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Abstract

We derive and present explicit algorithms to facilitate streamlined computing for variational
inference for models containing higher level random effects. Existing literature, such as
Lee and Wand (2016), is such that streamlined variational inference is restricted to mean
field variational Bayes algorithms for two-level random effects models. Here we provide the
following extensions: (1) explicit Gaussian response mean field variational Bayes algorithms
for three-level models, (2) explicit algorithms for the alternative variational message passing
approach in the case of two-level and three-level models, and (3) an explanation of how
arbitrarily high levels of nesting can be handled based on the recently published matrix
algebraic results of the authors. A pay-off from (2) is simple extension to non-Gaussian
response models. In summary, we remove barriers for streamlining variational inference
algorithms based on either the mean field variational Bayes approach or the variational
message passing approach when higher level random effects are present.

Keywords: Factor Graph Fragment, Longitudinal Data Analysis, Mixed Models, Multi-
level Models, Variational Message Passing

1. Introduction

Models involving higher level random effects commonly arise in a variety of contexts. The
areas of study known as longitudinal data analysis (e.g. Fitzmaurice et al., 2008) mixed
models (e.g. Pinheiro and Bates, 2000), multilevel models (e.g. Goldstein, 2010), panel
data analysis (e.g. Baltagi, 2013) and small area estimation (e.g. Rao and Molina, 2015)
potentially each require the handling of higher levels of nesting. Our main focus in this
article is providing explicit algorithms that facilitate variational inference for up to three-
level random effects and a pathway for handling even higher levels. Both direct and message
passing approaches to mean field variational Bayes are treated.
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Figure 1: Simulated three-level data according to 6 districts, each having 8 towns, each
having 25 randomly chosen residents. In each panel, the line corresponds to a
mean field variational Bayes fit, according to an appropriate multilevel model and
the shaded region corresponds to pointwise 95% credible intervals for the mean
response.
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Streamlined Variational Inference with Higher Level Random Effects

A useful prototype setting for understanding the nature and computational challenges
is a fictitious sociology example in which residents (level 1 units) are divided into different
towns (level 2 units) and those towns are divided into different districts (level 3 units).
Following Goldstein (2010) we call these three-level data, although note that Pinheiro and
Bates (2000) use the term “two-level”, corresponding to two levels of nesting, for the same
setting. Figure 1 displays simulated regression data generated according to this setting with
a single predictor variable corresponding to years of education and the response correspond-
ing to annual income. In Figure 1, the number of districts is 6, the number of towns per
district is 8 and the resident sample size within each town is 25.

In each panel of Figure 1, the line corresponds to the mean field variational Bayes fit of
a three-level random intercepts and slopes linear mixed model, as explained in Section 5.1.
Now suppose that the group and sample sizes are much larger with, say, 500 districts, 60
towns per district and 1,000 residents per town. Then näıve fitting is storage-greedy and
computationally challenging since the combined fixed and random effects design matrices
have 1.83 × 1012 entries of which at least 99.99% equal zero. A major contribution of this
article is explaining how variational inference can be achieved using only the 0.01% non-zero
design matrix components with updates that are linear in the numbers of groups.

Our streamlined variational inference algorithms for higher level random effects models
rely on four theorems provided by Nolan and Wand (2020) concerning linear system solu-
tions and sub-blocks of matrix inverses for two-level and three-level sparse matrix problems
which are the basis for the fundamental Algorithms A.1–A.4 in Appendix A. In that article,
as well as here, we treat one higher level situation at a time. Even though four-level and
even higher level situations may be of interest in future analysis, the required theory is
not yet in place. As we will see, covering both direct and message passing approaches for
just the two-level and three-level cases is quite a big task. Nevertheless, our results and
algorithms shed important light on streamlined variational inference for general higher level
random effects models.

After introducing the four fundamental algorithms in Section 3 and laying them out
in Appendix A we then derive an additional eight algorithms, labeled Algorithms 1–8,
that facilitate variational inference for two-level and three-level linear mixed models. The
mean field variational Bayes approach is dealt with in Algorithms 1 and 5. The remaining
six algorithms are concerned with streamlined factor graph fragment updates according to
the variational message passing infrastructure described in Wand (2017). As explained in
Section 3.2 there, the message passing approach has the advantage compartmentalization of
variational inference algebra and code. Once a key fragment is identified, it only has to be
derived and coded once and then can be used in models of arbitrarily large size. The inherent
complexity of streamlined variational inference for higher level random effects models is such
that the current article is restricted to ordinary linear mixed models. Extensions such as
generalized additive mixed models with higher level random effects and higher level group-
specific curve models follow from 1–8, but are be treated elsewhere (e.g. Menictas et al.,
2020). Section 8 provides further details on this matter.

Our algorithms also build on previous work on streamlined variational inference for
similar classes of models described in Lee and Wand (2016). However, Lee and Wand
(2016) only treated the two-level case, did not employ QR decomposition enhancement
and did not include any variational message passing algorithms. The current article is a

3
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systematic treatment of higher level random effects models beyond the common two-level
case.

Section 2 provides background material concerning variational inference. In Section 3
we summarize issues involving matrix algebra and point to Appendix A. This appendix
presents four algorithms for solving higher level sparse matrix problems which are funda-
mental for variational inference involving general models with hierarchical random effects
structure. Streamlined variational inference for mixed models possessing two-level random
effects structure is treated in Section 4, followed by treatment of the three-level situation in
Section 5. Derivations of all results and algorithms given in Sections 4 and 5 are deferred to
Appendix B. Section 6 demonstrates the speed advantages of streamlining for variational
inference in random effects models via some computational complexity calculations and
timing studies. Illustration for data from a large perinatal health study is given in Section
7. In Section 8 we close with some discussion about extensions to other settings.

2. Variational Inference Background

In keeping with the theme of this article, we will explain the essence of variational inference
for a general class of Bayesian linear mixed models. Summaries of variational inference in
wider statistical contexts are given in Ormerod and Wand (2010) and Blei et al. (2017).

Suppose that the response data vector y is modeled according to a Bayesian version of
the Gaussian linear mixed model (e.g. Robinson, 1991)

y|β,u,R ∼ N(Xβ +Zu,R), u|G ∼ N(0,G), β ∼ N(µβ,Σβ) (1)

for hyperparameters µβ and Σβ and such that β and u|G are independent. The β and
u vectors are labeled fixed effects and random effects, respectively. Their corresponding
design matrices are X and Z. We will allow for the possibility that prior specification for
the covariance matrices G and R involves auxiliary covariance matrices AG and AR with
conjugate Inverse G-Wishart distributions (Wand, 2017). The prior specification of G and
R involves the specifications

p(G|AG), p(AG), p(R|AR) and p(AR). (2)

Figure 2 is a directed acyclic graph representation of (1) and (2). The circles, usually called
nodes, correspond to the model’s random vectors and random matrices. The arrows depict
conditional independence relationships (e.g. Bishop, 2006, Chapter 8).

AR R y 



β
u





G AG

Figure 2: Directed acyclic graph representation of model (1). The shading of the y node
indicates that this vector of response values is observed.
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Streamlined Variational Inference with Higher Level Random Effects

Full Bayesian inference for the β, G and R and the random effects u involves the
posterior density function p(β,u,AG,AR,G,R|y), but typically is analytically intractable
and Markov chain Monte Carlo approaches are required for practical ‘exact’ inference.
Variational approximate inference involves mean field restrictions such as

p(β,u,AG,AR,G,R|y) ≈ q(β,u,AG,AR) q(G,R) (3)

for density functions q(β,u,AG,AR) and q(G,R), which we call q-densities. The approx-
imation at (3) represents the minimal product restriction for which practical variational
inference algorithms arise. However, as explained in Section 10.2.5 of Bishop (2006), the
graphical structure of Figure 2 induces further product density forms and the right-hand
side of (3) admits the further factorization

q(β,u)q(AG)q(AR)q(G)q(R). (4)

With this product density form in place, the forms and optimal parameters for the q-
densities are obtained by minimising the Kullback-Leibler divergence of the right-hand side
of (3) from its left-hand side. The optimal q-density parameters are interdependent and
a coordinate ascent algorithm (e.g. Ormerod and Wand, 2010, Algorithm 1) is used to
obtain their solution. For example, the optimal q-density for (β,u), denoted by q∗(β,u),
is a Multivariate Normal density function with mean vector µq(β,u) and covariance matrix
Σq(β,u). The coordinate ascent algorithm is such that they are updated according to

Σq(β,u) ←−
{
CT Eq(R

−1)C +

[
Σ−1β O

O Eq(G
−1)

]}−1

and µq(β,u) ←− Σq(β,u)C
T Eq(R

−1)

(
y +

[
Σ−1µβ

0

]) (5)

where Eq(G
−1) and Eq(R

−1) are the q-density expectations of G−1 and R−1 and C ≡
[X Z]. If, for example, (1) corresponds to a mixed model with three-level random effects
such that R = σ2 I then, as pointed out in Section 1, with 60 groups at level 2 and 500
groups at level 3 the matrix C has almost 2 trillion entries of which 99.99% are zero. More-
over, Σq(β,u) is a 61, 002× 61, 002 matrix of which only about 0.016% of its approximately
3.7 billion entries are required for variational inference under mean field restriction (3).
Avoiding the wastage of the näıve updates given by (5) is the crux of this article and dealt
with in the upcoming sections. The updates for Eq(G

−1) and Eq(R
−1) depend on param-

eterizations of G and R. For example, R = σ2I for some σ2 > 0 throughout Sections
4 and 5. However, these covariance parameter updates are relatively simple and free of
storage and computational efficiency issues. Similar comments apply to the updates for the
q-density parameters of AG and AR.

An alternative approach to obtaining µq(β,u), the relevant sub-blocks of Σq(β,u) and
the covariance and auxiliary variable q-parameter updates is to use the notion of message
passing on a factor graph. The relevant factor graph for model (1), according to the product
density form (4), is shown in Figure 3.
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R




β

u



 G

AGAR

p(y|β,u,R) p(β,u|G)

p(G|AG)p(AR)p(R|AR) p(AG)

Figure 3: Factor graph representation of the product structure of (6) with the solid rectangles
corresponding to the factors and open circles corresponding to the unobserved
random vectors and random matrices of the Bayesian linear mixed model given
by (1) and (2), known as stochastic nodes. Edges join each factor to the stochastic
nodes that are present in the factor.

The circles in Figure 3 correspond to the parameters in each factor of (4) and are referred
to as stochastic nodes. The squares correspond to the factors of

p(y,β,u,AG,AR,G,R) = p(y|β,u,R) p(β,u|G) p(G|AG) p(R|AR) p(AG) p(AR), (6)

with factorization according to the conditional independence structure apparent from Figure
2. Then, as explained in e.g. Minka (2005), the q-density of (β,u) can be expressed as

q(β,u) ∝mp(y|β,u,R) → (β,u)(β,u) mp(β,u|G) → (β,u)(β,u)

where
mp(y|β,u,R) → (β,u)(β,u) and mp(β,u|G) → (β,u)(β,u)

are known as messages, with the subscripts indicating that they are passed from p(y|β,u,R)
to (β,u) and p(β,u|G) to (β,u), respectively. Messages are simply functions of the stochas-
tic node to which the message is passed and, for mean field variational inference, are formed
according to rules listed in Minka (2005) and Section 2.5 of Wand (2017). To compartmen-
talize algebra and coding for variational message passing, Wand (2017) advocates the use
of fragments, which are sub-graphs of a factor graph containing a single factor and each
of its neighboring stochastic nodes. In Sections 4 and 5 of Wand (2017), eight important
fragments are identified and treated including those needed for a wide range of linear mixed
models. However, in the interests of brevity, Wand (2017) ignored issues surrounding po-
tentially very large and sparse matrices in the message parameter vectors. In Sections 4 and
5 of this article, we explain how the messages passed to the (β,u) node can be streamlined
to avoid massive sparse matrices.

A core component of the message passing approach to variational inference is exponential
family forms, sufficient statistics and natural parameters. For a d× 1 Multivariate Normal
random vector

x ∼ N(µ,Σ)

6



Streamlined Variational Inference with Higher Level Random Effects

this involves re-expression of its density function according to

p(x) = (2π)−d/2|Σ|−1/2 exp{−1
2(x− µ)TΣ−1(x− µ)}

= exp{T (x)Tη −A(η)− d
2 log(2π)}

where

T (x) ≡
[

x
vech(xxT )

]
and η ≡

[
η1
η2

]
≡
[

Σ−1µ

−1
2D

T
d vec(Σ−1)

]
are, respectively, the sufficient statistic and natural parameter vectors. The matrix Dd,
known as the duplication matrix of order d, is the d2 × {12d(d+ 1)} matrix containing only
zeroes and ones such that Dd vech(A) = vec(A) for any symmetric d × d matrix A. The
function

A(η) = −1
4 η

T
1

{
vec−1(D+T

d η2)
}−1

η1 − 1
2 log

∣∣− 2 vec−1(D+T
d η2)

∣∣
is the log-partition function, where D+

d ≡ (DT
dDd)

−1DT
d is the Moore-Penrose inverse of

Dd and is such that D+
d vec(A) = vech(A) whenever A is symmetric. The inverse of the

natural parameter transformation is given by

µ = −1
2

{
vec−1(D+T

d η2)
}−1

η1 and Σ = −1
2

{
vec−1(D+T

d η2)
}−1

.

The vec and vech matrix operators are reasonably well-established (e.g. Gentle, 2007).
If a is a d2 × 1 vector then vec−1(a) is the d× d matrix such that vec

(
vec−1(a)

)
= a. We

also require vec inversion of non-square matrices. If a is a (d1d2)×1 vector then vec−1d1×d2(a)

is the d1 × d2 matrix such that vec
(
vec−1d1×d2(a)

)
= a.

The other major distributional family used throughout this article is a generalization
of the Inverse Wishart distribution known as the Inverse G-Wishart distribution. It corre-
sponds to the matrix inverses of random matrices that have a G-Wishart distribution (e.g.
Atay-Kayis and Massam, 2005; Maestrini and Wand, 2020). For any positive integer d, let
G be an undirected graph with d nodes labeled 1, . . . , d and set E consisting of sets of pairs
of nodes that are connected by an edge. We say that the symmetric d×d matrix M respects
G if

M ij = 0 for all {i, j} /∈ E.

A d×d random matrix X has an Inverse G-Wishart distribution with graph G and param-
eters ξ > 0 and symmetric d× d matrix Λ, written

X ∼ Inverse-G-Wishart(G, ξ,Λ)

if and only if the density function of X satisfies

p(X) ∝ |X|−(ξ+2)/2 exp{−1
2tr(ΛX−1)}

over arguments X such that X is symmetric and positive definite and X−1 respects G.
Two important special cases are

G = Gfull ≡ totally connected d-node graph,

7
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for which the Inverse G-Wishart distribution coincides with the ordinary Inverse Wishart
distribution, and

G = Gdiag ≡ totally disconnected d-node graph,

for which the Inverse G-Wishart distribution coincides with a product of independent Inverse
Chi-Squared random variables. The subscripts of Gfull and Gdiag reflect the fact that X−1

is a full matrix and X−1 is a diagonal matrix in each special case.
The G = Gfull case corresponds to the ordinary Inverse Wishart distribution. However,

with message passing in mind, we work with the more general Inverse G-Wishart family.
In the d = 1 special case the graph G = Gfull = Gdiag and the Inverse G-Wishart

distribution reduces to the Inverse Chi-Squared distribution. We write

x ∼ Inverse-χ2(ξ, λ)

for this Inverse-G-Wishart(G, ξ, λ) special case with d = 1 and λ > 0 scalar.
Finally, we remark on the p and q notation used for density functions in this article. In

the variational inference literature these letters have become very commonplace to denote
the density functions corresponding to the model and the density functions of parameters
according to the mean field approximation, with p for the former and q for the latter.
However, the same letters are commonly used as dimension variables in the mixed models
literature (e.g. Pinheiro and Bates, 2000). Therefore we use ordinary p and q as dimension
variables and scripted versions of these letters (p and q) for density functions.

3. Matrix Algebraic Background

For matrices M1, . . . ,Md we define:

stack
1≤i≤d

(M i) ≡

 M1
...
Md

 and blockdiag
1≤i≤d

(M i) ≡


M1 O · · · O
O M2 · · · O
...

...
. . .

...
O O · · · Md


with the first of these definitions requiring that M i, 1 ≤ i ≤ d, each having the same
number of columns. Such notation is very useful for defining matrices that appear in higher
level random effects models.

A key observation in this work is the fact that streamlining of variational inference algo-
rithms for higher level random effects models can be achieved by recognition and isolation
of a few fundamental algorithms, which we call multilevel sparse matrix problem algorithms.
These algorithms, based on the results of Nolan and Wand (2020), are similar to those used
traditionally for fitting frequentist random effects (Pinheiro and Bates, 2000). For each
level there are two types of sparse matrix solution algorithms: one that applies to general
forms and one that uses a QR-decomposition enhancement for a particular form that arises
commonly for models containing random effects. Both types are needed for variational
inference.

