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Abstract

This paper investigates the asymptotic behaviors of gradient descent algorithms (particu-
larly accelerated gradient descent and stochastic gradient descent) in the context of stochas-
tic optimization arising in statistics and machine learning, where objective functions are
estimated from available data. We show that these algorithms can be computationally mod-
eled by continuous-time ordinary or stochastic differential equations. We establish gradient
flow central limit theorems to describe the limiting dynamic behaviors of these computa-
tional algorithms and the large-sample performances of the related statistical procedures,
as the number of algorithm iterations and data size both go to infinity, where the gradient
flow central limit theorems are governed by some linear ordinary or stochastic differential
equations, like time-dependent Ornstein-Uhlenbeck processes. We illustrate that our study
can provide a novel unified framework for a joint computational and statistical asymptotic
analysis, where the computational asymptotic analysis studies the dynamic behaviors of
these algorithms with time (or the number of iterations in the algorithms), the statistical
asymptotic analysis investigates the large-sample behaviors of the statistical procedures
(like estimators and classifiers) that are computed by applying the algorithms; in fact, the
statistical procedures are equal to the limits of the random sequences generated from these
iterative algorithms, as the number of iterations goes to infinity. The joint analysis results
based on the obtained gradient flow central limit theorems lead to the identification of four
factors—learning rate, batch size, gradient covariance, and Hessian—to derive new theo-
ries regarding the local minima found by stochastic gradient descent for solving non-convex
optimization problems.
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1. Introduction

Optimization plays an important role in scientific fields, ranging from machine learning to
physical sciences and engineering and from statistics to social sciences and business. It lies
at the core of data science as it provides a mathematical language for handling both com-
putational algorithms and statistical inferences in data analysis. Numerous algorithms and
methods have been proposed to solve optimization problems. Examples include Newton’s
method, gradient and subgradient descent, conjugate gradient methods, trust region meth-
ods, and interior point methods (Polyak, 1987; Boyd and Vandenberghe, 2004; Nemirovskii
and Yudin, 1983; Nocedal and Wright, 2006; Ruszczynski, 2006; Boyd et al., 2011; Shor,
2012; Goodfellow et al., 2016). Practical problems arising in fields such as statistics and
machine learning usually involve optimization settings where the objective functions are
empirically estimated from available data in the form of a sum of differentiable functions.
We refer to such optimization problems with random objective functions as stochastic op-
timization. As data sets grow rapidly in terms of scale and complexity, methods such as
stochastic gradient descent can scale to the enormous size of big data and have been rather
popular thus far. There has been recent surging interest in and great research work on the
theory and practice of gradient descent and its extensions and variants. Further, there is
extensive literature on stochastic approximation and recursive algorithms in machine learn-
ing, particularly stochastic gradient descent in deep learning (Ali et al., 2019; Chen et al.,
2020; Dalalyan, 2017a, 2017b; Fan et al., 2018; Foster et al., 2019; Ge et al., 2015; Ghadimi
and Lan, 2015; Jastrzȩbski et al., 2018; Jin et al., 2017; Kawaguchi, 2016; Keskar et al.,
2017; Kushner and Yin, 2003; Lee et al., 2016; Li et al., 2016; Li et al., 2017a; Li et al.,
2017b; Ma et al., 2019; Mandt et al., 2016, 2017; Nemirovski et al., 2009; Rakhlin et al.,
2012; Ruppert, 1988; Shallue et al., 2019; Sirignano and Spiliopoulos, 2017; Su et al., 2016;
Toulis et a., 2014; Toulis and Airoldi, 2015, 2016, 2017; Wibisono et al., 2016; Zhu, 2019).
In spite of compelling theoretical and numerical evidence on the value of the concept of
stochastic approximation and the acceleration phenomenon, there remains some conceptual
and theoretical mystery in acceleration and stochastic approximation schemes.

1.1 Contributions

Both continuous-time and discrete-time means are adopted by computational and statisti-
cal (as well as machine learning) communities to study learning algorithms like stochastic
gradient descent for solving optimization problems. The research on the computational
aspect focuses more on the convergence and convergent dynamics of learning algorithms—
in contrast the statistics research emphasizes statistical inferences of learning rules, where
the learning rules are solutions of the optimization problems and the learning algorithms
are designed to find the solutions. This paper adopts a new approach to combine both
computational and statistical frameworks and develop a joint computational and statistical
paradigm for analyzing gradient descent algorithms. Our joint study can handle com-
putational convergence behaviors of the gradient descent algorithms as well as statistical
large-sample performances of learning rules that are computed by the gradient descent al-
gorithms. To be specific, in this paper, we derive continuous-time ordinary or stochastic
differential equations to model the dynamic behaviors of these gradient descent algorithms
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and investigate their limiting algorithmic dynamics and large-sample performances, as the
number of algorithm iterations and data size both go to infinity.

For an optimization problem whose objective function is convex and deterministic, we
consider a matched stochastic optimization problem whose random objective function is an
empirical estimator of the deterministic objective function based on available data. The
solution of the stochastic optimization specifies a decision rule like an estimator or a clas-
sifier based on the sampled data in statistics and machine learning, while its corresponding
deterministic optimization problem characterizes—through its solution—the true value of
the parameter in the population model. In other words, the two connected optimization
problems associate with the data sample and its corresponding population model where the
data are sampled from, and the stochastic optimization is considered to be a sample version
of the deterministic optimization corresponding to the population. These two types of opti-
mization problems refer to the deterministic population and stochastic sample optimization
problems.

Consider random sequences that are generated from the gradient descent algorithms
and their corresponding continuous-time ordinary or stochastic differential equations for
the stochastic sample optimization setting. We show that the random sequences converge
to solutions of the ordinary differential equations for the corresponding deterministic pop-
ulation optimization setup, and we derive their asymptotic distributions by some linear
ordinary or stochastic differential equations like time-dependent Ornstein-Uhlenbeck pro-
cesses. The asymptotic distributions are used to understand and quantify the limiting dis-
crepancy between the random iterative sequences generated from each algorithm for solving
the corresponding sample and population optimization problems. In particular, since the
obtained asymptotic distributions characterize the limiting behavior of the normalized dif-
ference between the sample and population gradient (or Lagrangian) flows, the limiting
distributions may be viewed as central limit theorems (CLT) for gradient (or Lagrangian)
flows and are then called gradient (or Lagrangian) flow central limit theorems (GF-CLT or
LF-CLT). Moreover, our analysis may offer a novel unified framework to conduct a joint
asymptotic analysis for computational algorithms and statistical decision rules that are
computed by applying the algorithms. As iterated computational methods, these gradient
descent algorithms generate iterated sequences that converge to the exact decision rule or
the true parameter value for the corresponding optimization problems, when the number
of the iterations goes to infinity. Thus, as time (corresponding to the number of iterations)
goes to infinity, the continuous-time differential equations may have distributional limits
corresponding to the large-sample distributions of statistical decision rules as the sample
size goes to infinity. In other words, the asymptotic analysis can be performed with both
time and data size, where the time direction corresponds to the computational asymp-
totics on dynamic behaviors of the algorithms, and the data size direction associates with
the statistical large-sample asymptotics on the statistical behaviors of decision rules—such
as estimators and classifiers. The continuous-time modeling and the GF-CLT based joint
asymptotic analysis may reveal new facts and shed some light on the phenomenon that
stochastic gradient descent algorithms can escape from saddle points and converge to good
local minimizers for solving non-convex optimization problems in deep learning.

In a nutshell, we highlight our main contributions in the following manner:
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• We establish a new asymptotic theory for the discrepancy between the sample and
population gradient (or Lagrangian) flows. In particular, the new limiting distri-
butions for the normalized discrepancy are called the gradient (or Lagrangian) flow
central limit theorems (GF-CLT or LF-CLT). See Sections 3.3 and 4.1-4.2.

• The obtained asymptotic theory provides a novel unified framework for a joint compu-
tational and statistical asymptotic analysis. Statistically, the joint analysis can facil-
itate inferential analysis of a learning rule computed by gradient descent algorithms.
Computationally, the joint analysis enables us to understand and quantify a random
fluctuation in and the related impact on the dynamic and convergence behavior of a
gradient descent algorithm when it is applied to solve a stochastic optimization prob-
lem. In particular, the joint analysis can be employed to investigate the joint dynamic
effect of data size and algorithm iterations on the computational and statistical errors
for iterates generated by the algorithms, such as estimating the bias and variance of
iterates and building tests and confidence sets for model parameters under the setting
of a finite data sample and various algorithm iterations. See Sections 3.4 and 4.3.

• Computationally, we discover a novel theory that four factors—learning rate, batch
size, gradient covariance, and Hessian—along with the associated identities are shown
to influence the local minima found by stochastic gradient descent for solving a non-
convex optimization problem. It may also shed light on a certain intrinsic relationship
among stochastic optimization, deterministic optimization, and statistical learning.
See Section 4.4.

• Statistically, we illustrate implications of our results for statistical analysis of stochas-
tic gradient descent and inference of outputs from stochastic gradient descent. See
Section 4.5.

• The continuous-time approach is employed to demonstrate that it can provide a handy
means and a beautiful framework for deriving elegant and deep results for stochastic
dynamics of learning algorithms and statistical inference of learning rules.

1.2 Organization

The rest of the paper proceeds as follows. Section 2 introduces deterministic optimization
and describes gradient descent, accelerated gradient descent, and their corresponding or-
dinary differential equations. Section 3 presents stochastic optimization and investigates
asymptotic behaviors of the plain and accelerated gradient descent algorithms and their as-
sociated ordinary differential equations (with random coefficients) when the sample size goes
to infinity. We illustrate the unified framework to conduct a joint analysis on computational
and statistical asymptotics, where computational asymptotics deals with dynamic behav-
iors of the gradient descent algorithms with time (or iteration), and statistical asymptotics
studies large-sample behaviors of statistical decision rules that are computed through the
application of the algorithms. Section 4 considers stochastic gradient descent algorithms for
large scale data and derives stochastic differential equations to model these algorithms. We
establish asymptotic theory for these algorithms and their associated stochastic differential
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equations and describe a joint analysis on computational and statistical asymptotics. All
technical proofs are relegated in Section 5.

We adopt the following notations and conventions. For the stochastic sample opti-
mization problem considered in Sections 3 and 4, we add a superscript n to notations for
the associated processes and sequences in Section 3 and indices m and/or ∗ to notations
for the corresponding processes and sequences affiliated with mini-batches in Section 4,
while notations without such subscripts or superscripts are used for sequences and solutions
(functions) corresponding to the deterministic population optimization problem given in
Section 2. Our basic proof ideas can be described as follows. Each algorithm generates
an iterated sequence for computing a learning rule, a step-wise empirical process is formed
by the generated sequence, and a continuous process is obtained from the corresponding
continuous-time differential equation. We derive asymptotic distributions by analyzing the
differential equations, and we bound the differences between the empirical processes and
their corresponding continuous processes by studying the optimization problems and utiliz-
ing the empirical process theory along with the related differential equations.

2. Ordinary Differential Equations for Gradient Descent Algorithms

This section establishes an optimization framework at the population-level that facilitates
the corresponding finite-sample analysis in subsequent sections. Consider the following
minimization problem,

min
θ∈Θ

g(θ), (2.1)

where the objective function g(θ) is defined on a parameter space Θ ⊂ IRp and assumed to
have L-Lipshitz continuous gradients. Iterative algorithms like gradient descent methods are
often employed to numerically compute the solution of the minimization problem. Starting
with some initial value x0, the plain gradient descent algorithm is iteratively defined by

xk = xk−1 − δ∇g(xk−1), (2.2)

where ∇ denotes gradient operator, and δ is a positive constant that is often called a step
size or learning rate.

It is easy to model {xk, k = 0, 1, · · · } by a smooth curve X(t) with the Ansatz xk ≈
X(kδ) as follows. Define a step function xδ(t) = xk for kδ ≤ t < (k + 1)δ, and as δ → 0,
xδ(t) approaches X(t) satisfying

Ẋ(t) +∇g(X(t)) = 0, (2.3)

where Ẋ(t) denotes the derivative of X(t), and initial value X(0) = x0. In fact, X(t) is a
gradient flow associated with the objective function g(·) in the optimization problem (2.1).

Nesterov’s accelerated gradient descent scheme is a well-known algorithm that is much
faster than the plain gradient descent algorithm. Starting with initial values x0 and y0 = x0,
Nesterov’s accelerated gradient descent algorithm is iteratively defined by

xk = yk−1 − δ∇g(yk−1), yk = xk +
k − 1

k + 2
(xk − xk−1), (2.4)

5



Wang and Wu

where δ is a positive constant. Using (2.4), we derive a recursive relationship between
consecutive increments

xk+1 − xk√
δ

=
k − 1

k + 2

xk − xk−1√
δ

−
√
δ∇g(yk). (2.5)

We model {xk, k = 0, 1, · · · } by a smooth curve in a sense that xk are its samples at
discrete points—that is, we define a step function xδ(t) = xk for k

√
δ ≤ t < (k+1)

√
δ—and

introduce the Ansatz xδ(k
√
δ) = xk ≈ X(k

√
δ) for some smooth function X(t) defined for

t > 0. Let
√
δ be the step size. Taking t = k

√
δ and letting δ → 0 in equation (2.5), we

obtain

Ẍ(t) +
3

t
Ẋ(t) +∇g(X(t)) = 0, (2.6)

with the initial conditions X(0) = x0 and Ẋ(0) = 0. As the coefficient 3/t in the ordinary
differential equation (2.6) is singular at t = 0, the classical ordinary differential equation
theory is not applicable to establish the existence or uniqueness of the solution to equation
(2.6). The heuristic derivation of (2.6) is from Su et al. (2016), who established that
equation (2.6) has a unique solution satisfying the initial conditions, and xδ(t) converges to
X(t) uniformly on [0, T ] for any fixed T > 0. Note the step size difference between the plain
and accelerated cases, where the step size is δ1/2 for Nesterov’s accelerated gradient descent
algorithm and δ for the plain gradient descent algorithm. Su et al. (2016) showed that,
because of the difference, the accelerated gradient descent algorithm moves much faster than
the plain gradient descent algorithm along the curve X(t). Wibisono et al. (2016) provided
a more elaborate explanation on the acceleration phenomenon and developed a systematic
continuous-time variational scheme to generate a large class of continuous-time differential
equations and produce a family of accelerated gradient algorithms. The variational scheme
utilizes a first-order rescaled gradient flow and a second-order Lagrangian flow, which are
generalizations of gradient flow. We refer the solution X(t) of the differential equation (2.3)
to the gradient flow for the gradient descent algorithm (2.2), and the solution X(t) to the
differential equation (2.6) is called the Lagrangian flow for the accelerated gradient descent
algorithm (2.4).

3. Gradient Descent for Stochastic Optimization

Let θ = (θ1, ..., θp)
′

be the parameter that we are interested in, and U be a relevant random
element on a probability space with a distribution Q. Consider an objective function `(θ;u)
and its corresponding expectation E[`(θ;U)] = g(θ). For example, in a statistical decision
problem, we may take U to be a decision rule, `(θ;u) a loss function, and g(θ) = E[`(θ;U)]
its corresponding risk; in the M-estimation, we treat U as a sample observation and `(θ;u)
as a ρ-function; in nonparametric function estimation and machine learning, we choose
U as an observation and `(θ;u) equal to a loss function plus some penalty. For these
problems, we consider the corresponding deterministic population minimization problem
(2.1) for characterizing the true parameter value or its function as an estimand; however,
practically, because g(θ) is usually unavailable, we have to employ its empirical version and
consider a stochastic optimization problem, described as follows:

min
θ∈Θ
Ln(θ; Un), (3.7)
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where Ln(θ; Un) = 1
n

∑n
i=1 `(θ;Ui), Un = (U1, · · · , Un)′ is a sample, and we assume that

U1, · · · , Un are i.i.d. and follow the distribution Q.
The minimization problem (2.1) characterizes the true value of the target estimand

such as an estimation parameter in a statistical model and a classification parameter in a
machine learning task. As the true objective function g(θ) is usually unknown in practice,
we often solve the stochastic minimization problem (3.7) with observed data to obtain
practically useful decision rules such as an M-estimator, a smoothing function estimator,
and a machine learning classifier. The approach to obtaining practical procedures is based
on the heuristic reasoning that as n→∞, the law of large number implies that Ln(θ; Un)
eventually converges to g(θ) in probability, and thus the solution of the stochastic sample
minimization problem (3.7) approaches that of the deterministic population minimization
problem (2.1).

3.1 Plain Gradient Descent Algorithm

Applying the plain gradient descent scheme to the stochastic sample minimization problem
(3.7) with initial value xn0 , we obtain the following iterative algorithm to compute the
solution of the sample minimization problem (3.7),

xnk = xnk−1 − δ∇Ln(xnk−1; Un), (3.8)

where δ > 0 is a step size or learning rate, and Ln is the objective function in the sample
minimization problem (3.7).

Following the continuous curve approximation described in Section 2 we define a step
function xnδ (t) = xnk for kδ ≤ t < (k + 1)δ; for each n, as δ → 0, xnδ (t) approaches a smooth
curve Xn(t), t ≥ 0, given by

Ẋn(t) +∇Ln(Xn(t); Un) = 0, (3.9)

where ∇Ln(Xn(t); Un) = 1
n

∑n
i=1 ∇̀ (Xn(t);Ui), gradient operator ∇ here is applied to

Ln(θ; Un) and `(θ;Ui) with respect to θ, and initial value Xn(0) = xn0 . Xn(t) is a gradient
flow associated with Ln in the stochastic sample optimization problem (3.7).

As Un and Xn(t) are random, and our main interest is to study the distributional
behaviors of the solution and algorithm, we may define a solution of equation (3.9) in

the weak sense that there exist a process Xn
† (t) and a random vector U†n = (U †1 , · · · , U

†
n)′

defined on some probability space, such that U†n is identically distributed as Un, (U†n, Xn
† (t))

satisfies equation (3.9), and Xn
† (t) is called a (weak) solution of equation (3.9). Note that

Xn
† (t) is not required to be defined on a fixed probability space with given random variables;

instead, we define Xn
† (t) on some probability space with some associated random vector U†n

whose distribution is given by Q. The weak solution definition, which shares the same spirit
as that for stochastic differential equations (Ikeda and Watanabe, 1981 and more in Section
4), will be rather handy in facilitating our asymptotic analysis in this paper. For simplicity,
we exclude index † and “weak” when there is no confusion.

3.2 Accelerated Gradient Descent Algorithm

Nesterov’s accelerated gradient descent scheme can be used to solve the sample minimization
problem (3.7). Starting with initial values xn0 and yn0 = xn0 , we obtain the following iterative
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algorithm to compute the solution of the sample minimization problem (3.7),

xnk = ynk−1 − δ∇Ln(ynk−1; Un), ynk = xnk +
k − 1

k + 2
(xnk − xnk−1). (3.10)

Using the continuous curve approach described in Section 2, we can define a step function
xnδ (t) = xk for k

√
δ ≤ t < (k + 1)

√
δ, and for every n, as δ → 0, we approximate xnδ (t) by a

smooth curve Xn(t), t ≥ 0, governed by

Ẍn(t) +
3

t
Ẋn(t) +∇Ln(Xn(t); Un) = 0, (3.11)

where initial values Xn(0) = xn0 and Ẋn(0) = 0, ∇Ln(Xn(t); Un) = 1
n

∑n
i=1 ∇̀ (Xn(t);Ui),

and gradient operator ∇ here is applied to Ln(θ; Un) and `(θ;Ui) with respect to θ. Xn(t)
is a Lagrangian flow associated with Ln in the sample optimization problem (3.7).

Again, we define a solution Xn(t) of equation (3.11) in the weak sense—that is, that
there exist a process Xn(t) and a random vector Un on some probability space so that the
distribution of Un is specified by Q, and Xn(t) is a solution of equation (3.11).

3.3 Asymptotic Theory via Ordinary Differential Equations

In order to ensure that equations (2.3), (2.6), (3.9) and (3.11) and their solutions are well
defined and study their asymptotics, we need to impose the following assumptions.

A0. Assume that initial values satisfy xn0 − x0 = oP (n−1/2).

A1. `(θ;u) is continuously twice differentiable in θ; ∀ u ∈ Rp, ∃ h1(u), such that ∀ θ1, θ2 ∈
Θ, ‖∇̀ (θ1;u)−∇̀ (θ2;u)‖ 6 h1(u)‖θ1−θ2‖, where h1(U) and ∇`(θ0;U) for some fixed
θ0 have finite fourth moments.

A2. E[`(θ;U)] = g(θ), E[∇̀ (θ;U)] = ∇g(θ), E[IH`(θ;U)] = IHg(θ), on the parameter
space Θ, g(·) is continuously twice differentiable and strongly convex, and ∇g(·) and
IHg(·) are L-Lipschitz for some L > 0, where ∇ is the gradient operator (the first-
order partial derivatives), and IH is the Hessian operator (the second-order partial
derivatives).

A3. Define cross auto-covariance ς(θ, ϑ) = (ςij(θ, ϑ))1≤i,j≤p, θ, ϑ ∈ Θ, where
Cov[ ∂

∂θi
`(θ;U), ∂

∂ϑj
`(ϑ;U)] = ςij(θ, ϑ) are assumed to be continuously differentiable,

and L-Lipschitz. Let σij(θ) = Cov[ ∂
∂θi
`(θ;U), ∂

∂θj
`(θ;U)] = ςij(θ, θ), and σ2(θ) =

Var[∇̀ (θ;U)] = (σij(θ))1≤i,j≤p = ς(θ, θ) be positive definite.

A4.
√
n[∇Ln(θ; Un) − ∇g(θ)] = 1√

n

∑n
i=1[∇`(θ;Ui) − ∇g(θ)] weakly converges to Z(θ)

uniformly over θ ∈ ΘX , where Z(θ) is a Gaussian process with mean zero and auto-
covariance ς(θ, ϑ) defined in A3, ΘX is a bounded subset of Θ, and the interior of
ΘX contains the solutions X(t) of the ordinary differential equations (2.3) and (2.6)
connecting the initial value x0 and the minimizer of g(θ).

Assumption A0 may relax the usual assumption of taking common initial values xn0 = x0.
Assumptions A1 and A2 are often used to make optimization problems and differential
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equations well defined and match the stochastic sample optimization problem (3.7) to the
deterministic population optimization problem (2.1). Assumptions A3 and A4 guarantee
that the solution of (3.7) and its associated differential equations provide large-sample ap-
proximations of those for (2.1). Assumption A4 can be easily justified by empirical processes
with common conditions—like that ∇̀ (θ;U), θ ∈ ΘX , form a Donsker class (van der Vaart
and Wellner, 2000)—since the solution curves X(t) of the ordinary differential equations
(2.3) and (2.6) are deterministic and bounded, and it is easy to select ΘX . Examples that
meet the assumptions include common statistical models and well-known loss and likelihood
functions, such as usual exponential families and generalized linear models with squared-
error and deviance loss functions (more specific cases will be provided later in the paper).

We remind readers of the notion convention specified at the end of Section 1 that adds a
superscript n to sample-level notations for the processes and sequences associated with the
stochastic sample optimization problem (3.7) in Section 3, while notations without such a
superscript are for solutions and sequences corresponding to the deterministic population
optimization problem (2.1) in Section 2. For a given T > 0, denote by C([0, T ]) the space
of all continuous functions on [0, T ] with the uniform metric max{|b1(t)− b2(t)| : t ∈ [0, T ]}
between functions b1(t) and b2(t). For solutions X(t) and Xn(t) of the ordinary differential
equations (2.3) and (3.9) [or (2.6) and (3.11)], respectively, we define V n(t) =

√
n[Xn(t)−

X(t)]. Then X(t), Xn(t), and V n(t) live on C([0, T ]). Treating them as random elements
in C([0, T ]), in the following theorem, we establish a weak convergence limit of V n(t).

