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Abstract

We study the least-squares regression problem over a Hilbert space, covering nonparametric
regression over a reproducing kernel Hilbert space as a special case. We first investigate
regularized algorithms adapted to a projection operator on a closed subspace of the Hilbert
space. We prove convergence results with respect to variants of norms, under a capac-
ity assumption on the hypothesis space and a regularity condition on the target function.
As a result, we obtain optimal rates for regularized algorithms with randomized sketches,
provided that the sketch dimension is proportional to the effective dimension up to a
logarithmic factor. As a byproduct, we obtain similar results for Nyström regularized al-
gorithms. Our results provide optimal, distribution-dependent rates that do not have any
saturation effect for sketched/Nyström regularized algorithms, considering both the attain-
able and non-attainable cases, in the well-conditioned regimes. We then study stochastic
gradient methods with projection over the subspace, allowing multi-pass over the data and
minibatches, and we derive similar optimal statistical convergence results.

Keywords: kernel methods, regularized algorithms, stochastic gradient methods, random
projection, sketching

1. Introduction

Let the input space H be a separable Hilbert space with inner product denoted by 〈·, ·〉H ,
and the output space R. Let ρ be an unknown probability measure on H×R. In this paper,
we study the following expected risk minimization,

inf
ω∈H
Ẽ(ω), Ẽ(ω) =

∫
H×R

(〈ω, x〉H − y)2dρ(x, y), (1)

where the measure ρ is known only through a sample z = {zi = (xi, yi)}ni=1 of size n ∈ N,
independently and identically distributed (i.i.d.) according to ρ.
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The above regression setting covers nonparametric regression over a reproducing ker-
nel Hilbert space (RKHS) (Shawe-Taylor and Cristianini, 2004; Cucker and Zhou, 2007;
Steinwart and Christmann, 2008), and it is close to functional regression (Ramsay, 2006)
and linear inverse problems (Engl et al., 1996). A basic algorithm for the problem is ridge
regression, and its generalization, spectral algorithm. Such algorithms can be viewed as
solving an empirical, linear equation with the empirical covariance operator replaced by a
regularized one, see (Caponnetto and Yao, 2006; Bauer et al., 2007; Gerfo et al., 2008; Lin
et al., 2018) and the references therein. Here, the regularization is used to control the com-
plexity of the solution to avoid over-fitting and to achieve the best possible generalization
ability.

The function/estimator generated by classic regularized algorithm is in the subspace
span{x} of H, where x = {x1, · · · , xn}. More often, the search of an estimator for some
specific algorithms is restricted to a different (and possibly smaller) subspace S, which leads
to regularized algorithms with projection. Typically, with a subsample/sketch dimension
m < n, S = span{x̃j : 1 ≤ j ≤ m} where x̃j is chosen randomly from the input set x,

and more generally, S = span{
∑n

j=1Gijxj : 1 ≤ i ≤ m} where G = [Gij ]1≤i≤m,1≤j≤n is a

general randomized matrix whose rows are drawn according to a distribution. We call1

the resulting algorithms the Nyström regularized algorithm and the sketched-regularized
algorithm, respectively. Such approaches have been shown to achieve some computational
advantages for ridge regression over an RKHS, leading to solutions that use the low-rank
approximation in place of the full kernel matrix and thus is faster to compute (e.g., see
Williams and Seeger, 2000; Kumar et al., 2009; Mahoney, 2011; Yang et al., 2012; Gittens
and Mahoney, 2016; Yang et al., 2017; Rudi et al., 2015, and references therein).

Our starting points of this paper are the contemporary papers (Bach, 2013; Alaoui and
Mahoney, 2015; Yang et al., 2017; Rudi et al., 2015; Myleiko et al., 2017) which study the
convergences of Nyström/sketched regularized algorithms for learning with kernel methods.
Particularly, within the fixed design setting, i.e., the input set x are deterministic while the
output set y = {y1, · · · , yn} treated randomly, convergence results have been derived, in
(Bach, 2013; Alaoui and Mahoney, 2015) for Nyström ridge regression and in (Yang et al.,
2017) for sketched ridge regression. Within the random design setting, which is more mean-
ingful (Hsu et al., 2014) in statistical learning theory, and involving a regularity/smoothness
condition on the target function (Smale and Zhou, 2007), optimal statistical results on gen-
eralization error bounds (excess risks) have been obtained in (Rudi et al., 2015) for Nyström
ridge regression. The latter results were further generalized in (Myleiko et al., 2017) to a
general Nyström regularized algorithm.

Although results have been developed for sketched ridge regression in the fixed design
setting, it is still unclear if one can get statistical results for a general sketched-regularized
algorithm in the random design setting. Besides, all the derived results, either for sketched
or Nyström regularized algorithms, are only for the attainable case, i.e., the expected risk
minimization (1) has at least one solution in H. Moreover, they saturate (Bauer et al., 2007)
at a critical value, meaning that they can not lead to better convergence rates even with a

1. The Nyström subsampling scheme corresponds to a sketched scheme with the rows of the sketch matrix
G randomly chosen from the rows of an identity matrix. In this paper, by abuse of terminology, we
sometimes use “sketched-regularized algorithm” to mean a sketched algorithm generated by Subgaussian
sketches or randomized bounded orthogonal system sketches those will be introduced in Subsection 3.3.
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smoother target function. Motivated by these, in this paper, we study statistical results of
projected-regularized algorithms for least-squares regression over a separable Hilbert space
within the random design setting.

We first extend the analysis in (Lin and Cevher, 2018b; Lin et al., 2018) for classic-
regularized algorithms to projected-regularized algorithms, and prove statistical results with
respect to a broader class of norms. We then show that the same convergence rates as
classic regularized algorithms can be retained for sketched-regularized algorithms, provided
that the sketch dimension is proportional to the effective dimension (Zhang, 2005) up to
a logarithmic factor. As a byproduct, we obtain similar results for Nyström regularized
algorithms.

Interestingly, our results provide optimal, distribution-dependent rates that do not have
any saturation effect for sketched/Nyström regularized algorithms in the well-conditioned
regimes, considering both the attainable and non-attainable cases. In our proof, we naturally
integrate proof techniques from (Smale and Zhou, 2007; Caponnetto and De Vito, 2007;
Rudi et al., 2015; Myleiko et al., 2017; Lin and Cevher, 2018b). Our novelties lie in a new
estimate on the projection error for sketched-regularized algorithms, a novel analysis to
conquer the saturation effect, and a refined analysis for Nyström regularized algorithms,
see Section 5 for details.

Our proof techniques can be used to analyze stochastic gradient methods (SGM) adapted
to the projection operator over the subspace S . Indeed, for classical non-projected multi-
pass SGM where a minibatch of sample points are selected randomly with replacement from
z at each iteration, it has been shown in (Lin and Rosasco, 2017b; Lin and Cevher, 2018b)
that one can approximate SGM via regularized algorithms, as the conditional expectation of
SGM given z is the batch gradient descent (Lin and Rosasco, 2017b), a special regularized
algorithm. The regularization effect of the number of iterations and statistical results for
classic multi-pass SGM have been unveiled in (Lin and Rosasco, 2017b). Besides, SGM has
been successfully combined with Nyström subsampling and its computational advantage
when considering mini-batches has been shown in (Lin and Rosasco, 2017a). Optimal
statistical results on generalization error bounds have been shown for Nyström SGM in
(Lin and Rosasco, 2017a), but only for the attainable cases.

In this paper, we provide statistical results on variants of norms with optimal rates for
sketched/Nyström SGM in the well-conditioned regimes, considering both the attainable
and non-attainable cases.

This paper is an extension of the conference version (Lin and Cevher, 2018a). In this
paper, we provide convergence results in H-norm for sketched/Nyström regularized al-
gorithms, results for sketched/Nyström SGM, and explicit constants in the error bounds
depending on noise variance and bias from Proposition 4, which have not been given in (Lin
and Cevher, 2018a). In (Lin and Cevher, 2018a), we give results for Nyström regularized
algorithms, considering only the plain Nyström subsampling with uniform sampling regime.
In this paper, we provide results for Nyström regularized algorithms, using alternative non-
uniform sampling scheme–the approximate leverage scores (ALS) Nyström subsampling, see
Subsection 3.4 for the details.

The rest of the paper is organized as follows. Section 2 introduces some auxiliary
notations and assumptions from standard statistical learning. Section 3 presents projected-
regularized algorithms and their convergence results, followed with simple discussions. Sec-
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tion 4 provides projected-SGM algorithms and their convergence results. Finally, Sections
5, 6 and the appendix supplement the proofs of our main results.

2. Notations and Assumptions

In this section, we first introduce the needed notation as well as the key auxiliary operators.
We then present assumptions from standard statistical learning.

2.1. Notations and Auxiliary Operators

Let Z = H × R, ρX(·) the induced marginal measure on H of ρ, and let ρ(·|x) be the
conditional probability measure on R with respect to x ∈ H and ρ. For simplicity, we
assume that the support of ρX is compact and that there exists a constant κ ∈ [1,∞[, such
that

〈x, x′〉H ≤ κ2, ∀x, x′ ∈ H, ρX -almost surely. (2)

Define the hypothesis space

Hρ = {f : H → R|∃ω ∈ H with f(x) = 〈ω, x〉H , ρX -almost surely}.

Denote L2
ρX

the Hilbert space of square integral functions from H to R with respect to ρX ,

with its norm given by ‖f‖ρ =
(∫
H |f(x)|2dρX(x)

) 1
2 .

For a given bounded operator L from a Hilbert space H1 to a Hilbert space H2, ‖L‖
denotes the operator norm of L, i.e., ‖L‖ = supf∈H1,‖f‖H1

=1 ‖Lf‖H2 . Let r ∈ N+, the set

{1, · · · , r} is denoted by [r]. For any real number a, a+ = max(a, 0), a− = min(0, a).
Let Sρ : H → L2

ρX
be the linear map ω → 〈ω, ·〉H , which is bounded by κ under As-

sumption (2). Furthermore, we consider the adjoint operator S∗ρ : L2
ρX
→ H, the covariance

operator T : H → H given by T = S∗ρSρ, and the integeral operator L : L2
ρX
→ L2

ρX
given

by SρS∗ρ . It can be easily proved that S∗ρg =
∫
H xg(x)dρX(x), Lf =

∫
H f(x)〈x, ·〉HdρX(x)

and T =
∫
H〈·, x〉HxdρX(x). Under Assumption (2), the operators T and L can be proved

to be positive trace class operators (and hence compact):

‖L‖ = ‖T ‖ ≤ tr(T ) =

∫
H

tr(x⊗ x)dρX(x) =

∫
H
‖x‖2HdρX(x) ≤ κ2. (3)

For any ω ∈ H, it is easy to prove the following isometry property (Bauer et al., 2007):

‖Sρω‖ρ = ‖T
1
2ω‖H . (4)

Moreover, according to the singular value decomposition of a compact operator, one can
prove that

‖L−
1
2Sρω‖ρ ≤ ‖ω‖H . (5)

We define the (modified) sampling operator Sx : H → Rn by (Sxω)i = 1√
n
〈ω, xi〉H , i ∈ [n],

where the norm ‖ · ‖2 in Rn is the usual Euclidean norm. Its adjoint operator S∗x : Rn → H,
defined by 〈S∗xy, ω〉H = 〈y,Sxω〉2 for y ∈ Rn, is thus given by S∗xy = 1√

n

∑n
i=1 yixi. For

notational simplicity, we let ȳ = 1√
|y|

y. Moreover, we can define the empirical covariance
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operator Tx : H → H such that Tx = S∗xSx. Obviously, Tx = 1
n

∑n
i=1〈·, xi〉Hxi. By Assump-

tion (2), similar to (3), we have

‖Tx‖ ≤ tr(Tx) ≤ κ2. (6)

It is easy to see that Problem (1) is equivalent to

inf
f∈Hρ

E(f), E(f) =

∫
H×R

(f(x)− y)2dρ(x, y), (7)

The function that minimizes the expected risk over all measurable functions is the regression
function (Cucker and Zhou, 2007; Steinwart and Christmann, 2008), defined as,

fρ(x) =

∫
R
ydρ(y|x), x ∈ H, ρX -almost surely. (8)

A simple calculation shows that the following well-known fact holds (Cucker and Zhou,
2007; Steinwart and Christmann, 2008), for all f ∈ L2

ρX
,

E(f)− E(fρ) = ‖f − fρ‖2ρ.

Then it is easy to see that (7) is equivalent to inff∈Hρ ‖f − fρ‖2ρ. Under Assumption (2),
Hρ is a subspace of L2

ρX
. Using the projection theorem, one can prove that a solution fH

for the problem (7) is the projection of the regression function fρ onto the closure of Hρ in
L2
ρX

, and moreover, for all f ∈ Hρ (Lin and Rosasco, 2017b),

S∗ρfρ = S∗ρfH , (9)

and
E(f)− E(fH) = ‖f − fH‖2ρ. (10)

Note that fH does not necessarily lie in Hρ.
Throughput this paper, S is a closed, finite-dimensional subspace of H, and P is the

projection operator onto S or P = I.

2.2. Assumptions

In this subsection, we introduce three standard assumptions in statistical learning theory
(Steinwart and Christmann, 2008; Cucker and Zhou, 2007). The first assumption relates to
a moment condition on the noise y − fρ(x).

Assumption 1 There exist positive constants Q and M such that for all l ≥ 2 with l ∈ N,∫
R
|y − fρ(x)|ldρ(y|x) ≤ 1

2
l!M l−2Q2, (11)

and |fρ(x)| ≤M , ρX-almost surely.

Typically, the above assumption is satisfied if y is bounded almost surely, or if y = 〈ω∗, x〉H+
ε, where ε is a Gaussian random variable with zero mean and it is independent from x.