Appendix A provides the details of the multilevel sparse matrix problem algorithms
used in the upcoming variational inference algorithms. There are four such matrix algebraic
algorithms:

8
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SolveTwoLevelSparseMatrix Algorithm A.1
SolveTwoLevelSparseLeastSquares Algorithm A.2
SolveThreeLevelSparseMatrix Algorithm A.3
SolveThreeLevelSparseLeastSquares Algorithm A.4

We use these four descriptive names in the variational inference algorithms that begin in
the next section.

4. Two-Level Models

We now present streamlined algorithms for two-level linear mixed models.

4.1 Mean Field Variational Bayes

Consider the following Bayesian model:

yi|β,ui, σ2
ind.∼ N(Xiβ +Zi ui, σ

2 I), ui|Σ
ind.∼ N(0,Σ), 1 ≤ i ≤ m,

β ∼ N(µβ,Σβ), σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2),

aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2σ2)),

Σ|AΣ ∼ Inverse-G-Wishart
(
Gfull, νΣ + 2q − 2,A−1Σ

)
,

AΣ ∼ Inverse-G-Wishart(Gdiag, 1,ΛAΣ
), ΛAΣ

≡ {νΣdiag(s2Σ, 1, . . . , s
2
Σ, q)}−1,

(7)

where matrix dimensions, for 1 ≤ i ≤ m, are as follows:

yi is ni × 1, Xi is ni × p, β is p× 1, Zi is ni × q, ui is q × 1 and Σ is q × q.

Also, for example, ui|Σ
ind.∼ N(0,Σ) is shorthand for the ui being independently distributed

N(0,Σ) random vectors conditional on Σ. Next define the matrices

y ≡

 y1
...
ym

 , X ≡
 X1

...
Xm

 , Z ≡ blockdiag
1≤i≤m

(Zi), u ≡

 u1
...
um

 and C ≡ [X Z].

The hyperparameters µβ(p× 1) and Σβ(p× p) are such that Σβ is symmetric and positive
definite and νσ2 , νΣ, sσ2 , sΣ, 1, . . . , sΣ, q > 0. Note that (7) implies that the prior on σ is Half-
Cauchy with scale parameter sσ2 and the prior on Σ is within the class described in Huang
and Wand (2013). As explained in Huang and Wand (2013), such priors allow standard
deviation and correlation parameters to have arbitrary non-informativeness.

Now consider the following mean field restriction on the joint posterior density function
of all parameters in (7):

p(β,u, aσ2 ,AΣ, σ
2,Σ|y) ≈ q(β,u, aσ2 ,AΣ) q(σ2,Σ) (8)

where, generically, each q represents a density function of the random vector indicated by
its argument. Then application of the minimum Kullback-Leibler divergence equations (e.g.

9
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Bishop, 2006, equation (10.9)) leads to the optimal q-density functions for the parameters
of interest being as follows:

q∗(β,u) has a N
(
µq(β,u),Σq(β,u)

)
density function,

q∗(σ2) has an Inverse-χ2
(
ξq(σ2), λq(σ2)

)
density function

and q∗(Σ) has an Inverse-G-Wishart(Gfull, ξq(Σ),Λq(Σ)) density function.

(9)

The optimal q-density parameters are determined via an iterative coordinate ascent algo-
rithm, with details deferred to Appendix B.2. Algorithm 2 of Lee and Wand (2016) is a
näıve mean field variational Bayes algorithm for a class of two-level Gaussian response linear
mixed models that includes model (7) as a special case. Subsequent algorithms in Lee and
Wand (2016) achieve streamlining. In the current article, we offer an alternative approach,
based on Algorithms 1 and 5, that handle higher level random effects in a natural way.

Note that updates for µq(β,u) and Σq(β,u) may be written

µq(β,u) ← (CTR−1
MFVB

C +DMFVB)−1(CTR−1
MFVB

y + oMFVB)

and Σq(β,u) ← (CTR−1
MFVB

C +DMFVB)−1
(10)

where

RMFVB ≡ µ−1q(1/σ2)
I, DMFVB ≡

[
Σ−1β O

O Im ⊗M q(Σ−1)

]
and oMFVB ≡

[
Σ−1β µβ

0

]
. (11)

For increasingly large sample sizes the matrix Σq(β,u) becomes untenably massive. Fortu-
nately, only the following relatively small sub-blocks of Σq(β,u) are required for variational
inference concerning σ2 and Σ:

Σq(β) = top left-hand p× p sub-block of (CTR−1
MFVB

C +DMFVB)−1,

Σq(ui) = subsequent q × q diagonal sub-blocks of (CTR−1
MFVB

C +DMFVB)−1

below Σq(β), 1 ≤ i ≤ m, and

Eq{(β − µq(β))(ui − µq(ui))
T } = subsequent p× q sub-blocks of

(CTR−1
MFVB

C +DMFVB)−1 to the right of Σq(β), 1 ≤ i ≤ m.

(12)

For a streamlined mean field variational Bayes algorithm, we appeal to:

Result 1 The mean field variational Bayes updates of µq(β,u) and each of the sub-blocks of
Σq(β,u) listed in (12) are expressible as a two-level sparse matrix least squares problem (see
Appendix A.1) of the form: ∥∥∥b−Bµq(β,u)

∥∥∥2
where b and the non-zero sub-blocks of B, according to the notation in (29), are, for 1 ≤
i ≤ m,

bi ≡


µ
1/2
q(1/σ2)

yi

m−1/2Σ
−1/2
β µβ

0

 , Bi ≡


µ
1/2
q(1/σ2)

Xi

m−1/2Σ
−1/2
β

O

 and
•

Bi ≡


µ
1/2
q(1/σ2)

Zi

O

M
1/2

q(Σ−1)

 ,
10
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with each of these matrices having ñi = ni + p+ q rows. The solutions are, according to the
notation in (27) and (28),

µq(β) = x1, Σq(β) = A11

and

µq(ui) = x2,i, Σq(ui) = A22,i, Eq{(β − µq(β))(ui − µq(ui))
T } = A12,i, 1 ≤ i ≤ m.

Result 1 implies that the SolveTwoLevelSparseLeastSquares algorithm listed in Algo-
rithm A.2 applies for handling the µq(β,u) and Σq(β,u) sub-block updates. A derivation is
in Appendix B.1. This results in Algorithm 1 for streamlined mean field variational Bayes
for the two-level Gaussian response linear mixed model. A derivation is given in Appendix
B.2.

An important aspect of Result 1 and Algorithm 1 is that the vector (β,u) is treated as
an entity in the updates. This contrasts with block Markov chain Monte Carlo sampling
schemes where sub-vectors of (β,u) are updated separately. In the case of variational
inference, block updating of the sub-vectors of (β,u) corresponds to the imposition of more
stringent product restrictions on the q-density of (β,u) and degradation of accuracy.

Algorithm 1 uses the mean field variational Bayes approximate marginal log-likelihood
log{p(y; q)} in its stopping criterion. For model (7) this is given by

log{p(y; q)} = Eq{log p(y,β,u, σ2, aσ2 ,Σ,AΣ)− q(β,u, σ2, aσ2 ,Σ,AΣ)}. (13)

An explicit streamlined expression for log{p(y; q)} and corresponding derivation is given in
Nolan and Wand (2020).

4.2 Variational Message Passing

We now turn attention to the variational message passing alternative. Note that the joint
density function of all of the random variables and random vectors in the Bayesian two-level
Gaussian response linear mixed model (7) admits the following factorization:

p(y,β,u, σ2,Σ, aσ2 ,AΣ) = p(y|β,u, σ2)p(σ2|aσ2)p(aσ2)p(β,u|Σ)p(Σ|AΣ)p(AΣ). (14)

Figure 4 shows a factor graph representation of (14) with color-coding of fragment types,
according to the nomenclature in Wand (2017).

Each of these fragments is treated in Section 4.1 of Wand (2017). However, the updates
for the Gaussian likelihood fragment, shown in green in Figure 4, and the Gaussian penaliza-
tion fragment, shown in brown in Figure 4, are given in simple näıve forms in Wand (2017)
without matrix algebraic streamlining. The next two subsections overcome this deficiency.

4.3 Streamlined Gaussian Likelihood Fragment Updates

We now focus on the Gaussian likelihood fragment, shown in green in Figure 4. As presented
in Section 4.1.5 of Wand (2017), the messages passed between p(y|β,u, σ2) and (β,u)
involve Multivariate Normal distributions with natural parameter vectors containing

p+mq + 1
2(p+mq)(p+mq + 1) (15)

11
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Algorithm 1 QR-decomposition-based streamlined algorithm for obtaining mean field vari-
ational Bayes approximate posterior density functions for the parameters in the two-level
linear mixed model (7) with product density restriction (8).

Data Inputs: yi(ni × 1), Xi(ni × p), Zi(ni × q), 1 ≤ i ≤ m.

Hyperparameter Inputs: µβ(p× 1), Σβ(p× p) symmetric and positive definite,
sσ2 , νσ2 , sΣ, 1, . . . , sΣ, q, νΣ > 0.

Initialize: µq(1/σ2) > 0, µq(1/aσ2 )
> 0, Mq(Σ−1)(q × q), Mq(A−1

Σ
)(q × q) both symmetric and

positive definite.

ξq(σ2) ←− νσ2+
∑m
i=1 ni ; ξq(Σ) ←− νΣ+2q−2+m ; ξq(aσ2 ) ←− νσ2+1 ; ξq(AΣ) ←− νΣ+q

Cycle:

For i = 1, . . . ,m:

bi ←−


µ
1/2
q(1/σ2)yi

m−1/2Σ
−1/2
β µβ

0

 , Bi ←−


µ
1/2
q(1/σ2)Xi

m−1/2Σ
−1/2
β

0

 , •

Bi ←−


µ
1/2
q(1/σ2)Zi

0

M
1/2

q(Σ−1)

 .
S1 ←− SolveTwoLevelSparseLeastSquares

({
(bi,Bi,

•

Bi) : 1 ≤ i ≤ m
})

µq(β) ←− x1 component of S1 ; Σq(β) ←− A11 component of S1
λq(σ2) ←− µq(1/aσ2 )

; Λq(Σ) ←−Mq(A−1

Σ
)

For i = 1, . . . ,m:

µq(ui) ←− x2,i component of S1 ; Σq(ui) ←− A
22,i component of S1

Eq{(β − µq(β))(ui − µq(ui))
T } ←− A12,i component of S1

λq(σ2) ←− λq(σ2) +
∥∥yi −Xiµq(β) −Ziµq(ui)

∥∥2
λq(σ2) ←− λq(σ2) + tr(XT

i XiΣq(β)) + tr(ZTi ZiΣq(ui))

λq(σ2) ←− λq(σ2) + 2 tr
[
ZTi XiEq{(β − µq(β))(ui − µq(ui))

T }
]

Λq(Σ) ←− Λq(Σ) + µq(ui)µ
T
q(ui)

+ Σq(ui)

µq(1/σ2) ←− ξq(σ2)/λq(σ2) ; Mq(Σ−1) ←− (ξq(Σ) − q + 1) Λ−1
q(Σ)

λq(aσ2 ) ←− µq(1/σ2) + 1/(νσ2s2σ2) ; µq(1/aσ2 )
←− ξq(aσ2 )/λq(aσ2 )

Λq(AΣ) ←− diag
{

diagonal
(
Mq(Σ−1)

)}
+ {νΣdiag(s2Σ, 1, . . . , s

2
Σ, q)}−1

Mq(A−1

Σ
) ←− ξq(AΣ)Λ

−1
q(AΣ).

until the increase in log{p(y; q)} is negligible.

Outputs: µq(β), Σq(β),
{(
µq(ui),Σq(ui), Eq{(β − µq(β))(ui − µq(ui))

T }
)

: 1 ≤ i ≤ m
}

ξq(σ2), λq(σ2), ξq(Σ),Λq(Σ)

unique entries. Since the sizes of these vectors grow quadratically with the number of
groups, message passing suffers from burdensome storage and computational demands. We

12
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overcome this problem by noticing that messages passed to and from p(y|β,u, σ2) are within
reduced Multivariate Normal families.

σ2




β

u



 Σ

AΣaσ2

p(y|β,u,σ2) p(β,u|Σ)

p(Σ|AΣ)p(aσ2)p(σ2|aσ2) p(AΣ)

Figure 4: Factor graph representation of the Bayesian two-level Gaussian response linear
mixed model (7).

Note that the full conditional density function of (β,u) is Multivariate Normal with
inverse covariance matrix

Cov(β,u|rest)−1 = σ−2CTC + blockdiag(Σ−1β , Im ⊗Σ−1),

where ‘rest’ denotes all other random variables in the model, is a two-level sparse matrix.
The same is true for Σ−1q(β,u), the inverse covariance matrix of the mean field approxi-

mate posterior density function of (β,u). In the variational message passing approach
this sparseness transfers to reduced exponential family forms being sufficient. For exam-
ple, in the case of p = q = 2 the messages passed between p(y|β,u, σ2) and (β,u) =
(β0, β1, u10, u11, . . . , um0, um1) have the generic exponential family forms:

exp
{
ηβ0β0 + ηβ1β1 +

m∑
i=1

(ηui0ui0 + ηui1ui1) + ηβ2
0
β20 + ηβ2

1
β21 +

m∑
i=1

(ηu2
i0
u2i0 + ηu2

i1
u2i1)

+

m∑
i=1

(ηβ0ui0β0 ui0 + ηβ0ui1β0 ui1 + ηβ1ui0β1 ui0 + ηβ1ui1β1 ui1)
}
.

(16)
Therefore, it is natural to insist that all messages passed to (β,u) from factors outside of
the two-level Gaussian likelihood fragment are within the same reduced exponential family.
Under such a conjugacy constraint, the natural parameter vectors of messages passed to
and from (β,u) have length

p+ 1
2 p(p+ 1) +m{q + 1

2 q(q + 1) + pq}

which is linear in m and considerably lower than (15) when the number of groups is large.
The reduced exponential family has an attractive graph theoretic representation. The full
Multivariate Normal distribution, in which sparseness is ignored, has dimension p+mq. The
probabilistic undirected graph that respects independence of any pair of random variables
conditional on the rest for the N(µ,Σ) distribution is an undirected graph with an edge

13
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between the `th and `′th nodes if and only if (Σ−1)``′ 6= 0 (e.g. Rue and Held, 2005). The
restricted exponential family corresponds to removal of edges in a fully connected (p+mq)-
node graph. Figure 5 depicts the reduced graph in the case of p = q = 2 and m = 4.
The fully connected graph has 45 edges, whereas the reduced graph corresponding to the
restricted exponential family has only 21 edges. For general p, q and m the numbers of
edges are, respectively, 1

2(p+mq)(p+mq − 1) and 1
2 p(p− 1) +m{12 q(q − 1) + pq}. So, for

example, if p = q = 2 and m = 10, 000 then the number of edges in the reduced graph is
about 50,000 compared with about 200 million in the full graph.

β0 β1

u21

u20u11

u10

u30

u31 u40

u41

Figure 5: Undirected probabilistic graph with edges coding the conditional dependencies of
the entries of (β,u) given the rest for the case p = q = 2 and m = 4.

The message from p(y|β,u, σ2) to (β,u) is

mp(y|β,u, σ2) → (β,u)(β,u) =

exp




β

vech(ββT )

stack
1≤i≤m

 ui
vech(uiu

T
i )

vec(βuTi )




T

ηp(y|β,u, σ2) → (β,u)


(17)

with natural parameter vector ηp(y|β,u, σ2) → (β,u) of length

p+ 1
2p(p+ 1) +m{q + 1

2q(q + 1) + pq}. (18)

Under conjugacy, the reverse message m(β,u) → p(y|β,u, σ2)(β,u) has the same algebraic

form as (17) with natural parameter vector η(β,u) → p(y|β,u, σ2) also of length (18).
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Result 2 The variational message passing updates of the quantities µq(β), µq(ui), 1 ≤ i ≤
m, and the sub-blocks of Σq(β,u) listed in (12) with q-density expectations with respect to
the normalization of

mp(y|β,u, σ2) → (β,u)(β,u)m(β,u) → p(y|β,u, σ2)(β,u)

are expressible as a two-level sparse matrix problem (see Appendix A.1) with

A = −2

 vec−1(D+T
p η1,2)

[
1
2 stack
1≤i≤m

{vec−1(η2,3,i)
T }
]T

1
2 stack
1≤i≤m

{vec−1(η2,3,i)
T } blockdiag

1≤i≤m
{vec−1(D+T

q η2,2,i)}


and

a ≡

 η1,1

stack
1≤i≤m

(η2,1,i)

 where


η1,1 (p× 1)

η1,2 (12p(p+ 1)× 1)

stack
1≤i≤m

 η2,1,i (q × 1)

η2,2,i (12q(q + 1)× 1)

η2,3,i (pq × 1)




is the partitioning of ηp(y|β,u, σ2) ↔ (β,u) that defines η1,1, η1,2 and {(η2,1,i,η2,2,i,η2,3,i) :

1 ≤ i ≤ m}. The solutions, according to the notation in (27) and (28), are µq(β) = x1,

Σq(β) = A11 and

µq(ui) = x2,i, Σq(ui) = A22,i, Eq{(β − µq(β))(ui − µq(ui))
T } = A12,i, 1 ≤ i ≤ m.

