubly stochastic matrices
first proven by Hardy, Littlewood, and Polya in 1929.

Proposition 23 (Theorem B.2. in Chapter 2, Marshall et al., 2011) The vector p
majorizes the vector q if and only if there exists a d × d doubly stochastic matrix Π such
that q = pΠ.

Example 1 Let p = (3, 0, 0) and q = (1, 1, 1). We check easily that p majorizes q. Note
that we can ’redistribute’ p over q as follows: q = 1

3Jp, where J is a 3× 3 matrix of ones.
The matrix Π = 1

3J is a doubly stochastic matrix.

Schur order compares two vectors using multiple inequalities. To avoid such cumbersome
calculations, a scalar metric of inequality in a vector is desired. This is possible using the
notion of Schur-convex/concave function.

Definition 24 Let f be a function on a symmetric domain D ⊂ Rd+.
f is said to be Schur convex if

∀p, q ∈ Rd+, q ≺S p =⇒ f(q) ≤ f(p). (74)

f is said to be Schur concave if

∀p, q ∈ Rd+, q ≺S p =⇒ f(q) ≥ f(p). (75)

Proposition 25 (Theorem A.4. in Chapter 3, Marshall et al., 2011) Let f be a sym-
metric function defined on Rd+, and let D = Id, where I ⊂ R+ is an open interval. Assume
that f is continuously differentiable on D, such that

∀xi, xj ∈ D, (xi − xj)(
∂f

∂xi
− ∂f

∂xj
) ≥ 0, (76)

then
∀p, q ∈ D, q ≺S p =⇒ f(q) ≤ f(p), (77)

and f is Schur convex.

We get a similar result for Schur concavity by switching the orders in the previous propo-
sition.
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Appendix C. Principal angles and the Cosine Sine decomposition

C.1 Principal angles

This section surveys the notion of principal angles between subspaces, see (Golub and
Van Loan, 2013, Section 6.4.3) for details.

Definition 26 Let P,Q be two subspaces in Rd. Let p = dimP and q = dimQ and assume
that q ≤ p. To define the vector of principal angles θ ∈ [0, π/2]q between P and Q, let

cos(θ1) = max

{
xTy

‖x‖‖y‖
; x ∈ P,y ∈ Q

}
(78)

be the cosine of the smallest angle between a vector of P and a vector of Q, and let (x1,y1) ∈
P ×Q be a pair of vectors realizing the maximum. For i ∈ [2, q], define successively

cos(θi) = max

{
xTy

‖x‖‖y‖
; x ∈ P,y ∈ Q;x ⊥ xj ,y ⊥ yj ,∀j ∈ [1 : i− 1]

}
, (79)

and denote (xi,yi) ∈ P ×Q such that cos(θi) = xᵀ
i yi .

Note that although the so-called principal vectors (xi,yi)i∈[q] are not uniquely defined by
(78) and (79), the principal angles θ are uniquely defined, see (Björck and Golub, 1973).
The following result confirms this, while also providing a way to compute θ.

Proposition 27 (Björck and Golub, 1973, Ben-Israel, 1992) Let P and Q and θ be
as in Definition 26. Let P ∈ Rd×p, Q ∈ Rd×q be two orthogonal matrices, whose columns
are orthonormal bases of P and Q, respectively. Then

∀i ∈ [q], cos(θi) = σi(Q
ᵀP ). (80)

In particular

Vol2q(Q
ᵀP ) =

∏
i∈[q]

cos2(θi). (81)

An important case for our work arises when q = k, Q = V ∈ Rd×k, and P = S ∈ Rd×k is a
sampling matrix. The left-hand side of (81) then equals Det(VS,:)

2.

C.2 The Cosine Sine decomposition

The Cosine Sine (CS) decomposition is useful for the study of the relative position of two
subspaces. It generalizes the notion of cosine, sine and tangent to subspaces. The tangent
of principal angles between subspaces were first mentioned in (Zhu and Knyazev, 2013).

Proposition 28 (Theorem 2.5.3 in Golub and Van Loan, 2013) Let q, d ∈ N∗ such

that d ≥ q, and Q =

[
Q1

Q2

]
be a d × q orthogonal matrix, where Q1 ∈ Rq×q and

Q2 ∈ R(d−q)×q. Assume that Q1 is non singular, then there exist orthogonal matrices
Y ∈ Rd×q and

W =

[
W1 0

0 W2

]
∈ Rd×d, (82)
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and a matrix

Σ ∈ Rd×q, (83)

such that

Q = WΣY T , (84)

where W1 ∈ Rq×q and W2 ∈ Rd−q×d−q. As for Σ, we distinguish two cases

i) if d > 2q, then

Σ =

 C
S

0q′,q

 , (85)

where q′ = d−2q, and C,S ∈ Rq×q are diagonal matrices satisfying the identity C2 +S2 = Iq.
In particular, each block Qi factorizes as

Q1 =W1 C Y T

Q2 =W2

[
S

0q′,q

]
Y T .

(86)

ii) If d ≤ 2q, then

Σ =

 1q′,q′ 0q′,d−q
0d−q,q′ C̃
0d−q,q′ S̃

 , (87)

where q′ = 2q − d, and C̃, S̃ ∈ R(d−q)×(d−q) are diagonal matrices satisfying the identity

C̃2
+ S̃2

= Id−q.

The CS decomposition is defined for every orthogonal matrix. An important case is when
Q is the product of an orthogonal matrix V ∈ Rd×d and a sampling matrix S ∈ Rd×k, that
is Q = V ᵀS.

