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Abstract

The method of covariate adjustment is often used for estimation of total treatment ef-
fects from observational studies. Restricting attention to causal linear models, a recent
article (Henckel et al., 2019) derived two novel graphical criteria: one to compare the
asymptotic variance of linear regression treatment effect estimators that control for certain
distinct adjustment sets and another to identify the optimal adjustment set that yields the
least squares estimator with the smallest asymptotic variance. In this paper we show that
the same graphical criteria can be used in non-parametric causal graphical models when
treatment effects are estimated using non-parametrically adjusted estimators of the inter-
ventional means. We also provide a new graphical criterion for determining the optimal
adjustment set among the minimal adjustment sets and another novel graphical criterion
for comparing time dependent adjustment sets. We show that uniformly optimal time de-
pendent adjustment sets do not always exist. For point interventions, we provide a sound
and complete graphical criterion for determining when a non-parametric optimally adjusted
estimator of an interventional mean, or of a contrast of interventional means, is semipara-
metric efficient under the non-parametric causal graphical model. In addition, when the
criterion is not met, we provide a sound algorithm that checks for possible simplifications of
the efficient influence function of the parameter. Finally, we find an interesting connection
between identification and efficient covariate adjustment estimation. Specifically, we show
that if there exists an identifying formula for an interventional mean that depends only on
treatment, outcome and mediators, then the non-parametric optimally adjusted estimator
can never be globally efficient under the causal graphical model.

Keywords: adjustment sets, back-door formula, Bayesian networks, causal inference,
semiparametric inference

1. Introduction

Estimating total, population average, causal treatment effects by controlling for, that is,
conditioning on, a subset of covariates is known as the method of covariate adjustment.
Assuming a causal directed acyclic graph (DAG) model, the back-door criterion (Pearl,
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2000) is a popular graphical criterion that gives sufficient conditions for a covariate set
to be such that control for this set yields consistent estimators of total treatment effects.
Shpitser et al. (2010) gives a necessary and sufficient graphical criterion for a subset of
covariates to qualify for adjustment.

The graphical criteria of Pearl and Shpitser et al. are particularly useful for designing
observational studies. Specifically, investigators planning an observational study might be
prepared to hypothesize a causal diagram and apply the aforementioned criteria to aid
them in selecting the covariates to measure in order to control for confounding. When
many covariate adjustment sets are available, a natural question is which one should be
selected.

Henckel et al. (2019) (see also Witte et al. (2020)) gave an answer to this question under
the following assumptions: (i) the causal DAG model is linear, that is, each vertex in the
DAG stands for a random variable that follows a linear regression model on its parents
in the DAG, with an independent error that has an arbitrary distribution and (ii) the
total treatment effects are estimated with the coefficients associated with treatments in the
ordinary least squares (OLS) fit of the outcome on treatments and a set of valid adjustment
covariates. They derive a graphical criterion that identifies the optimal covariate adjustment
set in the sense that this set yields the OLS treatment effect estimator which has the smallest
asymptotic variance among all OLS estimators of treatment effects that control for valid
adjustment sets.

Our first contribution, see Section 5.1, is to establish that the same criterion holds for
identifying the optimal valid covariate adjustment set when (i) the causal DAG model is
non-parametric in the sense that no assumptions are made on the conditional distribution of
each node given is parents, and, (ii) the treatment effects are estimated non-parametrically,
that is, without exploiting the conditional independencies in the data generating law en-
coded in the causal DAG model. For instance, the treatment effects could be estimated
by inverse probability weighting with the propensity score estimated non-parametrically
(Hirano et al., 2003; Abadie and Cattaneo, 2018), or by doubly-robust or double-machine
learning approaches (Chernozhukov et al.; Smucler et al., 2019). Our second contribution
is to provide a graphical criterion for identifying the optimal adjustment set among the
class of minimal adjustment sets. A minimal adjustment set is a valid adjustment set such
that removal of any vertex from the set yields a non-valid adjustment set. We note that
our criterion holds for non-parametric causal DAG models and estimators as well as linear
causal DAG models and estimators.

A second important contribution of Henckel et al. (2019) is a graphical criterion, assum-
ing linear DAG models and OLS estimators, to compare certain pairs of valid adjustment
sets which is more broadly applicable than earlier existing criteria (Kuroki and Miyakawa,
2003; Kuroki and Cai, 2004). Building on their criterion Henckel et al. also provided a
simple procedure that, for a valid adjustment set, returns a pruned valid adjustment set
that yields OLS estimators of treatment effects with smaller asymptotic variance. The pro-
cedure was conjectured to yield improved efficiency in VanderWeele and Shpitser (2011).
The contribution of Henckel et al. (2019) was to rigorously show that the conjecture is valid
for causal linear models and OLS estimators of treatment effects. Our third contribution
is to prove that both the graphical criterion and the pruning procedure of Henckel et al.
(2019) also apply for non-parametric causal DAG models and estimators.
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Henckel et al. (2019) considered not only DAGs but also (linear) completed partially di-
rected acyclic graphs (CPDAGs) and maximal PDAGs. A CPDAG (Meek, 1995; Andersson
et al., 1997; Spirtes et al., 2000; Chickering, 2002) represents, under causal sufficiency and
faithfulness, the Markov equivalence class of DAGs that can be deduced from the condi-
tional independencies in the observed data distribution. A maximal PDAGs is a maximally
oriented partially directed acyclic graph that maximally refines the Markov equivalence
class when the orientation of some edges are known a-priori (Meek, 1995; Scheines et al.,
1998; Hoyer et al., 2008; Hauser and Bühlmann, 2012; Eigenmann et al., 2017; Wang et al.,
2017). Henckel et al. (2019) derived graphical criteria for identifying the optimal adjustment
set and for comparing certain adjustment sets under linear CPDAGs and maximal PDAGs,
assuming treatment effects are estimated by least squares. These criteria are consequences
of the corresponding criteria for DAGs. This is because the criteria are based solely on
d-separation conditions on CPDAGs and maximal PDAGs, and d-separations that hold on
CPDAGs and maximal PDAGs hold on all possible DAGs represented by them. Because,
as indicated earlier, we show that the graphical criteria developed by Henckel et al. (2019)
for linear DAGs and estimators also holds for non-parametric DAGs and estimators, we
conclude that the criteria derived by Henckel et al. (2019) for linear CPDAGs and maximal
PDAGs using linear estimators of treatment effects, also hold for non-parametric CPDAGs
and maximal PDAGs when non-parametric estimators of treatment effects are used. To
avoid repetitions we do not expand on this topic in the present paper and refer the reader
to Henckel et al. (2019).

The aforementioned graphical criterion of Henckel et al. (2019) for comparing certain
adjustment sets in DAGs applies to OLS estimators of the causal effects of both point and
joint interventions. However, for joint interventions, the criterion makes the restrictive as-
sumption that the adjustment sets are time independent. As Henckel et al. (2019) pointed
out, time independent covariate adjustment sets for joint interventions do not always exist.
In contrast, time dependent covariate adjustment sets, which are comprised by covariates
that are needed to adjust for future treatments but are themselves affected by earlier treat-
ments, always exist. The g-formula (Robins, 1986), is the generalization of the adjustment
formula from time independent to time dependent covariate adjustment sets. This raises
the question of whether it is possible to generalize the results obtained for comparing time
independent covariate adjustment sets to time dependent covariate adjustment sets. The
answer is mixed. Specifically, in Section 5.2 we establish a result (Theorem 13) that allows
the comparison of certain time dependent covariate adjustment sets and which generalizes
the results obtained for non-parametric models and estimators in Theorem 6 of the present
article from time independent to time dependent covariate adjustment sets. However, in
that section we also exhibit a DAG in which no uniformly optimal time dependent covariate
adjustment set exists. We do so by exhibiting two data generating laws, both satisfying
the restrictions implied by the non-parametric causal DAG, such that a given time depen-
dent covariate adjustment set dominates all others for one law, in the sense of yielding
non-parametric estimators of the g-formula with smallest asymptotic variance, but for the
second law a different time dependent covariate adjustment set dominates the rest.

Next we investigate the following problem. If we could measure all the variables of
the causal DAG, we could then exploit the conditional independencies encoded in the non-
parametric causal DAG model to efficiently estimate the total treatment effects. For a point
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exposure, we can also estimate each treatment effect by the method of covariate adjustment
using the optimal time independent covariate adjustment set. A natural question then is
under which DAG configurations, if any, do the two procedures result in estimators with
the same asymptotic efficiency? From a practical perspective this question is interesting for
the planning of observational studies since for DAGs for which no efficiency loss is incurred
by non-parametric optimal covariate adjustment estimation, then the optimal covariate
adjustment set, the treatment and the outcome are all the variables that one needs to
measure not only for consistent but also for efficient estimation of treatment effects. In
Section 6.1 we review a general one-step estimation strategy for computing semiparametric
efficient estimators. We argue that only variables entering the efficient influence function
of a interventional mean under the non-parametric causal graphical model are required for
computing the one-step estimator of treatment effects. As such, all variables that do not
enter into the efficient influence function are irrelevant for efficient estimation. In Section
6.2 we establish a sound and complete graphical criterion to determine whether or not the
optimally adjusted non-parametric estimator incurs in loss of efficiency. The completeness of
our criterion and of the ID algorithm (Tian and Pearl, 2002; Shpitser and Pearl, 2008) imply
the following interesting result, established in Section 6.3, linking identification and efficient
covariate adjustment estimation: if there exists an identifying formula for an interventional
mean that depends only on treatment, outcome and mediators, then the non-parametric
optimally adjusted estimator can never be globally efficient under the causal DAG model.

When the optimally adjusted estimator is not efficient, it may nevertheless be the case
that not all the variables in the DAG enter into the calculation of an efficient estimator.
As such, from the perspective of planning a study, it is useful to learn which variables are
irrelevant for efficient estimation since such variables need not be measured. In Section
6.4 we provide a sound algorithm that checks for variables that do not enter into the
efficient influence function and hence are irrelevant for efficient estimation. In addition, the
algorithm conducts sound checks for possible simplifications of the formula for the efficient
influence function.

The rest of the paper is organized as follows. In Section 2 we review some concepts of
causal graphical models and semiparametric efficiency theory used throughout the paper.
In Section 3 we review the definition of time independent adjustment sets and provide the
definition of time dependent adjustment sets. In Section 4 we review the asymptotic theory
of estimators based on the method of non-parametric covariate adjustment. In Section 5
we provide the main results concerning optimal adjustment sets. In Section 6 we discuss
efficient estimation exploiting the restrictions of the causal graphical model. Section 7
concludes with a list of open problems. Proofs of all the results stated in the main text are
given in the Appendix.

2. Background

In this section we review some elements of the theory of causal graphical models and of
semiparametric efficiency theory that will be used throughout the paper.
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2.1 Directed Acyclic Graphs

Directed graph. A directed graph G = (V,E) consists of a finite node set V and a set of
directed edges E. A directed edge between two nodes V , W is represented by V → W .
Given a set of nodes Z ⊂ V the induced subgraph GZ = (Z,EZ) is the graph obtained by
considering only nodes in Z and edges between nodes in Z.
Paths. Two nodes are adjacent if there exists an edge between them. A path from a node
V to a node W in graph G is a sequence of nodes (V1, . . . , Vj) such that V1 = V , Vj = W
and Vi and Vi+1 are adjacent in G for all i ∈ {1, . . . , j − 1}. Then V and W are called
the endpoints of the path. A path (V1, . . . , Vj) is directed or causal if Vi → Vi+1 for all
i ∈ {1, . . . , j − 1}.
Ancestry. If V →W , then V is a parent of W and W is a child of V . If there is a directed
path from V to W , then V is an ancestor of W and W a descendant of V . We follow the
convention that every node is an ancestor and a descendant of itself. The sets of parents,
children, ancestors and descendants of V in G are denoted by paG(V ), chG(V ), anG(V ),
deG(V ). The set of non-descendants of a vertex V is defined as ndG(V ) ≡ decG(V ).
Colliders and forks. A node V is a collider on a path δ if δ contains a subpath (U, V,W )
such that U → V ← W . A node V is called a fork on δ if δ contains a subpath (U, V,W )
such that U ← V →W .
Directed cycles, DAGs. A directed path from V to W , together with the edge W → V
forms a directed cycle. A directed graph without directed cycles is called a directed acyclic
graph (DAG). The nodes (Vk1 , . . . , Vks) are said to follow a topological order relative to a
DAG G if Vkj is not an ancestor of Vkj′ in G whenever j > j′.
d-separation (Pearl, 2000). Consider a DAG G and distinct sets of nodes U,W,Z. A path
δ between U ∈ U and W ∈W is blocked by Z in G if one of the following holds:

1. δ contains a node that is not a collider and is a member of Z, or

2. If there exists a collider C in δ such that neither C nor its descendants are in Z.

U,W are d-separated by Z in G (denoted as U ⊥⊥G W | Z) if for any U ∈ U and
W ∈W, all paths between U and W are blocked given Z.
Bayesian Network. Given a DAG G with a vertex set V that represents a random vector
defined on a given probability space, a law P for V is said to satisfy the Local Markov
Property relative to G if and only if

V ⊥⊥ ndG (V ) | paG (V ) under P for all V ∈ V,

where throughout if U and V are independent random variables defined on a common
probability space we write U ⊥⊥ V .

The Bayesian Network represented by DAG G (Pearl, 2000) is defined as the collection

M (G) ≡ {P : P satisfies the Local Markov Property relative to G} .

Verma and Pearl (1990) and Geiger et al. (1990) show that for any disjoint sets A,B,C
included in V

A ⊥⊥G B | C⇔ A ⊥⊥ B | C under P for all P ∈M (G) .
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Marginal DAG model (Evans, 2016). Let G be a DAG with vertices V
·
∪U, where · stands

for disjoint union, and V a state-space for V. Let M (G) be the Bayesian Network rep-
resented by G. Define the marginal DAG model M (G,V) by the collection of probability
distributions P over V such that there exist

1. some state-space U for U,

2. a probability measure Q ∈M (G) over V × U ,

and P is the marginal distribution of Q over V.
Exogenized DAG (Evans, 2016). Let G be a DAG and let U be a vertex of G with a single
child R. Define the exogenized DAG τ (G, U) as follows: take the vertices and edges of G,
and then (i) add an edge H → R from every H ∈ paG (U) to R, and (ii) delete U and
any edge H → U for H ∈ paG (U). All other edges and vertices are as in G. In words, to
exogenize a DAG G relative to a vertex U with a single child, we join all parents of U to
the child of U with directed edges, and then remove U and all edges into and out of U .
Latent projection. Let G be a DAG with vertex set V ∪ L, where the the vertices in V are
observable and the vertices in L are hidden. The latent projection (Verma and Pearl, 1990)
G[V] is a directed mixed graph (that is, a graph with both directed and bi-directed edges)
with vertex set V, where for each pair of distinct vertices Vi, Vj ∈ V:

1. G[V] contains Vi → Vj if and only if there exists a directed path from Vi to Vj on
which every non-endpoint vertex is in L.

2. G[V] contains Vi ↔ Vj if and only if there exists a path of the form Vi ← · · · → Vj ,
on which every non-endpoint vertex is a non-collider and an element of L

District We call a set D ⊂ V a bi-directed component of G[V] if for any U,W ∈ D there
exists a path from U to W in G[V] of the form U ↔ · · · ↔W . D ⊂ V is a district in G[V]
if it is an inclusion maximal bi-directed component.

Throughout we use standard set theory notation. For a DAG with node set V and for
U,W ⊂ V we have Uc = V \U, U \W = U ∩Wc and U4W = (U \W) ∪ (W \U).
For a vector U = (U0, . . . , Ur) ⊂ V and j ≤ r we let

Uj ≡ (U0, . . . , Uj) .

2.2 Causal Graphical Models

A causal (agnostic) graphical model (Spirtes et al., 2000; Robins and Richardson, 2010)
represented by G assumes that the law of V ≡ (V1, . . . , Vs) belongs to M(G) and that
for any A = {A1, . . . , Ap}⊂V, the post-intervention density (with respect to a dominating
measure) f [v | do(a)] of V when A is set to a on the entire population satisfies

f [v | do(a)] =


∏

Vj∈V\A
f(vj | paG(Vj)) if A = a

0 otherwise.
(1)

Formula (1) is known as the g-formula (Robins, 1986), the manipulated density formula
(Spirtes et al., 2000) and the truncated factorization formula (Pearl, 2000).
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The non-parametric structural equations model with independent errors (NPSEM-IE,
Pearl 2000) is a sub-model of the causal agnostic graphical model that additionally assumes
the existence of counterfactuals. Specifically, the model associates each vertex V ∈ V with
a factual random variable satisfying

V = gV
(
paG (V ) , εV

)
for all V ∈ V

where {εV }V ∈V are mutually independent and {gV }V ∈V are arbitrary functions. The model
also assumes that for any A = {A1, . . . , Ap}⊂V, the counterfactual vector Va that would
be observed had A been set to a exists, and is generated according to

Va = gV
([

paG (V )
]
a
, εV
)

for all V ∈ V\A
Aa,k = ak for all k = 1, . . . , p.

The finest fully randomized causally interpretable structured tree graph model (FFRCISTG,
Robins 1986) makes the same assumptions as the NPSEM-IE model, except that it relaxes
the assumption that the {εV }V ∈V are mutually independent. We note that the only re-
striction that the NPSEM-IE and the FFRCISTG models place on the law P of the factual
random vector V, is that P ∈ M(G). Furthermore, (1) remains valid under both models.
See Richardson and Robins (2013) for more details.

The results that we will derive in this paper rely solely on the assumption that P ∈M(G)
and on the validity of (1). Therefore, the results hold for the causal agnostic graphical
models, the NPSEM-IE, and the FFRCISTG.

A causal (agnostic) graphical linear model represented by G is the submodel of the causal
(agnostic) graphical model which additionally imposes the restriction that V = (V1, . . . , Vs)
satisfies

Vi =
∑

Vj∈paG(Vi)

αijVj + εi,

for i ∈ {1, . . . , S}, where αij ∈ R and ε1, . . . , εp are jointly independent random variables
with zero mean and finite variance.

Throughout this paper we let Va be a random vector with density f [v | do(a)]. In
particular for Y ∈ V we let Ya be the corresponding component of Va. We call E [Ya] =
E [Y | do(a)] the interventional mean under A = a.

2.3 Semiparametric Efficiency Theory

We now review the key elements of semiparametric efficiency theory that we will use
throughout the paper.

2.3.1 Asymptotically Linear Estimators

An estimator γ̂ of a scalar parameter γ (P ) based on n i.i.d. copies V1, . . . ,Vn of V is
asymptotically linear at P if there exists a random variable ϕP (V) with EP [ϕP (V)] = 0
and var[ϕP (V)] < +∞ such that under P

n1/2 {γ̂ − γ (P )} =
1

n1/2

n∑
i=1

ϕP (Vi) + op(1).
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Here and throughout EP [·] and varP [·] denote the mean and the variance operators under
the law P . A random variable ϕP (V) that satisfies the aforementioned conditions is unique
almost surely P . It is called the influence function of γ̂ at P . By the Central Limit Theorem
any asymptotically linear estimator γ̂ satisfies

n1/2{γ̂ − γ(P )} d→ N(0, varP [ϕP (Vi)]),

where
d→ is convergence in distribution under law P . Furthermore any two asymptoti-

cally linear estimators, say γ̂1 and γ̂2, with the same influence function are asymptotically
equivalent in the sense that n1/2 (γ̂1 − γ̂2) = op (1).

2.3.2 Regular Estimators

Given a collection of probability lawsM for V, an estimator γ̂ of a scalar parameters γ (P )
is regular in M at P if its convergence to γ (P ) is locally uniform (Van der Vaart, 2000,
Chapter 8, page 115). Regularity is a necessary condition for a nominal 1 − α level Wald
interval centered at the estimator to be an honest confidence interval in the sense that there
exists a sample size n∗ such that for all n > n∗ the interval attains at least its nominal
coverage over all laws in M.

2.3.3 Efficiency

Given a collection of probability laws M, for any law P in M, define the tangent space
Λ ≡ Λ (P ) at P of modelM as the L2 (P )−closed linear span of scores at t = 0 for regular
one-dimensional parametric submodels t ∈ [0, ε)→ Pt with Pt=0 = P (Van der Vaart, 2000,
Chapter 25, page 362). If for all P ∈ M, Λ(P ) is a subset of a euclidean space, the model
M is said to be parametric. If for all P ∈ M, Λ(P ) is a equal to L2 (P ), the model M is
said to be non-parametric. Otherwise, the model is said to be semiparametric.

A parameter γ(P ), more precisely the map P ′ ∈M→ γ(P ′), is pathwise differentiable at

P if there exists a random variable ξP (V) such that EP

[
ϕP (V;G)2

]
<∞, EP [ξP (V)] = 0

and such that for any regular one-dimensional parametric submodel t ∈ [0, ε) → Pt with
Pt=0 = P and score at t = 0 denoted as S, it holds that dγ(Pt)/dt|t=0 = EP [ξP (V)S].
The random variable ξP (V) is called an influence function of the parameter γ(P ). Unless
M is non-parametric, there exists infinitely many influence functions, because if ξP is an
influence function so is ξP + T for any mean zero T uncorrelated with the elements of Λ.

The following key result in semiparametric theory connects the influence function of
regular and asymptotically linear estimators with the influence functions of regular param-
eters. Specifically, if γ̂ is an asymptotically linear estimator of γ(P ) at P with influence
function ξP , then γ̂ is regular at P in modelM if and only if γ(P ) is pathwise differentiable
at P and ξP is an influence function of γ(P ). See Theorem 2.2 of Newey (1990).

The projection Π [B|Λ] of any B ∈ L2 (P ) into the tangent space Λ at P is defined as
the unique element of Λ such that B − Π [B|Λ] is uncorrelated under P with any element
of Λ. The projection ϕP,eff ≡ Π [ϕP (V)|Λ] of any influence function ϕP of γ(P ) is itself an
influence function. ϕP,eff is called the efficient influence function of γ(P ) at P in model

M. It follows from the Pythagorean Theorem, that the variance Ωeff ≡ EP

[
(ϕP,eff )2

]
of ϕP,eff (V) is less than or equal to the variance EP

[
ϕ2
P (V)

]
of any influence function
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ϕP (V). Consequently, Ωeff is a lower bound for the variance of the limiting mean zero
normal distribution of regular asymptotically linear estimators of γ(P ). Ωeff is called the
semiparametric variance bound (also called the semiparametric Cramer-Rao bound) for
γ(P ) at P in model M.

3. Interventional Mean and Adjustment Sets

Under the causal graphical model, for any A = {A0, . . . , Ap}⊂V topologically ordered,
where each Ak a discrete random variable and Y ∈ V\A, the interventional mean on the
outcome Y satisfies

E [Ya] = EP

[
p∏

k=0

{
Iak (Ak)

P
(
Ak = ak|paG (Ak)

)}Y ] .
This is an immediate consequence of formula (1). The Local Markov Property for P ∈M(G)
further implies that E [Ya] is equal to

EP

{
EP

{
EP

[
EP

[
Y |a, paG(Ap)

]
|ap−1, paG(Ap−1)

]
|ap−2, paG(Ap−2)

}
· · · | a0,paG(A0)

}
where for every j ∈ {0, . . . , p}

paG(Aj) =

j⋃
k=0

paG(Aj).

See Robins (1987a), Theorem AD.1. In particular, if A is a point intervention, so that it is
a single variable A, then

E [Ya] = EP

[
Ia (A)

P
(
A = a| paG (A)

)Y ] (2)

= EP
[
E
[
Y |A = a,paG (A)

]]
.

For a binary point intervention A, the average treatment effect (ATE), ATE ≡ E [Ya=1]−
E [Ya=0], quantifies the effect on the mean of the outcome of setting A = 1 versus A = 0 on
the entire population. Under a causal graphical model, equation (1) implies

ATE = EP
[
EP
[
Y |A = 1,paG (A)

]]
− EP

[
EP
[
Y |A = 0, paG (A)

]]
.

3.1 Adjustment Sets

Definition 1 (Time dependent covariate adjustment set)
Let G be a DAG with vertex set V let A = (A0, . . . , Ap)⊂ V be topologically ordered and
Y ∈ V\A. We say that Z ≡ (Z0,Z1, . . . ,Zp) ⊂ V\ {A, Y } where Z0,Z1, . . . and Zp are
disjoint, is a time dependent covariate adjustment set relative to (A, Y ) in G if under all
P ∈M (G) and all y ∈ R

EP

[
p∏

k=0

{
Iak (Ak)

P
(
Ak = ak| paG (Ak)

)} I(−∞,y](Y )

]
=

EP
{
EP
{
EP
[
EP
[
I(−∞,y](Y )|a,Z

]
|ap−1,Zp−1

]
|ap−2,Zp−2

}
· · · | a0,Z0

}
.
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The preceding definition extends the following definition of covariate adjustment set of
Shpitser et al. (2010) and Maathuis and Colombo (2015). We use the appellatives time
dependent and time independent to distinguish the two definitions.

Definition 2 (Time independent covariate adjustment set) (Shpitser et al., 2010;
Maathuis and Colombo, 2015) Let G be a DAG with vertex set V let A = (A0, . . . , Ap)⊂ V
be topologically ordered and Y ∈ V\A. A set Z ⊂ V\ {A, Y } is a time independent adjust-
ment set relative to (A, Y ) in G if under all P ∈M (G) and all y ∈ R

EP

[
p∏

k=0

{
Iak (Ak)

P
(
Ak = ak|paG (Ak)

)} I(−∞,y](Y )

]
= EP

[
EP
[
I(−∞,y](Y )|A = a,Z

]]
(3)

Note that Z is a time independent adjustment set if and only if Z̃ = (Z0, . . . ,Zp) with
Z0 = Z and Zj = ∅ for j = 1 . . . , p is a time dependent adjustment set.

The back-door criterion (Pearl, 2000) is a sufficient graphical condition for Z to be a time
independent adjustment set. Shpitser et al. (2010) gives a necessary and sufficient graphical
condition for Z to be a time independent covariate adjustment set. These authors also show
that if Z is a time independent covariate adjustment set, then there exists Zsub ⊂ Z such
that Zsub is a time independent adjustment set and it satisfies the back-door criterion. On
the other hand Pearl and Robins (1995) provides a sufficient graphical criterion for Z to be
a time dependent adjustment set. Robins (1987b) derives analogous sufficient conditions
assuming the causal diagram represents a non-parametric structural equations model. See
also Richardson and Robins (2013).

When A is a point intervention A, a time independent adjustment sets always exist. For
instance, Z = paG(A) is one such set. However, for A = (A0, . . . , Ap) a joint intervention,
a time independent covariate adjustment set Z may not exist in some graphs, as noted in
Henckel et al. (2019). In contrast, a time dependent adjustment sets always exists, since Z ≡
(Z0,Z1, . . . ,Zp) where Z0 ≡ paG (A0) and Zk ≡ paG (Ak) \

[
∪k−1
j=0 paG (Aj)

]
, k = 1, . . . , p is

a time dependent adjustment set.

Example 1 In the DAG of Figure 1, there is no time independent adjustment set relative
to (A, Y ) for A = (A0, A1). For instance, Z = (Z0,Z1) with Z0 = {L0} and Z1 = {L1},
and Z̃ =

(
Z̃0, Z̃1

)
, with Z̃0 = {L0} and Z̃1 = {L1, U}, are two time dependent adjustment

sets (Robins, 1987b).

10
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L0 A0 L1 A1 Y

U

Figure 1: A DAG with two possible time dependent adjustment sets and no time indepen-
dent adjustment sets.

We also have the following definition.

Definition 3 (Minimal covariate adjustment set) Let G be a DAG with vertex set V,
let A ⊂ V and Y ∈ V\A. A set Z ⊂ V\ {A, Y } is a minimal time dependent (independent)
adjustment set relative to (A, Y ) in G if Z is a time dependent (independent) adjustment
set and no proper subset of Z is a time dependent (independent) adjustment set.

4. Non-parametric Estimation of an Interventional Mean

Suppose that A is a vector of variables taking values on a finite set A and one is interested
in estimating some contrast

∆ ≡
∑
a∈A

caE[Ya]

for given constants ca, a ∈ A. In particular if A = A is binary and c1 = 1 and c0 = −1 the
preceding linear combination is equal to ATE. Suppose that, having postulated a causal
graphical model, one finds that time independent adjustment sets exist. Having decided on
one adjustment set Z, one estimates

∆(P ;G) ≡
∑
a∈A

caχa (P ;G) ,

where

χa (P ;G) ≡ EP [EP [Y |A = a,Z]] = EP

[
πa (Z;P )−1 Ia (A)Y

]
,

by estimating each χa (P ;G) under a modelM that makes at most smoothness or complexity
assumptions on

ba (Z;P ) ≡ EP [Y |A = a,Z]

and/or

πa (Z;P ) ≡ P [A = a|Z] .

Examples of such estimating strategies include the inverse probability weighted estimator

χ̂a,IPW = Pn
[
π̂a (Z)−1 Ia (A)Y

]
where π̂a (·) is a series or kernel estimator of P [A = a|Z = ·]

11
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(Hirano et al., 2003), the outcome regression estimator Pn
[
b̂a (Z)

]
where b̂a (·) is a smooth

estimator of ba (Z;P ) (Hahn, 1998) or the doubly-robust estimator (Van der Laan and
Robins, 2003; Chernozhukov et al.; Smucler et al., 2019).

This estimation strategy effectively uses the causal model solely to provide guidance on
the selection of the adjustment set but otherwise ignores the information about the interven-
tional means χa (P ;G) encoded in the causal model. This is a strategy frequently followed
in applications (Abadie and Cattaneo, 2018; Bottou et al., 2013; Hernan and Robins, 2019).
It is well known (Robins et al., 1994) that estimators χ̂a,Z of χa (P ;G) based on the adjust-
ment set Z that are regular and asymptotically linear under a model M that imposes at
most smoothness or complexity assumptions on ba (Z;P ) and/or πa (Z;P ) have a unique
influence function equal to

ψP,a (Z;G) ≡ Ia (A)

πa (Z;P )
(Y − ba (Z;P )) + ba (Z;P )− χa (P ;G) , (4)

where to avoid overloading the notation in ψP,a we do not explicitly write its dependence
on (Y,A).

Consequently, estimators ∆̂Z ≡
∑

a∈A caχ̂a,Z of ∆(P ;G) have a unique influence func-
tion equal to

ψP,∆ (Z;G) =
∑
a∈A

caψP,a (Z;G) .

For simplicity, we refer to asymptotically linear estimators of χa (P ;G) with influence func-
tion ψP,a (Z;G) as non-parametric estimators that use the adjustment set Z and we abbre-
viate them with NP-Z.