Remark. Variational message passing differs from mean field variational Bayes in that its
two-level sparse matrix problem is not expressible in a least squares form.

The process of converting a generic reduced natural parameter vector ηq(β,u) to the
corresponding µq(β,u) vector and important sub-blocks of Σq(β,u), as illustrated by Result
2, is fundamental to streamlining of variational message passing for two-level linear mixed
models. We call this procedure the TwoLevelNaturalToCommonParameters algorithm and
list required steps as Algorithm 2.

It is easily shown (Appendix B.5) that messages between p(y|β,u, σ2) and σ2 have
Inverse Chi-Squared forms. For example,

mp(y|β,u, σ2) → σ2(σ2) = exp


[

1/σ2

log(σ2)

]T
ηp(y|β,u, σ2) → σ2

 . (19)

Algorithm 3 lists parameter updates for the two-level Gaussian likelihood fragment with
streamlining according to the restricted exponential family form (17). Note that it makes
use of SolveTwoLevelSparseMatrix (Algorithm A.1) since the natural parameter updates
correspond to a two-level sparse matrix problem without least squares representation. Ap-
pendix B.5 provides details on the derivation of Algorithm 3.

As in Wand (2017), Algorithm 3 uses the notation

ηf↔θ ≡ ηf→θ + ηθ→f . (20)
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Algorithm 2 The TwoLevelNaturalToCommonParameters algorithm for conversion of a
two-level reduced natural parameter vector to its corresponding common parameters.

Inputs: p, q,m,ηq(β,u)

ω1 ←− first p entries of ηq(β,u)

ω2 ←− next 1
2 p(p+ 1) entries of ηq(β,u) ; Ω3 ←− −2vec−1(D+T

p ω2)

istt ←− p+ 1
2 p(p+ 1) + 1 ; iend ←− istt + q − 1

For i = 1, . . . ,m:

ω4i ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + 1
2 q(q + 1)− 1

ω5 ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + pq − 1

ω6 ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + q − 1

Ω7i ←− −2 vec−1(D+T
q ω5) ; Ω8i ←− −vec−1

p×q(ω6)

S2 ←− SolveTwoLevelSparseMatrix
(
ω1,Ω3,

{
(ω4i,Ω7i,Ω8i) : 1 ≤ i ≤ m

})
µq(β) ←− x1 component of S2 ; Σq(β) ←− A11 component of S2

For i = 1, . . . ,m:

µq(ui) ←− x2,i component of S2 ; Σq(ui) ←− A
22,i component of S2

Eq{(β − µq(β)}(ui − µq(ui))
T } ←− A12,i component of S2

Outputs: µq(β),Σq(β),
{(
µq(ui),Σq(ui), Eq{(β − µq(β)}(ui − µq(ui))

T }) : 1 ≤ i ≤ m
}

4.4 Streamlined Gaussian Penalization Fragment Updates

Next we turn our attention to the Gaussian penalization fragment when the random effects
vector has two-level structure. The relevant fragment is shown in brown in Figure 4.

As shown in Appendix B.7, the message from p(β,u|Σ) to (β,u) has the generic form
(16) but with even more vanishing terms than the message passed from p(y|β,u, σ2). How-
ever, with conjugacy in mind, we work with messages having the same form as (17). This
implies that

mp(β,u|Σ) → (β,u)(β,u) = exp




β

vech(ββT )

stack
1≤i≤m

 ui
vech(uiu

T
i )

vec(βuTi )




T

ηp(β,u|Σ) → (β,u)


with natural parameter vectorηp(y|β,u, σ2) → (β,u) also of length (18). The reverse message

has an analogous form.
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Algorithm 3 The inputs, updates and outputs of the matrix algebraic streamlined Gaussian
likelihood fragment for two-level models.

Data Inputs: yi(ni × 1), Xi(ni × p), Zi(ni × q), 1 ≤ i ≤ m

Parameter Inputs: ηp(y|β,u, σ2) → (β,u), η(β,u) → p(y|β,u, σ2), ηp(y|β,u, σ2) → σ2 ,
ησ2 → p(y|β,u, σ2)

Updates:

µq(1/σ2) ←−
((
ηp(y|β,u, σ2) ↔ σ2

)
1

+ 1
)/(
ηp(y|β,u, σ2) ↔ σ2

)
2

S3 ←− TwoLevelNaturalToCommonParameters

(
p, q,m,ηp(y|β,u, σ2) ↔ (β,u)

)
µq(β) ←− µq(β) component of S3 ; Σq(β) ←− Σq(β) component of S3
ω9 ←− 0p ; ω10 ←− 0 1

2
p(p+1) ; ω11 ←− 0

For i = 1, . . . ,m:

ω9 ←− ω9 +XT
i yi ; ω10 ←− ω10 − 1

2D
T
p vec(XT

i Xi)

µq(ui) ←− µq(ui) component of S3 ; Σq(ui) ←− Σq(ui) component of S3
Eq{(β − µq(β))(ui − µq(ui))

T } ←− Eq{(β − µq(β))(ui − µq(ui))
T } component

of S3
ω11 ←− ω11 − 1

2‖yi −Xiµq(β) −Ziµq(ui)‖
2

ω11 ←− ω11 − 1
2tr(Σq(β)X

T
i Xi)− 1

2tr(Σq(ui)Z
T
i Zi)

−tr[{ZT
i XiEq{(β − µq(β))(ui − µq(ui))

T }]

ηp(y|β,u, σ2) → (β,u) ←− µq(1/σ2)


ω9

ω10

stack
1≤i≤m

 ZT
i yi

−1
2D

T
q vec(ZT

i Zi)

−vec(XT
i Zi)




ηp(y|β,u, σ2) → σ2 ←−

 −1
2

m∑
i=1

ni

ω11


Parameter Outputs: ηp(y|β,u, σ2) → (β,u), ηp(y|β,u, σ2) → σ2 .

Result 3 The variational message passing updates of the quantities µq(ui) and Σq(ui), 1 ≤
i ≤ m, with q-density expectations with respect to the normalization of

mp(β,u|Σ) → (β,u)(β,u)m(β,u) → p(β,u|Σ)(β,u)

17
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are expressible as a two-level sparse matrix problem (see Appendix A.1) with

A = −2

 vec−1(D+T
p η1,2)

[
1
2 stack
1≤i≤m

{vec−1(η2,3,i)
T }
]T

1
2 stack
1≤i≤m

{vec−1(η2,3,i)
T } blockdiag

1≤i≤m
{vec−1(D+T

q η2,2,i)}


and

a ≡

 η1,1

stack
1≤i≤m

(η2,1,i)

 where


η1,1 (p× 1)

η1,2 (12p(p+ 1)× 1)

stack
1≤i≤m

 η2,1,i (q × 1)

η2,2,i (12q(q + 1)× 1)

η2,3,i (pq × 1)




is the partitioning of ηp(β,u|Σ) ↔ (β,u) that defines η1,1, η1,2 and {(η2,1,i,η2,2,i,η2,3,i) :

1 ≤ i ≤ m}. The solutions are, according to the notation in (27) and (28),

µq(ui) = x2,i and Σq(ui) = A22,i, 1 ≤ i ≤ m.

As shown in Appendix B.5, the message from p(β,u|Σ) to Σ has the Inverse-G-Wishart
form

mp(β,u|Σ) → Σ(Σ) = exp


[

log |Σ|
vech(Σ−1)

]T
ηp(β,u|Σ) → Σ

 .

Conjugacy considerations dictate that the message from Σ to p(β,u|Σ) is within the same
exponential family.

Algorithm 4 lists the natural parameter updates for the Gaussian penalization fragment
for two-level random effects. Notation such as ηp(β,u|Σ) ↔ Σ is as defined by (20). See
Appendix B.5 for its derivation.

4.5 q-Density Determination After Variational Message Passing Convergence

After convergence of the variational message passing iterations, determination of q-density
parameters of interest requires some additional non-trivial steps, essentially involving map-
ping particular natural parameter vectors to common parameters of interest. We will ex-
plain this in the context of inference for the parameters in (7) and its Figure 4 factor graph
representation.

For the fixed and random effects parameters we need to first carry out:

ηq(β,u)←−ηp(y|β,u, σ2) → (β,u) +ηp(β,u|Σ) → (β,u)

SA←−TwoLevelNaturalToCommonParameters

(
p, q,m,ηq(β,u)

)
and then unpack SA to obtain the mean and important covariance matrix sub-blocks:

µq(β), Σq(β),
{
µq(ui),Σq(ui), Eq{(β − µq(β))(ui − µq(ui))

T } : 1 ≤ i ≤ m
}
.

18
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Algorithm 4 The inputs, updates and outputs of the matrix algebraic streamlined Gaussian
penalization fragment for two-level models.

Hyperparameter Inputs: µβ(p× 1), Σβ(p× p), m, q
Parameter Inputs: ηp(β,u|Σ) → (β,u), η(β,u) → p(β,u|Σ), ηp(β,u|Σ) → Σ,

ηΣ → p(β,u|Σ)
Updates:

ω12 ←− first entry of ηp(β,u|Σ) ↔ Σ ; ω13 ←− remaining entries of ηp(β,u|Σ) ↔ Σ

M q(Σ−1) ←−
{
ω12 + 1

2(q + 1)
}
{vec−1

(
D+T
q ω13

)
}−1

S4 ←− TwoLevelNaturalToCommonParameters

(
p, q,m,ηp(β,u|Σ) ↔ (β,u)

)
ω14 ←− 0 1

2
q(q+1)

For i = 1, . . . ,m:

µq(ui) ←− µq(ui) component of S4 ; Σq(ui) ←− Σq(ui) component of S4
ω14 ←− ω14 − 1

2D
T
q vec

(
µq(ui)µ

T
q(ui)

+ Σq(ui)

)

ηp(β,u|Σ) → (β,u) ←−



Σ−1β µβ

−1
2D

T
p vec(Σ−1β )

stack
1≤i≤m

 0q

−1
2D

T
q vec

(
M q(Σ−1)

)
0pq




ηp(β,u|Σ) → Σ ←−

[
−1

2m

ω14

]
Parameter Outputs: ηp(β,u|Σ) → (β,u) , ηp(β,u|Σ) → Σ.

of the N(µq(β,u),Σq(β,u)) optimal q-density function.

The error variance σ2 has its optimal q-density function being that of an

Inverse-χ2
(
ξq(σ2), λq(σ2)

)
distribution, and its parameters are determined from the steps:

ηq(σ2)←−ηp(y|β,u, σ2) → σ2 +ηp(σ2|aσ2 )→σ2

ξq(σ2)←−−2
(
ηq(σ2)

)
1
− 2, ; λq(σ2) ←− −2

(
ηq(σ2)

)
2

where
(
ηq(σ2)

)
j

denotes the jth entry of the vector ηq(σ2) for j = 1, 2.
Finally, the random effects covariance matrix Σ has its optimal q-density function being

that of an Inverse-G-Wishart
(
Gfull, ξq(Σ),Λq(Σ)

)
distribution. The steps for determining its

19



Nolan, Menictas and Wand

parameters after variational message passing convergence are:

ηq(Σ)←−ηp(β,u|Σ) → Σ +ηp(Σ|AΣ)→Σ

ξq(Σ)←−−2
(
ηq(Σ)

)
1
− 2, ; Λq(Σ) ←− −2 vec−1

(
D+T
q

(
ηq(Σ)

)
2

)
where

(
ηq(Σ)

)
1

denotes the first entry of ηq(Σ) and
(
ηq(Σ)

)
2

denotes its remaining entries.

4.6 Generalized Linear Mixed Model Extensions

In this article we focus on Gaussian response linear mixed models. The general principles
also apply to non-Gaussian response models within the generalized linear mixed models
framework. For the variational message passing approach Algorithm 4 is applicable for
generalized linear mixed models as well since it involves nodes of the factor graph that
are isolated from the likelihood factor. However, Algorithm 3 is specific to the Gaussian
likelihood factor and extension to non-Gaussian likelihood cases is the subject of ongoing
research.

5. Three-Level Models

We now return to the three-level situation illustrated by Figure 1 and derive algorithms for
streamlined variational inference based on Algorithms A.3 and A.4.

5.1 Mean Field Variational Bayes

A Bayesian version of the three-level linear mixed model treated in the previous subsection
is

yij |β,uL1
i ,u

L2
ij , σ

2 ind.∼ N(Xijβ +ZL1
ij u

L1
i +ZL2

ij u
L2
ij , σ

2 I),[
uL1
i

uL2
ij

] ∣∣∣ΣL1,ΣL2 ind.∼ N

([
0

0

]
,

[
ΣL1 O
O ΣL2

])
, 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

β ∼ N(µβ,Σβ), σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2),

aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2σ2)),

ΣL1|AΣL1 ∼ Inverse-G-Wishart
(
Gfull, νΣL1 + 2q1 − 2, (AΣL1)−1

)
,

AΣL1 ∼ Inverse-G-Wishart(Gdiag, 1, {νΣL1diag(s2
ΣL1, 1

, . . . , s2
ΣL1, q1

)}−1),

ΣL2|AΣL2 ∼ Inverse-G-Wishart
(
Gfull, νΣL2 + 2q2 − 2, (AΣL2)−1

)
,

AΣL2 ∼ Inverse-G-Wishart(Gdiag, 1, {νΣL2diag(s2
ΣL2, 1

, . . . , s2
ΣL2, q2

)}−1).

(21)

where hyperparameters such as νΣL1 > 0 and sΣL1, 1, . . . , sΣL1, q1
> 0 are defined analogously

to the two-level case.
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Algorithm 5 QR-decomposition-based streamlined algorithm for obtaining mean field vari-
ational Bayes approximate posterior density functions for the parameters in the three-level
linear mixed model (21) with product density restriction (22). The algorithm description
requires more than one page and is continued on a subsequent page.

Data Inputs: yij(oij × 1), Xij(oij × p), ZL1
ij (oij × q1),ZL2

ij (oij × q2), 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Hyperparameter Inputs: µβ(p× 1), Σβ(p× p) symmetric and positive definite,
sσ2 , νσ2 , s

ΣL1, 1
, . . . , s

ΣL1, q1
, ν

ΣL1 , sΣL2, 1
, . . . , s

ΣL2, q2
, ν

ΣL2 > 0

Initialize: µq(1/σ2) > 0, µq(1/aσ2 )
> 0, Mq((ΣL1)−1)(q1 × q1), Mq((ΣL2)−1)(q2 × q2),

Mq(A−1

ΣL1
)(q1 × q1), Mq(A−1

ΣL2
)(q2 × q2) symmetric and positive definite,

ξq(σ2) ←− νσ2+

m∑
i=1

ni∑
j=1

oij ; ξq(ΣL1) ←− νΣL1+2q1−2+m ; ξq(ΣL2) ←− νΣL2+2q2−2+

m∑
i=1

ni

ξq(aσ2 ) ←− νσ2 + 1 ; ξq(A
ΣL1 ) ←− νΣL1 + q1 ; ξq(A

ΣL2 ) ←− νΣL2 + q2

Cycle:

For i = 1, . . . ,m:

For j = 1, . . . , ni:

bij ←−



µ
1/2
q(1/σ2)yij( m∑

i=1

ni

)−1/2

Σ
−1/2
β µβ

0

0


; Bij ←−



µ
1/2
q(1/σ2)Xij( m∑

i=1

ni

)−1/2

Σ
−1/2
β

O

O


,

•

Bij ←−


µ
1/2
q(1/σ2)Z

L1
ij

O

n
−1/2
i M

1/2

q((ΣL1)−1)

O

 ;
••

Bij ←−


µ
1/2
q(1/σ2)Z

L2
ij

O

O

M
1/2

q((ΣL2)−1)


S5 ←− SolveThreeLevelSparseLeastSquares({

(bij ,Bij ,
•

Bij ,
••

Bij) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni
})

µq(β) ←− x1 component of S5 ; Σq(β) ←− A11 component of S5
λq(σ2) ←− µq(1/aσ2 )

; Λq(ΣL1) ←−Mq(A−1

ΣL1
) ; Λq(ΣL2) ←−Mq(A−1

ΣL2
)

For i = 1, . . . ,m:

µq(uL1
i ) ←− x2,i component of S5 ; Σq(uL1

i ) ←− A
22,i component of S5

Eq{(β − µq(β))(u
L1
i − µq(uL1

i ))
T } ←− A12,i component of S5

Λq(ΣL1) ←− Λq(ΣL1) + µq(uL1
i )µ

T
q(uL1

i )
+ Σq(uL1

i )

For j = 1, . . . , ni:

µq(uL2
ij ) ←− x2,ij component of S5 ; Σq(uL2

ij ) ←− A
22,ij component of S5

continued on a subsequent page . . .
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Algorithm 5 continued. This is a continuation of the description of this algorithm that
commences on a preceding page.