Corollary 29 Let V ∈ Rd×d be an orthogonal matrix and S ∈ Rd×k be a sampling matrix.
Let

Q = V ᵀS =

[
V ᵀ
k S

V ᵀ
k⊥
S

]
(88)

be a d×k orthogonal matrix, with Det(V ᵀ
k S)2 > 0. Let further ZS = V ᵀ

k⊥
S(V ᵀ

k S)−1. Then

Tr(ZSZ
ᵀ
S) =

∑
i∈[k]

tan2(θi(S)), (89)

where the (θi(S))i∈[k] are the principal angles between Span(Vk) and Span(S).

Proof We give the proof in the case k < d/2. The proof in the case k ≥ d/2 follows the
same steps.
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Proposition 28 applied to the matrix Q = V ᵀS with Q1 = V ᵀ
k S and Q2 = V ᵀ

k⊥
S yields

Q1 =W1 C Y T (90)

Q2 =W2

[
S

0q′,q

]
Y T . (91)

Thus, the diagonal matrix C contains the singular values of the matrix V ᵀ
k S, which are

cosines of the principal angles (θi(S))i∈[k] between Span(Vk) and Span(S), see Proposi-

tion 27. The identity C2 +S2 = Ik and the fact that θi(S) ∈ [0, π2 ] imply that the (diagonal)
elements of S are equal to the sines of the principal angles between Span(Vk) and Span(S).
Let T = S C−1 ∈ Rk×k be the diagonal matrix containing the tangents of the principal
angles (θi(S))i∈[k] on its diagonal. Using (90) and (91), it comes

ZS = V ᵀ
k⊥
S(V ᵀ

k S)−1 = W2

[
S

0q′,q

]
Y ᵀY C−1W ᵀ

1

= W2

[
S

0q′,q

]
C−1W ᵀ

1 = W2

[
S C−1

0q′,q

]
W ᵀ

1 . (92)

Then,

Tr(ZSZ
ᵀ
S) = Tr(W2

[
T 2 0q,q′

0q′,q 0q′,q′

]
W ᵀ

2 ) =
∑
i∈[k]

tan2(θi(S)). (93)

Drineas and Ipsen (2019) have also related principal angles to low rank approximations.
We consider different subspaces, though, which crucially put forward the tangents of the
principal angles.

Appendix D. Proofs

D.1 Technical lemmas

We start with two useful lemmas borrowed from the literature.

Lemma 30 (Lemma 3.1, Boutsidis et al., 2011) Let S ⊂ [d], then

‖X −Πν
S,kX‖2ν ≤ ‖E(I − PS)‖2ν , ν ∈ {2,Fr}, (94)

where E = X −ΠkX and PS = S(V ᵀ
k S)−1V ᵀ

k . Furthermore,

‖X −Πν
S,kX‖2ν ≤

1

σ2
k(VS,[k])

‖X −ΠkX‖2ν , ν ∈ {2,Fr}. (95)

The following lemma was first proven by Deshpande et al., 2006, and later rephrased in
Deshpande and Rademacher (2010).
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Lemma 31 (Lemma 11, Deshpande and Rademacher, 2010) Let V ∈ Rk×d, r =
rk(V ) and ` ∈ [1 : r]. Then ∑

S⊂[d],|S|=`

e`(Σ(V:,S)2) = e`(Σ(V )2) (96)

where e` is the `-th elementary symmetric polynomial on r variables.

Elementary symmetric polynomials play an important role in the proof of Proposition 19,
in particular their interplay with the Schur order; see Appendix B for definitions.

Lemma 32 Let φ, ψ : R∗
k

+ → R∗+ be defined by

φ : σ 7→ ek−1(σ)

ek(σ)
(97)

and
ψ : σ 7→ ek(σ). (98)

Then both functions are symmetric, φ is Schur-convex, and ψ is Schur-concave.

Proof [of Lemma 32] Let i, j ∈ [k], i 6= j. Let σi, σj ∈ R∗+, it holds

(σi − σj)(∂iφ(σ)− ∂jφ(σ)) = (σi − σj)(−
1

σ2
i

+
1

σ2
j

)

=
(σi − σj)2(σi + σj)

σ2
i σ

2
j

≥ 0,

so that φ is Schur-convex by Proposition 25. Similarly,

(σi − σj)(∂iψ(σ)− ∂jψ(σ)) = (σi − σj)(
∏
`6=i

σ` −
∏
`6=j

σ`)

= −(σi − σj)2
∏
` 6=i,j

σ` ≥ 0,

so that ψ is Schur-concave by Proposition 25.

Elementary symmetric polynomials also interact nicely with “marginalizing” sums.

Lemma 33 Let V be a real k × d matrix and let r = rk(V ). Denote by p the number of
non zero columns of V . Then for all k ≤ r + 1,∑

S⊂[d],|S|=k
Volk(V:,S)2>0

∑
T⊂S
|T |=k−1

ek−1(Σ(V:,T )2) ≤ (p− k + 1)ek−1(Σ(V )2). (99)

A fortiori, ∑
S⊂[d],|S|=k

Volk(V:,S)2>0

∑
T⊂S
|T |=k−1

ek−1(Σ(V:,T )2) ≤ (d− k + 1)ek−1(Σ(V )2). (100)
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Proof [of Lemma 33] For T ⊂ [d], |T | = k − 1,

Ω1(T ) = {S ⊂ [d] : |S| = k, T ⊂ S, ∀i ∈ S, V:,i 6= 0}
Ω2(T ) =

{
S ⊂ [d] : |S| = k, T ⊂ S,Volk(V:,S)2 > 0

}
.

Note that Ω2(T ) ⊂ Ω1(T ) so that∑
S⊂[d],|S|=k

Volk(V:,S)2>0

∑
T⊂S
|T |=k−1

ek−1(Σ(V:,T )2) =
∑
T⊂[d]
|T |=k−1

∑
S∈Ω2(T )

ek−1(Σ(V:,T )2)

≤
∑
T⊂[d]
|T |=k−1

∑
S∈Ω1(T )

ek−1(Σ(V:,T )2).