The preceding discussion implies that any NP-Z estimator χ̂a,Z satisfies

√
n {χ̂a,Z − χa (P ;G)} d→ N

(
0, σ2

a,Z (P )
)

where σ2
a,Z (P ) ≡ varP [ψP,a (Z;G)] . Likewise,

√
n
{

∆̂Z −∆(P ;G)
}

d→ N
(

0, σ2
∆,Z

)
where

σ2
∆,Z (P ) ≡ varP [ψP,∆ (Z;G)] .

Two natural questions of practical interest arise. The first is whether any two given time
independent covariate adjustment sets, say Z,Z′, are comparable in the sense that either

σ2
∆,Z ≤ σ2

∆,Z′ for all P ∈M(G) or σ2
∆,Z′ ≤ σ2

∆,Z for all P ∈M(G).

The second is whether an optimal time independent adjustment set O exists such that for
any other time independent adjustment set Z,

σ2
∆,O (P ) ≤ σ2

∆,Z (P ) . (5)

These questions were answered by Henckel et al. (2019) under (i) a linear causal graphical
model, (ii) when ∆ = E [Ya − Ya′ ] where a − a′ is the vector with all coordinates equal to
zero except for coordinate j which is equal to one, and (iii) when ∆ is estimated as the
ordinary least squares estimator of the coefficient of Aj in the linear regression of Y on A

12
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and Z and σ2
∆,Z is the asymptotic variance of such estimators. These authors showed that

not all time independent covariate adjustment sets are comparable. However, they provided
a graphical criterion to compare certain pairs of time independent covariate adjustment sets.
They also provided a graphical criterion for characterizing the set O, whenever a valid time
independent covariate adjustment set exists. In particular, the criterion always returns an
optimal valid time independent covariate adjustment set for A = A a point interventions.

In Section 5.1 we prove that the same graphical criteria remain valid for comparing time
independent covariate adjustment sets and for characterizing the set O that satisfies (5)
under an arbitrary, not necessarily linear, causal graphical model and for NP-Z estimators
of an arbitrary contrast ∆. Moreover, for A = A a point intervention, we further show that
there exists a minimal adjustment set Omin included in O such that Omin is optimal among
the minimal adjustment sets; that is, for any other minimal adjustment set Zmin,

σ2
∆,Omin

(P ) ≤ σ2
∆,Zmin

(P ) , (6)

where σ2
∆,Zmin

(P ) stands for either the asymptotic variance of the NP-Zmin estimator or the
asymptotic variance of the OLS estimator of treatment effect of Henckel et al. (2019). In
addition, we provide a graphical criterion for identifying Omin. Using the tools developed in
van der Zander and Liskiewicz (2019), O and Omin it can be shown that can be computed
in polynomial time.

Consider next the case in which A = (A0, . . . , Ap) is a joint intervention with p > 0.
In analogy with the time independent covariate adjustment case we consider in Section 5.2
the setting in which one uses the causal model to identify the collection of time dependent
adjustment sets, but then for any given time dependent adjustment set Z, one estimates
each E [Ya] ignoring the conditional independencies encoded in the causal graphical model.
For instance, for p = 1, we study the asymptotic efficiency of estimators of

χa0,a1 (P ;G) ≡ EP {EP [EP [Y |A0 = a0, A1 = a1,Z0,Z1] |A0 = a0,Z0]}

= EP

[
Ia0 (A0)

P [A0 = a0|Z0]

Ia1 (A1)

P [A1 = a1|A0 = a0,Z0,Z1]
Y

]
for different time dependent adjustment sets (Z0,Z1), under a modelM that makes at most
smoothness or complexity assumptions on

ba0,a1 (Z0,Z1;P ) ≡ EP [Y |A0 = a0, A1 = a1,Z0,Z1] ,

ba0 (Z0;P ) ≡ EP [ba0,a1 (Z0,Z1;P ) |A0 = a,Z0]

and/or

πa0,a1 (Z0,Z1;P ) ≡ P [A1 = a1|A0 = a0,Z0,Z1] ,

πa0 (Z0;P ) ≡ P [A0 = a0|Z0] .

See Van der Laan and Robins (2003). Just as for the case of time independent adjustment
sets, not all time dependent adjustment sets are comparable in terms of their asymptotic
variance uniformly for all P ∈ M(G). However, in Section 5.2 we generalize the aforemen-
tioned graphical criterion that allows the comparison of certain time dependent adjustment
sets. Nevertheless we show by example that unlike the case of time independent adjustment
sets, even though a time dependent adjustment set always exists, there are DAGs in which
no uniformly optimal time dependent adjustment set exists.

13
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5. Comparison of Adjustment Sets

In Section 5.1 we show that the graphical criteria for comparing time independent adjust-
ment sets and for identifying the optimal time independent adjustment set of Henckel et al.
(2019) is valid also when treatment effects are estimated non-parametrically. In Section 5.2
we provide results for time dependent adjustment sets.

5.1 Time Independent Adjustment Sets

Lemma 4 (Supplementation with time independent precision variables) Let G be
a DAG with vertex set V, let A ⊂ V and Y ∈ V \A with A a random vector taking values
on a finite set. Suppose B ⊂ V\ {A, Y } is a time independent adjustment set relative to
(A, Y ) in G and suppose G is a disjoint set with B that satisfies

A ⊥⊥G G | B.

Then (G,B) is also a time independent adjustment set relative to (A, Y ) in G and for all
P ∈M (G)

σ2
a,B (P )− σ2

a,G,B (P ) = EP

[{
1

πa (B;P )
− 1

}
varP [ba(G,B;P )|B]

]
≥ 0. (7)

Furthermore,
σ2

∆,B (P )− σ2
∆,G,B (P ) = cT varP (Q) c ≥0

where c ≡ (ca)a∈A and Q ≡ [Qa]a∈A with

Qa ≡
{

Ia(A)

πa(G,B;P )
− 1

}
{ba(G,B;P )− ba(B;P )} ,

varP (Qa) = EP

[{
1

πa(B;P )
− 1

}
varP (ba(G,B;P ) | B)

]
,

and covP [Qa, Qa′ ] = −EP [covP {ba(G,B;P ), ba′(G,B;P )|B}] for a 6= a′.

In particular,

σ2
ATE,B (P )− σ2

ATE,G,B (P ) = EP

[{
1

πa=1(B;P )
− 1

}
varP (ba=1(G,B;P ) | B)

]
+EP

[{
1

πa=0(B;P )
− 1

}
varP (ba=0(G,B;P ) | B)

]
−2EP [covP {ba=1(G,B;P ), ba=0(G,B;P )|B}]
≥ 0.

For the special case in which B = ∅, formula (7) was derived in Robins and Rotnitzky
(1992) and Hahn (1998). The formula quantifies the reduction in variance associated with
supplementing an adjustment set with ‘precision’ variables, i.e., variables that may help
predict the outcome within treatment levels but are not associated with treatments after
controlling for the already existing adjustment set. Notice that varP [ba(G,B;P )|B] quan-
tifies the additional explanatory power carried by G for Y after adjusting for B. In the
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DAG represented in Figure 2, B = {B} and G = {G} satisfy the conditions of Lemma 4.
In that DAG, varP [ba(G,B;P )|B] increases as the strength of the association encoded
in the red edge increases and the one encoded in the green edge decreases. In contrast,
{1/πa (B;P )− 1} is always greater than 0, and it is more variable, and thus tends to have
larger values, the stronger the marginal association of B with A. In the DAG in Figure 2,
this association is represented by the blue edge.

B A Y

G

Figure 2: A DAG illustrating Lemmas 4 and 5.

Lemma 5 (Deletion of time independent overadjustment variables)
Let G be a DAG with vertex set V, let A ⊂ V and Y ∈ V\A with A a random vector taking
values on a finite set. Suppose (G ∪B)⊂ V\ {A, Y } is a time independent adjustment set
relative to (A, Y ) in G with G and B disjoint and suppose

Y ⊥⊥G B | G,A.

Then G is also an adjustment set relative to (A, Y ) in G and for all P ∈M (G)

σ2
a,G,B (P )− σ2

a,G (P ) =

EP

[
πa (G;P ) varP (Y |A = a,G) varP

(
1

πa (G,B;P )

∣∣∣∣A = a,G

)]
≥ 0. (8)

Furthermore,

σ2
∆,G,B (P )− σ2

∆,B (P ) =∑
a∈A

c2
aEP

{
πa(G;P )varP (Y | A = a,G)varP

[
1

πa(G,B;P )
| A = a,G

]}
≥0.

In particular,

σ2
ATE,B (P )− σ2

ATE,G,B (P ) =

EP

{
πa=0(G;P )varP (Y | A = 0,G)varP

[
1

πa=0(G,B;P )
| A = 0,G

]}
+

EP

{
πa=1(G;P )varP (Y | A = 1,G)varP

[
1

πa=0(G,B;P )
| A = 1,G

]}
≥ 0.

Formula (8) quantifies the increase in variance incurred by keeping ‘overadjustment’
variables that are marginally associated with treatment but that do not help predict the
outcome within levels of treatment and the remaining adjusting variables. This result
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extends to the non-parametric setting the well understood increase in variance induced by
adding covariates that have no partial correlation with the outcome in a linear regression
model (Cochran, 1968). This feature has also been noticed in a number of non-linear
regression settings (Mantel and Haenszel, 1959; Breslow, 1982; Gail, 1988; Robinson and
Jewell, 1991; Neuhaeuser and Becher, 1997; De Stavola and Cox, 2008).

Notice that varP (Y |A = a,G) is zero if G is a perfect predictor of Y . In such extreme
case, the formula indicates that it is irrelevant whether one keeps the overadjustment vari-
ables B. In general, B is more harmful the weaker the association between G and Y within
levels of A is. For example, in the causal diagram in Figure 2, the penalty for keeping
overadjustment variables increases as the strength of the association represented in the red
arrow decreases. Furthermore, the quantity varP (1/πa (G,B;P )|A = a,G) indicates that
B is also more harmful the weaker the association between G and B within levels of A,
and the stronger the association between B and A within levels of G. For instance, in the
causal diagram in Figure 2, B is also more harmful the weaker the association represented
by the green arrow is and the stronger the association represented by the blue arrow is.

Theorem 6 Let G be a DAG with vertex set V, let A ⊂ V and Y ∈ V \ A with A a
random vector taking values on a finite set. Suppose G⊂ V\ {A,Y} and B ⊂ V\ {A, Y }
are two time independent adjustment sets relative to (A, Y ) in G such that

A ⊥⊥G [G\B] | B (9)

Y ⊥⊥G [B\G] | G,A. (10)

Then σ2
a,B (P )− σ2

a,G (P ) ≥ 0 for all P ∈M(G). Specifically,

σ2
a,B (P )− σ2

a,G (P ) =

EP

[{
1

πa (B;P )
− 1

}
varP [ba(G,B;P )|B]

]
+

EP

[
πa (G;P ) varP (Y |A = a,G) varP

(
1

πa (G,B;P )

∣∣∣∣A = a,G

)]
.

Moreover, σ2
∆,B (P )− σ2

∆,G (P ) ≥ 0 for all P ∈M(G). Specifically,

σ2
∆,B (P )− σ2

∆,G (P ) =

cT varP (Q) c+∑
a∈A

c2
aEP

{
πa(G;P )varP (Y | A = a,G)varP

[
1

πa(G,B;P )
| A = a,G

]}
,
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where Q is defined as in Lemma 4. In particular, σ2
ATE,B (P ) − σ2

ATE,G (P ) ≥ 0 for all
P ∈M(G). Specifically,

σ2
ATE,B (P )− σ2

ATE,G (P ) =

EP

[{
1

πa=1(B;P )
− 1

}
varP (ba=1(G,B;P ) | B)

]
+

EP

[{
1

πa=0(B;P )
− 1

}
varP (ba=0(G,B;P ) | B)

]
−

2EP [covP {ba=1(G,B;P ), ba=0(G,B;P )|B}] +

EP

{
πa=0(G;P )varP (Y | A = 0,G)varP

[
1

πa=0(G,B;P )
| A = 0,G

]}
+

EP

{
πa=1(G;P )varP (Y | A = 1,G)varP

[
1

πa=0(G,B;P )
| A = 1,G

]}
.

Proof Write σ2
a,B(P ) − σ2

a,G(P ) = σ2
a,B(P ) − σ2

a,B∪(G\B)(P ) + σ2
a,G∪(B\G)(P ) − σ2

a,G(P )

and apply Lemmas 4 and 5. The derivations for the expressions for σ2
∆,B (P ) − σ2

∆,G (P )

and σ2
ATE,B (P )− σ2

ATE,G (P ) are similar.

The preceding theorem provides an intuitive decomposition for the gain in efficiency of
using adjustment set G as opposed to set B. The difference σ2

a,B − σ2
a,B∪(G\B) represents

the gain due to supplementing B with the precision component G\B and σ2
a,G∪(B\G)−σ

2
a,G

represents the gain from removing from G ∪B the overadjustment component B\G.
Theorem 6 is analogous to Theorem 3.10 from Henckel et al. (2019), except that it is

valid for arbitrary causal graphical models, instead of causal linear models, and for NP-
Z estimators of treatment effects instead of ordinary least squares estimators. Likewise,
Lemmas 4 and 5 are analogous to Henckel et al’s Corollaries 3.4 and 3.5. Building on their
Corollary 3.5, Henckel et al. (2019) provided a simple procedure that, for a valid adjustment
set, returns a pruned valid adjustment set that yields OLS estimators of treatment effects
with smaller asymptotic variance. Because the validity of their pruning procedure relies only
on the ordering of the asymptotic variances corresponding to two adjustment sets implied
by the d-separation assumptions of their Corollary 3.5, and because the same ordering of
the adjustment sets is valid for the variances of the corresponding NP-Z estimators, then
we conclude that the pruning algorithm of Henckel et al. (2019) also returns a pruned valid
adjustment set that yields an NP-Z estimator of treatment effect with smaller asymptotic
variance.

As noted by Henckel et al. (2019), not all pairs of valid time independent adjustment
sets can be ordered using the d-separation conditions in Theorem 6. In fact, there exist
DAGs G with time independent adjustment sets Z and Z̃ for which σ2

a,Z (P ) > σ2
a,Z̃

(P )

for some P ∈ M (G) and σ2
a,Z̃

(P ′) > σ2
a,Z (P ′) for some other P ′ ∈ M (G) as the following

example illustrates.

Example 2 In the DAG in Figure 3, Z = {O1,W2} and Z̃= {O2,W1} are time independent
adjustment sets relative to (A, Y ) . The adjustment set Z yields a smaller asymptotic vari-
ance than the adjustment set Z̃ if the association encoded in the green edge is stronger than
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W1

W2

A Y

O1

O2

Figure 3: A DAG with two time independent adjustment sets, Z = {O1,W2} and
Z̃= {O2,W1}, that cannot be compared. Note that Z and Z̃ are minimal time indepen-
dent adjustment sets.

that in the brown edge and the one encoded in the blue edge is weaker than the one in the
red edge. By symmetry, the adjustment set Z̃ is more efficient than Z if the words stronger
and weaker are interchanged in the preceding sentence. Henckel et al. (2019) illustrated the
impossibility of ordering all time independent adjustment sets by the asymptotic variances
of the corresponding adjusted linear estimators with a diagram different from the one in
Figure 3, in which the treatment was unconfounded.

Following Henckel et al. (2019) we let cn(A, Y,G) be the set of all nodes that lie on a
causal path between a node in A and Y and are not equal to any node in A and we define
the forbidden set as

forb(A, Y,G) ≡ deG (cn(A, Y,G)) ∪ {A} .

Also,
O(A, Y,G) ≡ paG (cn(A, Y,G)) \ forb(A, Y,G).

Henckel et al. (2019) showed that, if a time independent adjustment set relative to (A, Y )
in G exists, then O(A, Y,G) satisfies the graphical necessary and sufficient conditions of
Shpitser et al. (2010) to be an adjustment set. Furthermore, Lemmas E.4 and E.5 of
Henckel et al. (2019) showed that the conditions (9) and (10) hold for G = O(A, Y,G) and
B any adjustment set. Consequently, we have the following important corollary to Theorem
6.

Theorem 7 Let G be a DAG with vertex set V, let A ⊂ V and Y ∈ V \ A with A a
random vector taking values on a finite set. If a valid time independent adjustment set Z
relative to (A, Y ) in G exists then O = O(A, Y,G) is a time independent adjustment set
and σ2

a,Z (P )− σ2
a,O (P ) ≥ 0 for all P ∈M(G). Specifically,

σ2
a,Z (P )− σ2

a,O (P ) =

EP

[{
1

πa (Z;P )
− 1

}
varP [ba(O,Z;P )|Z]

]
+

EP

[
πa (O;P ) varP (Y |A = a,O) varP

(
1

πa (O,Z;P )

∣∣∣∣A = a,O

)]
18
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and the corresponding formulae for ∆ and ATE hold.

Corollary 8 If A = A is point intervention then O(A, Y,G) is an optimal valid time
independent adjustment set.

Corollary 8 follows immediately from Theorem 7 and the fact that paG(A) is always a valid
time independent adjustment set relative to (A, Y ) in G.

Example 3 In the DAG of Figure 3, O(A, Y,G) = (O1, O2) is the optimal adjustment set.

van der Zander and Liskiewicz (2019) proposed an algorithm that, given a DAG G =
(V,E), computes O(A, Y,G) with worst-case complexity O(|V| + |E|) , where |V| is the
number of nodes in G and |E| is the number of edges in G.

For simplicity, from now on when no confusion can arise, we abbreviate O ≡ O(A, Y,G).
An interesting question is whether one can find an optimal adjustment set among the

minimal adjustment sets. In the next theorem we show that such adjustment exists for
point interventions. Specifically, let A = A be a point intervention and let Omin ⊂ O be
the subset of O with the smallest number of vertices such that

A ⊥⊥G [O\Omin] |Omin.

The graphoid properties of d-separation (Lauritzen, 1996) imply that Omin is unique. For
completeness we provide a proof of this result in Lemma 22 in the Appendix. Note that Omin

is empty when the empty set is a valid time independent adjustment set. The next theorem
establishes that Omin is a minimal adjustment set relative to (A, Y ) in G. Furthermore, it
establishes that it is optimal among all minimal adjustment sets.

Theorem 9 Let G be a DAG with vertex set V, let A and Y be two distinct vertices in V
with A corresponding to a point intervention.

1. Omin as defined above is a minimal adjustment set relative to (A, Y ) in G.

2. If Zmin is another minimal adjustment set relative to (A, Y ) in G then,

A ⊥⊥G [Omin\Zmin] | Zmin and Y ⊥⊥G [Zmin\Omin] | Omin,A.

Consequently, for all P ∈M(G), σ2
a,Zmin

(P )− σ2
a,Omin

(P ) ≥ 0. Specifically,

σ2
a,Zmin

(P )− σ2
a,Omin

(P ) =

EP

[{
1

πa (Zmin;P )
− 1

}
varP [ba(Omin,Zmin;P )|Zmin]

]
+

EP

[
πa (Omin;P ) varP (Y |A = a,Omin) varP

(
1

πa (Omin,Zmin;P )

∣∣∣∣A = a,Omin

)]
and the corresponding formulae hold for ∆ and ATE.

3. For any minimal adjustment set Zmin, Zmin ∩ [O\Omin] = ∅.

Remark 10 Note that the conclusions one and two of Theorem 9 are purely graphical.
Therefore, invoking Theorem 3.1 of Henckel et al. (2019), we conclude that Omin is also
the minimal adjustment set that yields the adjusted OLS estimators of treatment effects
with smallest variance among all adjusted OLS estimators of treatment effects that adjust
for minimal adjustment sets.
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5.2 Time Dependent Adjustment Sets

Suppose that A = (A0, . . . , Ap) is a joint intervention and for a given time dependent adjust-
ment set Z = (Z0, . . . ,Zp) in order to estimate a given contrast ∆(P ;G) ≡

∑
a∈A caE[Ya]

one estimates each interventional mean

E [Ya] = EP
{{
EP
{
EP
[
EP [Y |a,Z] |ap−1,Zp−1

]
|ap−2,Zp−2

}
· · · | a0,Z0

}}
≡ χa(P ;G),

ignoring the conditional independencies encoded in the causal graphical model, and making
at most smoothness or complexity assumptions on the iterated conditional means

baj (Zj ;P ) ≡ EP
{
EP
{
EP
[
EP [Y |a,Z] |ap−1,Zp−1

]
|ap−2,Zp−2

}
· · · | aj ,Zj

}
and/or on the conditional treatment probabilities

πaj (Zj ;P ) ≡ P
(
Aj = aj | Aj−1 = aj−1,Zj

)
.

It is well known (Robins and Rotnitzky, 1995) that estimators χ̂a,Z of χa (P ;G) that are
regular and asymptotically linear under a model M that imposes at most smoothness or
complexity assumptions on baj and/or πaj have a unique influence function equal to

ψP,a(Z;P ) ≡ Ia(A)

λap(Z;P )
{Y − χa(P ;G)} −

p∑
k=0

gk(Ak,Zk;P ), (11)

where

gk(Ak,Zk;P ) =
Iak−1

(Ak−1)

λak−1
(Zk−1;P )

{
Iak(Ak)

πak(Zk;P )
− 1

}{
bak(Zk;P )− χa(P ;G)

}
with λak−1

(Zk−1;P ) ≡
k−1∏
j=0

πaj (Zj ;P ) and Ia−1(A−1)
[
λa−1(Z−1;P )

]−1 ≡ 1.

Hence, regular and asymptotically linear estimators ∆̂Z ≡
∑

a∈A caχ̂a,Z of ∆(P ;G)
have a unique influence function equal to ψP,∆ (Z;G) =

∑
a∈A caψP,a (Z;G) . Therefore

√
n {χ̂a,Z − χa (P ;G)} d→ N

(
0, σ2

a,Z (P )
)

where σ2
a,Z (P ) ≡ varP [ψP,a (Z;G)] . Likewise,

√
n
{

∆̂Z −∆(P ;G)
}

d→ N
(

0, σ2
∆,Z

)
where σ2

∆,Z (P ) ≡ varP [ψP,∆ (Z;G)] .

The following lemmas extend Lemmas 4 and 5 from time independent adjustment sets
to time dependent adjustment sets. Throughout we let ba−1

(
G−1,B−1;P

)
≡ χa(P ;G).

Lemma 11 (Supplementation with time dependent precision variables) Let G be
a DAG with vertex set V, let A = (A0, . . . , Ap) be a topologically ordered vertex set in V
disjoint with Y ∈ V. Assume Aj , j = 0, . . . , p, correspond to finite valued random variables.
Suppose

B = (B0, . . . ,Bp)⊂ V\ {A, Y }

is a time dependent adjustment set relative to (A, Y ) in G and suppose G = (G0, . . . ,Gp)
is a set disjoint with B that satisfies

Aj ⊥⊥G Gj | Bj ,Aj−1 for j = 0, . . . , p, (12)
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where A−1 = ∅. Then (G,B) = [(G0,B0) , (G1,B1) , . . . , (Gp,Bp)] is also an time depen-
dent adjustment set relative to (A, Y ) in G and for all P ∈M (G),

σ2
a,B (P )− σ2

a,G,B (P ) ≥ 0 and σ2
∆,B (P )− σ2

∆,G,B (P ) ≥ 0.

In the Appendix we provide formulas for σ2
a,B (P )− σ2

a,G,B (P ) and σ2
∆,B (P )− σ2

∆,G,B (P ).

Lemma 12 (Deletion of time dependent overadjustment variables)
Let G be a DAG with vertex set V, let A = (A0, . . . , Ap) be a topologically ordered vertex
set in V disjoint with Y ∈ V. Assume Aj , j = 0, . . . , p, correspond to finite valued random
variables. Suppose (G,B) ≡ [(G0,B0) , (G1,B1) , . . . , (Gp,Bp)]⊂ V\ {A, Y } is a time de-
pendent adjustment set relative to (A, Y ) in G with G and B disjoint and suppose that

Y ⊥⊥G B | G,A. (13)

and
Gj⊥⊥G Bj−1 | Gj−1,Aj−1 for j = 1, . . . , p. (14)

Then G = (G0,G1, . . . ,Gp) is also a time dependent adjustment set relative to (A, Y ) in G
and for all P ∈M (G),

σ2
a,G,B (P )− σ2

a,G (P ) ≥ 0 and σ2
∆,G,B (P )− σ2

∆,G (P ) ≥ 0.

In the Appendix we provide formulas for σ2
a,G,B (P )− σ2

a,G (P ) and σ2
∆,G,B (P )− σ2

∆,G (P ).

It is interesting to contrast the requirements in Lemma 12 to those in Lemma 5. Lemma
12 requires the conditional independence (14) for the intermediate covariates Gj . To get
an intuition for why this requirement arises consider the case p = 1. For the covariate
adjustment set Z = (Z0,Z1), where Z0 = (G0,B0) and Z1 = (G1,B1), the functional of
interest is

χ(a0,a1)(P ;G) = EP [EP [EP [Y | A0 = a0, A1 = a1,G0,B0,G1,B1] | A0 = a0,G0,B0]] .

We can regard the problem of estimating the right hand side of the last display as a sequence
of two estimation problems. The first is to estimate

EP [EP [Y | A0 = a0, A1 = a1,G0,B0,G1,B1] | A0 = a0,G0,B0] .

Within levels of G0,B0 and A0 = a0 this problem is identical to the estimation of the inter-
ventional mean for a point exposure treatment that sets A1 to a1 with the time independent
adjustment set (G1,B1). By Lemma 5 we know that if Y ⊥⊥ B1 | G1,G1,B0, A0, A1 then
G1 is also an adjustment set and is more efficient than (G1,B1).

To understand the second estimation problem notice that when Y ⊥⊥ B0,B1 | G1,G1, A0, A1,
the last display is equal to

EP [EP [Y | A0 = a0, A1 = a1,G0,G1] | A0 = a0,G0,B0] = EP [h(G0,G1) | A0 = a0,G0,B0] .

where h(G0,G1) = EP [Y | A0 = a0, A1 = a1,G0,G1]. Then, the second estimation prob-
lem is to estimate

EP [EP [h(G0,G1) | A0 = a0,G0,B0]] . (15)
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The last display can be viewed as another interventional mean, now for a point exposure
treatment that sets A0 to a0, with time independent adjustment set (G0,B0), but with
pseudo-outcome h(G0,G1). Condition (14) with p = 1 is the condition that G1 ⊥⊥ B0 |
A0,G0. This yields h(G0,G1) ⊥⊥ B0 | A0,G0. Then again by Lemma 5 we obtain that
G0 is an adjustment set for the interventional mean in display (15), which is more efficient
than (G0,B0). Combining both results we conclude that (G0,G1) is more efficient than
[(G0,B0), (G1,B1)].

We now have the following corollary to Lemmas 11 and 12.

Theorem 13 Let G be a DAG with vertex set V, let A = (A0, . . . , Ap) be a topologically
ordered vertex set in V disjoint with Y ∈ V. Assume Aj , j = 0, . . . , p, correspond to finite
valued random variables. Suppose

B = (B0, . . . ,Bp)⊂ V\ {A, Y }

and

G = (G0, . . . ,Gp)⊂ V\ {A, Y }

are two time dependent adjustment sets relative to (A, Y ) in G. Suppose that

Aj ⊥⊥G
[
Gj\Bj

]
| Bj ,Aj−1 for j = 0, . . . , p

Y ⊥⊥G [B\G] | G,A

and

Gj⊥⊥G
[
Bj−1\Gj−1

]
| Gj−1,Aj−1 for j = 1, . . . , p.

Then for all P ∈M (G),

σ2
a,B (P )− σ2

a,G (P ) ≥ 0 and σ2
∆,B (P )− σ2

∆,G (P ) ≥ 0.

Proof Write σ2
a,B(P ) − σ2

a,G(P ) = σ2
a,B(P ) − σ2

a,B∪(G\B)(P ) + σ2
a,G∪(B\G)(P ) − σ2

a,G(P )
and apply Lemmas 11 and 12.

As indicated earlier, optimal adjustment sets always exist for point interventions. In
contrast, for joint interventions, even though time dependent adjustment sets always exist,
there exist DAGs with no optimal time dependent adjustment set. Moreover, even when
an optimal time independent adjustment set exists, this set is not necessarily uniformly
optimal among all adjustment sets. The following example illustrates these two points, as
well as the application of Theorem 13.

Example 4 For the DAG in Figure 4, Table 1 lists all valid time dependent adjustment
sets relative to (A,Y ) for A = (A0, A1). These can be found applying the sufficient criteria
in Pearl and Robins (1995). To see that no other valid time dependent adjustment set can
exist, write

E[Ya] = EP [EP [Y | A0 = a0, A1 = a1, H]] , (16)
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which follows by recalling that Z0 = paG(A0) and Z1 = paG(A1) \ paG(A1) is a valid ad-
justment set, as indicated in Section 3.1. Because the right hand side of (16) is not equal
to

EP [EP [Y | A0 = a0, A1 = a1]] ,

it follows that Z0 = ∅ and Z1 = ∅ is not a valid time dependent adjustment set. Because the
adjustment sets 1-11 in Table 1 exhaust all possible adjustment sets such that Z0 excludes
R and Q, then no other valid adjustment set can exist since R and Q are in the causal path
between A0 and Y and therefore cannot be included in Z0.

The last column of Table 1 indicates, for every adjustment set, another dominating
adjustment set, in the sense that the dominating one results in an NP-Z estimator that
has smaller asymptotic variance for all P ∈ M(G). These dominating adjustment sets are
found applying Theorem 13. We note however that Z∗ in row 1 is superior to Z∗∗ in row
8 for some P ∈ M(G) but Z∗∗ is superior to Z∗ for another P ′ ∈ M(G). Intuitively,
when the association encoded in the red arrow is weak but the associations encoded in the
blue arrows are strong, then Z∗∗ in row 8 is preferable to Z∗ in row 1. In contrast, when
the association encoded in the red arrow is strong but the associations encoded in the blue
arrows are weak, then Z∗ if preferable to Z∗∗. For instance, when all variables are binary
there exists P ∈M(G) such that σ2

a,Z∗ (P ) /σ2
a,Z∗∗ (P ) = 0.675 and another law P ′ ∈M(G)

such that σ2
a,Z∗ (P ′) /σ2

a,Z∗∗ (P ′) = 1.08 for a = (1, 1). See the R scripts available at https:
// github. com/ esmucler/ optimal_ adjustment . We note also that the adjustment set
in row 11, namely Z0 = {H} and Z1 = ∅ is the unique time independent adjustment set,
and hence optimal among time independent adjustment sets. Nevertheless, it is dominated
by the time dependent adjustment set in row 8, thus proving that optimal time independent
adjustment sets need not be optimal in the class of all adjustment sets.