The next assumption relates to the regularity/smoothness of the target function fH .
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Assumption 2 fH satisfies∫
H

(fH(x)− fρ(x))2x⊗ xdρX(x) � B2T , (12)

and the following Hölder source condition

fH = Lζg0, with ‖g0‖ρ ≤ R. (13)

Here, B,R, ζ are non-negative numbers.

Condition (12) is trivially satisfied if fH − fρ is bounded almost surely. Moreover, when
making a consistency assumption, i.e., infHρ E = E(fρ), as that in (Smale and Zhou, 2007;
Caponnetto, 2006; Steinwart et al., 2009), for kernel-based non-parametric regression, it is
satisfied2 with B = 0. Condition (13) characterizes the regularity of the target function
fH (Smale and Zhou, 2007). A bigger ζ corresponds to a higher regularity and a stronger
assumption, and it can lead to a faster convergence rate. Particularly, when ζ ≥ 1/2, fH ∈
Hρ (Steinwart and Christmann, 2008). This means that the expected risk minimization (1)
has at least one solution in H, which is referred to the attainable case. In this case, we let

ωH = T ζ−1S∗ρg0.

Using the singular value decomposition of Sρ, one can prove that SρωH = fH .
Finally, the last assumption relates to the capacity of the space H (Hρ).

Assumption 3 For some γ ∈ [0, 1] and cγ > 0, T satisfies

N (λ) := tr(T (T + λI)−1) ≤ cγλ−γ , for all λ > 0. (14)

The left hand-side of (14) is called degrees of freedom (Zhang, 2005), or effective di-
mension (Caponnetto and De Vito, 2007). Assumption 3 is always true for γ = 1 and
cγ = κ2, since T is a trace class operator. This is referred to the capacity independent
setting. Assumption 3 with γ ∈ [0, 1] allows to derive better rates. It is satisfied, e.g., if the
eigenvalues of T satisfy a polynomial decaying condition σi ∼ i−1/γ , or with γ = 0 if T is
finite rank.

3. Projected-regularized Algorithms

In this section, we first demonstrate and introduce the projected-regularized algorithms.
We then present theoretical results for the projected-regularized algorithms. Finally, we
give results for the sketched/Nyström regularized algorithms.

3.1. Projected-regularized Algorithms

The expected risk Ẽ(ω) in (1) can not be computed exactly. It can be only approximated
through the empirical risk Ẽz(ω),

Ẽz(ω) =
1

n

n∑
i=1

(〈ω, xi〉H − yi)2.

2. This can be verified by using (10).
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A first idea to deal with the problem is to replace the objective function in (1) with the
empirical risk. Moreover, we restrict the solution to the subspace S. This leads to the
projected empirical risk minimization, infω∈S Ẽz(ω). Using P 2 = P, a simple calculation
shows that a solution for the above could be ω̂ = Pα̂, with α̂ satisfying PTxPα̂ = PS∗xȳ. The
inversion of the linear operator PTxP may have a bad condition number or be unbounded
. Motivated by the classic (iterated) ridge regression, we replace the inversion of PTxP
with a regularized one, which leads to the following projected (iterated) ridge regression we
study throughout this paper.

Algorithm 1 The projected (iterated) ridge regression algorithm of order τ over the sample
z and subspace S is given by fzλ = Sρωz

λ, where3

ωz
λ = PGλ(PTxP )PS∗xȳ, Gλ(u) =

τ∑
i=1

λi−1(λ+ u)−i. (15)

Remark 1 1) Our results not only hold for projected ridge regression, but also hold for
a general projected-regularized algorithm, in which Gλ is a general filter function. Given
Λ ⊂ R+, a class of functions {Gλ : [0, κ2] → [0,∞[, λ ∈ Λ} are called filter functions with
qualification τ (τ ≥ 1) if there exist some positive constants E,F <∞ such that

sup
λ∈Λ

sup
u∈]0,κ2]

|Gλ(u)(u+ λ)| ≤ E. (16)

and
sup
α∈[0,τ ]

sup
λ∈Λ

sup
u∈]0,κ2]

|1− Gλ(u)u|(u+ λ)αλ−α ≤ F. (17)

The filter function Gλ(u) is an approximation of the inverse function. It is often used in
dealing with ill-posed inverse problems. We refer to (Caponnetto and Yao, 2006; Bauer
et al., 2007; Gerfo et al., 2008) and references therein for further details about the filter
functions.
2) A simple calculation shows that

Gλ(u) =
1− qτ

u
=

∑τ−1
i=0 q

i

u+ λ
, q =

λ

λ+ u
. (18)

Thus, Gλ(u) is a filter function with qualification τ , E = τ and F = 1. When τ = 1, it
is a filter function for the classic ridge regression and the algorithm is the projected ridge
regression algorithm.
3) Another typical filter function studied in the literature is

Gλ(u) =

{
u−1, if u ≥ λ,
0, otherwise,

(19)

which corresponds to principal component (spectral cut-off) regularization. Here, 1{·} de-
notes the indication function. In this case, E = 2, F = 2τ and τ could be any positive

3. Let L be a self-adjoint, compact operator over a separable Hilbert space H. Gλ(L) is an operator on
L defined by spectral calculus: Suppose that {(σi, ψi)}i is a set of normalized eigenpairs of L with the
eigenfunctions {ψi}i forming an orthonormal basis of H, then we have Gλ(L) =

∑
i Gλ(σi)ψi ⊗ ψi.
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number.
4) The choice Gλ(u) =

∑t
k=1 η(1 − ηu)t−k with η ∈]0, κ−2] where we identify λ = (ηt)−1,

corresponds to gradient methods or the Landweber iteration algorithm. The qualification τ
could be any positive number, E = 2, and F = Fτ = τ τ exp(1− τ).

In the above, λ is a regularization parameter which needs to be well chosen in order to
achieve the best possible performance. Throughout this paper, we assume that 1/n ≤ λ ≤ 1.

The performance of an estimator fzλ can be measured in terms of excess risk (generaliza-

tion error), E(fzλ)− infHρ E = Ẽ(ωz
λ)− infH Ẽ , which is exactly ‖fzλ−fH‖2ρ according to (10).

Assuming that fH ∈ Hρ, i.e., fH = Sρω∗ for some ω∗ ∈ H, it can be measured in terms of

H-norm, ‖ωz
λ − ω∗‖H , which is closely related to ‖L−

1
2Sρ(ωz

λ − ω∗)‖H = ‖L−
1
2 (fzλ − fH)‖ρ,

according to (5). In what follows, we will measure the performance of an estimator fzλ in
terms of a broader class of norms, ‖L−a(fzλ − fH)‖ρ, where a ∈ [0, 1

2 ] is such that L−afH is
well defined. In the attainable cases, i.e., fH ∈ Hρ, according to (5), ‖L−a(fzλ − fH)‖ρ is

close to ‖T
1
2
−a(ωz

λ−ωH)‖H . Convergence with respect to different norms is of strong inter-
est in convex optimization, inverse problems, and statistical learning theory. Particularly,
convergence with respect to target function values and the H-norm has been studied in con-
vex optimization. Interestingly, the convergence in the H-norm can imply the convergence
in target function values (although the derived rate is not optimal), while the opposite is
not true in general.

3.2. General Results for Projected-regularized Algorithms

We now state our first result as follows. In the sequel, C denotes a positive constant that
depends only on κ2, cγ , γ, ζ B,M,Q,R, τ and ‖T ‖, and it could be different at its each
appearance. Moreover, we write a1 . a2 to mean a1 ≤ Ca2.

Theorem 1 Under Assumptions 1, 2 and 3, let λ = n−θ for some θ ∈ [0, 1) or λ = 1∨lognγ

n .
Let a ∈ [0, 1

2 ∧ ζ], and τ ≥ ζ − a. Then the following holds with probability at least 1 − δ
(0 < δ < 1).
1) If ζ ∈ [0, 1],

‖L−a(fzλ − fH)‖ρ . λ−a log2 3

δ

(
λζ +

1√
nλγ

+ λζ−1
(
∆5 + ∆1−a

5 λa
))

. (20)

2) If ζ ≥ 1 and λ ≥ n−1/2,

‖L−a(fzλ − fH)‖ρ . λ−a log2 3

δ

(
λζ +

1√
nλγ

+ (∆5 + λ∆
(ζ−1)∧1
5 + ∆1−a

5 λa)

)
. (21)

Furthermore, if ζ ≥ 1/2, then the above conclusions still hold if we replace ‖L−a(fzλ−fH)‖ρ
by ‖T

1
2
−a(ωz

λ − ωH)‖H . Here, ∆5 is the projection error ‖(I − P )T
1
2 ‖2.

The above result provides high-probability error bounds with respect to variants of norms
for projected-regularized algorithms. The upper bound consists of three terms. The first
term depends on the regularity parameter ζ, and it arises from estimating the bias. The
second term depends on the sample size, and it arises from estimating the variance. The

8
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third term depends on the projection error. Note that there is a trade-off among the
bias term, the variance term, and the projection-error term. Ignoring the projection error,
solving the trade-off between the bias and variance terms leads to the best choice on λ and
the following result.

Corollary 1 Under the assumptions and notations of Theorem 1, let

λ = n
− 1

1∨(2ζ+γ) (1 ∨ log nγ)1{2ζ+γ≤1} . (22)

Then the following statements hold with probability at least 1− δ.
1) If ζ ≤ 1,

‖L−a(fzλ − fH)‖ρ . λζ−a
(
1 + λ−1∆5

)
log2 3

δ
. (23)

2) If ζ ≥ 1,

‖L−a(fzλ − fH)‖ρ . λ−a log2 3

δ

(
λζ + ∆5

(
1 +

( λ

∆5

)
∆

(ζ−1)∧1
5 +

( λ

∆5

)a))
. (24)

Furthermore, if ζ ≥ 1/2, then the above conclusions still hold if we replace ‖L−a(fzλ−fH)‖ρ
by ‖T

1
2
−a(ωz

λ − ωH)‖H .

Comparing the derived upper bound for projected-regularized algorithms with that for
classic regularized algorithms in (Lin et al., 2018), we see that the former has an extra
term, which is caused by projection. The above result asserts that projected-regularized
algorithms perform similarly as classic regularized algorithms if the projection operator is
well chosen such that the projection error is small enough.

In the special case that P = I, we get the follow result.

Corollary 2 Under the assumptions and notations of Theorem 1, let λ be given by (22)
and P = I. Then with probability at least 1− δ,

‖L−a(fzλ − fH)‖ρ . log2 3

δ


(

1∨lognγ

n

)ζ−a
, if 2ζ + γ ≤ 1,

n
− ζ−a

2ζ+γ , if 2ζ + γ > 1.
(25)

Furthermore, if ζ ≥ 1/2,

‖T 1/2−a(ωz
λ − ωH)‖H . log2 3

δ
n
− ζ−a

2ζ+γ ,

The rate from the above with 2ζ + γ ≤ 1 improves the rate O(na−ζ [1 ∨ log nγ ]1−a) derived
in (Lin et al., 2018). The convergence rates for 2ζ + γ > 1 have already been given in the
literature, see (Lin et al., 2018) and some of the references therein. They are optimal as
they match the minimax rates summarized in Table 1. See (Caponnetto and De Vito, 2007;
Steinwart et al., 2009; Blanchard and Mücke, 2018; Fischer and Steinwart, 2017) for further
details about minimax rates.

Remark 2 Corollary 2 provides convergence results in high probability for the studied algo-
rithms. As remarked in (Lin et al., 2018), it implies convergence in expectation and almost
sure convergence.
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Articles Assumptions Minimax Rate

(Caponnetto and De Vito, 2007, Theorem 2) a = 0, ζ ∈ [1
2 , 1] N

− 2ζ
2ζ+γ

(Steinwart et al., 2009, Theorem 9) a = 0, ζ ∈ (0, 1
2 ] N

− 2ζ
2ζ+γ

(Blanchard and Mücke, 2018, Theorem 3.5) a ∈ [0, 1
2 ], ζ ≥ 1

2 N
− 2(ζ−a)

2ζ+γ

Table 1: Minimax Rates on ‖L−a(fz − fH)‖2ρ

3.3. Results for Sketched-regularized Algorithms

In this subsection, we state results for sketched-regularized algorithms.
In sketched-regularized algorithms, the range of the projection operator P is the sub-

space range{S∗xG∗}, where G ∈ Rm×n is a sketch matrix with m < n satisfying the following
concentration inequality: For any finite subset E in Rn and for any t ∈ (0, 1),

P(|‖Ga‖22 − ‖a‖22 ≥ t‖a‖22 : ∃a ∈ E) ≤ 2|E|e
−t2m

c′0 logβ n . (26)

Here, c′0 is a universal positive constant and β is a universal non-negative constant. Many
matrices satisfy the concentration property.

• Subgaussian sketches. Matrices with i.i.d. Subgaussian (such as Gaussian or
Bernoulli) entries satisfy (26) with some universal constant c′0 and β = 0. More
generally, if the rows of G are independent (scaled) copies of an isotropic ψ2 vector,
then G also satisfies (26) (Mendelson et al., 2008).

• Randomized orthogonal system (ROS) sketches. As noted in (Krahmer and
Ward, 2011), matrix that satisfies restricted isometric property from compressed sens-
ing with randomized column signs satisfies (26). Particularly, random partial Fourier
matrix, or random partial Hadamard matrix with randomized column signs satisfies
(26) with β = 4 for some universal constant c′0. Using OS sketches has an advantage in
computation, as that for suitably chosen orthonormal matrices such as the DFT and
Hadamard matrices, a matrix-vector product can be executed in O(n logm) time, in
contrast to O(nm) time required for the same operation with generic dense sketches.

The following corollary shows that sketched-regularized algorithms have optimal rates
provided the sketch dimension m is not too small.

Corollary 3 Under the assumptions and notations of Theorem 1, let S = range{S∗xG∗},
where G ∈ Rm×n is a randomized matrix satisfying (26). Let

m & logβ n log3 3

δ


nγ

(1∨lognγ)γ , if 2ζ + γ ≤ 1,

n
γ(ζ−a)

(1−a)(2ζ+γ) , if ζ ≥ 1,

n
γ

2ζ+γ , otherwise.