Theorem 1 Under Assumptions A0–A4, as n→∞, V n(t) weakly converges to a Gaussian
process V (t), where V (t) is the unique solution of the following linear differential equations,

V̇ (t) + [IHg(X(t))]V (t) + Z(X(t)) = 0, V (0) = 0 (3.12)

for the plain gradient descent case, and

V̈ (t) +
3

t
V̇ (t) + [IHg(X(t))]V (t) + Z(X(t)) = 0, V (0) = V̇ (0) = 0 (3.13)

for the accelerated gradient descent case, where the deterministic functions X(t) in (3.12)
and (3.13) are the solutions of the ordinary differential equations (2.3) and (2.6), respec-
tively, IH is the Hessian operator, random coefficient Z(·) is the Gaussian process given by
Assumption A4.

In particular, if Gaussian process Z(θ) = σ(θ)Z, where random variable Z ∼ Np(0, Ip),
and σ(θ) is defined in Assumption A3, then V (t) = Π(t)Z on C([0, T ]), and the deter-
ministic matrix Π(t) is the unique solution of the following linear differential equations,

Π̇(t) + [IHg(X(t))]Π(t) + σ(X(t)) = 0, Π(0) = 0 (3.14)

for the plain gradient descent case, and

Π̈(t) +
3

t
Π̇(t) + [IHg(X(t))]Π(t) + σ(X(t)) = 0, Π(0) = Π̇(0) = 0 (3.15)

for the accelerated gradient descent case, where X(t) in (3.14) and (3.15) are the solutions of
the ordinary differential equations (2.3) and (2.6), respectively, IH is the Hessian operator,
and σ(·) is defined in Assumption A3.
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Remark 1 As discussed in Sections 2 and 3.1, for the gradient descent case X(t) and
Xn(t) are gradient flows associated with the population optimization (2.1) and the sample
optimization (3.7), respectively, and thus refer to the corresponding population and sam-
ple gradient flows. Consequently, the Gaussian limiting distribution of V n(t) describes the
asymptotic distribution of the difference between the sample and population gradient flows,
with a normalization factor

√
n. Hence, it is natural to view the Gaussian limiting distribu-

tion as the central limit theorem for the gradient flows, and we call it the gradient flow central
limit theorem (GF-CLT). Similarly, for the accelerated case X(t) and Xn(t) are Lagrangian
flows associated with the population optimization (2.1) and the sample optimization (3.7),
respectively, and thus refer to the corresponding population and sample Lagrangian flows.
The Gaussian limiting distribution for the normalized discrepancy between the sample and
population Lagrangian flows can be naturally viewed as the central limit theorem for the
Lagrangian flows, and we call it the Lagrangian flow central limit theorem (LF-CLT).

Remark 2 As we discussed earlier in Section 3, as n → ∞, Ln(θ; Un) = 1
n

∑n
i=1 `(θ;Ui)

converges to g(θ) in probability, and the solutions of the population minimization (2.1)
and the sample optimization (3.7) must be very close to each other. We may heuristically
illustrate the derivation of Theorem 1 as follows. The central limit theorem may lead us
to that as n → ∞, ∇Ln(θ; Un) is asymptotically distributed as ∇g(θ) + n−1/2Z(θ). Then,
asymptotically, differential equations (3.9) and (3.11) are, respectively, equivalent to

Ẋn(t) +∇g(Xn(t)) + n−1/2Z(Xn(t)) = 0, (3.16)

Ẍn(t) +
3

t
Ẋn(t) +∇g(Xn(t)) + n−1/2Z(Xn(t)) = 0. (3.17)

Applying the perturbation method for solving ordinary differential equations, we write ap-
proximation solutions of equations (3.16) and (3.17) as Xn(t) ≈ X(t) + n−1/2V (t) and
substitute it into (3.16) and (3.17). With X(t) satisfying the ordinary differential equations
(2.3) or (2.6), using the Taylor expansion and ignoring higher order terms, we can easily
obtain equations (3.12) and (3.13) for the weak convergence limit V (t) of V n(t) in the two
cases, respectively.

The step process xnδ (t) is used to model iterates xnk generated from the gradient descent
algorithms (3.8) and (3.10). To study their weak convergence, we need to introduce the
Skorokhod space, denoted by D([0, T ]), of all cádlág functions on [0, T ], equipped with the
Skorokhod metric (Billingsely, 1999). Then, xnδ (t) lives on D([0, T ]), and treating it as a
random element in D([0, T ]), we derive its weak convergence limit in the following theorem.

Theorem 2 Under Assumptions A0–A4, as δ → 0 and n→∞, we have

sup
t∈[0,T ]

|xnδ (t)−Xn(t)| = OP (δ1/2| log δ|),

where xnδ (t) are the continuous-time step processes for discrete xnk generated from algorithms
(3.8) and (3.10), with continuous curves Xn(t) defined by the ordinary differential equa-
tions (3.9) and (3.11), for the cases of plain and accelerated gradient descent algorithms,
respectively. In particular, we may select (n, δ), such that nδ| log δ|2 → 0 as δ → 0 and

10
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n → ∞, and then for the selected (n, δ), n1/2[xnδ (t) − X(t)] weakly converges to V (t) on
D([0, T ]), where X(t) is the solution of the ordinary differential equations (2.3) or (2.6),
and V (t) is given by Theorem 1. That is,

√
n[xnδ (t)−X(t)] and

√
n[Xn(t)−X(t)] share the

same weak convergence limit.

Remark 3 There are two types of asymptotic analyses in the set up. One type is to em-
ploy continuous differential equations to model discrete iterate sequences generated from
the gradient descent algorithms, which is associated with δ treated as the step size between
consecutive sequence points. Another type involves the use of random objective functions
in stochastic optimization, which are estimated from the sample data of size n. We refer
the first and second types as computational and statistical asymptotics, respectively. The
computational asymptotic analysis is that for each n, the ordinary differential equations
(3.9) and (3.11)[or (3.16) and (3.17)] provide continuous solutions as the limits of discrete
iterate sequences generated from algorithms (3.8) and (3.10), respectively, when δ is allowed
to go to zero. Theorem 1 provides the statistical asymptotic analysis to describe the behavior
difference between the sample gradient flow Xn(t) and the population gradient flow X(t),
as the sample size n goes to infinity. Theorem 2 involves both types of asymptotics and
indicates that as δ → 0 and n → ∞, xnδ (t) − Xn(t) is of order δ1/2| log δ|. It is easy to
select (n, δ) so that xnδn(t) − Xn(t) is of order smaller than n−1/2. Then, xnδn(t) has the
same asymptotic distribution V (t) as Xn(t).

3.4 Unified Framework for Joint Computational and Statistical Analysis

The two types of asymptotics associated with δ and n appear to be rather different, with
one for computational algorithms and one for statistical procedures. This section further
elaborates regarding these analyses and provides a joint framework to unify both viewpoints.
Denote the solutions of the deterministic population optimization problem (2.1) and the
stochastic sample optimization problem (3.7) by θ̌ and θ̂n, respectively. In the statistical
setup, θ̌ and θ̂n represent the true estimand and its associated estimator, respectively. Using
the definitions of θ̌ and θ̂n and the Taylor expansion, we have ∇g(θ̌) = 0,

0 = ∇Ln(θ̂n; Un) = ∇Ln(θ̌; Un) + IHLn(θ̌; Un)(θ̂n − θ̌) + remainder,

the law of large number implies that IHLn(θ̌; Un) converges in probability to IHg(θ̌) as
n→∞, and Assumption A4 indicates that

∇Ln(θ̌; Un) = ∇g(θ̌) + n−1/2Z(θ̌) + remainder = n−1/2σ(θ̌)Z + remainder,

where Z stands for a standard normal random vector. Thus, n1/2(θ̂n− θ̌) is asymptotically
distributed as [IHg(θ̌)]−1σ(θ̌)Z. On the other hand, the gradient descent algorithms gen-
erate iterate sequences corresponding to X(t) and Xn(t), which are expected to approach
the solutions of the population optimization (2.1) and the sample optimization (3.7), re-
spectively. Hence, X(t) and Xn(t) must move toward θ̌ and θ̂n, respectively, and Vn(t)
and V (t) must reach their corresponding targets n1/2(θ̂n − θ̌) and [IHg(θ̌)]−1σ(θ̌)Z. Be-
low, we provide a framework to connect (Xn(t), X(t)) with (θ̂n, θ̌) and (V n(t), V (t)) with(
n1/2(θ̂n − θ̌), [IHg(θ̌)]−1σ(θ̌)Z

)
.
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Since the time interval considered thus far is [0, T ] for any arbitrary T > 0, we may
extend the finite time interval to IR+ = [0,+∞) and consider C(IR+), the space of all
continuous functions on IR+, to be equipped with a metric d for the topology of uniform
convergence on compacta, where

d(b1, b2) =
∞∑
r=1

2−rmin

{
1, max

0≤s≤r
|b1(s)− b2(s)|

}
.

The solutions X(t), Xn(t), V (t) and V n(t) of the ordinary differential equations (2.3), (2.6),
(3.9), (3.11)–(3.17) all live on C(IR+) and we can study their weak convergence on C(IR+).
Similarly, we adopt the Skorokhod space D(IR+) equipped with the Skorokhod metric for
the weak convergence study of xnδ (t) (Billingsely, 1999). The following theorem establishes
the weak convergence of these processes on D(IR+) and indicates their asymptotic behaviors
as t→∞.

Theorem 3 Suppose that Assumptions A0–A4 are met, IHg(θ̌) is positive definite, all
eigenvalues of

∫ t
0 IHg(X(s))ds diverge as t → ∞, IHg(θ1) and IHg(θ2) commute for any

θ1 6= θ2, and nδ| log δ|2 → 0 as δ → 0 and n→∞. Then, on D(IR+), as δ → 0 and n→∞,
V n(t) =

√
n[Xn(t)−X(t)] and

√
n[xnδ (t)−X(t)] weakly converge to V (t), t ∈ [0,+∞).

Furthermore, for the plain gradient descent case, as t→∞ and k →∞, we have

(1) xk, xδ(t), and X(t) converge to θ̌, where xk, xδ(t), and X(t) are defined in Section 2
(see the gradient descent algorithms and ordinary differential equations 2.2–2.6).

(2) xnk , xnδ (t), and Xn(t) converge to θ̂n in probability and, thus, V n(t) converges to√
n(θ̂n − θ̌) in probability, where xnk , xnδ (t), and Xn(t) are defined in algorithms and

equations (3.8)-(3.11).

(3) The limiting distributions of V (t) as t→∞ and
√
n(θ̂n−θ̌) as n→∞ are identical and

given by a normal distribution with mean zero and variance [IHg(θ̌)]−1σ2(θ̌)[IHg(θ̌)]−1,
where V (t), defined in the ordinary differential equations (3.12) and (3.13), is the weak
convergence limit of V n(t) as n→∞.

Remark 4 Denote the limits of the processes in Theorem 3 as t, k → ∞ by the corre-
sponding processes with t and k replaced by ∞. Then, Theorem 3 shows that for the
plain gradient descent case, x∞ = xδ(∞) = X(∞) = θ̌, xn∞ = xnδ (∞) = Xn(∞) =

θ̂n, V n(∞) =
√
n[Xn(∞) − X(∞)] =

√
n[xnδ (∞) − X(∞)] =

√
n(θ̂n − θ̌), V (∞) =

[IHg(X(∞))]−1σ(X(∞))Z = [IHg(θ̌)]−1σ(θ̌)Z; V (t) weakly converges to V (∞) as t → ∞,
and V n(∞) weakly converges to V (∞) as n → ∞. In particular, as the process V n(t) is
indexed by n and t, its limits are the same regardless the order of n → ∞ and t → ∞.
Moreover, as θ̌ = X(∞) is the minimizer of the convex function g(·), the positive definite
assumption IHg(θ̌) = IHg(X(∞)) > 0 is rather reasonable; since the limit IHg(X(∞)) of
IHg(X(t)) as t→∞ has all positive eigenvalues, it is natural to expect that

∫∞
0 IHg(X(s))ds

has diverging eigenvalues. We conjecture that for the accelerated gradient descent case, sim-
ilar asymptotic results might hold, as k, t→∞.
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With the augmentation of t =∞, we extend [0,+∞) further to [0,+∞], consider X(t),
xδ(t), X

n(t), xnδ (t), V (t), and V n(t) on t ∈ [0,∞] and derive the limits of V n(t) and√
n[xnδ (t)−X(t)] on [0,∞] by Theorem 3. As δ → 0 and n→∞, the limiting distributions of

V n(t) =
√
n[Xn(t)−X(t)] and

√
n[xnδ (t)−X(t)] are V (t) for t ∈ [0,∞], where (V n(t), V (t))

describe the dynamic evolution of the gradient descent algorithms for t ∈ [0,∞) and the
statistical distribution of

√
n(θ̂n − θ̌) for t =∞.

In a unified framework, the joint asymptotic analysis describes distribution limits of
Xn(t) and xnδ (t) from both computation and statistical viewpoints in the following man-
ner. For t ∈ [0,∞), X(t) and V (t) represent the limiting behaviors of Xn(t) and xnδ (t)
corresponding to the computational algorithms, and X(∞) and V (∞) illustrate the limit-
ing behaviors of the corresponding statistical decision rule θ̂n. We use the following simple
example to explicitly illustrate the joint asymptotic analysis.

Example 1. Suppose that Ui = (U1i, U2i)
′, i = 1, · · · , n, are iid random vectors,

where U1i and U2i are independent and follow a normal distribution N(θ1, τ
2) with mean

θ1 and known variance τ2 and an exponential distribution with mean θ2, respectively, and
θ = (θ1, θ2)′. Define `(θ;Ui) = (Ui − θ)′(Ui − θ)/2, and denote by θ̌ the true value of the
parameter θ in the model. Then, L(θ; Un) = 1

n

∑n
i=1(Ui−θ)′(Ui−θ)/2, g(θ) = E[`(θ;Ui)] =

[(θ − θ̌)′(θ − θ̌) + τ2 + θ̌2
2]/2, ∇g(θ) = θ − θ̌, ∇`(θ;Ui) = θ − Ui, ∇L(θ; Un) = θ − Ūn,

and σ2(θ) = V ar(U1 − θ) = diag(τ2, θ̌2
2), where Ūn = (Ū1n, Ū2n)′ is the sample mean.

It is evident that the corresponding population minimization problem (2.1) and sample
minimization problem (3.7) have explicit solutions: g(θ) has the minimizer θ̌, and L(θ; Un)
has the minimizer θ̂n = Ūn. For this example, algorithms (2.2), (3.8), (2.4), and (3.10)
yield recursive formulas xk = xk−1 + δ(θ̌ − xk−1), and xnk = xnk−1 + δ(Ūn − xnk−1) for the

plain gradient descent case; moreover, xk = xk−1 + δ(θ̌ − yk−1), yk = xk + k−1
k+2(xk − xk−1),

xnk = xnk−1 + δ(Ūn − ynk−1), ynk = xnk + k−1
k+2(xnk − xnk−1) for the accelerated gradient descent

case. While it may not be so obvious to explicitly describe the dynamic behaviors of
these algorithms for the accelerated case, below we clearly illustrate the behaviors of their
corresponding ordinary differential equations through closed-form expressions. First, we
consider the plain gradient descent case where closed form expressions are very simple. The
ordinary differential equations (2.3) and (3.9) admit the following simple solutions,

X(t) = (X1(t), X2(t))′ = θ̌ + (x0 − θ̌)e−t, Xn(t) = (Xn
1 (t), Xn

2 (t))′ = Ūn + (xn0 − Ūn)e−t,

V n(t) = (V n
1 (t), V n

2 (t))′ =
√
n(Ūn − θ̌)(1− e−t) +

√
n(xn0 − x0)e−t.

Note that Z1 =
√
n(Ū1n − θ̌1)/τ ∼ N(0, 1),

√
n(Ū2n/θ̌2 − 1) converges in distribution to a

standard normal random variable Z2, and Z1 and Z2 are independent. As in Theorem 1,
let Z = (Z1, Z2)′, V (t) = Π(t)Z, where Π(t) = −(1− e−t)diag(τ, θ̌2) is the matrix solution
of the linear differential equation (3.14) in this case. Then, for t ∈ [0,∞), we have

V n(t) =

(
τZ1

θ̌2Z2

)
(1− e−t) + oP (1) = V (t) + oP (1),

which confirms that V n(t) converges to V (t), as shown in Theorem 1. Further, as t → ∞,
X(t) → θ̌ = X(∞), Xn(t) → θ̂n = Ūn = Xn(∞), and V n(t) → V n(∞) =

√
n(Ūn − θ̌);

as n → ∞, V n(∞) → V (∞) = Π(∞)Z = −(τZ1, θ̌2Z2)′, which provides the asymptotic
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distribution of the estimator θ̂n = Xn(∞). In summary, the behaviors of X(t), Xn(t),
V n(t), and V (t) over [0,∞] provide a complete description on the dynamic evolution of
the gradient descent algorithms when applied to solve the stochastic sample optimization
problem. For example, as functions of t, X(t) and Xn(t) can be used to describe how the
sequences generated from the algorithms evolve along iterations; we may use the convergence
of V n(t) to V n(∞) and V (t) to V (∞), as t→∞, to illustrate how the generated sequences
converge to the target optimization solutions (estimators); the convergence of V n(∞) to
V (∞) as n→∞ may be employed to characterize the asymptotic distributions of the target
optimization solutions; moreover, their relationship with n and t can be used to investigate
the joint dynamic effect of data size and algorithm iterations on the computational and
statistical errors in the sequences generated by the algorithms. The key signature in this case
is the exponential decay factor e−t that appears in all relationships. The joint asymptotic
analysis with both n and t provides a unified picture for the statistical asymptotic analysis
with n→∞ and the computational asymptotic analysis with t→∞.

For the accelerated case, solution X(t) of the ordinary differential equation (2.6) admits
an expression via the Bessel function (Watson, 1995),

X(t) = θ̌ +
2(x0 − θ̌)

t
J1(t),

where x0 = (x0,1, x0,2)′ is an initial value of X(t) = (X1(t), X2(t))′, and J1(u) is the Bessel
function of the first kind of order one,

J1(u) =

∞∑
j=0

(−1)j

(2j)!!(2j + 2)!!
u2j+2,

with the following symptotic behaviors as u→ 0 and u→∞,

J1(u) ∼ u

2
as u→ 0, and J1(u) ∼

√
2

πu
cos

(
u− 3π

4

)
as u→∞.

The ordinary differential equation (3.11) has the following solution,

Xn(t) = Ūn +
2(xn0 − Ūn)

t
J1(t), V n(t) =

√
n(Ūn − θ̌)

[
1− 2

t
J1(t)

]
+
√
n(xn0 − x0)

2

t
J1(t).

As in Theorem 1, let V (t) = Π(t)Z, where it is relatively simple to use the properties of the
Bessel function J1(u) to verify that Π(t) = −[1− 2J1(t)/t]diag(τ, θ̌2) is the matrix solution
of the linear differential equation (3.15) in this case. Then, for t ∈ [0,∞), we have

V n(t) =

(
τZ1

θ̌2Z2

)[
1− 2

t
J1(t)

]
+ oP (1) = V (t) + oP (1).

The result matches the weak convergence of V n(t) to V (t) shown in Theorem 1, and as t→
∞, X(t) → θ̌ = X(∞), Xn(t) → θ̂n = Ūn = Xn(∞), and V n(t) → V n(∞) =

√
n(Ūn − θ̌);

as n → ∞, V n(∞) → V (∞) = Π(∞)Z = −(τZ1, θ̌2Z2)′, which indicates the asymptotic
distribution of the estimator θ̂n = Xn(∞). Again, the behaviors of X(t), Xn(t), V n(t),
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and V (t) over [0,∞] describe the dynamic evolution of the accelerated gradient descent
algorithm, such as how the sequences generated from the algorithm evolve along iterations
(via X(t) and Xn(t) as functions of t) and converge to the target optimization solutions
(via the convergence of V n(t) to V n(∞) and V (t) to V (∞) as t → ∞), as well as connect
to the asymptotic distributions of the target optimization solutions (via the convergence of
V n(∞) to V (∞) as n→∞). We find that the polynomial decay factor 2

tJ1(t) appears in all
relationships for the accelerated case, and the major difference in the two cases is exponential
decay 1− e−t for the plain case vs polynomial decay 1− 2

tJ1(t) for the accelerated case.

Remark 5 Solving problems with large-scale data often requires some tradeoffs between
statistical efficiency and computational efficiency; thus, we must account for both statistical
errors and computational errors. We illustrate the potential of the joint asymptotic analysis
framework for the study of the two types of errors. Note that

xnδ (t)− θ̌ = xnδ (t)− θ̂n + θ̂n − θ̌,

where xnδ (t) (or xnk) are the values computed by the gradient descent algorithms for solving
the stochastic sample optimization problem (3.7) based on sampled data, and θ̌ is the exact
solution of the deterministic population optimization problem (2.1) corresponding to the true
value of θ, with θ̂n the exact solution of the sample optimization problem (3.7) corresponding
to the estimator of θ. The total error xnδ (t)− θ̌ consists of computational error xnδ (t)− θ̂n (of

order t−1 or t−2) and statistical error θ̂n−θ̌ (of order usually n−1/2). Since X(t) approaches
the solution θ̌ = X(∞) of the population optimization problem (2.1), and

√
n[xnδ (t)−X(t)]

weakly converges to V (t), we may utilize X(t)−X(∞) and V ar(V (t))/n to approximate the
bias and variance of xnδ (t) (or xnk), respectively. Moreover, the theory of Gaussian processes
allows us to find an interval, such that with high probability V (t) falls into the interval
for all t ∈ [0, T ], and rescaling the interval by n−1/2 yields an approximate simultaneous
interval for xnδ (t) − X(t), t ∈ [0, T ]. The simultaneous interval enables us to derive tests
and confidence sets based on xnδ (t) (or xnk) for model parameters, and assess the closeness
between iterates xnk and X(t) and, thus, the convergence of xnk toward the target value X(∞).

4. Stochastic Gradient Descent via Stochastic Differential Equations for
Stochastic Optimization

Solving the stochastic sample optimization problem (3.7) by the associated algorithms (3.8)
and (3.10) requires evaluating the sum-gradient for all data—that is, it demands expensive
evaluations of the gradients ∇̀ (θ;Ui) from summand functions `(θ;Ui) with all data Ui,
i = 1, · · · , n. For big data problems, there is an enormous amount of data available and such
evaluation of the sums of gradients for all data becomes prohibitively expensive. In order to
overcome the computational burden, stochastic gradient descent uses a so-called mini-batch
of data to evaluate the corresponding subset of summand functions at each iteration. Each
mini-batch is a relatively small data set that is sampled from (i) the large training data set
Un or (ii) the underlying population distribution Q. For the case of subsampling from the
original data set Un, it turns out that mini-batch subsampling in the stochastic gradient
descent scheme is similar to the m out of n (with or without replacement) bootstraps for
gradients (Bickel et al., 1997). While bootstrap resampling is widely used to draw inferences
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in statistics, resampling used here and in the learning community is motivated purely from
the computational purpose. Specifically, assume integer m is much smaller than n, and
denote by U∗m = (U∗1 , · · · , U∗m)′ a mini-batch. For the case (ii), U∗m = (U∗1 , · · · , U∗m)′ is
an i.i.d. sample taken from the distribution Q. For case (i), U∗m = (U∗1 , · · · , U∗m)′ is a
subsample taken from U = (U1, · · · , Un)′, where U∗1 , · · · , U∗m are randomly drawn with or
without replacement from U1, · · · , Un. For the case with replacement, U∗1 , · · · , U∗m represent
an i.i.d. sample taken from Q̂n, where Q̂n is the empirical distribution of U1, · · · , Un. In
this paper, we consider the case in which mini-batches are sampled from the underlying
distribution Q. Since mini-batch size m is negligible in comparison with data size n, the
bootstrap sampling case (ii) can be handled via strong approximation (Csörgö and Mason,
1989; Csörgö et al., 1999; Massart, 1989; Rio, 1993a, 1993b) by converting case (ii) into the
essentially proven scenario of case (i), where mini-bataches are sampled from the underlying
distribution Q.

The main computational idea in the stochastic gradient descent algorithm is to replace
Ln(θ; Un) in algorithms (3.8) and (3.10) for solving the sample optimization problem (3.7)
by a smaller sample version L̂m(θ; U∗m) at each iteration, where

L̂m(θ; U∗m) =
1

m

m∑
i=1

`(θ;U∗i ).

