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Abstract

Great attention has been paid to Big Data in recent years. Such data hold promise for scientific
discoveries but also pose challenges to analyses. One potential challenge is noise accumulation.
In this paper, we explore noise accumulation in high dimensional two-group classification. First,
we revisit a previous assessment of noise accumulation with principal component analyses, which
yields a different threshold for discriminative ability than originally identified. Then we extend our
scope to its impact on classifiers developed with three common machine learning approaches—
random forest, support vector machine, and boosted classification trees. We simulate four scenar-
ios with differing amounts of signal strength to evaluate each method. After determining noise
accumulation may affect the performance of these classifiers, we assess factors that impact it. We
conduct simulations by varying sample size, signal strength, signal strength proportional to the
number predictors, and signal magnitude with random forest classifiers. These simulations suggest
that noise accumulation affects the discriminative ability of high-dimensional classifiers developed
using common machine learning methods, which can be modified by sample size, signal strength,
and signal magnitude. We developed the measure total signal index (TSI) to track the trends of total
signal and noise accumulation.
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1. Introduction

Noise accumulation occurs when simultaneous estimation or testing of multiple parameters results
in estimation error. This can happen when many weak predictors or ones unrelated to the outcome
are included in a model. Such noise can concentrate, obstructing true signal and biasing estimation
of corresponding parameters. Noise accumulation is generally not an issue in conventional statistical
settings where sample size exceeds the number of predictors but high dimensional data are highly
susceptible to its effect.

Noise accumulation is well known in regression but was quantified first in classification by Fan
and Fan (2008). These authors demonstrate that high dimensional prediction with classification
based on linear discriminant rules performs equivalently to random guessing due to noise accumu-
lation (Fan and Fan, 2008). They also assert that projection methods such as principal component
analysis (PCA) tend to perform poorly in high dimensional settings. Hall et al. (2008) and Fan
(2014) studied distance-based classifiers in these settings and found performance was adversely af-
fected. The impact of noise accumulation on classification using PCA was further explored using
simulation by Fan et al. (2014) in ”Challenges of Big Data Analysis.” In addition to work done
with distance-classifiers, linear discriminant rules, and PCA, Fan and Fan (2008) showed that the
independent classification rule was susceptible to noise accumulation but could be overcome with
variable selection. Approaches using classifiers developed with machine learning algorithms such
as random forest (Breiman, 2001), commonly used in high dimensional settings, have not yet been
explored to our knowledge.

All simulations were batch processed in R version 3.4.0 on a computer cluster (R Core Team,
2017). The nodes employed for analyses were running on CentOS Linux 7. PCA was conducted
using the prcomp function in base R while randomForest (4.6-12), e1071 (1.6-8), and gbm (2.1.3)
packages were used to run RF, SVM, and BCT procedures (Liaw and Wiener, 2002; Meyer et al.,
2015; Ridgeway, 2017). We mostly used the default settings from each package for the simulations
(thus neglecting the importance of tuning for these methods). Additional information is provided in
Appendix and code available on GitHub (Elman, 2018).

In this paper, we are interested in the impact that noise accumulation has on two-group classifi-
cation for high dimensional data. In Section 2, we use simulation to recreate the scenario described
by Fan et al. (2014). We expand the simulations to high-dimensional classification methods random
forest (RF), support vector machines (SVM) (Cortes and Vapnik, 1995), and boosted classification
trees (BCT) (Friedman et al., 2000) in Section 3 then explore characteristics of noise accumulation
in two-group classification, using a RF approach to construct classification rules while varying sim-
ulation parameters in Section 4. In Section 5, we develop a new index, total signal index (TSI), to
track the trends of total signal and noise accumulation. We conclude in Section 6.

2. Simulations with PCA

To illustrate the issue of noise accumulation, Fan et al. (2014) explored a classification scenario
with data from two classes. A total of p predictors from both classes were drawn from standard
multivariate normal distributions (MVN) with equal sample size n for each class and an identity
covariance matrix. Classes 1 and 2 were defined as:

X1, . . . ,Xn ∼MVNp(µ1,Ip)

Y1, . . . ,Yn ∼MVNp(µ2,Ip),
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where µ1 = 0, n = 100 for each class, and p = 1000. The first 10 elements of µ2 were nonzero
with value equal to three and all other entries zero: µ2 = (3,3,3,3,3,3,3,3,3,3,0, . . . ,0). Thus,
the nonzero components of µ2 constitute the signal that differentiated the two classes. Fan and col-
leagues computed principal components for specifed values of predictors q = 2, 40, 200, and 1000
then visually assessed how well the two classes could be separated by plotting the first two principal
components (Fan et al., 2014). They report that discriminative power was high when there were
a low number of predictors, which they found to be q < 200 in their simulations. When the num-
ber of predictors was small enough, there was adequate signal to drown out noise and differentiate
between the classes. As the number of predictors grew, noise eventually overwhelmed signal and
predicting the class membership for observations became infeasible. Fan et al. (2014) demonstrate
that discriminative power was high when q< 200 in their simulations and noise overwhelmed signal
beyond this threshold.