The set Ω1(T ) has at most (p− k + 1) elements so that∑
T⊂[d]
|T |=k−1

∑
S∈Ω1(T )

ek−1(Σ(V:,T )2) ≤ (p− k + 1)
∑
T⊂[d]
|T |=k−1

ek−1(Σ(V:,T )2). (101)

Lemma 31 for ` = k − 1 further yields

(p− k + 1)
∑
T⊂[d]
|T |=k−1

ek−1(Σ(V:,T )2) ≤ (p− k + 1) ek−1(Σ(V )2). (102)

D.2 Proof of Proposition 17

First, Lemma 30 yields∑
S⊂[d],|S|=k

Det(VS,[k])
2‖X −Πν

SX‖2ν ≤
∑

S⊂[d],|S|=k

1

σ2
k(VS,[k])

Det(VS,[k])
2 ‖X −ΠkX‖2ν

= ‖X −ΠkX‖2ν
∑

S⊂[d],|S|=k

k−1∏
`=1

σ2
` (VS,[k]), (103)

where the last equality follows from

Det(VS,[k])
2 =

k∏
`=1

σ2
` (VS,[k]). (104)

By definition of the polynomial ek−1, it further holds

k−1∏
`=1

σ2
` (VS,[k]) ≤ ek−1(Σ(VS,[k])

2), (105)
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so that (103) leads to∑
S⊂[d],|S|=k

Det(VS,[k])
2‖X −Πν

SX‖2ν ≤ ‖X −ΠkX‖2ν
∑

S⊂[d],|S|=k

ek−1(Σ(VS,[k])
2). (106)

Now, Lemma 31 applied to the matrix V ᵀ
S,[k] gives

ek−1(Σ(VS,[k])
2) =

∑
T⊂S,|T |=k−1

ek−1(Σ(VT,[k])
2), (107)

Therefore, Lemma 33 yields∑
S⊂[d],|S|=k

ek−1(Σ(VS,[k])
2) ≤ (d− k + 1)

∑
T⊂[d],|T |=k−1

ek−1(Σ(VT,[k])
2). (108)

Using Lemma 31 and the fact that Vk is orthogonal, we finally write∑
T⊂[d],|T |=k−1

ek−1(Σ(VT,[k])
2) = ek−1(Σ(Vk)

2) = k. (109)

Plugging (109) into (108), and then into (106) concludes the proof of Proposition 17.

D.3 Proof of Proposition 18

We first prove the Frobenius norm bound, which requires more work. The spectral bound
is easier and uses a subset of the arguments for the Frobenius norm.

D.3.1 Frobenius norm bound

Recall that E = X −ΠkX. We start with Lemma 30:

‖X −ΠFr
S X‖2Fr ≤ ‖E(I − PS)‖2Fr

= ‖E‖2Fr + Tr(EᵀEPSP
ᵀ
S )− 2 Tr(P ᵀ

SE
ᵀE).

(110)

Since EᵀE = V
k⊥

Σ2
k⊥
V ᵀ
k⊥

and PS = S(V ᵀ
k S)−1V ᵀ

k ,

Tr(P ᵀ
SE

ᵀE) = Tr

(
Vk ((V ᵀ

k S)ᵀ)−1SᵀV
k⊥

Σ
k⊥
V ᵀ
k⊥

)
= Tr

(
V ᵀ
k⊥
Vk ((V ᵀ

k S)ᵀ)−1SᵀV
k⊥

Σ
k⊥

)
= 0,

(111)

where the last equality follows from V ᵀ
k⊥
Vk = 0. Therefore, (110) becomes

‖X −ΠFr
S X‖2Fr ≤ ‖E‖2Fr + Tr(EᵀEPSP

ᵀ
S ). (112)

Taking expectations,

EDPP ‖X −ΠFr
S X‖2Fr ≤ ‖E‖2Fr +

∑
S⊂[d],|S|=k

Det(VS,[k])
2 Tr(EᵀEPSP

ᵀ
S ). (113)
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Proposition 27 expresses Det(VS,[k])
2 as a function of the principal angles (θi(S)) between

Span(Vk) and Span(S), namely

Det(VS,[k])
2 =

∏
i∈[k]

cos2(θi(S)). (114)

The remainder of the proof is in two steps. First, we bound the second factor in the sum in
the right-hand side of (113) with a similar geometric expression. This allows trigonometric
manipulations. Second, we work our way back to elementary symmetric polynomials of
spectra, and we conclude after some simple algebra.

First, for S ⊂ [d], |S| = k, let

ZS = V ᵀ
k⊥
S(V ᵀ

k S)−1 = V ᵀ
k⊥
PSVk.

It allows us to write

Tr(EᵀEPSP
ᵀ
S ) = Tr(Vk⊥Σ2

k⊥V
ᵀ
k⊥
PSP

ᵀ
S ) = Tr(Σ2

k⊥ZSVk V
ᵀ
k Z

ᵀ
S). (115)

However, for real symmetric matrices A and B with the same size, a simple diagonalization
argument yields

Tr(AB) ≤ ‖A‖2 Tr(B), (116)

so that

Tr(EᵀEPSP
ᵀ
S ) = Tr(Σ2

k⊥ZSVk V
ᵀ
k Z

ᵀ
S)

= Tr(Zᵀ
SΣ2

k⊥ZSVk V
ᵀ
k )

≤ Tr(Zᵀ
SΣ2

k⊥ZS)‖Vk V
ᵀ
k ‖2

≤ Tr(Zᵀ
SΣ2

k⊥ZS)

≤ ‖Σ2
k⊥‖2 Tr(ZSZ

ᵀ
S)

≤ σ2
k+1 Tr(ZSZ

ᵀ
S). (117)

In Appendix C, we characterize Tr(ZSZ
ᵀ
S) using principal angles, see (89). This reads