(27)

Then with confidence at least 1− δ, the following holds

‖L−a(fzλ − fH)‖ρ . log3 3

δ


(

1∨lognγ

n

)ζ−a
, if 2ζ + γ ≤ 1,

n
− ζ−a

2ζ+γ , if 2ζ + γ > 1.
(28)

10
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Furthermore, if ζ ≥ 1/2,

‖T 1/2−a(ωz
λ − ωH)‖H . log3 3

δ
n
− ζ−a

2ζ+γ .

The above results assert that sketched-regularized algorithms converge optimally, provided
the sketch dimension is not too small, or in another words the error caused by projection
is negligible when the sketch dimension is large enough. Ignoring the logarithmic factors,
the minimal sketch dimension from the above is at most Cn, and it is smaller than Cn
when the regularity parameter ζ is large or the effective-dimensional parameter γ is small.
Furthermore, the minimal sketch dimension is proportional to the effective dimension λ−γ

up to a logarithmic factor for the case ζ ≤ 1.

Remark 3 1) Considering only the case ζ = 1/2 and a = 0, Yang et al. (2017) provide
optimal error bounds for sketched ridge regression within the fixed design setting.
2) Wang et al. (2017) provide error estimates on the target function values (i.e., the regu-
larized empirical risks) for sketched ridge regression over a finite-dimensional space in the
fixed design setting, and they also show a similar bias-variance trade-off phenomenon when
choosing the optimal regularization parameter for the algorithm.

Corollary 3 is proved by applying Corollary 1, combing with an estimate on the projection
error developed in Subsection 5.5. As we mentioned before, the Nyström regularized algo-
rithm can be viewed as a projected-regularized algorithm with the projection operator P
being the subspace range{S∗xG∗}, where G ∈ Rm×n is a sketch matrix with rows drawn ran-
domly from an identity matrix. However, for the latter case, in general, we need alternative
arguments for estimating the projection error.

3.4. Results for Nyström Regularized Algorithms

As a byproduct of the paper, using Corollary 1 and an estimation on the projection error,
we derive the following results for Nyström regularized algorithms.

Corollary 4 Under the assumptions and notations of Theorem 1, let S = span{x1, · · · , xm},
2ζ + γ > 1, and λ = n

− 1
2ζ+γ . If

m & (1 + log nγ)

{
n

ζ−a
(1−a)(2ζ+γ) if ζ ≥ 1,

n
1

2ζ+γ if ζ ≤ 1,

then the conclusions in Corollary 3 are true.

Remark 4 1) Considering only the case 1/2 ≤ ζ ≤ 1 and a = 0, (Rudi et al., 2015)
provides optimal generalization error bounds for Nyström ridge regression. This result was
further extended in (Myleiko et al., 2017) to a general Nyström regularized algorithm with
a general source assumption indexed with an operator monotone function (but only in the
attainable cases). Note that as in classic ridge regression, Nyström ridge regression saturates
over ζ ≥ 1, i.e., it does not have a better rate even for a bigger ζ ≥ 1.
2) For the case ζ ≥ 1 and a = 0, (Myleiko et al., 2017) provides certain generalization error

11
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bounds for plain Nyström regularized algorithms, but the rates are capacity-independent, and

the minimal projection dimension O(n
2ζ−1
2ζ+1 ) is larger than ours (considering the case γ = 1

for the sake of fairness).

In the above lemma, we consider the plain Nyström subsampling. Using the ALS
Nyström subsampling (Drineas et al., 2012; Gittens and Mahoney, 2016; Alaoui and Ma-
honey, 2015), we can improve the projection dimension condition to (27).

ALS Nyström subsampling Let K = SxS∗x. For λ > 0, the leveraging scores of K(K+
λI) is the set {li(λ)}ni=1 with

li(λ) =
(
K(K + λI)−1

)
ii
, ∀i ∈ [n].

The L-approximated leveraging scores (ALS) of K(K + λI) is a set {l̂i(λ)}ni=1 satisfying

L−1li(λ) ≤ l̂i(λ) ≤ Lli(λ),

for some L ≥ 1. In an (L, λ)-ALS Nyström subsampling regime, S = range{x̃1, · · · , x̃m},
where each x̃j is i.i.d. drawn according to

P (x̃ = xi) ∼ l̂i(λ).

The i-th leveraging score li(λ) measures the “importance” of the i-th input xi. In ALS
Nyström scheme, the element corresponding with a higher score will be selected with a
higher probability, which is different from the uniform selection in plain Nyström.

Corollary 5 Under the assumptions of Theorem 1, let λ = n
− 1

(2ζ+γ)∨1 and S = range{x̃1, · · · , x̃m}
with x̃j drawn following an (L, λ)-ALS Nyström subsampling scheme. If

m & L2 log3 3

δ


nγ [1 ∨ log nγ ]1−γ , if 2ζ + γ ≤ 1,

n
γ(ζ−a)

(1−a)(2ζ+γ) [1 ∨ log nγ ], if ζ ≥ 1,

n
γ

2ζ+γ [1 ∨ log nγ ], otherwise,

(29)

then the conclusions in Corollary 3 are true.

4. Results for Projected Stochastic Gradient Method

In this section, we introduce stochastic gradient methods with projections (projected-SGM)
and then state statistical results for the projected-SGM. As corollaries, we provide conver-
gence results for the sketched/Nyström SGM methods.

SGM is one of the most popular and scalable algorithms for large-scale learning prob-
lems. We refer to (Lin and Rosasco, 2017b,a) and references therein for further introductions
on SGM. In this paper, we study the following projected-SGM, a variant of classic SGM
considering an orthogonal projection operator.

12
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Algorithm 2 The stochastic gradient method with projection is defined by ω1 = 0,

ωt+1 = ωt − η
1

b

bt∑
i=b(t−1)+1

(〈ωt, xji〉H − yji)Pxji , t = 1, · · · , T,

where η is a step-size, j1, j2, · · · , jbT are i.i.d. random variables from the uniform distribu-
tion on {1, · · · , n}, and b ∈ N+.

The step-size ηt, the number of iterations T , and the minibatch size b, are free parameters
in the above algorithm. They dictate the performance of the algorithm, as shown in our
coming results.

The random variables j1, · · · , jbT are conditionally independent given the sample z. We
write J = {j1, · · · , jbT } and denote the conditional expectation with respect to J given z
by EJ.

In order to state our results, we need to introduce the following assumption on the
moment condition of |y|2.

Assumption 4 There exist constants M ∈]0,∞[ and Q ∈]1,∞[ such that∫
Y
y2ldρ(y|x) ≤ l!M lQ, ∀l ∈ N, (30)

ρX-almost surely.

A simple calculation shows that the above assumption can imply Assumption 1. With this
assumption, we have the following general results for projected-SGM.

Theorem 2 Under Assumptions 2, 3 and 4, let δ ∈ (0, 1), and for some C ′1 ≥ 1,

‖(I − P )T
1
2 ‖2 ≤ C ′1λ

1∨ζ−a
1−a log

2

δ
, λ = n

− 1
1∨(2ζ+γ) (1 ∨ log nγ)1{2ζ+γ≤1} . (31)

Consider Algorithm 2 with any of the following choices on η, b and T :
I) η ' λ2ζ , b = 1 and T ' λ−(1+2ζ);
II) η ' (log n)−1, b ' λ−2ζ and T ' λ−1 log n;
III) η ' n−1, b = 1 and T ' nλ−1;
IV) η ' n−1/2, b '

√
n and T '

√
nλ−1.

Then for any a ∈ [0, 1
2 ∧ ζ], the following holds with probability at least 1− δ.

1) If 2ζ + γ ≤ 1,

EJ‖L−a(SρωT+1 − fH)‖2ρ . n−2(ζ−a)(log n)1{2a6=1}(1 ∨ log nγ)2(ζ−a) log3 2

δ
. (32)

2) If 2ζ + γ > 1,

EJ‖L−a(SρωT+1 − fH)‖2ρ . n
− 2(ζ−a)

2ζ+γ (log n)1{2a6=1} log3 2

δ
. (33)

Furthermore, if ζ ≥ 1/2, then the above conclusions still hold if we replace ‖L−a(SρωT+1 −
fH)‖ρ by ‖T

1
2
−a(ωT+1 − ωH)‖H .

13
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The above results assert that with appropriate choices on the step-size and mini-batch
size, if the projection error is small enough, the projected-SGM at some number of iterations
performs optimally.

As direct corollaries, we have the following results for projected-SGM, considering spe-
cific projection operators as in Section 3.

Corollary 6 Under the assumptions and notations of Theorem 2, if P = I, then the con-
clusions in Theorem 2 are true.

Corollary 7 Under the assumptions and notations of Theorem 2, let P and m be as in
Corollary 3/4/5, then the conclusions in Theorem 2 are true.

Remark 5 1) Similar results for classic (multi-pass) SGM were proved for a = 0 (Lin
and Rosasco, 2017b; Lin and Cevher, 2018b) and a = 1

2 (Lin and Rosasco, 2017b), where

the derived rate O(n
−(2ζ−a)
2ζ+γ log2 n) for a = 1

2 from (Lin and Rosasco, 2017b) has an extra
logarithmic factor in comparisons with our results.
2) Similar results with a = 0 for plain Nyström SGM were derived in (Lin and Rosasco,
2017a), but only for ζ ∈ [1

2 , 1].

Remark 6 Making an additional assumption on the so-called embedding property (Stein-
wart et al., 2009), optimal rates for the regime 2ζ+γ ≤ 1 can be derived for ridge regression
(Steinwart et al., 2009; Fischer and Steinwart, 2017) and multiple passes SGM with aver-
aging (Pillaud-Vivien et al., 2018).

All the main results stated above will be proved in the remaining sections.

5. Proof for Section 3

In this section, we prove the results stated in Section 3. We first introduce some basic
operator inequalities that are necessary for the proof in Subsection 5.1. We then give
some deterministic estimates in Lemma 13, and with these basic operator inequalities and
deterministic estimates, we prove a deterministically analytic result (i.e., Proposition 3)
in Subsection 5.2. The analytic result involves three random quantities ∆{1,2,3} and the
projection error. The random quantities ∆{1,2,3} will be estimated in Lemmas 14–16, see
Subsection 5.3. Applying the probabilistic estimates on ∆{1,2,3} from Lemmas 14–16 into
Proposition 3, in Subsection 5.4, we prove the results (i.e., Theorem 1 and Corollary 1)
for projected-regularized algorithms. We finally estimate the projection errors and use
Corollary 1 to prove the results (i.e., Corollaries 3-5) for sketched-regularized and Nyström-
regularized algorithms in Subsections 5.5–5.6.

5.1. Operator Inequalities

To proceed with the proof, we need to recall some basic operator inequalities, and we provide
some of the proofs for completeness.

Lemma 8 (Fujii et al., 1993) Let A and B be two positive bounded linear operators on a
separable Hilbert space. Then

‖AsBs‖ ≤ ‖AB‖s, when 0 ≤ s ≤ 1.

14
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Lemma 9 Let H1, H2 be two separable Hilbert spaces and S : H1 → H2 a compact operator.
Then for any function f : [0, ‖S‖]→ [0,∞[,

f(SS∗)S = Sf(S∗S).

Proof The result can be proved using singular value decomposition of a compact operator.

Lemma 10 Let A and B be two non-negative bounded linear operators on a separable
Hilbert space with max(‖A‖, ‖B‖) ≤ κ2 for some non-negative κ2. Then for any ζ > 0,

‖Aζ −Bζ‖ ≤ Cζ,κ‖A−B‖ζ∧1, (34)

where

Cζ,κ =

{
1 when ζ ≤ 1,

2ζκ2ζ−2 when ζ > 1.
(35)

Proof The proof is based on the fact that uζ is operator monotone if 0 < ζ ≤ 1. While
for ζ ≥ 1, the proof can be found in, e.g., (Dicker et al., 2017).

Lemma 11 Let X and A be bounded linear operators on a separable Hilbert space H.
Suppose that A � 0 and ‖X‖ ≤ 1. Then for any λ ≥ 0, and any bounded linear operator F
on H,

‖(A+ λI)
1
2XF ∗‖ = ‖FX∗(A+ λI)

1
2 ‖ ≤ ‖F (X∗AX + λI)

1
2 ‖. (36)

Proof Note that X∗X � I since ‖X‖ ≤ 1. In fact, for any ω ∈ H,

〈X∗Xω,ω〉H = ‖Xω‖2H ≤ ‖ω‖2H = 〈ω, ω〉H .

It thus follows that

X∗(A+ λI)X � X∗AX + λI.

Therefore,

‖FX∗(A+ λI)
1
2 ‖2 = ‖FX∗(A+ λI)XF ∗‖ ≤ ‖F (X∗AX + λI)F ∗‖ = ‖F (X∗AX + λI)

1
2 ‖2.

Lemma 12 Let P be a projection operator in a Hilbert space H, and A, B be two semidef-
inite positive operators on H. For any 0 ≤ s, t ≤ 1

2 , we have

‖As(I − P )At‖ ≤ ‖A−B‖s+t + ‖B
1
2 (I − P )B

1
2 ‖s+t.
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Proof Since P is a projection operator, (I − P )2 = I − P . Then it holds that

‖As(I − P )At‖ = ‖As(I − P )(I − P )At‖ ≤ ‖As(I − P )‖‖(I − P )At‖.

Moreover, by Lemma 8, we have

‖As(I − P )‖ = ‖A
1
2

2s(I − P )2s‖ ≤ ‖A
1
2 (I − P )‖2s.

Similarly, ‖(I − P )At‖ ≤ ‖(I − P )A
1
2 ‖2t. Thus, it follows that

‖As(I − P )At‖ ≤ ‖A
1
2 (I − P )‖2s‖(I − P )A

1
2 ‖2t = ‖(I − P )A

1
2 ‖2(t+s).

