
Journal of Machine Learning Research 21 (2020) 1-5 Submitted 2/19; Revised 3/20; Published 4/20

ThunderGBM: Fast GBDTs and Random Forests on GPUs

Zeyi Wen§ zeyi.wen@uwa.edu.au

Hanfeng Liu†, Jiashuai Shi‡ {kurt.liuhf, shijiashuai}@gmail.com

Qinbin Li†, Bingsheng He† {qinbin,hebs}@comp.nus.edu.sg

Jian Chen‡ ellachen@scut.edu.cn
§Dept. of Computer Science and Software Engineering, Uni. of Western Australia, 6009, Australia
†School of Computing, National University of Singapore, 117418, Singapore
‡School of Software Engineering, South China University of Technology, Guangzhou, 510006, China

Editor: Alexandre Gramfort

Abstract

Gradient Boosting Decision Trees (GBDTs) and Random Forests (RFs) have been used in
many real-world applications. They are often a standard recipe for building state-of-the-art
solutions to machine learning and data mining problems. However, training and prediction
are very expensive computationally for large and high dimensional problems. This article
presents an efficient and open source software toolkit called ThunderGBM which exploits
the high-performance Graphics Processing Units (GPUs) for GBDTs and RFs. Thun-
derGBM supports classification, regression and ranking, and can run on single or multiple
GPUs of a machine. Our experimental results show that ThunderGBM outperforms the ex-
isting libraries while producing similar models, and can handle high dimensional problems
where existing GPU-based libraries fail. Documentation, examples, and more details about
ThunderGBM are available at https://github.com/xtra-computing/thundergbm.

Keywords: Gradient Boosting Decision Trees, Random Forests, GPUs, Efficiency

1. Introduction

Gradient Boosting Decision Trees (GBDTs) and Random Forests (RFs) are widely used in
advertising systems, spam filtering, sales prediction, medical data analysis, and image label-
ing (Chen and Guestrin, 2016; Goodman et al., 2016; Nowozin et al., 2013). GBDTs1 have
won many awards in recent Kaggle data science competitions. However, training GBDTs
is often very time-consuming, especially for large and high dimensional problems. GPUs
have been used to accelerate many real-world applications (Dittamo and Cisternino, 2008),
due to their abundant computing cores and high memory bandwidth. In this article, we
propose a GPU-based software tool called ThunderGBM to improve the efficiency of GB-
DTs. ThunderGBM supports binary and multi-class classification, regression and ranking.
ThunderGBM supports the Python interface, and can run on single or multiple GPUs of
a machine. Experimental results show that ThunderGBM is faster than XGBoost, Light-
GBM (Ke et al., 2017) and CatBoost (Prokhorenkova et al., 2018), while producing similar
models on the data sets tested. Moreover, ThunderGBM can handle high dimensional prob-

1. For ease of presentation, we use “GBDTs” rather than mentioning both GBDTs and RFs.

c©2020 Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He and Jian Chen.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-095.html.

https://github.com/xtra-computing/thundergbm
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-095.html

Wen, Liu, Shi, Li, He and Chen

training
instances

sampled
instances

GBDTsRandom Forests

bagging & sampling

regression classification ranking

training algorithms

compute gradients and second order derivative

square loss, etc. cross entropy, etc. pairwise loss, etc.

train a tree train a treetrain k trees
co

ns
tru

ct
 n

ex
t t

re
e(

s)

split data into
two nodes

produce split point candidates

enumerate all feature values build histograms

compute gain find the best gain

find the best split point

tree construction

one or multiple
GPUs

unseen instances

decision trees

predict value by parallel traversal

regression classification ranking

training

prediction

tree construction

Figure 1: Overview of training and prediction in ThunderGBM.

lems where those existing libraries fail. The key reason for the improvement is that existing
libraries are CPU-oriented and use the GPU to accelerate only a part of GBDTs and/or re-
quire additional cost and data structures to support both CPU and GPU implementations,
whereas ThunderGBM is GPU-oriented and maximizes GPU usage.

2. Overview and Design of ThunderGBM

Figure 1 shows the overview and software abstraction of ThunderGBM. The training algo-
rithms for different tasks (i.e., classification, regression and ranking) are built on top of a
generic tree construction module. This software abstraction allows us to concentrate on op-
timizing the performance of tree constructions. Different tasks only require different ways of
computing the derivatives of the loss functions. Notably, the multi-class classification task
requires training k trees where k is the number of classes (Bengio et al., 2010; Chen and
Guestrin, 2016), while regression and ranking only require training one tree per iteration.
The prediction module is relatively simple, and is essentially computing predicted values
by concurrent tree traversal and aggregating the predicted values of the trees on GPUs.
Here, we focus on the training on a single GPU. More details about using multiple GPUs
and the prediction are in the supplementary file (Wen et al., 2019a). We develop a series
of optimizations for the training. For each module that leverages GPU accelerations, we
propose efficient parallel algorithmic design as well as effective GPU-aware optimizations.
The techniques are used to support two major components in ThunderGBM: (i) computing
the gradients and second order derivatives, and (ii) tree construction.