Eq{(β − µq(β))(u
L2
ij − µq(uL2

ij ))
T } ←− A12,ij component of S5

Eq{(uL1
i − µq(uL1

i ))(u
L2
ij − µq(uL2

ij ))
T } ←− A12,i, j component of S5

λq(σ2) ←− λq(σ2) +
∥∥yij −Xijµq(β) −Z

L1
ij µq(uL1

i ) −Z
L2
ij µq(uL2

ij )

∥∥2
λq(σ2) ←− λq(σ2) + tr(XT

ijXijΣq(β)) + tr{(ZL1
ij )TZL1

ij Σq(uL1
i )}

λq(σ2) ←− λq(σ2) + tr((ZL2
ij )TZL2

ij Σq(uL2
ij ))

λq(σ2) ←− λq(σ2) + 2 tr
[
(ZL1

ij )TXijEq{(β − µq(β))(u
L1
i − µq(uL1

i ))
T }
]

λq(σ2) ←− λq(σ2) + 2 tr
[
(ZL2

ij )TXijEq{(β − µq(β))(u
L2
ij − µq(uL2

ij ))
T }
]

λq(σ2) ←− λq(σ2) + 2 tr
[
(ZL1

ij )TZL2
ij Eq{(uL1

i − µq(uL1
i ))(u

L2
ij − µq(uL2

ij ))
T }
]

Λq(ΣL2) ←− Λq(ΣL2) + µq(uL2
ij )µ

T
q(uL2

ij )
+ Σq(uL2

ij )

µq(1/σ2) ←− ξq(σ2)/λq(σ2)

Mq(ΣL1) ←− (ξq(ΣL1) − q1 + 1) Λ−1

q(ΣL1)
; Mq(ΣL2) ←− (ξq(ΣL2) − q2 + 1) Λ−1

q(ΣL2)

λq(aσ2 ) ←− µq(1/σ2) + 1/(νσ2s2σ2) ; µq(1/aσ2 )
←− ξq(aσ2 )/λq(aσ2 )

Λq(A
ΣL1 ) ←− diag

{
diagonal

(
Mq((ΣL1)−1)

)}
+ {ν

ΣL1 diag(s2
ΣL1, 1

, . . . , s2
ΣL1, q1

)}−1

Λq(A
ΣL2 ) ←− diag

{
diagonal

(
Mq((ΣL2)−1)

)}
+ {ν

ΣL2 diag(s2
ΣL2, 1

, . . . , s2
ΣL2, q2

)}−1

Mq(A−1

ΣL1
) ←− ξq(AΣL1 )Λ

−1
q(A

ΣL1 )
; Mq(A−1

ΣL2
) ←− ξq(AΣL2 )Λ

−1
q(A

ΣL2 )
.

until the increase in log{p(y; q)} is negligible.

Outputs: µq(β), Σq(β),
{(
µq(uL1

i ),Σq(uL1
i ), Eq{(β − µq(β))(u

L1
i − µq(uL1

i ))
T }
)

: 1 ≤ i ≤ m},{(
µq(uL2

ij ),Σq(uL2
ij ), Eq{(β − µq(β))(u

L2
ij − µq(uL2

ij ))
T },

Eq{(uL1
i − µq(uL1

i ))(u
L2
ij − µq(uL2

ij ))
T }
)

: 1 ≤ i ≤ m, 1 ≤ j ≤ ni
}
,

ξq(σ2), λq(σ2), ξq(ΣL1),Λq(ΣL1), ξq(ΣL2),Λq(ΣL2)

The minimal mean field restriction needed for a tractable variational inference algorithm
is

p(β,u, aσ2 ,AΣL1 ,AΣL2 , σ2,ΣL1,ΣL2|y) ≈ q(β,u, aσ2 ,AΣL1 ,AΣL2) q(σ2,ΣL1,ΣL2). (22)

The optimal q-densities have forms analogous to those given in (9) but with

q∗(ΣL1) an Inverse-G-Wishart
(
Gfull, ξq(ΣL1),Λq(ΣL1)

)
density function. A similar result holds for q∗(ΣL2).
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σ2




β

u





ΣL1

ΣL2

AΣL1

AΣL2aσ2

p(y|β,u,σ2) p(β,u|ΣL1,ΣL2)

p(ΣL1|AΣL1)

p(ΣL2|AΣL2)p(aσ2)p(σ2|aσ2)

p(AΣL1)

p(AΣL2)

Figure 6: Factor graph representation of the Bayesian three-level Gaussian response linear
mixed model (21).

As in the two-level case, only the following relatively small sub-blocks of Σq(β,u) are
required for variational inference concerning σ2, ΣL1 and ΣL2:

Σq(β), Σq(uL1
i ), Σq(uL2

ij )
, Eq{(β − µq(β))(u

L1
i − µq(uL1

i ))
T }

Eq{(β − µq(β))(u
L2
ij − µq(uL2

ij )
)T } and Eq{(uL1

i − µq(uL1
i ))(u

L2
ij − µq(uL2

ij )
)T }

(23)

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni. Result 4 is the three-level analog of Result 1 in that it
provides a link between the three-level sparse matrix least squares problems and updates
for µq(β,u) and the important sub-blocks of Σq(β,u).

Result 4 The mean field variational Bayes updates of µq(β,u) and each of the sub-blocks
of Σq(β,u) corresponding to (23) are expressible as a three-level sparse matrix least squares
problem (see Appendix A.2) of the form:

∥∥∥b−Bµq(β,u)

∥∥∥2
where b and the non-zero sub-blocks of B, according to the notation given by (35), are for
1 ≤ j ≤ ni, 1 ≤ i ≤ m:

bij ≡



µ
1/2
q(1/σ2)

yij( m∑
i=1

ni

)−1/2
Σ
−1/2
β µβ

0

0


, Bij ≡



µ
1/2
q(1/σ2)

Xij( m∑
i=1

ni

)−1/2
Σ
−1/2
β

O

O


,
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•

Bij ≡



µ
1/2
q(1/σ2)

ZL1
ij

O

n
−1/2
i

(
M q((ΣL1)−1)

)1/2
O


and

••

Bij ≡



µ
1/2
q(1/σ2)

ZL2
ij

O

O(
M q((ΣL2)−1)

)1/2


with each of these matrices having õij = oij + p+ q1 + q2 rows. The solutions are, according
to notation illustrated by (30)–(32),

µq(β) = x1, Σq(β) = A11,

µq(uL1
i ) = x2,i, Σq(uL1

i ) = A22,i, Eq{(β − µq(β))(u
L1
i − µq(uL1

i ))
T } = A12,i for 1 ≤ i ≤ m

and

µq(uL2
ij )

= x2,ij , Σq(uL2
ij )

= A22,ij , Eq{(β − µq(β))(u
L2
ij − µq(uL2

ij )
)T } = A12,ij ,

Eq{(uL1
i − µq(uL1

i ))(u
L2
ij − µq(uL2

ij )
)T } = A12, i, j for 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Algorithm 5 provides a streamlined mean field variational Bayes algorithm for approx-
imate fitting and inference for (21). An explicit streamlined expression for the stopping
criterion, log{p(y; q)}, is given in Nolan and Wand (2020). We are not aware of any pre-
viously published variational inference algorithms that achieve streamlined inference for
mixed models with three-level random effects.

5.2 Variational Message Passing

For studying the variational message passing alternative we first note that the joint density
function of all of the random variables and random vectors in the Bayesian three-level
Gaussian response linear mixed model (21) can be factorized as follows:

p(y,β,u, σ2,ΣL1,ΣL2, aσ2 ,AΣL1 ,AΣL2) = p(y|β,u, σ2)p(σ2|aσ2)p(aσ2)

× p(β,u|ΣL1,ΣL2)p(ΣL1|AΣL1)p(AΣL1)p(ΣL2|AΣL2)p(AΣL2).

Figure 6 provides the relevant factor graph with color-coding of fragment types.

As with the two-level case, each of these fragments in Figure 6 appear in Section 4.1 of
Wand (2017). To achieve streamlined variational message passing for three-level random
effects models we require tailored versions of the Gaussian likelihood fragment updates and
Gaussian penalization fragment updates. These are provided in the next two subsections
as Algorithms 7 and 8. However, they each rely on the ThreeLevelNaturalToCommonPa-

rameters algorithm, which is listed as Algorithm 6.
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Algorithm 6 The ThreeLevelNaturalToCommonParameters algorithm. The algorithm de-
scription requires more than one page and is continued on a subsequent page.

Inputs: p, q1, q2,m, {ni : 1 ≤ i ≤ m},ηq(β,u)

ω15 ←− first p entries of ηq(β,u)

ω16 ←− next 1
2 p(p+ 1) entries of ηq(β,u) ; Ω17 ←− −2vec−1(D+T

p ω16)

istt ←− p+ 1
2 p(p+ 1) + 1 ; iend ←− istt + q1 − 1

For i = 1, . . . ,m:

ω18i ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + 1
2 q1(q1 + 1)− 1

ω19 ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + pq1 − 1

ω20 ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + q1 − 1

Ω21i ←− −2 vec−1(D+T
q1 ω19) ; Ω22i ←− −vec−1

p×q1(ω20)

iend ←− iend − q1 + q2

For i = 1, . . . ,m:

For j = 1, . . . , ni:

ω23ij ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + 1
2 q2(q2 + 1)− 1

ω24 ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + pq2 − 1

ω25 ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + q1q2 − 1

ω26 ←− sub-vector of ηq(β,u) with entries istt to iend inclusive

istt ←− iend + 1 ; iend ←− istt + q2 − 1

Ω27ij ←− −2 vec−1(D+T
q2 ω24) ; Ω28ij ←− −vec−1

p×q2(ω25)

Ω29ij ←− −vec−1
q1×q2(ω26)

S6 ←− SolveThreeLevelSparseMatrix
(
ω15,Ω17,

{
(ω18i,Ω21i,Ω22i) : 1 ≤ i ≤ m,

(ω23ij ,Ω27ij ,Ω28ij ,Ω29ij) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni
})

µq(β) ←− x1 component of S6 ; Σq(β) ←− A11 component of S6
For i = 1, . . . ,m:

µq(uL1
i ) ←− x2,i component of S6 ; Σq(uL1

i ) ←− A
22,i component of S6,

Eq{(β − µq(β))}(uL1
i − µq(uL1

i ))
T } ←− A12,i component of S6

continued on a subsequent page . . .
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Algorithm 6 continued. This is a continuation of the description of this algorithm that
commences on a preceding page.

For j = 1, . . . , ni:

µq(uL2
ij ) ←− x2,ij component of S6 ; Σq(uL2

ij ) ←− A22,ij component of S6
Eq{(β − µq(β))}(uL2ij − µq(uL2

ij ))
T } ←− A12,ij component of S6

Eq{(uL1i − µq(uL1
i ))}(uL2ij − µq(uL2

ij ))
T } ←− A12,i,j component of S6

Outputs: µq(β),Σq(β),
{(
µq(uL1

i ),Σq(uL1
i ), Eq{(β − µq(β)}(uL1i − µq(uL1

i ))
T }) : 1 ≤ i ≤ m

}
,{(

µq(uL2
ij ),Σq(uL2

ij ), Eq{(β − µq(β))}(uL2ij − µq(uL2
ij ))

T },

Eq{(uL1i − µq(uL1
i ))}(uL2ij − µq(uL2

ij ))
T }
)

: 1 ≤ i ≤ m, 1 ≤ j ≤ ni
}

5.3 Streamlined Gaussian Likelihood Fragment Updates

Streamlined updating for the Gaussian likelihood fragment with three-level random effects
structure is analogous to the two-level case discussed in Section 4.3. The relevant factor is
shown in green in Figure 6. The message from the likelihood factor to the vector of fixed
and random effects instead has the form

mp(y|β,u, σ2) → (β,u)(β,u) =

exp





β

vech(ββT )

stack
1≤i≤m

 uL1
i

vech
(
uL1
i (uL1

i )T
)

vec
(
β(uL1

i )T
)


stack
1≤i≤m

 stack
1≤j≤ni


uL2
ij

vech
(
uL2
ij (uL2

ij )T
)

vec
(
β(uL2

ij )T
)

vec
(
uL1
ij (uL2

ij )T
)






T

ηp(y|β,u, σ2) → (β,u)



(24)

and we assume that m(β,u) → p(y|β,u, σ2)(β,u) is in the same exponential family. Result 5

points the way to streamlining the fragment updates in the three-level case. Its derivation
is given in Section B.11.

Result 5 The variational message passing updates of the quantities µq(β), µq(uL1
i ), 1 ≤ i ≤

m, µq(uL2
ij )

, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, and the sub-blocks of Σq(β,u) corresponding to (23) with

q-density expectations with respect to the normalization of

mp(y|β,u, σ2) → (β,u)(β,u)m(β,u) → p(y|β,u, σ2)(β,u)
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are expressible as a three-level sparse matrix problem (see Appendix A.2) with

A =

[
A11 AT

21

A21 A22

]
,

A11 ≡ −2 vec−1(D+T
p η1,2),

A21 ≡ − stack
1≤i≤m

[
vec−1p×q1(η2,3,i)

T stack
1≤j≤ni

{vec−1p×q2(η3,3,ij)
T }
]
,

A22 ≡ −2 blockdiag
1≤i≤m

 vec−1(D+T
q1 η2,2,i)

[
1
2 stack
1≤j≤ni

{vec−1q1×q2(η3,4,ij)
T }
]T

1
2 stack
1≤j≤ni

{vec−1q1×q2(η3,4,ij)
T } blockdiag

1≤j≤ni
{vec−1(D+T

q2 η3,2,ij)}

 ,
and

a ≡


η1,1

stack
1≤i≤m

(η2,1,i)

stack
1≤i≤m

{
stack
1≤j≤ni

(η3,1,ij)
}

 where



η1,1 (p× 1)

η1,2 (12p(p+ 1)× 1)

stack
1≤i≤m

 η2,1,i (q1 × 1)

η2,2,i (12q1(q1 + 1)× 1)

η2,3,i (pq1 × 1)



stack
1≤i≤m

 stack
1≤j≤ni


η3,1,ij (q2 × 1)

η3,2,ij (12q2(q2 + 1)× 1)

η3,3,ij (pq2 × 1)

η3,4,ij (q1q2 × 1)





is the partitioning of ηp(y|β,u, σ2) ↔ (β,u) that defines η1,1, η1,2, {(η2,1,i,η2,2,i,η2,3,i) : 1 ≤
i ≤ m} and {(η3,1,ij ,η3,2,ij ,η3,3,ij ,η3,4,ij) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}. The solutions are,

according to notation illustrated by (30)–(32), µq(β) = x1, Σq(β) = A11 and

µq(uL1
i ) = x2,i, Σq(uL1

i ) = A22,i, Eq{(β − µq(β))(u
L1
i − µq(uL1

i ))
T } = A12,i for 1 ≤ i ≤ m

and

µq(uL2
ij )

= x2,ij , Σq(uL2
ij )

= A22,ij , Eq{(β − µq(β))(u
L2
ij − µq(uL2

ij )
)T } = A12,ij ,

Eq{(uL1
i − µq(uL1

i ))(u
L2
ij − µq(uL2

ij )
)T } = A12, i, j for 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

The message from the likelihood factor to σ2 has the form as in the two-level case, as
given by (19). Streamlined Gaussian likelihood fragment updates for the messages from
p(y|β,u, σ2) to (β,u) and σ2 is encapsulated in Algorithm 7. Note its use of the notation
defined by (20). Its justification is described in Section B.12.
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Algorithm 7 The inputs, updates and outputs of the matrix algebraic streamlined Gaussian
likelihood fragment for three-level models. The algorithm description requires more than one
page and is continued on a subsequent page.

Data Inputs: yij(oij × 1), Xij(oij × p), ZL1
ij (oij × q1), ZL2

ij (oij × q2), 1 ≤ i ≤ m,
1 ≤ j ≤ ni.

Parameter Inputs: ηp(y|β,u, σ2) → (β,u), η(β,u) → p(y|β,u, σ2), ηp(y|β,u, σ2) → σ2 ,
ησ2 → p(y|β,u, σ2)

Updates:

µq(1/σ2) ←−
((
ηp(y|β,u, σ2) ↔ σ2

)
1

+ 1
)/(
ηp(y|β,u, σ2) ↔ σ2

)
2

S7 ←− ThreeLevelNaturalToCommonParameters

(
p, q1, q2,m, {ni : 1 ≤ i ≤ m},

ηp(y|β,u, σ2) ↔ (β,u)

)
µq(β) ←− µq(β) component of S7 ; Σq(β) ←− Σq(β) component of S7
ω30 ←− 0p ; ω31 ←− 0 1

2
p(p+1) ; ω32 ←− 0

For i = 1, . . . ,m:

µq(uL1
i ) ←− µq(uL1

i ) component of S7 ; Σq(uL1
i ) ←− Σq(uL1

i ) component of S7
Eq{(β − µq(β))(u

L1
i − µq(uL1

i ))
T } ←− Eq{(β − µq(β))(u

L1
i − µq(uL1

i ))
T }

component of S7
ω33i ←− 0q1 ; ω34i ←− 0 1

2
q1(q1+1) ; ω35i ←− 0p q1

For j = 1, . . . , ni:

ω30 ←− ω30 +XT
ijyij ; ω31 ←− ω31 − 1

2D
T
p vec(XT

ijXij)

ω33i ←− ω33i + (ZL1
ij )Tyij ; ω34i ←− ω34i − 1

2D
T
q1vec

(
(ZL1

ij )TZL1
ij

)
ω35i ←− ω35i − vec

(
XT

ijZ
L1
ij

)
µq(uL2

ij )
←− µq(uL2

ij )
component of S7

Σq(uL2
ij )
←− Σq(uL2

ij )
component of S7

Eq{(β − µq(β))(u
L2
ij − µq(uL2

ij )
)T } ←− Eq{(β − µq(β))(u

L2
ij − µq(uL2

ij )
)T }

component of S7
Eq{(uL1

i − µq(uL1
i ))(u

L2
ij − µq(uL2

ij )
)T } ←−

Eq{(uL1
i − µq(uL1

i ))(u
L2
ij − µq(uL2

ij )
)T } component of S7

ω32 ←− ω32 − 1
2‖yij −Xijµq(β) −ZL1

ij µq(uL1
i ) −ZL2

ij µq(uL2
ij )
‖2

continued on a subsequent page . . .
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Algorithm 7 continued. This is a continuation of the description of this algorithm that
commences on a preceding page.