We remind readers of the notion convention specified at the end of Section 1 that adds
indices m and/or ∗ to notations for the corresponding processes and sequences affiliated
with mini-batches in Section 4, while notations with a superscript n and without such
subscripts or superscripts correspond to the stochastic sample optimization problem (3.7)
and the deterministic population optimization problem (2.1), respectively.

4.1 Stochastic Gradient Descent

The stochastic gradient descent scheme replaces ∇Ln(xnk−1; Un) in algorithm (3.8) by a
smaller sample version at each iteration to obtain the following recursive algorithm,

xmk = xmk−1 − δ∇L̂m(xmk−1; U∗mk), (4.18)

where U∗mk = (U∗1k, · · · , U∗mk)′, k = 1, 2, · · · , are independent mini-batches.
We may naively follow the continuous curve approach described in Section 2 to approxi-

mate {xmk , k = 0, 1, · · · } by a smooth curve similar to the case in Section 3. However, unlike
the scenario in Section 3, algorithms (4.18) [and (4.26) for the accelerated case in Section
4.2 later] are designed for the computational purpose, and they do not correspond to any
optimization problem with a well-defined objective function, such as g(θ) in the population
optimization problem (2.1) or Ln(θ; Un) in the sample optimization problem (3.7), since
samples U∗mk used in L̂m(xmk−1; U∗mk) change with iteration k. The analysis for stochastic
gradient descent will be rather different from that studied in Section 3. Below, we define a
‘pseudo objective function’ for the stochastic gradient descent case.

Define a mini-batch process U∗m(t) = (U∗1 (t), · · · , U∗m(t))′ and a step process xmδ (t),
t ≥ 0, for xmk in (4.18) as follows:

U∗m(t) = U∗mk and xmδ (t) = xmk for kδ ≤ t < (k + 1)δ. (4.19)
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To facilitate the analysis, we adopt a convention xmδ (t) = xm0 for t < 0. Then, L̂m(xmδ (t −
δ); U∗m(t)) = L̂m(xmk−1; Umk) for kδ ≤ t < (k + 1)δ. L̂m(θ; U∗m(t)) may be treated as a

counterpart of Ln(θ; Un). As m → ∞, L̂m(θ; U∗m(t)) approaches g(θ) for each δ, and the
stochastic gradient descent algorithm (4.18) can still solve the sample optimization problem
(3.7) numerically. However, as t evolves, L̂m(θ; U∗m(t)) changes from iteration to iteration,
and depends on δ as well as m, since mini-batches change as the algorithm iterates, and
the number of the mini-batches involved is determined by the time t and the step size
δ. There is no single bona fide objective function here, and the ‘pseudo objective func-
tion’ Lm(θ; U∗m(t)) cannot serve the role of genuine objective functions such as g(θ) and
Ln(θ; Un). The approach in Sections 2 and 3 cannot be directly applied to obtain an ordi-
nary differential equation like equation (3.9). In fact, as evident below, for this case there
exists no such analog ordinary differential equation. Instead, we will derive asymptotic
stochastic differential equations for algorithm (4.18). The new asymptotic stochastic dif-
ferential equations may be considered as counterparts of the ordinary differential equation
(3.16), which is an asymptotic version of the ordinary differential equation (3.9), but the
key difference is that the asymptotic stochastic differential equations must depend on the
step size δ as well as m to account for the mini-batch effect (see more details later after the
stochastic differential equations (4.21) and (4.22) regarding the associated random variabil-
ity). Our derivation and stochastic differential equations rely on the asymptotic behavior
of ∇L̂m(θ; U∗m(t))−∇g(θ) as δ → 0 and m→∞.

We need the following initial condition to guarantee the validity of our asymptotic
analysis.

A5. Assume that initial values satisfy xm0 − x0 = oP ((δ/m)1/2).

We describe the asymptotic behavior of ∇L̂m(θ; U∗m(t)) in the following theorem.

Theorem 4 Define a partial sum process

Hm
δ (t) = (mδ)1/2

∑
tk≤t

[
∇L̂m(xmδ (tk−1); U∗m(tk))−∇g(xmδ (tk−1))

]
, t ≥ 0, (4.20)

where tk = kδ, k = 0, 1, 2, · · · . Under Assumptions A1–A5, as δ → 0 and m→∞, we have
that on D([0, T ]), Hm

δ (t) weakly converges to H(t) =
∫ t

0 σ((X(u))dB(u), t ∈ [0, T ], where
B is a p-dimensional standard Brownian motion, σ(θ) is defined in Assumption A3, and
X(t) is the solution of the ordinary differential equation (2.3).

Remark 6 As discussed earlier, due to mini-batches used in algorithm (4.18), there is no
corresponding optimization problem with a well-defined objective function. Consequently,
we do not have any δ-free differential equation analog to the ordinary differential equation
(3.16). In other words, here, there is no analog continuous modeling to derive differential
equations free of δ, obtained by letting δ → 0. This may be explained from Theorem 4
as follows. It is easy to see that Hm

δ (t) is a normalized partial sum process for [T/δ]

random variables ∇L̂m(xmδ (tk−1); U∗m(tk)) whose variances are of order m−1, and the weak
convergence theory for partial sum processes indicates that a normalized factor (mδ)1/2 in
the definition (4.20) is required to obtain a weak convergence limit for Hm

δ (t). On the other

17



Wang and Wu

hand, to obtain an analog to the Z term in equation (3.16), we need to find some kind of
continuous-time limit for ∇L̂m(θ; U∗m(t)) − ∇g(θ). As U∗m(t) is an empirical process for
independent subsamples U∗mk, ∇Lm(θ; U∗m(t)) − ∇g(θ) may behave like a sort of discrete-
time weighted white noise (in fact, a martingale difference sequence). Therefore, a possible
continuous-time limit for ∇Lm(θ; U∗m(t)) − ∇g(θ) is related to a continuous-time white
noise, which is defined as the derivative Ḃ(t) of Brownian motion B(t) in the sense of
the Dirac delta function (a generalized function). In the notation of Theorem 4, we may
informally write H(t) =

∫ t
0 σ(X(u))Ḃ(u)du in terms of white noise Ḃ(t), and ∇L̂m(xmδ (t−

δ); U∗m(t)) − ∇g(X(t)) corresponds to the derivative Ḣ(t) = σ(X(t))Ḃ(t) of H(t). While
the factor δ1/2 on the right-hand side of the definition (4.20) is required to normalize a
partial sum process with [T/δ] random variables for obtaining a weak convergence limit,
from the white noise perspctive, here, we require a normalized factor δ1/2 to move from a
discrete-time white noise to a continuous-time white noise. As a matter of fact, the weak
convergence is very natural from the viewpoint of weak convergence for stochastic processes
(Jacod and Shiryaev, 2003; He et al., 1992). Because of the white noise type stochastic
variation due to different mini-batches used from iteration to iteration in algorithm (4.18),
the continuous modeling for stochastic gradient descent will be δ-dependent, which will be
given below.

Using the definitions of xmδ (t) in (4.19) and Hm
δ (t) in (4.20), we recast algorithm (4.18)

as
xmδ (t+ δ)− xmδ (t) = −∇g(xmδ (t))δ − (δ/m)1/2 [Hm

δ (t+ δ)−Hm
δ (t)].

Theorem 4 suggests an approximation of the step process Hm
δ (t) by the continuous process

H(t), and we approximate the step process xmδ (t) by a continuous process Xm
δ (t). Taking

the step size δ as dt, Hm
δ (t+δ)−Hm

δ (t) as dH(t) = σ(X(t))dB(t), and xmδ (t+δ)−xmδ (t) as
dXm

δ (t), we transform the above difference equation into the following stochastic differential
equation,

dXm
δ (t) = −∇g(Xm

δ (t))dt− (δ/m)1/2σ(X(t))dB(t), (4.21)

where X(t) is the solution of the ordinary differential equation (2.3), and B(t) is a p-
dimensional standard Brownian motion. The solution Xm

δ (t) of the stochastic differential
equation (4.21) may be considered as a continuous approximation of xmk [or xmδ (t)] generated
from the stochastic gradient descent algorithm (4.18) [or (4.19)]. Since Xm

δ (t) is expected
to be close to X(t), and the Brownian term in (4.21) is of higher order, we may replace X(t)
in (4.21) by Xm

δ (t) to better mimic the recursive relationship in (4.18). In other words, we
also consider the following stochastic differential equation,

dX̌m
δ (t) = −∇g(X̌m

δ (t))dt− (δ/m)1/2σ(X̌m
δ (t))dB(t). (4.22)

Since we are interested in distributional behaviors, we consider solutions of the stochastic
differential equations (4.21) and (4.22) in the weak sense—that is, for each fixed δ and m,
there exist versions of the continuous processes Xm

δ (t) and X̌m
δ (t) along with Brownian

motion B(t) on some probability space to satisfy equations (4.21) and (4.22) (Ikeda and
Watanabe, 1981).

The stochastic Brownian terms in (4.21) and (4.22) are employed to account for the
random fluctuations due to the use of mini-batches for gradient estimation from iteration
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to iteration in the stochastic gradient descent algorithm (4.18), where m−1/2 and δ1/2 are
statistical normalization factors with m for mini-batch size and [T/δ] for the total number
of iterations considered in [0, T ] (as δ for the step size). At each iteration, we resort to a
mini-batch for gradient estimation; thus, the number of iterations in [0, T ] is equal to the
number of mini-batches used in [0, T ], and the factor δ1/2 accounts for the effect due to
the total number of mini-batches used in [0, T ], while m−1/2 accounts for the effect of m
observations in each mini-batch.

The theorem below derives the asymptotic distribution of Xm
δ (t) and X̌m

δ (t). Let
V m
δ (t) = (m/δ)1/2[Xm

δ (t) − X(t)] and V̌ m
δ (t) = (m/δ)1/2[X̌m

δ (t) − X(t)]. Treating them
as random elements in C([0, T ]), we derive their weak convergence limit in the following
theorem.

Theorem 5 Under Assumptions A1–A5, as δ → 0 and m→∞, we have

sup
0≤t≤T

|Xm
δ (t)− X̌m

δ (t)| = OP (m−1δ), (4.23)

and both V m
δ (t) and V̌ m

δ (t), t ∈ [0, T ], weakly converge to V (t) which is a time-dependent
Ornstein-Uhlenbeck process satisfying

dV (t) = −[IHg(X(t))]V (t)dt− σ(X(t))dB(t), V (0) = 0, (4.24)

where IH is the Hessian operator, B is a p-dimensional standard Brownian motion, σ(θ)
is defined in Assumption A3, and X(t) is the solution of the ordinary differential equation
(2.3).

Remark 7 As X(t) and Xn(t) in the gradient descent case are viewed as the population
and sample gradient flows, respectively, in Remark 1, we may treat Xm

δ (t) and X̌m
δ (t) as

stochastic gradient flows in the stochastic gradient descent case, and regard the Gaussian
limiting distribution of V m

δ (t) and V̌ m
δ (t) as the central limit theorem for the stochastic

gradient flows, which simply refers to the gradient flow central limit theorem (GF-CLT).

Remark 8 Theorem 5 reveals that while Xm
δ (t) and X̌m

δ (t) have the same weak convergence
limit, they are an order of magnitude closer to each other than to X(t). This may also be
evident from the fact that the difference between the stochastic differential equations (4.21)
and (4.22) is at the high order Brownian term with Xm

δ (t) replaced by its limit X(t). The
linear stochastic differential equation (4.24) indicates that V (t) has the following explicit
expression for t ∈ [0, T ] under the condition that IHg(X(u)) and IHg(X(v)) commute for
all u 6= v,

V (t) = −
∫ t

0
exp

[
−
∫ t

u
IHg(X(v))dv

]
σ(X(u))dB(u). (4.25)

The step process xmδ (t) defined in (4.19) is the empirical process for iterates xmk generated
from the stochastic gradient descent algorithm (4.18). Treating xmδ (t) as a random element
in D([0, T ]), we consider its asymptotic distribution in the following theorem.
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Theorem 6 Under Assumptions A1–A5, as δ → 0 and m→∞, we have

sup
t≤T
|xmδ (t)−Xm

δ (t)| = oP (m−1/2δ1/2) +OP (δ| log δ|1/2),

where xmδ (t) and Xm
δ (t) are defined by algorithm (4.19) and the stochastic differential equa-

tion (4.21), respectively. In particular, if we choose (δ,m), such that mδ| log δ| → 0 as
δ → 0 and m→∞, then for the chosen (δ,m), (m/δ)1/2[xmδ (t)−X(t)] weakly converges to
V (t), where V (t) is governed by the stochastic differential equation (4.24).

Remark 9 Theorem 6 indicates that iterate sequences xmk generated from the stochastic gra-
dient descent algorithm (4.18) can be very close to the continuous curves Xm

δ (t) and X̌m
δ (t),

which are governed by the stochastic differential equations (4.21) and (4.22), respectively.
With the appropriate choices of (δ,m), we can make the empirical process xmδ (t) for xmk to
share the same weak convergence limit as the continuous curves Xm

δ (t) and X̌m
δ (t). The

results enable us to study discrete algorithms by analyzing their corresponding continuous
stochastic differential equations and their relatively simple weak limit.

Remark 10 We may consider stochastic gradient descent with momentum and/or dimin-
ishing learning rate and obtain the corresponding stochastic differential equations. For ex-
ample, δ in (4.18) can be replaced by diminishing learning rate δk = ηk−α for some α ∈ (0, 1)
and constant η > 0, and the same arguments lead us to stochastic differential equations such
as (4.21) and (4.22) with extra factor (t + 1)−α. For the momentum case, we need to add
an extra linear term in the drifts of Xm

δ (t) (or X̌m
δ (t)). For example, we consider stochastic

gradient descent with momentum

xmk = γxmk−1 − δ∇L̂m(xmk−1; U∗mk), δ = ηk−α, γ = 1− βη,

and obtain the following stochastic differential equation,

dXm
δ (t) = −[∇g(Xm

δ (t))(t+ 1)−α + βXm
δ (t)]dt− (η/m)1/2σ(X(t))(t+ 1)−αdB(t).

4.2 Accelerated Stochastic Gradient Descent

We apply Nesterov’s acceleration scheme to stochastic gradient descent by replacing ∇Ln(
ynk−1; Un) in algorithm (3.10) with a subsampled version at each iteration as follows:

xmk = ymk−1 − δ∇L̂m(ymk−1; U∗mk), ymk = xmk +
k − 1

k + 2
(xmk − xmk−1), (4.26)

where we use initial values xm0 and ym0 = xm0 , and U∗mk = (U∗1k, · · · , U∗mk)′, k = 1, 2, · · · , are
independent mini-batches.

The continuous modeling for algorithm (4.26) is conceptually in parallel with the case
for the stochastic gradient descent algorithm (4.18) in Section 4.1, but the tricky part is
that we face numerous mathematical difficulties in multiple steps related to singularity in
the second-order stochastic differential equations involved.

As we have illustrated the continuous modeling of xmk generated from algorithm (4.18)
in Section 4.1, it is evident that our derivation of stochastic differential equations relies on
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the asymptotic behavior of ∇L̂m(θ; U∗m(t))−∇g(θ) as δ → 0 and m → ∞. Similar to the
cases in Sections 2 and 3.2, we define step processes

xmδ (t) = xmk , ymδ (t) = ymk , U∗m(t) = U∗mk, for k
√
δ ≤ t < (k + 1)

√
δ, (4.27)

and approximate xmδ (t) by a smooth curve Xm
δ (t), which is given by (4.35) below. Note the

difference between the step sizes δ and δ1/2 for the plain and accelerated cases, respectively,
as indicated at the end of Section 2.

Theorem 7 Define a partial sum process

Hm
δ (t) = (m2δ)1/4

∑
tk≤t

[
∇L̂m(ymδ (tk−1); U∗m(tk))−∇g(ymδ (tk−1))

]
, t ≥ 0, (4.28)

where tk = kδ1/2, k = 0, 1, 2, · · · . Under Assumptions A1–A5, as δ → 0 and m → ∞, we
have that on D([0, T ]), Hm

δ (t) weakly converges to H(t) =
∫ t

0 σ((X(u))dB(u), t ∈ [0, T ],
where B is a p-dimensional standard Brownian motion, σ(θ) is defined in Assumption A3,
and X(t) is the solution of the ordinary differential equation (2.6).

Now, we are ready to derive the second-order stochastic differential equation correspond-
ing to algorithm (4.26). First, note that in the population-level, the second-order ordinary
differential equation (2.6) can be equivalently written as{

dX(t) = Z(t)dt,
dZ(t) = −

[
3
tZ(t) +∇g(X(t))

]
dt,

(4.29)

where Z(t) = Ẋ(t); algorithm (2.4) is equivalent to{
xk+1 = xk +

√
δ zk,

zk+1 =
[
1− 3

k+3

]
zk −

√
δ∇g

(
xk + 2k+3

k+3

√
δ zk

)
,

(4.30)

where zk = (xk+1 − xk)/
√
δ, which can be recasted as{ xk+1−xk√
δ

= zk,
zk+1−zk√

δ
= − 3

tk+3
√
δ
zk −∇g

(
xk + 2k+3

k+3

√
δ zk

)
,

(4.31)

where we take tk = k
√
δ. We approximate (xk, zk) by continuous curves (X(t), Z(t)). Note

that as δ → 0, 3
√
δ → 0 and 2k+3

k+3

√
δ zk → 0 in (4.31), which are negligible relative to tk

and xk. We take step size
√
δ as dt and turn the discrete difference equation system (4.31)

into the continuous differential equation system (4.29).

Second, we replace (xk, zk) in (4.30) by (xmk , z
m
k ), where zmk = (xmk+1 − xmk )/

√
δ, and

write the sample-level algorithm (4.26) in the following equivalent forms,{
xmk+1 = xmk +

√
δ zmk ,

zmk+1 =
[
1− 3

k+3

]
zmk −

√
δ∇g

(
xmk + 2k+3

k+3

√
δ zmk

)
− δ1/4√

m
[Hm

δ (tk+1)−Hm
δ (tk)],

(4.32)
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or equivalently,
xmk+1−x

m
k√

δ
= zmk ,

zmk+1−z
m
k√

δ
= − 3

tk+3
√
δ
zmk −∇g

(
xmk + 2k+3

k+3

√
δ zmk

)
− δ1/4√

m

Hm
δ (tk+1)−Hm

δ (tk)√
δ

,
(4.33)

where again tk = k
√
δ. Third, we approximate (xmk , z

m
k ) by some continuous process

(Xm
δ (t), Zmδ (t)). As Theorem 7 suggests, we substitute Hm

δ (t) by H(t), with dH(t) =
σ(X(t))dB(t); dropping the negligible terms 3

√
δ and 2k+3

k+3

√
δ zmk and taking the step size√

δ as dt, we move from the discrete difference equation system (4.33) to the following
stochastic differential equation system,{

dXm
δ (t) = Zmδ (t)dt,

dZmδ (t) = −
[

3
tZ

m
δ (t) +∇g(Xm

δ (t))
]
dt− δ1/4√

m
σ(X(t))dB(t),

(4.34)

which—together with Ẋm
δ (t) = Zmδ (t)—is equivalent to the following second-order stochas-

tic differential equation,

Ẍm
δ (t) +

3

t
Ẋm
δ (t) +∇g(Xm

δ (t)) + (δ/m2)1/4σ(X(t))Ḃ(t) = 0, (4.35)

where initial conditions Xm
δ (0) = xm0 and Ẋm

δ (0) = 0, X(t) is defined by the ordinary
differential equation (2.6), B(t) is a p-dimensional Brownian motion, and Ḃ(t) is white
noise defined as the time derivative of B(t) in the sense of generalized functions (Hida and
Si, 2008).

As we have discussed and demonstrated for the stochastic gradient descent case in
Section 4.1, similar to the stochastic differential equations (4.21) and (4.22) for the stochastic
gradient descent algorithm, the second-order stochastic differential equations (4.34) and
(4.35) depend on δ and m through the stochastic Brownian terms. They are used to account
for the random fluctuation in mini-batches used for gradient estimation from iteration to
iteration in algorithm (4.26), where m−1/2 and δ1/4 are statistical normalization factors
with m for the mini-batch size and [T/δ1/2] for the total number of iterations considered in
[0, T ] (as δ1/2 for the step size), or equivalently, the total number of mini-batches used in
[0, T ].

The theorem below indicates that the second-order stochastic differential equation (4.35)
has a unique solution. Here, again, we consider the solution in the weak sense that for each
fixed δ and m, there exist continuous process Xm

δ (t) and Brownian motion B(t) on some
probability space to satisfy equation (4.35). As in Section 4.1, process Xm

δ (t) provides a
continuous approximation of iterate xmk given by algorithm (4.26). As δ → 0 and m→∞,
the Brownian term in equation (4.35) disappears, and Xm

δ (t) approaches X(t) defined by
the ordinary differential equation (2.6). Define V m

δ (t) = (m2/δ)1/4[Xm
δ (t) − X(t)]. Then,

X(t), Xm
δ (t), and V m

δ (t) live on C([0, T ]). Treating them as random elements in C([0, T ]),
we derive a weak convergence limit of V m

δ (t) in the following theorem.

Theorem 8 Under Assumptions A1–A5, the second-order stochastic differential equation
(4.35) has a unique solution in the weak sense, and as δ → 0 and m → ∞, V m

δ (t) weakly
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converges to a Gaussian process V (t) on C([0, T ]), where V (t) is the unique solution of the
following linear second-order stochastic differential equation,

V̈ (t) +
3

t
V̇ (t) + [IHg(X(t))]V (t) + σ(X(t))Ḃ(t) = 0, (4.36)

where IH is the Hessian operator, X(t) is the solution of the ordinary differential equa-
tion (2.6), σ(θ) is defined in Assumption A3, B(t) is a p-dimensional standard Brownian
motion, and initial conditions V (0) = V̇ (0) = 0.

Remark 11 As X(t) and Xn(t) in the accelerated case are viewed as the population and
sample Lagrangian flows in Remark 1, respectively, we treat Xm

δ (t) as a stochastic La-
grangian flow in the accelerated stochastic gradient descent case and regard the Gaussian
limiting distribution of V m

δ (t) as the central limit theorem for the stochastic Lagrangian
flows, which we simply call the Lagrangian flow central limit theorem (LF-CLT).

The step process xmδ (t) in definition (4.27) is the empirical process for iterate xmk gen-
erated from algorithm (4.26). Treating xmδ (t) as a random element in D([0, T ]) we consider
its asymptotic distribution in the follow theorem.

Theorem 9 Assume that there exists a ∈ (0, 1/2), such that δm2/(1−2a) is bounded below
from zero. Then, under Assumptions A1–A5, as δ → 0 and m→∞, we have

sup
t≤T
|xmδ (t)−Xm

δ (t)| = op(m
−1/2δ1/4) +Op(δ

1/2| log δ|),

where xmδ (t) and Xm
δ (t) are given by the definition (4.27) and the stochastic differen-

tial equation (4.35), respectively. In particular if we choose (δ,m) to further satisfy that
m1/2δ1/4| log δ| → 0 as δ → 0 and m → ∞, then for the chosen (δ,m), (m2/δ)1/4[xmδ (t) −
X(t)] weakly converges to V (t), t ∈ [0, T ], where V (t) is governed by the stochastic differ-
ential equation (4.36).

Remark 12 As mentioned earlier, similar to the stochastic gradient descent case, the con-
tinuous modeling depends on both δ and m, and Theorems 7-9 are in parallel with Theorems
4-6. However, for the accelerated case, the challenges are largely with regard to the techni-
cal proofs. For example, we must handle second-order stochastic differential equations like
(4.35) with singularity (similar to the singularity case for the ordinary differential equations
(2.6) and (3.15)); it is difficult to analyze the complex recursive relationship in the accel-
erated stochastic gradient descent algorithm (4.26). Theorems 8 and 9 show that iterate
sequences xmk generated from the accelerated stochastic gradient descent algorithm (4.26)
may be very close to the continuous curve Xm

δ (t) governed by the stochastic differential
equation (4.35), and appropriate choices of (δ,m) enable the empirical process xmδ (t) for
iterates xmk to have the same weak convergence limit as the continuous curve Xm

δ (t).