2.1. Computing the Gradients and Second Order Derivatives on GPUs

Denoting yi and ŷi the true and predicted target value of the i-th training instance, the
gradients and second order derivatives are computed using the predicted values and the
true values by gi = ∂l(yi, ŷi)/∂ŷi and hi = ∂2l(yi, ŷi)/∂ŷ

2
i . The gradient and second order

derivative of the loss function are denoted by gi and hi, respectively; l(yi, ŷi) denotes the
loss function. ThunderGBM supports common loss functions such as mean squared error,
cross-entropy and pairwise loss (De Boer et al., 2005; Cao et al., 2007; Lin et al., 2014). More
details on loss functions and derivatives are in the supplementary file. Computing gi and hi
requires the predicted value ŷi of the i-th training instance, ThunderGBM computes ŷi based

2

ThunderGBM: Fast GBDTs and Random Forests on GPUs

on the intermediate training results. This is because the training instances are recursively
divided into new nodes and are located in the leaf nodes at the end of training each tree.
The idea of obtaining the predicted values efficiently is also used in LightGBM. To exploit
the massive parallelism of GPUs, we create a sufficient number of threads to efficiently use
the GPU resources. Each GPU thread keeps pulling an instance and computes its g and h.

2.2. Tree Construction on GPUs

Tree construction is a key component and time consuming in the GBDT training. We adopt
and extend novel optimizations in our previous work (Wen et al., 2018, 2019b) to improve
the performance of ThunderGBM. Tree construction contains two key steps: (i) producing
the split point candidates, and (ii) finding the best split for each node.

Step (i): ThunderGBM supports two ways of producing the split point candidates: one
based on enumeration and the other based on histograms. The former approach requires
the feature values of the training instances to be sorted in each tree node, such that it
can enumerate all the distinct feature values quickly to serve as the split point candidates.
However, the number of split point candidates may be huge for large data sets. The latter
approach considers only a fixed number of split point candidates for each feature, and each
feature is associated with a histogram containing the statistics of the training instances.
Each bin of the histogram contains the values of the accumulated gradients and second
order derivatives for all the training instances located in the bin. When using histogram-
based training, the data is binned into integer-valued bins, which avoids having to sort the
samples at each node, thus leading to significant speed improvement. In ThunderGBM,
each histogram is built in two phases. Firstly, a partial histogram is built on the thread
block level using shared memory, because a thread block only has accesses to a proportion of
gradients and the second order derivatives. Secondly, all the partial histograms of a feature
are accumulated to construct the final histogram. ThunderGBM automatically chooses the
split point candidate producing strategy based on the data set density, i.e., histograms-based
approach for dense data sets and enumeration-based approach for the others. The density
is measured by total # of feature values

of instances×# of dimensions . If the ratio is larger than a threshold, we choose
the histogram-based approach; we choose the enumeration-based approach otherwise.

Step (ii): Finding the best split is to look for the split point candidate with the largest
gain. The gain (Chen and Guestrin, 2016) of each split point candidate is computed by

gain = 1
2

[
G2

L

HL+λ +
G2

R

HR+λ −
(GL+GR)2

HL+HR+λ

]
, where GL and GR (resp. HL and HR) denote the sum

of gi (resp. hi) of all the instances in the resulting left and right nodes, respectively; λ is
a regularization constant. In ThunderGBM, one GPU thread is dedicated to computing
the gain of each split point candidate. The split point candidate with the largest gain
is selected as the best split point for the node, which can be computed efficiently by a
parallel reduction on GPUs. Once the best split point is obtained, the training instances
in a node are divided into two child nodes. For producing the split point candidates by
enumeration, ThunderGBM adopts the novel order preserving data partitioning techniques
on GPUs proposed in our previous work (Wen et al., 2018), i.e., the feature values of the
child nodes can be sorted more efficiently. For producing the split point candidates using
histograms, each GPU thread determines which child node an instance should go to based
on the best split. ThunderGBM repeats the two steps until a termination condition is met.

3

Wen, Liu, Shi, Li, He and Chen

data set on two cpus (sec) on the gpu (sec) speedup (on cpus) speedup (on gpu)

name card. dim. xgb lgbm cat xgb lgbm cat ours xgb lgbm cat xgb lgbm cat

higgs (reg) 11M 28 44.6 22.0 67.9 9.9 12.3 10.1 6.6 6.8 3.3 10.3 1.5 1.9 1.5
log1p (reg) 16K 4M oom 189 oom oom 261 oom 25.6 n.a. 7.4 n.a. n.a. 10.2 n.a.
cifar10 (clf) 50K 3K 521 lerr lerr 124 lerr lerr 81.5 6.4 n.a. n.a. 1.5 n.a. n.a.
news20 (clf) 16K 62K 287 15.4 oom 109 16.5 oom 5.8 49 2.7 n.a. 18.8 2.8 n.a.
yahoo (rnk) 473K 700 18.8 11 n.a. 2.4 29.4 n.a. 2.4 7.8 4.6 n.a. 1.0 12.3 n.a.