Using ‖D‖2 = ‖D∗D‖,

‖As(I − P )At‖ ≤ ‖(I − P )A(I − P )‖t+s.

Adding and subtracting with the same term, using the triangle inequality, and noting that
‖I − P‖ ≤ 1 and s+ t ≤ 1,

‖As(I − P )At‖ ≤‖(I − P )A(I − P )‖t+s

≤ (‖(I − P )(A−B)(I − P )‖+ ‖(I − P )B(I − P )‖)t+s

≤‖A−B‖s+t + ‖(I − P )B(I − P )‖s+t,

which leads to the desired result using ‖D∗D‖ = ‖DD∗‖.

5.2. Deterministic Estimates

In this subsection, we introduce some deterministic estimates. For notational simplicity,
throughout this paper, we denote

Tλ = T + λI, Txλ = Tx + λI.

We also denote
Rλ(u) = 1− Gλ(u)u. (37)

For any λ > 0, we introduce a deterministic vector ωλH , defined by

ωλH = Ḡλ(T )S∗ρfH , (38)

where Ḡλ(u) is given by (19). We have the following lemma for the properties of ωλH . We
assume τ ≥ ζ − a throughout.

Lemma 13 Under Assumption 2, the following holds.
1) For any a ≤ ζ, we have

‖L−a(SρωλH − fH)‖ρ ≤ Rλζ−a. (39)

2) We have

‖T a−1/2ωλH‖H ≤ R ·

{
λζ+a−1, if − ζ ≤ a ≤ 1− ζ,
κ2(ζ+a−1), if a ≥ 1− ζ.

(40)
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The above lemma could be proved using the spectral theorem, see (Lin and Cevher, 2018b)
for details. The left hand-side of (39) is often called “true bias”.

Using the above lemma and some basic operator inequalities, we can prove the following
analytic, deterministic result.

Proposition 3 Under Assumption 2, let

1 ∨ ‖T
1
2
λ T

− 1
2

xλ ‖
2 ∨ ‖T −

1
2

λ T
1
2
xλ‖

2 ≤ ∆1,

‖T −1/2
λ [(TxωλH − S∗xȳ)− (T ωλH − S∗ρfH)]‖H ≤ ∆2,

‖T − Tx‖ ≤ ∆3,

‖(I − P )T
1
2 ‖2 = ∆5.

Then, for any 0 ≤ a ≤ [ζ ∧ 1
2 ], the following holds.

1) If ζ ∈ [0, 1], then we have

‖L−a(Sρωz
λ − fH)‖ρ ≤ λ−a∆1−a

1

(
E∆2 + (2E + F + 1)Rλζ +Rλζ−1(E∆5 + ∆1−a

5 λa)
)
.

(41)

2) If ζ ≥ 1, then we have

‖L−a(Sρωz
λ − fH)‖ρ ≤ λ−a∆1−a

1

(
E∆2 + (E + F + 1)Rλζ + κ2(ζ−1)R

(
E∆3 + E∆5 + ∆1−a

5 λa
)

+Cζ− 1
2
,κFR

(
λ(∆3 + ∆5)(ζ−1)∧1 + λ

1
2 ∆

(ζ− 1
2

)∧1

3

))
.

(42)

The above proposition is key to our proof. The upper bounds from the proposition involve
four quantities ∆{1,2,3,5}. They will be estimated in the subsequent subsections. The proof

of the above proposition ζ ∈ [1
2 , 1] borrows ideas from (Smale and Zhou, 2007; Caponnetto

and De Vito, 2007; Rudi et al., 2015; Lin et al., 2018), whereas the key step is an error
decomposition from (Lin and Cevher, 2018b). Our novelty lies in the proof for the cases
ζ ≥ 1 and ζ ≤ 1/2, as well as some refined analysis and considering convergences under
variants of norms.
Proof Adding and subtracting with the same term, and using the triangle inequality, we
have

‖L−a(Sρωz
λ − fH)‖ρ ≤ ‖L−aSρ(ωz

λ − ωλH)‖ρ + ‖L−a(SρωλH − fH)‖ρ.

Applying Part 1) of Lemma 13 to bound the last term, with 0 ≤ a ≤ ζ,

‖L−a(Sρωz
λ − fH)‖ρ ≤‖L−aSρ(ωz

λ − ωλH)‖ρ +Rλζ−a

≤‖L−aSρT a−
1
2 ‖‖T

1
2
−a(ωz

λ − ωλH)‖H +Rλζ−a.

Using the spectral theorem for compact operators, L = SρS∗ρ , and T = S∗ρSρ, we have

‖L−aSρT a−
1
2 ‖ ≤ 1,
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and thus
‖L−a(Sρωz

λ − fH)‖ρ ≤ ‖T
1
2
−a(ωz

λ − ωλH)‖H +Rλζ−a. (43)

Adding and subtracting with the same term, and using the triangle inequality,

‖L−a(Sρωz
λ − fH)‖ρ ≤ ‖T

1
2
−a(ωz

λ − PωλH)‖H + ‖T
1
2
−a(I − P )ωλH‖H +Rλζ−a.

Since P is an orthogonal projected operator and a ∈ [0, 1
2 ], we have

‖T
1
2
−a(I − P )ωλH‖H

=‖T
1
2

(1−2a)(I − P )1−2a(I − P )ωλH‖H
≤‖T

1
2

(1−2a)(I − P )1−2a‖‖(I − P )T
1
2 ‖‖T −

1
2ωλH‖H

≤‖T
1
2 (I − P )‖1−2a‖(I − P )T

1
2 ‖Rκ2(ζ−1)+λ(ζ−1)−

=∆1−a
5 Rκ2(ζ−1)+λ(ζ−1)− ,

where for the last second inequality, we use Lemma 8 and Part 2) of Lemma 13, and we
subsequently obtain

‖L−a(Sρωz
λ − fH)‖ρ ≤ ‖T

1
2
−a(ωz

λ − PωλH)‖H +Rκ2(ζ−1)+λ(ζ−1)−∆1−a
5 +Rλζ−a.

Since for all ω ∈ H, and a ∈ [0, 1
2 ],

‖T
1
2
−aω‖H ≤‖T

1
2
−a

λ T a−
1
2

xλ ‖‖T
1
2
−a

xλ ω‖H

≤λ−a‖T
1
2
−a

λ T a−
1
2

xλ ‖‖T
1
2
xλω‖H

≤λ−a‖T
1
2
λ T

− 1
2

xλ ‖
1−2a‖T

1
2
xλω‖H

≤λ−a∆
1
2
−a

1 ‖T
1
2
xλω‖H (44)

(where we use Lemma 8 for the last second inequality), we get

‖L−a(Sρωz
λ − fH)‖ρ ≤ λ−a∆

1
2
−a

1 ‖T
1
2
xλ(ωz

λ − PωλH)‖H +Rκ2(ζ−1)+λ(ζ−1)−∆1−a
5 +Rλζ−a.

(45)

In what follows, we estimate ‖T
1
2
xλ(ωz

λ − PωλH)‖H .
Introducing with (15), with P 2 = P,

‖T
1
2
xλ(ωz

λ − PωλH)‖H = ‖T
1
2
xλP (Gλ(PTxP )PS∗xȳ − PωλH)‖H .

Since for any ω ∈ H,

‖T
1
2
xλPω‖

2
H = 〈PTxλPω, ω〉H ≤ 〈(PTxP + λI)ω, ω〉H = ‖(PTxP + λI)

1
2ω‖2H ,

and we thus get

‖T
1
2
xλ(ωz

λ − PωλH)‖H ≤ ‖U
1
2
λ (Gλ(U)PS∗xȳ − PωλH)‖H ,
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where we denote

U = PTxP, Uλ = U + λI. (46)

Subtracting and adding with the same term, and applying the triangle inequality, with the
notation Rλ given by (37) and P 2 = P , we have

‖T
1
2
xλ(ωz

λ − PωλH)‖H ≤ ‖U
1
2
λ Gλ(U)P (S∗xȳ − TxPωλH)︸ ︷︷ ︸

Term.A

‖H + ‖U
1
2
λRλ(U)PωλH︸ ︷︷ ︸

Term.B

‖H . (47)

We will estimate the above two terms of the right-hand side.
Estimating ‖Term.A‖H :
Using Lemma 11,

‖U
1
2
λ Gλ(U)PT

1
2
xλ‖ ≤ ‖U

1
2
λ Gλ(U)U

1
2
λ ‖ = ‖UλGλ(U)‖.

Using the spectral theorem, with ‖U‖ ≤ ‖Tx‖ ≤ κ2 (implied by (6)), and then applying
(16),

‖U
1
2
λ Gλ(U)PT

1
2
xλ‖ ≤ sup

u∈[0,κ2]

|(u+ λ)Gλ(u)| ≤ E. (48)

Using the above inequality, and by a simple calculation,

‖Term.A‖H ≤‖U
1
2
λ Gλ(U)PT

1
2
xλ‖‖T

− 1
2

xλ (S∗xy − TxPωλH)‖ ≤ E‖T −
1
2

xλ (S∗xȳ − TxPωλH)‖.

Adding and subtracting with the same terms, and using the triangle inequality,

‖Term.A‖H ≤E‖T
− 1

2
xλ (S∗xȳ − TxωλH)‖H + E‖T −

1
2

xλ Tx(I − P )ωλH)‖H

≤E‖T −
1
2

xλ T
1
2
λ ‖‖T

− 1
2

λ (S∗xȳ − TxωλH)‖H + E‖T −
1
2

xλ Tx(I − P )ωλH)‖H

≤E∆
1
2
1 ‖T

− 1
2

λ (S∗xȳ − TxωλH)‖H + E‖T −
1
2

xλ Tx(I − P )ωλH)‖H

≤E∆
1
2
1 (∆2 + ‖T −

1
2

λ (T ωλH − S∗ρfH)‖H) + E‖T −
1
2

xλ Tx(I − P )ωλH‖H

≤E∆
1
2
1 (∆2 + ‖T −

1
2

λ S∗ρ‖‖SρωλH − fH‖ρ) + E‖T
1
2
x (I − P )‖‖(I − P )T

1
2 ‖‖T −

1
2ωλH‖H ,

where we used T = S∗ρSρ and (I − P )2 = I − P for the last inequality. Applying Lemma

13 and ‖T −
1
2

λ S∗ρ‖ ≤ 1,

‖Term.A‖H ≤ E∆
1
2
1 (∆2 +Rλζ) + ER∆

1
2
5 ‖T

1
2
x (I − P )‖κ2(ζ−1)+λ(ζ−1)− . (49)

In what follows, we estimate ‖T
1
2
x (I − P )‖, considering two different cases.

Case ζ ≤ 1.
We have

‖T
1
2
x (I − P )‖ ≤ ∆

1
2
1 ‖T

1
2
λ (I − P )‖.
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Note that for any ω ∈ H with ‖ω‖H = 1,

‖T
1
2
λ (I − P )ω‖2H = 〈Tλ(I − P )ω, (I − P )ω〉H = ‖T

1
2 (I − P )ω‖2H + λ‖(I − P )ω‖2H
≤ ‖T

1
2 (I − P )‖2 + λ ≤ ∆5 + λ.

It thus follows that

‖T
1
2
λ (I − P )‖ ≤ (∆5 + λ)

1
2 , (50)

and thus

‖T
1
2
x (I − P )‖ ≤ ∆

1
2
1 (∆5 + λ)

1
2 .

Introducing the above into (49), we know that Term.A can be estimated as (ζ ≤ 1)

‖Term.A‖H ≤ E∆
1
2
1

(
∆2 + 2Rλζ +Rλζ−1∆5

)
. (51)

Case ζ ≥ 1.
Applying Lemma 12, we obtain

‖T
1
2
x (I − P )‖2 = ‖T

1
2
x (I − P )T

1
2
x ‖ ≤ ∆3 + ‖T

1
2 (I − P )T

1
2 ‖ = ∆3 + ∆5.

Introducing the above into (49), we get for ζ ≥ 1,

‖Term.A‖H ≤E∆
1
2
1

(
∆2 +Rλζ + (∆3 + ∆5)κ2(ζ−1)R

)
. (52)

Estimating ‖Term.B‖H :
We estimate ‖Term.B‖H , considering two different cases.
Case I: ζ ≤ 1.
Using a same argument as that for (48) and (17),

‖U
1
2
λRλ(U)PT

1
2
xλ‖ ≤ sup

u∈[0,κ2]

|Rλ(u)(u+ λ)| ≤ Fλ.

Using the above inequality and by a direct calculation,

‖Term.B‖H ≤ ‖U
1
2
λRλ(U)PT

1
2
xλ‖‖T

−1
2

xλ T
1
2
λ ‖‖T

− 1
2ωλH‖H ≤ Fλ∆

1
2
1 ‖T

− 1
2ωλH‖H .

Applying Part 2) of Lemma 13, we get

‖Term.B‖H ≤ FRλζ∆
1
2
1 . (53)

Applying the above and (51) into (47), we know that for any ζ ∈ [0, 1],

‖T
1
2
xλ(ωz

λ − PωλH)‖H ≤ ∆
1
2
1

(
E∆2 + (2E + F )Rλζ + ER∆5λ

ζ−1
)
.

Using the above into (45), we can prove the first desired result.
Case II: ζ ≥ 1
We denote

V = T
1
2
x PT

1
2
x , Vλ = V + λI. (54)
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Noting that U = PTxP = PT
1
2
x (PT

1
2
x )∗, thus following from Lemma 9 (with f(u) = (u +

λ)
1
2Rλ(u)) and P 2 = P ,

‖U
1
2
λRλ(U)PT ζ−

1
2

x ‖ = ‖U
1
2
λRλ(U)(PT

1
2
x )T ζ−1

x ‖ = ‖(PT
1
2
x )V

1
2
λRλ(V)T ζ−1

x ‖.