Remark 13 The two conditions on (δ,m) are compatible. The bound condition indicates
that for some generic constant C, δa/2−1/4m−1/2 < C or δ > Cm−2/(1−2a), and the condition
m1/2δ1/4| log δ| → 0 requires that δ should decrease faster than m−2. For example, if we
take δ = m−b for any b > 2, then δa/2−1/4m−1/2 ≤ 1 holds for 1/2 > a > 1/2 − 1/b, and
m1/2δ1/4| log δ| = bm1/2−p/4 logm→ 0.
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Below, we continue to study Example 1 considered in Section 3.4 under the stochastic
gradient descent case.

Example 2. In Example 1, we have already calculated ∇g(θ) = θ − θ̌, IHg(θ) = I,
σ(θ) = diag(τ, θ̌2), and X(t) = θ̌ + (x0 − θ̌)e−t. For the stochastic gradient descent case,
solving the stochastic differential equation (4.21), we obtain

Xm
δ (t) = xm0 e

−t + θ̌(1− e−t)−
√

δ

m

∫ t

0
eu−tσ(X(u))dB(u)

= θ̌ + (xm0 − θ̌)e−t −
√

δ

m

(
τ

∫ t

0
eu−tdB1(u), θ̌2

∫ t

0
eu−tdB2(u)

)′
= X(t) + (xm0 − x0)e−t +

√
δ

m
diag(τ, θ̌2)Λ(t)

= X(t) + (xm0 − x0)e−t +

√
δ

m
V (t), (4.37)

where Λ(t) = −(
∫ t

0 e
u−tdB1(u),

∫ t
0 e

u−tdB2(u)) is an Ornstein-Uhlenbeck process whose
stationary distribution is a bivariate normal distribution with mean zero and variance
equal to half of the identity matrix, and V (t) = diag(τ, θ̌2)Λ(t) is the solution of the
stochastic differential equation (4.24). It is evident that the weak convergence of V m

δ (t) =
(m/δ)1/2[Xm

δ (t)−X(t)] to V (t). For the accelerated case, as we have seen, the solution of
the ordinary differential equation (2.6) has the following form,

X(t) = θ̌ +
2(x0 − θ̌)

t
J1 (t) .

Below we provide solutions of the stochastic differential equations (4.35) and (4.36) in this
case. First, we consider the solution V (t) of the stochastic differential equation (4.36). It is
easy to verify that tV (t) satisfies the inhomogeneous Bessel equation of the first-order with
constant term t3diag(τ, θ̌2)Ḃ(t), and its solution can be expressed as follows:

V (t) =
π

2

J1(t)

t

∫ t

0
J̌1(u)u2diag(τ, θ̌2)dB(u)− π

2

J̌1(t)

t

∫ t

0
J1(u)u2diag(τ, θ̌2)dB(u),

where J1(t) and J̌1(t) are the Bessel functions (Gatson, 1995) of the first and second kind
of order one, respectively. Since in this case, ∇g is linear, IHg = 1, and the stochastic
differential equations (4.35) and (4.36) differ by a shift θ̌ and a scale m−1/2δ1/4, we can
easily find

Xm
δ (t) = θ̌ +

2(xm0 − θ̌)
t

J1 (t) +m−1/2δ1/4V (t)

= X(t) +
2(xm0 − x0)

t
J1 (t) +m−1/2δ1/4V (t).

With the initial value given in A5, it is evident that V m
δ (t) = (m2/δ)1/4[Xm

δ (t) − X(t)]
weakly converges to V (t).
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4.3 Joint Computational and Statistical Asymptotic Analysis for Stochastic
Gradient Descent

As we advocate a joint asymptotic analysis framework in Section 3.4, here X(t), Xm
δ (t),

V m
δ (t), and V (t) provide a joint asymptotic analysis for the dynamic behaviors of the

stochastic gradient descent algorithms (4.18) and (4.26). The weak convergence results
established in Theorems 4-9 can be used to demonstrate the corresponding weak conver-
gence results in C(IR+) and D(IR+). It is more complicated to consider the asymptotic
analysis with t → ∞ for the stochastic gradient descent case and extend the convergence
results further from [0,∞) to [0,∞]. As t → ∞, the Brownian motion B(t) behaves like
(2t log log t)1/2, and process H(t) often diverges; however, there may exist meaningful dis-
tributional limits for processes Xm

δ (t), xmδ (t), V m
δ (t), and V (t). For the stochastic gradient

descent case, we establish the weak convergence of V m
δ (t) to V (t) on D(IR+) and study

their asymptotic behaviors as t→∞ in the following theorem.

Theorem 10 Suppose that Assumptions A1–A5 are met, IHg(θ̌) is positive definite, all
eigenvalues of

∫ t
0 IHg(X(s))ds diverge as t → ∞, IHg(θ1) and IHg(θ2) commute for any

θ1 6= θ2, and assume m1/2δ| log δ|1/2 → 0, as δ → 0 and m → ∞. Then, we obtain the
following results.

(i) As δ → 0 and m→∞, V m
δ (t) = (m/δ)1/2[Xm

δ (t)−X(t)] and (m/δ)1/2[xmδ (t)−X(t)]
weakly converge to V (t) on D(IR+).

(ii) The stochastic differential equation (4.24) admits a unique stationary distribution
denoted by V (∞), where V (∞) follows a normal distribution with mean zero and covariance
matrix Γ(∞) satisfying the following algebraic Ricatti equation,

Γ(∞)IHg(X(∞)) + IHg(X(∞))Γ(∞) = σ2(X(∞)). (4.38)

(iii) Further assume that there exists a unique stationary distribution, denoted by Xm
δ (∞),

for the stochastic differential equation (4.21). Then, as δ → 0 and m → ∞, V m
δ (∞) =

(m/δ)1/2[Xm
δ (∞)−X(∞)] converges in distribution to V (∞).

Remark 14 Similar to Theorem 3 and Remark 4, Theorem 10 indicates that for the
stochastic gradient descent case, as δ → 0 and m → ∞, Xm

δ (∞) approaches X(∞) = θ̌,
V m
δ (t) =

√
m/δ[Xm

δ (t) − X(t)] converges to V (t), t ∈ [0,∞], and V (t) weakly converges
to V (∞) as t→∞. Intuitively, V (t) is a time-dependent Ornstein-Uhlenbeck process with
stationary distribution V (∞) as its limit when t→∞, and similarly the solution Xm

δ (t) of
the stochastic differential equation (4.21) may admit a stationary distribution Xm

δ (∞) as
the limiting distribution of Xm

δ (t) when t → ∞ (Da Prato and Zabczyk, 1996; Gardiner,
2009). Naturally, Xm

δ (∞) corresponds to V (∞). Mandt et al. (2017) essentially take these
results as their major model assumptions to establish that stochastic gradient descent can be
treated as a statistical estimation procedure in the Bayesian framework. Kushner and Yin
(2003) mainly investigated the convergence of stochastic approximation algorithms, such
as xnk in (3.8) and xmk in (4.18), by the so-called mean ordinary differential equations.
The main ideas are described in the following manner. Random effects in the algorithms
asymptotically average out, their convergence dynamics are determined effectively by the tail
behaviors of the iterates from the algorithms, and the mean ordinary differential equations
can asymptotically approximate the tail iterates (which are the iterates with iteration index
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k shifted toward infinity). Kushner and Yin (2003, chapter 10) also studied tail iterates
centered at the true target X(∞) = θ̌ (instead of X(t) in our case) to obtain a station-
ary Ornstein-Uhlenbeck process, instead of the time-dependent Ornstein-Uhlenbeck process
(4.24) in this paper. The stationary Ornstein-Uhlenbeck process corresponds to V (∞) in our
case, which is employed to describe the convergent behaviors of the algorithms around the
actual target X(∞) = θ̌. In the convergence study of the Langevin Monte Carlo algorithm,
Dalalyan (2017a, 2017b) and Dalalyan and Karagulyan (2019) derived explicit error bounds
on the algorithm’s sampling distribution with respect to the target invariant distribution of
the Langevin diffusion.

Note that stochastic gradient descent is designed for the pure computational purpose,
and there is no corresponding objective function nor analog of minimizer θ̂n for the stochastic
gradient descent algorithm, as mini-batches (and their corresponding gradient estimators)
change along iterations. It is not clear whether there are known statistical estimation
methods that correspond to the limits of xmδ (t) and Xm

δ (t) as t→∞. Below, we provide an
explicit illustration of the point through Examples 1 and 2 considered in Sections 3.4 and
4.2.

Example 3. First, from Examples 1 and 2 we evaluate

H(t) =

∫ t

0
σ(X(u))dB(u) =

(
τB1(t), θ̌2B2(t)

)′
,

where σ(X(u)) = diag(τ, θ̌2), and X(u) = θ̌ + (x0 − θ̌)e−u. By the law of the iterated
logarithm for Brownian motion, H(t) diverges like (t log log t)1/2 as t → ∞. From (4.37),
we have

Xm
δ (t) = X(t) + (xm0 − x0)e−t +

√
δ

m
diag(τ, θ̌2)Λ(t)

= X(t) + (xm0 − x0)e−t +

√
δ

m
V (t), (4.39)

where Λ(t) = −(
∫ t

0 e
u−tdB1(u),

∫ t
0 e

u−tdB2(u)) is an Ornstein-Uhlenbeck process whose sta-
tionary distribution is a bivariate normal distribution with mean zero and variance equal
to half of the identity matrix, V (t) = diag(τ, θ̌2)Λ(t), and V m

δ (t) = (m/δ)1/2(xm0 −x0)e−t +
V (t). As t → ∞, Λ(t) approaches its stationary distribution given by Z/

√
2, where

Z = (Z1, Z2)′, and Z1 and Z2 are independent standard normal random variables. Us-
ing expression (4.39), we conclude that as t → ∞, Xm

δ (t) converges in distribution to
Xm
δ (∞) = θ̌ + (δ/m)1/2diag(τ, θ̌2)Z/

√
2. For the initial values satisfying Assumption A5,

xm0 − x0 = o((δ/m)1/2), V m
δ (t) weakly converges to V (t), and V m

δ (∞) weakly converges to
V (∞) = (τZ1, θ̌2Z2)/

√
2.

On the other hand, the stochastic gradient descent algorithm (4.18) yields

xmk = xmk−1 + δ(Ū∗mk − xmk−1), k = 1, 2, · · · ,

where U∗mk = (U∗1k, · · · , U∗mk), k ≥ 1, are mini-batches, and Ū∗mk is the sample mean of
U∗1k, · · · , U∗mk. In comparison with the recursive relationship xnk = xnk−1 + δ(Ūn − xnk−1) for

the stochastic sample optimization (3.7) based on all data and xk = xk−1 + δ(θ̌ − xk−1)
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for the deterministic population optimization (2.1), the differences are δ(Ū∗mk − Ūn) and
δ(Ū∗mk − θ̌), respectively. In fact, for the stochastic gradient descent case, we rewrite the
recursive relationship as xmk = (1− δ)xmk−1 + δŪ∗mk and obtain

xmδ (t) = xm0 (1− δ)[t/δ] + δ
∑
kδ≤t

(1− δ)[t/δ]−kŪ∗mk. (4.40)

Similarly, we have

xnδ (t) = xn0 (1− δ)[t/δ] + Ūnδ
∑
kδ≤t

(1− δ)[t/δ]−k, xδ(t) = x0(1− δ)[t/δ] + θ̌δ
∑
kδ≤t

(1− δ)[tδ]−k.

Letting t→∞, we obtain

xnδ (∞) = Ūnδ

∞∑
k=1

(1− δ)k−1 = Ūn, xδ(∞) = θ̌,

xmδ (∞) = δ lim
`→∞

∑̀
j=0

(1− δ)jŪ∗m,`−j = δ

∞∑
k=1

(1− δ)k−1Ū∗∗mk,

where sequence {Ū∗∗mk}k is defined as the reverse sequence of {Ū∗mk}k. It is evident that

X(∞) = xδ(∞) = θ̌, Xn(∞) = xδ(∞) = θ̂n, and Xm
δ (∞) and xmδ (∞) approach θ̌ but

do not correspond to any statistical estimation procedures like θ̂n. For t ∈ [0,∞), when
δ is small and m is relatively large, xmδ (t) can be naturally approximated by its ‘limit’

xm0 e
−t + θ̌(1 − e−t) − (δ/m)1/2

∫ t
0 e

u−tσ(X(u))dB(u), which is equal to Xm
δ (t), where the

last term on the right-hand side of (4.40)—after being centered at θ̌ and normalized by
δ1/2—weakly converges to

∫ t
0 e

u−tσ(X(u))dB(u). To compare these processes, we assume
initial values xm0 = xn0 = x0 for simplicity. Then, we have

xnδ (t) = xδ(t) + (Ūn − θ̌)
[
1− (1− δ)[t/δ]

]
, (4.41)

xmδ (t) = xnδ (t) + δ
∑
kδ≤t

(1− δ)[t/δ]−k(Ū∗mk − Ūn)

= xδ(t) + (Ūn − θ̌)
[
1− (1− δ)[t/δ]

]
+ δ

∑
kδ≤t

(1− δ)[t/δ]−k(Ū∗mk − Ūn). (4.42)

The second and third terms on the right-hand side of (4.42) account for, respectively, the
variability due to statistical estimation and the random fluctuation due to the use of mini-
batches for gradient estimation from iteration to iteration in the stochastic gradient descent
algorithm. Note that Ūn − θ̌ and Ū∗mk − Ūn are of orders n−1/2 and m−1/2, respectively.
This is true even for the case that mini-batches U∗mk = (U∗1k, · · · , U∗mk), k ≥ 1, are sampled
from the large data set Un for the bootstrap resampling case. In fact, we may resort to the
strong approximation (Komlós et al., 1975, 1976; Csörgö et al., 1999; Csörgö and Mason,
1989) to obtain

Ū∗mk − Ūn = m−1/2Amk +OP (m−1 logm), Ūn − θ̌ = n−1/2Dn +OP (n−1 log n), (4.43)
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where Amk, k = 1, 2, · · · , are almost i.i.d. random variables defined by a sequence of
independent Brownian bridges on some probability spaces, with random variables Dn de-
fined by another sequence of independent Brownian bridges on the probability spaces. As
m/n → 0, we easily conclude that the second term on the right-hand side of (4.42) is
of higher order than the third term, where the the third term represents the cumulative
mini-batch-subsampling effect up to the k = [t/δ]-th iteration, with the second term for the
statistical estimation error. Equations (4.41) and (4.42) show that as m,n→∞, xnδ (t) and
xmδ (t) approach θ̌; moreover, on average both gradient descent and stochastic gradient de-
scent algorithms remain on target, with the only difference being their random variabilities.
Theorems 1 and 2 establish an order of n−1/2Z for the random variability of the gradient
descent algorithm using all data, while Theorems 5 and 6 indicate that for the stochastic
gradient descent algorithm, the cumulative random fluctuation up to the [t/δ]-iteration can
be modeled by process (δ/m)1/2V (t), where V (t) given by the stochastic differential equa-
tion (4.24) (or its expression 4.25) is a time-dependent Ornstein-Uhlenbeck process that may
admit a stationary distribution with mean zero and variance σ2(X(∞))/[2IHg(X(∞))], fac-
tor m−1/2 accounts for the effect of each mini-batch of size m, and factor δ1/2 represents
the effect of the total number of mini-batches that is proportional to 1/δ. The normalized
factor (δ/m)1/2 implies that while each mini-batch of size m is not as efficient as the full
data sample of size n, the repetitive use of mini-batch subsampling in stochastic gradient
descent utilizes more data and improves its efficiency, with the improvement represented
by δ1/2, where 1/δ is proportional to the total number of mini-batches up to the time t (or
the t/δ-th iteration). In other words, repeatedly subsampling compensates the efficiency
loss due to a mini-batch of small size at each iteration. Intuitively, this implies that the
stochastic gradient descent algorithm invokes different mini-batches to cause some random
fluctuation when moving from one iteration to another; as the number of iterations in-
creases, subsampling improves efficiency with factor (δ/m)1/2 instead of m−1/2 in order to
make up loss from n−1/2 to m−1/2—that is, updating with the use of a large number of
mini-batches can improve accuracy for the stochastic gradient descent algorithm.

4.4 Convergence Analysis of Stochastic Gradient Descent for Non-Convex
Optimization

Our asymptotic results may have implications for stochastic gradient descent used in non-
convex optimization particularly in deep learning. Recent studies often suggest that stochas-
tic gradient descent algorithms can escape from saddle points and find good local minima
(Jastrzȩbski et al., 2018; Jin et al., 2017; Keskar et al., 2017; Lee et al., 2016; Shallue et
al., 2019). We provide new rigorous analysis and heuristic intuition to shed some light on
the phenomenon. First, note that we can relax the convexity assumption on the objective
function g(θ) for the deterministic population optimization (2.1) in Theorems 4–6 and, thus,
Theorem 10 can be easily adopted to non-convex optimization with θ̌ being a critical point
of g(θ). Suppose that stochastic gradient descent processes converge to the critical point
θ̌. Applying the large deviation theory to the stochastic differential equations (4.21) and
(4.22) corresponding to the gradient descent algorithm, we find that as δ/m goes to zero,
if the critical point is a saddle point of g(θ), the continuous processes generated from the
stochastic differential equations can escape from the saddle point in a polynomial time (pro-
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portional to (m/δ)1/2 log(m/δ)) (Kifer, 1981, Theorems 2.1-2.3; Li et al., 2017b, Theorem
3.3); in contrst, if the critical point is a local minimizer of g(θ), the continuous processes
take an exponential time (proportional to exp{c(m/δ)1/2} for some generic constant c) to
leave any given neighborhood of the local minimizer (Dembo and Zeitouni, 2010, Chapter
5; Li et al., 2017b, Theorem 3.2). We may also explain the phenomenon from the limiting
distribution perspective. Theorem 5 indicates that the continuous processes Xm

δ (t) and
X̌m
δ (t) generated from the stochastic differential equations (4.21) and (4.22) are asymptoti-

cally the same as the deterministic solution X(t) of the ordinary differential equation (2.3)
plus (δ/m)1/2V (t), where V (t) is the solution of the stochastic differential equation (4.24).
The limiting process V (t) is a time-dependent Ornstein-Uhlenbeck process given by the
expression (4.25). Then, we propose the following theorem for the behaviors of g(Xm

δ (t))
and g(X̌m

δ (t)) around the critical point θ̌.

Theorem 11 Suppose that Assumptions A1–A5 (except for the convexity of g(·)) are met,
and the gradient descent process X(t) given by the ordinary differential equation (2.3) con-
verges to a critical point θ̌ of g(·). Then, we have the following results,

g(Xm
δ (t)) = g(X(t)) + (δ/m)1/2∇g(X(t))V m

δ (t) +
δ

2m
[V m
δ (t)]′IHg(X(t))V m

δ (t) + oP (δ/m)

= g(θ̌) +
1

2
[X(t)− θ̌ + (δ/m)1/2V m

δ (t)]′IHg(θ̌)[X(t)− θ̌ + (δ/m)1/2V m
δ (t)]

+ oP
(
δ/m+ [X(t)− θ̌]2

)
, (4.44)

∇g(Xm
δ (t)) = ∇g(X(t)) + (δ/m)1/2IHg(X(t))V m

δ (t) + oP ((δ/m)1/2)

= IHg(θ̌)[X(t)− θ̌ + (δ/m)1/2V m
δ (t)] + oP

(
(δ/m)1/2 + |X(t)− θ̌|

)
, (4.45)

and the same equalities hold with Xm
δ replaced by X̌m

δ , where X(t), Xm
δ (t), and X̌m

δ (t) are
the solutions of the differential equations (2.3), (4.21), and (4.22), respectively; V m

δ (t) =
(m/δ)1/2[Xm

δ (t) − X(t)], and the equalities hold in the weak sense that we may consider
Xm
δ (t), V m

δ (t), and V (t) on some common probability spaces through Skorokhod’s represen-
tation.

If θ̌ = X(∞) is a local minimizer with positive definite IHg(θ̌), then as t → ∞, V (t)
has a limiting stationary distribution with mean zero, its covariance matrix Γ(∞) satisfies
the algebraic Ricatti equation (4.38), and

E[g(Xm
δ (t))] = g(X(t)) +

δ

4m
tr[σ2(X(∞))] + o(δ/m), (4.46)

E[|∇g(Xm
δ (t))|2] = |∇g(X(t))|2 +

δ

2m
tr[σ2(X(∞))IHg(X(∞))] + o(δ/m). (4.47)

If θ̌ is a saddle point, V (t) diverges and, thus, does not have any limiting distribution.

Theorem 11 shows that as X(t) gets close to the critical point θ̌ within the range
of order (δ/m)1/2, g(Xm

δ (t)) and g(X̌m
δ (t)) are approximately quadratic. As Theorem 5

indicates that V (t) is the limit of V m
δ (t), we may replace V m

δ (t) by V (t) in the expansions
of g(Xm

δ (t)) and ∇g(Xm
δ (t)) and find that V (t) plays a key role in determining the behavior

of the stochastic gradient descent algorithm. If the critical point θ̌ is a saddle point of g(θ),
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IHg(·) is non-positive definite around the saddle point; then, the time-dependent Ornstein-
Uhlenbeck process V (t) does not have any stationary distribution—in fact, it diverges.
Thus, processes Xm

δ (t) and X̌m
δ (t) have unstable behaviors around the saddle point and

can make big moves, which leads them to escape from the saddle point. On the other hand,
if the critical point θ̌ is a local minimizer of g(θ), then g(·) may be approximately quadratic
with positive definite IHg(·) around the local minimizer. Moreover, V (t) has a stationary
distribution, and all the processes maintain stable stochastic behaviors. In addition, the
stochastic component (δ/m)1/2V (t) plays a dominant role in determining the behaviors of
g(Xm

δ (t)) and g(X̌m
δ (t)) around the local minimizer. In fact, equations (4.44)-(4.47) imply

that g(Xm
δ (t)) and g(X̌m

δ (t)) behave as

g(X(t)) + (δ/m)1/2∇g(X(t))V (t) +
δ

2m
[V (t)]′IHg(X(t))V (t),

whose mean is asymptotically equal to

g(X(t)) +
δ

4m
tr[σ2(X(∞))],

and ∇g(Xm
δ (t)) and ∇g(X̌m

δ (t)) function in a similar manner as

∇g(X(t)) + (δ/m)1/2IHg(X(t))V (t),

which has mean ∇g(X(t)) and variance asymptotically equal to

δ

2m
tr[σ2(X(∞))IHg(X(∞))].

First, it must be noted that the stochastic components in equations (4.44)–(4.47) depend
on the learning rate δ and the batch size m only through their ratio δ/m. Second, they are
characterized by the local geometry of the objective function around the local minimizer,
where the local geometric characteristics include the Hessian IHg(X(t)) and the gradient
covariance σ2(X(t)). In particular, utilizing the joint analysis along with the algebraic
Ricatti equation (4.38) for the stationary covariance of the Ornstein-Uhlenbeck process,
we establish equations (4.46) and (4.47) to specify how the minima found by stochastic
gradient descent are influenced by four factors: the learning rate δ, batch size m, gradient
covariance σ2(θ̌), and Hessian IHg(θ̌). These may have implications regarding the behavior
of stochastic gradient descent for non-convex optimization. For example, equations (4.46)
and (4.47) indicate that the ratio δ/m of learning rate to batch size is inversely proportional
to tr[σ2(θ̌)] for a given level of the expected loss at θ̌ and tr[σ2(θ̌)IHg(θ̌)] for a specific level
of the expected loss gradient at θ̌. In other words, for a larger δ/m, stochastic gradient
descent tends to find a local minimum with smaller tr[σ2(θ̌)] and tr[σ2(θ̌)IHg(θ̌)]. For
a more sharp (or wide) local minimizer θ̌, we have larger (or smaller) IHg(θ̌) as well as
faster (or slower) changing gradient around θ̌, which points to a tendency of larger (or
smaller) tr[σ2(θ̌)] and tr[σ2(θ̌)IHg(θ̌)]. However, tr[σ2(θ̌)] and tr[σ2(θ̌)IHg(θ̌)] together
do not characterize sharpness or flatness of local minimizers, and batch size alone does not
determine the ratio of learning rate to batch size. Hence, our results do not directly support
or contradict the claims in Keskar et al. (2017) on large/small batch methods for finding
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sharp/flat local minima regarding generalization errors, which requires further theoretical
and numerical studies (Shallue et al., 2019).