Like Fan et al. (2014), we simulated data for two classes from standard multivariate normal
distributions with an identity covariance matrix and p predictors, where µ1 = 0, µ2 was defined
to be sparse with m nonzero elements and the remaining entries equal to zero, and n = 100 for
each class. In our simulations, we extended the total number of predictors to p = 5000 as well as
considered three additional scenarios for the nonzero elements of µ2 (Table 1).

Table 1: Scenarios for different classification
simulations

Scenario m Form of µ2

1 10 (3,3,3,3,3,3,3,3,3,3,0, . . . ,0)
2 6 (3,3,3,3,3,3,0, . . . ,0)
3 2 (3,3,0, . . . ,0)
4 10 (1,1,1,1,1,1,1,1,1,1,0, . . . ,0)

µ1 = 0, Σ1 = Σ2 =I in all scenarios; m represents the number of
nonzero elements in µ2.

We computed the principal components for values q = 2, 10, 100, 200, 1000, and 5000 and plotted
the projections of the first two components. Figures 1 through 4 show scatterplots with the results
of these simulations, depicting class membership by black or red filled circles.

In general, our results are analogous to the findings of Fan et al. (2014). That is, high discrim-
inative power appears possible when the number of predictors is sufficiently low but decreases as
it increases. However, the threshold for what Fan et al. (2014) deemed low differed in our simula-
tions. We found the threshold for achieving high discriminative power to be much higher. In fact,
we found high discriminative power even up through q = 5000 (Figure 1). In Scenario 2, PCA pro-
duced distinct separation up through q = 1000 (Figure 2). When the number of nonzero elements
was reduced to m = 2 in Scenario 3 (Figure 3), discriminative ability diminished more quickly, be-
coming poor at q < 200. In Scenario 4, when the number of nonzero elements was m = 10 and the
value of each element one, high discriminative ability appeared possible when q < 1000 but was
otherwise low (Figure 4). Based on these results, it appears that discriminative ability is a factor of
both signal magnitude (value of the nonzero elements) as well as its strength (number of nonzero
elements).
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(a) q=2
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(b) q=10
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(c) q=100
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(d) q=200
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(e) q=1000
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Figure 1: Scatterplots of the projection of observed data from Scenario 1 (n = 100 for each class,
m = 10 nonzero elements for µ2 each equal to three and µ1 = 0) onto the first two
principal components of the m-dimensional space. Black circles indicate the first class,
red circles indicate the second.
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(a) q=2
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(b) q=10

●
●●

●
●●

●

●

●●

●
●

●

●
●

●

●●●

●● ●●●
●

●●
●

●

●

●●

●

●

●

●

●●
●
●

●

●
●

●
●

●
●

●
●
●●

●

●
●
●
●

●●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●
●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●●●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●
●
●
●●
●●●●●

●

●

●

●●

●●
●

●

●●●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

−15 −5 0 5 10

−
15

−
10

−
5

0
5

10
15

1st Principal Component

2n
d 

P
rin

ci
pa

l C
om

po
ne

nt

(c) q=100
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(d) q=200
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Figure 2: Scatterplots of the projection of observed data from Scenario 2 (n = 100 for each class,
m= 6 nonzero elements forµ2 each equal to three andµ1 = 0) onto the first two principal
components of the m-dimensional space. Black circles indicate the first class, red circles
indicate the second.
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(e) q=1000
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Figure 3: Scatterplots of the projection of observed data from Scenario 3 (n = 100 for each class,
m= 2 nonzero elements forµ2 each equal to three andµ1 = 0) onto the first two principal
components of the m-dimensional space. Black circles indicate the first class, red circles
indicate the second.
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(e) q=1000
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Figure 4: Scatterplots of the projection of observed data from Scenario 4 (n = 100 for each class,
m= 10 nonzero elements forµ2 each equal to one andµ1 = 0) onto the first two principal
components of the m-dimensional space. Black circles indicate the first class, red circles
indicate the second.
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3. Simulation with Classification Methods

We expanded the simulations that were used for PCA to machine learning methods RF, SVM, and
BCT. Using the same scenarios we explored previously (Table 1), we built classifiers with these
methods and evaluated their performance. For each method and scenario, a classification rule was
developed for q = 2, . . . ,5000 predictors on the training data set. This classifier was then applied to
a corresponding test data set and used to predict whether new observations should be categorized
into the first or second class. This process was repeated 100 times on training data sets then these
classifiers were used to predict class membership for 100 test data sets. Classifiers’ discriminative
power was assessed by the median classification error from test data sets with 10th and 90th per-
centile bounds by comparing the categorization predicted by the classifier to its true class in the test
data set. We evaluated the overall trend of median classification error in the scenarios as well as the
maximum classification error for q < 10 and q = 5000.