A0 R A1 Y

H

Q

Figure 4: An example in which no optimal time dependent adjustment set exists.
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Adjustment set Z0 Z1 Dominating adjustment set

1 ∅ Q -
2 ∅ R 1
3 ∅ H 1
4 ∅ {Q,R} 1
5 ∅ {Q,H} 1
6 ∅ {R,H} 1
7 ∅ {Q,R,H} 1
8 H Q -
9 H R 8
10 H {R,Q} 8
11 H ∅ 8

Table 1: List of all possible time dependent adjustment sets for the DAG in Figure 4.

An interesting open question is to characterize the class of DAGs for which there exists
an optimal time dependent adjustment set.

5.3 Non-existence of Uniformly Optimal Covariate Adjustment Sets in
Non-parametric Causal Graphical Models with Latent Variables

Consider now the situation in which some vertices of the DAG are not observable, but some
adjustment sets are observable. A natural question is whether one can find an optimal
adjustment set among the observable ones. Without restricting the topology of the DAG,
the answer is negative as the following example illustrates. For linear causal graphical
models and treatments effects estimated by OLS, Henckel et al. (2019) showed that it is
possible that no uniformly optimal adjustment set exists among observable adjustment
sets. In the following example we show the same negative result holds for non-linear causal
graphical models and NP-O estimators, where by an NP-O estimator we mean the NP-Z
estimator that uses Z = O.

An interesting open problem is the characterization of settings in which, O(A, Y,G) is
not observed but an optimal observable adjustment set exists.

Example 5 Suppose that in the DAG in Figure 5, U is the only unobserved variable. Then,
Z∗ = ∅, Z∗∗= {Z1, Z2} and Z∗∗∗ = {Z1} are all observable adjustment sets for (A, Y )
relative to the DAG. Using Lemma 5, it is easy to show that Z∗ is uniformly better than
Z∗∗∗. However, Z∗ is better than Z∗∗ if the associations encoded in the blue edges are
strong and the associations encoded in the red edges are weak, but Z∗∗ is better than Z∗

if the blue edges are weak and red ones are strong. In fact, when all variables are binary
there exists P ∈ M(G) such that σ2

1,Z∗(P )/σ2
1,Z∗∗(P ) = 0.04 and another P ′ ∈ M(G) such

that σ2
1,Z∗(P

′)/σ2
1,Z∗∗(P

′) = 1.44. See the R scripts available at https: // github. com/

esmucler/ optimal_ adjustment .
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A Y

Z1 UZ2

Figure 5: An example with a latent variable U and observable covariate adjustment sets
but with no optimal adjustment set.

6. Estimation of Point Intervention Causal Effects Exploiting the
Assumptions of the Bayesian Network

For a point intervention A = A, NP-O estimators of the individual interventional means and
their contrasts, even though efficient among NP-Z estimators, ignore the conditional inde-
pendence assumptions encoded in the causal graphical model about the data generating law
P . These assumptions may carry information about the parameters of interest. For instance,
consider the Bayesian Network represented by the DAG G of Figure 6. Under modelM (G),
the components O1 and O2 of the adjustment set O = {O1, O2} are marginally independent.
This independence carries information about χa (P ;G) = EP [Ep [Y |A = a,O1, O2]] because
the joint distribution of O1, O2 is not ancillary for χa (P ;G) . Specifically,

EP [Ep [Y |A = a,O1, O2]] =

∫ ∫ ∫
yp (y|a, o1, o2) p (o1, o2) dydo1do2

=

∫ ∫ ∫
yp (y|a, o1, o2) p (o1) p (o2) dydo1do2

and the last equality is true only under M (G) .

O1

O2

A Y

Figure 6: A DAG where the NP-O estimator is inefficient.

Applying Algorithm 2 of Section 6.4, it is easy show that the semiparametric Cramer-
Rao bound under the Bayesian Network of Figure 6 is equal to the variance of the random
variable χ1

P,a,eff (A, Y,O;G) = ψP,a (Z;G)−∆P (O) where O = (O1, O2), ψP,a (O;G) is the
influence function of the NP-O estimator defined in (4) and

∆P (O) ≡ ba (O;P )− EP [ba (O;P ) |O1]− EP [ba (O;P ) |O2] + EP [ba (O;P )]
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with ba (O;P ) ≡ EP [Y |A = a,O] . Furthermore, we show in Lemma 23 in the Appendix
that if Pα ∈ M(G) is such that the following hold (i) ba (O;Pα) = O1 + O2 + αO1O2,
(ii) EPα (O1) = EPα (O2) = 0, (iii) EPα

(
O2

1

)
= EPα

(
O2

2

)
= 1, (iv) there exists a fixed

C > 0 independent of α such that varPα (Y | A = a,O) ≤ C and πa(Omin;Pα) ≥ 1/C, then
∆Pα (O) = αO1O2 and

varPα [ψPα,a (O;G)]

varPα

[
χ1
P,a,eff (V;G)

] →
|α|→∞

∞.

This illustrates the point that the NP-O estimator may ignore a substantial fraction of the
information about χa (P ;G) encoded in the Bayesian Network.

Independencies among variables in the adjustment set are not the only carriers of infor-
mation about χa (P ;G) in a Bayesian Network. For instance, consider the model represented
by the DAG in Figure 7 in which A is randomized but a variable M that mediates all the
effect of A on Y is measured. Then

χa (P ;G) = Ep [Y |A = a] =

∫ ∫
yp (y,m|a) dydm =

∫ ∫
yp (y|m) p (m|a) dydm

and the last equality holds due to the Markov chain structure encoded in the model. In
this example, the empirical mean of Y given A = a, can be viewed as the NP-O estimators
where O = ∅. However this estimator does not attain the semiparametric Cramer-Rao
bound, because it does not exploit the Markov chain structure encoded in the graph.

A M Y

Figure 7: A DAG where the NP-O estimator is inefficient.

As a third example, consider the Bayesian Network represented by the DAG in Figure
8. Under this model O is the unique, and hence optimal, covariate adjustment set. Nev-

A M Y

O

Figure 8: The front-door graph.

ertheless, under the model, χa (P ;G) = EP [Ep [Y |A = a,O]] is also equal to the so-called
front-door functional

β (P ) ≡
∫
y

{∫
p (m|a)

[∑
a′

p
(
y|m, a′

)
p
(
a′
)]
dm

}
dy. (17)

See Pearl (2000). This example has been used in the literature to illustrate an instance,
when O is unobserved, in which identifiability of χa(P,G) is possible even if no covari-
ate adjustment is possible. Under regularity conditions, the non-parametric estimator of
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β (P ), based on estimating the right hand side of (17) replacing all densities by smooth
non-parametric estimators of them, provides yet another regular and asymptotically linear
estimator of χa (P ;G). In fact, in Example 7 we argue that neither estimator attains the
semiparametric Cramer-Rao bound under the model (see Hayashi and Kuroki (2014) for a
related discussion in causal linear models). The one-step estimation technique described in
Section 6.1 can be used to obtain a regular and asymptotically linear estimator of χa (P ;G)
which, under regularity conditions, attains the semiparametric Cramer-Rao Bound under
M(G).

In Section 6.1 we provide estimators of χa(P ;G) and ∆(P,G) that, under regularity
conditions, converge to a zero mean normal distribution with a variance that attains the
semiparametric Cramer-Rao bound for the parameter under the model M(G). In Section
6.2 we provide a sound and complete graphical algorithm that, given a DAG G, decides
whether or not under all laws P of M (G), the NP-O estimator is semiparametric efficient
under the Bayesian Network M (G). Furthermore, in Section 6.4 we provide an algorithm
that, when the NP-O estimator is not semiparametric efficient, returns a simplified formula
for the efficient influence function, which facilitates the computation of an estimator that
under regularity conditions attains the semiparametric Cramer-Rao bound.

Because estimation of causal effects under a DAG G is only meaningful when in G there
exists at least one causal path between A and Y , from now on we will consider only inference
about χa (P ;G) under Bayesian Networks M (G) represented by such DAGs.

6.1 Semiparametric Efficient Estimation

The problem we are concerned with in this section is formalized as follows. We are in-
terested in finding an estimator of the functionals χa (P ;G) ≡ EP

[
EP
[
Y |A = a,paG (A)

]]
and ∆(P ;G) ≡

∑
a∈A caE[Ya], with the smallest possible variance among all estimators that

are regular and asymptotically linear under any P ∈ M (G) . When not all the variables
in G are discrete, the tangent space of model M (G) is not a subset of a Euclidean space.
Consequently, in such case model M(G) is semiparametric. In fact, in Lemma 24 of the
Appendix, we show that Λ ≡ ⊕sj=1Λj where

Λj ≡
{
G ≡ g

(
Vj , paG (Vj)

)
∈ L2 (P ) : EP

[
G|paG (Vj)

]
= 0
}
.

and ⊕ stands for the sum of L2(P )−orthogonal spaces. Thus, unless G is a complete DAG,
Λ is a strict subset of L0

2 (P ), where L0
2 (P ) ≡

{
g ∈ L2 (P ) :

∫
gdP = 0

}
.

Notice that by the linearity of the differentiation operation, if χ1
P,a(V;G) denotes an

influence function for χa (P ;G) then ∆1
P (V;G) =

∑
a∈A

caχ
1
P,a(V;G) is an influence function

for ∆(P ;G). Consequently, if ∆1
P,eff (V;G) and χ1

P,a,eff (V;G) denote the efficient influence
functions of ∆(P ;G) and χa (P ;G), we have

∆1
P,eff (V;G) =

∑
a∈A

caχ
1
P,a,eff (V;G).

The next theorem provides an expression for χ1
P,a,eff . Let

JP,a,G ≡
Ia (A)Y

P
(
A = a|paG (A)

) ,
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indir (A, Y,G) ≡ {Vj ∈ V : Vj ∈ anG (A) \ {A} and all causal paths between

Vj and Y intersect A}

and
irrel (A, Y,G) ≡ indir (A, Y,G) ∪ anG (Y )c .

Note that indir (A, Y,G) is comprised by the nodes in V that, conditional on their parents,
are instrumental variables for the causal effect of A on Y . Note also that irrel(A, Y,G) =
[anGV\{A}(Y )]c. See also Perković (2019).

The following theorem establishes that the efficient influence function of χ1
P,a,eff (V;G)

does not depend on the variables in irrel(A, Y,G).

Theorem 14 Let M (G) be the Bayesian Network represented by DAG G with vertex set
V. Assume Y and A are two distinct vertices. Then, the efficient influence function of
χa (P ;G) at P under M (G) is equal to

χ1
P,a,eff (V;G) =

∑
j:Vj /∈[irrel(A,Y,G)∪{A}]

{
EP
[
JP,a,G |Vj ,paG (Vj)

]
− EP

[
JP,a,G | paG (Vj)

]}
.

(18)
Furthermore, χ1

P,a,eff (V;G) depends on V only through Vmarg ≡ V\ irrel (A, Y,G) .

Our next results will establish that the variables in irrel(A, Y,G) can be marginalized
from the DAG without incurring in any loss of information about the parameter. Recall
that for any DAG G with vertex set V and a subset of nodes Vmarg,M (G,Vmarg) denotes
the marginal DAG model. See Section 2.1.

Definition 15 Let G be a DAG with vertex set V and Vmarg ⊂ V. For any P ∈M (G) let
Pmarg denote the marginal distribution of Vmarg under P . Let G′ be a DAG with vertex set
Vmarg. Let A, Y be two distinct nodes such that {A, Y } ⊂ Vmarg. We say that (Vmarg ,G′)
is sufficient for efficient estimation of χa (P ;G) relative to (V,G) if for all P ∈M (G) , the
following conditions hold

1. M (G,Vmarg) =M (G′) ,

2. χa (P ;G) = χa (Pmarg;G′),

3. O (A, Y,G) = O (A, Y,G′),

4. ψP,a [O (A, Y,G) ;G] = ψPmarg,a [O (A, Y,G′) ;G′] and

5. χ1
P,a,eff (V;G) = χ1

Pmarg,a,eff
(Vmarg;G′)

If we find (Vmarg ,G′) that is sufficient for estimation of χa (P ;G) relative to (V,G),
then we do not incur in any loss of information about χa (P ;G) if we ignore the variables
in V\Vmarg and assume that Vmarg follows a Bayesian Network M (G′) for the DAG G′.
Furthermore, since G′ preserves the optimal adjustment set then the NP-O estimator of
χa (P ;G) is the same as the NP-O estimator of χa (Pmarg;G′) . Since by condition 5) of
the preceding definition the efficiency bound for χa (P ;G) under M (G) is the same as
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the efficiency bound for χa (Pmarg;G′) underM (G′), then for studying the loss of efficiency
incurred by using the NP-O estimator we can pretend that the available variables are Vmarg

and that the problem is to estimate χa (Pmarg;G′) under the Bayesian Network M (G′) .
The next lemma implies that Vmarg = V\ irrel (A, Y,G) and G′ equal to the output of

Algorithm 1 below satisfies the preceding definition.

Lemma 16 Let G and G′ be the input and output DAGs of Algorithm 1. Let V and Vmarg be
the vertex sets of G and G′ respectively. Then (Vmarg,G′) is sufficient for efficient estimation
of χa (P ;G) relative to (V,G) .

Algorithm 1: DAG pruning procedure to remove irrelevant nodes

input : DAG G with nodes V and two distinct nodes A, Y ∈ V
output: A new DAG G′ with vertex set Vmarg = V \ irrel(A, Y,G) such that

(Vmarg,G′) is sufficient for efficient estimation of χa(P ;G) relative to
(V,G).

procedure prune(A, Y,G)
G′ = GanG(Y )

I1, . . . , IL = topological sort (indir(A, Y,G′),G′)
for j = L,L− 1, . . . , 1 do
G′ = τ(G′, Ij)

return G′;

The output G′ of Algorithm 1 is obtained as the result of first deleting the edges and
vertices in anG (Y )c and subsequently removing, sequentially by a latent projection oper-
ation, each node in indir (A, Y,G). For the definition of the latent projection operation
τ(G, V ) see Section 2.1. In general the set of possible marginal distributions for a sub-
vector V′ of a vector V following a Bayesian Network M(G) is not necessarily a Bayesian
Network M(G′) for some DAG G′ with vertex set V′ (Evans, 2016). However, because of
the specific structure of the set irrel (A, Y,G), the set of possible marginal distributions for
V′ = Vmarg = V \ irrel (A, Y,G) is the Bayesian Network M(G′), where G′ is the output
of Algorithm 1. Algorithm 1 assumes the availability of a subroutine topological sort

to topologically sort a set of nodes relative to a DAG G. One such subroutine is Kahn’s
algorithm (Kahn, 1962), which is known to have worst case complexity O(|V|+ |E|).

Example 6 We illustrate an application of Algorithm 1 with the graph in Figure 9 (a). In
this graph, ancG(Y ) = {D1, D2} and indir(A, Y,G) = {I1, I2, I3}, which are already topolog-
ically ordered. The first step of the procedure prune removes all nodes in ancG(Y ) and all
edges into them from the graph. The next step of the procedure marginalizes over I3. The
graph in Figure 9 (b) is the result of this marginalization applied to the graph with {D1, D2}
already removed. The next step marginalizes over I2 and the resulting graph is shown in
Figure 9 (c). The last step marginalizes over I1 yielding the graph in Figure 9 (d) which is
the output of Algorithm 1.
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Figure 9: An example of an application of Algorithm 1.

Lemma 16 is proven in the Appendix by invoking the following important result.

Proposition 17 Let M be a semiparametric model for the law of a random vector V. Let
V′ be a subvector of V. Let M′ be the model for the law of V′ induced by model M, that
is, M′ is the collection of laws for V′ such that for every P ′ ∈ M′ there exists a law P
for V with P ′ being the marginal of P over V′. Let χ (P ) be a regular parameter in model
M with efficient influence function at P ∈ M equal to χ1

P,eff . Suppose χ1
P,eff depends on

V only through V′. Let P ′ be the marginal law of P over V′. Suppose χ (P ) depends on
P only through P ′. Define ν (P ′) ≡ χ (P ) . Let ν1

P ′,eff be the efficient influence function of

ν (P ′) in model M′ at P ′ ∈ M′. Then, given P ′ ∈ M′ it holds that χ1
P,eff = ν1

P ′,eff for
every P ∈M with marginal law P ′.

In light of Lemma 16 and Proposition 17, from now on without loss of generality we
will assume that irrel (A, Y,G) = ∅. This assumption implies that we can partition the
node set V of G as M ∪W∪{A, Y } where the vertices in M intersect at least one causal
path between A and Y , that is, M is the set of mediators in the causal pathways be-
tween A and Y, and W are non-descendants of A. We can therefore sort topologically
V as (W1, . . . ,WJ , A,M1, . . . ,MK , Y ) . The set O (A, Y,G) ≡ O ≡ (O1, . . . , OT ), where
(O1, . . . , OT ) is sorted topologically, is included in W. Throughout T = 0 if O (A, Y,G) = ∅.
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The following Theorem establishes another expression for χ1
P,a,eff (V;G). Subsequently

we exploit this expression to describe a strategy to construct a semiparametric efficient
estimator of χa(P ;G). Let

TP,a,G ≡
Ia (A)Y

πa(O;P )
.

In what follows we use the conventions
∑0

k=1 · ≡ 0,
∑0

j=1 · ≡ 0,
∑1

j=2 · ≡ 0.

Theorem 18 LetM (G) be the Bayesian Network represented by DAG G with vertex set V.
Assume Y and A are single disjoint vertices. Assume irrel(A, Y,G) = ∅. Then the efficient
influence function of χa (P ;G) at P under M (G) is equal to

χ1
P,a,eff (V;G) = EP

[
TP,a,G |Y, paG (Y )

]
− EP

[
TP,a,G |paG (Y )

]
(19)

+

K∑
k=1

{
EP
[
TP,a,G |Mk, paG (Mk)

]
− EP

[
TP,a,G |paG (Mk)

]}
+

J∑
j=1

{
EP
[
ba(O;P )|Wj , paG (Wj)

]
− EP

[
ba(O;P )|paG (Wj)

]}
where EP

[
ba(O;P )|paG (W1)

]
= χa (P ;G) , because paG (W1) = ∅.

Example 7 Consider again the DAG in Figure 8. In this example, O = Omin = {O} ≡
{W1}, J = T = 1, M = {M} and K = 1. A quick calculation shows that equation (19)
applied to this example yields

χ1
P,a,eff (V;G) = ba(O;P )− χa(G;P ) + Y EP

[
Ia(A)

πa(O;P )
| Y,M

]
− EP

[
Ia(A)Y

πa(O;P )
|M

]
+ Ia(A)EP

[
Y

πa(O;P )
| A,M

]
− Ia(A)EP

[
Y

πa(O;P )
| A
]
.

Notice that for any law that is faithful to the DAG, ba(O;P ) is a non-trivial function of O
and EP

[
Ia(A)Y π−1

a (O;P ) |M
]

is a non-trivial function of M . Since these terms cannot
cancel out with any of the remaining terms on the right hand side of the preceding display,
we conclude that χ1

P,a,eff (V;G) is a non-trivial function of both O and M . This shows
that the NP-O estimator cannot be globally efficient in model M(G) because the NP-O
estimator does not depend on M . It also demonstrates the point announced earlier, that
the non-parametric estimator of the front-door formula (17) is also not globally efficient,
because this estimator does not depend on the variable O.

The expression for χ1
P,a,eff (V;G) in Theorem 18 can be used to compute the following

one-step estimator (Van der Vaart, 2000; van der Vaart, 2014),

χ̂one−step,a ≡ χ̂a (P ;G) + Pn
[
χ̂1
P,a,eff (V;G)

]
where if J = 0, χ̂a (P ;G) = Pn [Y Ia(A)]{Pn [Ia(A)]}−1 and

Pn
[
χ̂1
P,a,eff (V;G)

]
=

K∑
k=1

Pn
{
Ê
[
TP,a,G |Mk,paG (Mk)

]
− Ê

[
TP,a,G | paG (Mk)

]}
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and if J ≥ 1,

χ̂one−step,a ≡ χ̂a (P ;G) + Pn
[
χ̂1
P,a,eff (V;G)

]
= Pn

{
Ê
[
TP,a,G |Y,paG (Y )

]
− Ê

[
TP,a,G | paG (Y )

]}
+

K∑
k=1

Pn
{
Ê
[
TP,a,G |Mk, paG (Mk)

]
− Ê

[
TP,a,G | paG (Mk)

]}
+

J∑
j=2

Pn
{
Ê
[
ba(O;P )|Wj , paG (Wj)

]
− Ê

[
ba(O;P )| paG (Wj)

}]
+Pn

{
Ê
[
ba(O;P )|W1, paG (W1)

]}
and where Ê (·|·) are non-parametric estimators of the relevant conditional expectations and
Pn is the empirical mean operator. Specifically Ê

[
TP,a,G |Mk, paG (Mk)

]
is constructed by

first computing a non-parametric estimator π̂a(O) of πa(O;P ) and subsequently computing
a non-parametric regression estimator of the pseudo-outcomes T̂i, where T̂i = YiIa(Ai)/π̂a(Oi),
on the covariates Mk,i,paG (Mk,i) i = 1, . . . , n. Likewise, Ê

[
ba(O;P )|Wj , paG (Wj)

]
is con-

structed by first computing a non-parametric estimator regression estimator b̂a(O) of the
mean of Y given O and A = a and subsequently computing a non-parametric regression
estimator of the pseudo-outcomes b̂a(Oi) on the covariates Wj,i, paG (Wj,i) i = 1, . . . , n. The
estimators of the expectations that condition only on the parent set of a node are computed
similarly.

Under regularity conditions, which include restrictions on some measure (for exam-
ple, the metric entropy) of the complexity of the ambient function space of the con-
ditional expectations appearing in the expression for χ1

P,a,eff (V;G) , and for particular
choices of the non-parametric estimators of these conditional expectations, the one-step
estimator χ̂one−step,a is regular and asymptotically linear with influence function equal to
χ1
P,a,eff (V;G) (van der Vaart, 2014) and therefore it attains the semiparametric variance

bound for χa (P ;G) under model M (G). Consequently, ∆̂ =
∑

a∈A caχ̂one−step,a has influ-
ence function

∑
a∈A caχ

1
P,a,eff (V;G) and therefore it attains the semiparametric variance

bound for ∆ (P ;G) under model M (G).

6.2 A Sound and Complete Algorithm to Check if the NP-O Estimator is
Semiparametric Efficient

It turns out that for special configurations of G, the formula (19) simplifies in that

χ1
P,a,eff (V;G) = ψP,a [O (A, Y,G) ;G] for all P ∈M (G) , (20)

where ψP,a [O (A, Y,G) ;G] is the influence function of the NP-O estimator (see (4)). This
implies that the NP-O estimator of χa (P ;G) attains the semiparametric variance bound
for χa (P ;G) under M (G) . For such DAG configurations there is no loss of efficiency in
ignoring the observations on the variables V\ [O ∪ {Y,A}]. Furthermore no loss of efficiency
is incurred from ignoring the restrictions implied by the Bayesian Network M(G) on the
marginal law of (O, A, Y ).
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In light of the results of the preceding section, throughout we will assume that irrel (A, Y,G) =
∅ and therefore that we can topologically sort V as (W1, . . . ,WJ , A,M1, . . . ,MK , Y ), where
the vertices in M = {M1, . . . ,MK} intersect at least one causal path between A and Y and
W = {W1, . . . ,WJ} are non-descendants of A. The set O (A, Y,G) ≡ O ≡ (O1, . . . , OT ),
where (O1, . . . , OT ) is sorted topologically, is included in W. Throughout T = 0 if O (A, Y,G) =
∅, K = 0 if M = ∅ and J = 0 if W = ∅.

The following theorem provides necessary and sufficient conditions on the DAG G for
(20) to hold.

Theorem 19 If J ∈ {0, 1} and K = 0, assertion (20) always holds. Furthermore, if J > 1
or K > 0, assertion (20) holds if and only if

1. O \ {OT } ⊂ paG(OT ),

2. paG (Wj+1) ⊂ paG (Wj) ∪ {Wj} for j = 1, . . . , J − 1,

3. {A} ∪Omin ⊂ paG(Y ), and

4. paG (Mk) ⊂ paG (Mk−1) ∪ {Mk−1} for k = 2, . . . ,K + 1,

where MK+1 ≡ Y . Condition 2) is nonexistent if J ∈ {0, 1} and condition 4) is nonexistent
if K = 0.

In Section 6.4 we provide an algorithm (Algorithm 2) that checks whether the necessary
and sufficient conditions of Theorem 19 hold. The algorithm return false if and only if at
least one of the conditions doesn’t hold. As we explain in Section 6.4, when the algorithm
returns false it also returns a possibly simplified formula for the efficient influence function.

Remark 20 We emphasize that there exist DAGs such that χ1
P,a,eff depends only on O, A

and Y but the NP-O estimator is inefficient. One instance of this situation is given by the
DAG in Figure 6. In particular, failure of one ore more of the conditions 1)-4) in Theorem
19 does not necessarily imply that the efficient estimator depends on variables other than
O, A and Y .

We now state a number of conditions that are implied by conditions 1)-4) of Theorem
19 and are therefore necessary for the NP-O estimator to be efficient. These conditions are
straightforward to check. We will use them in the next examples to argue that under some
DAGs the NP-O estimator is not efficient.

1. In Lemma 30 of the Appendix we show that for J > 1, whenever conditions 1) and 2)
of Theorem 19 hold then

Wj ∈ paG(Wj+1) for all j ∈ {1, . . . , J − 1}. (21)

Consequently, if J > 1 then (21) is necessary for the NP-O estimator to be efficient

2. In Lemma 31 we show that if K ≥ 1, whenever condition 4) of Theorem 19 holds for
k ∈ {2, . . . ,K + 1} then

A ∈ paG(M1) and Mk ∈ paG(Mk+1) for k ∈ {2, . . . ,K + 1}. (22)

Consequently, if K ≥ 1 then (22) is necessary for the NP-O estimator to be efficient.

33



Rotnitzky and Smucler

3. The preceding two remarks imply that if either the variables in W or the variables
in M can be topologically sorted in more than one way, then the NP-O estimator
is inefficient. Thus the existence of a unique topological order of W and of M is a
necessary condition for the NP-O estimator to be efficient.

4. Because condition 3) of Theorem 19 requires that Omin ⊂ paG(Y ) then condition 4)
of the same theorem implies that

Omin ⊂ paG(Mk), for k = 1, . . . ,K + 1 (23)

is a necessary condition for the NP-O estimator to be efficient.

W1 W2 W3 W4 W5

A

Y

(a)

W1 W2 W3 W4 W5

A

Y

(b)

W1 W2 W3 W4 W5

A

Y

(c)

W1 W2 W3 W4 W5

A

Y

(d)

Figure 10: In graphs (a) and (c) the NP-O estimator is inefficient and in graphs (b) and
(d) the NP-O estimator is efficient.

Example 8 Consider the graphs in Figure 10. In all four graphs, M = ∅ and O is com-
prised of the single node W5. Thus, to check whether or not the NP-O estimator is effi-
cient, we only need to check conditions 2) and 3) of Theorem 19. In the graph in Figure
10 (a), condition 2) fails for j = 2, because paG(W3) = {W1,W2} which is not a subset of
paG(W2)∪{W2} = {W2}. Thus, the NP-O estimator is inefficient. Notice that in this graph
W can be sorted topologically in two ways, (W1,W2,W3,W4,W5) and (W2,W1,W3,W4,W5).
In graph 10 (b), conditions 2) and 4) hold, thus the NP-O estimator is efficient. In graph
10 (c), condition 2) fails for j = 4, because paG(W5) = {W2,W4} which is not a subset of
{W4} ∪ paG(W4). Notice that in this graph (21) holds, thus illustrating the fact that this
condition is necessary but not sufficient for the NP-O estimator to be efficient. In graph
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10 (d), conditions 2) and 3) hold, and thus the NP-O estimator is efficient. A comparison
of Figures 10 (c) and 10 (d) highlights a key property that graphs for which the NP-O is
efficient must satisfy. Specifically, if a node Wj is a parent of a node Wj+l for l > 1 then
it must also be a parent of all the nodes Wj+h for 1 ≤ h < l. In the graph in Figure 10 (c),
W2 is a parent of W5 but not a parent of W4, and thus this condition fails. All preceding
assertions are valid even if any of the orange arrows from the nodes in W to A are absent.

A M1 M2 M3 Y

W1

(a)

A M1 M2 M3 Y

W1

(b)

A M1 M2 M3 Y

W1

(c)

A M1 M2 M3 Y

W1

(d)

A M1 M2 M3 Y

W1

(e)

A M1 M2 M3 Y

W1

(f)

Figure 11: In graphs (a), (c), (e) and (f) the NP-O estimator is inefficient and in graphs
(b), (d) the NP-O estimator is efficient.

Example 9 Consider the graphs in Figure 11. In all four graphs, W = O is comprised of
the single node W1. Furthermore in graphs (a), (b) and (c), O = Omin and in graphs (d),
(e) and (f) Omin = ∅. Also, M = {M1,M2,M3}. Since J = 1, to check whether or not the
NP-O estimator is efficient, we only need to check conditions 3) and 4) of Theorem 19.

In graph (a), the NP-O estimator is inefficient because W1 6∈ paG(M3), thus invalidating
the necessary condition (23). In graph (b), conditions 3) and 4) of Theorem 19 hold and
thus the NP-O estimator is efficient. In graph (c), condition 3) fails because Omin = {W1},
but W1 6∈ paG(Y ). Thus, the NP-O estimator is inefficient. In graph (d), condition 3)
holds because Omin = ∅ and A ∈ paG(Y ). Furthermore, condition 4) holds. Thus, the
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NP-O estimator is efficient. In graph (e), condition 3) holds for the same reasons as in
graph d). However, condition 4) fails because paG(M3) = {W1,M2} is not included in
{M2} ∪ paG(M2) = {M1,M2}. Thus, the NP-O estimator is inefficient. In graph (f) the
NP-O estimator is inefficient because condition 4) fails since paG(Y ) = {A,M1,M3} is not
included in {M3} ∪ paG(M3) = {W1,M2,M3}.

O1 B1 B2 B3 B4 O2 B5 O3

A

M1

M2

M3

Y

Figure 12: A DAG where the NP-O estimator is efficient.