A case in point is a special case studied in Jastrzȩbski et al. (2018) that identified three
factors that influence the minimum found by stochastic gradient descent. We describe
the special case in the following manner. Suppose that U has a pdf f(u; θ), and the loss
function `(θ;u) = − log f(u; θ). Since we take the loss as a negative log likelihood, this
is the MLE case, and the gradient covariance σ2(θ) corresponds to the negative Fisher
information, which in turn is equal to E[IH`(θ;U)] = IHg(θ). In this case, because the
stochastic differential equation (4.24) has the commutable diffusion coefficient σ(X(t)) and
drift IHg(X(t)) = σ2(X(t)), we have an explicit expression (4.25) for the time-dependent
Ornstein-Uhlenbeck process V (t), with the simple stationary distribution N(0,Γ(∞)) =
N(0, I)/2. With these explicit forms and IHg(X(t)) = σ2(X(t)), Jastrzȩbski et al. (2018,
Equation 9) employed direct calculations for this specific example to essentially establish a
special form of (4.46) with only three of the four factors regarding a relationship between
the ratio of learning rate to batch size and the width of the minimum found by stochastic
gradient descent. However, their corresponding formula no longer holds for the general case.
In fact, for this case, given IHg(X(t)) = σ2(X(t)) and the explicit expressions of V (t) and
its stationary distribution, our general results can easily recover the relation in Jastrzȩbski
et al. (2018, Equation 9). Moreover, our results are supported by additional numerical
studies (Luo and Wang, 2020; Wang, 2019).

Foster et al. (2019) revealed that the complexity of stochastic optimization can be
decomposed into the complexity of its corresponding deterministic population optimiza-
tion and the sample complexity, where the optimization complexity represents the minimal
amount of effort required to find near-stationary points, and the sample complexity of an
algorithm refers to the number of training-samples required to learn a target function suf-
ficiently well. Equation (4.45) indicates that finding near-stationary points of g(Xm

δ (t))
can be converted into making |∇g(X(t))| small and controlling (δ/m)1/2IHg(X(t))V (t).
Making |∇g(X(t))| small means finding a near-stationary point for the corresponding de-
terministic population optimization. Equation (4.47) implies that the control of (δ/m)1/2

IHg(X(t))V (t) can be achieved through bounding its variance—namely, imposing a bound
on tr[σ2(X(∞)) IHg(X(∞))] along with selecting a sufficiently small ratio δ/m of learning
rate to batch size—where the variance tr[σ2(X(∞))IHg(X(∞))] is used to describe the
sample complexity of the associated statistical learning problem for the time-dependent
Ornstein-Uhlenbeck process. This indicates that our results are in line with Foster et al.
(2019), and future study may reveal further intrinsic connection between our results and
those of Foster et al. (2019).

Example 4. Consider the problem of orthogonal tensor decomposition (Ge et al., 2015;
Li et al., 2016). A fourth-order tensor Υ ∈ IRd4 has an orthogonal tenor decomposition if
it can be written as

Υ =
d∑
j=1

α⊗4
j ,

where αj ’s are orthonormal vectors in IRd satisfying ‖αj‖ = 1 and α†jαk = 0 for j 6=
k, and the problem is to find tensor components αj ’s given such a tensor Υ. Since the
tensor decomposition problem has inherent symmetry—that is, a tensor decomposition is
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unique only up to component permutation and sign-flips—the symmetry property makes
the corresponding optimization problem multiple local minima and, thus, non-convex.

A formulation of orthogonal tensor decomposition as an optimization problem to find
one component was proposed in Frieze et al. (1996) as follows:

max
‖β‖2=1

Υ(β,β,β,β).

Take Υ = E[U⊗4] to be the fourth-order tensor whose (i1, i2, i3, i4)-th entry is E(Ui1Ui2Ui3Ui4),
where U is a d-dimensional random vector with distribution Q. Assume that U = AW ,
where W is bounded, and has symmetric and i.i.d. components with unit variance, and A
is an orthonormal matrix whose column vectors α1, · · · ,αd form an orthonormal basis. Let
ψk be the k-th moment of i.i.d. components of W , with ψ1 = 0, ψ2 = 1, and ψ4 equal to
its kurtosis. The optimization problem can be equivalently casted as the problem of finding
components αj ’s into the solution to the following population optimization problem,

min−sign(ψ4 − 3)E[(β†U)4] = min
d∑
j=1

−(α†jβ)4 subject to ‖β‖ = 1.

It is well known that there is an unidentifiable tensor structure for ψ4 = 3. For ψ4 6= 3, we
may consider the empirical objective function

∑n
i=1−sign(ψ4 − 3)(β†Ui)

4 based on avail-
able data U1, · · · , Un, and study the corresponding stochastic optimization. The objective
function of the population optimization has the gradient and Hessian in the tangent space
as follows:

sign(ψ4 − 3)∇Υ(β,β,β,β) = 4
(
[β2

1 − ‖β‖44]β1, · · · , [β2
d − ‖β‖44]βd

)
,

sign(ψ4 − 3)IHΥ(β,β,β,β) = −12diag(β2
1 , · · · , β2

d) + 4‖β‖44Id.

Applying both gradient descent and stochastic gradient descent algorithms for solving the
population and sample optimization problems, we obtain iterates xk at the population-level
and iterates xmk at the sample-level. As learning rate δ → 0, x[t/δ] converges in probability
to the population gradient flow X(t) that satisfies

dXi

dt
= 4Xi

(
X2
i −

d∑
`=1

X4
`

)
, i = 1, · · · , d,

and (m/δ)1/2[xm[t/δ] −X(t)] has a weak convergence limit V (t) that satisfies

dV (t) = −µ(X(t))V (t)dt− σ(X(t))dB(t),

where
µ(β) = −12diag(β2

1 , · · · , β2
d) + 4‖β‖44Id, σ2(β) = 16Cov([β†W]3W).

In order to better understand the complex gradient flow system and time-dependent Ornstein-
Uhlenbeck process limit, we derive explicit expressions for the case of d = 2, where X(t) =
(X1(t), X2(t))′ has the following closed-form solution,

X2
1 (t) = 0.5 + 0.5[1 + c exp(−4t)]−0.5, X2

2 (t) = 1−X2
1 (t),
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with constant c depending on the initial value. In particular, if the initial vector([X1(0)]2 <
[X2(0)]2 (resp. ([X1(0)]2 > [X2(0)]2), then X1(t) approaches 1 (resp. 0) as t → ∞. Direct
calculations yield

σ2(u)/16 = E([u1W1 + u2W2]3WW†)− E([u1W1 + u2W2]3W)[E([u1W1 + u2W2]3W)]†,

where E([u1W1 + u2W2]3W) = (u3
1ψ4 + 3u1u

2
2, u

3
2ψ4 + 3u2

1u2),

E([u1W1 + u2W2]6W 2
1 ) =

6∑
`=0

C6
` u

`
1u

6−`
2 ψ`+2ψ6−`,

E([u1W1 + u2W2]6W 2
2 ) =

6∑
`=0

C6
` u

`
2u

6−`
1 ψ`+2ψ6−`, and

E([u1W1 + u2W2]6W1W2) =

6∑
`=0

C6
` u

`
1u

6−`
2 ψ`+1ψ6−`+1.

We may simplify µ(X(t)) and σ(X(t)) further by approximatingX(t) with its limit w∗(some
critical point). For example, if X(t) approaches critical point w∗ = (1, 0) (saddle point), we
may approximate µ(X(t)) and σ2(X(t)) by µ(w∗) and σ2(w∗), where

µ(w∗) = −12diag(w2
∗1, w

2
∗2) + 4I = diag(−8, 4), σ2(w∗) = diag(ψ8 − ψ2

4, ψ6),

and obtain an approximate stochastic differential equation for the weak convergence limit
V (t) that satisfies

dV (t) = 4
[
−diag(−2, 1)V (t)dt− [diag(ψ8 − ψ2

4, ψ6)]1/2dBt

]
.

On the other hand, if X(t) approaches critical point w∗ = 2−1/2(1,−1) (local minimizer),
we have µ(w∗) = −12diag(w2

∗1, w
2
∗2) + 4I/d = −8I/d = −4I, and σ2(w∗) is equal to

1

8

(
ψ8 + 16ψ6 + 15ψ2

4 − 26ψ3ψ5 − (ψ4 + 3)2 30ψ3ψ5 − 12ψ6 − 20ψ2
4 + (ψ4 + 3)2

30ψ3ψ5 − 12ψ6 − 20ψ2
4 + (ψ4 + 3)2 ψ8 + 16ψ6 + 15ψ2

4 − 26ψ3ψ5 − (ψ4 + 3)2

)
,

dV (t) = −4V (t)dt− σ(u∗)dBt.

It is evident from the stochastic differential equations that V (t) has a stationary distribution
for the local minimizer case, while V (t) diverges for the saddle point case (in fact, the first
component of V (t) has a variance with exponential growth in t). Moreover, algorithms are
available to compute numerical solutions to the ordinary or stochastic differential equations
(Butcher, 2008; Kloeden and Platen, 1992).

4.5 Statistical Analysis of Stochastic Gradient Descent for Output Inference

There is a great current interest in the statistical analysis of stochastic gradient descent.
Examples include statistical variability analysis and Bayesian inference (Chen et al., 2020;
Li et al., 2018; Mandt et al., 2017; Toulis and Airoldi, 2017). Our results may have im-
portant implications on the statistical analysis of stochastic gradient descent. For the case
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of stochastic gradient descent, Theorems 5 and 6 reveal that output sequence xmk gen-
erated from the stochastic gradient descent algorithm (4.18) is asymptotically equivalent
to the continuous processes Xm

δ (t) and X̌m
δ (t) generated from the stochastic differential

equations (4.21) and (4.22), respectively; in turn, they are both asymptotically the same
as (δ/m)1/2V (t) plus the deterministic solution X(t) of the ordinary differential equation
(2.3), where V (t) is the solution of the stochastic differential equation (4.24). The limiting
process V (t) is a time-dependent Ornstein-Uhlenbeck process, and its stationary distribu-
tion is a normal distribution with mean zero and covariance Γ(∞) specified by the algebraic
Ricatti equation (4.38), which is given by Theorem 10. This suggests that the statistical
inference based on xmk can be asymptotically equivalent to the statistical inference based
on discrete samples from X(t) + (δ/m)1/2V (t). As t → ∞, X(t) converges to the true
minimizer X(∞) = θ̌, V (t) converges in distribution to V (∞), which follows its stationary
distribution N(0,Γ(∞)). Thus, inferences based on xmk can be asymptotically equivalent to
inferences based on discrete samples from the Ornstein-Uhlenbeck process with stationary
distribution N(θ̌, δΓ(∞)/m). Below, we discuss two specific cases.

Consider the Bayesian treatment of stochastic gradient descent in Mandt et al. (2017).
As described above, Theorems 5, 6, and 10 imply that outputs from the stochastic gra-
dient descent algorithm (4.18) are asymptotically equivalent to discrete samples from the
Ornstein-Uhlenbeck process with stationary distribution N(θ̌, δΓ(∞)/m), where Γ(∞) is
given by the algebraic Ricatti equation (4.38). Applying the Bernstein-von Mises theorem
to discrete samples from the Ornstein-Uhlenbeck process, we find that the posterior distri-
bution is asymptotically equal to a normal distribution with mean and covariance equal to
the MLE of θ̌ and the Fisher information evaluated at the MLE, respectively. Since the
stochastic gradient descent outputs are asymptotically equivalent to discrete samples from
the Ornstein-Uhlenbeck process, the posterior distribution based on outputs from stochastic
gradient descent is asymptotically the same as the posterior distribution for the Ornstein-
Uhlenbeck model; thus, it is asymptotically equal to the normal distribution. The obtained
results can be employed to justify the essential inference assumptions in Mandt et al. (2017)
and Li et al. (2018) that stochastic gradient descent is a stationary Ornstein-Uhlenbeck
process, and the corresponding posterior distribution is Gaussian.

Another case is the average output from stochastic gradient descent. Denote by x̄mδ the
average of N outputs xmki = xmδ (tki), i = 1, · · · , N , from the stochastic gradient descent
algorithm (4.18), where N may depend on m and δ, and N → ∞ as δ → 0 and m → ∞.
By Skorokhod’s representation theorem and Theorems 5 and 6, we have that as δ → 0 and
m→∞, the average of xmδ (t) has the same asymptotic distribution as the average of Xm

δ (t)
and the difference between

(m/δ)1/2

[
N−1

N∑
i=1

Xm
δ (tki)−N

−1
N∑
i=1

X(tki)

]
and N−1

N∑
i=1

V (tki)

is negligible. Note that deterministic N−1
∑N

i=1X(tki) converges to X(∞) = θ̌ and that for

large N , the distribution of N−1/2
∑N

i=1 V (tki) can be approximated by a normal distribu-
tion with mean zero and covariance A−1SA−1, where with notations in Theorem 10 we set

A = IHg(θ̌) = IHg(X(∞)), S = σ2(θ̌) = σ2(X(∞)). (4.48)
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This suggests that (m/δ)1/2(x̄mδ − θ̌) has an asymptotic normal distribution with mean
zero and covariance A−1SA−1, and we may use outputs from stochastic gradient descent
to estimate A−1SA−1 and employ the associated Ornstein-Uhlenbeck process to justify the
estimation approaches. See Chen et al. (2020) and Li et al. (2018) for the covariance
estimation study of stochastic gradient descent.

Note that there is a difference between the asymptotic covariances Γ(∞) and A−1SA−1

for stochastic gradient descent described above and in the literature. For example, in Chen
et al. (2020), Kushner and Yin (2003), Li et al. (2018), and Polyak and Juditsky (1992),
the average output from stochastic gradient descent has asymptotic covariance A−1SA−1,
while Mandt et al. (2017) and Theorem 10 indicate that the asymptotic covariance of the
corresponding outputs is equal to the stationary covariance Γ(∞) [defined in (4.38)] of the
associated Ornstein-Uhlenbeck process. We explain and reconcile the difference between
the covariances A−1SA−1 and Γ(∞) in the following manner. On the one hand, although
the Ornstein-Uhlenbeck process V (t) approaches its normal stationary distribution with

mean zero and covariance Γ(∞), its re-scaled average 1√
N

∑N
i=1 V (tki) ≈ 1√

N

∫ N
0 V (s)ds

has asymptotic covariance A−1SA−1. Indeed, without confusion, we denote by V (t) the
stationary solution of the Ornstein-Uhlenbeck model as dV (t) = −AV (t)dt+ S1/2dBt and
define its auto-covariance function as ζ(s1 − s2) = E[V (s1)(V (s2))′]. Then, the variance of

1√
N

∫ N
0 V (s)ds is equal to

1

N

∫ N

0

∫ N

0
E[V (s1)(V (s2))′]ds1ds2 =

1

N

∫ N

0

∫ N

0
ζ(s1 − s2)ds1ds2

=

∫ ∞
−∞

ζ(u)du+O(N−1) = A−1SA−1 +O(N−1), as N →∞,

where A and S are given by the expressions (4.48) and the last equality is due to the fact
that

ζ(0) = Var(V (s)) =

∫ ∞
0

e−AsSe−Asds = Γ(∞) satisfying ζ(0)A+Aζ(0) = S,

ζ(s) = e−Asζ(0), ζ(−s) = ζ(0)e−As, s ≥ 0, and∫ ∞
−∞

ζ(u)du = A−1ζ(0) + ζ(0)A−1 = A−1[ζ(0)A+Aζ(0)]A−1 = A−1SA−1.

On the other hand, the stationary covariance Γ(∞) is derived by treating the stochastic
gradient descent recursive equation as an approximate VAR(1) model (Polyak and Juditsky,
1992), where the VAR(1) model can be expressed as Vk = ΨVk−1 +ek, with Ψ = I−δA, and
random errors ek has covariance Var(ek) = δS. The VAR(1) model can be approximated
by an Ornstein-Uhlenbeck model dV (t) = −AV (t)dt+S1/2dBt. From the VAR(1) equation
and stationarity, we obtain

Var(Vk) = ΨVar(Vk−1)Ψ + δS = Var(Vk)− δAVar(Vk)− δVar(Vk)A+ δ2AVar(Vk)A+ δS.

Canceling out Var(Vk), dividing by δ on both sides, and then letting δ → 0, we have

AVar(Vk) + Var(Vk)A = S,
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which recovers the algebraic Ricatti equation (4.38) for the stationary covariance Γ(∞) of
the Ornstein-Uhlenbeck process V (t). In particular, for the one-dimensional case, the AR(1)
variance has an expression V ar(ek)/(1−Ψ2). Plugging Ψ = I − δA and V ar(ek) = δS into
the variance formula, we obtain

V ar(ek)

1−Ψ2
=

δS

1− (1− δA)2
=

S

2A
+O(δ),

where the leading term S
2A is the exact stationary variance of the Ornstein-Uhlenbeck pro-

cess.

5. Proofs of Theorems

Denote by C generic constant free of (δ,m, n) whose value may change from appearance to
appearance. For simplicity, we assume initial values xn0 = xm0 = x0. In this proof section,
lemmas are established under the conditions and assumptions in corresponding theorems,
and we often do not repeatedly list these conditions and assumptions in the lemmas. To
track processes under different circumstances and facilitate long technical arguments, we
adopt the following notations and conventions.

It is often necessary to place processes and random variables on some common probabil-
ity spaces. At such occasions, we often automatically change probability spaces and consider
versions of the processes and the random variables on new probability spaces, without alter-
ing notations. Because of this convention and Skorokhod’s representation theorem, we often
switch between “convergence in probability” and “convergence in distribution.” Moreover,
because of the convention, when no confusion occurs, we attempt to use the same notation
for random variables or processes with identical distribution.

Convention 1. We reserve x’s and y’s for sequences generated from gradient descent
algorithms and the corresponding empirical processes, respectively, and X’s for solutions of
ordinary differential equations (ODEs) and stochastic differential equations (SDEs).

Convention 2. As described at the end of Section 1, to solve optimization (3.7) using
gradient descent algorithms, we add superscripts n and m to notations for the associated
processes and sequences based on all data in Section 3 and based on mini-batches in Section
4, respectively, while notations without any superscript are for sequences and functions
corresponding to optimization (2.1).

Convention 3. We reserve V ’s for normalized solutions difference between differential
equations associated with optimization (2.1) and optimization (3.7) under the cases for all
data and mini-batches, while we reserve V without any superscript as their corresponding
weak convergence limits.

Convention 4. As described at the end of Section 1, we add a superscript ∗ to notations
U ’s associated with mini-batches, and as in Convention 2, their corresponding process
notations have a superscript m.

Convention 5. We denote by |Ψ| the absolute value of scalar Ψ, the Euclidean norm
of vector Ψ, or the spectral norm of matrix Ψ.
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5.1 Proof of Theorem 1

We show that the solution of the linear differential equations (3.12) and (3.13) are Gaus-
sian, assuming existence and uniqueness. For equation (3.12), its solution has an expression
V (t) = Π0(t)

∫ t
0 [Π0(s)]−1Z(X(s))ds, where Π0(t) is a p by p deterministic matrix con-

structed by the Magnus expansion for solving the homogeneous linear differential equation
V̇ (t) + [IHg(X(t))]V (t) = 0 (Blanes et al., 2009). Thus, the limiting distribution of V n(t) is
Gaussian. For equation (3.13) in the accelerated case, we may convert the second-order ho-
mogeneous linear differential equation V̈ (t)+ 3

t V̇ (t)+[IHg(X(t))]V (t) = 0 into an equivalent
first-order homogeneous linear differential equation system(

V̇ (t)

Ξ̇(t)

)
=

[
0 1

−IHg(X(t)) −3
t

](
V (t)
Ξ(t)

)
,

where Ξ(t) = V̇ (t). Similar to the first-order case, we apply the Magnus expansion to
solve the first-order homogeneous linear differential equation system and then show that
the solution of the differential equation (3.13) linearly depends on Z(·). Therefore, the
limiting distribution of V n(t) is also Gaussian. As a matter of fact, the theorem shows that
in the special case of Z(θ) = σ(θ)Z, we have V (t) = Π(t)Z to clearly indicate the Gaussian
limiting distribution.

Now, we are ready to provide detailed arguments for the accelerated case, as results for
the plain case are relatively easier to show and will be established subsequently. Henceforth,
for simplicity, we provide proof arguments only for the case of Z(θ) = σ(θ)Z, as the proof
for general Z(θ) is essentially the same.

5.1.1 Differential Equation Derivation

With Un = (U1, · · · , Un)τ , let Rn(θ; Un) = (Rn1 (θ; U), · · · , Rnp (θ; Un))τ , where

Rnj (θ; Un) =
√
n

[
1

n

n∑
i=1

∂

∂θj
`(θ;Ui)−

∂

∂θj
g(θ)

]
, j = 1, · · · , p.

Then, we obtain

Rn(θ; Un) =
√
n

[
1

n

n∑
i=1

∇̀ (θ;Ui)−∇g(θ)

]
.

For the accelerated case, we can re-express ODE (3.11) as

Ẍn(t) +
3

t
Ẋn(t) +∇g(Xn(t)) +

1√
n
Rn(Xn(t); Un) = 0. (5.49)

By Lemma 5 below we obtain that Xn(t) converges in probability to X(t) uniformly
over any finite interval. Thus, for large n, Xn(t) falls into ΘX , and Assumption A4 implies
that as n → ∞, Rn(Xn(t); Un) = OP (1), and n−1/2Rn(Xn(t); Un)| → 0. Hence, ODEs
(3.11) and (5.49) both converge to ODE (2.6).

From Assumption A4 we have that Rn(θ; Un) converges in distribution to σ(θ)Z uni-
formly over θ ∈ ΘX , and the generalization of Skorokhod’s representation theorem in
Lemma 1 below shows that there exist U†n and Z† defined on some common probability
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spaces with Z† ∼ Np(0, Ip) and U†n identically distributed as Un, such that as n → ∞,

Rn(θ; U†n)− σ(θ)Z† = o(1) uniformly over θ ∈ ΘX . Thus, we hold that the solution Xn(t)
of equations (3.11) is identically distributed as the solution Xn

† (t) of

Ẍn
† (t) +

3

t
Ẋn
† (t) +∇g(Xn

† (t)) +
1√
n
Rn(Xn

† (t); U†n) = 0,

which in turn may be written as

Ẍn
† (t) +

3

t
Ẋn
† (t) +∇g(Xn

† (t)) +
1√
n
σ(Xn

† (t))Z† + o
(
n−1/2

)
= 0. (5.50)

In particular, (5.50) is equivalent to (3.17) up to the order of n−1/2, which implies that as
n→∞, ODEs (3.11), (3.17), and (5.50) all converge to ODE (2.6), and Xn

† (t) almost surely
converges to X(t). Since the solutions of equations (3.11), (3.17), and (5.50) are defined
in the distribution sense, when there is no confusion, with a little abuse of notations, we
exclude index † and write equation (5.50) as

Ẍn(t) +
3

t
Ẋn(t) +∇g(Xn(t)) +

1√
n
σ(Xn(t))Z + o

(
n−1/2

)
= 0, (5.51)

where Z is a Gaussian random vector with distribution Np(0, Ip), and initial conditions
Xn(0) = x0 and Ẋn(0) = 0.

The arguments for establishing Theorem 1 in Su et al. (2016) can be directly ap-
plied to establish the existence and uniqueness of the solution Xn(t) to (5.49) for each n.
We can employ the same arguments with ∇g(·) replaced by IHg(X(t)) Π(t) + σ(X(t)) or
IHg(X(t))V (t) +σ(X(t))Z to show that linear differential equations (3.15) and (3.13) have
unique solutions.