3.1. Scenario 1: µ2 = (3,3,3,3,3,3,3,3,3,3,0, . . . ,0)

The three classification methods each demonstrated high discriminative ability in Scenario 1. Over-
all, the median test error was < 10% for RF, SVM, and BCT (Figure 5, row 1). In particular, RF
and BCT performed with almost no misclassification when q > 4. Test error reached its maximum
for RF and BCT when 2≤ q≤ 4. For q > 10, the test error dropped substantially for RF and BCT
but increased for SVM. Table 2 summarizes the maximum test error for q≤ 10, and q = 5000.

3.2. Scenario 2: µ2 = (3,3,3,3,3,3,0, . . . ,0)

Results from the second scenario were similar to the first except SVM performed worse (Figure 5,
row 2). The overall median test error was < 3% for RF and BCT and the test error for these methods
peaked when 2≤ q≤ 4 (Table 3). After this point, there was almost no test error for these methods.
By contrast, SVM had a small initial peak in test error at q≤ 3, which dropped then rose even higher
as q grew. Table 3 shows the final value of test error for each method at q = 5000.

3.3. Scenario 3: µ2 = (3,3,0, . . . ,0)

There was a decline in discriminative ability of RF and especially SVM in Scenario 3 (Figure 5, row
3). Despite the increase in test error between this scenario and the previous ones, the RF performed
reasonably well with overall median test error ≤ 8%. The SVM classifier did not behave as well;
its overall median test error was > 35%. BCT still performed at nearly an equivalent degree as in
Scenarios 1 and 2; the overall median test error was ≤ 4%. Unlike previous scenarios, the highest
test error did not occur when q< 5 for RF and BCT but when q= 5000. Table 4 shows the maximum
median test error when q≤ 10 and q = 5000.

3.4. Scenario 4: µ2 = (1,1,1,1,1,1,1,1,1,1,0, . . . ,0)

Scenario 4 proved to be a difficult simulation for all classification approaches (Figure 5, row 4)
though the test error for SVM was slightly better in this scenario than the previous one. Overall, the
median test error was < 30% for RF and BCT while it was > 30% for SVM. The test error peaked
at 2≤ q≤ 3 for RF and BCT but at q = 5000 for SVM. Table 5 shows the maximum test error for
q≤ 10. After the initial increase, it decreased for all of the methods. The behavior of the test error

8



NOISE ACCUMULATION IN HIGH DIMENSIONAL CLASSIFICATION AND TOTAL SIGNAL INDEX

Table 2: Test error for Scenario 1

q Classification method Median 10th Percentile 90th Percentile

q≤ 10*
Random forests 2.5 1.5 4.0
Support vector machine 1.5 0.5 3.0
Boosted classification trees 2.5 1.5 4.5

q = 5000
Random forests 0.0 0.0 0.0
Support vector machine 8.5 5.5 12.1
Boosted classification trees 0.0 0.0 0.0

*Maximum test error of q = 2, . . . ,10.

Table 3: Test error for Scenario 2

q Classification method s Median 10th Percentile 90th Percentile

q≤ 10*
Random forests 2.5 1.0 4.0
Support vector machine 1.5 1.0 3.0
Boosted classification trees 2.5 1.0 4.1

q = 5000
Random forests 0.0 0.0 0.5
Support vector machine 20.5 17.5 23.5
Boosted classification trees 0.0 0.0 0.5

*Maximum test error of q = 2, . . . ,10.

Table 4: Test error for Scenario 3

q Classification method Median 10th Percentile 90th Percentile

q≤ 10*
Random forests 2.5 1.5 4.1
Support vector machine 2.0 1.0 3.5
Boosted classification trees 3.0 1.5 4.5

q = 5000
Random forests 7.5 5.0 10.5
Support vector machine 39.5 35.5 43.1
Boosted classification trees 3.0 1.5 5.1