Example 10 Consider the DAG in Figure 12. In this DAG, J = 8, T = 3,

W = (W1,W2,W3,W4,W5,W6,W7,W8) = (O1, B1, B2, B3, B4, O2, B5, O3) ,

O = {O1, O2, O3} and Omin = {O1, O2}. It can be checked that conditions 1)-4) of Theorem
19 hold for this graph and thus the NP-O estimator is efficient. All blue arrows in the graph
are needed for condition 1) and 2) to hold. That is, if any blue arrow were absent from the
graph, the NP-O estimator would be inefficient. If both red arrows were absent or if only the
red arrow from B1 to B3 was present, then condition 2) would hold. Notice that condition
1) does not impose any restriction to the presence or absence of the red arrows. However,
if the arrow from B1 to B4 were present but the arrow from B1 to B3 were absent, then
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condition 2) would fail. None of the conditions 1)-4) impose restrictions on the existence
of edges connecting nodes in W \O to A. Thus, the conclusions of our discussion would
remain valid regardless of whether or not any of the orange edges are present. All black
arrows are needed for conditions 3) and 4) to hold. The requirements on the presence or
absence of the purple arrows connecting O3 to M1 and M2 are similar to the requirements
on the red arrows. Specifically, condition 4) would remain valid even if the edge connecting
O3 to M1 or both the edges connecting O3 with M1 and with M2 were absent. However, if
the edge connecting O3 with M2 is present then the edge connecting O3 with M1 must be
present for condition 4) to hold. Finally, the conditions of Theorem 19 would remain valid
even if the green edge were missing.

6.3 A Connection Between Identification and Efficient NP-O Estimation

Theorem 19 has the following interesting corollary.

Theorem 21 Let G be a DAG with vertex set V, let A and Y be two distinct vertices in
V with A corresponding to a point intervention. Let O = O(A, Y,G) and let Omin ⊂ O
be the subset of O with the smallest number of vertices such that A ⊥⊥G [O\Omin] |Omin.
Suppose that Omin 6= ∅. Let M = cn(A, Y,G) \ {Y }. If there exists an identifying formula
for χa(P ;G) that depends only on A, Y and the mediators M then the NP-O estimator of
χa(P ;G) is not globally efficient under the Bayesian Network M(G).

Proof We prove the result by contradiction. By Lemma 16, without loss of generality,
we can assume that irrel(A, Y,G) = ∅. Suppose that the NP-O estimator of χa(P ;G) is
globally efficient under M(G). Then Theorem 19 implies that every vertex Omin must be
a parent of Y and of every vertex in M. Furthermore, by (22), A must be a parent of
M1 and each Mk must be a parent of Mk+1. Let G [{A, Y } ∪M] be the latent projection
of G (Evans and Richardson, 2014) onto the vertex set {A, Y } ∪M. Because Omin is not
empty, then, in G [{A, Y } ∪M], the nodes A,M1,M2, . . . ,MK , Y are all in the same district
(Shpitser et al., 2014). The completeness of the ID algorithm, see Tian and Pearl (2002)
and Shpitser and Pearl (2008), implies that χa(P ;G) is not identified when only {A, Y }∪M
are observed, thus arriving at a contradiction.

Interestingly, Theorem 21 implies that in the front-door DAG in Figure 8, the NP-O
estimator is not efficient.

6.4 A Sound Algorithm to Check for Variables That Are Not Needed For
Semiparametric Efficient Estimation

In the Section 6.2 we showed that for certain DAG configurations, the efficient influence
function χ1

P,a,eff (V;G) depends on V only through O, A and Y . In this section we argue

that when χ1
P,a,eff (V;G) depends on variables in V\[O∪{A, Y }] it may nevertheless depend

on a strict subset of V. As such, from the perspective of planning a study, it is useful to
learn which variables are irrelevant for efficient estimation since such variables need not be
measured.
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As an example, consider the DAG in Figure 10 (c). Applying formula (19) from Theorem
18, the d-separations in the DAG imply that

χ1
P,a,eff (V;G) =

Ia(A)

πa(W5;P )
Y − Ia(A)

πa(W5;P )
ba (W5;P )

+ ba(W5;P )− χa(P ;G) + EP [ba(W5;P ) |W3,W4]− EP [ba(W5;P ) |W2,W4]

+ EP [ba(W5;P ) |W2,W3]− EP [ba(W5;P ) |W3] .

Check Example 11 in the Appendix for the details involved in the preceding calculation.
Notice that W1 does not enter into the formula for χ1

P,a,eff (V;G). Thus W1 can be ignored
for efficient estimation of χa(P ;G).

Algorithm 2 provides a sound check for possible simplifications of χ1
P,a,eff (V;G). Such

simplifications may imply that some variables do not appear in the formula for the effi-
cient influence function, as is the case in the example of the DAG of Figure 10 (c) we
just discussed. Whether or not the algorithm returns the smallest subset of V on which
χ1
P,a,eff (V;G) depends on remains an open problem. Algorithm 2 is also sound and complete

for the query of whether χ1
P,a,eff (V;G) simplifies to ψP,a[O;G]. Proofs of all these assertions

together with a heuristic explanation of the rationale for each step in the algorithm, are
given in the Appendix.
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Algorithm 2: Sound and complete check of χ1
P,a,eff (V;G) = ψP,a (O;G)

input : DAG G with vertex set V and two distinct nodes A, Y ∈ V such that A ∈ anG(Y )
output: An answer to the inquiry of whether χ1

P,a,eff (V;G) = ψP,a (O;G) for all P ∈M(G) and a, possibly, simplified
formula for χ1

P,a,eff if the answer to the inquiry is negative.
1 procedure checkEfficient(A, Y,G)
2 G=prune(A, Y,G)
3 (W, A,M, Y ) = (W1, . . . ,WJ , A,M1, . . . ,MK , Y ) =topological sort(V,G)

/* J = 0 if W = ∅ and K = 0 if M = ∅ */

4 MK+1 = Y
5 O = O(A, Y,G)
6 O1, . . . , OT =topological sort(O)
7 efficient nondesc=False

8 efficient desc=False

9 if O \ {OT } ⊂ paG(OT ) and J > 1 then
10 j = J − 1
11 while paG(Wj+1) \ {Wj} ⊂ paG(Wj) and j ≥ 2 do j = j − 1
12 if j ≥ 2 then
13 offenders nondesc={j}∪get offenders nondesc(G,W,O, j − 1)

14 χ1,non−desc
P,a,eff =

ba(O;P )− χa(P ;G) +
∑
h∈offenders nondesc

{
EP
[
ba (O;P ) | paG (Wh) ,Wh

]
− EP

[
ba (O;P ) |paG (Wh+1)

]}
15 else

16 χ1,non−desc
P,a,eff = ba(O;P )− χa(P ;G)

17 efficient nondesc=True

18 else if J > 1 then
19 offenders nondesc=get offenders nondesc(G,W,O, J − 1)

20 χ1,non−desc
P,a,eff = EP

[
ba(O;P ) |WJ ,paG(WJ)

]
− χa(P ;G) +∑

h∈offenders nondesc

{
EP
[
ba (O;P ) | paG (Wh) ,Wh

]
− EP

[
ba (O;P ) | paG (Wh+1)

]}
21 else if J = 1 then

22 χ1,non−desc
P,a,eff = ba(O;P )− χa(P ;G)

23 efficient nondesc=True

24 else if J = 0 then

25 χ1,non−desc
P,a,eff = 0

26 efficient nondesc=True

27 if A ∪Omin ⊂ paG(Y ) and K ≥ 1 then

28 χ1,desc
P,a,eff = Ia(A)Y π−1

a (Omin;P )

29 k = K + 1
30 while k ≥ 2 && paG(Mk) ⊂ paG(Mk−1) ∪ {Mk−1} do k = k − 1
31 if k ≥ 2 then
32 offenders desc={k}∪get offenders desc(G,M,O,Omin, k − 1)

33 χ1,desc
P,a,eff = χ1,desc

P,a,eff +
∑
h∈offenders desc{EP

[
TP,a,G | paG(Mh−1),Mh−1

]
− EP

[
TP,a,G | paG(Mh)

]
}

34 if {A} ∪O = paG(M1) then

35 χ1,desc
P,a,eff = χ1,desc

P,a,eff − Ia(A)ba(O;P )π−1
a (Omin;P )

36 else

37 χ1,desc
P,a,eff = χ1,desc

P,a,eff − EP
[
TP,a,G | paG(M1)

]
38 else

39 χ1,desc
P,a,eff = χ1,desc

P,a,eff − Ia(A)ba(O;P )π−1
a (Omin;P )

40 efficient desc=True

41 else if K ≥ 1 then
42 offenders desc={K + 1}∪get offenders desc(G,M,O,Omin,K)

43 χ1,desc
P,a,eff =

∑
h∈offenders desc{EP

[
TP,a,G | paG(Mh−1),Mh−1

]
− EP

[
TP,a,G | paG(Mh)

]
}

44 if {A} ∪O = paG(M1) then

45 χ1,desc
P,a,eff = χ1,desc

P,a,eff − Ia(A)ba(O;P )π−1
a (Omin;P )

46 else

47 χ1,desc
P,a,eff = χ1,desc

P,a,eff − EP
[
TP,a,G | paG(M1)

]
48 else

49 χ1,desc
P,a,eff = Ia(A)π−1

a (Omin;P )(Y − ba(O;P ))

50 efficient desc=True

51 χ1
P,a,eff = χ1,non−desc

P,a,eff + χ1,desc
P,a,eff

52 efficient = efficient desc & efficient nondesc

53 return efficient, χ1
P,a,eff
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Algorithm 3: Subroutine to find all mediator nodes that don’t satisfy at
least one of (66), (69) or (70).

input : DAG G, mediator nodes M, optimal adjustment set O, optimal minimal
adjustment set Omin and integer init.

output: The set of nodes in M that don’t satisfy at least one of (66), (69) or (70)
procedure get offenders desc(G,M,O,Omin, init)

offender desc= ∅
for i = init, . . . , 2 do

if {A} ∪Omin 6⊂ paG(M1) or paG(Mi) 6⊂ paG(Mi−1) ∪ {Mi−1} or
Y 6⊥⊥G paG(Mi−1) ∪ {Mi−1 \ paG(Mi) | paG(Mi) then
offender desc=offender desc∪{i}

return offender desc

Algorithm 4: Subroutine to find all non-mediator nodes that don’t satisfy
(60).

input : DAG G, non-mediator nodes W, optimal adjustment set O and integer
init.

output: The set of nodes in W that don’t satisfy (60)
procedure get offenders nondesc(G,W,O, init)

offender nondesc= ∅
for i = init, . . . , 1 do

Ii ≡
[
paG (Wi) ∪ {Wi}

]
∩ paG (Wi+1)

if O \ Ii 6⊥⊥G
[
paG(Wi) ∪ {Wi}

]
4 paG(Wi+1) | Ii then

offender nondesc=offender nondesc∪{i}
return offender nondesc

7. Discussion

The results in this paper raise a number of open problems, several of which we are currently
investigating.

1. The derivation of a graphical criterion to characterize the class of all time dependent
adjustment sets, like adjustment sets in row 1 and 8 in Example 4, that dominate the
rest even if they don’t dominate each other.

2. The characterization of DAGs under which an optimal time dependent adjustment
set exists for joint interventions.

3. The characterization of the subset of DAGs such that an optimal time dependent
adjustment set exists for joint interventions, and for which the optimal time dependent
adjustment set is time independent.

4. The characterization of DAGs such that among the adjustment sets of minimal size,
there exists an optimal one.
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5. For DAGs for which an optimal time dependent adjustment set exists, the derivation of
a sound and complete algorithm to answer the inquiry of whether the non-parametric
optimally adjusted estimator is globally efficient under the Bayesian Network.

6. For DAGs with latent variables such that observable adjustment sets exist, the char-
acterization of the subset of DAGs for which an optimal adjustment set exists among
the observable adjustment sets.

7. For DAGs with latent variables, the derivation of a general expression for the efficient
influence function of χa(P ;G) and a non-parametric globally efficient estimator.

8. For DAGs with latent variables for which an optimal observable adjustment set exists,
the derivation of a sound and complete algorithm to answer the inquiry of whether the
non-parametric optimally adjusted estimator is globally efficient under the marginal
of Bayesian Network for the observable variables.
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Appendix A. Main proofs

A.1 Proofs of results in Section 5

Proof [Proof of Lemma 4] We first show that (G,B) is an adjustment set. Since A ⊥⊥G
G | B we have

πa (G,B;P ) = πa(B;P ). (24)

Then, for all P ∈ M(G), EP

[
Ia(A)Y

πa(G,B;P )

]
= EP

[
Ia(a)Y
πa(B;P )

]
= χa(P ;G) where the last equal-

ity holds because B is by assumption an adjustment set. This shows that (G,B) is an
adjustment set. Now,

ψP,a (B;G) =
Ia(A)Y

πa(B;P )
−
[
Ia(A)

πa(B;P )
− 1

]
ba(B;P )− χa(P ;G)

=
Ia(A)Y

πa(G,B;P )
−
[

Ia(A)

πa(G,B;P )
− 1

]
ba(G,B;P )− χa(P ;G)

+

[
Ia(A)

πa(G,B;P )
− 1

]
{ba(G,B;P )− ba(B;P )}

= ψP,a (G,B;G) +

[
Ia(A)

πa(G,B;P )
− 1

]
[ba(G,B;P )− ba(B;P )]

where the second equality follows from (24) . Next, noting that

EP {ψP,a [G,B;G] g(A,G,B)} = 0 for any g such that EP [g(A,G,B)|G,B] = 0 (25)

and that EP

{[
Ia(A)

πa(G,B;P ) − 1
]

[ba(G,B;P )− ba(B;P )]
∣∣∣G,B

}
= 0 we conclude that

σ2
a,B (P ) ≡ varP [ψP,a (B;G)] (26)

= varP [ψP,a (G,B;G)] + varP

[{
Ia(A)

πa(G,B;P )
− 1

}
{ba(G,B;P )− ba(B;P )}

]
≡ σ2

a,G,B (P ) + EP

{
E
[

[ba(G,B;P )− ba(B;P )]2
∣∣∣B] varP [ Ia(A)

πa(B;P )
− 1 | B

]}
= σ2

a,G,B (P ) + EP

{
varP (ba(G,B;P ) | B)

[
1

πa(B;P )
− 1

]}
where the last equality holds because ba(B;P ) = EP [ba(G,B;P ) | A = a,B] = EP [ba(G,B;P ) | B] ,
the first equality is by the definitions of ba(B, P ) and ba(G,B;P ) and the second is
true because A ⊥⊥G G | B. Next, recall that c ≡ (ca)a∈A ,Q ≡ [Qa]a∈A where Qa ≡{

Ia(A)
πa(G,B;P ) − 1

}
{ba(G,B;P )− ba(B;P )} . For any Z, define ψP (Z;G) ≡ (ψP,a (Z;G))a∈A.

Then, writing
∑

a∈A caψP,a (Z;G) = cTψP (Z;G) and noticing that EP [Q|G,B] = 0 , it fol-
lows from (25) that σ2

∆,B (P ) = varP
[
cTψP (B;G)

]
= varP

[
cTψP (G,B;G)

]
+varP

[
cTQ

]
=

σ2
∆,G,B (P )+cT varP (Q) c. The expression for varP (Qa) was derived in (26). On the other
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hand if a 6= a′

covP (Qa, Qa′) =

EP

[{
Ia(A)

πa(B;P )
− 1

}{
Ia′(A)

πa′(B;P )
− 1

}
covP [ba(G,B;P ), ba′(G,B;P )|B,A]

]
=

EP

[
covP [Ia(A), Ia′(A)|B]

πa(B;P )πa′(B;P )
covP [ba(G,B;P ), ba′(G,B;P )|B]

]
=

− EP [covP [ba(G,B;P ), ba′(G,B;P )|B]] .

This concludes the proof Lemma 4

Proof [Proof of Lemma 5] We first show that G is an adjustment set. For any P ∈M(G)
the assumption Y ⊥⊥G B | A,G implies

ba(G,B;P ) ≡ EP (Y | A = a,G,B) = EP (Y | A = a,G) ≡ ba(G;P ) (27)

and consequently that EP [ba(G;P )] = EP [ba(G,B;P )] = χa(P ;G) where the second
equality follows from the assumption that (G,B) is an adjustment set. This shows that G
is an adjustment set. Now,

EP [ψP,a(G,B;G) | A, Y,G] = (28)

Ia(A) {Y − ba(G;P )}EP
[

1

πa(G,B;P )

∣∣∣∣A = a, Y,G

]
+ {ba(G;P )− χa(P ;G)} =

Ia(A) {Y − ba(G;P )}EP
[

1

πa(G,B;P )

∣∣∣∣A = a,G

]
+ {ba(G;P )− χa(P ;G)} =

Ia(A)

πa (G;P )
{Y − ba(G;P )}+ {ba(G;P )− χa(P ;G)} = ψP,a(G;G).

where the first equality follows from (27) , the second follows from Y ⊥⊥G B | A,G and the
third by invoking Lemma 27 in Section A.4. On the other hand,

EP [varP [ψP,a(G,B;G) | A, Y,G]] =

EP

[
varP

{
Ia(A)

πa(G,B;P )
{Y − ba(G;P )}+ {ba(G;P )− χa(P ;G)} | A, Y,G

}]
=

EP

[
Ia(A) (Y − ba(G;P ))2 varP

{
1

πa(G,B;P )
| A = a,G

}]
=

EP

{
πa(G;P )varP (Y | A = a,G)varP

[
1

πa(G,B;P )
| A = a,G

]}
where the first equality follows from (27) and the second follows from Y ⊥⊥G B | A,G. We
therefore have

σ2
a,G,B (P ) ≡ varP [ψP,a(G,B;G)]

= varP [ψP,a(G;G)] + EP

{
πa(G;P )varP (Y | A = a,G)varP

[
1

πa(G,B;P )
| A,G

]}
= σ2

a,G (P ) + EP

{
πa(G;P )varP (Y | A = a,G)varP

[
1

πa(G,B;P )
| A,G

]}
.
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Next,

σ2
∆,G,B (P ) = varP

[
EP
[
cTψP (G,B;G) |A, Y,G

]]
+ EP

[
varP

[
cTψP (G,B;G) |A, Y,G

]]
= varP

[
cTψP (G;G)

]
+ cTEP [varP [ψP (G,B;G) |A, Y,G]] c

= σ2
∆,G (P ) + cTEP [varP [ψP (G,B;G) |A, Y,G]] c.

But by (27) we have covP
[
ψa,P (G,B;G) , ψa′,P (G,B;G) |A, Y,G

]
= 0 because Ia(A)Ia′(A) =

0. Consequently

cTEP [varP [ψP (G,B;G) |A, Y,G]] c =∑
a∈A

c2
aEP

{
πa(G;P )varP (Y | A = a,G)varP

[
1

πa(G,B;P )
| A = a,G

]}
.

The formula for σ2
ATE,G,B (P ) − σ2

ATE,G (P ) follows immediately by applying the formula

for σ2
∆,G,B (P ) to ca=1 = 1 and ca=−1 = −1. This concludes the proof of Lemma 5.

Lemma 22 Given a DAG G and disjoint vertices A and B there exists a unique subset C of
B such that A ⊥⊥GB\C | C and such that no strict subset C′ of C satisfies A ⊥⊥GB\C′ | C′.

Proof The result is a consequence of the fact that d-separation is a graphoid. See Geiger
et al. (1990). Suppose there were two distinct minimal sets, say C1 and C2. Let I =
C1∩ C2, W1 = C1\I and W2= C2\I and R = B\ (C1∪C2) . Then A ⊥⊥GB\C1|C1 and
A ⊥⊥GB\C2|C2 if and only if A ⊥⊥G (R,W2) |W1, I and A ⊥⊥G (R,W1) |W2, I.The weak
union axiom implies that

A ⊥⊥GR| (W1,W2) , I (29)

The decomposition axiom implies that

A ⊥⊥GW2|W1, I and A ⊥⊥GW1|W2, I. (30)

Next, it follows from (30) and the intersection axiom that

A ⊥⊥G (W1,W2) |I (31)

Finally, from (29) and (31), the contraction axiom implies that A ⊥⊥G (R,W1,W2) |I or,
equivalently, that A ⊥⊥GB\I|I. If C1 and C2 are distinct then I is a strict subset of C1 and
C2 which cannot happen because C1 and C2 were minimal sets C′ with the property that
A ⊥⊥GB\C′|C′.

Proof [Proof of Theorem 9]
Proof of part (1). From A ⊥⊥G O \ Omin | Omin, we have that πa(O, P ) =

πa(Omin, P ). Then, for all P ∈ M(G), EP

[
Ia(A)Y

πa(Omin,P )

]
= EP

[
Ia(A)Y
πa(O,P )

]
= χa(P ;G) where

the last equality follows because, since A is a point intervention, O is an adjustment set.
This shows that Omin is an adjustment set
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Proof of part (2). In our proof of part (2) we will invoke at several places the following
property.

Property (O): For any O ∈ O there exists a directed path from O to Y such that for
any adjustment set Z relative to (A, Y ) in G, the path does not intersect the nodes in Z
other than, at most, at the node O.

The proof of Property (O) is immediate because by definition of O, O is the parent of a
node in cn(A, Y ;G). If such node is Y then the assertion holds trivially for the path O → Y.
Otherwise, for any node M in cn(A, Y ;G) \ {Y } there exists a directed path from M to Y
that intersects solely nodes in cn(A, Y ;G) . The assertion then holds for such path because
for any adjustment set Z it holds that Z∩cn(A, Y ;G) = ∅.

Turn now to the proof of A⊥⊥G [Omin\Zmin] | Zmin.Suppose there existedO ∈ Omin\Zmin

such that O is not d-separated from A given Zmin in G. Let α denote the path between A
and O that is open given Zmin. By Property (O) there exists a directed path, say ϕ, between
O and Y that is open given Zmin. Then, the path obtained by concatenating α with ϕ is
a non-causal path between A and Y that is open given Zmin, which is impossible because
Zmin is an adjustment set.

Turn now to the proof of

Y ⊥⊥G [Zmin \Omin] | Omin, A. (32)

We will show it by contradiction. Assume there exists X∗ ∈ Zmin\Omin such that Y 6⊥⊥G
X∗ | Omin, A. By X∗ ∈ Zmin, Theorem 5 from Shpitser et al. (2010), implies that

X∗ 6∈ deG(A). (33)

Also, by Shpitser et al. (2010), we have

X∗ 6∈ forb (A, Y ;G) . (34)

Let η∗ be the path between X∗ and Y that is open when we condition on (Omin, A).
We will first show that η∗ must intersect a vertex in O\Omin. So, if O\Omin = ∅, this
result already shows (32) . To show that η∗ must intersect a vertex in O\Omin we first note
that η∗ must be of the form X∗ − ◦...◦ → Y. The justification for why the last edge in η∗

must point into Y is as follows. Suppose the edge pointed out of Y . Then, since by (34) X∗

cannot be a descendant of Y, the path η∗ would have to intersect a vertex that would be
both a descendant of Y and a collider in η∗, and either such vertex or any of its descendants
would have to be in the conditioning set Omin ∪ {A} so as to yield the path η∗ open. But
this is impossible because neither A can be a descendant of Y nor can any element of Omin,
by the very definition of Omin.

Next we note that, by definition of O, in the edge ◦ → Y the vertex ◦ is in the set O ∪M
where M≡ cn (A, Y ;G) \ {Y } . If the vertex is in O then it must be in O\Omin because the
path η∗ is open when conditioning on (Omin, A) , therefore proving the assertion that η∗

intersects O\Omin. If the vertex is in M, then the next edge in the path must be of the
form X∗ − ◦...◦ →Mk → Y for some Mk ∈M. The justification for why the edge ◦ →Mk

points into Mk is along the same lines as before. Specifically, if the edge pointed out of
Mk then, by virtue of X∗ not being a descendant of Mk, then the path η∗ would have to
intersect a vertex that would be both a descendant of Mk and a collider in η∗, and either
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such vertex or any of its descendants would have to be in the conditioning set Omin ∪ {A}.
But this is impossible because neither A can be a descendant of Mk nor can any element
of Omin, by the very definition of Omin.

By the same argument as above, in the edge ◦ →Mk the vertex ◦ is in the set O ∪M. If
the vertex is in O then it must be in O\Omin because the path η∗ is open when conditioning
on (Omin, A) , therefore proving the assertion that η∗ intersects O\Omin. If the vertex is a,
say Mj , in M then reasoning as above, the path η∗ must be of the form X∗−◦...◦ →Mj →
Mk → Y. Continuing in the same fashion, we arrive at the conclusion that either any of the
vertices ◦ are in O\Omin or otherwise, the path is of the form X∗ → Mr → Ml → ... →
Mj →Mk → Y. In the latter case, X∗ ∈ O\Omin which therefore concludes the proof that
the path η∗ intersects O\Omin.

Let O∗ ∈ O \Omin be the element of O \Omin that is closest to Y in the path η∗, that
is, such that the subpath of η∗ between O∗ and Y does not intersect any other vertex of
O \Omin. Let D∗1, . . . , D

∗
k be the colliders on η∗, with D∗1 the one closest to X∗ in η∗, D∗2

the one second closest to X∗ and so on. For each j there exists a descendant of D∗j that is
an element of (Omin, A). Furthermore, if there exists a directed path between D∗j and A,
this path necessarily has to intersect an element of Omin for suppose this was not the case.
Then, take j∗ to be the largest j such that there exists a directed path between D∗j and A
that does not intersect Omin. Then the path A← ...← D∗j∗ ← ...−O∗ is open given Omin,
which contradicts O∗ ∈ O\Omin. We therefore conclude that η∗ is open by conditioning
just on Omin.

From the nodes in Zmin\Omin that intersect η∗, let W ∗ be the closest one to O∗ in
the path η∗, possibly W ∗ = O∗. Consider now the subpath α∗ of η∗ between W ∗ and Y.
Because η∗ is open by conditioning on Omin, so is α∗. The path α∗ has one of the following
two forms

W ∗ → ◦− ...→ ◦︸︷︷︸
≡C∗1

← ...→ ◦︸︷︷︸
≡C∗2

← ....→ ◦︸︷︷︸
≡C∗r

← ...−O∗ →Mu1 →Mu2 ...→Mut → Y

(35)
or

W ∗ ← ◦− ...→ ◦︸︷︷︸
≡C∗1

← ...→ ◦︸︷︷︸
≡C∗2

← ....→ ◦︸︷︷︸
≡C∗r

← ...−O∗ →Mu1 →Mu2 ...→Mut → Y.

(36)
where the set of colliders {C∗1 , ..., C∗r } is included in {D∗1, ..., D∗k} and can possibly be empty,
and the set {Mu1 ,Mu2 , ...,Mut} is included in M and can also possibly be empty.

Next, let

∆ ≡ {δ : δ is a path between W ∗ and A that is open given Zmin\{W ∗}} .

Lemma 28 in Section A.4 implies that ∆ is not empty. Any path δ in ∆ has one of the
following forms:

a) δ is a directed path from W ∗ to A : W ∗ → ◦ → ◦...◦ → A
b) δ has one and only one fork: W ∗ ← ◦...◦ ← ◦ → ◦...◦ → A.
c) δ has at least one collider and the first edge points out of W ∗:

W ∗ → ◦− ...→ ◦︸︷︷︸
≡H∗1

← ...→ ◦︸︷︷︸
≡H∗2

← ....→ ◦︸︷︷︸
≡H∗s

← ...−A.
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d) δ has at least one collider and the first edge points into W ∗:

W ∗ ← ◦− ...→ ◦︸︷︷︸
≡H∗1

← ...→ ◦︸︷︷︸
≡H∗2

← ....→ ◦︸︷︷︸
≡H∗s

← ...−A.

Moreover, we can assume without loss of generality that W ∗ appears only once in the
path δ. Note that δ ∈ ∆ cannot be a directed path from A to W ∗ because W ∗ ∈ Zmin and
by Theorem 5 from Shpitser et al. (2010) we have that W ∗ 6∈deG(A).

We will show that neither of the forms (35) or (36) for the path α∗ are possible by
showing that if α∗ was of one such form then it would imply that ∆ is empty. Henceforth,
assume that α∗ takes one of the forms (35) or (36) . Below we will show the following claims.

Claim (i). ∀ δ ∈ ∆ with form (a) or (b), δ is open given Omin.

Claim (ii). If ∃δ ∈ ∆ with form (b) or (d) then the path α∗ cannot be of the form
(36).

Claim (iii). Every δ ∈ ∆ of the form (c) or (d) is blocked given Omin.

Proof of Claim (i). Let δ have form (a) or (b). Then no node in Omin∩Zmin intersects
δ, for if it did, the path would be blocked by Zmin\{W ∗}. On the other hand, suppose the
path δ intersected a node O∗∗ in Omin\Zmin. Let ξ be the subpath of δ between O∗∗ and
A. The path ξ is open given Zmin. By Property (O) there exists a directed path, say ϕ,
from O∗∗ to Y that does not intersect Zmin. Then, the path obtained by concatenating ξ
with ϕ is a non-causal path between A and Y that is open given Zmin. This contradicts
the assumption that Zmin is an adjustment set. This concludes the proof of Claim (i).

Proof of Claim (ii). Suppose that there exists a path δ ∈ ∆ with form (b) or (d).
We will prove by contradiction that there cannot be any path α∗ of the form (36) that is
open when by conditioning on Omin. Suppose there existed one such path α∗. Suppose first
that there are no colliders in α∗, that is, there exist no nodes C∗j . The path α∗ does not
intersect any element of Zmin\Omin other than at the node W ∗ because, by definition, W ∗

was chosen to be the closest element in Zmin\Omin to O∗. On the other hand, since the
path α∗ is open by conditioning on Omin, then α∗ cannot intersect any element of Omin.
Then, α∗ is open given Zmin\W ∗. Take now the path δ ∈ ∆ with form (b) or (d) and
concatenate it with the path α∗. The concatenated path is a non-causal path between A
and Y which is open given Zmin because W ∗ is a collider in the path and W ∗ ∈ Zmin.
This is impossible because Zmin is an adjustment set. We therefore conclude if a path α∗

exists, then the set of colliders {C∗1 , ..., C∗k} is not empty. Furthermore, at least one of the
colliders is not an ancestor of any node in Zmin, for if all C∗1 , ..., C

∗
k were ancestors of some

node in Zmin, then again the path α∗ would be open given Zmin\W ∗ and consequently, the
concatenated path between a path δ of the form (b) or (d) with the path α∗ would be a
non-causal path between A and Y that is open given Zmin, contradicting the assumption
that Zmin is an adjustment set. Take the smallest j, say j′, such that the collider C∗j is
not an ancestor of Zmin. Because the path α∗ is open by conditioning on Omin, then there
exists O∗∗ ∈ Omin\Zmin such that C∗j′ is an ancestor of O∗∗ so that either there exists a
directed path, say λ, from C∗j′ to O∗∗ or C∗j′ = O∗∗. Now, by Property (O) there exists a
directed path, say ϕ, from O∗∗ to Y that is open given Zmin. Now, consider the path that
concatenates a path δ ∈ ∆ with form (b) or (d), with the subpath of α∗ between W ∗ and
C∗j′ , next concatenates with λ if C∗j′ 6= O∗∗ and finally concatenates with ϕ. Such path is
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a non-causal path between A and Y that is open given Zmin which is impossible because
Zmin is an adjustment set. This concludes the proof of the Claim (ii)

Proof of Claim (iii). Suppose that δ ∈ ∆ is of the form (c) and that δ is open given
Omin. Then concatenating δ with α∗ we obtain a non-causal path between A and Y that is
open given Omin because W ∗ is not a collider on this path. This contradicts the fact that
Omin is an adjustment set.