For the plain gradient descent case, Lemma 2 below shows that Xn(t) converges to
X(t) uniformly over any finite interval. Similarly, we can establish that ODE (3.9) is
asymptotically equivalent to ODE (3.16), and the standard ODE theory reveals that they
have unique solutions.

Now, we provide a generalization of Skorokhod’s representation theorem. Assumption
A4 indicates that Rn(θ; Un) converges in distribution to Z(θ), and Skorokhod’s representa-
tion theorem enables the realizations of Rn(θ; Un) and Z(θ) on some common probability
spaces with almost sure convergence. The following lemma generalizes Skorokhod’s repre-
sentation theorem for a joint representation of Un and Rn(θ; Un) along with almost sure
convergence for Rn(θ; Un) and Z(θ).

Lemma 1 There exist U†n and Z†(θ) defined on some common probability spaces with

Z†(θ) and U†n identically distributed as Z(θ) and Un, respectively, such that as n → ∞,

Rn(θ; U†n)− Z†(θ) = o(1) uniformly over θ ∈ ΘX .

Proof. Our proof argument follows the construction proof of Skorokhod’s representation
theorem in Billingsley (1999, Theorem 6.7), with some delicate modifications involving the
joint distribution of Un and Rn(θ; Un) as well as its associated conditional distributions.

Let Ψθ be the normal distribution of Z(θ). Assume random variables Un are defined on
probability space (Ω,F , IP ). Denote by Ψθ,n the joint distribution of Un and Rn(θ; Un),
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and by Ψθ,n,U and Ψθ,n,R the marginal distributions of Un and Rn(θ; Un), respectively. Let
Ξ0(θ), · · · ,Ξk(θ) be the partition of IRp (the support of normal distribution Ψθ), such that
(i) Ψθ(Ξ0(θ)) < ε, (ii) the boundaries of Ξ0(θ), · · · ,Ξk(θ) have probability zero under Ψθ,
and (iii) the diameters of Ξ1(θ), · · · ,Ξk(θ) are bounded by ε. Here, we use notation Ξi(θ) to
indicate the possible dependence of the partitions on θ. For r = 1, 2, · · · , we take εr = 2−r

and obtain partition Ξr0(θ), · · · ,Ξrkr(θ). Assumption A4 indicates that Rn(θ; Un) converges
in distribution to Z(θ) uniformly over θ ∈ ΘX , which implies that for each r there exists an
integer n∗r (free of θ), such that for n ≥ n∗r ,

Ψθ,n,R (Ξri (θ)) ≥ (1− εr)Ψθ (Ξri (θ)) , i = 1, · · · , kr, θ ∈ ΘX .

As in Billingsley (1999, Theorem 6.7), we can always find a probability space to support
a random element with any given distribution; moreover, by passing to the appropriate large
or infinite product space, we can show that there exists a probability space (Ω†,F†, IP†) to

support random variables ξ, Z†(θ), Ǔn, and U†n,i, and Λn, n, i ≥ 1—all independent of each
other—with the following four properties.

(i) ξ follows a uniform distribution on [0, 1].
(ii) Z†(θ) follows a normal distribution Ψθ, and Ǔn has distribution Ψθ,n,U .
(iii) For each n∗r ≤ n < n∗r+1 and for each Ξri (θ) with non-zero probability under Ψθ,

we take U†n,i to be an independent random variable on (Ω†,F†, IP†), such that U†n,i and

Rn(θ; U†n,i) jointly follow distribution Ψθ,n(·|Ξri (θ)), which denotes the joint conditional
distribution of Un(ω) and Rn (θ; Un(ω)) given Rn (θ; Un(ω)) ∈ Ξri (θ) (the restriction of
the joint distribution Ψθ,n on the set {u, Rn (θ; u) ∈ Ξri (θ)})—that is, for any Borel sets
A1 ⊂ IRm and A2 ⊂ IRp,

IP†

[
U†n,i(ω†) ∈ A1, R

n
(
θ; U†n,i(ω†)

)
∈ A2

]
= IP†

[
Ǔn(ω†) ∈ A1, R

n
(
θ; Ǔn(ω†)

)
∈ A2

∣∣Rn (θ; Ǔn(ω†)
)
∈ Ξri (θ)

]
= IP [Un(ω) ∈ A1, R

n (θ; Un(ω)) ∈ A2|Rn (θ; Un(ω)) ∈ Ξri (θ)]

= Ψθ,n(A1 ×A2|Ξri (θ)).

Taking A1 = IRm in the above equality, we obtain the marginal result for Rn(θ; U†n,i),

IP†

[
Rn
(
θ; U†n,i(ω†)

)
∈ A2

]
= IP†

[
Rn
(
θ; Ǔn(ω†)

)
∈ A2

∣∣Rn (θ; Ǔn(ω†)
)
∈ Ξri (θ)

]
= IP [Rn (θ; Un(ω)) ∈ A2|Rn (θ; Un(ω)) ∈ Ξri (θ)] = Ψθ,n,R (A2|Ξri (θ)) .

(iv) For each n∗r ≤ n < n∗r+1, the distribution of Λn is given by

νn(A) = ε−1
r

kr∑
i=0

Ψθ,n(A× IRp|Ξri (θ)) [Ψθ,n,R(Ξri (θ))− (1− εr)Ψθ(Ξ
r
i (θ))] .

Now, we define U†n on (Ω†,F†, IP†) in the following manner. For n < n∗1, take Un,† = Ǔn.
For each n∗r ≤ n < n∗r+1, define

U†n =

kr∑
i=0

U†n,i1{ξ ≤ 1− εr,Z†(θ) ∈ Ξri (θ)}+ Λn1{ξ > 1− εr}.
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We derive the distribution of U†n. For any Borel set A1 ⊂ IRm,

IP†(U
†
n ∈ A1) =

kr∑
i=0

IP†

[
U†n,i ∈ A1,Z†(θ) ∈ Ξri (θ), ξ ≤ 1− εr

]
+IP†(Λn ∈ A1, ξ > 1− εr)

= (1− εr)
kr∑
i=0

IP†

[
U†n,i ∈ A1

]
IP† [Z†(θ) ∈ Ξri (θ)] + εrνn(A1)

= (1− εr)
kr∑
i=0

Ψθ,n(A1 × IRp|Ξri (θ))Ψθ(Ξ
r
i (θ)) + εrνn(A1)

=

kr∑
i=0

Ψθ,n(A× IRp|Ξri (θ))Ψθ,n,R(Ξri (θ))

=

kr∑
i=0

IP [Un ∈ A1, R
n (θ; Un(ω)) ∈ Ξri (θ)]

= IP [Un ∈ A1] = Ψθ,n,U (A1),

where the fifth equality is on account of the definition of distribution νn (which is a reverse

construction). In other words, we have shown that U†n is identically distributed as Un

for all n. Let Ωr,† = {ξ ≤ 1 − εr,Z†(θ) 6∈ Ξr0(θ)} and Ω∗† = lim infr→∞Ωr,†. Then,
IP†(Ω

∗
r,†) > 1 − 2εr, and an application of the Borel-Cantelli lemma leads to IP†(Ω

∗
†) = 1.

For n∗r ≤ n < n∗r+1, on set Ωr,†, R
n(θ; U†n) and Z†(θ) fall into the same set Ξri (θ), whose

diameter is less than εr. Thus, on Ω∗† , R
n(θ; U†n) a.s. converges to Z†(θ) uniformly over

θ ∈ ΘX .

5.1.2 Weak Convergence and Tightness

To prove the weak convergence of Vn(t) to V (t), we need to establish the usual finite-
dimensional convergence as well as uniform tightness (or stochastic equicontinuity) (Kim
and Pollard, 1990, Theorem 2.3; Pollard, 1988; Van der Vaart and Wellner, 2000). We
establish finite-dimensional convergence below.

For the accelerated case, taking a difference between ODEs (2.6) and (5.50), we have

[Ẍn
† (t)− Ẍ(t)] +

3

t
[Ẋn
† (t)− Ẋ(t)] +∇[g(Xn

† (t))− g(X(t))] +
1√
n
σ(Xn

† (t))Z† = o
(
n−1/2

)
.

Let V n
† (t) =

√
n[Xn

† (t)−X(t)]. As n→∞, Xn
† (t)→a.s. X(t), σ(Xn

† (t)) = σ(X(t)) + o(1),

and∇[g(Xn
† (t))−g(X(t))] = ∇2g(X(t))[Xn

† (t)−X(t)]+o(Xn
† (t)−X(t)); thus, V n

† (t) satisfies

V̈ n
† (t) +

3

t
V̇ n
† (t) + IHg(X(t))V n

† (t) + σ(X(t))Z† = o(1).
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As n→∞, V n
† (t) almost surely converge to the unique solution V†(t) of the following linear

differential equation,

V̈†(t) +
3

t
V̇†(t) + [IHg(X(t))]V†(t) + σ(X(t))Z† = 0,

where X(t) is the solution of equation (2.6), random variable Z† ∼ Np(0, Ip), and initial
conditions V†(0) = V̇†(0) = 0. As V (t) and V†(t) are governed by the equations with the
same form but identically distributed random coefficients Z and Z†, we easily see that V (t)
and V†(t) are identically distributed.

The almost sure convergence of V n
† (t) to V†(t) implies the joint convergence of (V n

† (t1),
· · · , V n

† (tk)) to (V†(t1), · · · , V†(tk)) for any integer k and any t1, · · · , tk ∈ IR+. From the
identical distributions of Xn(t) with Xn

† (t), V n(t) with V n
† (t), and V (t) with V†(t) we imme-

diately conclude that (V n(t1), · · · , V n(tk)) converges in distribution to (V (t1), · · · , V (tk)).
This establishes the finite-dimensional distribution convergence of V n(t) to V (t).

For the plain gradient descent case, an application of the similar argument to ODEs
(2.3) and (3.16) can establish the finite-dimensional convergence.

Now, we show the tightness of Vn(t). To establish the tightness of Vn(t) on [0, T ], we
need to show that for any ε > 0 and η > 0, there exists a positive constant δ, such that

lim sup
n→∞

P

[
sup

(t1,t2)∈T (T,δ)
|Vn(t1)− Vn(t2)| > η

]
< ε, (5.52)

where T (T, δ) = {(t1, t2), t1, t2 ∈ IR+,max(t1, t2) ≤ T, |t1 − t2| < δ}. The tightness of Vn(t)
on IR+ requires the above result for any T <∞.

Note that as (5.52) requires only some probability evaluation, with the abuse of nota-
tions, we drop index † and work on equation (5.51).

5.1.3 Weak Convergence Proof for the Plain Gradient Descent Case

Lemma 2 For any given T > 0, we have

max
t∈[0,T ]

|Xn(t)−X(t)| = OP (n−1/2).

Proof. From ODEs (2.3) and (3.9), we obtain

Ẋn(t)− Ẋ(t) = −[∇g(Xn(t))−∇g(X(t))]− n−1/2Rn(Xn(t); Un),

and using Assumptions A1 and A2, we arrive at

|∇g(Xn(t))−∇g(X(t))| ≤ L|Xn(t)−X(t)|,

n−1/2|Rn(Xn(t); Un)−Rn(X(t); Un)| ≤

(
n−1

n∑
i=1

h1(Ui) + L

)
|Xn(t)−X(t)|.

Combining them we have

|Xn(t)−X(t)| ≤ n−1/2

∫ t

0
|Rn(X(s); Un)|ds

+

(
n−1

n∑
i=1

h1(Ui) + 2L

)∫ t

0
|Xn(s)−X(s)|ds,
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and an application of Gronwall’s inequality leads to

|Xn(t)−X(t)| ≤ n−1/2

∫ t

0
|Rn(X(s); Un)|ds

+ n−1/2

(
n−1

n∑
i=1

h1(Ui) + 2L

)∫ t

0
e(n
−1

∑n
i=1 h1(Ui)+2L)udu

∫ u

0
|Rn(X(s); Un)|ds,

which implies that

max
t∈[0,T ]

|Xn(t)−X(t)| ≤ n−1/2

∫ T

0
|Rn(X(s); Un)|ds

+ n−1/2

(
n−1

n∑
i=1

h1(Ui) + 2L

)∫ T

0
e(n
−1

∑n
i=1 h1(Ui)+2L)udu

∫ u

0
|Rn(X(s); Un)|ds.

Since Assumptions A3 and A4 indicate that supt |Rn(X(t); Un)| ∼ supt |σ(X(t))Z| =
OP (1), and n−1

∑n
i=1 h1(Ui) converges in probability to E[h1(U)] <∞, the above inequality

shows that maxt∈[0,T ] |Xn(t)−X(t)| = OP (n−1/2).

Lemma 3 For any given T > 0, V n(t) is stochastically equicontinuous on [0,T].

Proof. Lemma 2 has shown maxt∈[0,T ] |V n(t)| = OP (1). From ODEs (2.3) and (3.9), we
have

V̇ n(t) =
√
n[Ẋn(t)− Ẋ(t)] = −

√
n[∇g(Xn(t))−∇g(X(t))]−Rn(Xn(t); Un),

|V̇ n(t)| ≤
√
n|∇g(Xn(t))−∇g(X(t))|+ |Rn(Xn(t); Un)|

≤ L
√
n|Xn(t))−X(t)|+ |Rn(Xn(t); Un)|.

Lemma 2 shows that
√
n|Xn(t)) −X(t)| = OP (1), which indicates that for large n, Xn(t)

falls into ΘX and assumption A4 in turn implies | suptR
n(Xn(t); Un)| ∼ supt |σ(Xn(t))Z| =

OP (1). Substituting these into the upper bound of |V̇ n(t)|, we prove that maxt∈[0,T ] |V̇ n(t)| =
OP (1). Combining this with maxt∈[0,T ] |V n(t)| = OP (1) shown in Lemma 2, we immediately
establish the lemma.

Proof of Theorem 1 for the plain gradient descent case. The same perturbation
argument in Section 5.1.2 can be used to show finite-dimensional distribution convergence of
V n(t) to V (t) for simple ODE (3.9) in the plain gradient descent case. With the tightness of
V n(t) shown in Lemma 3 together with the finite distribution convergence, we immediately
prove the weak convergence of V n(t) to V (t) in the plain gradient descent case.

5.1.4 Weak Convergence Proof for the Accelerated Case

We can use the same proof as that given in Su et al. (2016, Theorem 1) to show that
ODE (3.11) has a unique solution for each n and Un. While the proof arguments in Su
et al. (2016, Theorem 1) mainly require local ODE properties, like those near a neighbor
of zero, our weak convergence analysis needs to investigate global behaviors of processes
generated from SDEs and ODEs with random coefficients. First, we extend and refine a
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few local results for the global case and establish several preparatory lemmas for proving
weak convergence in the theorem.

Given an interval I = [s, t] and a process Y (t), define for a ∈ (0, 1],

Ma(s, t;Y ) = Ma(I;Y ) = sup
u∈[s,t]

∣∣∣∣∣ Ẏ (u)− Ẏ (s)

(u− s)a

∣∣∣∣∣ . (5.53)

In the proof of Theorem 1, we take a = 1 and use M1(s, t;Y ). We need Ma(s, t;Y ) with
a < 1 subsequently in the proof of Theorem 8.

Lemma 4 For X(t) and Xn(t), we have

M1(s, t;X) ≤ 1

1− L(t− s)2/6

[(
3

s
+
L(t− s)

2

)
|Ẋ(s)|+ |∇g(X(s))|

]
,

M1(s, t;Xn) ≤ 1

1− [ζ(Un) + 2L](t− s)2/6[(
3

s
+

[ζ(Un) + 2L](t− s)
2

)
|Ẋn(s)|+ |∇g(Xn(s))|+ n−1/2|Rn(Xn(s); Un)|

]
,

M1(s, t;Xn −X) ≤ 1

1− [ζ(Un) + 2L](t− s)2/6

{
(3/s+ (t− s)[ζ(Un) + 2L])|Ẋn(s)− Ẋ(s)|

+ [2ζ(Un) + 5L]|Xn(s)−X(s)|+ n−1/2|Rn(Xn(s); Un)|

+n−1/2 sup
u∈[s,t]

|Rn(X(u); Un)−Rn(X(s); Un)|

}
,

when s > 0 and t − s <
√

6/[ζ(Un) + 2L], ζ(Un) = 1
n

∑n
i=1 h1(Ui), and h1(·) is given in

Assumption A1. In particular, for s = 0,

M1(0, t;X) ≤ |∇g(x0)|
1− Lt2/6

, M1(0, t;Xn) ≤ |∇g(x0)|+ n−1/2|Rn(x0; Un)|
1− [ζ(Un) + 2L]t2/6

,

M1(0, t;Xn −X) ≤ n−1/2

1− [ζ(Un) + 2L]t2/6[
|Rn(x0; Un)|+ sup

u∈[0,t]
|Rn(X(u); Un)−Rn(x0; Un)|

]
.

Proof. Because of similarity, we provide proof arguments only for M1(s, t;Xn − X). As
V n(t) =

√
n[Xn(t) −X(t)], we have M1(s, t;V n) =

√
nM1(s, t;Xn −X) and establish the

inequality for M1(s, t;V n). V n(t) satisfies the differential equation

V̈ n(t) +
3

t
V̇ n(t) +

√
n∇[g(Xn(t))− g(X(t))] +Rn(Xn(t); Un) = 0. (5.54)

Let

H(t;V n) =
√
n∇[g(Xn(t))− g(X(t))] +Rn(Xn(t); Un),
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and J(s, t;H,V n) =
∫ t
s u

3[H(u;V n)−H(s;V n)]du. Then, we have

|H(t;V n)−H(s;V n)| ≤
√
n|∇[g(Xn(t))− g(Xn(s))− g(X(t)) + g(X(s))]|

+ |Rn(Xn(t); Un)−Rn(Xn(s); Un)|.

As in the proof of Lemma 2, using Assumptions A1 and A2, we obtain

√
n |∇[g(Xn(t))− g(Xn(s))− g(X(t)) + g(X(s))]|
≤ L
√
n|Xn(t)−X(t)|+ L

√
n|Xn(s)−X(s)|,

|Rn(Xn(t); Un)−Rn(Xn(s); Un)| ≤ |Rn(Xn(t); Un)−Rn(X(t); Un)|
+ |Rn(Xn(s); Un)−Rn(X(s); Un)|+ |Rn(X(t); Un)−Rn(X(s); Un)|,
|Rn(Xn(u); Un)−Rn(X(u); Un)| ≤ [ζ(Un) + L]

√
n|Xn(u)−X(u)|,

√
n[Xn(t)−X(t)] = V n(t) =

∫ t

s
[V̇ n(u)− V̇ n(s)]du+ V n(s) + (t− s)V̇ n(s).

Putting together these results, we arrive at

|H(t;V n)−H(s;V n)| ≤ [ζ(Un) + 2L][∫ t

s
|V̇ n(u)− V̇ n(s)|du+ 2|V n(s)|+ (t− s)|V̇ n(s)|

]
+ |Rn(X(t); Un)−Rn(X(s); Un)|.

On the other hand, we have

∫ t

s
|V̇ n(u)− V̇ n(s)|du ≤

∫ t

s
(u− s) |V̇

n(u)− V̇ n(s)|
u− s

du ≤
∫ t

s
(u− s)M1(s, t;V n)du

=
M1(s, t;V n)(t− s)2

2
,∫ t

s
M1(s, u;V n)u3(u− s)2du/2 ≤M1(s, t;V n)t3(t− s)3/6.

Substituting the above inequalities into the upper bound for |H(u;V n)−H(s;V n)| and the
definition of J(s, t;H,V n), we conclude that

|J(s, t;H,V n)| ≤ t3(t− s) sup
u∈[s,t]

|Rn(X(u); Un)−Rn(X(s); Un)|

+ [ζ(Un) + 2L]
{
M1(s, t;V n)t3(t− s)3/6 + [2|V n(s)|+ (t− s)|V̇ n(s)|]t3(t− s)

}
.

ODE (5.54) is equivalent to

t3V̇ n(t)

dt
= −t3H(t;V n),which implies that

t3V̇ n(t)− s3V̇ n(s) = −
∫ t

s
u3H(u;V n)du = − t

4 − s4

4
H(s;V n)− J(s, t;H,V n),

V̇ n(t)− V̇ n(s)

t− s
= − t3 − s3

t3(t− s)
V̇ n(s)− t4 − s4

4t3(t− s)
H(s;V n)− J(s, t;H,V n)

t3(t− s)
,
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and using the upper bound of |J(s, t;H,V n)| and algebraic manipulation, we obtain

|V̇ n(t)− V̇ n(s)|
t− s

≤ t3 − s3

t3(t− s)
|V̇ n(s)|+ t4 − s4

4t3(t− s)
|H(s;V n)|+ |J(s, t;H,V n)|

t3(t− s)

≤ t2 + st+ s2

t3
|V̇ n(s)|+ (t2 + s2)(t+ s)

4t3
|H(s;V n)|

+ [ζ(Un) + 2L]

[
M1(s, t;V n)

(t− s)2

6
+ 2|V n(s)|+ (t− s)|V̇ n(s)|

]
+ sup
u∈[s,t]

|Rn(X(u); Un)−Rn(X(s); Un)|.

As the above inequality holds for any t > s, we replace t by v, take the maximum over
v ∈ [s, t], and use the definition of M1(s, t;V n) (which is increasing in t) to obtain

M1(s, t;V n) ≤ 3

s
|V̇ n(s)|+ |H(s;V n)|+ [ζ(Un) + 2L]M1(s, t;V n)

(t− s)2

6

+ [ζ(Un) + 2L][2|V n(s)|+ (t− s)|V̇ n(s)|] + sup
u∈[s,t]

|Rn(X(u); Un)−Rn(X(s); Un)|,

≤ 3

s
|V̇ n(s)|+ L|V n(s)|+ |Rn(Xn(s); Un)|+ [ζ(Un) + 2L]M1(t, s;V n)

(t− s)2

6

+ [ζ(Un) + 2L][2|V n(s)|+ (t− s)|V̇ n(s)|] + sup
u∈[s,t]

|Rn(X(u); Un)−Rn(X(s); Un)|.

Further, solving for M1(s, t;V n) yields

M1(s, t;V n) ≤ 1

1− [ζ(Un) + 2L](t− s)2/6

{
(3/s+ (t− s)[ζ(Un) + 2L])|V̇ n(s)|

+[2ζ(Un) + 5L]|V n(s)|+ |Rn(Xn(s); Un)|+ sup
u∈[s,t]

|Rn(X(u); Un)−Rn(X(s); Un)|

}
,

when s > 0 and t− s <
√

6/[ζ(Un) + 2L]. If s = 0, we replace the coefficient 3/s by 1/t in
the above inequality, and V n(0) = V̇ n(0) = 0, Xn(0) = X(0) = x0. Then, we obtain

M1(0, t;V n) ≤ 1

1− [ζ(Un) + 2L]t2/6

[
|Rn(x0; Un)|+ sup

u∈[0,t]
|Rn(X(u); Un)−Rn(x0; Un)|

]
,

which specifically implies that

sup
t≤
√

3/[ζ(Un)+2L]

|Ẋn(t)− Ẋ(t)|
t

≤ 2n−1/2

[
2|Rn(x0; Un)|+ sup

u∈[0,t]
|Rn(X(u); Un)|

]
→ 0,

that is, Ẋn(t)→ Ẋ(t) uniformly over
[
0,
√

3/[ζ(Un) + 2L]
]
.