ω32 ←− ω32 − 1
2tr(Σq(β)X

T
ijXij)− 1

2tr(Σq(uL1
i )(Z

L1
ij )TZL1

ij )

−1
2tr(Σq(uL2

ij )
ZL2T
ij ZL2

ij )

−tr[{(ZL1
ij )TXijEq{(β − µq(β))(u

L1
i − µq(uL1

i ))
T }]

−tr[{(ZL2
ij )TXijEq{(β − µq(β))(u

L2
ij − µq(uL2

ij )
)T }]

−tr[{(ZL2
ij )TZL1

ijEq{(uL1
i − µq(uL1

i ))(u
L2
ij − µq(uL2

ij )
)T }]

ηp(y|β,u, σ2) → (β,u) ←− µq(1/σ2)



ω30

ω31

stack
1≤i≤m

 ω33i

ω34i

ω35i



stack
1≤i≤m

 stack
1≤j≤ni


(ZL2

ij )Tyij
−1

2D
T
q2vec((ZL2

ij )TZL2
ij )

−vec(XT
ijZ

L2
ij )

−vec
(
(ZL1

ij )TZL2
ij

)





ηp(y|β,u, σ2) → σ2 ←−

 −1
2

m∑
i=1

ni∑
j=1

oij

ω32


Parameter Outputs: ηp(y|β,u, σ2) → (β,u), ηp(y|β,u, σ2) → σ2 .

5.4 Streamlined Gaussian Penalization Fragment Updates

Here we treat the Gaussian penalization fragment for three-level random effects structure.
This fragment is shown in brown in Figure 6. We assume that

mp(β,u|ΣL1,ΣL2) → (β,u)(β,u) and mp(y|β,u, σ2) → (β,u)(β,u)

are in the same exponential family. In other words, mp(β,u|ΣL1,ΣL2) → (β,u)(β,u) has the

form given by the right-hand side of (24) but with natural parameter vector

ηp(y|β,u, σ2) → (β,u) replaced by ηp(β,u|ΣL1,ΣL2) → (β,u).

The fragment’s other factor to stochastic node messages are

mp(β,u|ΣL1,ΣL2) → ΣL1(ΣL1) = exp


[

log |ΣL1|
vech

(
(ΣL1)−1

) ]T ηp(β,u|ΣL1,ΣL2) → ΣL1
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and

mp(β,u|ΣL1,ΣL2) → ΣL2(ΣL2) = exp


[

log |ΣL2|
vech

(
(ΣL2)−1

) ]T ηp(β,u|ΣL1,ΣL2) → ΣL2

 .

Streamlined updating of the three-level Gaussian penalization fragment is aided by Result
6:

Result 6 The variational message passing updates of the quantities

µq(uL1
i ),Σq(uL1

i ), 1 ≤ i ≤ m,

and
µq(uL2

ij )
,Σq(uL2

ij )
, 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

with q-density expectations with respect to the normalization of

mp(β,u|ΣL1,ΣL2) → (β,u)(β,u)m(β,u) → p(β,u|ΣL1,ΣL2)(β,u)

are expressible as a three-level sparse matrix problem (see Appendix A.2) with

A =

[
A11 AT

21

A21 A22

]
,

A11 ≡ −2 vec−1(D+T
p η1,2),

A21 ≡ − stack
1≤i≤m

[
vec−1p×q1(η2,3,i)

T stack
1≤j≤ni

{vec−1p×q2(η3,3,ij)
T }
]
,

A22 ≡ −2 blockdiag
1≤i≤m

 vec−1(D+T
q1 η2,2,i)

[
1
2 stack
1≤j≤ni

{vec−1q1×q2(η3,4,ij)
T }
]T

1
2 stack
1≤j≤ni

{vec−1q1×q2(η3,4,ij)
T } blockdiag

1≤j≤ni
{vec−1(D+T

q2 η3,2,ij)}

 ,
and

a ≡


η1,1

stack
1≤i≤m

(η2,1,i)

stack
1≤i≤m

{
stack
1≤j≤ni

(η3,1,ij)
}

 where



η1,1 (p× 1)

η1,2 (12p(p+ 1)× 1)

stack
1≤i≤m

 η2,1,i (q1 × 1)

η2,2,i (12q1(q1 + 1)× 1)

η2,3,i (pq1 × 1)



stack
1≤i≤m

 stack
1≤j≤ni


η3,1,ij (q2 × 1)

η3,2,ij (12q2(q2 + 1)× 1)

η3,3,ij (pq2 × 1)

η3,4,ij (q1q2 × 1)





is the partitioning of ηp(β,u|ΣL1,ΣL2) ↔ (β,u) that defines η1,1, η1,2, {(η2,1,i,η2,2,i,η2,3,i) :

1 ≤ i ≤ m} and {(η3,1,ij ,η3,2,ij ,η3,3,ij ,η3,4,ij) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}. The solutions are,
according to notation illustrated by (30)–(32),

µq(uL1
i ) = x2,i, Σq(uL1

i ) = A22,i for 1 ≤ i ≤ m
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and

µq(uL2
ij )

= x2,ij , Σq(uL2
ij )

= A22,ij for 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Algorithm 8 provides the natural parameter vector updates for the three-level Gaussian
penalization fragment based on Result 5. Note that natural parameter vectors containing
a ↔ in their subscript, such as ηp(β,u|ΣL1,ΣL2) ↔ ΣL1 , are defined by (20).

Algorithm 8 The inputs, updates and outputs of the matrix algebraic streamlined Gaussian
penalization fragment for three-level models. The algorithm description requires more than
one page and is continued on a subsequent page.

Hyperparameter Inputs: µβ(p× 1), Σβ(p× p),
Parameter Inputs: ηp(β,u|ΣL1,ΣL2) → (β,u), η(β,u) → p(β,u|ΣL1,ΣL2),

ηp(β,u|ΣL1,ΣL2) → ΣL1 , ηΣL1 → p(β,u|ΣL1,ΣL2),

ηp(β,u|ΣL1,ΣL2) → ΣL2 , ηΣL2 → p(β,u|ΣL1,ΣL2)
Updates:

ω36 ←− first entry of ηp(β,u|ΣL1,ΣL2) ↔ ΣL1

ω37 ←− remaining entries of ηp(β,u|ΣL1,ΣL2) ↔ ΣL1

M q((ΣL1)−1) ←−
{
ω36 + 1

2(q1 + 1)
}
{vec−1

(
D+T
q1 ω37

)
}−1

ω38 ←− first entry of ηp(β,u|ΣL1,ΣL2) ↔ ΣL2

ω39 ←− remaining entries of ηp(β,u|ΣL1,ΣL2) ↔ ΣL2

M q((ΣL2)−1) ←−
{
ω38 + 1

2(q2 + 1)
}
{vec−1

(
D+T
q2 ω39

)
}−1

S8 ←− ThreeLevelNaturalToCommonParameters(
p, q1, q2,m, {ni : 1 ≤ i ≤ m},ηp(y|β,u, σ2) ↔ (β,u)

)
ω40 ←− 0 1

2
q1(q1+1) ; ω41 ←− 0 1

2
q2(q2+1)

For i = 1, . . . ,m:

µq(uL1
i ) ←− µq(uL1

i ) component of S8 ; Σq(uL1
i ) ←− Σq(uL1

i ) component of S8

ω40 ←− ω40 − 1
2D

T
q1vec

(
µq(uL1

i )µ
T
q(uL1

i )
+ Σq(uL1

i )

)
For j = 1, . . . , ni:

µq(uL2
ij )

←− µq(uL2
ij )

component of S8 ; Σq(uL2
ij )

←−
Σq(uL2

ij )
component of S8

ω41 ←− ω41 − 1
2D

T
q2vec

(
µq(uL2

ij )
µT
q(uL2

ij )
+ Σq(uL2

ij )

)
continued on a subsequent page . . .
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Algorithm 8 continued. This is a continuation of the description of this algorithm that
commences on a preceding page.

ηp(β,u|ΣL1,ΣL2) → (β,u) ←−



Σ−1β µβ

−1
2D

T
p vec(Σ−1β )

stack
1≤i≤m


0q1

−1
2D

T
q1vec

(
M q((ΣL1)−1)

)
0pq1



stack
1≤i≤m

 stack
1≤j≤ni


0q2

−1
2D

T
q2vec

(
M q((ΣL2)−1)

)
0pq2
0q1q2






ηp(β,u|ΣL1,ΣL2) → ΣL1 ←−

 −1
2m

ω40

 ; ηp(β,u|ΣL1,ΣL2) → ΣL2 ←−

 −1
2

m∑
i=1

ni

ω41


Parameter Outputs: ηp(β,u|ΣL1,ΣL2) → (β,u), ηp(β,u|ΣL1,ΣL2) → ΣL1 ,

ηp(β,u|ΣL1,ΣL2) → ΣL2

5.5 q-Density Determination After Variational Message Passing Convergence

The advice given in Section 4.5 for the two-level case extends straightforwardly to the
three-level case. The main change is that the steps that we need to first carry out are:

ηq(β,u)←−ηp(y|β,u, σ2) → (β,u) +ηp(β,u|ΣL1,ΣL2) → (β,u)

SB←−ThreeLevelNaturalToCommonParameters(
p, q1, q2,m, {ni : 1 ≤ i ≤ m},ηq(β,u)

)
.

6. Computational Complexity and Timing Results

Table 1 summarizes and compares the large sample computational complexities of stream-
lined mean field variational Bayes Algorithms 1 and 5 and the näıve implementation al-
ternative. To aid digestibility, in Table 1 we are imposing the following balanced designs
restrictions: ni = n and oij = o for all values of the indices. The values of m, n and o
are assumed to be diverging whilst p, q, q1, q2 and the numbers of mean field variational
Bayes iterations are held fixed. The entries of Table 1 are justified by results concerning
the number of floating point operations for matrix multiplications and QR decompositions
given in, for example, Sections 1.2.4 and 5.5.9 of Golub and Loan (1989). We see from Table
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1 that the floating point operation counts of Algorithms 1 and 5 are linear in the number
of observations and these streamlined algorithms offer quadratic improvements over näıve
implementation.

level näıve streamlined näıve/streamlined

two-level O(m3n) O(mn) O(m2)

three-level O(m3n3o) O(mno) O(m2n2)

Table 1: The order of magnitudes of the number of floating point operations for Algorithms
1 and 5 and näıve implementation. The ratio of näıve to streamlined computation
is also given. The designs are assumed to be balanced and m,n, o → ∞ whilst p,
q, q1, q2 and the numbers of mean field variational Bayes iterations are fixed.

To assess finite sample performance, we obtained timing results for simulated data
according to a version of model (7) for which both the fixed effects and random effects
had dimension 2, corresponding to random intercepts and slopes for a single continuous
predictor which was generated from the Uniform distribution on the unit interval. The true
parameter values were set to

βtrue =

[
0.58
1.98

]
, σ2true = 0.1 and Σtrue =

[
2.58 0.22
0.22 1.73

]
and, throughout the study, the ni values were generated uniformly on the set {30, . . . , 60}.
The study was run on a MacBook Air laptop with a 2.2 gigahertz processor and 8 gigabytes
of random access memory. The number of mean field iterations was fixed at 50.

m näıve streamlined näıve/streamlined

200 2.75 (0.0482) 0.035 (0.00000) 78.5
400 22.30 (0.2490) 0.070 (0.00148) 319.0
600 84.40 (0.4940) 0.108 (0.00445) 782.0
800 213.00 (0.9160) 0.143 (0.00445) 1490.0

1,600 427.00 (3.1000) 0.183 (0.00741) 2340.0

Table 2: Median (median absolute deviation) of elapsed computing times in seconds for
fitting model (7) näıvely versus with streamlining via Algorithm 1. The fourth
column lists the ratios of the median computing times.

The first phase of the study involved comparing the computational times of the stream-
lined Algorithm 1 with its näıve counterpart for which (10) was implemented directly. To
allow for maximal speed, both approaches were implemented in the low-level language
Fortran 77. The number of groups varied over m ∈ {200, 400, 600, 800, 1000} and 100
replications were simulated for each value of m. For the most demanding m = 1, 000 case
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the streamlined implementation had a median computing time of 0.183 seconds and a max-
imum of 0.354 seconds. By comparison, the näıve approach had a median computing time
of 7 minutes and, for a few replications, took several hours. Because of such outliers in the
näıve computational times our summary of this first phase, given in Table 2, uses medians
and median absolute deviations. As the number of groups increases into the several hun-
dreds we see that streamlined variational inference becomes thousands of times faster in
terms of median performance.

The second phase of our timing study involved ramping up the number of groups into
the tens of thousands and recording computational times for Algorithm 1. We used the
geometric progression m ∈ {400, 1200, 3600, 10800, 32400} and another 100 replications.
Table 3 shows that the average computing times increase approximately linearly with m
and only around 7 seconds are required for handling m = 32, 400 groups.

m = 400 m = 1, 200 m = 3, 600 m = 10, 800 m = 32, 400

0.0781 0.2400 0.7140 2.30 6.980
(0.0122) (0.0343) (0.0806) (0.270) (0.857)

Table 3: Average (standard deviation) of elapsed computing times in seconds for fitting
model (7) with streamlining via Algorithm 1.

In summary, the streamlined approach is vastly superior to näıve implementation in
terms of speed and scales well to large data multilevel data situations.

As a by-product of our timing studies we also recorded the empirical coverage percent-
ages for credible intervals with an advertized coverage of 95%. The results are given in
Table 4 and based on 1, 000 replications. Apart from σ, the parameters in Table 4 are
sub-components of β and Σ according to

β =

[
β0
β1

]
and Σ =

[
σ21 ρσ1σ2

ρσ1σ2 σ22

]
.

Taking into account the margins of error in percentage estimates based on 1, 000 repli-
cations, the empirical coverages are seen to be in keeping with the 95% advertized level.

7. Illustration for Data From a Large Longitudinal Perinatal Study

We now provide illustration for data from the Collaborative Perinatal Project, a large
longitudinal perinatal health study that was run in the United States of America during
1959–1974 (e.g. Klebanoff, 2009). The data are publicly available from the U.S. National
Archives with identifier 606622. For our illustration in this section, which focuses on the
first year of life, the number of infants followed longitudinally is 44,708 and the number of
fields is 125,564. We do not perform a full-blown analysis of these data and eschew matters
such as careful variable creation, model selection and interpretation. Instead we consider an
illustrative Bayesian mixed model, with two-level random effects, and compare streamlined
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parameter m = 100 m = 200 m = 400 m = 800 m = 1, 600

β0 96.2 95.0 95.6 94.7 95.3
β1 94.8 95.2 94.5 95.4 93.5
σ 95.1 94.0 95.3 95.1 94.6
σ1 93.8 93.6 95.1 95.2 95.3
σ2 94.3 94.3 93.9 95.5 95.3
ρ 93.9 95.9 95.1 95.0 93.8

Table 4: Empirical coverage percentages for advertized 95% credible intervals produced by
Algorithm 1 for the simulation study described in the text. The empirical coverage
percentages are based on 1, 000 replications.

mean field variational Bayes and Markov chain Monte Carlo fits. Specifically, we consider
the model

yij |β0, . . . , β7, σ2
ind.∼ N

(
β0 + ui0 + (β1 + ui1)x1ij + (β1 + ui2)x

2
2ij

+β3 x3ij + . . .+ β7 x7ij , σ
2
)
, ui0

ui1
ui2

 ∣∣∣∣∣Σ ind.∼ N(0,Σ), for 1 ≤ i ≤ 44, 708 and 1 ≤ j ≤ ni

(25)

with priors

β0, . . . , β7
ind.∼ N(0, 1010), σ2|aσ2 ∼ Inverse-χ2(1, 1/aσ2),

aσ2 ∼ Inverse-χ2(1, 10−10), Σ|AΣ ∼ Inverse-G-Wishart
(
Gfull, 6,A

−1
Σ

)
,

AΣ ∼ Inverse-G-Wishart(Gdiag, 1, 2× 10−10I3)

(26)

where yij denotes the jth response recording for the ith infant and a similar notation applies
to the predictors x1ij , . . . , x7ij . The response and predictor variables are:

y≡ height-for-age z-score (see below for details),

x1≡ age of infant in days,

x2≡ indicator that infant is male,

x3≡ indicator that mother is Asian,

x4≡ indicator that mother is Black,

x5≡ indicator that mother is married,

x6≡ indicator that mother smoked 10 or more cigarettes per day

and x7≡ indicator that mother attended 10 or more ante-natal visits during pregnancy.
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Figure 7: Fitted random quadratics for 96 randomly chosen infants from the streamlined
mean field variational Bayes analysis of data from the Collaborative Perinatal
Project for infants in the first year of life. The curves correspond to slices of the
fitted surface according to the model defined by (25) and (26) with each of the
other predictors set to its average value. The light blue shading corresponds to
pointwise 95% credible intervals.
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The height-for-age z-score is a World Health Organization standardized measure for the
height of children after accounting for age. In the Bayesian analysis involving fitting (25)
with priors (26) we divided the y and x1 data by the respective sample standard deviations
for each variable. We then convert to the original units for the reporting of results.