Suppose now that δ ∈ ∆ is of the form (d) and is open given Omin. By Claim (ii), the
path α∗ has to be of the form (35). Then concatenating δ with α∗ we once again obtain a
path between A and Y that is open given Omin arriving at a contradiction. This concludes
the proof of Claim (iii).

We will now argue that ∆ must be empty by showing that Claims (i), (ii) and (iii) imply
that if δ ∈ ∆, then δ cannot take any of the forms (a), (b), (c) or (d).

(I) Proof that δ ∈ ∆ cannot take the form (a). Suppose there exists δ ∈ ∆ with
the form (a). Then, invoking Claim (i), we conclude that the path γ between O∗ and A
formed by concatenating the path δ between W ∗ and A and the subpath of α∗ between O∗

and W ∗ is a path between O∗ and A that is open given Omin. This is impossible because
the existence of such path γ contradicts the assertion that O∗ ∈ O \Omin.

(II) Proof that δ ∈ ∆ cannot take the form (b). Suppose there exists δ ∈ ∆ with
the form (b). Then invoking Claim (ii), the path α∗ has to be of the form (35). By Claim
(i), δ is open given Omin. On the other hand, α∗ is open given Omin. Concatenating δ with
α∗ we form a path, say π, that is open given Omin, since W ∗ is not a collider on π. This is
impossible because the existence of such path π contradicts the fact that O∗ ∈ O \Omin.

(III) Proof that δ ∈ ∆ can take neither the form (c) nor the form (d). Suppose
that there exists a δ ∈ ∆ of the form (c) or (d). By Claim (iii), δ is blocked by conditioning
on Omin. Furthermore, by definition of ∆, the path is open when conditioning on Zmin\W ∗.
Then, one of the following happens:

(III.a) the path δ intersects a node O∗∗ ∈ Omin\Zmin that is not a collider in the path,
or

(III.b) the property (III.a) does not hold and there exists a non-empty subset, say

H ≡
{
H∗j1 , . . . ,H

∗
jl

}
, of the collider set {H∗1 , ...,H∗s } such that each H∗ju is an ancestor in

G of a node in Zmin\W ∗ but is not an ancestor of a node in Omin.
We will show by contradiction that both (III.a) and (III.b) are impossible.
Suppose first that (III.a) holds. Let φ be the subpath in δ between O∗∗ and A. The

path φ is open given Zmin because the path δ is open given Zmin\W ∗. Let ν a directed path
between O∗∗ and Y that does not intersect Zmin, which exists by Property (O). The path
between A and Y obtained by concatenating ν with φ is a non-causal path between A and
Y that is open given Zmin. This is impossible because Zmin is an adjustment set.

Suppose next that (III.b) holds. Let H =
{
H∗j1 , ...,H

∗
jl

}
be the maximal subset of the

collider set {H∗1 , ...,H∗s } such that each H∗ju is an ancestor in G of a node in Zmin\W ∗ but is
not an ancestor of a node in Omin. Assume without loss of generality that j1 < j2 < · · · < jl
so that H∗jl is the closest node in H to A in the path δ. Then, the subpath of δ, say ζjl ,
between H∗jl and A is open given Omin.

We will show next that if (III.b) holds then

for each u in {1, ..., l} there exists O∗ju ∈ O\Omin such that H∗ju 6⊥⊥G O
∗
ju |Omin. (37)
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However, (37) leads to a contradiction. To see this, let ν∗jl be a directed path between O∗jl
and Y that does not intersect Omin, which exists by Property (O). Let γ∗jl denote the path
between H∗jl and O∗jl which is open by conditioning on Omin (which exists by (37)). Then,
the path obtained by concatenating the paths ν∗jl with γ∗jl and with ζjl is a non-causal path
between A and Y that is open by conditioning on Omin. This is impossible because Omin

is an adjustment set. The proof of part (2) of the theorem is then finished if we show that
(III.b) implies (37). We will show this by induction in u. Suppose first that u = 1. By
definition of the set H, either H∗j1 ≡ Z∗u=1,1 ∈ Zmin\ {Omin,W

∗} or there exists a node
Z∗u=1,1 ∈ Zmin\ {Omin,W

∗} such that there exists a directed path from H∗j1 to Z∗u=1,1 that
does not intersect any other element of Zmin\ {Omin,W

∗} . Now, because Z∗u=1,1 ∈ Zmin
and Zmin is a minimal adjustment set, then there exists a non-causal path θ1 between A
and Y such that θ1 is open by conditioning on Zmin\Z∗u=1,1, and the path θ1 is closed by
conditioning on Zmin.The path θ1 must then intersect Z∗u=1,1 and Z∗u=1,1 must be a non-
collider vertex in the path. Now, define τ1 ≡ subpath of θ1 between A and Z∗u=1,1, and
κ1 ≡ subpath of θ1 between Z∗u=1,1 and Y. Because Z∗u=1,1 is a non-collider in the path θ1,
then in at least one of the subpaths τ1 or κ1, the edge with vertex Z∗u=1,1 is pointing out of
Z∗u=1,1. Furthermore, because θ1 is open by conditioning on Zmin\Z∗u=1,1, so are τ1 and κ1.
We will show next that either

(37) holds for u = 1 or ∃ a vertex Z∗u=1,2 in Zmin\
[
Omin ∪

{
Z∗u=1,1

}]
such that Z∗u=1,2

is a descendant of Z∗u=1,1 (38)

Suppose first that the edge with vertex Z∗u=1,1 in τ1 points out of Z∗u=1,1. We will
now show that τ1 cannot be a directed path from Z∗u=1,1 to A. Suppose τ1 was a directed
path. Then τ1 cannot intersect any vertex of Omin, because H∗j1), and hence Z∗u=1,1, is not
ancestor of any vertex in Omin. We therefore conclude that if τ1 is a directed path between
Z∗u=1,1 and A, then it must be open by conditioning on Omin. Now, let λ be the subpath of
δ∗ between W ∗ and H∗j1 . By definition of H∗j1 , λ is open given Omin. Let ρ be the directed
path between H∗j1 and Z∗u=1,1 if H∗j1 6= Z∗u=1,1, otherwise let ρ denote the degenerate path
consisting of just the vertex H∗j1 . Let

β ≡ the path between A and Y obtained by concatenating τ1 with ρ with λ with α∗.

Because all the paths τ1, ρ, λ and α∗ are open given Omin and because none of the vertices
W ∗, H∗j1 and Z∗u=1,1 are in Omin, and none are colliders in the path β, then the path β is open
given Omin. This is impossible because Omin is an adjustment set. We therefore conclude
that τ1 cannot be a directed path between Z∗u=1,1 and A.Therefore, τ1 must intersect a

collider. Any collider in the path τ1 must be an ancestor of a node in the set Zmin\
{
Z∗u=1,1

}
because τ1 is open given Zmin\

{
Z∗u=1,1

}
. Furthermore, the collider in τ1 that is closest to

Z∗u=1,1 cannot be an ancestor of any element of Omin, because if it was, then Z∗u=1,1 and
consequently H∗j1 would be an ancestor of a vertex in Omin, which is not possible by the
definition of the set H. We therefore conclude that there exists a vertex, say Z∗u=1,2, in

Zmin\
[
Omin ∪

{
Z∗u=1,1

}]
such that Z∗u=1,2 is a descendant of Z∗u=1,1, thus showing (38) .

Next suppose that the edge with vertex Z∗u=1,1 in κ1 points out of Z∗u=1,1. If there exists a
directed path between Z∗u=1,1 and Y, then this path necessarily has to intersect an element
O∗j1 ∈ O. The vertex O∗j1 cannot be in Omin because if it were, then H∗j1 would be an
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ancestor of an element of Omin, which is impossible by the definition of the set H. Then, if
there exists a directed path between Z∗u=1,1 and Y, the assertion (38) holds. Now, suppose
that there exists no directed path between Z∗u=1,1 and Y. Then, the path κ1 must intersect

a collider. Because κ1 is open given Zmin\
{
Z∗u=1,1

}
and because Z∗u=1,1 cannot be the

ancestor of any vertex in Omin, then we reason exactly as before, and conclude that there
exists a Z∗u=1,2, in Zmin\

[
Omin ∪

{
Z∗u=1,1

}]
such that Z∗u=1,2 is a descendant of Z∗u=1,1, thus

proving (38) .

Next, suppose (38) holds because there exists a vertex Z∗u=1,2 in Zmin\
[
Omin ∪

{
Z∗u=1,1

}]
such that Z∗u=1,2 is a descendant of Z∗u=1,1. We can now reason exactly as we did for Z∗u=1,1

and conclude that

(37) holds for u = 1 or ∃ a vertex Z∗u=1,3 in Zmin\
[
Omin ∪

{
Z∗u=1,1, Z

∗
u=1,2

}]
such that

Z∗u=1,3 is a descendant of Z∗u=1,2 (39)

Continuing in this fashion until depleting the set of vertices in Zmin we arrive at the con-
clussion that (37) holds for u = 1.

Suppose now that (37) holds for u = 1, ..., t − 1 with t ≤ l. We will show that it holds
for u = t. Let Z∗u=t,1 ∈ Zmin\Omin be a descendant of H∗jt which exists by the definition
of H. Let θt be a path that is open given Zmin\Z∗u=t,1 but closed given Zmin. Reasoning
as before, the path θt must intersect Z∗u=t,1 and Z∗u=t,1 cannot be a collider in the path.
Then, partitioning θt as (τt, κt) where τt ≡ subpath of θt between A and Z∗u=t,1 and κt ≡
subpath of θt between Z∗u=t,1 and Y we know that in at least one of τt or κt the edge with
one endpoint equal to Z∗u=t,1 must point out of Z∗u=t,1. Furthermore, both τt and κt are
open given Zmin\Z∗u=t,1. We will show that

(37) holds for u = t or ∃ a vertex Z∗u=t,2 in Zmin\
[
Omin ∪

{
Z∗u=t,1

}]
such that Z∗u=t,2

is a descendant of Z∗u=t,1 (40)

Suppose the edge with one endpoint equal to Z∗u=t,1 in τt points out of Z∗u=t,1. We will
show that τt cannot be a directed path from Z∗u=t,1 to A. As we reasoned for τ1 above, if τt
was directed it could not intersect any element of Omin, for if it did, then such element of
Omin would be a descendant of H∗jt which is impossible by the definition of the set H. So,
if a directed path between Z∗u=t,1 and A exists, then it must be open given Omin. Now, by
the inductive hypothesis, we know that there exists O∗jt−1

∈ O\Omin such that O∗jt−1
is a

descendant of H∗jt−1
. Because, by definition of H, H∗jt−1

cannot be an ancestor of any vertex
in Omin, then we conclude that there exists a directed path, say σ, from H∗jt−1

and O∗jt−1

that is open by conditioning on Omin. Let λjt−1 be the subpath of δ between H∗jt−1
and H∗jt .

The path λjt−1 is open by conditioning on Omin because we have assumed that δ does not
intersect any node of Omin that is a non-collider in the path, and by the definition of H∗jt−1

and H∗jt , if in the path λjt−1 there are colliders, each of these colliders must be ancestors of
Omin. Let ρjt−1 be the directed path between H∗jt and Z∗u=t,1 if H∗jt 6= Z∗u=t,1, otherwise let
ρjt−1 denote the degenerate path consisting of just the vertex H∗jt . Note that ρjt−1 is open
given Omin because H∗jt is not an ancestor of any vertex in Omin. Let βjt= the path between
A and O∗jt−1

obtained by concatenating τt with ρjt−1 with λjt−1 with σ. Because all the
paths τt, ρjt−1 , λjt−1 and σ are open given Omin and because none of the vertices H∗jt−1

, H∗jt
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and Z∗u=t,1 are in Omin, and none are colliders in the path βjt , then the path βjt is open
given Omin. This is impossible because by definition of Omin, O

∗
jt−1

is d-separated from A
given Omin. We therefore conclude that τt cannot be a directed path between Z∗u=t,1 and
A.Therefore, τt must intersect a collider. Any collider in the path τt must be an ancestor
of a node in the set Zmin\

{
Z∗u=t,1

}
because τt is open given Zmin\

{
Z∗u=t,1

}
. Furthermore,

the collider in τt that is closest to Z∗u=t,1 cannot be an ancestor of any element of Omin,
because if it was, then Z∗u=t,1 and consequently H∗jt would be an ancestor of a vertex in
Omin, which is not possible by the definition of the set H. We therefore conclude that there
exists a vertex, say Z∗u=t,2, in Zmin\

[
Omin ∪

{
Z∗u=t,1

}]
such that Z∗u=t,2 is a descendant of

Z∗u=t,1, thus showing (40) holds if the edge with one endpoint equal to Z∗u=t,1 in τt points
out of Z∗u=t,1.

Suppose next that the edge with one endpoint equal to Z∗u=t,1 in κt points out of Z∗u=t,1.
If there exists a directed path between Z∗u=t,1 and Y, then this path necessarily has to
intersect an element O∗jt ∈ O. The vertex O∗jt cannot be in Omin because if it were, then
H∗jt would be an ancestor of an element of Omin, which is impossible by the definition of
the set H. Then, if there exists a directed path between Z∗u=t,1 and Y, the assertion (40)
holds. Now, suppose that there exists no directed path between Z∗u=t,1 and Y. Then, the

path κt must intersect a collider. Because κt is open given Zmin\
{
Z∗u=t,1

}
and because

Z∗u=t,1 cannot be the ancestor of any vertex in Omin, then we reason exactly as before,

and conclude that there exists a Z∗u=t,2, in Zmin\
[
Omin ∪

{
Z∗u=t,1

}]
such that Z∗u=t,2 is a

descendant of Z∗u=t,1.

Next, because Z∗u=t,2 is in Zmin\
[
Omin ∪

{
Z∗u=t,1

}]
and is a descendant of Z∗u=t,1, we

can reason exactly as we did for Z∗u=t,1 and conclude that

(37) holds for u = t or ∃ a vertex Z∗u=t,3 in Zmin\
[
Omin ∪

{
Z∗u=t,1, Z

∗
u=t,2

}]
such that

Z∗u=t,3 is a descendant of Z∗u=t,2.

Continuing in this fashion until depleting the set of vertices in Zmin we arrive at the con-
clussion that (37) holds for u = t. This concludes the proof of the part (2).

Proof of part (3). Suppose there existed a minimal adjustment set Zmin that con-
tained a vertex O ∈ O\Omin. Then O ∈ O and O ∈ Zmin\Omin. Part (2) of this Theorem
then implies Y ⊥⊥G O | Omin, A. This is impossible because by Property (O) there exists a
directed path from O to Y that does not intersect Omin. The path also does not intersect
A. Consequently, by virtue of being a directed path, the path is open given Omin and A.
This concludes the proof of the Theorem.

Proof [Proof of Lemma 11] First note that for k ∈ {0, . . . , p} ,

πak
(
Gk,Bk;P

)
≡ P

(
Ak = ak|Ak−1 = ak−1,Gk,Bk

)
= P

(
Ak = ak|Ak−1 = ak−1,Bk

)
≡ πak

(
Bk;P

)
(41)

where the second equality follows from (12). Consequently,

χa (P ;G) = EP

[ p∏
k=0

πak
(
Bk;P

)]−1

Ia (A)Y

 = EP

[ p∏
k=0

πak
(
Gk,Bk;P

)]−1

Ia (A)Y

 .
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The first equality is true because B is a time dependent adjustment set. The second equality,
which follows from (41), proves that (G,B) is also an adjustment set.

We will now prove the following results

1.

σ2
a,B (P )− σ2

a,G,B (P ) =
p∑

k=0

EP

[
Iak−1

(
Ak−1

)
λak−1

(
Bk−1;P

)2
{

1

πak
(
Bk;P

) − 1

}
varP

[
bak
(
Gk,Bk;P

)
|Ak−1 = ak−1,Bk

]]
.

2.

σ2
∆,B (P )− σ2

∆,G,B (P ) =

p∑
k=0

varP
[
tk
(
Ak,Gk,Bk, P

)]
,

where

tk
(
Ak,Gk,Bk, P

)
≡∑

a∈A
ca

Iak−1

(
Ak−1

)
λak−1

(
Bk−1;P

) { Iak (Ak)

πak
(
Bk;P

) − 1

}{
bak
(
Gk,Bk;P

)
− bak−1

(
Gk−1,Bk−1;P

)}
.

These imply that

σ2
a,B (P )− σ2

a,G,B (P ) ≥ 0 and σ2
∆,B (P )− σ2

∆,G,B (P ) ≥ 0.

For k = 0, . . . , p, let

Λk (P ) ≡
{
qk
(
Ak,Gk,Bk

)
: EP

[
qk
(
Ak,Gk,Bk

)
|Ak−1,Gk,Bk

]
= 0
}
.

Note that for any 0 ≤ k 6= k′ ≤ p, the elements of Λk (P ) are uncorrelated under P with
those of Λk′ (P ) . Note also that for any function sk

(
Gk,Bk

)
and any P ∈ M (G) , the

function

rk
(
Ak,Gk,Bk; sk, P

)
≡

Iak−1

(
Ak−1

)
λak−1

(
Bk−1;P

) { Iak (Ak)

πak
(
Bk;P

) − 1

}
sk
(
Gk,Bk

)

belongs to Λk (P ) because EP

[
Iak (Ak)

πak(Bk;P)
− 1

∣∣∣∣Ak−1,Gk,Bk

]
= 0 by (12) . Next, write

ψP,a (B;G) = ψP,a (G,B;G) +
∑p

k=0 rk

(
Ak,Gk,Bk; s

∗
a,k, P

)
where s∗a,k

(
Gk,Bk

)
≡

bak
(
Gk,Bk;P

)
− bak

(
Bk;P

)
. Noting that ψP,a (G,B;G) is uncorrelated under P with the

elements of Λk (P ) for all 0 ≤ k ≤ p (Robins and Rotnitzky, 1992), we conclude that
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varP [ψP,a (B;G)] = varP [ψP,a (G,B;G)] +
∑p

k=0 varP

[
rk

(
Ak,Gk,Bk; s

∗
a,k, P

)]
. Finally

varP
[
rk
(
Ak,Gk,Bk; s

∗
a,k, P

)]
=

EP

 Iak−1

(
Ak−1

)
λak−1

(
Bk−1;P

)2
{

Iak (Ak)

πak
(
Bk;P

) − 1

}2 {
bak
(
Gk,Bk;P

)
− bak

(
Bk;P

)}2

 =

EP

[
Iak−1

(
Ak−1

) [
bak
(
Gk,Bk;P

)
− EP

[
bak
(
Gk,Bk;P

)
|ak−1,Bk

]]2
λak−1

(
Bk−1;P

)2
{

1

πak
(
Bk;P

) − 1

}]
=

EP

[
Iak−1

(
Ak−1

)
λak−1

(
Bk−1;P

)2
{

1

πak
(
Bk;P

) − 1

}
varP

[
bak
(
Gk,Bk;P

)
|ak−1,Bk

]]
.

Next, noticing that cTψP (B;G) = cTψP (G,B;G) +
∑p

k=0 tk
(
Ak,Gk,Bk, P

)
and that

tk
(
Ak,Gk,Bk, P

)
∈ Λk (P ) we obtain σ2

∆,B (P ) = varP
[
cTψP (B;G)

]
= σ2

∆,G,B (P ) +∑p
k=0 varP

[
tk
(
Ak,Gk,Bk, P

)]
. This concludes the proof of Lemma 11.

Proof [Proof of Lemma 12] First we show by reverse induction in k that for all k ∈
{0, 1, . . . , p} it holds that

bak
(
Bk,Gk;P

)
= bak

(
Gk;P

)
. (42)

This result immediately implies that G = (G0,G1, . . . ,Gp) is a time dependent adjustment
set because, χa (P ;G) ≡ EP

[
ba0

(
B0,G0;P

)]
= EP

[
ba0

(
G0;P

)]
, where the first equality

follows from the assumption that (G,B) is a time dependent adjustment set and the sec-
ond follows from (42) applied to k = 0. We show that (42) holds for k ∈ {0, 1, . . . , p}
by reverse induction in k. First note that bap

(
Bp,Gp;P

)
≡ EP

[
Y |B,G,Ap = ap

]
=

EP
[
Y |G,Ap = ap

]
≡ bap

(
Gp;P

)
where the second equality follows by (13) . Then (42)

holds for k = p. Next, assume that (42) holds for k ∈ {k∗ + 1, . . . , p} for some k∗ ≥ 0. We
will show that it holds for k = k∗. This follows from

bak∗
(
Bk∗ ,Gk∗ ;P

)
≡ EP

[
bak∗

(
Bk∗+1,Gk∗+1;P

)
|Bk∗ ,Gk∗ ,Ak∗ = ak∗

]
= EP

[
bak∗

(
Gk∗+1;P

)
|Bk∗ ,Gk∗ ,Ak∗ = ak∗

]
= EP

[
bak∗

(
Gk∗+1;P

)
|Gk∗ ,Ak∗ = ak∗

]
≡ bak∗

(
Gk∗ ;P

)
,

where the second equality is by the inductive hypothesis and the third is by (14) applied to
j = k∗ + 1. Next we show that for any k ∈ {0, . . . , p}

EP

[
1

λak

(
Gk,Bk;P

)∣∣∣∣∣Gk,Ak=ak

]
=

1

λak

(
Gk;P

) . (43)
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To do so we write for k ∈ {1, . . . , p}

EP

[
1

λak

(
Gk,Bk;P

)∣∣∣∣∣Gk,ak

]
πak

(
Gk;P

)
=

EP

[
1

λak−1

(
Gk−1,Bk−1;P

) Ak

πak
(
Gk,Bk;P

)∣∣∣∣∣Gk,ak−1

]
=

EP

[
1

λak−1

(
Gk−1,Bk−1;P

)∣∣∣∣∣Gk,ak−1

]
= EP

[
1

λak−1

(
Gk−1,Bk−1;P

)∣∣∣∣∣Gk−1,Ak−1=ak−1

]
where the last equality is by (14) applied to j = k. Likewise,
EP
[
λ−1

a0

(
G0,B0;P

)∣∣G0,a0

]
πa0
(
G0;P

)
= 1. Then, for any k ∈ {0, . . . , p}

EP

[
1

λak

(
Gk,Bk;P

)∣∣∣∣∣Gk,ak

]
=

1

πak
(
Gk;P

)EP [ 1

λak−1

(
Gk−1,Bk−1;P

)∣∣∣∣∣Gk−1,ak−1

]

=
1

πak−1

(
Gk−1;P

) 1

πak
(
Gk;P

)EP [ 1

λak−2

(
Gk−2,Bk−2;P

)∣∣∣∣∣Gk−2,ak−2

]
= · · · = 1

πa0
(
G0;P

) 1

πak−1

(
Gk−1;P

) 1

πak
(
Gk;P

) ≡ 1

λak

(
Gk;P

)
We will now prove the following results

1.

σ2
a,G,B (P )− σ2

a,G (P ) = EP

[
varP

[
Ia (A)

λap (G,B;P )

{
Y − bap (G,B;P )

}∣∣∣∣Y,Gp,Ap

]]
+

p∑
k=0

EP

[
varP

[
Iak−1

(
Ak−1

) {
bak
(
Gk,Bk;P

)
− bak−1

(
Gk−1,Bk−1;P

)}
λak−1

(
Gk−1,Bk−1;P

) ∣∣∣∣∣Gk,Ak−1

]]
,

2.

σ2
∆,G,B (P )− σ2

∆,G (P ) = EP

[
varP

[∑
a∈A

caIa (A)
{
Y − bap (G,B;P )

}
λap (G,B;P )

∣∣∣∣∣Y,Gp,Ap

]]
+

p∑
k=0

EP

[
varP

[∑
a∈A

caIak−1

(
Ak−1

) [
bak
(
Gk,Bk;P

)
− bak−1

(
Gk−1,Bk−1;P

)]
λak−1

(
Gk−1,Bk−1;P

) ∣∣∣∣∣Gk,Ak−1

]]

which imply that σ2
a,G,B (P )− σ2

a,G (P ) ≥ 0 and σ2
∆,G,B (P )− σ2

∆,G (P ) ≥ 0.
We note that re-arranging terms, the influence function (11) can be re-expressed as

ψP,a (Z;P ) =
Ia (A)

λap (Z;P )

{
Y − bap (Z;P )

}
+

p∑
k=0

Iak−1

(
Ak−1

) {
bak
(
Zk;P

)
− bak−1

(
Zk−1;P

)}
λak−1

(
Zk−1;P

)
where ba−1

(
Z−1;P

)
≡ χa (P ;G) . Furthermore, for any Z, the terms

Iak−1(Ak−1)
λak−1(Zk−1;P)

×{
bak
(
Zk;P

)
− bak−1

(
Zk−1;P

)}
, k ∈ {0, . . . , p} and Ia(A)

λap (Z;P )

{
Y − bap (Z;P )

}
are mutually
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uncorrelated under P . Then, varP [ψP,a (G,B;P )] = varP

[
Ia(A)

λap (G,B;P )

{
Y − bap (G,B;P )

}]
+∑p

k=0 varP

[
Iak−1(Ak−1)

λak−1(Gk−1,Bk−1;P)

{
bak
(
Gk,Bk;P

)
− bak−1

(
Gk−1,Bk−1;P

)}]
. Now,

EP

[
Ia(A)

λap (G,B;P )

{
Y − bap (G,B;P )

}∣∣∣Y,Gp,Ap

]
= Ia (A)

{
Y − bap (G;P )

}
×

EP

[
1

λap(Gp,Bp;P)

∣∣∣∣Y,Gp,ap

]
= Ia (A)

{
Y − bap (G;P )

}
EP

[
1

λap(Gp,Bp;P)

∣∣∣∣Gp,= ap

]
=

Ia(A)
λap (G;P )

{
Y − bap (G;P )

}
, where the first equality is by (42) applied to k = p, the second

is by (13) and the third is by (43) applied to k = p. Also, for any k ∈ {0, . . . , p}

EP

[
Iak−1

(
Ak−1

)
λak−1

(
Gk−1,Bk−1;P

) {bak (Gk,Bk;P
)
− bak−1

(
Gk−1,Bk−1;P

)}∣∣∣∣∣Gk,Ak−1

]
=

Iak−1

(
Ak−1

) {
bak
(
Gk;P

)
− bak−1

(
Gk−1;P

)}
EP

[
1

λak−1

(
Gk−1,Bk−1;P

)∣∣∣∣∣Gk,ak−1

]
=

Iak−1

(
Ak−1

) {
bak
(
Gk;P

)
− bak−1

(
Gk−1;P

)}
EP

[
1

λak−1

(
Gk−1,Bk−1;P

)∣∣∣∣∣Gk−1,ak−1

]
=

Iak−1

(
Ak−1

)
λak−1

(
Gk−1;P

) {bak (Gk;P
)
− bak−1

(
Gk−1;P

)}
the first equality is by (42) , the second is by (14) and the third is by (43) and where, recall,
for k = 0, Iak−1

(
Ak−1

)
≡ λak−1

(
Gk−1;P

)
≡ 1 and bak−1

(
Gk−1;P

)
≡ χa (P ;G) . Then

varP [ψP,a (G,B;P )] = varP

[
Ia (A)

λap (G,B;P )

{
Y − bap (G,B;P )

}]
+

p∑
k=0

varP

[
Iak−1

(
Ak−1

)
λak−1

(
Gk−1,Bk−1;P

) {bak (Gk,Bk;P
)
− bak−1

(
Gk−1,Bk−1;P

)}]

= varP

{
EP

[
Ia (A)

{
Y − bap (G,B;P )

}
λap (G,B;P )

∣∣∣∣∣Y,Gp,Ap

]}

+ EP

{
varP

[
Ia (A)

{
Y − bap (G,B;P )

}
λap (G,B;P )

∣∣∣∣∣Y,Gp,Ap

]}

+

p∑
k=0

varP

{
EP

[
Iak−1

(
Ak−1

) {
bak
(
Gk,Bk;P

)
− bak−1

(
Gk−1,Bk−1;P

)}
λak−1

(
Gk−1,Bk−1;P

) ∣∣∣∣∣Gk,Ak−1

]}

+

p∑
k=0

EP

{
varP

[
Iak−1

(
Ak−1

) {
bak
(
Gk,Bk;P

)
− bak−1

(
Gk−1,Bk−1;P

)}
λak−1

(
Gk−1,Bk−1;P

) ∣∣∣∣∣Gk,Ak−1

]}

= varP [ψP,a (G;P )] + EP

{
varP

[
Ia (A)

λap (G,B;P )

{
Y − bap (G,B;P )

}∣∣∣∣Y,Gp,Ap

]}
+

p∑
k=0

EP

{
varP

[
Iak−1

(
Ak−1

) {
bak
(
Gk,Bk;P

)
− bak−1

(
Gk−1,Bk−1;P

)}
λak−1

(
Gk−1,Bk−1;P

) ∣∣∣∣∣Gk,Ak−1

]}
.
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The formula for σ2
a,G,B (P ) − σ2

a,G (P ) follows by recalling that for any Z, σ2
a,Z,P =

varP [ψP,a (Z;P )].

We derive the formula for σ2
∆,G,B (P )− σ2

∆,G (P ) analogously. Specifically, for any Z,

σ2
∆,G,B (P ) = varP

[∑
a∈A

caψP,a(Z;G)

]
.

But, ∑
a∈A

caψP,a(Z;G) ={∑
a∈A

[
ca

Ia (A)

λap (Z;P )

{
Y − bap (Z;P )

}]}
+

p∑
k=0

{∑
a∈A

[
ca

Iak−1

(
Ak−1

)
λak−1

(
Zk−1;P

) × {bak (Zk;P )− bak−1

(
Zk−1;P

)}]}
.

It is easy to check that the terms in between curly brackets in the last display are uncorre-
lated. Thus the formula for σ2

∆,G,B (P ) − σ2
∆,G (P ) is derived verbatim as in the sequence

of equalities for varP [ψP,a (G;P )] in the display above, except that
∑

a∈A ca is included in
front of each expression between squared brackets.

This concludes the proof of Lemma 12.

A.2 Proofs of results in Section 6

Lemma 23 For G the DAG in Figure 6, let Pα ∈M(G) satisfy (1) ba (O;Pα) = O1 +O2 +
αO1O2, (2) EPα (O1) = EPα (O2) = 0, (3) EPα

(
O2

1

)
= EPα

(
O2

2

)
= 1, and (4) There exists a

fixed C > 0 independent of α such that varPα (Y | A = a,O) ≤ C and πa(Omin;Pα) ≥ 1/C.