Tr(ZSZ
ᵀ
S) =

∑
j∈[k]

tan2(θj(S)). (118)

Combining (113), (117), (114), and (118), we obtain the following intermediate bound

EDPP ‖X −ΠFr
S X‖2Fr ≤ ‖E‖2Fr + σ2

k+1

∑
S⊂[d],|S|=k

∏
i∈[k]

cos2(θi(S))

∑
j∈[k]

tan2(θj(S))

 .
(119)

Distributing the sum and using trigonometric identities, the general term of the sum in
(119) becomes∏

i∈[k]

cos2(θi(S))

∑
j∈[k]

tan2(θj(S))

 =
∑
i∈[k]

(1− cos2(θi(S)))
∏

j∈[k],j 6=i

cos2(θj(S))

=
∑
i∈[k]

∏
j∈[k],j 6=i

cos2(θj(S))−
∑
i∈[k]

∏
j∈[k]

cos2(θj(S)).

(120)
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The (cos(θj(S)))j∈[k] are the singular values of the matrix VS,[k] so that

∑
i∈[k]

∏
j∈[k],j 6=i

cos2(θj(S)) = ek−1(Σ(VS,[k])
2), (121)

and ∏
j∈[k]

cos2(θj(S)) = ek(Σ(VS,[k])
2). (122)

Back to (120), one gets∏
i∈[k]

cos2(θi(S))

∑
j∈[k]

tan2(θj(S))

 = ek−1(Σ(VS,[k])
2)−

∑
i∈[k]

ek(Σ(VS,[k])
2)

= ek−1(Σ(VS,[k])
2)− kek(Σ(VS,[k])

2). (123)

Thus, plugging (123) back into the intermediate bound (119), it comes

EDPP ‖X −ΠFr
S X‖2Fr

≤ ‖E‖2Fr + σ2
k+1

∑
S⊂[d]
|S|=k

ek−1(Σ(VS,[k])
2)− k

∑
S⊂[d]
|S|=k

ek(Σ(VS,[k])
2)

 .
(124)

Using Lemma 31 twice, it comes

EDPP ‖X −ΠFr
S X‖2Fr

≤ ‖E‖2Fr + σ2
k+1

∑
S⊂[d]
|S|=k

∑
T⊂S
|T |=k−1

ek−1(Σ(VT,[k])
2)− kek(Σ(V:,[k])

2)

 . (125)

Lemmas 33 and the identities ek−1(Σ(V:,[k])
2) = k and ek(Σ(V:,[k])

2) = 1 allow us to
conclude

EDPP ‖X −ΠFr
S X‖2Fr ≤ ‖E‖2Fr + σ2

k+1

[
(p− k + 1)ek−1(Σ(V:,[k])

2)− k
]

(126)

= ‖E‖2Fr + σ2
k+1(p− k)k. (127)

By definition of β (47), we have proven (49), i.e.,

EDPP ‖X −ΠFr
S X‖2Fr ≤ ‖E‖2Fr

(
1 + β

p− k
d− k

k

)
.
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D.3.2 Spectral norm bound

The bound in spectral norm is easier to derive. We start with Lemma 30:

‖X −Π2
SX‖22 ≤ ‖E(I − PS)‖22

≤ ‖E‖22 + ‖EPS‖22
≤ ‖E‖22 + ‖E‖22‖V

ᵀ
k⊥
S(V ᵀ

k S)−1V ᵀ
k ‖

2
2

≤ ‖E‖22(1 + ‖ZS‖22),

(128)

where the notation is the same as in Section D.3.1. Now

‖ZS‖22 ≤ ‖ZS‖2Fr =
∑
i∈[k]

tan2(θi(S)), (129)

thus by (128), (129) and (114)

EDPP ‖X −Π2
SX‖22 =

∑
S⊂[d],|S|=k

Det(VS,[k])
2‖X −ΠSX‖22 (130)

≤ ‖E‖22

1 +
∑

S⊂[d],|S|=k
Det(VS,[k])

2>0

k∏
i=1

cos2(θi(S))
∑
i∈[k]

tan2(θi(S))

 . (131)

By (120), it comes

EDPP ‖X −Π2
SX‖22 ≤ ‖E‖22

1 +
∑

S⊂[d],|S|=k
Det(VS,[k])

2>0

ek−1(Σ(VS,[k])
2)− kek(Σ(VS,[k])

2)


≤ ‖E‖22

(
1 + (p− k + 1) ek−1(Σ(V:,[k])

2)− kek(Σ(V:,[k])
2)
)

= (1 + (p− k) k )‖E‖22.

where we again used the double sum trick of (125) and Lemma 33.

D.4 Proof of Theorem 19

We start with a lemma on evaluations of elementary symmetric polynomials on specific
sequences.

Lemma 34 Let λ ∈]0, 1]k such that
λ1 ≥ · · · ≥ λk,

Λ =
k∑
i=1

λi ≥ k − 1 + 1
θ .

(132)

Then, with the functions φ, ψ introduced in Lemma 32,{
ψ(λ) ≥ 1

θ
,

φ(λ) ≤ k − 1 + θ.
(133)

51



Belhadji, Bardenet, and Chainais

Proof Let λ̂ = (1, ..., 1,Λ− k + 1) ∈ R∗
k

+ . Then

λ1 ≤ λ̂1

λ1 + λ2 ≤ λ̂1 + λ̂2

...
k−1∑
i=1

λi ≤
k−1∑
i=1

λ̂i

k∑
i=1

λi =
k∑
i=1

λ̂i

(134)

so that, according to Definition 22,
λ ≺S λ̂. (135)

Lemma 32 ensures the Schur-convexity of φ and the Schur-concavity of ψ, so that

φ(λ) ≤ φ(λ̂) = k − 1 +
1

Λ− k + 1
≤ k − 1 + θ,

and

ψ(λ) ≥ ψ(λ̂) = Λ− k + 1 ≥ 1

θ
.