*Maximum test error of q = 2, . . . ,10.
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(b) Support Vector Machine
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(c) Boosted Classification Trees
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Figure 5: Test error for classification methods from Scenario 1 (row 1, m = 10 nonzero elements
for µ2 each equal to three and µ1 = 0), Scenario 2 (row 2, m = 6 nonzero elements for
µ2 each equal to three and µ1 = 0), Scenario 3 (row 3, m = 2 nonzero elements for µ2
each equal to three and µ1 = 0), and Scenario 4 (row 4, m = 10 nonzero elements for µ2
each equal to one and µ1 = 0) for q = 2 to 5000 predictors and n = 100 for each class.
Darker lines represent the median classification error from 100 simulations; lighter lines
show 10th and 90th percentiles.
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Table 5: Test error for Scenario 4

q Classification method Median 10th Percentile 90th Percentile

q≤ 10*
Random forests 28.0 24.5 33.0
Support vector machine 24.5 20.5 28.1
Boosted classification trees 25.5 21.0 29.0

q = 5000
Random forests 19.5 15.0 24.1
Support vector machine 35.0 31.0 39.0
Boosted classification trees 10.0 8.0 13.5

*Maximum test error of q = 2, . . . ,10.

for q > 10 differed for the three methods: it increased gradually for RF but was not as high as q = 2;
it escalated quickly for SVM, exceeding the first jump; and it stayed fairly flat at about 10% for
BCT.

3.5. Discussion

Of the classification methods we investigated, SVM appeared to be more susceptible to noise accu-
mulation than RF or GBM. Although the robustness of SVM is well-recognized (Xu et al., 2009),
it is also known that their performance can be impaired when redundant predictors are included in
the decision rule (Hastie et al., 2009; Zhang et al., 2016). Further investigation of the limitations of
SVM may be a topic for future research. It is also worth noting RF has been found previously to be
resistant to the impact of noise or data with many weak predictors as long as their correlation was
low (Breiman, 2001). Although the median test error of SVM for Scenario 4 starts off higher, the
one for Scenario 3 has a steeper slope; the error for Scenario 4 catches up to Scenario 3 at about
q= 400 then exceeds it. This may suggest that signal strength (m) is more important than magnitude
for SVM as noise builds. For RF and GBM, test error increased in scenarios 1 through 4 such that
the medians never cross.

Previous plots summarize the performance of the classifier for each scenario and approach de-
veloped on the training data sets then applied to the test data sets. It is also informative to know
how well the classifiers built on the training data fit the underlying distribution of the data. If the
classifier follows the noise too closely, it will overfit the data and not produce accurate estimates of
the response for new observations. Figure 6 shows the difference in median training minus test error
for Scenario 4 for each method used for classification. For RF, the error ranged between 0 and 10%
and the classifier’s performance improves on the test compared with the training data. We found
the RF classifiers consistently performed as good or better on the test data sets for all scenarios and
values of q. This result is counter-intuitive because test error is generally larger than training error
in practice. This not-overfitting of the test data set may have happened because we did not tune the
machine learning algorithms for any of the simulations. In this scenario, it increased from 0.0% at
q = 2 to 8.5% at q = 5000. BCT tended to produce classifiers that worked well on the test data with
only slight overfitting for Scenarios 3 and 4. Further, the difference between training and test data
sets was fairly constant across q; it was about -9.5% for Scenario 4. By contrast, the SVM classi-
fiers overfit the test data in all scenarios, which worsened as the number of predictors increased. For
Scenario 4, the difference in median error ranged between -0.5% at q = 10 and -30.0% at q = 5000.
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Figure 6: Difference in training and test error for three classification methods for Scenario 4 (n =
100 for each class, m = 10 nonzero elements for µ2 each equal to one and µ1 = 0) for
q = 2 to 5000 predictors. The brown line shows the median classification error from
100 simulations from random forests, the olive line from support vector machine, and the
green line for boosted classification trees.

We also performed a number of simulations with a heavy-tailed distribution (multivariate t distri-
bution with d. f . = 10 for the second class, which represents all noise). While the overall pattern
was similar to our findings with the two multivariate normal distributions, the noise accumulation
started earlier with a smaller q value and SVM performed worse accordingly.

4. Characterization of Noise Accumulation

Next, we examined the characteristics of noise accumulation using RF. We focused on this clas-
sification method both because of its popularity for analyzing high dimensional data and also its
performance in the simulations shown in Section 3. We wanted a classification method that showed
evidence of being impacted by noise accumulation but had moderate discriminative ability. Unlike
SVM, RF performed reasonably well in the most challenging scenarios and, in contrast to BCT, it
showed more effect from noise accumulation.

To characterize noise accumulation, we conducted simulations varying the sample size (n), sig-
nal strength (m), and ratio of signal strength to the total number of predictors (m : p). These simula-
tions were carried out with nonzero elements equal to one. We repeated the simulations, modifying
the magnitude of the nonzero elements to be 1√

m to assess the performance of classifiers with signal

of weaker magnitude but the same strength. We chose 1√
m as the value of the nonzero elements in

this second set of simulations to explore settings in which the distance between the mean locations
of classes was fixed in all dimensions.