Lemma 5 For any given T > 0, we have

max
t∈[0,T ]

|Xn(t)−X(t)| = OP (n−1/2), max
t∈[0,T ]

|V n(t)| = OP (1),

max
t∈[0,T ]

|Ẋn(t)− Ẋ(t)| = OP (n−1/2), max
t∈[0,T ]

|V̇ n(t)| = OP (1).
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Proof. As V n(t) =
√
n[Xn(t) − X(t)], we need to establish the results for Xn(t) − X(t)

only. Since, as n → ∞, ζ(Un) = 1
n

∑n
i=1 h1(Ui) → E(h1(U)). Divide the interval

[0, T ] into N =
[
T
√

[E(h1(U)) + 2L]/3
]

+ 1 number of subintervals with length close

to
√

3/[E(h1(U)) + 2L] (except for the last one), and denote them by Ii = [si−1, si],
i = 1, · · · , N (with s0 = 0, sN = T , I1 = [0, s1], IN = [sN−1, T ]). First, for t ∈ I1,
from Lemma 4 we have

|Ẋn(t)− Ẋ(t)| ≤ |I1|M1(I1;Xn −X) ≤ Cn−1/2 [|Rn(x0; Un)|+ |Rn(X(s1); Un)|] ,

|Xn(t)−X(t)| ≤
∫
I1
|Ẋn(u)− Ẋ(u)|du ≤ Cn−1/2 [|Rn(x0; Un)|+ |Rn(X(s1); Un)|] .

Assumption A4 implies that Rn(x0; Un) = OP (1), and Rn(X(s1); Un) = OP (1); thus, the
upper bounds of Ẋn(t)− Ẋ(t) and Xn(t)−X(t) over t ∈ I1 are OP (n−1/2).

For t ∈ Ii, i = 2, · · · , N , from Lemma 4 we have

|Ẋn(t)− Ẋ(t)− Ẋn(si−1) + Ẋ(si−1)| ≤ |Ii|M1(Ii;Xn −X)

≤ C
[
[ζ(Un) + C1]|Ẋn(si−1)− Ẋ(si−1)|+ [ζ(Un) + C2]|Xn(si−1)−X(si−1)|

]
+Cn−1/2

{
|Rn(Xn(si−1); Un)|+ 2 sup

u≥0
|Rn(X(u); Un)|

}
,

and

|Xn(t)−X(t)| ≤ |Xn(si−1)−X(si−1)|+ |Ii||Ẋn(si−1)− Ẋ(si−1)|

+

∫
Ii
|Ẋn(u)− Ẋ(u)− Ẋn(si−1) + Ẋ(si−1)|du

≤ C
[
[ζ(Un) + C1]|Ẋn(si−1)− Ẋ(si−1)|+ [ζ(Un) + C2]|Xn(si−1)−X(si−1)|

]
+Cn−1/2

{
|Rn(Xn(si−1); Un)|+ 2 sup

u≥0
|Rn(X(u); Un)|

}
.

We use the above two inequalities to prove by induction that the upper bounds of Xn(t)−
X(t) and Ẋn(t)− Ẋ(t) on [0, T ] are OP (n−1/2), and the upper bounds of Xn(t)−X(t) and
Ẋn(t)− Ẋ(t) on [0, T ] are OP (n−1/2). Assume that the upper bounds of Xn(t)−X(t) and
Ẋn(t)− Ẋ(t) on ∪i−1

j=1Ij are OP (n−1/2). Note that N is free of n, and by induction we show

that the upper bounds of Xn(t)−X(t) and Ẋn(t)− Ẋ(t) over t ≤ si−1 are OP (n−1/2)—in
particular Xn(si−1) → X(si−1) in probability—and, thus, assumption A4 indicates that
Rn(Xn(si−1); Un) = OP (1), and supu≥0 |Rn(X(u); Un)| = OP (1). The above-mentioned

two inequalities immediately reveal that their upper bounds on Ii are also OP (n−1/2).
Hence, we establish that the bounds of Xn(t)−X(t) and Ẋn(t)− Ẋ(t) on ∪Nj=1Ij = [0, T ]

are OP (n−1/2).

Lemma 6 V n(t) is stochastically equicontinuous on [0, T ].

Proof. Lemma 5 indicates that maxt∈[0,T ] |V n(t)| = OP (1) and maxt∈[0,T ] |V̇ n(t)| = OP (1),
which implies that V n(t) is stochastically equicontinuous on [0, T ].

Proof of Theorem 1. Lemma 6 along with the finite distribution convergence imme-
diately lead to that as n→∞, V n(t) weakly converges to V (t).
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5.2 Proof of Theorem 2

We prove Theorem 2 in two subsections for the plain and accelerated cases.

5.2.1 Proof for the Plain Gradient Descent Case

Lemma 7 For the case of the plain gradient descent algorithm, we have

max
t∈[0,T ]

|xnδ (t)−Xn(t)| = OP (δ), max
k≤Tδ−1

|xnk −Xn(kδ)| = OP (δ),

where {xnk} is generated from algorithm (3.8), with xnδ (t) its continuous-time step process,
and Xn(t) the solution of ODE (3.9).

Proof. Algorithm (3.8) is the Euler scheme for solving ODE (3.9), and we apply the stan-
dard ODE theory to obtain the global approximation error for the Euler scheme. First,
by Assumption A1, we have that ∇Ln(θ; Un) is Lipschtiz in θ with Lipschitz constant
1
n

∑n
i=1 h1(Ui), which converges in probability to E[h1(U)] <∞. On the other hand, taking

derivatives on both sides of ODE (3.9), we obtain

Ẍn(t) = −IHLn(Xn(t); Un)Ẋn(t) = IHLn(Xn(t); Un)∇Ln(Xn(t); Un).

Using Lemma 2, we conclude that for large n, Xn(t) falls into ΘX ; thus, Assumption A4 in-
dicates that supt |∇κLn(Xn(t); Un)| ∼ supt |∇κg(Xn(t)) + n−1/2σk(X

n(t))Zκ| = OP (1),
where Zκ are standard normal random variables. Combining these results, we obtain
supt∈[0,T ] |Ẍn(t)| = OP (1). An application of the standard ODE theory for the global
approximation error of the Euler scheme (Butcher, 2008) leads to

max
t∈[0,T ]

|xnδ (t)−Xn(t)| ≤ δ

(
2

n

n∑
i=1

h1(Ui)

)−1

sup
t∈[0,T ]

|Ẍn(t)|

[
exp

(
T

n

n∑
i=1

h1(Ui)

)
− 1

]
= OP (δ).

Proof of Theorem 2. Lemma 7 establishes the first order result for xnδ (t) − Xn(t),
and the weak convergence result is the consequence of the order result and Theorem 1.

5.2.2 Proof for the Accelerated Gradient Descent Case

Note that (xk, yk) and (xnk , y
n
k ) are generated from accelerated gradient descent algorithms

(2.4) and (3.10), respectively, and X(t) and Xn(t) are the respective solutions of ODEs
(2.6) and (3.11).

Lemma 8 For fixed T > 0, as δ → 0, we have

max
k≤Tδ−1/2

∣∣∣xk −X(kδ1/2)
∣∣∣ = O(δ1/2| log δ|), (5.55)

max
k≤Tδ−1/2

∣∣∣zk − Ẋ(kδ1/2)
∣∣∣ = O(δ1/2| log δ|), (5.56)

where sequence xk is generated from algorithm (2.4), X(t) is the solution of the correspond-

ing ODE (2.6), and zk = (xk+1 − xk)/δ
1
2 is given in (4.31).
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Proof. We rewrite (2.4) as

xk+2 = yk+1 − δ∇g(yk+1), yk+1 = xk+1 +
k

k + 3
(xk+1 − xk) = xk +

2k + 3

k + 3
δ

1
2 zk,

and obtain

zk+1 =

(
1− 3

k + 3

)
zk − δ

1
2∇g

(
xk +

2k + 3

k + 3
δ

1
2 zk

)
. (5.57)

Denote by y∗ the critical point of g(·). Then, we have

|∇g(yk)| = |∇g(yk)−∇g(y∗)| ≤ L|yk − y∗| ≤ C1,

where C1 is some constant, and

|z0| = |x1 − x0|/δ
1
2 = δ

1
2 |∇g(x0)| ≤ C1δ

1
2 , (5.58)

|zk| ≤
k − 1

k + 2
|zk−1|+ C1δ

1
2 ≤ (k + 1)C1δ

1
2 . (5.59)

To compare xk and X(kδ
1
2 ) and derive the difference between them, we first need to identify

the relationship between X(kδ
1
2 ) and X((k+ 1)δ

1
2 ) and between Ẋ(kδ

1
2 ) and Ẋ((k+ 1)δ

1
2 ).

As in (4.29), we let Z = Ẋ, and ODE (2.6) is equivalent to

Ẋ = Z, Ż = −3

t
Z −∇g(X).

Then, with convention tk = kδ
1
2 , we have for k ≥ 1,

X(tk+1) = X(tk) +

∫ tk+1

tk

Z(u)du = X(tk) + δ
1
2Z(tk) +

∫ tk+1

tk

[Z(u)− Z(tk)]du, (5.60)

Z(tk+1) = Z(tk)−
∫ tk+1

tk

3

u
Z(u)du−

∫ tk+1

tk

∇g(X(u))du (5.61)

=

(
1− 3

k

)
Z(tk)−

∫ tk+1

tk

[
3

u
Z(u)− 3

tk
Z(tk)

]
du−

δ
1
2∇g(X(tk))−

∫ tk+1

tk

[∇g(X(u))−∇g(X(tk))]du.

Lemma 4 shows that on (0, T ], |Ẋ(t)|/t is bounded, |Z(t)| ≤ Ct, and |Ż(t)| = |Ẍ(t)| ≤ C
for some constant C. Then, we easily derive bounds for the following integrals that appear
on the right-hand sides of (5.60) and (5.61);∣∣∣∣∫ tk+1

tk

[Z(u)− Z(tk)]du

∣∣∣∣ = O(δ),
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∣∣∣∣∫ tk+1

tk

[
3

u
Z(u)− 3

tk
Z(tk)

]
du

∣∣∣∣ ≤ ∫ tk+1

tk

∣∣∣∣3u [Z(u)− Z(tk)]

∣∣∣∣ du
+

∫ tk+1

tk

∣∣∣∣(3

u
− 3

tk

)
Z(tk)

∣∣∣∣ du
≤ Cδ

tk
+

3(tk+1 − tk)2

tktk+1
Ctk = O(δ

1
2k−1),

∣∣∣∣∫ tk+1

tk

[∇g(X(u))−∇g(X(tk))]du

∣∣∣∣ ≤ L∫ tk+1

tk

|X(u)−X(tk)|du = O(δ).

Plugging these integrals bounds into (5.60) and (5.61), we conclude

X(tk+1) = X(tk) + δ
1
2Z(tk) +O(δ),

Z(tk+1) =

(
1− 3

k

)
Z(tk)− δ

1
2∇g(X(tk)) +O(δ

1
2k−1) +O(δ).

Let ak = |xk −X(tk)|, bk = |zk − Z(tk)|, and Sk = b0 + b1 + ...+ bk. Using the definition of
zk and (5.57)-(5.59), we have

a0 = 0, ak+1 ≤ ak + δ
1
2 bk +O(δ),

ak ≤ δ
1
2Sk−1 +O(kδ), (5.62)

b0 = |z0| ≤ C1δ
1
2 , b1 = |z1 − Z(t1)| = O(δ

1
2 ),

bk+1 ≤
(

1− 3

k + 3

)
bk +

9

k(k + 3)
|Z(tk)|+

Lδ
1
2

∣∣∣∣xk +
2k + 3

k + 3
δ

1
2 zk −X(tk)

∣∣∣∣+O(δ
1
2k−1) +O(δ)

≤ bk +O(δ
1
2k−1) + Lδ

1
2ak + 2Lδ(k + 1)C1δ

1
2 +O(δ

1
2k−1) +O(δ)

≤ bk + LδSk−1 + Lδ
1
2O(kδ) +O(δ) +O(δ

1
2k−1)

≤ bk + LδSk−1 +O(δ
1
2 (k + 1)−1). (5.63)

Since for 1 ≤ k ≤ Tδ−
1
2 , kδ

1
2 = O(1), O(δ) = O(δ

1
2k−1), k−1 ≤ 2(k + 1)−1. Moreover, with

b1 = O(δ
1
2 ), it is evident that can see that (5.63) holds for k = 0. Therefore, there exists

some constant C2 > 0, such that

bk+1 ≤ bk + LδSk−1 + C2δ
1
2 (k + 1)−1.

Define a new sequence b′k from bk in the following manner. Let b′0 = b0, b′k+1 = b′k+LδS′k−1+

C2δ
1
2 (k + 1)−1, where S′k = b′0 + b′1 + ...+ b′k. Then, we can easily prove by induction that

bk ≤ b′k. Indeed, if bj ≤ b′j for j = 0, 1, ..., k, then Sk−1 ≤ S′k−1,

bk+1 ≤ bk + LδSk−1 + C2δ
1
2 (k + 1)−1 ≤ b′k + LδS′k−1 + C2δ

1
2 (k + 1)−1 = b′k+1.
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On the other hand, as LδS′k−1 + C2δ
1
2 (k + 1)−1 > 0, {b′k} is an increasing sequence. Thus,

S′k−1 ≤ kb′k, and

b′k+1 ≤ b′k + Lδkb′k + C2δ
1
2 (k + 1)−1.

Again, we define another sequence b∗k from b′k in the following manner. Let b∗0 = b′0, b∗k+1 =

b∗k + Lδkb∗k + C2δ
1
2 (k + 1)−1. The same induction argument can prove that b′k ≤ b∗k. The

recursive definition of b∗k easily leads to the following expression,

b∗k = δ
1
2

C1

k−1∏
j=1

(1 + Lδj) + C2

k∑
i=1

i−1
k−1∏
j=i

(1 + Lδj)

 ,

and, hence, we obtain

S
bTδ−

1
2 c−1

≤ Tδ−
1
2 b
bTδ−

1
2 c
≤ Tδ−

1
2 b′
bTδ−

1
2 c
≤ Tδ−

1
2 b∗
bTδ−

1
2 c

≤ C

bTδ−
1
2 c−1∏

j=1

(1 + Lδj) +

bTδ−
1
2 c∑

i=1

i−1

bTδ−
1
2 c−1∏

j=i

(1 + Lδj)


≤ C

bTδ−
1
2 c−1∏

j=1

(1 + LδTδ−
1
2 ) +

bTδ−
1
2 c∑

i=1

i−1

bTδ−
1
2 c−1∏

j=i

(1 + LδTδ−
1
2 )



≤ CeLT
2

1 +

bTδ−
1
2 c∑

i=1

i−1

 ≤ C log(Tδ−
1
2 ) = O(| log δ|).

Finally, using the above inequality and (5.62), we arrive at

max
k≤Tδ−

1
2

∣∣∣xk −X(kδ
1
2 )
∣∣∣ ≤ δ 1

2S
bTδ−

1
2 c−1

+O(Tδ
1
2 ) = O(δ

1
2 | log δ|),

which proves (5.55). It is easy to see that the left-hand side of (5.56) is bounded by b∗
[Tδ−1/2]

,

which is of order δ
1
2 | log δ|.

Lemma 9

max
t∈[0,T ]

|xnδ (t)−Xn(t)| = Op(δ
1
2 | log δ|),

where xnδ (t) is the continuous-time step processes for discrete sequence xnk generated from al-
gorithm (3.10), and Xn(t) is the continuous-time solution of the corresponding ODE (3.11).

Proof. The objective function associated with (10) and (11) is ∇Ln(θ; Un) = 1
n

∑n
i=1

∇`(θ;Ui), which has Lipschitz constant 1
n

∑n
i=1 h1(Ui) = Op(1). Then, for any ε > 0, there

exists some constant L0 > 0, such that for all n, P
(

1
n

∑n
i=1 h1(Ui) > L0

)
< ε. For each
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n, on the event { 1
n

∑n
i=1 h1(Ui) ≤ L0}, Lemma 8 indicates that there exists constant M

(which depends on L0 only and is free of n), such that

max
k≤Tδ−

1
2

∣∣∣xnk −Xn(kδ
1
2 )
∣∣∣ ≤Mδ

1
2 | log δ|.

Consequently, we have

P

(
max

k≤Tδ−
1
2

∣∣∣xnk −Xn(kδ
1
2 )
∣∣∣ > Mδ

1
2 | log δ|

)
≤ P

(
1

n

n∑
i=1

h1(Ui) > L

)
< ε

holds for each n, that is

max
k≤Tδ−

1
2

∣∣∣xnk −Xn(kδ
1
2 )
∣∣∣ = Op(δ

1
2 | log δ|).

Lemma 4 indicates that supt∈[0,T ] |Ẋn(t)| = Op(1) and, hence, we obtain

sup

s,t∈[0,T ],t−s≤δ
1
2

|Xn(t)−Xn(s)| ≤ δ
1
2 sup
t∈[0,T ]

|Ẋn(t)| = Op(δ
1
2 ).

Finally, for any t we can find k, such that tk ≤ t < tk+1, and show that

max
t∈[0,T ]

|xnδ (t)−Xn(t)| ≤ max
t∈[0,T ]

{|xnk −Xn(tk)|+ |Xn(tk)−Xn(t)|} = Op(δ
1
2 | log δ|).

Proof of Theorem 2. Lemma 9 establishes the order result for xnδ (t)−Xn(t), and the
weak convergence result is the consequence of the order result and Theorem 1.

5.3 Proof of Theorem 3

Using Assumption A4 and the standard empirical process argument (van der Vaart and
Wellner, 2000), we can show that θ̂n is

√
n-consistent. Define ϑ = n1/2(θ − θ̌). We apply

Taylor expansion to obtain

Ln(θ,Un) = Ln(θ̌,Un) +∇Ln(θ̌,Un)(θ − θ̌) + (θ − θ̌)′IHLn(θ̌,Un)(θ − θ̌)/2
+ oP (n−1/2)

= Ln(θ̌,Un) + n−1/2[∇g(θ̌) + n−1/2σ(θ̌)Z]ϑ+ n−1ϑ′IHg(θ̌)ϑ/2 + oP (n−1)

= Ln(θ̌,Un) + n−1σ(θ̌)Zϑ+ n−1ϑ′IHg(θ̌)ϑ/2 + oP (n−1),

where Z stands for the standard normal random vector, the second equality is due to
Assumptions 2 and 4, Skorokhod’s representation theorem, and the law of large numbers,
and the third equality is from∇g(θ̌) = 0. As θ̂n is the minimizer of Ln(θ,Un), ϑ̂n = n1/2(θ̂n−
θ̌) asymptotically minimizes σ(θ̌)Zϑ + ϑ′IHg(θ̌)ϑ/2 over ϑ and thus, has an asymptotic
distribution [IHg(θ̌)]−1σ(θ̌)Z. Note that C(IR+) is a subspace of D(IR+), and because of
the metrics used in C(IR+) and D(IR+), the weak convergence of these process on D(IR+)
is determined by their weak convergence on D([0, T ]) for all integers T only (Billingsely,
1999; Jacod and Shiryaev, 2002). Treating X(t), Xn(t), V (t), V n(t), and xnδ (t) as random
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elements in D(IR+), since the weak convergence results established in Theorems 1 and 2
hold for Xn(t) and xnδ (t) on D([0, T ]) for any T > 0, we conclude from these established
weak convergence results that V n(t) =

√
n[Xn(t) − X(t)] and

√
n[xnδ (t) − X(t)] weakly

converge to V (t) on D(IR+).
On the other hand, it is known that as k → ∞, xk generated from algorithms (2.2)

and (2.4) converge to the solution θ̌ of (2.1) with speeds of orders (δk)−1 and (
√
δk)−2,

respectively, while as t→∞, their corresponding continuous curves X(t) as the solutions of
ODEs (2.3) and (2.6) approach θ̌ with speeds of orders t−1 and t−2, respectively (Nesterov,
1983, 2004; Su et al., 2016). Similarly, for fixed n, as k, t → ∞, xnk and xnδ (t) from

algorithms (3.8) and (3.10) and Xn(t) from ODEs (3.9) and (3.11) approach the solution θ̂n
of (3.7). For the weak limit V (t) governed by (3.14) or (3.12), as t→∞, both ODEs lead to
[IHg(X(∞))]V (∞) + σ(X(∞))Z = 0, or equivalently, V (∞) = [IHg(X(∞))]−1σ(X(∞))Z.
In fact, the solutions of (3.14) and (3.12) admit simple explicit expressions, for example,

V (t) =

∫ t

0
exp

[
−
∫ t

s
IHg(X(u))du

]
σ(X(s))dsZ, (5.64)

∀ε > 0, ∃t0 > 0, such that ∀s > t0,
∣∣[IHg(X(s))]−1σ(X(s))− [IHg(X(∞))]−1σ(X(∞))

∣∣ < ε,∫ t

t0

exp

[
−
∫ t

s
IHg(X(u))du

]
σ(X(s))ds =

∫ t

t0

exp

[
−
∫ t

s
IHg(X(u))du

]
IHg(X(s)){

[IHg(X(s))]−1σ(X(s))− [IHg(X(∞))]−1σ(X(∞))
}
ds

+

∫ t

t0

exp

[
−
∫ t

s
IHg(X(u))du

]
IHg(X(s))ds[IHg(X(∞))]−1σ(X(∞)). (5.65)

Since the assumptions indicate that σ(X(s)) and IHg(X(s)) are bounded continuous on
[0, t0],

∫ t0
0 |σ(X(s))|ds is finite, and

∫ t
t0
IHg(X(u))du has finite eigenvalues. We immediately

conclude that the eigenvalues of
∫ t
t0
IHg(X(s))ds—which are no less than the eigenvalues

of
∫ t

0 IHg(X(s))ds minus the maximum eigenvalue of
∫ t0

0 IHg(X(s))ds—diverge as t → ∞.
Therefore, we obtain∣∣∣∣∫ t0

0
exp

[
−
∫ t

s
IHg(X(u))du

]
σ(X(s))ds

∣∣∣∣ ≤ ∣∣∣∣exp

[
−
∫ t

t0

IHg(X(u))du

]∣∣∣∣ ∫ t0

0
|σ(X(s))|ds

→ 0,∫ t

t0

exp

[
−
∫ t

s
IHg(X(u))du

]
IHg(X(s))ds = 1− exp

[
−
∫ t

t0

IHg(X(s))ds

]
→ 1,∫ t

t0

∣∣∣∣exp

[
−
∫ t

s
IHg(X(u))du

]
IHg(X(s))

∣∣∣∣ ∣∣[IHg(X(s))]−1σ(X(s))

−[IHg(X(∞))]−1σ(X(∞))
∣∣ ds

≤ ε− ε
∣∣∣∣exp

[
−
∫ t

t0

IHg(X(s))ds

]∣∣∣∣ ≤ ε,
which goes to zero, as we let ε → 0. Combining these results with (5.64) and (5.65), we
conclude that as t→∞,∫ t

0
exp

[
−
∫ t

s
IHg(X(u))du

]
σ(X(s))ds→ [IHg(X(∞))]−1σ(X(∞)),
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and V (t) converges in distribution to [IHg(X(∞))]−1σ(X(∞))Z.

5.4 Proofs of Theorems 4-6

Theorem 4 is proved by Lemma 10, with Theorems 5 and 6 shown in Lemma 18, where
both lemmas are established in this subsection.

Denote by Q̂∗mk the empirical distribution of mini-batch U∗1k, · · · , U∗mk. Then, we have

∇L̂m(θ; U∗mk) =

∫
∇`(θ;u)Q̂∗mk(du),

∫
∇`(θ;u)Q(du) = E[∇`(θ;U)] = ∇g(θ).

Let Rm(θ; U∗m(t)) = (Rm1 (θ; U∗m(t)), · · · , Rmp (θ; U∗m(t)))′, where

Rmj (θ; U∗m(t)) =
√
m

[
1

m

m∑
i=1

∂

∂θj
`(θ;U∗i (t))− ∂

∂θj
g(θ)

]
, j = 1, · · · , p.

We have

m−1/2Rm(θ; U∗m(t)) =

∫
∇`(θ;u)Q̂∗mk(du)−

∫
∇`(θ;u)Q(du),

∇L̂m(xmk−1; U∗mk) = ∇g(xmk−1) +m−1/2Rm(xmk−1; U∗mk).

It is evident that Rm(xmk−1; U∗mk), k = 1, · · · , T/δ, are martingale differences and that
Hm
δ (t) is a martingale. We may use the martingale theory (He et al., 1992; Jacod and

Shiryaev, 2003) to establish weak convergence of Hm
δ (t) to the stochastic integral H(t).

Below, we employ a more direct approach to prove the weak convergence and obtain further
convergence rate results.