Then varPα [ψPα,a (O;G)]/varPα

[
χ1
P,a,eff (V;G)

]
→
|α|→∞

∞.

Proof Recall that ψ,a(O;G) ≡ Ia(A)
πa(Omin;P ) {Y − ba (O;P )}+ba (O;P )−χa(P ;G) is an influ-

ence function of χa (P ;G) under the Bayesian Network M (G). This is because by O being
an adjustment set we know that for all P ∈ M (G) , χa (P ;G) = EP [Ep (Y |A = a,O)] .
Then, χ1

P,a,eff (V;G) = Π [ψP,a(O;G)|Λ (P )] where Λ (P ) is the tangent space of model

M (G) at P. Consequently, ∆Pα (O) = Π
[
ψPα,a(O;G)|Λ (Pα)⊥

]
and by Pythagoras’s The-

orem, we have varPα

[
χ1
Pα,a,eff

(V;G)
]

= varPα [ψPα,a(O;G)]− varPα [∆Pα (O)] . Therefore,

varPα [χ1
Pα,a,eff

(V;G)]
varPα [ψPα,a(O;G)]

= 1 − varPα [∆Pα (O)]

varPα [ψPα,a(O;G)]
. Now, O1 and O2 are marginally independent

under all P ∈ M(G). Since EPα (O1) = EPα (O2) = 0, we have that EPα [ba (O;Pα) |O1] =
O1, EPα [ba (O;Pα) |O2] = O2 and EPα [ba (O;Pα)] = 0. Thus, ∆Pα (O) ≡ ba (O;Pα) −
EPα [ba (O;Pα) |O1]− EPα [ba (O;Pα) |O2] + EPα [ba (O;Pα)] = αO1O2. Consequently,
varPα [∆Pα (O)] = α2EPα

[
O2

1O
2
2

]
= α2. On the other hand, varPα [ψP,a(V;G)] =
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varPα

[
Ia(A)

πa(Omin;Pα) {Y − ba (O;Pα)}
]

+ varPα [ba (O;Pα)− χa(Pα;G)] =

EPα

[
Ia(A)

π2
a(Omin;Pα)

varPα(Y | A = a,O)
]

+ EPα
[
b2a (O;Pα)

]
=

EPα

[
Ia(A)

π2
a(Omin;Pα)

varPα(Y | A = a,O)
]

+ 2 + α2. where the last equality follows because

EPα
[
b2a (O;Pα)

]
= EPα

[
{O1 +O2 + αO1O2}2

]
= 2 + α2 since O1 and O2 have zero mean,

unit variance, and are uncorrelated under Pα. Since by assumption varPα(Y | A = a,O) ≤
C and πa(Omin;Pα) ≥ 1/C, we have EPα

[
Ia(A)

π2
a(Omin;Pα)

varPα(Y | A = a,O)
]
≤ C3. Conse-

quently,

varPα [∆Pα (O)]

varPα [ψPα,a(O;G)]
=

α2

EPα
[
Ia(A)π−2

a (Omin;Pα)varPα(Y | A = a,O)
]

+ 2 + α2
→
|α|→∞

1

and therefore
varPα [χ1

Pα,a,eff
(V;G)]

varPα [ψPα,a(O;G)]
= 1− varPα [∆Pα (O)]

varPα [ψPα,a(O;G)]
→
|α|→∞

0.

Lemma 24 Let G be a DAG with vertex set that stands for a random vector V = (V1, ..., Vs) .
Suppose that the laws in the Bayesian Network M (G) are dominated by some measure µ.
Then the tangent space of model M (G) at a law P is given by Λ (P ) ≡ ⊕sj=1Λj (P ) where

Λj (P ) =
{
G ≡ g

(
Vj , paG (Vj)

)
∈ L2 (P ) : EP

[
G| paG (Vj)

]
= 0
}
. (44)

Proof For any P ∈M (G) let p denote, any version of, the density of P with respect to µ.

For any P ∈ M (G) , p (V) factors as p (V) =
s∏

k=1

pk
(
Vk|paG (Vk)

)
where pj is, any version

of, the conditional density of Vj given paG (Vj) . Lemma 1.6 of Van der Laan and Robins
(2003), implies that the tangent space of model M (G) at a law P is given by Λ ≡ ⊕sj=1Λj
where Λj is the closed linear span of scores of one dimensional regular parametric submod-

els t→ p (V; t) = pj
(
Vj |paG (Vj) ; t

) s∏
k=1,k 6=j

pk
(
Vk|paG (Vk)

)
. Such Λj is equal to the set in

the right hand side of (44) because model M (G) does not impose restrictions on the law
pj
(
Vj |paG (Vj)

)
(Tsiatis (2007), Theorem 4.5). This concludes the proof.

In the next proofs we will use the following definitions.

Definition 25

F (A, Y,G) ≡ {Vj ∈ V : ∃ a path between A and Y in G that has Vj as its only fork},
dir (A, Y,G) ≡ {Y }∪
{Vj ∈ V : Vj has a directed path to Y in G that does not intersect A} \ F(A, Y,G).

Proof [Proof of Theorem 14] Let RP,a,G ≡
{

Ia(A)

πa(paG(A);P)
− 1

}
ba
(
paG (A) ;P

)
. Then,

ψP,a
[
paG(A);G

]
= JP,a,G−RP,a,G−χa (P ;G) is an influence function for χa (P ;G) in model

M (G) because it is the unique influence function for χa (P ;G) in the non-parametric model
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that does not impose any restrictions on P . Consequently, with Λ(P ) denoting the tan-
gent set of model M (G) at P ∈ M (G) , we have by Lemma 24 that χ1

P,a,eff (V;G) =

Π
[
ψP,a

[
paG(A);G

]
|Λ(P )

]
=

s∑
j=1

Π
[
ψP,a

[
paG(A);G

]
|Λj(P )

]
, where Λj(P ) is defined (44) .

The identity (18) is proved if we show that (i) Π
[
ψP,a

[
paG(A);G

]
|Λj(P )

]
= 0 for Vj =

A, (ii) Π
[
ψP,a

[
paG(A);G

]
|Λj(P )

]
= EP

[
JP,a,G | Vj ,paG(Vj)

]
− EP

[
JP,a,G | paG(Vj)

]
for

any Vj 6= A and (iii) EP
[
JP,a,G |Vj , paG (Vj)

]
− EP

[
JP,a,G | paG (Vj)

]
= 0 for any Vj ∈

indir(A, Y,G) ∪ ancG({A, Y }).
Assertion (i) holds because since χa (P ;G) does not depend on the law of A given paG (A),

then ψP,a
[
paG(A);G

]
is orthogonal to the scores for all regular parametric submodels for

the law A given paG (A) .

To show assertion (ii), first notice that for any random variable U,Π [U |Λj(P )] =
EP
[
U | Vj , paG(Vj)

]
− EP

[
U | paG(Vj)

]
. Then, assertion (ii) is proved if we prove that

for any Vj 6= A,EP
[
RP,a,G |Vj ,paG (Vj)

]
− EP

[
RP,aG | paG (Vj)

]
= 0. If Vj ∈deG (A) this

follows from the fact that
[
A,paG (A)

]
⊥⊥ Vj |paG (Vj) by the Local Markov property and

the fact that RP,a,G depends only on A and paG (A) . On the other hand, if Vj ∈decG (A) ,
the result follows from EP

[
RP,a,G |Vj ,paG (Vj)

]
=

EP

[{
EP [Ia(A)|paG(A),Vj ,paG(Vj)]

πa(paG(A);P)
− 1

}
ba
(
paG (A) ;P

)∣∣∣∣Vj ,paG (Vj)

]
= 0. where the second

equality holds because EP
[
Ia(A)|paG (A)

]
= EP

[
Ia(A)|paG (A) , Vj ,paG (Vj)

]
since A ⊥⊥[[

Vj ,paG (Vj)
]
\paG (A)

]
|paG (A) by the Local Markov property.

Turn now to the proof of assertion (iii). Let Vj ∈ indir(A, Y,G). We will show that
EP
[
JP,G | Vj ,paG(Vj)

]
does not depend on Vj . Let F ≡ F (A, Y,G). We begin by noting

the following: F ∪ {Vj} ∪ paG(Vj) is comprised of non-descendants of A. This is because Vj
is a non-descendant of A by assumption, since A is a descendant of Vj . This implies that
paG(Vj) is a non-descendant of A. Also, any node in F is, by definition, an ancestor of a
parent of A, therefore it cannot be a descendant of A. Then, by the Local Markov prop-
erty, EP

[
Ia(A)|paG(A),F, Vj ,paG(Vj)

]
= EP

[
Ia(A) | paG(A)

]
= π

(
paG(A);P

)
. Thus,

EP
[
JP,G | Vj ,paG(Vj)

]
= EP

[
EP
[
Y |A = a,paG(A),F, Vj ,paG(Vj)

]
| Vj ,paG(Vj)

]
. We will

show next that EP
[
Y |A = a,paG(A),F, Vj , paG(Vj)

]
= EP [Y |A = a,F] . To do so, it suf-

fices to show that

Y ⊥⊥G
[
{Vj} ∪ paG(Vj) ∪ paG(A)

]
\F
∣∣A,F. (45)

Note that
[
{Vj} ∪ paG(Vj) ∪ paG(A)

]
\F ⊂indir(A, Y,G). Then by Lemma 29 equation (45)

holds. Hence EP
[
JP,G | Vj , paG(Vj)

]
= EP

[
EP [Y |A = a,F] | Vj ,paG(Vj)

]
. Now note that

vertices in F cannot be descendants of Vj since, if V ∈ F were a descendant of Vj , then
there would be a directed path from Vj to Y that does not intersect A, a contradiction.
Hence by the Local Markov Property Vj ⊥⊥ F | paG(Vj).Thus EP

[
JP,G | Vj , paG(Vj)

]
=

EP
[
EP [Y |A = a,F] | Vj ,paG(Vj)

]
= EP

[
EP [Y |A = a,F] | paG(Vj)

]
which does not de-

pend on Vj .

Next, let Vj ∈ ancG({A, Y }). Then paG(A), A, Y are non-descendants of Vj and thus
by the Local Markov Property Vj ⊥⊥ paG(A), A, Y | paG(Vj). Therefore, since JP,a,G is
a function of only paG(A), A, Y,EP

[
JP,a,G |Vj , paG (Vj)

]
− EP

[
JP,a,G | paG (Vj)

]
= 0. This

concludes the proof of assertion (iii) and, consequently, of the identity (18).
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Turn now to the proof that χ1
P,a,eff (V;G) does not depend on any V ∈ irrel(A, Y,G).

Take V ∈ irrel(A, Y,G) and W ∈ chG(V ) \ {A}. We will show next that W ∈ irrel(A, Y,G).
This, together with the last display, will imply that χ1

P,a,eff (V;G) is a function only of

Vmarg = V\
{

ancG ({A, Y }) ∪ indir(A, Y,G)
}

. This is because the only way in which V ∈
irrel(A, Y,G) can appear in χ1

P,a,eff (V;G) is if it belongs to the parent set of a node W that
is not in irrel(A, Y,G) ∪ {A}.

Assume first that W ∈ anG(A) \ {A}. Then W ∈ indir(A, Y,G), since W is a child of
V and V ∈ irrel(A, Y,G). Assume next that W /∈ anG(A). We claim that this implies that
W 6∈ anG(Y ). Indeed, if W ∈ anG(Y ), there exists a directed path from W to Y that does
not intersect A. Since W is a child of V , this implies that V /∈ irrel(A, Y,G), contradicting
the assumption that V ∈ irrel(A, Y,G). Thus, W /∈ anG(A) implies W 6∈ anG(Y ). Hence, if
W 6∈ anG(A) then W ∈ irrel(A, Y,G). Consequently, in all cases W ∈ irrel(A, Y,G), which
is what we wanted to show.

Proof [Proof of Proposition 17] Let P ′ ∈ M′ and P ∈ M with marginal law P ′. Let
Vc= V\V′. Let t ∈ [0, ε] → Pt be a regular parametric submodel of M with Pt=0 = P
and score S. Decompose S as SV′ + SVc|V′ where SV′ is the score in the induced reg-

ular parametric submodel t ∈ (0, ε] → P ′t of M′ with P ′t=0 = P ′. Then d
dtχ (Pt)

∣∣
t=0

=

EP

[
χ1
P,effS

]
= EP

[
χ1
P,effSV′

]
+ EP

[
χ1
P,effSVc|V′

]
= EP

[
χ1
P,effSV′

]
, where the last

equality follows because SVc|V′ is a conditional score for the law of Vc|V′ and, by assump-

tion, χ1
P,eff is a function of V′ only. On the other hand, d

dtχ (Pt)
∣∣
t=0

= d
dtν (P ′t)

∣∣
t=0

because

by assumption, χ (Pt) = ν (P ′t) . Then, χ1
P,eff is an influence function for ν (P ′) . Now let

Λ′ be the tangent space for model M′ at P ′. Then, Λ = Λ′⊕ the closed linear span of{
SVc|V′ : SVc|V′ is a conditional score under model M

}
. Since EP

[
χ1
P,effSVc|V′

]
= 0 for

all conditional scores SVc|V′ we conclude that χ1
P,eff is in Λ′ and consequently, it is the

efficient influence function ν1
P ′,eff .

Proof [Proof of Lemma 16] We will use the following property which can be shown
straightforwardly. Let G1, G2 and G3 be DAGs with vertex sets V1,V2 and V3 such that
V1 ⊃ V2 ⊃ V3. Then,

M
(
G1,V2

)
=M

(
G2
)

and M
(
G2,V3

)
=M

(
G3
)
⇒M

(
G1,V3

)
=M

(
G3
)

(46)

The set V\ ancG ({A, Y }) is an ancestral set, that is, it contains all its own ancestors
:V\ ancG ({A, Y }) = anG

(
V\ ancG ({A, Y })

)
. Then, by Proposition 1 (a) of Evans (2016)

M
(
G,V\ ancG ({A, Y })

)
=M

(
GV\ ancG({A,Y })

)
. (47)

Now, let G̃l+1 ≡ GV\ ancG({A,Y }) and let (I1, . . . , Il) be the set of nodes in indir(A, Y, G̃l+1),

topologically sorted with respect to G̃l+1. Recursively define for j = l, l − 1, . . . , 1, G̃j ≡
τ
(
G̃j+1, Ij

)
. Noticing that in G̃j+1, Ij has a sole child equal to A, then combining Lemma

1 and Lemma 3 of Evans (2016), yields that for j = l, l − 1, . . . , 1 ,

M
(
G̃j+1,V\

{
ancG ({A, Y }) ∪

(
∪li=jIi

)})
=M

(
G̃j
)
. (48)
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Repeatedly invoking (46) to the equalities (47) and (48) yields

M
(
G,V \ {ancG({A, Y }) ∪ indir(A, Y,G)}

)
= M

(
G̃1
)
. Since G′ = G̃1 is the output of Al-

gorithm 1, this finishes the proof of the first part of the Lemma.

Now note that the pruning algorithm prunes neither A nor Y. Furthermore, it neither
adds new causal paths nor deletes causal paths between A and Y. Then, cn(A, Y,G) =
cn(A, Y,G′). Also, the pruning algorithm neither adds nor deletes any vertex that is both
a non-descendant of A in G and parent of a vertex in cn(A, Y,G) in G. But the set of
such vertices is precisely the set O (A, Y,G) . This shows that O (A, Y,G) = O (A, Y,G′) .
Then, if P ∈M(G), ba (O (A, Y,G) ;P ) = ba (O (A, Y,G′) ;Pmarg) and πa (O (A, Y,G) ;P ) =
πa (O (A, Y,G′) ;Pmarg) . Consequently, ψP,a [O (A, Y,G) ;G] = ψPmarg ,a [O (A, Y,G′) ;G′] . But
since O (A, Y,G) is an adjustment set relative to A and Y in G (and G′) we have that
χa (P ;G) = EP [ba (O (A, Y,G) ;P )] and χa (Pmarg;G′) = EPmarg [ba (O (A, Y,G′) ;Pmarg)]
and thus conclude that χa (P ;G) = χa (Pmarg;G′).

We turn next to the proof of χ1
P,a,eff (V;G) = χ1

Pmarg ,eff
(Vmarg;G′). By Theorem 14,

χ1
P,a,eff (V;G) is a function only of Vmarg = V\

{
ancG ({A, Y }) ∪ indir(A, Y,G)

}
. Since we

have already shown that M (G, Vmarg) =M (G′), that χa (Pmarg;G′) = χa (P ;G), Propo-
sition 17 implies that χ1

P,a,eff (V;G) = χ1
Pmarg ,a,eff

(Vmarg;G′).

Lemma 26 Let M (G) be the Bayesian Network represented by DAG G with vertex set V.
Assume Y and A are single disjoint vertices. Assume irrel(A, Y,G) = ∅. Then

1. If J ≥ 1 then for all j ∈ {1, . . . , J}

EP
[
JP,a,G |Wj , paG (Wj)

]
= EP

[
ba(O;P )|Wj ,paG (Wj)

]
.

2. If K ≥ 1 then for all k ∈ {1, . . . ,K}

EP
[
JP,a,G |Mk,paG (Mk)

]
= EP

[
TP,a,G |Mk,paG (Mk)

]
.

3.

EP
[
JP,a,G |Y, paG (Y )

]
= EP

[
TP,a,G |Y, paG (Y )

]
.

Proof [Proof of Lemma 26] We begin with the proof of part 1). EP

[
Ia(A)Y

πa(paG(A);P ) |Wj ,paG(Wj)
]

= EP

[
Ia(A)EP [Y |A=a,Wj ,paG(Wj),O,paG(A)]

πa(paG(A);P ) |Wj , paG(Wj)

]
= EP

[
Ia(A)EP [Y |A=a,O]

πa(paG(A);P ) |Wj ,paG(Wj)
]

= EP

[
ba(O;P )

EP [Ia(A)|O,Wj ,paG(Wj),paG(A))]
πa(paG(A);P ) |Wj , paG(Wj)

]
= EP

[
ba(O;P ) |Wj ,paG(Wj)

]
,

where the second equality holds because Y ⊥⊥G
[
{Wj} ∪ paG(Wj) ∪ paG(A)

]
\ O | O, A

and the third equality holds because the set
[
{Wj} ∪ paG(Wj) ∪O

]
is comprised of non-

descendants of A and hence, by the Local Markov Property, A ⊥⊥G
[
{Wj} ∪ paG(Wj) ∪O

]
\

paG(A) | paG(A).

Next, we prove parts 2) and 3). Define MK+1 = Y. Then, for all k = 1, ...,K + 1,
EP
[
JP,a,G |Mk,paG (Mk)

]
=
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EP

[
Ia(A)Y EP

[
1

πa(paG(A);P )

∣∣∣A = a,O, Y,Mk, paG (Mk)
]∣∣∣Mk,paG (Mk)

]
=

EP

[
Ia(A)Y EP

[
1

πa(paG(A);P )

∣∣∣A = a,O
]∣∣∣Mk,paG (Mk)

]
= EP

[
TP,a,G |Mk,paG (Mk)

]
where

the second equality follows from (Y,M) ⊥⊥G paG (A) \O | [O ∪ {A}] and the fact that for
any k, paG (Mk) ⊂M∪{A}∪O, and the third equality follows because

EP

[
1

πa(paG(A);P )

∣∣∣A = a,O
]

= 1
πa(Omin;P ) which is a consequence of Lemma 27 in Section

A.4 and the definition of Omin. This concludes the proof of the theorem.

Proof [Proof of Theorem 18] Because irrel(A, Y,G) = ∅, we can partition the node set
V of G as M ∪W∪{A, Y } where the vertices in M intersect at least one causal path
between A and Y , that is, M is the set of mediators in the causal pathways between
A and Y, and W are non-descendants of A. We can therefore sort topologically V as
(W1, . . . ,WJ , A,M1, . . . ,MK , Y ), where the set W = ∅ if J = 0 and the set K = ∅ if K = 0.
By Theorem 14 we have

χ1
P,a,eff (V;G) = EP

[
JP,a,G |Y,paG (Y )

]
− EP

[
JP,a,G |paG (Y )

]
+

K∑
k=1

{
EP
[
JP,a,G |Mk, paG (Mk)

]
− EP

[
JP,a,G |paG (Mk)

]}
+

J∑
j=1

{
EP
[
JP,a,G |Wj , paG (Wj)

]
− EP

[
JP,a,G | paG (Wj)

]}
,

where we make the conventions that
0∑

k=1

· ≡ 0,
0∑
j=1
· ≡ 0. The theorem is proved by invok-

ing Lemma 26 to make the replacements EP
[
TP,a,G |Y,paG (Y )

]
− EP

[
TP,a,G |paG (Y )

]
for

EP
[
JP,a,G |Y, paG (Y )

]
−

EP
[
JP,a,G | paG (Y )

]
, EP

[
TP,a,G |Mk, paG (Mk)

]
− EP

[
TP,a,G |paG (Mk)

]
for

EP
[
JP,a,G |Mk,paG (Mk)

]
− EP

[
JP,a,G |paG (Mk)

]
and EP

[
ba(O;P )|Wj ,paG (Wj)

]
−

EP
[
ba(O;P )| paG (Wj)

]
for EP

[
JP,a,G |Wj , paG (Wj)

]
− EP

[
JP,a,G |paG (Wj)

]
. This con-

cludes the proof of the theorem.

Proof [Proof of Theorem 19]
Assertion (20) is immediate when J = K = 0, since O = ∅, ba(O;P ) = χa(P ;G),

πa(O;P ) = P (A = a), and consequently

ψP,a[O;G] =
Ia(A)

P (A = a)
(Y − χa(P ;G))

which coincides with χ1
P,a,eff .

Henceforth assume J ≥ 1 or K ≥ 1. If J = 0, let χ1,non−desc
P,a,eff (V;G) ≡ 0. For J ≥ 1, let

χ1,non−desc
P,a,eff (V;G) ≡

J∑
j=2

{
EP
[
ba(O;P )|Wj ,paG (Wj)

]
− EP

[
ba(O;P )| paG (Wj)

]}
+ EP

[
ba(O;P )|W1, paG (W1)

]
− χa (P ;G) ,
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where
∑1

j=2 · ≡ 0. Furthermore, let

χ1,desc
P,a,eff (V;G) ≡ EP

[
TP,a,G |Y, paG (Y )

]
− EP

[
TP,a,G |paG (Y )

]
+

K∑
k=1

{
EP
[
TP,a,G |Mk, paG (Mk)

]
− EP

[
TP,a,G |paG (Mk)

]}
,

where
∑0

k=1 · ≡ 0. By Theorem 18, χ1
P,a,eff (V;G) = χ1,non−desc

P,a,eff (V;G) + χ1,desc
P,a,eff (V;G) .

First note that WJ = OT . This holds because, since irrel(A, Y,G) = ∅, there exists a
directed path from WJ to Y that does not intersect A. Let Q be a child of WJ in that path.
Then Q cannot be in the set {W1, . . . ,WJ} because WJ is the last element in the topolocally
ordered sequence W1, . . . ,WJ of non-descendants of A. Then Q ∈M ∪ {Y } which implies
that WJ ∈ O and, since (O1, . . . , OT ) is ordered topologically, we conclude that WJ = OT .

Suppose now that J = 1. Then OT = O1 = W1 and O = {O1}. Consequently,
EP
[
ba(O;P ) | paG(W1),W1

]
= ba(O;P ). Thus

χ1,non−desc
P,a,eff (V;G) = ba(O;P )− χ(P ;G). (49)

Suppose next that J > 1. Define for each j ∈ {1, . . . , J − 1}

Ij ≡
[
paG (Wj) ∪ {Wj}

]
∩ paG (Wj+1) .

Lemma 30 establishes that conditions 1) and 2) of the theorem imply that

O\Ij ⊥⊥G
[[

paG (Wj) ∪ {Wj}
]

∆ paG (Wj+1)
]∣∣ Ij (50)

holds for j ∈ {1, . . . , J − 1}. Then

EP
[
ba (O;P ) | paG (Wj+1)

]
= EP

[
ba (O;P ) |paG (Wj+1) \

[
paG (Wj) ∪ {Wj}

]
, Ij
]

= EP [ba (O;P ) |Ij ]

and

EP
[
ba (O;P ) |paG (Wj) ,Wj

]
= EP

[
ba (O;P ) |

[
paG (Wj) ∪ {Wj}

]
\ paG (Wj+1) , Ij

]
= EP [ba (O;P ) |Ij ] .

Consequently

EP
[
ba (O;P ) | paG (Wj) ,Wj

]
− EP

[
ba (O;P ) |paG (Wj+1)

]
= 0 (51)

for all j ∈ {1, . . . , J − 1}. Thus (49) holds.
Suppose next that K = 0. Then condition 3) and the definition of O imply that

{A} ∪O = paG(Y ).

Consequently,

EP
[
TP,a,G | Y,paG(Y )

]
= TP,a,G and EP

[
TP,a,G | paG(Y )

]
= Ia(A)ba(O;P )π−1

a (O;P ).
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Therefore,

χ1,desc
P,a,eff (V;G) =

Ia(A)

πa(Omin;P )
{Y − ba (O;P )} . (52)

Thus, since we already showed that under conditions 1) and 2), (49) holds when J ≥ 1, we
conclude that under these conditions (20) holds when K = 0 and J ≥ 1.

Suppose next that K ≥ 1. Recall that MK+1 ≡ Y . Conditions 3) and 4) of the theorem
imply that

{A} ∪Omin ⊂ paG (Mk) (53)

holds for k = 1, . . . ,K + 1, and hence

EP
[
TP,a,G |Mk, paG (Mk)

]
=

Ia(A)

πa(Omin;P )
EP
[
Y |Mk,paG (Mk)

]
. (54)

In particular, for k = K + 1, (54) implies

EP
[
TP,a,G |Y,paG (Y )

]
=

Ia(A)Y

πa(Omin;P )
. (55)

In Lemma 31 we show that conditions 3) and 4) of the theorem imply that

Y ⊥⊥G
[
Mk−1, paG (Mk−1)

]
\paG (Mk) |paG (Mk) , (56)

for k = 2, . . . ,K + 1. Then for k = 2, . . . ,K + 1 we have

EP
[
TP,a,G |Mk−1, paG (Mk−1)

]
=

Ia(A)

πa(Omin;P )
EP
[
Y |Mk−1,paG (Mk−1)

]
=

Ia(A)

πa(Omin;P )
EP
[
Y |paG (Mk) ,

[
Mk−1, paG (Mk−1)

]
\paG (Mk)

]
=

Ia(A)

πa(Omin;P )
EP
[
Y |paG (Mk)

]
= EP

[
TP,a,G |paG (Mk)

]
,

where the first equality follows from (54), the second from condition 4) , the third from (56)
and the fourth from (53). We therefore arrive at the conclusion that conditions 3) and 4)
imply that

EP
[
TP,a,G |Mk−1, paG (Mk−1)

]
− EP

[
TP,a,G |paG (Mk)

]
= 0 (57)

for all k = 2, . . . ,K + 1 for all P ∈M(G). We thus obtain that

χdescP,a,eff = EP
[
TP,a,G |Y,paG (Y )

]
− EP

[
TP,a,G |paG (M1)

]
. (58)

Next, we note that conditions 3) and 4) imply that paG(M1) = {A} ∪O. This implies that

EP
[
TP,a,G |paG (M1)

]
=
Ia(A)ba(O;P )

πa(O;P )
.

This together with (55) and (58) implies that

χ1,desc
P,a,eff =

Ia(A)

πa(O;P )
(Y − ba(O;P )). (59)
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Since we have already shown that under conditions 1) and 2) of the theorem equation
(49) holds for J ≥ 1, then adding χnon−descP,a,eff and χdescP,a,eff we conclude that under conditions
1)-4) of the theorem, (20) holds when J ≥ 1 and K ≥ 1.

Finally, when K ≥ 1 and J = 0, the right hand side of (59) reduces to

Ia(A)

P (A = a)
(Y − χa(P ;G)),

because O = ∅. Thus

χ1
P,a,eff (V;G) = 0 + χ1,desc

P,a,eff (V;G) =
Ia(A)

P (A = a)
(Y − χa(P ;G)) = ψP,a(O;G).

This concludes the proof of the sufficiency part of the theorem.
Turn now to the proof of the necessity part of the theorem. First note that χ1,non−desc

P,a,eff (V;G)

depends on V only through W, so in an abuse of notation we will write χ1,non−desc
P,a,eff (W;G).

Likewise χ1,desc
P,a,eff (V;G) depends on V only through {A, Y } ∪ M ∪ O, hence we write

χ1,desc
P,a,eff (A,O,M, Y ;G)

Suppose first that condition 3) fails. By part 1 of Lemma 34 then there exists P ∗ ∈M(G)

such that the term Ia(A)
πa(Omin;P ∗)Y does not appear in the expression for χ1,desc

P ∗,a,eff (A,O,M, Y ;G).

Since such term appears in the expression for ψP ∗,a (O;G) this shows that χ1
P ∗,a,eff (V;G) 6=

ψP ∗,a (O;G) .
Now suppose that condition 3) holds but condition 4) fails because

paG (MK+1) 6⊂ paG (MK) ∪ {MK} .

By part 2 of Lemma 34 there exists P ∗ ∈M(G) such that χ1,desc
P ∗,a,eff (A,O,M, Y ;G) depends

on MK . Then χ1
P ∗,a,eff (V;G) = χ1,non−desc

P ∗,a,eff (W;G) + χ1,desc
P ∗,a,eff (A,O,M, Y ;G) cannot be

equal to ψP ∗,a (O;G), since ψP ∗,a (O;G) is not a function of MK .
Next assume that condition 3) holds but condition 4) fails because

paG (Mk∗) 6⊂ paG (Mk∗−1) ∪ {Mk∗−1}

for some k∗ ∈ {2, . . . ,K} but

paG (Mk) ⊂ paG (Mk−1) ∪ {Mk−1}

holds for all k ∈ {k∗+1, . . . ,K+1}. Then by part 3) of Lemma 34, there exists P ∗ ∈M(G)
such that

EP ∗
[
TP,a,G |Mk∗−1,paG(Mk∗−1)

]
− EP ∗

[
TP,a,G | paG(Mk∗)

]
is a non-constant function of Mk∗−1. Furthermore by Lemma 31, (53) and (56) hold for all
k ∈ {k∗ + 1, . . . ,K + 1}. Then, arguing as above,

EP ∗
[
TP,a,G |Mk−1, paG(Mk−1)

]
− EP ∗

[
TP,a,G | paG(Mk)

]
= 0

for all k ∈ {k∗ + 1, . . . ,K + 1}. Also, by part 1) of Lemma 30

EP
[
TP,a,G |Y, paG (Y )

]
=

Ia(A)Y

πa(Omin;P )
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Then, with the convention that
∑k−1

j=2 (·) ≡ 0 if k = 2, we have

χ1,desc
P ∗,a,eff (A,O,M, Y ;G) =

EP ∗
[
TP ∗,G |Mk∗−1, paG (Mk∗−1)

]
− EP ∗

[
TP ∗,a,G |paG (Mk∗)

]
+

Ia(A)Y

πa(Omin;P ∗)
+

k∗−1∑
j=2

{
EP ∗

[
TP ∗,a,G |Mj−1, paG (Mj−1)

]
− EP ∗

[
TP ∗,a,G |paG (Mj)

]}
−

EP ∗
[
TP ∗,a,G |paG (M1)

]
.