D.4.1 Frobenius norm bound

LetK = VkV
ᵀ
k , and π be a permutation of [d] that reorders the leverage scores decreasingly,

`kπ1
≥ `kπ2

≥ ... ≥ `kπd . (136)

By construction, Tpeff
= [πpeff

, ..., πd] thus collects the indices of the smallest leverage scores.
Finally, denoting by Π = (δi,πj )(i,j)∈[d]×[d] the matricial representation of permutation π,
we let

Kπ = ΠKΠᵀ = ((Kπi,πj ))1≤i,j≤d.

The goal of the proof is to bound

EDPP

[
‖X −ΠFr

S X‖2Fr|S ∩ Tpeff
= ∅
]

=

∑
Det(VS,[k])

2‖X −ΠFr
S X‖2Fr∑

Det(VS,[k])2
, (137)

where both sums run over subsets S ⊂ [d] such that |S| = k and S ∩ Tpeff(θ) = ∅. For
simplicity, let us write

Zk,peff(θ) =
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2, (138)

Yk,peff(θ) =
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2 Tr(ZSZ

ᵀ
S). (139)
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Following steps (113) to (117) of the previous proof, one obtains

EDPP

[
‖X −ΠFr

S X‖2Fr | S ∩ Tpeff
= ∅
]
≤ ‖X −ΠkX‖2Fr + σ2

k+1

Yk,peff(θ)

Zk,peff(θ)
. (140)

By definition (47) of the flatness parameter β,

σ2
k+1 = β

1

d− k
∑
j≥k+1

σ2
j = β

1

d− k
‖X −ΠkX‖2Fr. (141)

Then, it remains to upper bound the ratio Yk,peff(θ)/Zk,peff(θ) in (140), which is the important
part of the proof. We first evaluate Zk,peff(θ) and then bound Yk,peff(θ).

The matrix ΠVk ∈ Rd×k has its rows ordered by decreasing leverage scores. Let Ṽ π
peff(θ) ∈

Rpeff(θ)×k be the submatrix corresponding to the first peff(θ) rows of ΠVk. Let also

V̂ π
peff(θ) =

(
Ṽπ,peff(θ)

0d−peff(θ),k

)
be padded with zeros. Then

Kπ
peff(θ) =

[
Ṽπ,peff(θ)Ṽ

ᵀ
π,peff(θ) 0

0 0

]
= V̂ π

peff(θ)(V̂
π
peff(θ))

ᵀ ∈ Rd×d. (142)

The nonzero block of Kπ
peff(θ) is a submatrix of Kπ, and rkKπ = rkK = k. Hence Kπ

peff(θ)
has at most k nonzero eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 = λk+1 = · · · = λd. (143)

Therefore,

ek(Λ(Kπ
peff(θ))) =

∑
T⊂[d]
|T |=k

∏
j∈T

λj =
∏
i∈[k]

λi. (144)

Note moreover that

∀` ∈ [k], e`(Σ(V̂π,peff(θ))
2) = e`(Λ(Kπ

peff(θ))). (145)

By construction,

Zk,peff(θ) =
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2 =

∑
S⊂[d],|S|=k

Det

[(
V̂ π
peff(θ)

)
S,:

]2

(146)

Then, Lemma 31 yields

Zk,peff(θ) = ek(Σ(V̂π,peff(θ))
2) = ek(Λ(Kπ

peff(θ))) =
∏
i∈[k]

λi. (147)
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Now we bound Yk,peff(θ). We use again principal angles and trigonometric identities. Using
(118) and (123) above, it holds

Yk,peff(θ) =
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2 Tr(ZSZ

ᵀ
S)

=
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

∏
i∈[k]

cos2(θi(S))
∑
j∈[k]

tan2(θj(S))

=
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

ek−1

(
Σ(VS,[k])

2
)
− k ek

(
Σ(VS,[k]

)2
(148)

=
∑

S⊂[d],|S|=k

ek−1

(
Σ

([
V̂ π
peff(θ)

]
S,:

)2
)
− k ek

(
Σ

([
V̂ π
peff(θ)

]
S,:

)2
)

(149)

By Lemma 33 applied to the matrix V̂π,peff(θ) combined to (146), we get

Yk,peff(θ) ≤ (peff(θ)− k + 1)ek−1(Σ(V̂ π
peff(θ))

2)− k ek(Σ(V̂ π
peff(θ))

2)

≤ (peff(θ)− k + 1)ek−1(Λ(Kπ
peff(θ)))− k ek(Λ(Kπ

peff(θ)))

≤
(

(peff(θ)− k + 1)φ(λ̃)− k
)
Zk,peff(θ). (150)

where λ̃ = (1, . . . , 1,Tr(Kπ
peff(θ)) − k + 1) ∈ Rk, see Lemma 34. Now, as in the proof of

Lemma 34,

φ(λ̃) = k − 1 +
1

Tr(Kπ
peff(θ))− k + 1

≤ k − 1 + θ

by (51). Thus (150) yields

Yk,peff(θ)

Zk,peff(θ)
≤ (peff(θ)− k + 1)(k − 1 + θ)− k ≤ (peff(θ)− k + 1)(k − 1 + θ). (151)

Finally, plugging (151) and (141) in (140) concludes the proof of (54).
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D.4.2 Spectral norm bound

We proceed as for the Frobenius norm, using the notation of Section D.3.1. Lemma 30,
Equations (148) and (151) yield

EDPP

[
‖X −Π2

SX‖22 | S ∩ Tpeff
= ∅
]

= Z−1
k,peff(θ)

∑
S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2‖X −Π2

SX‖22,

≤ Z−1
k,peff(θ)‖X −ΠkX‖22


1 +

∑
S⊂[d],|S|=k
S∩Tpeff(θ)=∅,
Det(VS,[k])

2>0

k−1∏
`=1

σ2
` (VS,[k])− kek(Σ(VS,[k])

2)



≤ Z−1
k,peff(θ)‖X −ΠkX‖22


1 +

∑
S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2>0

ek−1(Σ(VS,[k])
2)− kek(Σ(VS,[k])

2)


≤
(
Yk,peff(θ)

Zk,peff(θ)
+ 1

)
‖X −ΠkX‖22

≤ (1 + (peff(θ)− k + 1)(k − 1 + θ)) ‖X −ΠkX‖22,

which is the claimed spectral bound.