Adding and subtracting with the same term, using the triangle inequality, we obtain

‖U
1
2
λRλ(U)PT ζ−

1
2

x ‖ ≤‖PT
1
2
x V

1
2
λRλ(V)Vζ−1‖+ ‖PT

1
2
x V

1
2
λRλ(V)(T ζ−1

x − Vζ−1)‖

≤‖PT
1
2
x V

1
2
λRλ(V)Vζ−1‖+ ‖PT

1
2
x V

1
2
λRλ(V)‖‖T ζ−1

x − Vζ−1‖.

Using Lemma 10, with (6) and ‖V‖ ≤ ‖Tx‖ ≤ κ2, we then have

‖U
1
2
λRλ(U)PT ζ−

1
2

x ‖ ≤ ‖PT
1
2
x V

1
2
λRλ(V)Vζ−1‖+ ‖PT

1
2
x V

1
2
λRλ(V)‖Cζ−1,κ‖Tx − V‖(ζ−1)∧1.

Using ‖A‖ = ‖A∗A‖
1
2 , P 2 = P , the spectral theorem, and (17), for any s ∈ [1, τ ], it holds

that

‖PT
1
2
x V

1
2
λRλ(V)Vs−1‖ =‖Vs−1Rλ(V)VλVRλ(V)Vs−1‖

1
2

≤ sup
u∈[0,κ2]

|Rλ(u)us−
1
2 (u+ λ)

1
2 | ≤ Fλs,

and thus we get

‖U
1
2
−a

λ Rλ(U)PT ζ−
1
2

x ‖ ≤ F (λζ + λCζ−1,κ‖Tx − V‖(ζ−1)∧1).

Using Lemma 12, (I − P )2 = I − P and ‖A∗A‖ = ‖A‖2, we have

‖Tx − V‖ = ‖T
1
2
x (I − P )T

1
2
x ‖ ≤ ‖Tx − T ‖+ ‖T

1
2 (I − P )T

1
2 ‖ ≤ ∆3 + ∆5,

and we thus get

‖U
1
2
λRλ(U)PT ζ−

1
2

x ‖ ≤ F (λζ + λCζ−1,κ(∆3 + ∆5)(ζ−1)∧1). (55)

Now we are ready to estimate ‖Term.B‖H . By some direct calculations and Part 2) of
Lemma 13,

‖Term.B‖H ≤ ‖U
1
2
λRλ(U)PT ζ−

1
2 ‖‖T

1
2
−ζωλH‖H ≤ ‖U

1
2
λRλ(U)PT ζ−

1
2 ‖R.

Adding and subtracting with the same term, and using the triangle inequality,

‖Term.B‖H ≤ R
(
‖U

1
2
λRλ(U)PT ζ−

1
2

x ‖+ ‖U
1
2
λRλ(U)‖‖T ζ−

1
2 − T ζ−

1
2

x ‖
)
.

Using the spectral theorem, with ‖U‖ ≤ ‖Tx‖ ≤ κ2 by (6) and (17),

‖U
1
2
λRλ(U)‖ = sup

u∈]0,κ2]

|Rλ(u)(u+ λ)
1
2 | ≤ Fλ

1
2 ,
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and we thus get

‖Term.B‖H ≤ R
(
‖U

1
2
λRλ(U)PT ζ−

1
2

x ‖+ Fλ
1
2 ‖T ζ−

1
2 − T ζ−

1
2

x ‖
)
.

Applying Lemma 10, with (3) and (6), it follows that

‖Term.B‖H ≤ R
(
‖U

1
2
λRλ(U)PT ζ−

1
2

x ‖+ Fλ
1
2Cζ− 1

2
,κ∆

(ζ− 1
2

)∧1

3

)
.

Introducing with (55), we obtain

‖Term.B‖H ≤ FR
(
λζ + Cζ−1,κλ(∆3 + ∆5)(ζ−1)∧1 + Cζ− 1

2
,κλ

1
2 ∆

(ζ− 1
2

)∧1

3

)
.

Introducing the above inequality and (52) into (47), noting that ∆1 ≥ 1 and κ2 ≥ 1, we
know that for any ζ ≥ 1, the following holds

‖T
1
2
xλ(ωz

λ − PωλH)‖H ≤∆
1
2
1

(
E∆2 + (F + E)Rλζ + Eκ2(ζ−1)R(∆3 + ∆5)

+ Cζ− 1
2
,κFR

(
λ(∆3 + ∆5)(ζ−1)∧1 + λ

1
2 ∆

(ζ− 1
2

)∧1

3

))
.

Using the above into (45), and by a simple calculation, we can prove the second desired
result.

5.3. Probabilistic Estimates

To derive total error bounds from Proposition 3, it is necessary to develop probabilistic
estimates for the random quantities ∆1, ∆2, and ∆3. We thus introduce the following three
lemmas.

Lemma 14 Under Assumption 3, let δ ∈ (0, 1), and λ = n−θ with θ ∈ [0, 1) or λ =
[1 ∨ log nγ ]/n. Then with probability at least 1− δ,

‖(T + λI)1/2(Tx + λI)−1/2‖2 ∨ ‖(T + λI)−1/2(Tx + λI)1/2‖2 ≤ 3a(δ),

where a(δ) = 8κ2 log
4κ2e(cγ+1)

δ‖T ‖ if λ = [1 ∨ log nγ ]/n, or a(δ) = 8κ2
(

log
4κ2(cγ+1)
δ‖T ‖ + θγ

e(1−θ)

)
otherwise.

The proof of the above result for λ = n−θ with θ ∈ [0, 1) is given in (Lin and Cevher, 2018b).
Here, we also provide a similar result for λ = [1 ∨ log nγ ]/n using the same argument. We
report the proof in Appendix.

Lemma 15 Let 0 < δ < 1/2. The following holds with probability at least 1− δ :

‖T − Tx‖ ≤ ‖T − Tx‖HS ≤
2κ2 log(2/δ)

n
+

√
2κ4 log(2/δ)

n
.

Here, ‖ · ‖HS denotes the Hilbert-Schmidt norm.
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Using (Smale and Zhou, 2007, Lemma 2) (which is a direct corollary of the concentration
inequality for Hilbert-space valued random variables from (Pinelis and Sakhanenko, 1986)),
one can prove the desired result.

Lemma 16 Under Assumptions 1 and 2, with probability at least 1−δ, the following holds:

‖T −
1
2

λ (TxωλH − S∗xȳ − T ωλH + S∗ρfH)‖H

≤ 2

(
4κ(M + κ1∨(2ζ)Rλ(ζ− 1

2
)−)

n
√
λ

+

√
8(2R2κ2λ2ζ−1 + (2B2 +Q2)N (λ))

n

)
log

2

δ
. (56)

The above lemma is essentially proved in (Lin and Cevher, 2018b; Lin et al., 2018). We
include a proof in Appendix for completeness.

5.4. Proof for Projected-regularized Algorithms

With the above probabilistic estimates and the analytic result, Proposition 3, we are now
ready to prove the following proposition and the results for the projected-regularized algo-
rithms stated in Theorem 1.

Proposition 4 Under Assumptions 1 and 2, let ‖(I − P )T
1
2 ‖2 = ∆5, and λ = n−θ for

some θ ∈ [0, 1) or λ = 1∨lognγ

n . Then, for any 0 ≤ a ≤ [ζ ∧ 1
2 ], with probability at least 1−3δ

(δ ∈ (0, 1/3)), the following statements hold.
1) If ζ ∈ [0, 1], we have

‖L−a(Sρωz
λ − fH)‖ρ ≤ C̄1−a

1 log1−a 2

δ
λζ−1−a(E∆5 + ∆1−a

5 λa)R

+ C̄1−a
1 log2−a 2

δ
λ−a

(
C̄2(λζ ∨ 1

n
√
λ

)R+ 8E

√
N (λ)

n
(B +Q) + 8κE

M

n
√
λ

)
.

2) If ζ ≥ 1 and λ ≥ n−1/2, we have

‖L−a(Sρωz
λ − fH)‖ρ ≤ C̄1−a

1 Cζ,κ log1−a 2

δ
λ−a(E∆5 + ∆1−a

5 λa + Fλ∆
(ζ−1)∧1
5 )R

+ C̄1−a
1 log2−a 2

δ
λ−a

(
C̄3(λζ ∨

√
1

n
)R+ 8E

√
N (λ)

n
(B +Q) + 8κE

M

n
√
λ

)
.

Here, the constants C̄{1,2,3} are defined by

C̄1 =

24κ2
(

log
2κ2e(cγ+1)
‖T ‖ + 1

)
, if λ = 1∨lognγ

n ,

24κ2
(

log
2κ2e(cγ+1)
‖T ‖ + θγ

e(1−θ)

)
, otherwise,

C̄2 = 8Eκ
(
κ1∨(2ζ) + 1

)
+ 2E + F + 1.

C̄3 = 8Eκ
(
κ2ζ + 1

)
+ E + F + 1 + Cζ,κ(E + F )κ2(2 +

√
2).

Furthermore, if ζ ≥ 1/2, then the above conclusions still hold if we replace ‖L−a(fzλ−fH)‖ρ
by ‖T

1
2
−a(ωz

λ − ωH)‖H .
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Proof We use Proposition 3 to prove the statement. We thus need to estimate ∆1, ∆2

and ∆3. Following from Lemmas 14, 15 and 16, with n−1 ≤ λ ≤ 1, we know that with
probability at least 1− 3δ,

∆1 ≤ C̄1 log
2

δ
,

∆2 ≤

(
C2(λζ ∨ 1

n
√
λ

)R+ 8

√
N (λ)

n
(B +Q) + 8κ

M

n
√
λ

)
log

2

δ
, C2 = 8κ

(
κ1∨(2ζ) + 1

)
,

∆3 ≤ C3
1√
n

log
2

δ
, C3 = κ2(

√
2 + 2).

The convergence results in L2
ρX

-norm thus follow by introducing the above estimates into
(41) or (42), combining with a direct calculation and the assumption of 1/n ≤ λ ≤ 1.

The proof for the convergence results in H-norm in the attainable case parallelizes to
that for results in L2

ρX
-norm, as we can replace (43) by

‖T 1/2−a(ωz
λ − ωH)‖H ≤ ‖T

1
2
−a(ωz

λ − ωλH)‖H +Rλζ−a.

Proof of Theorem 1 Theorem 1 is a direct consequence of Proposition 4 with Assumption
3 and using a simple calculation.

Corollary 1 is a direct consequence of Theorem 1.

5.5. Proof for Sketched-regularized Algorithms

In order to use Corollary 1 for sketched-regularized algorithms, we need to estimate the
projection error. The basic idea is to approximate the projection error in terms of its

‘empirical’ version, ‖(I − P )T
1
2
x ‖2. The estimate for ‖(I − P )T

1
2
x ‖2 is quite lengthy and it

is divided into several steps.

Lemma 17 Let 0 < δ < 1 and θ ∈ [0, 1]. Given a fixed input set x ⊆ Hn, assume that for
λ ∈ [0, 1],

tr((Tx + λI)−1Tx) ≤ bγλ−γ (57)

holds for some bγ > 0, γ ∈ [0, 1]. Then there exists a subset Ux of Rm×n with measure at
least 1− δ, such that for all G ∈ Ux, the following holds:

‖(I − P )T
1
2
x ‖2 ≤ 6λ,

provided that

m ≥ 100c′0 logβ nλ−γ log
3

δ
(1 + 10bγ) . (58)

Under the condition (57), Lemma 17 provides an upper bound for ‖(I − P )T
1
2
x ‖. The

left-hand side of (57) is called empirical effective dimension. It can be estimated as follows.
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Lemma 18 Under Assumption 3, let 0 < δ < 1. For any fixed λ = n−θ with θ ∈ [0, 1), or
λ = 1∨lognγ

n , with probability at least 1− δ, the following holds:

tr((Tx + λI)−1Tx) ≤ bγ log2 4

δ
λ−γ . (59)

Here, bγ is a positive constant given by

bγ = 24κ2(4κ2 + 2κ
√
cγ + cγ)

(
log

2κ2(cγ + 1)

‖T ‖
+ 1 + c̃

)
, c̃ =

{
1, if λ = 1∨lognγ

n ,
θγ

e(1−θ) , otherwise.

The above lemma improves (Rudi et al., 2015, Proposition 1). It does not require the extra
assumption that the sample size is large enough, and our proof is simpler.

Now we are ready to estimate the projection error with randomized sketches as follows.

Lemma 19 Under Assumption 3, let S = range{S∗xG∗}, where G ∈ Rm×n is a random
matrix satisfying (26), and P be the projection operator with its range S. Then with prob-
ability at least 1− 3δ (δ ∈ (0, 1/3)), we have

‖(I − P )T
1
2 ‖2 ≤ 1

nθ

(
1 ∨ log nγ

n1−θ

)
7aγ log

4

δ
,

provided that

m ≥ C̄nθγ logβ n(1 ∨ log nγ)c log3 4

δ
, c =

{
0, if θ < 1,

−γ, if θ = 1.
(60)

Here, aγ = 24κ2 log
κ2e2(cγ+1)
‖T ‖ , and C̄ = 100c′0 (1 + 10bγ) with

bγ = 24κ2(4κ2 + 2κ
√
cγ + cγ)

(
log

2κ2(cγ + 1)

‖T ‖
+ 1 + c̃

)
, c̃ =

{
θγ

e(1−θ) , if θ < 1,

1, if θ = 1.

The proofs for Lemmas 17-19 are given in the appendix.
With Lemma 19, we can use Corollary 1 to prove Corollary 3 for the sketched-regularized

algorithms as follows.