Model (25) is an extension of the common random intercepts and slopes model to quad-
ratic fitting, and allows each infant to have his or her own parabola for the effect of age
on height-for-age z-score. Figure 7 shows the fits for 96 randomly chosen infants. It is
apparent from Figure 7 that the curvature in the age effects warrants the extension to
random quadratics.

indicator that infant is male

indicator that mother is Asian

indicator that mother is Black

indicator that mother is married

indicator that mother smoked
10 or more cigaretters per day

indicator that mother attended 10 or
more pre−natal visits during pregnancy

−0.4 −0.2 0.0 0.2 0.4

effect on height−for−age z−score

MFVB results
MCMC results

Figure 8: Approximate 95% credible intervals for β3, . . . , β7 for two approximate Bayesian
inference fits to the model defined by (25) and (26) for the data from the Collab-
orative Perinatal Project for infants in the first year of life. The thin dark green
line segments display credible intervals based on streamlined mean field variational
Bayes. The thick light green line segments display credible intervals based on a
version of Markov chain Monte Carlo.

In Figure 8 we summarize the approximate Bayesian inference for β3, . . . , β7 via 95%
credible intervals. The results for Markov chain Monte Carlo-based analysis using rstan
(Stan Development Team, 2020), the R (R Core Team, 2020) interface to the Stan language,
are also shown. The number of mean field variational Bayes iterations is 100 and the Markov
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chain Monte Carlo results are based on a warmup sample of size 1, 000 and a retained sample
of size 1, 000.

It is apparent from Figure 8 that streamlined mean field variational Bayes and Markov
chain Monte Carlo deliver very similar inference for the effects of the binary predictors. As
explained in Section 3.1 of Menictas and Wand (2013), mean field variational Bayes tends
to be very accurate for Gaussian response models of the type being used in this example and
the mild product restriction (8). However, such high accuracy is not manifest in general.
Ignorance of important posterior dependencies via mean field restrictions often lead to
credible intervals being too small (e.g. Wang and Titterington, 2005). In Figure 8 there
are pronounced negative effects due to ethnicity and maternal smoking and a pronounced
positive effect due to pre-natal care.

Even though streamlined mean field variational Bayes and Markov chain Monte Carlo
deliver similar inference for this example, the former is significantly faster. However, it is
difficult to quantify the speed gains scientifically due to factors such as stopping criteria,
implementation language and quality of the chains. For the Figure 8 fits, using the MacBook
Air laptop described in Section 6 the Markov chain Monte Carlo fits required about 36 hours
whilst the streamlined variational results took just 24 seconds. However, this comparison
is based on a convenient version of Markov chain Monte Carlo in which all the user has
to do is specify the model and let the Stan Bayesian inference engine do the work. This
convenience comes at the cost that general purpose Bayesian inference engines tend to be
slower than Markov chain Monte implementations for specific models. For the model and
priors given by (25) and (26) Gibbs sampling involves standard distributions and can be
streamlined by sampling from the fixed effects vector and then looping through the random
effect vectors for each infant. After carrying out the requisite algebra, and programming
streamlined Gibbs sampling in R, we found that Markov chain Monte Carlo fitting with the
same chain sizes and laptop required about 3.5 hours. This is about 10 times faster than
Stan, but took a lot longer to code. Lastly, we implemented streamlined Gibbs sampling
using the low-level C++ language with the aid of the R packages Rcpp (Eddelbeuttel et al.,
2020a), RcppArmadillo (Eddelbeuttel et al., 2020b) and RcppDist (Duck-Mayr, 2018). The
coding time required by the authors for this C++ implementation was much longer than
using Stan, but it resulted in a fitting time of just 4.9 minutes. Compared with Stan, the
quality of the chains produced by these streamlined Gibbs sampling implementations is not
as high and larger warmup and kept sample sizes may be warranted in practice.

Table 5 summarizes all of the timings for this example. It shows that, depending on
how Markov chain Monte Carlo is implemented, Bayesian linear mixed model analysis of
the Collaborative Perinatal Project data is between several thousand times and a dozen
times slower than streamlined variational inference.

8. Closing Remarks

We have provided comprehensive coverage of streamlined mean field variational Bayes and
variational message passing for two-level and three-level Gaussian response linear mixed
models. There are numerous extensions which cannot fit into a single article. One is the
addition of penalized spline terms as treated in Lee and Wand (2016). Another is non-
Gaussian likelihood fragments. Group specific curve models (e.g. Durban et al., 2005) also
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approach computing time MCMC/(streamlined MFVB)

MCMC via rstan 36 hours 5,400

MCMC via R code 3.5 hours 514

MCMC via C++ code 4.9 minutes 12.3

streamlined MFVB 24 seconds —

Table 5: Computing times for four different approaches to approximate Bayesian fitting of
(25) to the Collaborative Perinatal Project data. The first three approaches are
Markov chain Monte Carlo (MCMC) with a warmup of length 1,000 and then
1,000 retained samples. The last approach is streamlined mean field variational
Bayes (MFVB) with 100 iterations. The ratios of the MCMC computing times to
that of streamlined MFVB are also shown.

lend themselves to streamlining via the SolveTwoLevelSparseLeastSquares and SolveThree-

LevelSparseLeastSquares algorithms and Menictas et al. (2020) provide full details. Lastly,
there are Gaussian response linear mixed models with more than two levels of nesting.
The present article provides a blueprint for which these various extensions can be resolved
systematically.
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Appendix A. Multilevel Sparse Matrix Problem Algorithms

Algorithms 1–8 rely on four fundamental matrix algebraic algorithms that solve the two-
level and three-level versions of multilevel sparse matrix problems. This class of problems
are defined in Nolan and Wand (2020). These four algorithms:

SolveTwoLevelSparseMatrix Algorithm A.1
SolveTwoLevelSparseLeastSquares Algorithm A.2
SolveThreeLevelSparseMatrix Algorithm A.3
SolveThreeLevelSparseLeastSquares Algorithm A.4

and their underpinnings are presented in this appendix.
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A.1 Two-Level Sparse Matrix Algorithms

Two-level sparse matrix problems are described in Section 2 of Nolan and Wand (2020).
The notation used there is also used in this section. Here we present two algorithms, named

SolveTwoLevelSparseMatrix and SolveTwoLevelSparseLeastSquares

which are at the heart of streamlining variational inference for two-level models.
The SolveTwoLevelSparseMatrix algorithm is concerned with solving general two-level

sparse linear system problem Ax = a, where

A ≡



A11 A12,1 A12,2 · · · A12,m

AT
12,1 A22,1 O · · · O

AT
12,2 O A22,2 · · · O

...
...

...
. . .

...

AT
12,m O O · · · A22,m


, a ≡



a1

a2,1

a2,2
...

a2,m


and x ≡



x1

x2,1

x2,2

...

x2,m


(27)

and obtaining the sub-matrices corresponding to the non-zero blocks of A:

A−1 ≡



A11 A12,1 A12,2 · · · A12,m

A12,1T A22,1 × · · · ×
A12,2T × A22,2 · · · ×

...
...

...
. . .

...

A12,mT × × · · · A22,m


. (28)

As will be elaborated upon later, the blocks represented by the× symbol are not of interest.
SolveTwoLevelSparseMatrix is listed as Algorithm A.1 and is justified by Theorem 2.2 of
Nolan and Wand (2020).

The SolveTwoLevelSparseLeastSquares algorithm arises in the special case where x is
the minimizer of the least squares problem ‖b − Bx‖2 ≡ (b − Bx)T (b − Bx) where the
matrix B and vector b have the generic forms

B ≡



B1

•

B1 O · · · O

B2 O
•

B2 · · · O

...
...

...
. . .

...

Bm O O · · ·
•

Bm


and b ≡



b1

b2
...

bm


. (29)

In this case A = BTB, a = BTb so that the sub-blocks of A and a take the forms

A11 =
m∑
i=1

BT
i Bi, A12,i = BT

i

•

Bi, A22,i =
•

B
T

i

•

Bi, a1 =
m∑
i=1

BT
i bi and a2,i =

•

B
T

i bi.
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Algorithm A.1 The SolveTwoLevelSparseMatrix algorithm for solving the two-level sparse
matrix problem x = A−1a and sub-blocks of A−1 corresponding to the non-zero sub-blocks
of A. The sub-block notation is given by (27) and (28).

Inputs:
(
a1(p× 1),A11(p× p),

{(
a2,i(q × 1),A22,i(q × q),A12,i(p× q)

)
: 1 ≤ i ≤ m

}
ω42 ←− a1 ; Ω43 ←− A11

For i = 1, . . . ,m:

ω42 ←− ω42 −A12,iA
−1
22,ia2,i ; Ω43 ←− Ω43 −A12,iA

−1
22,iA

T
12,i

A11 ←− Ω−1
43 ; x1 ←− A11ω42

For i = 1, . . . ,m:

x2,i ←− A−1
22,i(a2,i −AT

12,ix1) ; A12,i ←− −(A−1
22,iA

T
12,iA

11)T

A22,i ←− A−1
22,i

(
I −AT

12,iA
12,i
)

Output:
(
x1,A

11,
{(
x2,i,A

22,i,A12,i) : 1 ≤ i ≤ m
})

As demonstrated in Section 4, these forms arise in two-level random effects models. Theorem
2.3 of Nolan and Wand (2020) shows that this special form lends itself to a QR decomposition
(e.g. Harville, 2008, Section 6.4.d) approach which has speed and stability advantages in
regression settings (e.g. Gentle, 2007, Section 6.7.2).

SolveTwoLevelSparseLeastSquares is listed as Algorithm A.2. Note that we use ñi,

rather than ni, to denote the number of rows in each of bi, Bi and
•

Bi to avoid a notational
clash with common grouped data dimension notation as used in Section 4. In the first loop
over the m groups of data the upper triangular matrices Ri, 1 ≤ i ≤ m, are obtained via
QR-decomposition; a standard procedure within most computing environments. Following
that, all matrix equations involve R−1i , which can be achieved rapidly via back-solving.

Note that in Algorithm A.2 calculations such as QT
i Bi do not require storage of Qi and

use of ordinary multiplication. Standard matrix algebraic programming languages store
information concerning Qi in a compact form from which matrices such as QT

i Bi can be
efficiently obtained.

A.2 Three-Level Sparse Matrix Algorithms

Extension to the three-level situation is described in Section 3 of Nolan and Wand (2020).
Theorems 3.2 and 3.3 given there lead to the algorithms

SolveThreeLevelSparseMatrix and SolveThreeLevelSparseLeastSquares

which facilitate streamlining variational inference for three-level models.

41



Nolan, Menictas and Wand

Algorithm A.2 The SolveTwoLevelSparseLeastSquares for solving the two-level sparse
matrix least squares problem: minimise ‖b−Bx‖2 in x and sub-blocks of A−1 corresponding
to the non-zero sub-blocks of A = BTB. The sub-block notation is given by (27), (28) and
(29).

Input:
{(
bi(ñi × 1), Bi(ñi × p),

•

Bi(ñi × q)
)

: 1 ≤ i ≤ m
}

ω44 ←− NULL ; Ω45 ←− NULL

For i = 1, . . . ,m:

Decompose
•

Bi = Qi

[
Ri

O

]
such that Q−1

i = QT
i and Ri is upper-triangular.

c0i ←− QT
i bi ; C0i ←− QT

i Bi

c1i ←− first q rows of c0i ; c2i ←− remaining rows of c0i ; ω44 ←−
[
ω44

c2i

]
C1i ←− first q rows of C0i ; C2i ←− remaining rows of C0i ; Ω45 ←−

[
Ω45

C2i

]
Decompose Ω45 = Q

[
R
O

]
such that Q−1 = QT and R is upper-triangular.

c←− first p rows of QTω44 ; x1 ←− R−1c ; A11 ←− R−1R−T

For i = 1, . . . ,m:

x2,i ←− R−1
i (c1i −C1ix1) ; A12,i ←− −A11(R−1

i C1i)
T

A22,i ←− R−1
i (R−T

i −C1iA
12,i)

Output:
(
x1,A

11,
{(
x2,i,A

22,i,A12,i) : 1 ≤ i ≤ m
})

An illustrative three-level sparse matrix is:

A =



A11 A12,1 A12,11 A12,12 A12,2 A12,21 A12,22 A12,23

AT
12,1 A22,1 A12,1,1 A12,1,2 O O O O

AT
12,11 A

T
12,1,1 A22,11 O O O O O

AT
12,12 A

T
12,1,2 O A22,12 O O O O

AT
12,2 O O O A22,2 A12,2,1 A12,2,2 A12,2,3

AT
12,21 O O O AT

12,2,1 A22,21 O O

AT
12,22 O O O AT

12,2,2 O A22,22 O

AT
12,23 O O O AT

12,2,3 O O A22,23



(30)
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and corresponds to level 2 group sizes of n1 = 2 and n2 = 3, and a level 3 group size of
m = 2. A general three-level sparse matrix A consists of the following components:

• A p× p matrix A11, which is designated the (1, 1)-block position.

• A set of partitioned matrices
{[
A12,i A12,ij . . . A12,ini

]
: 1 ≤ i ≤ m

}
, which is

designated the (1, 2)-block position. For each 1 ≤ i ≤ m, A12,i is p× q1, and for each
1 ≤ j ≤ ni, A12,ij is p× q2.

• A (2, 1)-block, which is simply the transpose of the (1, 2)-block.

• A block diagonal structure along the (2, 2)-block position, where each sub-block is a
two-level sparse matrix, as defined in (27). For each 1 ≤ i ≤ m, A22,i is q1 × q1, and
for each 1 ≤ j ≤ ni, A12, i, j is q1 × q2 and A22,ij is q2 × q2.

The three-level sparse linear system problem takes the form Ax = a where we partition
the vectors a and x as follows:

a ≡



a1

a2,1

a2,11

a2,12

a2,2

a2,21

a2,22

a2,23



and x ≡



x1

x2,1

x2,11

x2,12

x2,2

x2,21

x2,22

x2,23



. (31)

Here a1 and x1 are p×1 vectors. Then, for each 1 ≤ i ≤ m, a2,i and x2,i are q1×1 vectors.
Lastly, for each 1 ≤ i ≤ m and 1 ≤ j ≤ ni the vectors a2,ij and x2,ij have dimension q2× 1.

The three-level sparse matrix inverse problem involves determination of the sub-blocks
of A−1 corresponding to the non-zero sub-blocks of A. Our notation for these sub-blocks
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is illustrated by

A−1 =



A11 A12,1 A12,11 A12,12 A12,2 A12,21 A12,22 A12,23

A12,1T A22,1 A12,1,1 A12,1,2 × × × ×
A12,11T A12,1,1T A22,11 × × × × ×
A12,12T A12,1,2T × A22,12 × × × ×
A12,2T × × × A22,2 A12,2,1 A12,2,2 A12,2,3

A12,21T × × × A12,2,1T A22,21 × ×
A12,22T × × × A12,2,2T × A22,22 ×
A12,23T × × × A12,2,3T × × A22,23



(32)

for the m = 2, n1 = 2 and n2 = 3 case.
The SolveThreeLevelSparseMatrixprocedure, which provides streamlined solutions for

the general three-level sparse matrix problem, is listed as Algorithm A.3.
Next, consider the special case where a three-level sparse matrix problem arises as a

least squares problem where x is the minimizer of the least squares problem ‖b−Bx‖2 ≡
(b−Bx)T (b−Bx) where B is such that A = BTB has three-level sparse structure. For
the special case of m = 2, n1 = 2 and n2 = 3 the forms of the B and b matrices are

B ≡



B11

•

B11

••

B11 O O O O O

B12

•

B12 O
••

B12 O O O O

B21 O O O
•

B21

••

B21 O O

B22 O O O
•

B22 O
••

B22 O

B23 O O O
•

B23 O O
••

B23


and b ≡



b11

b12

b21

b22

b23


. (33)

For general 1 ≤ i ≤ m and 1 ≤ j ≤ ni, the dimensions of the sub-blocks of b and B are:

bij is õij × 1, Bij is õij × p,
•

Bij is õij × q1, and
••

Bij is õij × q2. (34)

Here we use õij rather than oij to avoid a notational clash with common grouped data
dimension notation as used in Section 5. The general forms of B and b in the three-level
case are

B ≡
[

stack
1≤i≤m

{
stack
1≤j≤ni

(Bij)
} ∣∣∣blockdiag

1≤i≤m

{[
stack
1≤j≤ni

(
•

Bij)
∣∣blockdiag

1≤j≤ni
(

••

Bij)
]}]

and b ≡ stack
1≤i≤m

{
stack
1≤j≤ni

(bij)
}
.