As before, we simulated data for two classes from a multivariate normal distribution with equal
sample size n in each class, p predictors, and an identity covariance matrix:
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Class 1: X1, . . . ,Xn ∼MVNp(µ1,Ip)

Class 2: Y1, . . . ,Yn ∼MVNp(µ2,Ip),

where µ1 = 0 and µ2 was defined to be sparse with m nonzero elements and the remaining entries
equal to zero. We fixed µ1 = 0 and the value of the m the nonzero elements of µ2 to be equal to
one and sample size n was divided evenly between the two classes. We conducted the following
scenarios:

S1(1): Increase sample size
Sample size was assessed at n =200, 500, 1000, and 5000 with m = 10.

S1(2): Modify signal strength
The number of nonzero elements in Class 2 was varied for m = 5, 10, 20, and 30. That
is, µ2 = (µ2.1, µ2.2, 0, , 0) for m = 2; µ2 = (µ2.1, µ2.2, . . ., µ2.9, µ2.10, 0, . . ., 0) for
m = 10; and so on.

S1(3): Vary signal strength and total predictors
The ratio of m to the maximum number predictors (m : p) was fixed while the signal
strength was increased. m : p was assessed for 10 : 5000, 30 : 15000, 50 : 25000,
70 : 35000, and 90 : 45000.

For each scenario, a RF-based classification rule was developed for 30 pairs of training and test
data sets. A classifier was developed for predictors from q = 2 to 5000 to categorize observations
into one of the two classes except for the third scenario, where p was used instead. The classifiers
developed on the training sets for each value of q were applied to corresponding test data sets to
predict class membership. We gauged the discriminative power for each classifier by calculating the
median classification error with 10th and 90th percentile bounds by comparing the predicted and
true classifications. We duplicated these simulations, changing only the value of the sparse, nonzero
elements of µ2 from one to 1√

m with no additional modifications. This second set of simulations are
referred to as S2(1), S2(2), and S2(3), respectively.

4.1. Simulations increasing sample size

Figure 7a shows results from S1(1), which demonstrates that the discriminative ability of the RF
classifier improved as sample size increased. As we saw in the previous simulations, there was a
spike in test error for q≤ 10. For all n, the maximum error was highest for q = 2 at around 27.4%.
At q = 5000, the median test error steadily decreased from 19.5% (10 - 90% percentile: 15.0 -
24.1%) when n = 200 to 8.3% (10 - 90% percentile: 7.7 - 8.9%) when n = 5000. Results from
S2(1) demonstrate much poorer performance of the classifier (Figure 7b). When q≤ 10, the median
test error was greatest at q = 2 for every value of n. The median test error for q > 10 decreased
slightly as n increased yet it was more than 25% higher than in S1(1). Table 6 shows median test
error for q = 2 and 5000 with 10th and 90th percentiles for both S1(1) and S2(1).

4.2. Simulations modifying signal strength

Results from S1(2) illustrate test error that decreased steadily with increasing signal strength, m
(Figure 8a). Median test error peaked at approximately 28% when q = 2 (Table 7). Disregarding
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(a) Scenario S1(1)
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(b) Scenario S2(1)
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Figure 7: Test error for Scenarios S1(1) and S2(1) (sample size varying between n = 200 and 5000
split equally between classes, m = 10 nonzero elements for µ2 each equal to one in S1(1)
and 1√

m in S2(1) with µ1 = 0) for q = 2 to 5000 predictors. Lines represent the median
classification error from 30 simulations where gold shows classification for n = 200, dark
green for n = 500, grey for n = 1000, and brown for n = 5000.

Table 6: Test error for simulations increasing sample size

Scenario q n Median 10th Percentile 90th Percentile

S1(1)

q≤ 10*

200 28.0 24.5 33.0
500 27.2 24.2 30.4
1000 27.4 25.9 29.4
5000 27.4 26.7 28.2

q = 5000

200 19.5 15.0 24.1
500 12.4 10.4 14.8
1000 10.5 9.4 11.4
5000 8.3 7.7 8.9

S2(1)

q≤ 10*

200 44.5 41.7 49.6
500 45.8 42.6 48.8
1000 46.3 44.5 48.3
5000 45.9 45.1 47.2

q = 5000

200 50.0 46.5 53.0
500 47.6 44.8 50.4
1000 45.6 43.1 46.9
5000 39.7 39.0 40.9

*Maximum test error of q = 2, . . . ,10.
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q ≤ 10, the slope of the median error was steepest for simulations with the lowest value of m,
which flattened as it increased. At q = 5000 (Table 7), the median test error was highest at m = 5
(median: 31.3%; 10 - 90% percentile: 27.5 - 35.5%) and lowest at m = 30 (median: 3.8%, 10 -
90% percentile: 1.5 - 5.5%). As before, test error rose when the value of the nonzero elements of
µ2 changed from one to 1√

m in S2(2) (Figure 8b). In these simulations, the median test error peaked
between 42.8% and 49.0% at q = 2 for q≤ 10 (Table 7). Between q > 10 and q = 5000, the slope
of the error tended to increase rapidly for all S2(2) simulations then remain fairly constant above
40%; there was not much difference in error for simulations where m > 5.