Now, by the topological order of (M1, . . . ,MK+1) , Mk∗−1 does not belong to paG (Mj)
for any j ≤ k∗ − 1 and consequently none of the terms EP ∗

[
TP ∗,G |Mj−1, paG (Mj−1)

]
−

EP ∗
[
TP ∗,G |paG (Mj)

]
for j < k∗ − 1 in the last display depend on Mk∗−1. This then

shows that χ1,desc
P ∗,a,eff (A,O,M, Y ;G) is a non-constant function of Mk∗−1 thus implying

that ψP ∗,a [O (A, Y ;G) ;G] 6= χ1
P ∗,a,eff (V;G) since ψP ∗,a [O (A, Y ;G) ;G] does not depend

on Mk∗−1.
Assume now that conditions 3) and 4) hold but condition 1) fails. This can only occur

if J > 1. We have already shown that OT = WJ . Then, since WJ appears only in the term
EP
[
ba (O;P ) |WJ , paG (WJ)

]
of χ1,non−desc

P,a,eff (W;G), we conclude that χ1,non−desc
P,a,eff (W;G) =

g1

[
WJ ,paG (WJ)

]
+g2 (W\WJ) for some functions g1 and g2. This implies that χ1,non−desc

P,a,eff (W;G)
cannot be equal to, for instance, b∗ (O) + g2 (W\OT ) for b∗ (O) = O1 × · · · × OT . By
Lemma 32 we can find P ∗ ∈ M(G) such that ba (O;P ∗) = b∗ (O). For this P ∗ ∈ M(G),

χ1,non−desc
P ∗,a,eff (W;G) cannot be equal to ba(O;P ∗) − χa(P ∗;G). Then, since we have already

shown that when conditions 3) and 4) of the theorem are satisfied it holds that

χ1,desc
P ∗,a,eff (A,O,M, Y ;G) =

Ia(A)

πa(O;P ∗)
(Y − ba(O;P ∗)),

we conclude that

χ1
P ∗,a,eff (V;G) =

Ia(A)

πa(O;P ∗)
(Y − ba(O;P ∗)) + χ1,non−desc

P ∗,a,eff (W;G) 6= ψP ∗,a (O;G) .

Assume now that conditions 1), 3) and 4) hold, but condition 2) fails because there
exists j∗ ∈ {2, . . . , J − 1}, where J > 1, such that paG(Wj∗+1) \ {Wj∗} 6⊂ paG(Wj∗). Then,
by part 4) of Lemma 30 we have that

O\Ij∗ 6⊥⊥G [paG (Wj∗) ∪Wj∗ ]4 paG (Wj∗+1) |Ij∗ .

By Lemma 33, there exists P ∗ ∈M such that χ1,non−desc
P ∗,a,eff (W;G) = ba(O;P ∗)−χa(P ∗;G) +

g(W), where g(W) is non-constant function of Wj∗ . Then,

χ1
P ∗,a,eff (V;G) = χ1,non−desc

P ∗,a,eff (W;G) + χ1,desc
P ∗,a,eff (A,O,M, Y ;G)

= ba(O;P ∗)− χa(P ∗;G) + g(W) +
Ia(A)

πa(Omin;P ∗)
(Y − ba(O;P ∗))

cannot be equal to ψP ∗,a (O;G) = ba(O;P ∗)− χa(P ∗;G) + Ia(A)
πa(Omin;P ∗)(Y − ba(O;P ∗)).

This finishes the proof of the theorem.
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A.3 Proof of soundness of Algorithm 2 and examples

Proof that Algorithm 2 is sound for a simplified formula for χ1
P,a,eff

Define χ1,non−desc
P,a,eff (V;G) and χ1,desc

P,a,eff (V;G) as in the proof of Theorem 19.

The algorithm starts by searching for possible deletions and/or simplifications of the

terms in the expression for χ1,non−desc
P,a,eff when J ≥ 1. If J = 1, we have have already shown

in the proof of Theorem 19 that χ1,non−desc
P,a,eff (V;G) = ba(O;P ) − χa(P ;G). As in the proof

of Theorem 19, for J > 1 define for each j ∈ {1, . . . , J − 1}

Ij ≡
[
paG (Wj) ∪ {Wj}

]
∩ paG (Wj+1) .

If

O\Ij ⊥⊥G
[[

paG (Wj) ∪ {Wj}
]

∆ paG (Wj+1)
]∣∣ Ij (60)

then

EP
[
ba (O;P ) | paG (Wj+1)

]
= EP

[
ba (O;P ) | paG (Wj+1) \

[
paG (Wj) ∪ {Wj}

]
, Ij
]

= EP [ba (O;P ) |Ij ]

and

EP
[
ba (O;P ) |paG (Wj) ,Wj

]
= EP

[
ba (O;P ) |

[
paG (Wj) ∪ {Wj}

]
\ paG (Wj+1) , Ij

]
= EP [ba (O;P ) |Ij ] .

Thus (60) is a graphical criterion for checking if the difference

EP
[
ba (O;P ) |paG (Wj) ,Wj

]
− EP

[
ba (O;P ) | paG (Wj+1)

]
(61)

cancel out from the expression for χ1
P,a,eff (V;G) for all P ∈M (G).

There is one important instance in which the graphical criterion (60) can be significantly
simplified. Specifically, recall that in the proof of Theorem 19 we showedWJ = OT . Suppose
now that

O\OT ⊂ paG (WJ) . (62)

Lemma 30 establishes that, under (62) , the criterion (60) holds for j = J − 1 if and only if
paG (Wj) \ {Wj−1} ⊂ paG (Wj−1) . Furthermore, the lemma also establishes that if for some
1 < j∗ ≤ J − 1

paG (Wj+1) ⊂ paG (Wj) ∪ {Wj} (63)

is valid for j ∈ {j∗, . . . , J − 1} , then (60) holds for j ∈ {j∗, . . . , J − 1}, and in addition,
(60) and (63) are equivalent for j = j∗ − 1. Note that whereas (60) requires checking
d-separations, (63) requires simply checking the inclusion of sets.

Aside from the implications for term cancellations, note that when (62) holds

EP
[
ba (O;P ) |WJ ,paG (WJ)

]
= ba (O;P ) .

Steps 9-26 of Algorithm 2 implement the preceding checks. Specifically, step 9 inquires
if both J > 1 and (62) hold. If J > 1 but (62) does not hold, then the algorithm goes on to
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inquire for each j ∈ {1, . . . , J − 1}, if (60) holds (see Algorithm 4) and it stores the formula

χ1,non−desc
P,a,eff (V;G) = EP

[
ba (O;P ) |WJ ,paG (WJ)

]
− χa (P ;G)

+
∑

j∈{1,...,J−1}:
(60) does not hold

{
EP
[
ba (O;P ) | paG (Wj) ,Wj

]
− EP

[
ba (O;P ) |paG (Wj+1)

]}
.

If both J > 1 and (62) hold, then iteratively in reverse order from j = J − 1, the algorithm
inquires if (63) holds until the first j, if any, such that the inclusion (63) fails. If such j, say
j = j∗ exists, j∗ is necessarily greater than 1 because of the topological order of W and the
fact that irrel(A, Y,G) = ∅. Then the algorithm inquires for each j ∈ {1, . . . , j∗ − 1} if (60)
holds and it stores the formula

χ1,non−desc
P,a,eff (V;G) = ba (O;P )− χa (P ;G) +

EP
[
ba (O;P ) | paG (Wj∗) ,Wj∗

]
− EP

[
ba (O;P ) |paG (Wj∗+1)

]
+∑

j∈{1,2,...,j∗−1}:
(60) does not hold

{
EP
[
ba (O;P ) | paG (Wj) ,Wj

]
− EP

[
ba (O;P ) |paG (Wj+1)

]}
. (64)

If (63) holds for all j ∈ {1, . . . , J − 1} for J > 1 or if J = 1 then the algorithm stores the
formula

χ1,non−desc
P,a,eff (V;G) = ba (O;P )− χa (P ;G) . (65)

Otherwise if J = 0 it stores χ1,non−desc
P,a,eff (V;G) = 0.

Importantly the expression (64) for χ1,non−desc
P,a,eff (V;G) does not depend on the variables

{Wj∗+1, . . . ,WJ} \ O. Since the expression for χ1,desc
P,a,eff (V;G) does not depend on these

variables then we conclude that {Wj∗+1, . . . ,WJ} \ O do not enter into the formula for
χ1
P,a,eff (V;G) and consequently do not provide information about the parameter χa(P ;G).

We emphasize that this is important from a practical standpoint because if the algorithm
returns expression (64), then the investigator does not need to measure these variables. A
similar comment applies if the algorithm returns expression (65).

Having checked for possible simplifications of the expression of χ1,non−desc
P,a,eff , Algorithm 2

goes on to check for possible simplifications of χ1,desc
P,a,eff (V;G). Recall that MK+1 ≡ Y .

Suppose first that K = 0. In the proof of Theorem 19 we showed that

χ1,desc
P,a,eff (V;G) =

Ia(A)

πa(Omin;P )
{Y − ba (O;P )} .

Suppose next that K ≥ 1. If for some k ∈ {2, . . . ,K + 1} , it holds that

{A} ∪Omin ⊂ paG (Mk) (66)

then

EP
[
TP,a,G |Mk, paG (Mk)

]
=

Ia(A)

πa(Omin;P )
EP
[
Y |Mk,paG (Mk)

]
. (67)
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Note that for k = K + 1, (67) is equal to

EP
[
TP,a,G |Y,paG (Y )

]
=

Ia(A)Y

πa(Omin;P )
. (68)

Now, suppose that for some k ∈ {2, . . . ,K + 1} , in addition to (66), it holds that

paG (Mk) ⊂ paG (Mk−1) ∪ {Mk−1} (69)

and
Y ⊥⊥G

[
Mk−1, paG (Mk−1)

]
\paG (Mk) |paG (Mk) . (70)

Then, for such k, we have already shown in the proof of Theorem 19 that

EP
[
TP,a,G |Mk−1, paG (Mk−1)

]
− EP

[
TP,a,G |paG (Mk)

]
vanishes from the expression for χ1,desc

P,a,eff (V;G) for all P ∈M(G).
Aside from the examination of term cancellations, we note that if

paG (M1) = {A} ∪O (71)

holds, then EP
[
TP,a,G |paG (M1)

]
= Ia(A)[πa(Omin;P )]−1ba (O;P ) .

Steps 27-50 of Algorithm 2 implement the preceding checks. Specifically, step 27 inquires
if both K ≥ 1 and (66) hold for k = K + 1. If K ≥ 1 but (66) does not hold for k = K + 1,
the algorithm goes on to inquire for each k ∈ {2, . . . ,K} if (66) , (69) and (70) hold and
subsequently if (71) holds. It then stores the formula

χ1,desc
P,a,eff (V;G) = EP

[
TP,a,G |Y,paG (Y )

]
− EP

[
TP,a,G |paG (Y )

]
+

EP
[
TP,a,G | paG (MK) ,MK

]
− χ1,M1

P,a,eff (V;G) +∑
k∈offenders desc(K)

{
EP
[
TP,a,G | paG (Mk−1) ,Mk−1

]
− EP

[
TP,a,G |paG (Mk)

]}
where

χ1,M1

P,a,eff (V;G) ≡


Ia(A)

πa(Omin;P )
ba (O;P ) if (71) holds

EP
[
TP,a,G |paG (M1)

]
if (71) does not hold

and for any h ∈ {2, . . . ,K}

offenders desc(h) ≡ {k ∈ {2, . . . , h} : at least one of (66), (69) or (70) does not hold} .

See Algorithm 3. If K ≥ 1 and (66) holds for k = K + 1 then iteratively in reverse order
from k = K + 1 the algorithm inquires if (69) holds until the first k ≥ 2, if any, in which
the condition fails. If such k, say k = k∗ exists and k∗ > 2, then it inquires for each
k ∈ {2, . . . , k∗ − 1} if (66) , (69) and (70) hold, and subsequently if (71) holds. It then
stores the formula

χ1,desc
P,a,eff (V;G) =

Ia(A)Y

πa(Omin;P )
− χ1,M1

P,a,eff (V;G) +

EP
[
TP,a,G | paG (Mk∗−1) ,Mk∗−1

]
− EP

[
TP,a,G | paG (Mk∗)

]
+∑

k∈offenders desc(k∗−1)

{
EP
[
TP,a,G | paG (Mk−1) ,Mk−1

]
− EP

[
TP,a,G |paG (Mk)

]}
.(72)
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Notice that in a similar fashion as for the expression (64) for χ1,non−desc
P,a,eff (V;G), the ex-

pression (72) does not depend on the variables Mk∗ , . . . ,MK . Since the expression for

χ1,non−desc
P,a,eff does not depend on these variables, we conclude that Mk∗ , . . . ,MK do not enter

into the formula for χ1
P,a,eff (V;G) and consequently do not provide information about the

parameter χa(P ;G).
If k∗ = 2, then it stores

χ1,desc
P,a,eff (V;G) =

Ia(A)Y

πa(Omin;P )
− χ1,M1

P,a,eff (V;G)

+ EP
[
TP,a,G | paG (Mk∗−1) ,Mk∗−1

]
− EP

[
TP,a,G |paG (Mk∗)

]
. (73)

If no such k∗ exists condition (71) automatically holds. Then the algorithm stores the
formula

χ1,desc
P,a,eff (V;G) =

Ia(A)

πa(Omin;P )
{Y − ba (O;P )} . (74)

If K = 0 then the algorithm also stores the formula in (74). This concludes the proof.

Example 11 Consider the DAG in Figure 10 c). In this DAG, O = Omin = {OT } = {W5}
with T = 1. Therefore condition (62) holds trivially. However, condition (63) with j = 4
fails, because W2 is a parent of W5 but not of W4. The algorithm now goes on to check
condition (60) for each j = 1, 2, 3, 4. The following table lists the results.

j Ij
[
paG(Wj) ∪ {Wj} 4 paG(Wj+1)

]
O \ Ij (60)

1 W1 ∅ W5 holds
2 W2 W1 W5 holds
3 W3 W2 W5 fails
4 W4 {W2,W3} W5 fails

The algorithm then stores the formula

χ1,non−desc
P,a,eff (V;G) = ba(W5;P )− χa(P ;G)

+ EP
[
ba(W5;P ) |W4,paG(W4)

]
− EP

[
ba(W5;P ) | paG(W5)

]
+ EP

[
ba(W5;P ) |W3,paG(W3)

]
− EP [ba(W5;P ) |W3]

= ba(W5;P )− χa(P ;G) + EP [ba(O;P ) |W3,W4]− EP [ba(W5;P ) |W2,W4]

+ EP [ba(W5;P ) |W2,W3]− EP [ba(W5;P ) |W3] .

This example illustrates the following interesting points.
For j = 2 the d-separation (60) holds and consequently the term (61) vanishes from

the expression for χ1,non−desc
P,a,eff . However, W2 appears in the expression for χ1,non−desc

P,a,eff and

therefore it appears also in the expression for the efficient influence function χ1
P,a,eff . Thus,

W2 provides information about χa(P ;G) even though the term (61) vanishes for j = 2. In
contrast, for j = 1 term (61) vanishes and W1 does not enter into the expression for

χ1,non−desc
P,a,eff . This illustrates the point that once condition (63) fails, the check of the d-

separation condition (60) is useful for detecting term cancellations but not for deciding if
the corresponding node is informative about the parameter χa(P ;G).
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Another interesting point illustrated by this example is that the composition of the set
paG(A) does not affect the expression for χ1,non−desc

P,a,eff . That is, all or a subset of the orange

edges could have been absent in the DAG and nevertheless the expression for χ1,non−desc
P,a,eff

would have remained the same. However, which elements of W are members of the set
paG(A) does affect the composition of the minimal optimal adjustment set Omin. For in-
stance in the DAG of Figure 10 c), Omin = O = {W5}. Instead, if all the orange arrows
had been absent, then Omin would have been empty.

In this DAG, M = ∅ and hence K = 0. The algorithm then stores the formula in (74)
and finally returns

χ1
P,a,eff (V;G) = ba(W5;P )− χa(P ;G) + EP [ba(W5;P ) |W3,W4]− EP [ba(W5;P ) |W2,W4]

+ EP [ba(W5;P ) |W2,W3]− EP [ba(W5;P ) |W3] +
Ia(A)

πa(W5;P )
{Y − ba (W5;P )} .

A M1 M2 M3 Y

O

Figure 13: A DAG where the NP-O estimator is inefficient.

Example 12 Consider the DAG in Figure 13. In this case O = Omin = {O} ≡ {W1},
J = T = 1, M = {M1,M2,M3} and K = 3. Because J = 1 the algorithm stores the formula
(65). In addition, it is easy to check that, conditions (66), (69) and (70) hold for k = 2,
hence

EP
[
TP,a,G |M1,paG(M1)

]
− EP

[
TP,a,G | paG(M2)

]
(75)

vanishes for all P ∈ M(G). On the other hand, condition (66) fails for k = 4, condition
(70) fails for k = 3 and {A,O} = paG(M1). Hence the algorithm stores

χ1,non−desc
P,a,eff (V;G) = EP

[
TP,a,G | Y,paG(Y )

]
− EP

[
TP,a,G | paG(Y )

]
+ EP

[
TP,a,G |M3,paG(M3)

]
− EP

[
TP,a,G | paG(M3)

]
+ EP

[
TP,a,G |M2,paG(M2)

]
− Ia(A)ba(O;P )

πa(O;P )
.

Notice that even though (75) vanishes, χ1,non−desc
P,a,eff (V;G) depends on M1 because

EP
[
TP,a,G | Y,paG(Y )

]
= Y EP

[
Ia(A)ba(O;P )

πa(O;P )
|M1,M3

]
.
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A.4 Auxiliary results

Lemma 27 If A ⊥⊥G Z1\Z2 | Z2 then EP

[
1

πa(Z2;P )

∣∣∣A = a,Z1

]
= 1

πa(Z1;P ) for all P ∈
M (G) .

Proof [Proof of Lemma 27]

EP

[
1

πa(Z2;P )

∣∣∣∣A = a,Z1

]
πa (Z1;P ) ≡ EP

[
1

πa (Z2;P )

∣∣∣∣A = a,Z1

]
P (A = a|Z1)

= EP

[
Ia(A)

πa (Z2;P )

∣∣∣∣Z1

]
= EP

[
EP (Ia(A)|Z2,Z1)

πa (Z2;P )

∣∣∣∣Z1

]
= 1

where the last equality follows from the fact that, A ⊥⊥ Z1\Z2 | Z2 [P ] implies
EP (Ia(A)|Z2,Z1) = EP (Ia(A)|Z2) = πa (Z2;P ) .

Lemma 28 If Z is a minimal adjustment set relative to (A, Y ) in DAG G, then for all W
in Z there exists a path δ between W and A that is open given Z\W .

Proof [Proof of Lemma 28] Since Z is a minimal adjustment set, we know (see Shpitser
et al. (2010)) that there exists a non-causal γ path between A and Y that is open when
we condition on Z\W but is blocked when we condition on Z. The path γ must intersect
W because if it did not, since the path is open when we condition on Z\W it would also
be open when we condition on Z. Let δ be the subpath of γ that goes from A to the first
ocurrence of W in γ. δ is open given Z\W , since γ is open given Z\W .

Lemma 29 Let V ∈ dir (A, Y,G) and W ∈ indir (A, Y,G). Then V ⊥⊥G W | A,F (A, Y,G) .

Proof [Proof of Lemma 29] Let F ≡ F (A, Y,G). We will show that no path between V and
W can be open given A,F. We analyze separately paths that (i) are directed, (ii) are not
directed and have exactly one fork and (iii) are not directed and have at least one collider.
We use the notation T ⇒ S to represent a directed path between T and S.

(i) Directed

Assume that there is a directed path between V and W and call it δ. Assume first that
δ leaves V through the front-door. If V = Y , since W is an ancestor of A, this implies that
Y is an ancestor of A, which is a contradiction. If V 6= Y , since V has a directed path to
Y that does not intersect A, we deduce that V ∈ F, a contradiction. Assume now that δ
leaves V through the backdoor. This implies that there is a directed path betweeen W and
Y that does not intersect A, which is a contradiction.

Hence, there are no directed paths between V and W that are open given (A,F).

(ii) Not directed, exactly one fork

Assume there is a path between V and W that has at exactly one fork, and consequently
no colliders, and is open given (A,F). Call the path δ and call the fork, H. Recall that W
is an ancestor of A. Since V is either equal to Y or has a directed path to Y that does not
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intersect A, the path V ⇔ H ⇒W ⇒ A shows that H ∈ F and hence δ is blocked by F, a
contradiction.

(iii) Not directed, with at least one collider

Assume there is a path between V and W that has at least one collider and is open given
(A,F). Call the path δ. All colliders in δ must be either in (A,F) or have a descendant in
(A,F). Hence, all colliders are ancestors of A.

Assume first that δ leaves V through the frontdoor. Consider the collider in δ that is
closest to V and call it C. If V = Y , then the directed path Y ⇒ C ⇒ A shows that A is
a descendant of Y , a contradiction. If V 6= Y , since V has a directed path to Y that does
not intersect A, the path Y ⇔ V ⇒ C ⇒ A shows that V ∈ F, which is a contradiction.

Assume now that δ leaves V throught the backdoor. Consider the collider in δ that
is closest to V and call it D. Because in the subpath of δ between V and D the edge
with endpoint V points into V and the edge with endpoint D points to D then in that
subpath there has to be a fork, say K. Such K belongs to F, because K has directed
path to D and D is an ancestor of A and also K has a directed path to V that does not
intersect A and V is either equal to Y or has directed path to Y that does not intersect A.
Hence δ is blocked by K, which is a contradiction. This concludes the proof of the lemma.

Lemma 30 Assume that G is a DAG and A and Y are two distinct vertices in G such that
A ∈ anG (Y ). Let W ≡ decG (A) and O ≡ O (A, Y,G). Assume that irrel(A, Y,G) = ∅. Write
W ≡ (W1, . . . ,WJ), where we assume J ≥ 1 and write O ≡ (O1, . . . , OT ) in topological order
relative to G. Assume O\OT⊂paG(OT ). For j ∈ {1, . . . , J−1} let Ij ≡

[
paG (Wj) ∪ {Wj}

]
∩

paG (Wj+1) . Then,

1. WJ = OT and, if J ≥ 2,WJ−1 ∈ paG (WJ) .

2. Suppose J ≥ 2. If for some 1 < j∗ ≤ J − 1 it holds that for j ∈ {j∗, . . . , J − 1} ,

paG (Wj+1) \ {Wj} ⊂ paG (Wj) , (76)

then

Wj ∈ paG (Wj+1) for j ∈ {j∗ − 1, j∗, . . . , J − 1} (77)

and

O\Ij ⊥⊥G
[
paG (Wj) ∪Wj

]
4 paG (Wj+1) |Ij for j ∈ {j∗, . . . , J − 1} (78)

3. Suppose J ≥ 2 and that for some j∗ ∈ {2, . . . , J − 1} it holds that

paG (Wj∗+1) \ {Wj∗} 6⊂ paG (Wj∗) (79)

and that (76) holds for all j ∈ {j∗ + 1, . . . , J − 1} if j∗ < J − 1. Then,

O\Ij∗ 6⊥⊥G
[
paG (Wj∗) ∪Wj∗

]
4 paG (Wj∗+1) |Ij∗ . (80)
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Proof To prove 1), note that, since irrel(A, Y,G) = ∅, there exists a directed path between
WJ and Y that does not intersect A. LetW be a child of WJ in that path. ThenW cannot be
in the set {W1, . . . ,WJ} because WJ is the last element in the topolocally ordered sequence
W1, . . . ,WJ of non-descendants of A. Then W ∈M∪{Y } which implies that WJ ∈ O and,
since (O1, . . . , OT ) is ordered topologically, we conclude that WJ = OT . Next, suppose J ≥ 2
and that WJ−1 6∈paG (WJ) . Then, WJ−1 /∈ O because by assumption, O\OT ⊂ paG (WJ) .
This implies that WJ−1 is either an ancestor of Y such that all the directed paths between
WJ−1 and Y intersect A, or WJ−1 is not an ancestor of Y. Both possibilities are impossible
because they contradict that irrel (A, Y,G) = ∅.

Turn now to the proof of part 2). We will first show (77) by reverse induction on
j∗. Suppose j∗ = J − 1. We want to show that WJ−2 ∈ paG (WJ−1) . If WJ−2 ∈ O then
by O\OT⊂paG(OT ) and part 1) of this lemma, WJ−2 ∈paG (WJ) , which then implies by
(76) applied to j = J − 1 that WJ−2 ∈paG (WJ−1) . Suppose next that WJ−2 6∈ O and
WJ−2 6∈ paG (WJ−1), then by (76) , WJ−2 6∈ paG (WJ) . Consequently, WJ−2 is either an
ancestor of Y such that all the directed paths between WJ−2 and Y intersect A or WJ−2

is not an ancestor of Y. Both possibilities are impossible because they contradict that
irrel (A, Y,G) = ∅. This shows that (77) is true for j∗ = J − 1. Suppose now that the result
holds for j∗ = m, . . . , J − 1, for some 2 < m ≤ J − 1. We will show that it also holds for
j∗ = m−1. Henceforth suppose that (76) holds for j ∈ {m− 1, . . . , J − 1} . Then, (76) holds
for j ∈ {m, . . . , J − 1} and consequently, by the inductive hypothesis, (77) holds for j ∈
{m− 1,m, . . . , J − 1} . It remains to show thatWm−2 ∈ paG (Wm−1) . Suppose thatWm−2 ∈
O, then by O\OT⊂paG(OT ) and part 1), Wm−2 ∈paG (WJ) , which then implies, by (76)
being valid for all j ∈ {m− 1, . . . , J − 1} , that Wm−2 ∈ paG (WJ) \ {Wm−1, . . . ,WJ−1} ⊂
paG (WJ−1) \ {Wm−1, . . . ,WJ−2} ⊂ · · · ⊂ paG (Wm−1) . On the other hand, if Wm−2 /∈ O,
since irrel(A, Y,G) = ∅, necessarily Wm−2 ∈ paG(Wj) for some j > m − 2. Arguing as
before, this implies that Wm−2 ∈ paG (Wm−1).

Next we prove (78). Suppose that for j ∈ {j∗, . . . , J − 1} , (76) holds. Then, for
j ∈ {j∗, . . . , J − 1} we have Ij =

[
paG (Wj) ∪ {Wj}

]
∩
[[

paG (Wj+1) \ {Wj}
]
∪ {Wj}

]
=[[

paG (Wj+1) \ {Wj}
]
∪Wj

]
=paG (Wj+1) , where the first and third equalities follow by (77)

and the second follows by (76). On the other hand, because by assumption O\OT ⊂paG (WJ) ,
then O\ (Wj+1, . . . ,WJ) ⊂paG (Wj+1) . Consequently, (78) holds if and only if

O∩ (Wj+1, . . . ,WJ) ⊥⊥G paG (Wj) \paG (Wj+1) |paG (Wj+1) . (81)

We will show by contradiction that (81) holds, and consequently that (78) holds, for j ∈
{j∗, j∗ + 1, . . . , J − 1} . Suppose that (81) were not true for some j ∈ {j∗, j∗ + 1, . . . , J − 1} .
Then there would exist u ≥ j + 1 and l < j such that Wu 6⊥⊥G Wl|paG (Wj+1) with Wu ∈ O
and Wl ∈ paG (Wj) \paG (Wj+1) . Because, by (77) , Wj ∈paG (Wj+1) , the path between
Wl and Wu that would be open given paG (Wj+1) would necessarily have to include an
edge Wl∗ → Wu∗ for some l∗ < j and u∗ ≥ j + 1. If u∗ = j + 1, then this implies that
Wl∗ ∈paG (Wj+1) which is impossible because it contradicts Wu 6⊥⊥G Wl|paG (Wj+1). If u∗ >
j+1, then by Wl∗ ∈paG (Wu∗) we have Wl∗ ∈paG (Wu∗) \ {Wj+1, . . . ,Wu∗−1} because l∗ < j.
However, by (76) ,paG (Wu∗) \ {Wj+1, . . . ,Wu∗−1} ⊂ paG (Wu∗−1) \ {Wj+1, . . . ,Wu∗−2} ⊂
· · · ⊂ paG (Wj+1) which then implies that Wl∗ ∈paG (Wj+1) again contradicting Wu 6⊥⊥G
Wl|paG (Wj+1). This proves (78).
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Turn now to the proof of part 4). Suppose that paG (Wj∗+1) \ {Wj∗} 6⊂paG (Wj∗)
and that (76) holds for all j ∈ {j∗ + 1, . . . , J − 1} if j∗ < J − 1. Then there exists
l < j∗ such that Wl ∈paG (Wj∗+1) \paG (Wj∗) . By (77), Wj ∈ paG (Wj+1) for all j =
j∗, j∗ + 1, . . . , J − 1. Consequently, the path Wl → Wj∗+1 → Wj∗+2 → ◦ · · · ◦ → WJ is
open in G when conditioning on Ij∗ . By part 1), WJ = OT ∈ O∩ (Wj+1, . . . ,WJ) , and
Wl ∈

[
paG (Wj∗) ∪Wj∗

]
4 paG (Wj∗+1) , thus the aforementioned open path shows that

(80) holds. This concludes the proof of (79).

Lemma 31 Let G be a DAG with vertex set V and let A and Y be two distinct vertices in
V. Suppose that irrel (A, Y ;G) = ∅. Suppose M≡deG (A) \ {A, Y } 6= ∅ and let (M1, . . . ,MK)
be the elements of M sorted topologically. Let M0 ≡ A and MK+1≡Y.

Suppose that for some k∗ ≥ 2, the following inclussion holds for k ∈ {k∗, . . . ,K + 1}

paG (Mk) ⊂ paG (Mk−1) ∪ {Mk−1} . (82)

Then, MK ∈ paG (Y ) and for all k ∈ {k∗, . . . ,K + 1}
(i) Mk−2 ∈ pa (Mk−1) and
(ii) Y ⊥⊥G

[
Mk−1,paG (Mk−1)

]
\paG (Mk) |paG (Mk) .