(35)

Algorithm A.4 provides a QR decomposition-based solution to the three-level sparse
matrix least squares problems when the inputs are the matrices listed in (34).
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Algorithm A.3 The SolveThreeLevelSparseMatrix algorithm for solving the three-level
sparse matrix problem x = A−1a and sub-blocks of A−1 corresponding to the non-zero
sub-blocks of A. The sub-block notation is given by (30), (31) and (32).

Input:
(
a1(p× 1),A11(p× p),

{(
a2,i(q1 × 1),A22,i(q1 × q1),A12,i(p× q1) : 1 ≤ i ≤ m

}
,{

a2,ij(q2 × 1),A22,ij(q2 × q2),A12,ij(p× q2),A12, i, j(q1 × q2)
)

: 1 ≤ i ≤ m, 1 ≤ j ≤ ni
})

.

ω46 ←− a1 ; Ω47 ←− A11

For i = 1, . . . ,m:

h2,i ←− a2,i ; H12,i ←− A12,i ; H22,i ←− A22,i

For j = 1, . . . , ni:

h2,i ←− h2,i −A12, i, jA
−1
22,ija2,ij ; H12,i ←−H12,i −A12,ijA

−1
22,ijA

T
12, i, j

H22,i ←−H22,i −A12, i, jA
−1
22,ijA

T
12, i, j

ω46 ←− ω46 −A12,ijA
−1
22,ija2,ij ; Ω47 ←− Ω47 −A12,ijA

−1
22,ijA

T
12,ij

ω46 ←− ω46 −H12,iH
−1
22,ih2,i ; Ω47 ←− Ω47 −H12,iH

−1
22,iH

T
12,i

A11 ←− Ω−1
47 ; x1 ←− A11ω46

For i = 1, . . . ,m:

x2,i ←− H−1
22,i(h2,i −HT

12,ix1) ; A12,i ←− −(H−1
22,iH

T
12,iA

11)T

A22,i ←− H−1
22,i(I −H

T
12,iA

12,i)

For j = 1, . . . , ni:

x2,ij ←− A−1
22,ij

(
a2,ij −AT

12,ijx1 −AT
12, i, jx2,i

)
A12,ij ←− −

{
A−1

22,ij

(
AT

12,ijA
11 +AT

12, i, jA
12,i T

)}T
A12, i, j ←− −

{
A−1

22,ij

(
AT

12,ijA
12,i +AT

12, i, jA
22,i
)}T

A22,ij ←− A−1
22,ij

(
I −AT

12,ijA
12,ij −AT

12, i, jA
12, i, j

)
Output:

(
x1,A

11,
{(
x2,i,A

22,i,A12,i) : 1 ≤ i ≤ m
}
,{(

x2,ij ,A
22,ij ,A12,ij ,A12, i, j ,

)
: 1 ≤ i ≤ m, 1 ≤ j ≤ ni

})

Appendix B. Appendix B. Derivations

B.1 Derivation of Result 1

It is straightforward to verify that the µq(β,u) and Σq(β,u) updates, given at (10), may be
written as

µq(β,u) ←− (BTB)−1BTb = A−1a and Σq(β,u) ←− (BTB)−1 = A−1
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Algorithm A.4 The SolveThreeLevelSparseLeastSquares for solving the three-level sparse
matrix least squares problem: minimise ‖b−Bx‖2 in x and sub-blocks of A−1 corresponding
to the non-zero sub-blocks of A = BTB. The sub-block notation is given by (28). The
algorithm description requires more than one page and is continued on a subsequent page.

Input:
{(
bij(õij × 1), Bij(õij × p),

•

Bij(õij × q1),
••

Bij(õij × q2)
)

: 1 ≤ i ≤ m, 1 ≤ j ≤ ni
}

ω48 ←− NULL ; Ω49 ←− NULL

For i = 1, . . . ,m:

ω50 ←− NULL ; Ω51 ←− NULL ; Ω52 ←− NULL

For j = 1, . . . , ni:

Decompose
••

Bij = Qij

[
Rij

O

]
such that Q−1

ij = QT
ij and Rij is upper-triangular.

d0ij ←− QT
ijbij ; D0ij ←− QT

ijBij ;
•

D0ij ←− QT
ij

•

Bij

d1ij ←− 1st q2 rows of d0ij ; d2ij ←− remaining rows of d0ij ; ω50 ←−
[
ω50

d2ij

]
D1ij ←− 1st q2 rows of D0ij ; D2ij ←− remaining rows of D0ij

Ω51 ←−
[

Ω51

D2ij

]
•

D1ij ←− 1st q2 rows of
•

D0ij ;
•

D2ij ←− remaining rows of
•

D0ij

Ω52 ←−

[
Ω52
•

D2ij

]

Decompose Ω52 = Qi

[
Ri

O

]
such that Q−1

i = QT
i and Ri is upper-triangular.

c0i ←− QT
i ω50 ; C0i ←− QT

i Ω51

c1i ←− 1st q1 rows of c0i ; c2i ←− remaining rows of c0i ; ω48 ←−
[
ω48

c2i

]
C1i ←− 1st q1 rows of C0i ; C2i ←− remaining rows of C0i ; Ω49 ←−

[
Ω49

C2i

]
Decompose Ω49 = Q

[
R
O

]
so that Q−1 = QT and R is upper-triangular.

c←− first p rows of QTω48 ; x1 ←− R−1c ; A11 ←− R−1R−T

continued on a subsequent page . . .

where B and b have the forms (29) with

bi ≡


µ
1/2
q(1/σ2)

yi

m−1/2Σ
−1/2
β µβ

0

 , Bi ≡


µ
1/2
q(1/σ2)

Xi

m−1/2Σ
−1/2
β

O

 and
•

Bi ≡


µ
1/2
q(1/σ2)

Zi

O

M
1/2

q(Σ−1)

 .
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Algorithm A.4 continued. This is a continuation of the description of this algorithm
that commences on a preceding page.

For i = 1, . . . ,m:

x2,i ←− R−1
i (c1i −C1ix1) ; A12,i ←− −A11(R−1

i C1i)
T

A22,i ←− R−1
i (R−T

i −C1iA
12,i)

For j = 1, . . . , ni:

x2,ij ← R−1
ij (d1ij −D1ijx1 −

•

D1ijx2,i)

A12,ij ← −
{
R−1
ij (D1ijA

11 +
•

D1ijA
12,i T )

}T
A12, i, j ← −

{
R−1
ij (D1ijA

12,i +
•

D1ijA
22,i)

}T
A22,ij ← R−1

ij

(
R−T
ij −D1ijA

12,ij −
•

D1ijA
12, i, j

)
Output:

(
x1,A

11,
{(
x2,i,A

22,i,A12,i) : 1 ≤ i ≤ m
})

{(
x2,ij ,A

22,ij ,A12,ij ,A12, i, j
)

: 1 ≤ i ≤ m, 1 ≤ j ≤ ni
})

B.2 Derivation of Algorithm 1

We first provide expressions for the q-densities for mean field variational Bayesian inference
for the parameters in (7), with product density restriction (8). Arguments analogous to
those given in, for example, Appendix C of Wand and Ormerod (2011) lead to:

q(β,u) is a N(µq(β,u),Σq(β,u)) density function

where

Σq(β,u) = (CTR−1
MFVB

C +DMFVB)−1 and µq(β,u) = Σq(β,u)(C
TR−1

MFVB
y + oMFVB)

with RMFVB, DMFVB and oMFVB defined via (11),

q(σ2) is an Inverse-χ2
(
ξq(σ2), λq(σ2)

)
density function

where ξq(σ2) = νσ2 +
∑m

i=1 ni and

λq(σ2) = µq(1/aσ2 ) +

m∑
i=1

Eq{‖yi −Xiβ −Ziui‖2}

= µq(1/aσ2 ) +

m∑
i=1

[
‖Eq(yi −Xiβ −Ziui)‖2 + tr{Covq(Xiβ +Ziui)}

]
= µq(1/aσ2 ) +

m∑
i=1

(
‖Eq(yi −Xiβ −Ziui)‖2 + tr(XT

i XiΣq(β)) + tr(ZT
i ZiΣq(ui))

+2 tr
[
ZT
i XiEq{(β − µq(β))(ui − µq(ui))

T }
])
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with reciprocal moment µq(1/σ2) = ξq(σ2)/λq(σ2),

q(Σ) is an Inverse-G-Wishart
(
Gfull, ξq(Σ),Λq(Σ)

)
density function

where ξq(Σ) = νΣ + 2q − 2 +m and

Λq(Σ) = M q(A−1
Σ ) +

m∑
i=1

(
µq(ui)µ

T
q(ui)

+ Σq(ui)

)
with inverse moment M q(Σ−1) = (ξq(Σ) − q + 1)Λ−1q(Σ),

q(aσ2) is an Inverse-χ2(ξq(aσ2 ), λq(aσ2 )) density function

where ξq(aσ2 ) = νσ2 + 1,

λq(aσ2 ) = µq(1/σ2) + 1/(νσ2s2σ2)

with reciprocal moment µq(1/aσ2 ) = ξq(aσ2 )/λq(aσ2 ) and

q(AΣ) is an Inverse-G-Wishart
(
Gdiag, ξq(AΣ),Λq(AΣ)

)
density function

where ξq(AΣ) = νΣ + q,

Λq(AΣ) = diag
{

diagonal
(
M q(Σ−1)

)}
+ ΛAΣ

with inverse moment M q(A−1
Σ ) = ξq(AΣ)Λ

−1
q(AΣ).

The q-density parameters are interdependent and their Kullback-Leibler divergence op-
timal values can be found via a coordinate ascent iterative algorithm, which corresponds
to Algorithm 2 of Lee and Wand (2016) for the special case of L = 0 in the notation used
there. However, as explained there, näıve updating of µq(β,u) and Σq(β,u) has massive com-
putational and storage costs when the number of groups is large. Result 1 asserts that we
can instead use SolveTwoLevelSparseLeastSquares (Algorithm A.2) to obtain µq(β,u) and
relevant sub-blocks of Σq(β,u).

B.3 Derivation of Result 2

Note that

q(β,u)∝mp(y|β,u, σ2) → (β,u)(β,u)m(β,u) → p(y|β,u, σ2)(β,u)

= exp




β

vech(ββT )

stack
1≤i≤m

 ui
vech(uiu

T
i )

vec(βuTi )




T

ηp(y|β,u, σ2) ↔ (β,u)


= exp


[
β

u

]T
a− 1

2

[
β

u

]T
A

[
β

u

]
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where a and A as given in Result 2 and the last step uses facts such as vech(M) =
D+
d vec(M) for any symmetric d× d matrix M . Standard manipulations then lead to

µq(β,u) = A−1a and Σq(β,u) = A−1.

Result 2 then follows from extraction of the sub-blocks of x = A−1a and the important
sub-blocks of A−1 according to (12).

B.4 Derivation of Algorithm 2

The two-level reduced exponential family form is

q(β,u) ∝ exp




β

vech(ββT )

stack
1≤i≤m

 ui
vech(uiu

T
i )

vec(βuTi )




T

ηq(β,u)


= exp


[
β

u

]T
a− 1

2

[
β

u

]T
A

[
β

u

]

where A and a are as defined in Result 2 with ηp(y|β,u, σ2) ↔ (β,u) replaced by ηq(β,u)
with A having two-level sparse structure. As with the derivation of Result 2, we have the
relationships

µq(β,u) = A−1a and Σq(β,u) = A−1. (36)

The first part of Algorithm 2 is such that the entries of ηq(β,u) are sequentially unpacked
and stored in the vectors ω1 and ω4i, 1 ≤ i ≤ m, corresponding to the a vector according
to the partitioning in (27) and the matrices Ω3 and Ω7i,Ω8i, 1 ≤ i ≤ m, corresponding to
the non-zero sub-blocks of A in (27).

Next, S2 stores the streamlined solution to (36) according to the SolveTwoLevelSparse-

Matrix algorithm (Algorithm A.1). The remainder of Algorithm 2 is plucking off the relevant
common parameter sub-blocks of µq(β,u) and Σq(β,u) based (36) and keeping in mind that
(36) represents a two-level sparse matrix problem.
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B.5 Derivation of Algorithm 3

First note that the logarithm of the fragment factor is, as a function of (β,u):

log p(y|β,u, σ2) = − 1

2σ2

m∑
i=1

‖yi −Xiβ −Ziui‖2 + const

= (1/σ2)



β

vech(ββT )

stack
1≤i≤m


ui

vech(uiu
T
i )

vec(βuTi )





T


m∑
i=1

XT
i yi

−1
2

m∑
i=1

DT
p vec(XT

i Xi)

stack
1≤i≤m


ZT
i yi

−1
2D

T
q vec(ZT

i Zi)

−vec(XT
i Zi)




+ const.

Therefore, from equations (8) and (9) of Wand (2017),

mp(y|β,u, σ2) → (β,u)(β,u)←− exp





β

vech(ββT )

stack
1≤i≤m


ui

vech(uiu
T
i )

vec(βuTi )





T

ηp(y|β,u, σ2) → (β,u)


where

ηp(y|β,u, σ2) → (β,u) ≡ µq(1/σ2)



m∑
i=1

XT
i yi

−1
2

m∑
i=1

DT
p vec(XT

i Xi)

stack
1≤i≤m


ZT
i yi

−1
2D

T
q vec(ZT

i Zi)

−vec(XT
i Zi)




and µq(1/σ2) denotes expectation of 1/σ2 with respect to the normalization of

mp(y|β,u, σ2) → σ2(σ2)mσ2 → p(y|β,u, σ2)(σ
2)

which is an Inverse χ2 density function with natural parameter vector

ηp(y|β,u, σ2) ↔ σ2

and, according to Table S.1 in the online supplement of Wand (2017), leads to

µq(1/σ2) ←−
((
ηp(y|β,u, σ2) ↔ σ2

)
1

+ 1
)
/
(
ηp(y|β,u, σ2) ↔ σ2

)
2
.
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The other factor to stochastic node message update is

mp(y|β,u, σ2) → σ2(σ2)←− exp


 log(σ2)

1/σ2

T ηp(y|β,u, σ2) → σ2


where

ηp(y|β,u, σ2) → σ2 ≡


−1

2

m∑
i=1

ni

−1
2

m∑
i=1

Eq{‖yi −Xiβ −Ziui‖2}


with Eq denoting expectation with respect to the normalization of

mp(y|β,u, σ2) → (β,u)(β,u)m(β,u) → p(y|β,u, σ2)(β,u).

Then note that

Eq{‖yi −Xiβ −Ziui‖2}= ‖yi −Xiµq(β) −Zi µq(ui)‖
2 + tr(XT

i XiΣq(β))

+tr(ZT
i ZiΣq(ui)) + 2 tr

[
ZT
i XiEq{(β − µq(β))(ui − µq(ui))

T }
]

where, for example, µq(β) ≡ Eq(β) and Σq(ui) ≡ Covq(ui). Result 2 links sub-blocks of
ηp(y|β,u, σ2) ↔ (β,u) with the required sub-vectors of µq(β,u) and sub-blocks of Σq(β,u).

These matrices are extracted from ηp(y|β,u, σ2) ↔ (β,u) in the call to TwoLevelNaturalTo-

CommonParameters algorithm (Algorithm 2).

B.6 Derivation of Result 3

The derivation of Result 3 is very similar to that for Result 2.

B.7 Derivation of Algorithm 4

The logarithm on the fragment factor is, as a function of (β,u):

log p(β,u|Σ) = −1
2(β − µβ)TΣ−1β (β − µβ)− 1

2

m∑
i=1

uTi Σ−1ui + const

=



β

vech(ββT )

stack
1≤i≤m


ui

vech(uiu
T
i )

vec(βuTi )





T 

Σ−1β µβ

−1
2D

T
p vec(Σ−1β )

stack
1≤i≤m


0q

−1
2D

T
q vec(Σ−1)

0pq




+ const.
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Therefore, from equations (8) and (9) of Wand (2017),

mp(β,u|Σ) → (β,u)(β,u)←− exp





β

vech(ββT )

stack
1≤i≤m


ui

vech(uiu
T
i )

vec(βuTi )





T

ηp(β,u|Σ) → (β,u)


where

ηp(β,u|Σ) → (β,u) ≡



Σ−1β µβ

−1
2D

T
p vec(Σ−1β )

stack
1≤i≤m


0q

−1
2D

T
q vec

(
M q(Σ−1)

)
0pq




and M q(Σ−1) denotes expectation of Σ−1 with respect to the normalization of

mp(β,u|Σ) → Σ(Σ)mΣ → p(β,u|Σ)(Σ)

which is an Inverse G-Wishart density function with natural parameter vector

ηp(β,u|Σ) ↔ Σ

and, according to Table S.1 in the online supplement of Wand (2017), leads to

M q(Σ−1) ←− {ω12 + 1
2(q + 1)}{vec−1(ω13)}−1

where ω12 is the first entry of ηp(β,u|Σ) ↔ Σ and ω13 is the vector containing the remaining
entries of ηp(β,u|Σ) ↔ Σ.