Proof of Corollary 3 Applying Lemma 19 with

θ =


1, if 2ζ + γ ≤ 1,

ζ−a
(1−a)(2ζ+γ) , if ζ ≥ 1,

1
2ζ+γ , otherwise

we get that under the condition (27), with probability at least 1− 3δ, it holds that

∆5 .
1

nθ

(
1 ∨ log nγ

n1−θ

)
log

4

δ
. log

4

δ

{
λ, if ζ ≤ 1,

λ
ζ−a
1−a , if ζ ≥ 1,
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where we use the following fact

log nγ

n1−θ =
γ

1− θ
log n1−θ

n1−θ ≤ γ

1− θ
, if θ < 1,

within the last inequality. Combining with Corollary 1, and by a direct calculation, with
λ ≤ 1, one can prove the desired result.

Remark 7 Roughly speaking, and ignoring the logarithmic factors, in the proof of Lemma
19 for the case γ ∈ (0, 1], we have the following high-probability upper bound for the projec-
tion error:

‖(I − P )T
1
2 ‖2 . m

− 1
γ .

Introducing this estimate into Theorem 1, we observe that the following conclusions hold
with high probability for λ ∈ (n−1, 1] and a ∈ [0, 1

2 ∧ ζ] :
For ζ ∈ [0, 1],

‖L−a(fzλ − fH)‖ρ . λζ−a +
1

n
1
2λa+ γ

2

+
λζ−a

m
1
γ λ
,

while for ζ ≥ 1 and λ ≥ n−1/2, we have

‖L−a(fzλ − fH)‖ρ . λζ−a +
1

n
1
2λa+ γ

2

+
1

m
1
γ λa

+
1

m
1−a
γ

+
λ1−a

m
(ζ−1)∧1

γ

.

Clearly, the regularization parameter, the sample size, and the sketching dimension have a
direct impact on the upper bound. To minimize the upper bound, it is necessary to trade off
these parameters.

5.6. Proof for Nyström-regularized Algorithms

In this subsection, we first estimate the projection errors for Nyström-regularized algorithms
and then leverage Corollary 1 to prove Corollaries 4 and 5.

The following lemma estimates projection errors with the plain Nyström subsampling
scheme.

Lemma 20 Under Assumption 3, let P be the projection operator with range

S = span{x1, · · · , xm}.

Then with probability at least 1− δ (δ ∈ (0, 1)), the following inequality holds:

‖(I − P )T
1
2 ‖2 ≤ ‖(I − P )T

1
2
µ ‖2 ≤

1 ∨ logmγ

m
24κ2 log

4κ2e(cγ + 1)

δ‖T ‖
, (61)

where µ = 1∨logmγ

m .

The next lemma provides upper bounds for projection errors with ALS Nyström sub-
sampling scheme.
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Lemma 21 Under Assumption 3, let S = range{x̃1, · · · , x̃m}, with each x̃j drawn following
an (L, λ)-ALS Nyström subsampling scheme, and P be the projection operator with its range
S. Let λ = n−θ if θ ∈ [0, 1), or λ = 1∨lognγ

n if θ = 1. Then with probability at least 1− 3δ
(δ ∈ (0, 1/3)), we have

‖(I − P )T
1
2 ‖2 ≤ 1

nθ

(
1 ∨ log nγ

n1−θ

)
4aγ log

4

δ
,

provided that

m ≥ C̄1n
θγ(1 ∨ log nγ)c log3 4

δ
, c =

{
1, if θ < 1,

1− γ, if θ = 1.
(62)

Here, C̄1 = 8bγL
2(4 + log(2bγ)) where aγ and bγ are given by Lemma 19.

The proofs for the two above lemmas will be given in the appendix.

Proof of Corollary 4 Combining Corollary 1 with Lemma 20, one can prove the desired
result.

Proof of Corollary 5 Combining Corollary 1 with Lemma 21, one can prove the desired
result.

6. Proof for Section 4

In this section, we prove the results in Section 4. We first prove the following result.

Theorem 5 Under Assumptions 2, 3 and 4, let

T = d(ηλ)−1e, λ = n
− 1

1∨(2ζ+γ) (1 ∨ log nγ)1{2ζ+γ≤1} , (63)

and let

0 < η ≤ 1

8κ2(log T + 1)
. (64)

Then for any a ∈ [0, 1
2 ∧ ζ], the following holds with probability at least 1− δ (0 < δ < 1).

1) If ζ ≤ 1, we have

EJ‖L−a(SρωT+1 − fH)‖2ρ . λ2(ζ−a)
(
1 + λ−1∆5

)2
log4 2

δ
+ ηb−1λ−2a(log T )1{2a6=1} log2 2

δ
.

(65)

2) If ζ ≥ 1, we have

EJ‖L−a(SρωT+1 − fH)‖2ρ

.λ−2a

(
λζ + ∆5

(
1 +

( λ

∆5

)
∆

(ζ−1)∧1
5 +

( λ

∆5

)a))2

log4 2

δ
+ ηb−1λ−2a(log T )1{2a6=1} log2 2

δ
.

(66)

Furthermore, if ζ ≥ 1/2, then the above conclusions still hold if we replace ‖L−a(SρωT+1 −
fH)‖ρ by ‖T

1
2
−a(ωT+1 − ωH)‖H . Here, ∆5 is the projection error ‖(I − P )T

1
2 ‖2.
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Proof We only provide the proof sketches and omit the universal constants in the proof.
We first introduce an auxiliary sequence {νt}Tt=1, generated by projected gradient descent
and given by ν1 = 0,

νt+1 = G̃t(PTxP )S∗xȳ, G̃t(·) =
t∑

k=1

ηk

t∏
i=k+1

(I − ηi·).

Following (Lin and Rosasco, 2017a, (5.17)), which is originally motivated by (Lin and
Rosasco, 2017b), we can prove the following decomposition:

EJ‖L−a(SρωT+1 − fH)‖2ρ = ‖L−a(SρνT+1 − fH)‖2ρ + EJ‖L−aSρ(ωT+1 − νT+1)‖2ρ.

In what follows, we estimate the last two terms separately.
We first estimate ‖L−a(SρνT+1− fH)‖2ρ. As noted in Remark 1, G̃t(·) is a filter function

with regularization parameter (ηt)−1. As λ ' (ηT )−1 by our assumptions, with a simple
modification of the proof for Corollary 1, we know that the error estimates in Corollary 1
hold with fzλ = SρωT+1.

What remains is to prove the following error bounds:

EJ‖L−aSρ(ωT+1 − νT+1)‖2ρ . ηb−1λ−2a(log n)1{2a6=1} log2 2

δ
. (67)

We first consider the case a < 1/2. From the proof for (43) and using (44), we have

‖L−aSρ(ωT+1 − νT+1)‖ρ ≤ ‖T
1
2
−a(ωT+1 − νT+1)‖H ≤ λ−a∆

1
2
−a

1 ‖T
1
2
xλ(ωT+1 − νT+1)‖H .

Following from the proof for (Lin and Rosasco, 2017a, Proposition 5.21), under Condition
(64), we have

EJ‖T
1
2
xλ(ωT+1 − νT+1)‖2H ≤ 48κ2Ez(0)ηb−1 log(3T ).

Thus, we have

EJ‖L−aSρ(ωT+1 − νT+1)‖2ρ ≤ λ−2a∆1−2a
1 48κ2Ez(0)ηb−1 log(3T ).

Applying (Lin and Rosasco, 2017b, Lemma 25) and Lemma 14 to estimate Ez(0) and ∆1

respectively, we can prove that (67) holds with probability at least 1− δ. The proof for the
case a = 1

2 is simpler. In fact, by (5), we have

‖L−1/2Sρ(ωT+1 − νT+1)‖ρ ≤ ‖ωT+1 − νT+1‖H .

Following the similar arguments as that for (Lin and Rosasco, 2017b, (77)) and (Lin and
Rosasco, 2017a, Proposition 5.21), under Condition (64), we can prove

EJ‖ωT+1 − νT+1‖2H . ηb−1λ−1Ez(0).

Combining with (Lin and Rosasco, 2017b, Lemma 25), we can prove that (67) holds with
probability at least 1− δ.
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From the above analysis, we conclude the proof.

Now we are ready to prove Theorem 2 and its corollaries.

Proof of Theorem 2 Simply applying Theorem 5 with specific choices on η, b and T ,
one can prove the desired results.

Proof of Corollary 6 Simply applying Theorem 2 and noting that Condition (31) is
satisfied trivially since P = I.

Proof of Corollary 7 The proof can be done by combing Theorem 2 with Lemmas 19-21,
and following exactly the same steps as that for Corollaries 3-5.

7. Conclusion

In this paper, we first prove optimal statistical results with respect to variants of norms for
sketched or Nyström regularized algorithms. Our contributions are mainly on theoretical
aspects. First, our results for sketched-regularized algorithms generalize previous results
(Yang et al., 2017) from the fixed design setting to the random design setting. Moreover,
our results involve the regularity/smoothness of the target function and thus can have a
faster convergence rate. Second, our results cover the non-attainable cases. Third, our
results provide optimal, capacity-dependent rates even when ζ ≥ 1. This may suggest
that sketched/Nyström regularized algorithms have certain advantages in comparison with
distributed learning algorithms (Zhang et al., 2015), as the latter suffer a saturation effect
over ζ = 1. We then extend our analysis to stochastic gradient methods with projections,
allowing multi-pass over the data and minibatches, and we derive similar optimal statistical
results. A future direction is to extend our analysis to learning with random features, see
(Rahimi and Recht, 2008; Sriperumbudur and Sterge, 2017) and the references therein.
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Appendix A. Proofs for Section 5

In this appendix, we prove the lemmas stated in Section 5.

A.1. Proof of Lemma 14

We first introduce the following basic probabilistic estimate.

Lemma 22 Let X1, · · · ,Xm be a sequence of independently and identically distributed self-
adjoint Hilbert-Schmidt operators on a separable Hilbert space. Assume that E[X1] = 0, and
‖X1‖ ≤ B almost surely for some B > 0. Let V be a positive trace-class operator such that
E[X 2

1 ] 4 V. Then with probability at least 1− δ, (δ ∈]0, 1[), there holds∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≤ 2Bβ

3m
+

√
2‖V‖β
m

, β = log
4 trV
‖V‖δ

.

The above lemma was first proved in (Hsu et al., 2014; Tropp, 2012) for the matrix case,
and it was later extended to the general operator case in (Minsker, 2011), see also (Rudi
et al., 2015; Bach, 2017; Dicker et al., 2017). We refer to (Rudi et al., 2015; Dicker et al.,
2017) for the proof.

Using Lemma 22, we can prove the following result. Refer to (Lin and Cevher, 2018b)
for proof details.

Lemma 23 Let 0 < δ < 1 and λ > 0. With probability at least 1− δ, the following holds:

∥∥∥(T + λI)−1/2(T − Tx)(T + λI)−1/2
∥∥∥ ≤ 4κ2β

3|x|λ
+

√
2κ2β

|x|λ
, β = log

4κ2(N (λ) + 1)

δ‖T ‖
.

We are now ready to proof Lemma 14.

Proof of Lemma 14 By a simple calculation, we have if 0 ≤ u ≤ 1/2, then 2u2/3 + u ≤
2/3. Letting

√
2κ2β
|x|λ′ = u, and combining with Lemma 23, we know that if√

2κ2β

|x|λ′
≤ 1

2
,

which is equivalent to

|x| ≥ 8κ2β

λ′
, β = log

4κ2(1 +N (λ′))

δ‖T ‖
, (68)

then with probability at least 1− δ,∥∥∥T −1/2
λ′ (T − Tx)T −1/2

λ′

∥∥∥ ≤ 2/3. (69)

Note that (69) implies

‖T 1/2
λ′ T

−1/2
xλ′ ‖

2 ∨ ‖T 1/2
xλ′ T

−1/2
λ′ ‖2 ≤ 3. (70)
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Indeed,

‖T 1/2
λ′ T

−1/2
xλ′ ‖

2 = ‖T 1/2
λ′ T

−1
xλ′ T

1/2
λ′ ‖ = ‖(I − T −1/2

λ′ (T − Tx)T −1/2
λ′ )−1‖ ≤ 3,

and
‖T 1/2

xλ′ T
−1/2
λ′ ‖2 = ‖T −1/2

λ′ Txλ′T
−1/2
λ′ ‖ = ‖T −1/2

λ′ (Tx − T )T −1/2
λ′ + I‖ ≤ 3.

From the above analysis, we know that for any fixed λ′ > 0 such that (68), then with
probability at least 1− δ, (70) holds.

Let λ′ = aλ, where for notational simplicity, we denote a(δ) by a. We will prove that
the choice on λ′ ensures the condition (68) is satisfied, and thus with probability at least
1− δ, (70) holds. Obviously, one can easily prove that a ≥ 1. Therefore, λ′ ≥ λ, and

‖T 1/2
λ T −1/2

xλ ‖ ≤ ‖T 1/2
λ T −1/2

λ′ ‖‖T 1/2
λ′ T

−1/2
xλ′ ‖‖T

1/2
xλ′ T

−1/2
xλ ‖ ≤ ‖T 1/2

λ′ T
−1/2
xλ′ ‖

√
λ′/λ,

where for the last inequality, we used ‖T 1/2
xλ′ T

−1/2
xλ ‖2 ≤ supu≥0

u+λ′

u+λ ≤ λ
′/λ. Similarly,

‖T −1/2
λ T 1/2

xλ ‖ ≤ ‖T
−1/2
λ′ T 1/2

xλ′ ‖
√
λ′/λ.