4.3. Simulations varying signal strength and total predictors

The median test error for simulations in S1(3) showed similar behavior to S1(2). That is, it decreased
with greater signal strength as p increased (Figure 9a). The median error peaked at q = 2 where it
was approximately 28.5% for all m : p (Table 8). We showed previously that the median test error
for the baseline case (m= 10, p = 5000) at q= 5000 was 19.5% (10 - 90% percentile: 15.0 - 24.1%).
At m = 30 and p = 15000, it reduced substantially to 9.0% (10 - 90% percentile: 6.4 - 11.5%). As
evident in Figure 9a, the median error for the remaining simulations gradually reduced towards
zero; Table 8 summarizes it for q = 5000. When m = 90 and p = 45000, the median error reached
its nadir at 1.5% (10 - 90% percentile: 0.5 - 3.0%). As in the previous scenario S1(2), the slope of
the median test error tended to be sharpest for simulations with the lower values of m then leveled
out as m increased. By contrast, the median error for the S2(3) simulations initially increased after
q > 10 then remained steady at about 50% for every simulation except m : p = 10 : 5000 (Figure
9b). Also, these classifiers performed uniformly poorly where the median test error was above 30%
for all simulations and values of q. Table 8 displays the test error for q = 2 where it was highest for
q≤ 10 and q = 5000.

4.4. Discussion

Scenarios S1(1) and S1(2), where the nonzero elements of µ2 equal to one, behaved as conjectured.
As sample size and signal increased, the discriminative ability of the RF classifiers improved. For
S1(1), this improvement is anticipated from asymptotic theory. As n→ ∞, the estimator should
converge to the true value of the parameter being estimated thus accuracy of classification ought
to rise. Indeed, classification error was less than 10% even for the 90th percentile when sample
size was n = 5000 but even n = 500 performed markedly better than the base scenario of n = 200
and comparably to the larger sample cases. As for S1(2), common sense dictates that classification
would improve as signal strength grows since the classifier draws on this information to differentiate
groups. Increasing the number of nonzero elements in ofµ2 seemed to have a greater positive impact
on discriminative ability than increasing sample size. The median classification error dropped to
less than 5% when m = 30, lower error even than n = 5000. Results from the third scenario—
increasing the amount of signal while keeping the ratio of predictors constant—were less expected.
They demonstrated that discriminative ability improved with signal strength even as the number of
predictors grew proportionally. The median test error fell between m : p = 10 : 5000 (the base
scenario) and 30 : 15000. At m : p = 90 : 45000, the error was less than 2%. The result from this
simulation is notable because it implies that discriminative ability will be high with sufficient signal
regardless of the number of predictors. When the nonsparse elements of µ2 were reduced to 1√

m , the
test error deteriorated considerably. Results from S2(1), in which the RF classifier was constructed
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(a) Scenario S1(2)
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(b) Scenario S2(2)
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Figure 8: Test error for Scenarios S1(2) and S2(2) (sample size varying between n = 200 and 5000
split equally between classes, m = 10 nonzero elements for µ2 each equal to one in S1(2)
and 1√

m in S2(2) with µ1 = 0) for q = 2 to 5000 predictors. Lines represent the median
classification error from 30 simulations where blue shows classification for m = 5, gold
for m = 10, lilac for m = 20, and fuchsia for m = 30.

Table 7: Test error for simulations modifying signal strength

Scenario q m Median 10th Percentile 90th Percentile

S1(2)

q≤ 10*

5 29.0 24.0 31.5
10 28.0 24.5 33.0
20 27.3 24.5 31.2
30 28.5 23.0 33.5

q = 5000

5 31.3 27.5 35.6
10 19.5 15.0 24.1
20 8.0 6.5 10.5
30 3.8 1.5 5.5

S2(2)

q≤ 10*

5 42.8 37.9 46.6
10 46.8 40.5 51.0
20 47.8 45.0 51.6
30 49.0 44.4 54.6

q = 5000

5 49.0 44.9 55.2
10 49.8 46.5 55.1
20 49.0 44.0 52.7
30 49.0 46.0 51.1

*Maximum test error of q = 2, . . . ,10.
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Table 8: Test error for simulations varying signal strength and total predictors