D.4.3 Bounding the probability of rejection

Recall from Lemma 34 that

λ̂ =
(

1 . . . 1
∑k

i=1 λi − k + 1
)
∈ R∗

k

+ .

Still with the notation of Section D.3.1, (146) yields

P(S ∩ Tpeff(θ) = ∅) =
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2

= ek(K
π
peff(θ)) (152)

=
∏
i∈[k]

λi

≥ ψ(λ̂), (153)
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because the normalization constant
∑

S⊂[d],|S|=k

Det(VS,[k])
2 is equal to 1. Lemma 34 concludes

the proof since

ψ(λ̂) ≥ 1

θ
. (154)

D.5 Proof of Proposition 21

First, Proposition 12 gives

E(wS) ≤
(1 + max

i∈[k]
tan2 θi(S))‖w∗‖2σ2

k+1

N
+
k

N
ν. (155)

Now (89) further gives

max
i∈[k]

tan2 θi(S) ≤
∑
i∈[k]

tan2 θi(S) = Tr(ZSZ
ᵀ
S). (156)

The proof now follows the same lines as for the approximation bounds. First, following the
lines of Section D.3, we straightforwardly bound

EDPP

∑
i∈[k]

tan2(θi(S)) =
∑

S⊂[d],|S|=k

∏
i∈[k]

cos2(θi(S))
∑
j∈[k]

tan2(θj(S)) (157)

and obtain (64). In a similar vein, the same lines as in Section D.4 allow bounding

EDPP

[∑
i∈[k]

tan2(θi(S))|S∩Tpeff
= ∅
]

=
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

∏
i∈[k]

cos2(θi(S))
∑
j∈[k]

tan2(θj(S). (158)

and yield (65).

Appendix E. Generating orthogonal matrices with prescribed leverage
scores

In this section, we describe an algorithm that samples a random orthonormal matrix with
a prescribed profile of k-leverage scores. This algorithm was used to generate the matrices
F = V ᵀ

k ∈ Rk×d for the toy datasets of Section 6. The orthogonality constraint can be
expressed as a condition on the spectrum of the matrixK = VkV

ᵀ
k , namely Sp(K) ⊂ {0, 1}.

On the other hand, the constraint on the k-leverage scores can be expressed as a condition
on the diagonal of K. Thus, the problem of generating an orthogonal matrix with a given
profile of k-leverage scores boils down to enforcing conditions on the spectrum and the
diagonal of a symmetric matrix K.

E.1 Definitions and statement of the problem

We denote by (fi)i∈[d] the columns of the matrix F . For n ∈ N, we write 1n the vector
containing ones living in Rn, and 0n the vector containing zeros living in Rn. We say that
the vector u ∈ Rn interlaces on v ∈ Rn and we denote

u v v
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if un ≤ vn and ∀i ∈ [1 : n− 1], vi+1 ≤ ui ≤ vi.

. . . vi+2 ui+1 vi+1 ui vi ui−1 vi−1
. . .

Figure 13: Illustration of the interlacing of u on v.

Definition 35 Let k, d ∈ N, with k ≤ d. Let F ∈ Rk×d be a full rank matrix7. Within this
section, we denote σ2 = (σ2

1, σ
2
2, . . . , σ

2
k) the squares of the nonvanishing singular values of

the matrix F , and ` = (`1 = ‖f1‖2, `2 = ‖f2‖2, . . . , `d = ‖fd‖2) are the squared norms of
the columns of F , which we assume to be ordered decreasingly:

`1 ≥ `2 ≥ · · · ≥ `d.

When the rows of F are orthonormal, we can think of ` as a vector of leverage scores.

We are interested in the problem of constructing a matrix F with orthonormal rows
given its leverage scores.

Problem 1 Let k, d ∈ N, with k ≤ d, and let ` ∈ Rd+ such that
d∑
i=1

`i = k. Build a matrix

F ∈ Rk×d such that
Sp(F ᵀF ) = [1k,0d−k], (159)

and
Diag(F ᵀF ) = `. (160)

We actually consider here the generalization of Problem 2 to an arbitrary spectrum.

Problem 2 Let k, d ∈ N, with k ≤ d, and let ` ∈ Rd+ such that
d∑
i=1

`i =
k∑
i=1

σ2
i . Build a

matrix F ∈ Rk×d such that

Sp(F ᵀF ) = [σ2, 0d−k] =: σ̂2 (161)

and
Diag(F ᵀF ) = `. (162)

Denote by

M(`,σ) = {M ∈ Rd×d symmetric
/

Diag(M) = `, Sp(M) = σ̂2}. (163)

The non-emptiness of M(`,σ) is determined by a majorization condition between ` and σ̂,
see Appendix B for definitions. More precisely, we have the following theorem.

Theorem 36 (Schur-Horn) Let k, d ∈ N, with k ≤ d, and let ` ∈ Rd+. We have

M(`,σ) 6= ∅ ⇔ ` ≺S σ̂. (164)

The proof by Horn (1954) of the reciprocal in Theorem 36 is non constructive. In the next
section, we survey algorithms that output an element of M(`,σ).