Table 1: Comparison with XGBoost, LightGBM and CatBoost.

3. Experimental Studies

We conducted experiments on a Linux workstation with two Xeon E5-2640 v4 10 core CPUs,
256GB memory and a Tesla P100 GPU of 12GB memory. The tree depth is set to 6 and the
number of trees is 40. More results on experiments and descriptions about the data sets can
be found in the supplementary file (Wen et al., 2019a). Five data sets are used here, and
regression, classification and ranking are marked with “reg”, “clf” and “rnk”, respectively.
We used the versions of XGBoost, LightGBM and CatBoost on 21 Jul 2019.

The results are shown in Table 1, where “oom” stands for “out of memory”, “lerr”
stands for “large training error” and “n.a.” stands for “not applicable”. When the existing
libraries are running on CPUs, ThunderGBM is 6.4 to 10x times, 2.7 to 7.4 times, and
10.3 times faster than XGBoost, LightGBM and CatBoost, respectively. When running on
GPUs, ThunderGBM is 1 to 10x times, 1.9 to 10 times, and 1.5 times faster than XGBoost,
LightGBM and CatBoost, respectively. Moreover, ThunderGBM can handle high dimen-
sional problems (e.g., log1p) where the existing libraries fail or run slowly. ThunderGBM
also has smaller or comparable errors to the existing libraries (cf. the supplementary file).

4. Conclusion

In this article, we present ThunderGBM which supports classification, regression and rank-
ing. ThunderGBM uses the same input command line options and configuration files as
XGBoost, and supports the Python interface (e.g., scikit-learn). Our experimental results
show that ThunderGBM outperforms the existing libraries while producing similar models,
and can handle high dimensional problems where the existing libraries sometimes fail.

Acknowledgments

This work is supported by a MoE AcRF Tier 1 grant (T1 251RES1824) and Tier 2 grant
(MOE2017-T2-1-122) in Singapore. Prof. Chen is supported by the Guangdong Basic
Applied Research Foundation (2019B1515130001), Guangdong special branch plans young
talent with scientific and technological innovation (2016TQ03X445), the Guangzhou sci-
ence and technology planning project (201904010197) and Natural Science Foundation of
Guangdong Province (2016A030313437). Bingsheng He and Jian Chen are corresponding
authors. We acknowledge NVIDIA for the hardware donations.

4

ThunderGBM: Fast GBDTs and Random Forests on GPUs

References

Samy Bengio, Jason Weston, and David Grangier. Label embedding trees for large multi-
class tasks. In NeurIPS, pages 163–171, 2010.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from
pairwise approach to listwise approach. In ICML, pages 129–136. ACM, 2007.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In SIGKDD,
pages 785–794. ACM, 2016.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial
on the cross-entropy method. Annals of Operations Research, 134(1):19–67, 2005.

Cristian Dittamo and Antonio Cisternino. GPU White paper, 2008.

Katherine E Goodman, Justin Lessler, Sara E Cosgrove, Anthony D Harris, Ebbing Laut-
enbach, Jennifer H Han, Aaron M Milstone, Colin J Massey, and Pranita D Tamma. A
clinical decision tree to predict whether a bacteremic patient is infected with an extended-
spectrum β-lactamase–producing organism. Clinical Infectious Diseases, 63(7):896–903,
2016.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. In NeurIPS,
pages 3149–3157, 2017.

Guosheng Lin, Chunhua Shen, and Jianxin Wu. Optimizing ranking measures for compact
binary code learning. In ECCV, pages 613–627. Springer, 2014.

Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng Yao, and Pushmeet
Kohli. Decision tree fields: An efficient non-parametric random field model for image
labeling. In Decision Forests for Computer Vision and Medical Image Analysis, pages
295–309. Springer, 2013.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and
Andrey Gulin. CatBoost: unbiased boosting with categorical features. In NeurIPS, pages
6637–6647, 2018.

Zeyi Wen, Bingsheng He, Ramamohanarao Kotagiri, Shengliang Lu, and Jiashuai Shi. Ef-
ficient gradient boosted decision tree training on GPUs. In International Parallel and
Distributed Processing Symposium, pages 234–243. IEEE, 2018.

Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. Supplemen-
tary material of ThunderGBM: https://github.com/Xtra-Computing/thundergbm/

blob/master/thundergbm-full.pdf, 2019a.

Zeyi Wen, Jiashuai Shi, Bingsheng He, Jian Chen, Kotagiri Ramamohanarao, and Qinbin Li.
Exploiting GPUs for efficient gradient boosting decision tree training. IEEE Transactions
on Parallel and Distributed Systems, 30(12):2706–2717, 2019b.

5

https://github.com/Xtra-Computing/thundergbm/blob/master/thundergbm-full.pdf
https://github.com/Xtra-Computing/thundergbm/blob/master/thundergbm-full.pdf

	Introduction
	Overview and Design of ThunderGBM
	Computing the Gradients and Second Order Derivatives on GPUs
	Tree Construction on GPUs

	Experimental Studies
	Conclusion