Scenario q m : p Median 10th Percentile 90th Percentile

S1(3)

q≤ 10*

10 : 5000 28.0 24.5 33.0
30 : 15000 29.0 25.4 32.0
50 : 25000 28.5 26.0 32.1
70 : 35000 28.5 25.4 32.5
90 : 45000 27.8 23.9 33.1

q = 5000 10 : 5000 19.5 15.0 24.1
q = 15000 30 : 15000 9.0 6.4 11.6
q = 25000 50 : 25000 4.8 3.0 7.0
q = 35000 70 : 35000 3.0 1.0 4.6
q = 45000 90 : 45000 1.5 0.5 3.0

S2(3)

q≤ 10*

10 : 5000 45.8 41.4 49.7
30 : 15000 49.0 46.8 53.6
50 : 25000 50.3 44.9 55.8
70 : 35000 49.8 45.5 53.7
90 : 45000 49.5 46.0 52.0

q = 5000 10 : 5000 46.5 42.0 53.1
q = 15000 30 : 15000 52.0 47.0 56.0
q = 25000 50 : 25000 49.8 44.4 54.1
q = 35000 70 : 35000 50.5 46.5 54.3
q = 45000 90 : 45000 48.8 44.2 56.0

*Maximum test error of q = 2, . . . ,10.
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(a) Scenario S1(2)
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(b) Scenario S2(2)
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Figure 9: Test error for Scenarios S1(3) and S2(3) (sample size varying between n = 200 and 5000
split equally between classes, m = 10 nonzero elements for µ2 each equal to one in S1(3)
and 1√

m in S2(3) with µ1 = 0) for q = 2 to 5000 predictors. Lines represent the median
classification error from 30 simulations where gold shows classification for m : p = 10 :
5000, light green for m : p = 30 : 15000, turquoise for m : p = 50 : 25000, blue for m : p
= 70 : 35000, and navy for m : p = 90 : 45000.

with different sample sizes, showed the best discriminative ability of these scenarios. As in S1(1),
the classifier improved as sample size increased. The test error dropped from classifying half of
observations incorrectly at q = 5000 when n = 200 to 39.7% when n = 5000. The test error from
scenarios S2(2) and S2(3) look equally poor for nearly all simulations where the classifiers do no
better than chance.

5. Total Signal Index

Without the luxury of knowing true values, it is difficult to detect noise accumulation in practice.
Such concerns led us to develop an index to quantify it. Signal to noise ratio (SNR) is a measure
of signal strength relative to background noise, which can be used to assess the amount of useful
information. Although there are many definitions for this ratio, a common one in statistics is the
quotient of the signal mean and the standard deviation of the noise

SNR =
µ

σ
(1)

where µ is the true signal strength and σ is the standard deviation of the noise. Higher ratios mean
there is more useful information (signal) relative to erroneous data (noise).

In the context of two-group classification problems, one way to interpret signal is as the distance
between the means for the two classes. Variance is a measure of noise around each of those means;
it indicates how much data will spread out from the mean, thus also whether the classes will overlap.
The greater the distance between two means and the smaller their variances, the greater the signal
and the easier it is to distinguish between classes. We combined the definition of SNR in (1) with the
idea of signal being the distance between class means to develop an index which could summarize
the ability of a classifier to differentiate between two groups.
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5.1. Definition

Define two independent groups X1 and X2 with sample size n1 and n2, respectively, such that

X1 :x11, . . . ,x1n1 withX1 ∼ (µ1,Λ1)

X2 :x21, . . . ,x2n2 withX2 ∼ (µ2,Λ2)

where Λ1 and Λ2 are diagonal covariance matrices; x1k1 and x2k2 are p-dimensional vectors for
k1 = 1,2, . . . ,n1 and k2 = 1,2, . . . ,n2. We define the total signal index (TSI) as the Euclidean distance
of the difference in SNR between the two classes

T SI =

√
p

∑
i=1

(
µ1i

σ1i
− µ2i

σ2i

)2
. (2)

As defined in (2), we expect TSI to increase with greater distance between the two classes and drop
as the distance decreases. Equivalently, TSI will be higher with more signal and lower with less
signal.