Combining with (70), and by a simple calculation, one can prove the desired bounds. What
remains is to prove that the condition (68) is satisfied. By Assumption 3 and a ≥ 1, for
λ = |x|−θ with θ ∈ [0, 1),

β ≤ log
4κ2(1 + cγa

−γ |x|θγ)

δ‖T ‖
≤ log

4κ2(1 + cγ)|x|θγ

δ‖T ‖
= log

4κ2(1 + cγ)

δ‖T ‖
+ log |x|θγ ,

while for λ = (1 ∨ log |x|γ)/|x|,

β ≤ log
4κ2(1 + cγa

−γλ−γ)

δ‖T ‖
≤ log

4κ2(1 + cγ)|x|γ

δ‖T ‖
= log

4κ2(1 + cγ)

δ‖T ‖
+ log |x|γ ,

If λ = |x|−θ with θ ∈ [0, 1) and θγ = 0, or λ = (1 ∨ log |x|γ)/|x|, then the condition (68)
follows trivially. Now consider the case λ = |x|−θ with θ ∈ (0, 1) and θγ 6= 0. The maximum
of the function g(u) = e−cuuα (with c > 0) over R+ is achieved at umax = α/c, and thus

sup
u≥0

e−cuuα =
( α

ec

)α
. (71)

We apply the above with u = |x|θγζ′ , α = 1/ζ ′, we know that for any c′, ζ ′ > 0

β ≤ log
4κ2(1 + cγ)

δ‖T ‖
+ c′|x|θγζ′ + 1

ζ ′
log

1

ζ ′ec′
.

Selecting ζ ′ = 1−θ
θγ and c′ = θγ

e(1−θ) , we know that a sufficient condition for (68) is

|x|1−θa
8κ2

≥ log
4κ2(1 + cγ)

δ‖T ‖
+

θγ

e(1− θ)
|x|1−θ.

From the definition of a, and by a direct calculation, one can prove that the condition (68)
is satisfied.
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A.2. Proof of Lemma 16

To prove the result, we need the following concentration inequality.

Lemma 24 Let w1, · · · , wm be i.i.d random variables in a separable Hilbert space with norm
‖ · ‖. Suppose that there are two positive constants B and σ2 such that

E[‖w1 − E[w1]‖l] ≤ 1

2
l!Bl−2σ2, ∀l ≥ 2. (72)

Then for any 0 < δ < 1/2, the following holds with probability at least 1− δ,∥∥∥∥∥ 1

m

m∑
k=1

wm − E[w1]

∥∥∥∥∥ ≤ 2

(
B

m
+

σ√
m

)
log

2

δ
.

In particular, (72) holds if

‖w1‖ ≤ B/2 a.s., and E[‖w1‖2] ≤ σ2. (73)

The above lemma is a reformulation of the concentration inequality for sums of Hilbert-
space-valued random variables from (Pinelis and Sakhanenko, 1986). We refer to (Smale
and Zhou, 2007; Caponnetto and De Vito, 2007) for the detailed proof.

Proof of Lemma 16 We use Lemma 24 to prove the result. We let ξi = T −
1
2

λ (〈ωλH , xi〉H−
yi)xi for all i ∈ [n]. It is easy to see that ξi is a random variable depending on (xi, yi). From
the definition of the regression function fρ in (8) and (9), a simple calculation shows that

E[ξ] = E[T −
1
2

λ (〈ωλH , x〉H − fρ(x))x] = T −
1
2

λ (T ωλH − S∗ρfρ) = T −
1
2

λ (T ωλH − S∗ρfH). (74)

Combining with the definition of Tx and S∗x, we have

‖T −
1
2

λ (TxωλH − S∗xȳ − T ωλH + S∗ρfH)‖H =

∥∥∥∥∥ 1

n

n∑
i=1

(ξi − E[ξ])

∥∥∥∥∥
H

In order to apply Lemma 24, we need to estimate E[‖ξ − E[ξ]‖lH ] for any l ∈ N with l ≥ 2.
In fact, using Hölder’s inequality twice,

E‖ξ − E[ξ]‖lH ≤ E (‖ξ‖H + E‖ξ‖H)l ≤ 2l−1(E‖ξ‖lH + (E‖ξ‖H)l) ≤ 2lE‖ξ‖lH . (75)

We now estimate E‖ξ‖lH . By Hölder’s inequality,

E‖ξ‖lH = E[‖T −
1
2

λ x‖lH(y − 〈ωλH , x〉H)l] ≤ 2l−1E[‖T −
1
2

λ x‖lH(|y − fρ(x)|l + |fρ(x)− 〈ωλH , x〉H |l)].

According to (2), one has

‖T −
1
2

λ x‖H ≤ ‖T
− 1

2
λ ‖‖x‖H ≤

1√
λ
κ. (76)
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Moreover, by Cauchy-Schwarz inequality and (2), |〈ωλH , x〉H | ≤ ‖ωλH‖H‖x‖H ≤ κ‖ωλH‖H .
Thus, with |fρ(x)| ≤M by Assumption 1, we get

E‖ξ‖lH ≤ 2l−1

(
κ√
λ

)l−2

E[‖T −
1
2

λ x‖2H(|y − fρ(x)|l + (M + κ‖ωλH‖H)l−2|〈ωλH , x〉H − fρ(x)|2).

(77)

Note that by (11),

E[‖T −
1
2

λ x‖2H |y − fρ(x)|l] =

∫
H
‖T −

1
2

λ x‖2H
∫
R
|y − fρ(x)|ldρ(y|x)dρX(x)

≤1

2
l!M l−2Q2

∫
H
‖T −

1
2

λ x‖2HdρX(x).

Using ‖w‖2H = tr(w ⊗ w) which implies∫
H
‖T −

1
2

λ x‖2HdρX(x) =

∫
H

tr(T −
1
2

λ x⊗ xT −
1
2

λ )dρX(x) = tr(T −
1
2

λ T T −
1
2

λ ) = N (λ), (78)

we get

E[‖T −
1
2

λ x‖2H |y − fρ(x)|l] ≤ 1

2
l!M l−2Q2N (λ). (79)

Besides, by Cauchy-Schwarz inequality,

E[‖T −
1
2

λ x‖2H |〈ωλH , x〉H − fρ(x)|2] ≤ 2E[‖T −
1
2

λ x‖2H(|〈ωλH , x〉H − fH(x)|2 + |fH(x)− fρ(x)|2)].

By (76) and (39),

E[‖T −
1
2

λ x‖2H(|〈ωλH , x〉H−fH(x)|2] ≤ κ2

λ
E[|〈ωλH , x〉H−fH(x)|2] =

κ2

λ
‖SρωλH−fH‖2ρ ≤ R2κ2λ2ζ−1.

Therefore,

E[‖T −
1
2

λ x‖2H |〈ωλH , x〉H − fρ(x)|2] ≤ 2

(
R2κ2λ2ζ−1 + E[‖T −

1
2

λ x‖2H |fH(x)− fρ(x)|2]

)
.

Using ‖w‖2H = tr(w ⊗ w) and (12), we have

E[‖T −
1
2

λ x‖2H |fH(x)− fρ(x)|2] =E[|fH(x)− fρ(x)|2 tr(T −
1
2

λ x⊗ xT −
1
2

λ )]

= tr(T −1
λ E[(fH(x)− fρ(x))2x⊗ x])

≤B2 tr(T −1
λ T ) = B2N (λ),

and therefore,

E[‖T −
1
2

λ x‖2H |〈ωλH , x〉H − fρ(x)|2] ≤ 2
(
κ2R2λ2ζ−1 +B2N (λ)

)
.
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Introducing the above estimate and (79) into (77), we derive

E‖ξ‖lH ≤2l−1

(
κ√
λ

)l−2(1

2
l!M l−2Q2N (λ) + 2(M + κ‖ωλH‖H)l−2(R2κ2λ2ζ−1 +B2N (λ))

)
≤2l−1

(
κM + κ2‖ωλH‖H√

λ

)l−2
1

2
l!
(

2R2κ2λ2ζ−1 + (2B2 +Q2)N (λ)
)
.

Introducing the above estimate into (75), and then substituting with (40), we get

E[‖ξ − E[ξ]‖lH ] ≤ 1

2
l!

(
4κ(M + κ1∨(2ζ)Rλ(ζ− 1

2
)−)√

λ

)l−2

8
(

2R2κ2λ2ζ−1 + (2B2 +Q2)N (λ)
)
.

Applying Lemma 24, we get the desired result.

A.3. Proof of Lemma 17

Let Sx = UΣV ∗ be the singular value decomposition of Sx, where V : Rr → H, U ∈ Rn×r
and Σ = diag(σ1, σ2, · · · , σr) with V ∗V = Ir, U

∗U = Ir and σ1 ≥ σ2, · · · , σr > 0. In fact,
we can write V = [v1, · · · , vr] with

V a =
r∑
i=1

a(i)vi, ∀a ∈ Rr,

with vi ∈ H such that 〈vi, vj〉H = 0 if i 6= j and 〈vi, vi〉H = 1. Similarly, we write
U = [u1, · · · , ur], and

Sx =

r∑
i=1

σi〈vi, ·〉Hui =

r∑
i=1

σiui ⊗ vi.

For any µ ≥ 0, we decompose Sx as S1,µ + S2,µ with

S1,µ =
∑
σi>µ

σiui ⊗ vi, S2,µ =
∑
σi≤µ

σiui ⊗ vi,

and we will drop µ to write Sj,µ as Sj when it is clear in the text. Denote d the cardinality
of {σi : σi > µ}. Correspondingly,

S1 = U1Σ1V
∗

1 , S2 = U2Σ2V
∗

2 , (80)

where V1 = [v1, · · · , vd], V2 = [vd+1, · · · , vr], U1 = [u1, · · · , ud], U2 = [ud+1, · · · , ur], Σ1 =
diag(σ1, · · · , σd), and Σ2 = diag(σd+1, · · · , σr). As the range of P is range(S∗xG∗), we can
let

P = P1 + P2,

where P1 and P2 are projection operators on range(S∗1G∗) and range(S∗2G∗), respectively.

As

Tx = S∗xSx = (UΣV ∗)∗UΣV ∗ = V Σ2V ∗,
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we have

‖(I − P )T
1
2
x ‖ = ‖(I − P )V ΣV ∗‖ = ‖(I − P1 − P2)

2∑
i=1

ViΣiV
∗
i ‖.

As P1 is a projection operator on range(S∗1G∗)(⊆ range(V1)) and range(S∗1G∗)(⊆ range(V2)),
and V ∗1 V2 = 0, we know that PiVj = 0 when i 6= j. Thus, it follows that

‖(I − P )T
1
2
x ‖ =‖

2∑
i=1

(I − Pi)(ViΣiV
∗
i )‖

≤
2∑
i=1

‖(I − Pi)(ViΣiV
∗
i )‖

≤‖(I − P1)(V1Σ1V
∗

1 )‖+ ‖I − P2‖‖V2‖‖Σ2‖‖V ∗2 ‖.

As Σ2 = diag(σd+1, · · · , σr) with σr ≤, · · · , σd+1 ≤ µ, we get

‖(I − P )T
1
2
x ‖ ≤ ‖(I − P1)(V1Σ1V

∗
1 )‖+ µ. (81)

As P1 is the projection operator on range(S∗1G∗), letting W = GS1 and for any λ > 0,

P1 = W ∗(WW ∗)†W �W ∗(WW ∗ + λI)−1W = W ∗W (W ∗W + λI)−1,

and thus

I − P1 � I −W ∗W (W ∗W + λI)−1 = λ(W ∗W + λI)−1.

It thus follows that

T
1
2

1 (I − P1)T
1
2

1 � λT
1
2

1 (W ∗W + λI)−1T
1
2

1 ,

where for notational simplicity, we write

T1 = (V1Σ1V
∗

1 )2. (82)

Combing with

‖(I − P )T
1
2

1 ‖
2 = ‖T

1
2

1 (I − P )2T
1
2

1 ‖ = ‖T
1
2

1 (I − P )T
1
2

1 ‖,

we know that

‖(I − P )T
1
2

1 ‖
2 ≤ λ‖T

1
2

1 (W ∗W + λI)−1T
1
2

1 ‖ ≤ λ‖T
1
2

1λ(W ∗W + λI)−1T
1
2

1λ‖.

As

T
1
2

1λ(W ∗W + λI)−1T
1
2

1λ =

(
T
− 1

2
1λ (W ∗W + λI)T

− 1
2

1λ

)−1

=

(
I − T−

1
2

1λ (T1 −W ∗W )T
− 1

2
1λ

)−1

,

and if

‖T−
1
2

1λ (T1 −W ∗W )T
− 1

2
1λ ‖ ≤ c < 1, (83)
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then according to Neumann series,

‖(I − P )T
1
2

1 ‖
2 ≤ λ‖T−

1
2

1λ (W ∗W + λI)−1T
− 1

2
1λ ‖ ≤ (1− c)−1λ. (84)

If we choose µ =
√
λ, and introduce the above with c = 1

2 into (81), one can get

‖(I − P )T
1
2
x ‖2 ≤ (

√
2 + 1)2λ ≤ 6λ, (85)

which leads to the desired bound.
In what follows, we show that (83) with c = 1

2 holds in high probability under the
constraint (58). Recall (82) and that W = GS1 with S1 given by (80). Thus, T1 =
V1Σ1V

∗
1 V1Σ1V

∗
1 = V1Σ2

1V
∗

1 , and

W ∗W = S∗1G∗GS1 = V1Σ1U
∗
1G
∗GU1Σ1V

∗
1 .

Therefore, with V ∗1 V1 = I,

T
− 1

2
1λ (T1 −W ∗W )T

− 1
2

1λ =V1(Σ2
1 + λI)−1/2V ∗1 V1Σ1(I − U∗1G∗GU1)Σ1V

∗
1 V1(Σ2

1 + λI)−1/2V ∗1

=V1(Σ2
1 + λI)−1/2Σ1(I − U∗1G∗GU1)Σ1(Σ2

1 + λI)−1/2V ∗1 . (86)

It follows that

‖T−
1
2

1λ (T1−W ∗W )T
− 1

2
1λ ‖ ≤ ‖V1‖‖(Σ2

1+λI)−1/2Σ1‖2‖I−U∗1G∗GU1‖‖V ∗1 ‖ ≤ ‖I−U∗1G∗GU1‖.

Using U∗1U1 = I,

‖I − U∗1G∗GU1‖ =‖U∗1 (I −G∗G)U1‖
= max

a∈Rd,‖a‖2=1
|〈U∗1 (I −G∗G)U1a,a〉2|

= max
a∈Rd,‖a‖2=1

|‖U1a‖22 − ‖GU1a‖22|.