The other factor to stochastic node message update is

mp(β,u|Σ) → Σ(Σ)←− exp


 log |Σ|

vech(Σ−1)

T ηp(β,u|Σ) → Σ


where

ηp(β,u|Σ) → Σ ≡


−1

2 m

−1
2

m∑
i=1

DT
q vec{Eq(uiu

T
i )}


with Eq denoting expectation with respect to the normalization of

mp(β,u|Σ) → (β,u)(β,u)m(β,u) → p(β,u|Σ)(β,u).
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Then note that

Eq(uiu
T
i ) = µq(ui)µ

T
q(ui)

+ Σq(ui)

where, as before, µq(ui) ≡ Eq(ui) and Σq(ui) ≡ Covq(ui). Result 3 links sub-blocks of
ηp(β,u|Σ) → (β,u) with the required sub-vectors of µq(β,u) and sub-blocks of Σq(β,u). We
then call upon Algorithm 2 to obtain µq(ui) and Σq(ui), 1 ≤ i ≤ m.

B.8 Derivation of Result 4

Routine matrix algebraic steps can verify that the µq(β,u) and Σq(β,u) updates,

µq(β,u) ← (CTR−1
MFVB

C +DMFVB)−1(CTR−1
MFVB

y + oMFVB)

and

Σq(β,u) ← (CTR−1
MFVB

C +DMFVB)−1,

with C, DMFVB and RMFVB as defined by

C ≡ [X Z], DBLUP ≡


Σ−1β O

O blockdiag
1≤i≤m

[
M q((ΣL1)−1) O

O Ini ⊗M q((ΣL2)−1)

] 
and RBLUP ≡ σ2I may be written as

µq(β,u) ←− (BTB)−1BTb = A−1a and Σq(β,u) ←− (BTB)−1 = A−1

where B and b have the sparse three-level forms given by (35) with

bij ≡



µ
1/2
q(1/σ2)

yij( m∑
i=1

ni

)−1/2
Σ
−1/2
β µβ

0

0


, Bij ≡



µ
1/2
q(1/σ2)

Xij( m∑
i=1

ni

)−1/2
Σ
−1/2
β

O

O


,

•

Bij ≡



µ
1/2
q(1/σ2)

ZL1
ij

O

n
−1/2
i

(
M q((ΣL1)−1)

)1/2
O


and

••

Bij ≡



µ
1/2
q(1/σ2)

ZL2
ij

O

O(
M q((ΣL2)−1)

)1/2


.

B.9 Derivation of Algorithm 5

Algorithm 5 is the three-level counterpart of Algorithm 1 and its derivation is analogous to
that given for Algorithm 1 in Section B.2.
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The first difference is that the µq(β,u) and Σq(β,u) updates are expressible as three-
level sparse matrix least squares problems and so the SolveThreeLevelSparseLeastSquares

algorithm (Algorithm A.4) is used for streamlined updating of their relevant sub-blocks.
We still have q(σ2) optimally being an Inverse Chi-Squared density function but with

shape parameter

ξq(σ2) = νσ2 + 1
2

m∑
i=1

ni∑
j=1

oij

and rate parameter

λq(σ2)=µq(1/aσ2 ) + 1
2

m∑
i=1

ni∑
j=1

Eq{‖yij −Xijβ −ZL1
ij u

L1
i −ZL2

ij u
L2
ij ‖2}

=µq(1/aσ2 ) + 1
2

m∑
i=1

ni∑
j=1

(
‖yij −Xij µq(β) −ZL1

ij µq(uL1
i ) −Z

L2
ij µq(uL2

ij )
‖2

+tr(XT
ijXijΣq(β)) + tr{(ZL1

ij )TZL1
ij Σq(uL1

i )}+ tr{(ZL2
ij )TZL2

ij Σq(uL2
ij )
}

+2 tr
[
(ZL1

ij )TXijEq{(β − µq(β))(u
L1
i − µq(uL1

i ))
T }
]

+2 tr
[
(ZL2

ij )TXijEq{(β − µq(β))(u
L2
ij − µq(uL2

ij )
)T }
]

+2 tr
[
(ZL2

ij )TZL1
ijEq{(uL1

i − µq(uL1
i ))(u

L2
ij − µq(uL2

ij )
)T }
])
.

The optimal q(aσ2) density function is unaffected by the change from the two-level case
to the three-level situation.

The random effects covariance matrices are such that

q(ΣL1) is an Inverse-G-Wishart
(
Gfull, ξq(ΣL1),Λq(ΣL1)

)
density function

where ξq(ΣL1) = νΣL1 + 2q1 − 2 +m and

Λq(ΣL1) = M q(A−1

ΣL1 )
+

m∑
i=1

(
µq(uL1

i )µ
T
q(uL1

i )
+ Σq(uL1

i )

)
,

whilst

q(ΣL2) is an Inverse-G-Wishart
(
Gfull, ξq(ΣL2),Λq(ΣL2)

)
density function

where ξq(ΣL2) = νΣL2 + 2q2 − 2 +
∑m

i=1 ni and

Λq(ΣL2) = M q(A−1

ΣL2 )
+

m∑
i=1

ni∑
j=1

(
µq(uL2

ij )
µT
q(uL2

ij )
+ Σq(uL2

ij )

)
.

The optimal q(AΣL1) and q(AΣL2) density functions have the same derivations and forms
as q(AΣ) in the two-level case.

Algorithm 5 is a streamlined iterative coordinate ascent for determination of Kullback-
Leibler optimal values of each of the q-density parameters in the Bayesian three-level mixed
model (21).
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B.10 Derivation of Algorithm 6

Algorithm 6 is the three-level counterpart of Algorithm 2 and they each use the same logic.
Therefore, the Algorithm 6 follows from arguments similar to those given in Section B.4.

B.11 Derivation of Result 5

Note that

q(β,u)∝mp(y|β,u, σ2) → (β,u)(β,u)m(β,u) → p(y|β,u, σ2)(β,u)

= exp





β

vech(ββT )

stack
1≤i≤m

 uL1
i

vech
(
uL1
i (uL1

i )T
)

vec
(
β(uL1

i )T
)


stack
1≤i≤m

 stack
1≤j≤ni


uL2
ij

vech
(
uL2
ij (uL2

ij )T
)

vec
(
β(uL2

ij )T
)

vec
(
uL1
i (uL2

ij )T
)






T

ηp(y|β,u, σ2) → (β,u)


= exp


[
β

u

]T
a− 1

2

[
β

u

]T
A

[
β

u

]

where a and A are as given in Result 5. The last step uses facts such as vech(M) =
D+
d vec(M) for any symmetric d× d matrix M . Standard manipulations then lead to

µq(β,u) = A−1a and Σq(β,u) = A−1

and Result 5 then follows from extraction of the sub-blocks of x = A−1a and the sub-blocks
of A−1 corresponding to the non-zero positions of A.
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B.12 Derivation of Algorithm 7

As a function of (β,u), the logarithm of the fragment factor is:

log p(y|β,u, σ2) = − 1

2σ2

m∑
i=1

ni∑
j=1

‖yij −Xijβ −ZL1
ij u

L1
i −ZL2

ij u
L2
ij ‖2 + const

= (1/σ2)



β

vech(ββT )

stack
1≤i≤m

 uL1
i

vech
(
uL1
i (uL1

i )T
)

vec
(
β(uL1

i )T
)


stack
1≤i≤m

 stack
1≤j≤ni


uL2
ij

vech
(
uL2
ij (uL2

ij )T
)

vec
(
β(uL1

ij )T
)

vec
(
uL1
i (uL2

ij )T
)






T

ν1 + const.

where

ν1 ≡



m∑
i=1

ni∑
j=1

XT
ijyij

−1
2

m∑
i=1

ni∑
j=1

DT
p vec(XT

ijXij)

stack
1≤i≤m



ni∑
j=1

(ZL1
ij )Tyij

−1
2

ni∑
j=1

DT
q1vec

(
(ZL1

ij )TZL1
ij

)
−

ni∑
j=1

vec
(
XT

ijZ
L1
ij

)



stack
1≤i≤m

 stack
1≤j≤ni


(ZL2

ij )Tyij
−1

2D
T
q2vec((ZL2

ij )TZL2
ij )

−vec(XT
ijZ

L2
ij )

−vec
(
(ZL1

ij )TZL2
ij

)





.
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Therefore, from equations (8) and (9) of Wand (2017),

mp(y|β,u, σ2) → (β,u)(β,u)

←− exp





β

vech(ββT )

stack
1≤i≤m

 uL1
i

vech
(
uL1
i (uL1

i )T
)

vec
(
β(uL1

i )T
)


stack
1≤i≤m

 stack
1≤j≤ni


uL2
ij

vech
(
uL2
ij (uL2

ij )T
)

vec
(
β(uL1

ij )T
)

vec
(
uL1
i (uL2

ij )T
)






T

ηp(y|β,u, σ2) → (β,u)


where

ηp(y|β,u, σ2) → (β,u) ≡ µq(1/σ2) ν1

and µq(1/σ2) denotes expectation of 1/σ2 with respect to the normalization of

mp(y|β,u, σ2) → σ2(σ2)mσ2 → p(y|β,u, σ2)(σ
2).

This is an Inverse χ2 density function with natural parameter vector ηp(y|β,u, σ2) ↔ σ2 and,

from Table S.1 in the online supplement of Wand (2017), we have

µq(1/σ2) ←−
((
ηp(y|β,u, σ2) ↔ σ2

)
1

+ 1
)
/
(
ηp(y|β,u, σ2) ↔ σ2

)
2
.

The other factor to stochastic node message update is

mp(y|β,u, σ2) → σ2(σ2)←− exp


 log(σ2)

1/σ2

T ηp(y|β,u, σ2) → σ2


where

ηp(y|β,u, σ2) → σ2 ≡


−1

2

m∑
i=1

ni∑
j=1

oij

−1
2

m∑
i=1

Eq{‖yij −Xijβ −ZL1
ij u

L1
i −ZL2

ij u
L2
ij ‖2}


with Eq denoting expectation with respect to the normalization of

mp(y|β,u, σ2) → (β,u)(β,u)m(β,u) → p(y|β,u, σ2)(β,u).
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Observing that

Eq{‖yij −Xijβ −ZL1
ij u

L1
i −ZL2

ij u
L2
ij ‖2}

= ‖yij −Xij µq(β) −ZL1
ij µq(uL1

i ) −Z
L2
ij µq(uL2

ij )
‖2 + tr(XT

ijXijΣq(β))

+tr{(ZL1
ij )TZL1

ij Σq(uL1
i )}+ tr{(ZL2

ij )TZL2
ij Σq(uL2

ij )
}

+2 tr
[
(ZL1

ij )TXijEq{(β − µq(β))(u
L1
i − µq(uL1

i ))
T }
]

+2 tr
[
(ZL2

ij )TXijEq{(β − µq(β))(u
L2
ij − µq(uL2

ij )
)T }
]

+2 tr
[
(ZL2

ij )TZL1
ijEq{(uL1

i − µq(uL1
i ))(u

L2
ij − µq(uL2

ij )
)T }
]

Result 5 shows how the sub-blocks of ηp(y|β,u, σ2) ↔ (β,u) are related to the required

sub-vectors of µq(β,u) and sub-blocks of Σq(β,u). These matrices are obtained from

ηp(y|β,u, σ2) ↔ (β,u)

in the call to ThreeLevelNaturalToCommonParameters algorithm (Algorithm 6).

B.13 Derivation of Result 6

The derivation of Result 6 is very similar to that for Result 5.

B.14 Derivation of Algorithm 8

The logarithm on the fragment factor is, as a function of (β,u):

log p(β,u|ΣL1,ΣL2) = 1
2(β − µβ)TΣ−1β (β − µβ)− 1

2

m∑
i=1

(uL1
i )T (ΣL1)−1uL1

i

−1
2

m∑
i=1

ni∑
j=1

(uL2
ij )T (ΣL2)−1uL2

ij + const

=



β

vech(ββT )

stack
1≤i≤m

 uL1
i

vech
(
uL1
i (uL1

i )T
)

vec
(
β(uL1

i )T
)


stack
1≤i≤m

 stack
1≤j≤ni


uL2
ij

vech
(
uL2
ij (uL2

ij )T
)

vec
(
β(uL2

ij )T
)

vec
(
uL1
i (uL2

ij )T
)






T

ν2 + const
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where

ν2 ≡



Σ−1β µβ

−1
2D

T
p vec(Σ−1β )

stack
1≤i≤m


0q1

−1
2D

T
q1vec

(
(ΣL1)−1

)
0pq1



stack
1≤i≤m

 stack
1≤j≤ni


0q2

−1
2D

T
q2vec

(
(ΣL2)−1

)
0pq2
0q1q2






.

Therefore, from equations (8) and (9) of Wand (2017),

mp(β,u|ΣL1,ΣL2) → (β,u)(β,u)

←− exp





β

vech(ββT )

stack
1≤i≤m

 uL1
i

vech
(
uL1
i (uL1

i )T
)

vec
(
β(uL1

i )T
)


stack
1≤i≤m

 stack
1≤j≤ni


uL2
ij

vech
(
uL2
ij (uL2

ij )T
)

vec
(
β(uL2

ij )T
)

vec
(
uL1
i (uL2

ij )T
)






T

ηp(β,u|ΣL1,ΣL2) → (β,u)


where

ηp(β,u|ΣL1,ΣL2) → (β,u) ≡ ν2.

Here M q((ΣL1)−1) denotes expectation of (ΣL1)−1 with respect to the normalization of

mp(β,u|ΣL1,ΣL2) → ΣL1(ΣL1)mΣL1 → p(β,u|ΣL1,ΣL2)(Σ
L1)

which is an Inverse G-Wishart density function with natural parameter vector

ηp(β,u|ΣL1,ΣL2) ↔ ΣL1

and, according to Table S.1 in the online supplement of Wand (2017), leads to

M q((ΣL1)−1) ←− {ω36 + 1
2(q1 + 1)}{vec−1(ω37)}−1

where ω36 is the first entry of ηp(β,u|ΣL1,ΣL2) ↔ ΣL1 and ω37 is the vector containing the

remaining entries of ηp(β,u|ΣL1,ΣL2) ↔ ΣL1 . The treatment of M q((ΣL2)−1) is analogous.
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The message from p(β,u|ΣL1,ΣL2) to ΣL1 is

mp(β,u|ΣL1,ΣL2) → ΣL1(ΣL1)←− exp


 log |ΣL1|

vech
(
(ΣL1)−1

)
T ηp(β,u|ΣL1,ΣL2) → ΣL1


where

ηp(β,u|ΣL1,ΣL2) → ΣL1 ≡


−1

2 m

−1
2

m∑
i=1

DT
q1vec[Eq{uL1

i (uL1
i )T }]


with Eq denoting expectation with respect to the normalization of

mp(β,u|ΣL1,ΣL2) → (β,u)(β,u)m(β,u) → p(β,u|ΣL1,ΣL2)(β,u).

Similarly, the message from p(β,u|ΣL1,ΣL2) to ΣL2 is

mp(β,u|ΣL1,ΣL2) → ΣL2(ΣL2)←− exp


 log |ΣL2|

vech
(
(ΣL2)−1

)
T ηp(β,u|ΣL1,ΣL2) → ΣL2


where

ηp(β,u|ΣL1,ΣL2) → ΣL2 ≡


−1

2

m∑
i=1

ni

−1
2

m∑
i=1

ni∑
j=1

DT
q2vec[Eq{uL2

ij (uL2
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 .
Now note that

Eq{uL1
i (uL1

i )T } = µq(uL1
i )µ

T
q(uL1

i )
+Σq(uL1

i ) and Eq{uL2
ij (uL2

ij )T } = µq(uL2
ij )
µT
q(uL2

ij )
+Σq(uL2

ij )

where, similar to before, µq(uL1
i ) ≡ Eq(u

L1
i ), Σq(uL1

i ) ≡ Covq(u
L1
i ) and µq(uL2

ij )
and Σq(uL2

ij )

is defined similarly. Result 6 links sub-blocks of ηp(β,u|ΣL1,ΣL2) ↔ (β,u) with the required

sub-vectors of µq(β,u) and sub-blocks of Σq(β,u). We then call upon Algorithm 6 to obtain
µq(uL1

i ) and Σq(uL1
i ), 1 ≤ i ≤ m, as well as µq(uL2

ij )
and Σq(uL2

ij )
, 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Algorithm 8 is a proceduralization of each of these results.
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