5.2. Properties of TSI

In practice, sample means and variances are plugged into (2), which will be referred to as empirical
TSI or TSIe. TSIe and TSI were compared using simulations. We randomly sampled data from
multivariate normal distributions with sample deviations s1 = 1 and s2 = 1. We considered sce-
narios with ȳ1 and ȳ2 summarized in Table 9. For each scenario, we generated 100 data sets with
p = 5000 and considered sample sizes n =200, 500, 1000, 5000, and 10000 split equally between
the two groups. We computed minimum, median, and maximum TSIe for every q = 2, . . . ,5000 pre-
dictors. We also calculated the theoretical value of TSI for each of the scenarios for corresponding
values of n, q, µ1i, µ2i, σ1, and σ2. Figures 10a and 10b show median TSIe plotted for each predictor
with bands for minimum and maximum values for n =200 and 10000. The lefthand graph in each
figure shows 1≤ q≤ 50 with TSIe tightly fitting TSI for this range of q. These figures demonstrate
that TSIe traces TSI well when p is small. As the number of predictors increases (righthand side of
the figures), TSIe drifts upwards, overestimating TSI. Ironically, this divergence appears to be due
to noise accumulation, which is magnified when each term of TSIe is summed. When interpreted
together, the plots indicate that the difference between the empirical and theoretical indices can be
ameliorated either by augmenting the number of samples in the groups or increasing the distance
between ȳ1i and ȳ2i. Between Figures 10a and 10b, the gap between TSIe and TSI shrinks as n grows
and it nearly disappears at n = 10000. In each of the figures, the separation between TSIe and TSI
is reduced for Scenario 2 compared to Scenario 1, suggesting that a larger distance between ȳ1i and
ȳ2i may help TSIe better estimate TSI.

To use TSI in real applications, it is necessary to sort columns according to SNR and then apply
TSIe. In our simulation studies, while visual inspection may work in certain cases, the true number
of signals were accurately identified by sequential permutation tests of q = 2, . . . ,5000. Figure 11
shows the results of 10 simulations based on Scenario 1 shown in Table 9 in which predictors had
been randomly shuffled then sorted by SNR and sequential permutation testing applied. We plan to
extend TSI for correlated data or more than two classes in the future.
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Table 9: Scenarios for total signal in-
dex (TSI) simulations

Scenario m1 m2

Value
of m1

Value
of m2

1 10 0 1 0
2 10 10 3 -1

m1, number of nonzero elements in ȳ1; m2, number
of nonzero elements in ȳ2.
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(b) n=10,000
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Figure 10: Median empirical total signal index (TSI) by number of predictors (q = 1 to 50 on left, q
= 1 to 5000 on right) with theoretical value of TSI overlaid for (a) where n = 200 and (b)
where n=10,000. Black line is median empirical TSI for Scenario 1 (ȳ1 has value one for
the first 10 nonzero elements then zero afterward and ȳ2 = 0); red line is corresponding
TSI. Blue line is median empirical TSI for Scenario 2 (ȳ1 = 3 and ȳ2 =−1 for the first
10 nonzero elements then zero afterward); green line is corresponding TSI. Grey and
blue bands show the minimum and maximum values for empirical TSI in Scenarios 1
and 2, respectively.
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Figure 11: Boxplots of p-values resulting from sequential permutation testing of 10 simulations
based on Scenario 1 (m = 10 nonzero elements for µ2 each equal to three and µ1 = 0).

6. Conclusion

We confirmed that noise accumulation may impact the discriminative ability of high-dimensional
classifiers constructed using three machine learning approaches. Our simulations investigating as-
pects of noise accumulation suggest that it may threaten the accurate separation of data into two
classes when sample size is small relative to the number of predictors, signal strength is low, and
signal magnitude is weak. We explored extreme cases of these situations but they may be unlikely in
practice. Our findings suggest that as long as the signal magnitude is sufficiently large, it is possible
to counteract noise accumulation by collecting large sample, selecting classes that are as different
as possible, or ideally both. It is likely that increasing sample size is the most modifiable way to
avoid this problem. However, in settings where the magnitude of signal is weak, good discrimina-
tive ability may not be possible. Finally, TSI can track the trends of signal and noise accumulation
reasonably well, and it can help to identify the true number of signals.
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Appendix A. Machine Learning Packages

A.1. Random Forest

The randomForest package was used for RF simulations. This R package is based on the original
Fortran code written by Breiman and Cutler and implements Breiman’s algorithm to perform clas-
sification and regression based on a forest of trees (available at https://www.stat.berkeley.
edu/~breiman/RandomForests/).

A.2. Support Vector Machines

SVM simulations were performed using the svm() function in the e1071 package with a linear
kernel—K(xi,x j) = xT

i x j. This implementation is based on the C+/C++ code by Chih-Chung Chang
and Chih-Jen Lin (Chang and Lin, 2011) and the resulting classification rule is the solution to the
convex optimization problem

min
β ,β0

1
2
‖β‖2 +C

N

∑
i=1

ξi

subject to ξi ≥ 0 and yi(xT
i β +β0)≥ 1−ξi ∀i,

where C is a non-negative tuning parameter.

A.3. Boosted Classification Trees

The gbm package is based on a generalized boosted modeling framework that iteratively adds ba-
sis functions in a greedy fashion, reducing the binomial deviance—the loss function used for our
simulations—with each additional function. It is modeled on Friedman’s Gradient Boosting Ma-
chine (Friedman, 2001).

All the machine learning methods used in our simulations are described in more detail in The Ele-
ments of Statistical Learning (Hastie et al., 2009).
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