Based on a standard argument as that for (Baraniuk et al., 2008, Lemma 5.1), we know
that

max
a∈Rd,‖a‖2=1

|‖U1a‖22 − ‖GU1a‖22| ≤
1

2

with probability at least

1− 2(60)d exp

(
− m

100c′0 logβ n

)
≥ 1− δ,

provided that

m ≥ 100c′0 logβ n

(
log

2

δ
+ 5d

)
. (87)

Note that by (57),

bγλ
−γ ≥ tr(TxT −1

xλ ) =
∑
i

σ2
i

σ2
i + λ

≥
∑
σ2
i>λ

σ2
i

σ2
i + λ

≥ d

2
.

Thus, a stronger condition for (87) is (58). The proof is complete.
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A.4. Proof of Lemma 18

We first use Lemma 24 to estimate tr(T −
1
2

λ (Tx − T )T −
1
2

λ ). Note that

tr(T −
1
2

λ TxT
− 1

2
λ ) =

1

n

n∑
j=1

‖T −
1
2

λ xj‖2H =
1

n

n∑
j=1

ξj ,

where we let ξj = ‖T −
1
2

λ xj‖2H for all j ∈ [n]. Besides, it is easy to see that

tr(T −
1
2

λ (Tx − T )T −
1
2

λ ) =
1

n

n∑
j=1

(ξj − E[ξj ]).

Using Assumption (2),

ξ1 ≤
1

λ
‖x1‖2H ≤

κ2

λ
,

and

E[‖ξ1‖2] ≤ κ2

λ
E‖T −

1
2

λ x1‖2H =
κ2

λ
E tr(T −

1
2

λ x1 ⊗ x1T
− 1

2
λ ) =

κ2N (λ)

λ
.

Applying Lemma 24, we get that there exists a subset Ω1 of Hn with measure at least 1−δ,
such that for all x ∈ Ω1,

tr(T −
1
2

λ (Tx − T )T −
1
2

λ ) ≤ 2

(
2κ2

nλ
+

√
κ2N (λ)

nλ

)
log

2

δ
.

Combining with Lemma 14, taking the union bounds, rescaling δ, and noting that

tr(T −1
xλ Tx) = tr(T −

1
2

xλ T
1
2
λ T

− 1
2

λ TxT
− 1

2
λ T

1
2
λ T

− 1
2

xλ )

≤‖T
1
2
λ T

− 1
2

xλ ‖
2 tr(T −

1
2

λ TxT
− 1

2
λ )

=‖T
1
2
λ T

− 1
2

xλ ‖
2

(
tr(T −

1
2

λ (Tx − T )T −
1
2

λ ) +N (λ)

)
.

we get that there exists a subset Ω of Hn with measure at least 1 − δ, such that for all
x ∈ Ω,

tr(T −1
xλ Tx) ≤ 3a(δ/2)

(
2

(
2κ2

nλ
+

√
κ2N (λ)

nλ

)
log

4

δ
+N (λ)

)
,

which leads to the desired result using λ ≤ 1, nλ ≥ 1 and Assumption 3.

A.5. Estimating Projection Errors with Random Sketches

Proof of Lemma 19 Let µ = 1∨lognγ

n , and λ = n−θ with θ ∈ [0, 1) or λ = 1∨lognγ

n . By a
simple calculation,

‖(I − P )T
1
2 ‖2 ≤ ‖(I − P )T

1
2
xµ‖2‖T

− 1
2

xµ T
1
2
µ ‖2.
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Using

‖(I−P )T
1
2
xµ‖2 = ‖(I−P )Txµ(I−P )‖ ≤ ‖(I−P )Tx(I−P )‖+µ‖(I−P )2‖ ≤ ‖(I−P )T

1
2
x ‖2+µ,

we get

‖(I − P )T
1
2 ‖2 ≤

(
‖(I − P )T

1
2
x ‖2 + µ

)
‖T −

1
2

xµ T
1
2
µ ‖2. (88)

Following from Lemma 18 and Lemma 14, we know that there exists a subset Ω1 of Hn

with measure at least 1− 2δ such that for every x ∈ Ω1,

tr(T −1
xλ Tx) ≤ bγ,δλ−γ ,

and

‖T −
1
2

xµ T
1
2
µ ‖2 ≤ aγ log

4

δ
, (89)

where bγ,δ = bγ log2 4
δ . For every x ∈ Ω1, according to Lemma 17, we know that there exists

a subset Ux of Rm×n with measure at least 1− δ, such that for all G ∈ Ux,

‖(I − P )T
1
2
x ‖2 ≤ 6λ, (90)

provided that,

m ≥ 100c′0 logβ nλ−γ log3 4

δ
(1 + 10bγ) ,

which is satisfied under the constraint (60). From the above analysis, we can conclude that
if (60) holds, then with probability at least 1 − 3δ, (90) and (89) hold. Introducing (90)
and (89) into (88), one gets that with probability at least 1− 3δ,

‖(I − P )T
1
2 ‖2 ≤ (6λ+ µ) aγ log

4

δ
,

which leads to the desired result.

A.6. Estimating Projection Errors with Plain Nyström Subsampling

Proof of Lemma 20 As P is the projection operator onto range{S∗x̃} with x̃ =
{x1, · · · , xm},

P = S∗x̃(Sx̃S∗x̃)†Sx̃ � S∗x̃(Sx̃S∗x̃ + µI)−1Sx̃ = S∗x̃Sx̃(S∗x̃Sx̃ + µI)−1 = Tx̃(Tx̃ + µI)−1,

where for the last second equality, we used Lemma 9. Thus,

I − P � I − Tx̃(Tx̃ + µI)−1 = µ(Tx̃ + µI)−1.

It thus follows that

T
1
2
µ (I − P )

1
2T

1
2
µ � µT

1
2
µ (Tx̃ + µI)−1T

1
2
µ .

Using ‖A∗A‖2 = ‖A‖2 and the above,

‖(I − P )T
1
2
µ ‖2 = ‖T

1
2
µ (I − P )T

1
2
µ ‖ ≤ µ‖T

1
2
µ (Tx̃ + µI)−1T

1
2
µ ‖ = µ‖(Tx̃ + µI)−1/2T

1
2
µ ‖2. (91)

Thus,

‖(I − P )T
1
2 ‖2 ≤ ‖(I − P )T

1
2
µ ‖2 ≤ µ‖(Tx̃ + µI)−1/2(T + µI)1/2‖2.

Using Lemma 14 with µ = 1∨logmγ

m , one can prove the desired result.
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A.7. Estimating Projection Errors with ALS Nyström Subsampling

We first note that in an L-ALS Nyström subsampling regime, S can be rewritten as S =
range{S∗xG>}, where each row 1√

m
a>j of G is i.i.d. drawn according to

P
(
a =

1
√
qi
ei

)
= qi, i ∈ {1, · · · , n}

Here {ei : i ∈ [n]} is the standard basis of Rn and

qi := qi(λ) =
l̂i(λ)∑
j l̂j(λ)

.

Using Lemma 22, and with a similar argument as that for Lemma 17, we can estimate
the empirical version of the projection error as follows.

Lemma 25 Let 0 < δ < 1 and θ ∈ [0, 1]. Given a fix input subset x ⊆ Hn, assume that for
λ ∈ [0, 1], (57) holds for some bγ > 0, γ ∈ [0, 1]. Then there exists a subset Ux of Rm×n
with measure at least 1− δ, such that for all G ∈ Ux,

‖(I − P )T
1
2
x ‖2 ≤ 3λ, (92)

provided that

m ≥ 8bγλ
−γL2 log

8bγλ
−γ

δ
. (93)

Proof If we choose u = 0 in the proof of Lemma 17, then Sx = S1 and S2 = 0. Similarly,
Tx = T1. In this case, (86) reads as

T −
1
2

xλ (Tx −W ∗W )T −
1
2

xλ =V (Σ2 + λI)−1/2Σ(I − U∗G∗GU)Σ(Σ2 + λI)−1/2V ∗.

Thus, using V ∗V = I, U∗U = I and U is of full column rank,

‖T −
1
2

xλ (Tx −W ∗W )T −
1
2

xλ ‖ ≤‖V ‖‖U
∗U(Σ2 + λI)−1/2ΣU∗(I −G∗G)UΣ(Σ2 + λI)−1/2U∗U‖

≤‖U(Σ2 + λI)−1/2ΣU∗(I −G∗G)UΣ(Σ2 + λI)−1/2U∗‖.

Using K := Kxx = SxS∗x = UΣ2U∗, we get

‖T −
1
2

xλ (Tx −W ∗W )T −
1
2

xλ ‖ ≤‖
(
K(K + λI)−1

)1/2
(I −G∗G)

(
K(K + λI)−1

)1/2 ‖.
Letting Xi =

(
K(K + λI)−1

)1/2
aia
∗
i

(
K(K + λI)−1

)1/2
, it is easy to prove that E[aia

∗
i ] = I,

according to the definition of ALS Nyström subsampling. Then the above inequality can
be written as

‖T −
1
2

xλ (Tx −W ∗W )T −
1
2

xλ ‖ ≤‖
1

m

m∑
i=1

(E[Xi]−Xi)‖.
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A simple calculation shows that

‖Xi‖ =a∗i
(
K(K + λI)−1

)
ai ≤ max

j∈[n]

(
K(K + λI)−1

)
jj

qj

= max
j∈[n]

lj(λ)

qj
= max

j∈[n]

lj(λ)
∑

k l̂k(λ)

l̂j(λ)
≤ L2

∑
j

lj(λ) = L2 tr(KK−1
λ ),

and

E[X 2
i ] = E[a∗i

(
K(K + λI)−1

)
aiXi] ≤ L2 tr(KK−1

λ )E[Xi] = L2 tr(KK−1
λ )KK−1

λ .

Thus,
‖E[Xi]−Xi‖ ≤ E‖Xi‖+ ‖Xi‖ ≤ 2L2 tr(KK−1

λ ),

and
E
[(
Xi − E[Xi]

)2] � E[X 2
i ] � L2 tr(KK−1

λ )KK−1
λ .

Letting V = L2 tr(KK−1
λ )KK−1

λ , we have

‖V‖ ≤ L2 tr(KK−1
λ ),

and
tr(V)

‖V‖
=

tr(KK−1
λ )

‖KK−1
λ ‖

= tr(KK−1
λ )

(
1 +

λ

‖K‖

)
.

Applying Lemma 22, noting that tr(KK−1
λ ) = tr(TxT −1

xλ ) and ‖K‖ = ‖Tx‖ as Tx = S∗xSx,
we get that there exists a subset Ux ⊆ Rm×n with measure at least 1 − δ such that for all
G ∈ Ux,

‖T −
1
2

xλ (Tx −W ∗W )T −
1
2

xλ ‖ ≤
4L2 tr(TxT −1

xλ )β

3m
+

√
2L2 tr(TxT −1

xλ )β

m
, β = log

4 tr(TxT −1
xλ )(1 + λ/‖Tx‖)

δ
.

If λ ≤ ‖Tx‖, using Condition (57), we have

β ≤ log
4bγλ

−γ(1 + λ/‖Tx‖)
δ

≤ log
8bγλ

−γ

δ
,

and, combining with (93),

4L2 tr(TxT −1
xλ )β

3m
+

√
2L2 tr(TxT −1

xλ )β

m
≤ 2

3
.

Thus, ∥∥∥T −1/2
xλ (T −W ∗W )T −1/2

xλ

∥∥∥ ≤ 2

3
, ∀G ∈ Ux.

Following from (83) and (84), one can prove (92) for the case λ ≤ ‖Tx‖. The proof for the
case λ ≥ ‖Tx‖ is trivial:

‖(I − P )T
1
2
x ‖2 ≤ ‖I − P‖2‖T

1
2
x ‖2 ≤ ‖Tx‖ ≤ λ.
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The proof is complete.

With the above lemma, and using a similar argument as that for Lemma 19, we can
prove Lemma 21. We thus skip it.

Appendix B. Learning with Kernel Methods

In this appendix, we review how the regression setting considered in this paper covers
non-parametric regression with kernel methods.

Let the input space Ξ be a closed subset of Euclidean space Rd, the output space
Y ⊆ R. Let µ be an unknown but fixed Borel probability measure on Ξ × Y . Assume
that {(ξi, yi)}mi=1 are i.i.d. from the distribution µ. A reproducing kernel K is a symmetric
function K : Ξ× Ξ→ R such that (K(ui, uj))

`
i,j=1 is positive semidefinite for any finite set

of points {ui}`i=1 in Ξ. The kernel K defines a reproducing kernel Hilbert space (RKHS)
(HK , ‖ · ‖K) as the completion of the linear span of the set {Kξ(·) := K(ξ, ·) : ξ ∈ Ξ}
with respect to the inner product 〈Kξ,Ku〉K := K(ξ, u). For any f ∈ HK , the reproducing
property holds: f(ξ) = 〈Kξ, f〉K .

Example B.1 (Sobolev Spaces) Let X = [0, 1] and the kernel

K(x, x′) =

{
(1− y)x, x ≤ y;

(1− x)y, x ≥ y.

Then the kernel induces a Sobolev Space H = {f : X → R|f is absolutely continuous , f(0) =
f(1) = 0, f ∈ L2(X)}.

In learning with kernel methods, one considers the following minimization problem

inf
f∈HK

∫
Ξ×Y

(f(ξ)− y)2dµ(ξ, y).

Since f(ξ) = 〈Kξ, f〉K by the reproducing property, the above can be rewritten as

inf
f∈HK

∫
Ξ×Y

(〈f,Kξ〉K − y)2dµ(ξ, y).

Letting X = {Kξ : ξ ∈ Ξ} and defining another probability measure ρ(Kξ, y) = µ(ξ, y), the
above reduces to the learning setting in Section 1.
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