Proof
That MK ∈paG (Y ) follows from irrel(A, Y ;G) = ∅ and the fact that MK is last in the

topological order of M.
To show (i), assume that for some k∗ ≥ 2, (82) holds for all k ∈ {k∗, . . . ,K + 1} . Let

k ∈ {k∗, . . . ,K + 1} . If k = k∗ = 2, then Mk−2 = A ∈paG (M1) for otherwise M1 would
not be a descendant of A. Next assume k > 2. The assumption that irrel(A, Y ;G) = ∅
and the topological order of (M1, . . . ,MK) implies that Mk−2 ∈paG (Mr) for some r ∈
{k − 1, k, . . . ,K + 1} . If r = k − 1 we are done. If r ≥ k, then r ∈ {k∗, . . . ,K + 1} and
consequently (82) implies that paG (Mr) ⊂ paG (Mr−1) ∪ {Mr−1} ⊂ · · · ⊂ paG (Mk−1) ∪
{Mr−1,Mr−2, . . . ,Mk−1} Consequently, Mk−2 ∈paG (Mk−1)∪{Mr−1,Mr−2, . . . ,Mk−1} and
since Mk−2 6∈ {Mr−1,Mr−2, . . . ,Mk−1} then Mk−2 ∈paG (Mk−1) .

To show (ii), assume that for some k∗ ≥ 2, (82) holds for all k ∈ {k∗, . . . ,K + 1} . Let
k ∈ {k∗, . . . ,K + 1} . Assumption (82) implies that

paG (Y ) ⊂ paG (MK) ∪ {MK} ⊂ paG (MK−1) ∪ {MK ,MK−1} ⊂ · · · (83)

⊂ paG (Mk) ∪ {MK ,MK−1, . . . ,Mk} ⊂ paG (Mk−1) ∪ {MK ,MK−1, . . . ,Mk−1}

By part (i) we have Mk−1 ∈paG (Mk) . Then, assertion (ii) is the same as Y ⊥⊥G paG (Mk−1) \
paG (Mk) |paG (Mk) Suppose the latter d-separation is false. Let Mj ∈paG (Mk−1) \paG (Mk)
such that Y 6⊥⊥G Mj |paG (Mk) . Because Y has no descendants in the DAG, then any open
path between Mj and Y must end with an edge pointing into Y. If such path is open when
we condition on paG (Mk) =

[
paG (Y ) \ {MK ,MK−1, . . . ,Mk}

]
∪
[
paG (Mk) \paG (Y )

]
, then

this edge must connect a vertex Mt ∈ {MK ,MK−1, . . . ,Mk} with Y. This is because any
other vertex would be in paG (Y ) \ {MK ,MK−1, . . . ,Mk} and the path would then be closed
because we are conditioning on paG (Y ) \ {MK ,MK−1, . . . ,Mk} .Then the path between Mj

and Y that is open when we condition on paG (Mk) must be of the form

Mj − ◦ − ◦ · · · ◦ −V →Mt → Y (84)
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or

Mj − ◦ − ◦ · · · ◦ −V ←Mt → Y (85)

for some t ∈ {k, k + 1, . . . ,K} and some V ∈ V. We now argue that it cannot be of the
form (85) . Suppose it was of the form (85) . Then, V would belong to M because V is a
child of a descendant of A and consequently it is itself a descendant of A. By the topological
order of (M1, . . . ,MK) this would imply that V = Mh for some h > t. But in such case the
path between Mj and Mh would eventually intersect a collider Mr for some r > h, i.e. it
would be of the form Mj − ◦ − ◦ · · · ◦ − → Mr ← ◦ · · · ← ◦ ← Mh ← Mt → Y . However,
this is impossible because by r > h > t ∈ {k, k + 1, . . . ,K} we have that neither Mr nor its
descendants are in paG (Mk), so the path is closed at the collider Mr when we condition on
paG (Mk) .

We thus conclude that if an open path exists it must be of the form (84) for some
t ∈ {k, k + 1, . . . ,K} . However, we will now show that this is also impossible. First we
note that the assumption that the path is open when we condition on paG (Mk) implies
that V 6∈paG (Mk) .This implies that k + 1 ≤ t ≤ K. Next, note that because V ∈paG (Mt)
and paG (Mt) ⊂paG (Mk) ∪ {Mk, . . . ,Mt−1} this implies that V ∈ {Mk, . . . ,Mt−1} . So, we
conclude that the open path must be of the form

Mj − ◦ − ◦ · · · ◦ −V ′ →Mh →Mt → Y (86)

or

Mj − ◦ − ◦ · · · ◦ −V ′ ←Mh →Mt → Y (87)

for some k ≤ h < t ≤ K. However, reasoning as above we rule out the path (87) and conclude
that the path must be of the form (86) for V ′ = Mr with r such that k ≤ r < h < t ≤ K.
Continuing in this fashion we arrive at the conclusion that the path must be of the form
Mj − ◦ − ◦ · · · ◦ −V ∗ →Mk . . .Mr →Mh →Mt → Y. But this contradicts the assumption
that the path is open when we condition on paG (Mk) since V ∗ ∈ paG (Mk). This concludes
the proof.

Lemma 32 Assume that G is a DAG and A and Y are two distinct vertices in G such
that A ∈ anG (Y ) and irrel (A, Y,G) = ∅. Let W ≡ decG (A) and O ≡ O (A, Y,G). Write
W ≡ (W1, . . . ,WJ) and O ≡ (O1, . . . , OT ) in topological order relative to G. Then, under
M (G) , the law of Y given W is the same as the law of Y given (A,O) and the law of Y given
(A,O) is unrestricted. In particular, the conditional expectation E (Y |W) = E (Y |A,O) is
unrestricted. Furthermore, the law of Y given (A,O) and the law of W∪{A} are variation
independent.

Proof [Proof of Lemma 32] That the law of Y given W is the same as the law of Y given
A,O under any P ∈M (G) follows because Y ⊥⊥G W\ (A,O) | (A,O).

Next, assume deG (A) \ {Y } 6= ∅. Let G′ = GV\ancG(A,Y ) and V′ = V \ ancG (A, Y ). Since

V\ ancG (A, Y ) is ancestral,M (G′) =M (G,V′) (see Proposition 1 from Evans (2016)). Let
M ≡ (M1, . . . ,MK)≡deG (A) \ {Y } be topologically ordered relative to G′. Now, define
GK≡τ (G′,MK) and recursively for k = K − 1,K − 2, . . . , 1 define Gk≡τ (Gk+1,Mk) . Now,
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since chG′ (MK) = {Y }, by Lemma 3 of Evans (2016), M (GK) =M (G′,V′ \ {MK}) . Fur-
thermore, paGK (Y ) = paG′ (Y ) ∪ paG′ (MK) .Likewise, since for k = K − 1,K − 2, . . . , 1,
chGk+1

(Mk) = {Y } , then we can recursively show that for k = K − 1,K − 2, . . . , 1,
M (Gk) =M (Gk+1,V

′\ {MK ,MK−1, . . . ,Mk}) and paGk (Y ) =paG′ (Y ) ∪
[
∪Kl=kpaG′ (Ml)

]
.

In particular,M (G1) =M (G2,V
′\M) and paG1 (Y ) =paG (Y )∪

[
∪Kl=1paG (Ml)

]
. Applying

repeatedly the property (46) we arrive at M (G1) =M (G,V′\M) . But (A,O) = paG1(Y )
and in M (G1) the law of Y given paG1 (Y ) is unrestricted. This implies that the law of
Y given (A,O) is unrestricted under M (G1). Then, M (G1) = M (G,V′\M) implies that
the law of Y given (A,O) is unrestricted underM (G) . Finally, in modelM (G1) (and con-
sequently in model M (G)) the law of decG (A) ∪ {A} and the law of Y given paG1 (Y ) are
variation independent, and therefore so are the laws of decG (A)∪{A} and of Y given (A,O)
under model M (G).

If deG (A) \ {Y } = ∅ then (A,O) = paG(Y ) and the result follows immediately arguing
as above.

Lemma 33 Assume that G is a DAG with vertex set V and A and Y are two distinct
vertices in G such that A ∈ anG (Y ). Let W ≡ decG (A) and O ≡ O (A, Y,G). Write W ≡
(W1, . . . ,WJ) and O ≡ (O1, . . . , OT ) in topological order relative to G. Assume O\OT⊂paG(OT )
and irrel (A, Y,G) = ∅. Let Ij ≡

[
paG (Wj) ∪ {Wj}

]
∩ paG (Wj+1) . Assume that J > 1 and

for some j ∈ {1, . . . , J − 1} it holds that for k = j + 1, . . . , J − 1,

O\Ik ⊥⊥G
[
paG (Wk) ∪Wk

]
4 paG (Wk+1) |Ik (88)

and
O\Ij 6⊥⊥G

[
paG (Wj) ∪Wj

]
4 paG (Wj+1) |Ij (89)

where the assertion (88) is inexistant if j = J − 1. Then there exists P ∗ ∈M(G) such that

EP ∗
[
ba (O;P ∗) |Wj ,paG (Wj)

]
− EP ∗

[
ba (O;P ∗) |paG (Wj+1)

]
(90)

is a non-constant function of Wj.

Proof [Proof of Lemma 33]
First we show that if (88) holds for some k ∈ {1, ..., J − 1} , then for such k it holds

that Wk ∈ paG (Wk+1) . Assume for the sake of contradiction that Wk /∈ paG(Wk+1). Since
irrel(A, Y,G) = ∅, there exists a directed path between Wk and Y that does not intersect
A. Such a path must intersect O. Since O ⊂ anG(OT ) we conclude that Wk ∈ anG(OT ).
Note also that Ik ∩ deG(Wk) = ∅. Then

OT 6⊥⊥G Wk | Ik. (91)

Now OT ∈ O\Ik because OT = WJ . Since Wk /∈ paG(Wk+1) then Wk ∈
[
paG (Wk) ∪Wk

]
4

paG(Wk+1) which together with (91) implies O\Ik 6⊥⊥G
[
paG (Wk) ∪Wk

]
4 paG (Wk+1) |Ik.

This d-connection contradicts (88), thus proving that Wk ∈ paG(Wk+1).
We will show that for some P ∗ ∈ M(G), (90) is a non-constant function of Wj by

considering separately the cases Wj 6∈paG (Wj+1) and Wj ∈paG (Wj+1) .
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Suppose first that Wj 6∈paG (Wj+1) . Then, since EP
[
ba (O;P ) |paG (Wj+1)

]
does not

depend on Wj for all P ∈M(G), it suffices to prove that there exists P ∗ ∈M(G) such that
EP ∗

[
ba (O;P ∗) |Wj , paG (Wj)

]
is a non-constant function of Wj . To show this, first note

that since irrel (A, Y,G) = ∅ there exists a directed path between Wj and Y that does not
intersect A. Such a path must intersect O. Since O\OT⊂paG(OT ), then Wj ∈ anG(OT ).
Consequently,

Wj 6⊥⊥G OT | paG (Wj) . (92)

Thus, there exists a law P ∗ ∈M (G) such that under P ∗, Wj 6⊥⊥ OT | paG (Wj) . In particu-
lar, there exists a function b∗ (OT ) such that EP ∗

[
b∗ (OT ) |Wj , paG (Wj)

]
is a non-constant

function ofWj . Lemma 32 implies that we can choose the law P ∗ so that ba (O;P ∗) = b∗ (OT )
showing that for such law P ∗, EP ∗

[
b (O;P ∗) |Wj , paG (Wj)

]
= EP ∗

[
b∗ (OT ) |Wj ,paG (Wj)

]
is a non-constant function of Wj , and consequently the difference (90) depends on Wj .

Suppose next thatWj ∈paG (Wj+1) . For each i = 1, . . . , J−1, define Oi
f ≡ (Wi+1, . . . ,WJ)∩

O and Oi
p ≡ O\Oi

f . The vertex set Oi
f is not empty because WJ = OT . Write Oi

f =(
Oif,1, . . . , O

i
f,h

)
and Oi

f =
(
Oip,1, . . . , O

i
p,m

)
in topological order relative to G. The validity

of (89) is equivalent to the existence of O ∈ O\Ij and of W ∈
[
paG (Wj) ∪Wj

]
4paG (Wj+1)

such that
O 6⊥⊥G W |Ij (93)

We will next show that if W is in paG (Wj+1) \
[
Wj ∪ paG (Wj)

]
, then (93) holds for O =

O1
f,1. So we will consider separately the following three cases

Case O in W in

1
{
O1
f,1

}
paG (Wj+1) \

[
Wj ∪ paG (Wj)

]
2 Oj

f paG (Wj) \ paG (Wj+1)

3 Oj
p\Ij paG (Wj) \ paG (Wj+1)

Notice that Oj
f ⊂ O\Ij and that paG (Wj) \ paG (Wj+1) =

[
Wj ∪ paG (Wj)

]
\ paG (Wj+1)

because we have assumed that Wj ∈paG (Wj+1) .

In the subsequent analysis we will use the fact that Wj and Wj+1 belong to anG

(
Ojf,1

)
.

To see why this is true, first note that if j = J − 1, then Wj = WJ−1 ∈paG (Wj+1) =
paG (WJ)
= paG (OT ) by assumption. On the other hand, OJ−1

f = OJ−1
f,1 = OT . Then, Wj = WJ−1

and Wj+1 = WJ belong to anG (OT ) =anG

(
OJ−1
f,1

)
=anG

(
Ojf,1

)
. If j < J −1, then Wj and

Wj+1 also belong to anG

(
Ojf,1

)
because we have already shown that Wk ∈paG (Wk+1) for

all k = j + 1, . . . , J − 1 and by definition Ojf,1 ∈ {Wj+1, ...,WJ} .
Consider the case (1). The vertex W belongs to O

(
Wj , O

j
f,1,G

)
by virtue of being an

element of the parent set of the child Wj+1 of Wj and the facts that (i) W ∈ decG (Wj)

because it belongs to paG (Wj+1) \ {Wj} and (ii) Wj and Wj+1 belong to anG

(
Ojf,1

)
. Note

that this implies that W ∈anG

(
Ojf,1

)
and consequently that (93) holds with O = Ojf,1

because the path W → Wj+1 → Wj+2 → ... → Ojf,1 is open given Ij since Ij does not
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include any of the nodes in the set
{
Wj+1,Wj+2, ..., O

j
f,1

}
. Now, Lemma 32 implies that

EP

[
Ojf,1|Wj ,O

(
Wj , O

j
f,1;G

)]
is unrestricted in modelM (G) so we can choose P ∗ such that

EP ∗
[
Ojf,1|Wj ,O

(
Wj , O

j
f,1;G

)]
= WjW. We can also choose such P ∗ so as to also satisfy

that ba (O;P ∗) = Ojf,1 where O ≡ O (A, Y ;G) . This can be done because, as established in
Lemma 32, the conditional law of Y given (A,O) is variation independent with the joint

law of W, and in particular, with the joint law of the subvector
(
Ojf,1,Wj ,OWj

)
of W.

Then, EP ∗
[
ba (O;P ∗) |paG (Wj+1)

]
= EP ∗

[
Ojf,1|paG (Wj+1)

]
=

EP ∗
{
EP

[
Ojf,1|Wj ,OWj , paG (Wj+1)

]∣∣∣ paG (Wj+1)
}

=

EP ∗
{
EP ∗

[
Ojf,1|Wj ,OWj

]∣∣∣paG (Wj+1)
}

= WjW. Consequently,

EP ∗
[
ba (O;P ∗) |Wj , paG (Wj)

]
− EP ∗

[
ba (O;P ) |paG (Wj+1)

]
=

EP ∗
[
ba (O;P ∗) |Wj , paG (Wj)

]
−WjW which depends on Wj because W ∈paG (Wj+1) \[

Wj ∪ paG (Wj)
]
.

Consider now case (2). Let W ∈ paG (Wj) \ paG (Wj+1) and Ojf,l ∈ O\Ij such that

Ojf,l 6⊥⊥G W |Ij .Let τ denote a path between Ojf,l and W that is open given Ij . In τ the

edge with one endpoint equal to Ojf,l must point into Ojf,l. Suppose this was not the case,

then τ would intersect a collider, say C, that is a descendant of Ojf,l. However, by the

definitions of Ij and Ojf,l we know that Ij∩deG

(
Ojf,l

)
= ∅. Consequently C cannot have

a descendant in Ij . So, the path τ would be blocked at C given Ij contradicting that τ
is open given Ij . Because the path τ is open, then it must intersect an element of the

set O
(
Wj , O

j
f,l,G

)
, and consequently, O

(
Wj , O

j
f,l,G

)
6 ⊥⊥GW |Ij . Now, W ∈pa(Wj) \Ij

because
[
{Wj} ∪ paG (Wj)

]
\paG (Wj+1) =paG (Wj) \Ij since we have assumed that Wj ∈

paG (Wj+1) . We then conclude that

O
(
Wj , O

j
f,l,G

)
6⊥⊥G

[
paG (Wj) \Ij

]
|Ij . (94)

So, there exists P ∗ ∈M (G) such that

O
(
Wj , O

j
f,l,G

)
6⊥⊥
[
paG (Wj) \Ij

]
|Ij under P ∗. (95)

Now, (95) implies that there exists h∗
[
O
(
Wj , O

j
f,l,G

)]
such that

EP ∗
{
h∗
[
O
(
Wj , O

j
f,l,G

)]∣∣∣ [pa (Wj) \Ij ] , Ij
}

is a non-constant function of pa(Wj) \Ij . Then,

since [pa (Wj) \Ij ] ∪ Ij =paG (Wj) ∪Wj we conclude that

EP ∗
{
h∗
[
O
(
Wj , O

j
f,l,G

)]∣∣∣ paG (Wj) ,Wj

}
is a non-constant function of pa(Wj) \Ij . Fur-

thermore, by the Local Markov property,

EP ∗
{
h∗
[
O
(
Wj , O

j
f,l,G

)]∣∣∣ paG (Wj) ,Wj

}
does not depend on Wj . So, we conclude that

EP ∗
{
h∗
[
O
(
Wj , O

j
f,l,G

)]∣∣∣ paG (Wj) ,Wj

}
= g

[
paG (Wj)

]
where g

[
paG (Wj)

]
is a non-

constant function of pa(Wj) \Ij .
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Now, by the variation independence of the conditional law of Y given (A,O) with the
joint law of W, which holds as established in Lemma 32, we can take P ∗ to also satisfy
ba (O;P ∗) = Ojf,l. Furthermore, we can take P ∗ to additionally satisfy that

EP ∗
[
Ojf,l

∣∣∣Wj ,O
(
Wj , O

j
f,l,G

)]
= Wjh

∗
[
O
(
Wj , O

j
f,l,G

)]
because, again by Lemma 32,

the conditional law of Ojf,l given Wj ,O
(
Wj , O

j
f,l,G

)
is variation independent with the

law of decG (Wj) ∪Wj , and in particular, with the joint law of law of O
(
Wj , O

j
f,l,G

)
and[

Wj ∪ paG (Wj)
]
. For such P ∗ we then have

EP ∗
[
ba (O;P ∗) |Wj , paG (Wj)

]
= EP ∗

[
Ojf,l|Wj , paG (Wj)

]
=

EP ∗
[
EP ∗

[
Ojf,l|Wj ,O

(
Wj , O

j
f,l,G

)]∣∣∣Wj , paG (Wj)
]

=

WjEP ∗
[
h∗
[
O
(
Wj , O

j
f,l,G

)]∣∣∣Wj ,paG (Wj)
]

= Wjg
[
paG (Wj)

]
.

Then, EP ∗
[
ba (O;P ∗) |Wj ,paG (Wj)

]
− EP ∗

[
ba (O;P ∗) |paG (Wj+1)

]
= Wjg

[
paG (Wj)

]
−

EP ∗
[
ba (O;P ∗) |paG (Wj+1)

]
is a non-constant function of Wj because g

[
paG (Wj)

]
is a

non-constant function of pa(Wj) \Ij and
[
paG (Wj)

]
\Ij ∩ paG (Wj+1) = ∅.

Finally, consider case (3). Let W ∈ paG (Wj) \paG (Wj+1) and Ojp,l ∈ Oj
p\Ij such

that Ojp,l 6 ⊥⊥GW |Ij .We then have that Ojp,l 6⊥⊥G
[
paG (Wj) \Ij

]
|Ij , which then implies

that there exists P ∗ ∈ M (G) such that Ojp,l 6⊥⊥
[
paG (Wj) \Ij

]
|Ij under P ∗. The lat-

ter implies that there exists h∗
(
Ojp,l

)
such that EP ∗

{
h∗
(
Ojp,l

)∣∣∣ [pa (Wj) \Ij ] , Ij
}

is a

non-constant function of pa(Wj) \Ij . Then, since [pa (Wj) \Ij ] ∪ Ij =paG (Wj) ∪ Wj we

conclude that EP ∗
{
h∗
(
Ojp,l

)∣∣∣ paG (Wj) ,Wj

}
is a non-constant function of pa(Wj) \Ij .

Furthermore, by the Local Markov property, EP ∗
{
h∗
(
Ojp,l

)∣∣∣ paG (Wj) ,Wj

}
does not de-

pend on Wj . So, we conclude that EP ∗
{
h∗
(
Ojp,l

)∣∣∣ paG (Wj) ,Wj

}
= g

[
paG (Wj)

]
where

g
[
paG (Wj)

]
is a non-constant function of pa(Wj) \Ij . By Lemma 32 we can take P ∗ to

also satisfy that b (O;P ∗) = h∗
(
Ojp,l

)
Ojf,1 and EP ∗

[
Ojf,1

∣∣∣Wj ,O
(
Wj , O

j
f,1,G

)]
= Wj .

Then EP ∗
[
ba (O;P ∗) |Wj ,paG (Wj)

]
= EP ∗

{
h∗
(
Ojp,l

)
Ojf,1

∣∣∣Wj ,paG (Wj)
}

=

EP ∗
{
h∗
(
Ojp,l

)
EP

[
Ojf,1

∣∣∣Wj ,O
(
Wj , O

j
f,1,G

)]∣∣∣Wj ,paG (Wj)
}

=

WjEP ∗
{
h∗
(
Ojp,l

)∣∣∣Wj , paG (Wj)
}

= Wjg
[
paG (Wj)

]
. Consequently,

EP ∗
[
ba (O;P ∗) |Wj , paG (Wj)

]
− EP ∗

[
ba (O;P ∗) |paG (Wj+1)

]
= Wjg

[
paG (Wj)

]
−

EP
[
ba (O;P ∗) |paG (Wj+1)

]
depends on Wj . This concludes the proof of the lemma.

Lemma 34 Let G be a DAG with vertex set V and let A and Y be two distinct vertices in
V. Suppose that irrel (A, Y ;G) = ∅. Suppose M≡deG (A) \ {A, Y } 6= ∅ and let (M1, . . . ,MK)
be the elements of M sorted topologically. Let M0 ≡ A and MK+1≡Y. Let O ≡ O(A, Y,G).
Let Omin be the smallest among the subsets Osub of O such that A ⊥⊥G (O\Osub) |Osub.

1. EP
[
TP,a,G |Y,paG (Y )

]
= TP,a,G for all P ∈M (G) if and only if {A}∪Omin ⊆ paG (Y ).
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2. Suppose {A} ∪ Omin ⊆ paG (Y ). If paG (Y ) \ {MK} 6⊂ paG (MK) then there exists
P ∈ M (G) such that EP

[
TP,a,G |MK , paG (MK)

]
− EP

[
TP,a,G | paG (Y )

]
is a non-

constant function of MK .

3. Suppose {A} ∪Omin ⊆ paG (Y ) ,paG (Y ) \ {MK} ⊂ paG (MK) and there exists j ≥ 1
such that for all k = K − 1, . . . , j+ 1,paG (Mk+1) \ {Mk} ⊂ paG (Mk) but paG (Mj+1)
\ {Mj} 6⊂ paG (Mj) . Then, there exists P ∈M (G) such that EP

[
TP,a,G |Mj , paG (Mj)

]
−

EP
[
TP,a,G | paG (Mj+1)

]
is a non-constant of function of Mj.

Proof [Proof of Lemma 34]
1) If {A} ∪Omin ⊆ paG (Y ), then EP

[
TP,a,G |Y, paG (Y )

]
= TP,a,G for all P ∈ M (G) holds

trivially by the definition of TP,a,G .

Now suppose that A 6∈ paG (Y ) or Omin 6⊂ paG (Y ) . If A 6∈ paG (Y ) then
EP
[
TP,a,G |Y, paG (Y )

]
is not a function of A and consequently, it cannot be equal to

Ia(A)Y/πa (O;P ) . Next, suppose Omin 6⊆ paG (Y ) because for some Oj ∈ Omin, Oj 6∈
paG (Y ). Now, because Omin is the smallest among the subsets Osub of O such that
A ⊥⊥G (O\Osub) |Osub, then there exists a law P ∗ ∈M (G) such that Ia(A)Y/πa (Omin;P ∗)
is a non-constant function of Oj . For such P ∗, EP ∗

[
TP ∗,a,G |Y, paG (Y )

]
cannot be equal to

Ia(A)Y/πa (Omin;P ∗) .

2) Suppose that {A} ∪ Omin ⊂paG (Y ) but paG (Y ) \ {MK} 6⊂ paG (MK) . Let M∗ ∈
paG (Y ) \

{
MK ∪ paG (MK)

}
.Since MK is the last element in the topological order of

M and the assumptions that irrel(A, Y,G), MK ∈ paG(Y ). Then there exists P ∗ ∈
M (G) be such that EP ∗

[
Y | paG (Y )

]
= M∗MK . For such P ∗, EP ∗

[
TP ∗,a,G |paG (Y )

]
=

A
π(Omin;P ∗)M

∗MK . Furthermore,

EP ∗
[
TP ∗,a,G |MK ,paG (MK)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
EP ∗

[
Y |A,Omin,MK ,paG (MK) , paG (Y )

]∣∣∣∣MK , paG (MK)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
EP ∗

[
Y |paG (Y )

]∣∣∣∣MK , paG (MK)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
M∗MK

∣∣∣∣MK , paG (MK)

]
= MKEP ∗

[
Ia(A)

πa (Omin;P ∗)
M∗
∣∣∣∣MK , paG (MK)

]
.

Then,

EP ∗
[
TP ∗,a,G |MK ,paG (MK)

]
− EP ∗

[
TP ∗,a,G |paG (Y )

]
= MK

{
EP ∗

[
Ia(A)

πa (Omin;P ∗)
M∗
∣∣∣∣MK ,paG (MK)

]
− A

π (Omin;P ∗)
M∗
}
.

The right hand side is a non-constant function of MK because M∗ /∈ {MK}∪paG (MK) .

3) Suppose that {A} ∪ Omin ⊂ paG (Y ) and paG (Y ) \ {MK} ⊂ paG (MK) and that
paG (Mk+1) \ {Mk} ⊂ paG (Mk) for all k = K − 1, . . . , j + 1, but paG (Mj+1) \ {Mj} 6⊂
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paG (Mj) . Now paG (Mj+1) \ {Mj} 6⊂ paG (Mj) implies that there exists M∗∗ ∈ paG (Mj+1)
\
{
Mj ∪ paG (Mj)

}
. On the other hand, by part (i) of Lemma 31 we know that Mk ∈

paG(Mk+1) for k = j, . . . ,K. Now, consider a law P ∗ such that EP ∗
[
Y | paG (Y )

]
= MK and

EP ∗
[
Mk | paG (Mk)

]
= Mk−1 for all k = j+2, . . . ,K and such that EP ∗

[
Mj+1 | paG (Mj+1)

]
= M∗∗Mj . Since {A} ∪Omin ⊂ paG(Y ) ⊂ {MK} ∪ paG(MK) ⊂ · · · ⊂ paG(Mj+1) then

EP ∗
[
TP ∗,a,G |paG (Mj+1)

]
=

Ia(A)

πa (Omin;P ∗)
EP ∗

[
EP ∗

[
Y |paG (Y ) ,paG (Mj+1)

]∣∣paG (Mj+1)
]

=

Ia(A)

πa (Omin;P ∗)
EP ∗

[
EP ∗

[
Y |paG (Y )

]∣∣paG (Mj+1)
]

=

Ia(A)

πa (Omin;P ∗)
EP ∗

[
MK | paG (Mj+1)

]
=

Ia(A)

πa (Omin;P ∗)
EP ∗

[
EP ∗

[
MK |paG (MK) , paG (Mj+1)

]∣∣paG (Mj+1)
]

=

Ia(A)

πa (Omin;P ∗)
EP ∗

[
EP ∗

[
MK |paG (MK)

]∣∣paG (Mj+1)
]

=

Ia(A)

πa (Omin;P ∗)
EP ∗

[
MK−1|paG (Mj+1)

]
=

· · · =
Ia(A)

πa (Omin;P ∗)
EP ∗

[
Mj+1| paG (Mj+1)

]
=

Ia(A)

πa (Omin;P ∗)
M∗∗Mj .
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On the other hand,

EP ∗
[
TP ∗,a,G |Mj , paG (Mj)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
EP ∗

[
Y |A,Omin,paG (Y ) ,Mj ,paG (Mj)

]∣∣Mj , paG (Mj)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
EP ∗

[
Y |paG (Y )

]∣∣Mj , paG (Mj)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
MK |Mj ,paG (Mj)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
EP ∗

[
MK |A,Omin,paG (MK) ,Mj ,paG (Mj)

]∣∣Mj ,paG (Mj)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
EP ∗

[
MK |paG (MK)

]∣∣Mj ,paG (Mj)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
MK−1|Mj ,paG (Mj)

]
= . . .

= EP ∗

[
Ia(A)

πa (Omin;P ∗)
Mj+1|Mj ,paG (Mj)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
EP ∗

[
Mj+1 | A,Omin,Mj ,paG (Mj) ,paG (Mj+1)

]∣∣Mj ,paG (Mj)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
EP ∗

[
Mj+1 | paG (Mj+1)

]∣∣Mj ,paG (Mj)

]
= EP ∗

[
Ia(A)

πa (Omin;P ∗)
M∗∗Mj |Mj ,paG (Mj)

]
= MjEP ∗

[
Ia(A)

πa (Omin;P ∗)
M∗∗|Mj , paG (Mj)

]
.

Consequently,

EP ∗
[
TP ∗,a,G |Mj , paG (Mj)

]
− EP ∗

[
TP ∗,a,G |paG (Mj+1)

]
=

Ia(A)

πa (Omin;P ∗)
Mj

(
EP ∗

[
Ia(A)

πa (Omin;P ∗)
M∗∗|Mj , paG (Mj)

]
−M∗∗

)
,

which is a non-constant function of Mj .
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