7. A frame, using the definitions of (Fickus et al., 2011) and (Fickus et al., 2013).
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E.2 Related work

Several articles (Raskutti and Mahoney, 2016, Ma et al., 2015) in the randomized linear
algebra community propose the use of non Gaussian random matrices to generate matrices
with a fast decreasing profile of leverage scores (so-called heavy hitters) without controlling
the exact profile of the leverage scores.

Dhillon et al. (2005) showed how to generate matrices from M(`,σ) using Givens rota-
tions; see the algorithm in Figure 14. The idea of the algorithm is to start with a frame with
the exact spectrum and repeatedly apply orthogonal matrices (Lines 4 and 6 of Figure 14)
that preserve the spectrum while changing the leverage scores of only two columns, setting
one of their leverage scores to the desired value. The orthogonal matrices are the so-called
Givens rotations.

Definition 37 Let θ ∈ [0, 2π[ and i, j ∈ [d]. The Givens rotation Gi,j(θ) ∈ Rd×d is defined
by

Gi,j(θ) =



1
. . .

1
cos(θ) − sin(θ)

1
. . .

1
sin(θ) cos(θ)

1
. . .

1



. (165)

GivensAlgorithm
(
`,σ)

1 F ←−
[

Diag(σ) 0
]
∈ Rk×d

2 while ∃i, j, k ∈ [d], i < k < j : ‖fi‖2 < `i, ‖fk‖2 = `k, ‖fj‖2 > `j

3 if `i − ‖fi‖2 ≤ ‖fj‖2 − `j
4 F ← Gi,j(θ)F , where ‖(Gi,j(θ)F )i‖2 = `i.

5 else

6 F ← Gi,j(θ)F , where ‖(Gi,j(θ)F )j‖2 = `j ,

7 return F ∈ Rk×d.

Figure 14: The pseudocode of the algorithm proposed by Dhillon et al. (2005) for generating
a matrix given its leverage scores and spectrum by successively applying Givens rotations.

Figure 15 shows the output of the algorithm in Figure 14, for the input (`,σ) = (`,1)
for three different values of `. The main drawbacks of this algorithm are first that it is
deterministic, so that it outputs a unique matrix F for a given input (`,σ), and second
that the output is a highly structured matrix, as observed on Figure 15.
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We propose an algorithm that outputs random, more “generic” matrices belonging to
M(`,σ). This algorithm is based on a parametrization of M(`,σ) using the collection of
spectra of all minors of F ∈ M(`,σ). This parametrization was introduced by Fickus et al.
(2013), and we recall it in Section E.3. For now, let us simply look at Figure 16, which
displays a few outputs of our algorithm for the same input as in Figure 15a. We now obtain
different matrices for the same input (`,σ), and these matrices are less structured than the
output of Algorithm 14, as required.

E.3 The restricted Gelfand-Tsetlin polytope

Definition 38 Recall that (fi)i∈[d] are the columns of the matrix F ∈ Rk×d. For r ∈ [d],
we further define

Fr = F:,[r] ∈ Rk×r, (166)

Cr =
∑
i∈[r]

fif
ᵀ
i ∈ Rk×k, (167)

Gr = F ᵀ
r Fr ∈ Rr×r. (168)

Furthermore, we note for r ∈ [d],

(λr,i)i∈[k] = Λ(Cr), (169)

(λ̃r,i)i∈[r] = Λ(Gr). (170)

The (λr,i)i∈[k], r ∈ [d], are called the outer eigensteps of F , and we group them in the matrix

Λout(F ) = (λr,i)i∈[k],r∈[d] ∈ Rk×d.

Similarly, the (λ̃r,i)i∈[r] are called inner eigensteps of F : for r ∈ [d], (λr,i)i∈[k] and (λ̃r,i)i∈[r]

share the same nonzeros elements.
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Figure 15: The output of the algorithm in Figure 14 for k = 2, d = 10, σ = (1, 1), and
three different values of ` that each add to k. Each red dot has coordinates a column of F .
The blue circles have for radii the prescribed (

√
`i).
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Figure 16: The output of our algorithm for k = 2, d = 10, an input σ = (1, 1), and ` as in
Figure 15a. Each red dot has coordinates a column of F . The blue circles have for radii
the prescribed (

√
`i).

Example 2 For k = 2, d = 4, consider the full-rank matrix

F =

[
1 0 −1 0
0 1 0 −1

]
, (171)

Then

Λout(F ) =

[
1 1 2 2
0 1 1 2

]
. (172)

Proposition 39 The outer eigensteps satisfy the following constraints:

∀i ∈ [k], λ0,i = 0

∀i ∈ [k], λd,i = σ2
i

∀r ∈ [d], (λr,:) v (λr+1,:)

∀r ∈ [d],
∑
i∈[d]

λr,i =
∑
i∈[r]

`i

. (173)

In other words, the outer eigensteps are constrained to live in a polytope. We define
the restricted Gelfand-Tsetlin polytope GT(k,d)(σ, `) to be the subset of Rk×d defined by
the equations (173). A more graphical summary of the interlacing and sum constraints is
given in Figure 17. The restricted GT polytope8 allows a parametrization ofM(`,σ) by the
following reconstruction result.

8. Note the difference with the Gelfand-Tsetlin polytope in the random matrix literature (Baryshnikov,
2001), where only the spectrum is constrained, not the diagonal.
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`1 = λ1,1 λ2,1 λ3,1 . . . λd−1,1 λd,1 = σ1

+ + + . . . + +

0 = λ1,2 λ2,2 λ3,2 . . . λd−1,2 λd,2 = σ2

+ + + . . . + +

0 = λ1,3 λ2,3 λ3,3 . . . λd−1,3 λd,3 = σ3...
...

...
...

...
...

0 = λ1,k λ2,k λ3,k . . . λd−1,k λd,k = σk

`1
∑
i≤2

`i
∑
i≤3

`i
∑

i≤d−1

`i
∑
i≤d

`i

Figure 17: The interlacing relationships (173) satisfied by the outer eigensteps of a frame.
Thick triangles are used in place of ≤ for improved readability.

Theorem 40 (Theorem 3, Fickus et al., 2011) Every matrix F ∈ M(`,σ) can be con-
structed as follows:

− pick a valid sequence of outer eigensteps noted Λout ∈ GT(k,d)(σ, `),

− pick f1 ∈ Rk such that
‖f1‖2 = `1, (174)

− for r ∈ [d], consider the polynomial pr(x) =
∏
i∈[d]

(x − λr,i), and for each r ∈ [d − 1],

choose fr+1 ∈ Rk such that

∀λ ∈ {λr,i}i∈[d], ‖Pr,λfr+1‖2 = − lim
x→λ

(x− λ)
pr+1(λ)

pr(λ)
, (175)

where Pr,λ denotes the orthogonal projection onto the eigenspace Ker(λIk − FrF T
r ).

Conversely, any matrix F constructed by this process is in M(`,σ).

Fickus et al. (2011) propose an algorithm to construct a vector fr satisfying Equation
(175). Finally, an algorithm for the construction of a valid sequence of eigensteps Λout ∈
GT(k,d)(σ, `) was proposed in (Fickus et al., 2013). This yields the following constructive
result.

Theorem 41 (Theorem 4.1, Fickus et al., 2013) Every matrix F ∈ M(σ, `) can be
constructed as follows:

− Set ∀i ∈ [k], λ̃d,i = σ2
i ,

− For r ∈ {d− 1, . . . , 1}, construct {λ̃r,:} as follows. For each i ∈ {k, . . . , 1}, pick

λ̃r−1,i ∈ [Bi,r(`,σ), Ai,r(`,σ)],

where

Ai,r(`,σ) = max

{
λ̃r+1,i+1,

k∑
t=i

λ̃r+1,t −
k∑

t=i+1

λ̃r,t − `r+1

}

Bi,r(`,σ) = min

{
λ̃r+1,i, min

z=1,...,i

{
r∑
t=z

`t −
i∑

t=z+1

λ̃r+1,t −
k∑

t=i+1

λ̃r,t

}}
.

(176)
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RandomEigensteps
(
`,σ)

1 Λout ←− O ∈ Rk×d

2 ∀i ∈ [k], λ̃d,i ←− σi
3 for r ∈ {d− 1, . . . , 1}
4 for i ∈ {k, . . . , 1}
5 Pick λ̃r−1,i ∼ U([Bi,r(`,σ), Ai,r(`,σ)])

return Λout

Figure 18: The pseudocode of the generator of random valid eigensteps taking as input
(`,σ).

Furthermore, any sequence constructed by this algorithm is a valid sequence of inner eigen-
steps.

Based on these results we propose an algorithm for the generation of orthogonal random
matrices with a given profile of leverage scores.

E.4 Our algorithm

We consider a randomization of the algorithm given in Theorem 41. First, we generate a
random sequence of valid inner eigensteps Λin using Algorithm 18. Then we proceed to
the reconstruction a frame that admits Λin as a sequence of eigensteps using the Algorithm
proposed in (Fickus et al., 2011).

Note that Equations (174) and (175) admit several solutions. For example, for r ∈ [d],
and if fr+1 satisfies (175), −fr+1 satisfies this equation too. Fickus et al. (2011) actually
prove that the set of solutions of these equations is invariant under a specific action of the
orthogonal group O(ρ(r, k)) where ρ(r, k) ∈ N nontrivially depends on the eigensteps. In
the reconstruction step of our algorithm, we apply a random orthogonal matrix sampled
from the Haar measure on O(d) to the vector f1 and, then, for every r ∈ [2 : d], we apply
an independent random orthogonal matrix Ω to a vector fr+1, that satisfies (175), so that
Ωfr+1 still satisfies (175).

Figure 16 displays a few samples from our algorithm, which display diversity and no
apparent structure, as required for a generator of toy datasets. The question of fully char-
acterizing the distribution of the output of our algorithm is an open question.

62


	Introduction
	Notation
	Related Work
	Rank-revealing QR decompositions
	Length square importance sampling and additive bounds
	k-leverage scores sampling and multiplicative bounds
	The geometric interpretation of the k-leverage scores
	Negative correlation: volume sampling and the double phase algorithm
	Excess risk in sketched linear regression
	Linear regression with unsupervised column subset selection
	Comparing to supervised column subset selection


	Determinantal Point Processes
	Definitions
	Sampling from a DPP and a k-DPP
	Motivations for column subset selection using projection DPPs

	Main Results
	Multiplicative bounds in spectral and Frobenius norm
	Bounds for the excess risk in sketched linear regression
	Complexity analysis

	Numerical experiments
	Toy datasets
	Generating toy datasets
	Volume sampling vs projection DPP

	Real datasets
	Regression with unsupervised column subset selection
	Comparing supervised and the unsupervised algorithms
	Comparing to OMP on regression
	Low-rank approximation

	Discussion

	Conclusion
	Another interpretation of the k-leverage scores
	Majorization and Schur convexity
	Principal angles and the Cosine Sine decomposition
	Principal angles
	The Cosine Sine decomposition

	Proofs
	Technical lemmas
	Proof of Proposition 17
	Proof of Proposition 18
	Frobenius norm bound
	Spectral norm bound

	Proof of Theorem 19
	Frobenius norm bound
	Spectral norm bound
	Bounding the probability of rejection

	Proof of Proposition 21

	Generating orthogonal matrices with prescribed leverage scores
	Definitions and statement of the problem
	Related work
	The restricted Gelfand-Tsetlin polytope
	Our algorithm