Lemma 10 As δ → 0 and m→∞, Hm
δ (t) weakly converges to H(t) =

∫ t
0 σ(X(u))dB(u),

t ∈ [0, T ].

Proof. Let

Ȟm
δ (t) = (mδ)1/2

∑
tk≤t

[
∇L̂m(X(tk−1); U∗m(tk))−∇g(X(tk−1)

]

= (mδ)1/2

[t/δ]∑
k=1

[∫
∇`(X((k − 1)δ);u)Q̂∗mk(du)

−
∫
∇`(X((k − 1)δ);u)Q(du)

]
.

Note that

E

[∫
∇`(θ;u)Q̂∗mk(du)

]
=

∫
∇`(θ;u)Q(du),
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σ2(θ) = mV ar

[∫
∇`(θ;u)Q̂∗mk(du)

]
=

∫
[∇`(θ;u)]2Q(du)

−
[∫
∇`(θ;u)Q(du)

]2

,

which are the mean and variance of ∇`(θ;U), respectively. Since U∗mk, k = 1, 2, · · · , [T/δ],
are independent, then Ȟm

δ (t) is a normalized partial sum process for independent random

variables and weakly converges to
∫ t

0 σ(X(u))dB(u). Indeed, its finite-dimensional distri-
bution convergence can be easily established through Lyapunov’s Central Limit Theorem
with Assumptions A3 and A4 and Lemma 14 below and its tightness can be shown by the
fact that for r ≤ s ≤ t,

E
{∣∣Ȟm

δ (t)− Ȟm
δ (s)

∣∣2 ∣∣Ȟm
δ (s)− Ȟm

δ (r)
∣∣2} ≤ [Υ(t)−Υ(r)]2, (5.66)

where Υ(·) is a continuous non-decreasing function on [0, T ] (Billingsley, 1999, Equation
13.14 & Theorem 13.5). To establish (5.66), because of independence, we have

E
{∣∣Ȟm

δ (t)− Ȟm
δ (s)

∣∣2 ∣∣Ȟm
δ (s)− Ȟm

δ (r)
∣∣2}=E

{∣∣Ȟm
δ (t)− Ȟm

δ (s)
∣∣2}E{∣∣Ȟm

δ (s)− Ȟm
δ (r)

∣∣2}
= δ2

∑
s<kδ≤t

tr[σ2(X((k − 1)δ))]
∑

r<kδ≤s
tr[σ2(X((k − 1)δ))]

∼
∫ t

s
tr[σ2(X(u))]du

∫ s

r
tr[σ2(X(u))]du.

Since X(t) is a deterministic bounded continuous curve, and σ2(θ) is a continuous positive
definite matrix,∫ t

s
tr[σ2(X(u))]du

∫ s

r
tr[σ2(X(u))]du ≤

[∫ t

r
tr[σ2(X(u))]du

]2

≡ [Υ(t)−Υ(r)]2.

We have shown that as δ → 0 and m → ∞, Ȟm
δ (t) weakly converges to H(t). By the

limit theorem for stochastic processes (Jacod and Shiryaev, 2003, Theorem 3.11 in Chapter
VIII), we obtain that the quadratic variation [Ȟm

δ , Ȟ
m
δ ]t converges in probability to [H,H]t

for t ∈ [0, T ].
The Lipschitz of ∇`(θ;u,Q) in θ implies the Lipschitz of ∇L̂m(θ; U∗mk, Q) (which is

proved at the beginning of the proof of Lemma 11 below), and Lemma 12 below indicates
that as δ → 0 and m → ∞, xmk − X(kδ) converges to zero in probability (with order
δ +m−1/2δ1/2) uniformly over 1 ≤ k ≤ T/δ. These two results along with the Lipschitz of
∇g(θ) immediately show that

max
t≤T

∣∣[Ȟm
δ , Ȟ

m
δ ]t − [Hm

δ , H
m
δ ]t
∣∣ = OP

(
(mδ) δ−1[δ +m−1/2δ1/2]

)
= oP (1),

and, hence, quadratic variation [Hm
δ , H

m
δ ]t also converges in probability to [H,H]t for t ∈

[0, T ]. An application of the limit theorem for stochastic processes (Jacod and Shiryaev,
2003, Theorem 3.11 in Chapter VIII) leads to the conclusion that as δ → 0 and m →
∞, Hm

δ (t) weakly converges to H(t)—that is, Ȟm
δ (t) and Hm

δ (t) share the same weak
convergence limit H(t).
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Lemma 11 We have

max
k≤T/δ

|xmk − xk| = OP (m−1/2),

where xk and xmk are defined by (2.2) and (4.18), respectively.

Proof. Let ζ(U∗mk) = 1
m

∑m
i=1 h1(U∗ik), which converges in probability to E[h1(U)] as m→

∞. Then, we obtain

|∇L̂m(θ; U∗mk)−∇L̂m(ϑ; U∗mk)| ≤ ζ(U∗mk)|θ − ϑ|, |IHL̂m(θ; U∗mk)| ≤ ζ(U∗mk),

|θ̌ − xmk | ≤ |θ̌ − xmk−1|+ δ|∇L̂m(xmk−1; U∗mk)−∇L̂m(θ̌; U∗mk)|+ δ|∇L̂m(θ̌; U∗mk)|
≤ (1 + δζ(U∗mk))|θ̌ − xmk−1|+ δ|∇L̂m(θ̌; U∗mk)|

≤
(

1 + δE[h1(U)] +OP (δm−1/2)
)k

+
(

1 + δE[h1(U)] +OP (δm−1/2)
)k
δ

k∑
j=1

[|∇g(θ̌)|+m−1/2|Rm(θ̌; U∗mj)|]

≤ eTE[h1(U)][1 + |∇g(θ̌)|+OP (m−1/2)] = eTE[h1(U)][1 +OP (m−1/2)],

namely, xmk is bounded uniformly over k ≤ T/δ. On the other hand, we have

xmk − xk = xmk−1 − xk−1 − δ[∇L̂m(xmk−1; U∗mk)−∇g(xk−1)]

= xmk−1 − xk−1 − δ[∇L̂m(xmk−1; U∗mk)−∇L̂m(xk−1; U∗mk)]− δm−1/2Rm(xk−1; U∗mk)

= (xmk−1 − xk−1)[1− δIHL̂m(xmξ,k−1; U∗mk)]− δm−1/2Rm(xk−1; U∗mk)

= −δm−1/2
k∑
j=1

[1− δIHL̂m(xmξ,j−1; U∗mj)]
jRm(xj−1; U∗mj),

where xmξ,j−1 is between xj−1 and xmj−1. Using ζ(U∗mj)→ E[h1(U)] and Assumption A4, we
obtain for j, k ≤ T/δ,

|[1− δIHL̂m(xmξ,j−1; U∗mj)]
j | ≤ [1 + δζ(U∗mj)]

T/δ ≤ eTE[h1(U)][1 +OP (m−1/2)],

Rm(xj−1; U∗mj) ∼ σ(xj−1)Z = OP (1),

|xmk − xk| ≤ δm−1/2
k∑
j=1

|1 + δζ(U∗mj)]
T/δ|Rm(xj−1; U∗mj)| = OP (kδm−1/2) = OP (m−1/2).

Lemma 12

max
k≤T/δ

|X(kδ)− xmk | = OP (δ +m−1/2δ1/2),

where X(t) and xmk are defined by (2.3) and (4.18), respectively.

Proof. For k = 1, · · · , T/δ,∫
∇`(xmk−1;u)Q̂∗mk(du)−

∫
∇`(xmk−1;u)Q(du)
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are martingale differences with conditional mean zero and conditional variance σ2(xmk−1)/m.
Since xk in (2.2) is the Euler approximation of solution X(t) of ODE (2.3), the standard
ODE theory shows

max
k≤T/δ

|xk −X(kδ)| = O(δ). (5.67)

By Lemma 11, we have that with probability tending to one, xmk−1, k = 1, · · · , T/δ, fall
within the neighborhood of the solution curve of ODE (2.3); thus, the maximum of σ2(xmk−1),
k = 1, · · · , T/δ, is bounded. Applying Burkholder’s inequality (Chow and Teicher, 1997;
He et al., 1992; Jacod and Shiryaev, 2003), we obtain

max
1≤k≤T/δ

∣∣∣∣∣√m
k∑
`=1

[∫
∇`(xm`−1;u)Q̂∗m`(du)−

∫
∇`(xm`−1;u)Q(du)

]∣∣∣∣∣ = OP (δ−1/2),

that is,

max
k≤T/δ

∣∣∣∣∣m−1/2
k∑
`=1

Rm(xm`−1; U∗m`)

∣∣∣∣∣ = OP (m−1/2δ−1/2).

Therefore, for k = 1, · · · , T/δ,

xmk = x0 − δ
k∑
`=1

∇g(xm`−1)−m−1/2δ
k∑
`=1

Rm(xm`−1; U∗m`)

= x0 − δ
k∑
`=1

∇g(xm`−1)−OP (m−1/2δ1/2).

and with the same initial value x0, comparing the expressions for xk and xmk , we obtain

xmk − xk = xmk−1 − xk−1 − δ[∇g(xmk−1)−∇g(xk−1)]− δm−1/2Rm(xmk−1; U∗mk)

= δ
k∑
`=1

[∇g(x`−1)−∇g(xm`−1)]− δm−1/2
k∑
`=1

Rm(xm`−1; U∗m`).

Using the L-Lipschitz assumption on ∇g(·), we conclude for k = 1, · · · , T/δ,

|xmk − xk| ≤ Lδ
k∑
`=1

|xm`−1 − x`−1|+ δm−1/2

∣∣∣∣∣
k∑
`=1

Rm(xm`−1; U∗m`)

∣∣∣∣∣
≤ LT max

1≤`≤k
|xm`−1 − x`−1|+ δm−1/2

∣∣∣∣∣
k∑
`=1

Rm(xm`−1; U∗m`)

∣∣∣∣∣ .
Finally, we can easily show by induction that

max
k≤T/δ

|xmk − xk| = OP (m−1/2δ1/2).

The lemma is a consequence of the above result and (5.67).
The following lemma refines the order regarding m−1/2δ1/2 in Lemma 12.
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Lemma 13 We have

max
k≤T/δ

|xmk −Xm
δ (kδ)| = oP (m−1/2δ1/2) +OP (δ + δm−1/2| log δ|1/2),

max
t≤T
|xmδ (t)−Xm

δ (t)| = oP (m−1/2δ1/2) +OP (δ| log δ|1/2),

where Xm
δ (t) is given by (4.21), and xmk and xmδ (t) are defined by (4.18) and (4.19), respec-

tively.

Proof. With weak convergence ofHm
δ (t) toH(t) in Lemma 10, by Skohorod’s representation,

we realize Hm
δ (t) and H(t) on some common probability spaces, such that as δ → 0 and

m→∞, under the metric in D([0, T ]), Hm
δ (t)−H(t) is oP (1). We may use arguments based

on Lemma 37 (in Section 5.7) and stochastic equi-continuity to establish the convergence
of Hm

δ (t) −H(t) under the maximum norm. Here, we adopt a direct approach. Consider
linear interpolation H̃m

δ (t) between the values of Hm
δ (kδ), k = 1, · · · , T/δ, which satisfies

max
t≤T
|H̃m

δ (t)−Hm
δ (t)| ≤ δ1/2 max

k≤T/δ
|Rm(xmk−1; U∗mk)|.

By Assumptions A1 and A2, we have

|[∇`(xmk−1;U∗ik)−∇g(xmk−1)]− [∇`(X((k − 1)δ);U∗ik)−∇g(X((k − 1)δ))]|
≤ [h1(U∗ik) + L]|xmk−1 −X((k − 1)δ)|,

and then

|Rm(xmk−1; U∗mk) ≤ |Rm(X((k − 1)δ); U∗mk)|

+m−1/2
m∑
i=1

[h1(U∗ik) + L]|xmk−1 −X((k − 1)δ)|,

max
t≤T
|H̃m

δ (t)−Hm
δ (t)| ≤ δ1/2 max

k≤T/δ
|Rm(X((k − 1)δ); U∗mk)|

+ δ1/2 max
k≤T/δ

{
1

m

m∑
i=1

h1(U∗ik) + L

}
m1/2 max

k≤T/δ
|xmk−1 −X((k − 1)δ)|.

Lemma 12 impliesm1/2 maxk≤T/δ |xmk−1−X((k−1)δ)|=m1/2OP (δ+m−1/2δ1/2)=OP (m1/2δ+

δ1/2)=oP (1); by Lemma 14 below, we derive that maxt≤T |H̃m
δ (t)−Hm

δ (t)|=oP (δ1/4| log δ|).
Thus, H̃m

δ (t) weakly converges to H(t) in D([0, T ]). As both H̃m
δ (t) and H(t) live in

C([0, T ]), the weak convergence of H̃m
δ (t) to H(t) holds in C([0, T ]). Again, by Sko-

rokhod’s representation theorem, we realize H̃m
δ (t) and H(t) on some common probability

spaces, such that as δ → 0 and m → ∞, maxt≤T |H̃m
δ (t) − H(t)| = oP (1) and, hence,

maxt≤T |Hm
δ (t)−H(t)| = oP (1).

Note that for 1 ≤ k ≤ T/δ,

δ∇L̂m(xmk−1; U∗mk) = δ∇g(xmk−1) +m−1/2δ1/2[Hm
δ (kδ)−Hm

δ ((k − 1)δ)],
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xmk − xmk−1 = −δ∇g(xm(tk−1))−m−1/2δ1/2[Hm
δ (kδ)−Hm

δ ((k − 1)δ)],

xmk = x0 − δ
k∑
`=1

∇g(xm`−1)−m−1/2δ1/2Hm
δ (kδ)

= x0 − δ
k∑
`=1

∇g(xm`−1)−m−1/2δ1/2H(kδ) + oP (m−1/2δ1/2).

Define x̌m0 = x0, and

x̌mk − x̌mk−1 = −δ∇g(x̌mk−1)−m−1/2δ1/2[H(kδ)−H((k − 1)δ)]. (5.68)

Then, the situation is the same as that in the last proof part of Lemma 12, and the same
argument can be used to derive a recursive expression for xmk − x̌mk and prove by induction
that

max
k≤T/δ

|xmk − x̌mk | = oP (m−1/2δ1/2).

The lemma is a consequence of the above result and Lemma 15 below.

Lemma 14

supE{|Rm(X(t); U∗mk)|4 : t ∈ [0, T ], k = 1, · · · , T/δ} <∞,

δ1/2 max
k≤T/δ

{
1

m

m∑
i=1

h1(U∗ik)− E[h1(U)]

}
= OP (δ1/4| log δ|),

δ1/2 max
k≤T/δ

|Rm(X((k − 1)δ); U∗mk)| = OP (δ1/4| log δ|).

Proof. Direct calculations lead to

P

(
δ1/2 max

k≤T/δ
|Rm(X((k − 1)δ); U∗mk)| > δ1/4| log δ|

)
= 1−

∏
k≤T/δ

P
(
δ1/4|Rm(X((k − 1)δ); U∗mk)| ≤ | log δ|

)
≤ 1−

∏
k≤T/δ

[
1− δE

{
|Rm(X((k − 1)δ); U∗mk)|4

}
/| log δ|4

]
≤ 1− exp

[
−2Tτ/| log δ|4

]
∼ 2Tτ/| log δ|4 → 0,

where we use Chebyshev’s inequality, log(1 − u) ≥ −2u for 0 < u < 0.75, and τ =
supt,k E{|Rm(X(t); U∗mk)|4} ≡ supE{|Rm(X(t); U∗mk)|4 : t ∈ [0, T ], k = 1, · · · , T/δ} the
finiteness of which will be shown below. Indeed, it is sufficient to show that each compo-
nent of Rm(X(t); U∗mk) has finite fourth-moment uniformly over t ∈ [0, T ], k = 1, · · · , T/δ
and, thus, we need to prove it only in the one-dimensional case with a gradient equal to the
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partial derivative. With this simple set-up, we have

|Rm(X(t); U∗mk)|4 = m−2

[
m∑
i=1

{∇`(X(t);U∗ik)−∇g(X(t))}

]4

= m−2
∑
i 6=j
{∇`(X(t);U∗ik)−∇g(X(t))}2{∇`(X(t);U∗jk)−∇g(X(t))}2

+m−2
m∑
i=1

{∇`(X(t);U∗ik)−∇g(X(t))}4 + odd power terms,

E{|Rm(X(t); U∗mk)|4} = m−2
m∑
i=1

E[{∇`(X(t);U∗ik)−∇g(X(t))}4]

+m−2
∑
i 6=j

E[{∇`(X(t);U∗ik)−∇g(X(t))}2]E[{∇`(X(t);U∗jk)−∇g(X(t))}2]

≤ {E[{∇`(X(t);U∗1k)−∇g(X(t))}2]}2 + E[{∇`(X(t);U∗1k)−∇g(X(t))}4]/m

≤ {E[{∇`(X(t);U1k)−∇g(X(t))}2]}2 + E[{∇`(X(t);U1k)−∇g(X(t))}4]/m,

where we use the fact that all odd power terms have mean zero factor ∇`(X(t);U∗ik) −
∇g(X(t)) and, thus, their expectations are equal to zero. By Assumption A1, we have

sup
t,k

E[{∇`(X(t);U1k)−∇g(X(t))}2] ≤ 2 sup
t≥0

{
|X(t)− x0|2

}
E[h2

1(U)]

+ 2E[{∇`(x0, U)}2] + 2 sup
t≥0
{[∇g(X(t))]2},

sup
t,k

E[{∇`(X(t);U1k)−∇g(X(t))}4] ≤ 64 sup
t≥0

{
|X(t)− x0|4

}
E[h4

1(U)]

+ 64E[{∇`(x0, U)}4] + 8 sup
t≥0
{[∇g(X(t))]4},

which are finite because X(t) is deterministic and bounded. Thus, we obtain that τ =
supt,k E{|Rm(X(t); U∗mk)|4} is finite.

Similarly, as h1(U) has the fourth moment, we have

E


∣∣∣∣∣m−1/2

m∑
i=1

{h1(U∗ik)− E[h1(U∗ik)]}

∣∣∣∣∣
4
 ≤ [V ar(h1(U))]2 + E

[
{h1(U)− E[h1(U)]}4

]
≡ τ1,

P

(
δ1/2 max

k≤T/δ

∣∣∣∣∣m−1
m∑
i=1

h1(U∗ik)− E[h1(U∗ik)]

∣∣∣∣∣ > δ1/4| log δ|

)

≤ 1−
∏

k≤T/δ

1− δE


∣∣∣∣∣m−1

m∑
i=1

h1(U∗ik)− E[h1(U∗ik)]

∣∣∣∣∣
4
 /| log δ|4


≤ 1− exp

[
−2Tτ1/| log δ|4

]
∼ 2Tτ1/| log δ|4 → 0, as δ → 0,
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which together with E[h1(U∗ik)] = E[h1(U)] imply

δ1/2 max
k≤T/δ

{
m∑
i=1

h1(U∗ik)}/m = δ1/2E[h1(U)] +OP (δ1/4| log δ|).

Lemma 15

max
t∈[0,T ]

|x̌mk −Xm
δ (kδ)| = OP (δ + δm−1/2| log δ|1/2),

max
0≤t−s≤δ

|Xm
δ (t)−Xm

δ (s)| = OP (δ| log δ|1/2),

where x̌mk and Xm
δ (t) are defined by (5.68) and (4.21), respectively.

Proof. By (4.21) we have

|Xm
δ (t)−Xm

δ (s)| ≤
∫ t

s
|∇g(Xm

δ (u))|du+m−1/2δ1/2

∣∣∣∣∫ t

s
σ(X(u))dB(u)

∣∣∣∣
= OP (δ +m−1/2δ| log δ|1/2),

where we use the fact that uniformly over 0 ≤ t− s ≤ δ,∫ t

s
|∇g(Xm

δ (u))|du = OP (δ),

∫ t

s
σ(X(u))dB(u) = OP (δ1/2| log δ|1/2),

and the order for the Brownian term is derived by the law of the iterated logarithm for
Brownian motion.

Note that x̌mk is the Euler approximation of SDE (4.21). The first result follows from
the standard argument for the Euler approximation. Let D(k) = |x̌mk − Xm

δ (kδ)|. As
x̌m0 = Xm

δ (0) = x0, we have

x̌m1 −Xm
δ (δ) =

∫ δ

0
∇g(Xm

δ (u))du− δ∇g(x0),

D(1) = |x̌m1 −Xm
δ (δ)| = |

∫ δ

0
[∇g(Xm

δ (u))−∇g(x0)]du|

≤ Cδ max
0≤u≤δ

|Xm
δ (u)− x0| = OP (δ2 +m−1/2δ2| log δ|1/2),

where we use the fact that for u ∈ [0, δ],

|Xm
δ (u)− x0| ≤

∫ u

0
|∇g(Xm

δ (v))|dv +m−1/2δ1/2

∣∣∣∣∫ u

0
σ(X(v))dB(v)

∣∣∣∣
= OP (δ +m−1/2δ| log δ|1/2).

For the general k, we obtain

D(k) =

∣∣∣∣∣
∫ kδ

0
∇g(Xm

δ (u))du− δ
k∑
`=1

∇g(x̌m`−1)

∣∣∣∣∣
≤ D(k − 1) +

∣∣∣∣∣
∫ kδ

(k−1)δ
∇g(Xm

δ (u))du− δ∇g(x̌mk−1)

∣∣∣∣∣ ,
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∫ kδ

(k−1)δ
∇g(Xm

δ (u))du− δ∇g(x̌mk−1) =

∫ kδ

(k−1)δ
[∇g(Xm

δ (u))−∇g(Xm
δ ((k − 1)δ))]du

+ δ[∇g(X((k − 1)δ))−∇g(x̌mk−1)],

|∇g(X((k − 1)δ))−∇g(x̌mk−1)| ≤ C|X((k − 1)δ)− x̌mk−1| = CD(k − 1),

|∇g(Xm
δ (u))−∇g(Xm

δ ((k − 1)δ))| = |IHg(Xm
δ (u∗))[X

m
δ (u)−Xm

δ ((k − 1)δ)]|

≤ C
∫ u

(k−1)δ
|∇g(Xm

δ (v))|dv + Cm−1/2δ1/2

∣∣∣∣∣
∫ u

(k−1)δ
σ(X(v))dB(v)

∣∣∣∣∣
= OP (δ +m−1/2δ| log δ|1/2),

and, thus, we conclude that

D(k) ≤ D(k − 1) + CδD(k − 1) +OP (δ2 +m−1/2δ2| log δ|1/2),

which shows that for k ≤ T/δ,

D(k) ≤ (1 + Cδ)k−1D(1) +OP (kδ2 + km−1/2δ2| log δ|1/2) = OP (δ +m−1/2δ| log δ|1/2).

Lemma 16

max
t≤T
|Xm

δ (t)−X(t)| ≤ Cm−1/2δ1/2 max
t≤T

∣∣∣∣∫ t

0
σ(X(u))dB(u)

∣∣∣∣ = OP (m−1/2δ1/2),

where X(t) and Xm
δ (t) are defined by (2.3) and (4.21), respectively.

Proof. With the same initial value for X(t) and Xm
δ , from (2.3) and (4.21) we have

|Xm
δ (t)−X(t)| ≤

∫ t

0
|∇g(Xm

δ (u))−∇g(X(u))|du+m−1/2δ1/2

∣∣∣∣∫ t

0
σ(X(u))dB(u)

∣∣∣∣
≤ C

∫ t

0
|Xm

δ (u)−X(u)|du+m−1/2δ1/2

∣∣∣∣∫ t

0
σ(X(u))dB(u)

∣∣∣∣ .
Applying the Gronwall inequality, we obtain

|Xm
δ (t)−X(t)| ≤ m−1/2δ1/2

[∣∣∣∣∫ t

0
σ(X(t))dB(u)

∣∣∣∣+ C

∫ t

0
eC(t−s)

∣∣∣∣∫ s

0
σ(X(u))dB(u)

∣∣∣∣ ds] ,
which implies

max
t≤T
|Xm

δ (t)−X(t)| ≤ Cm−1/2δ1/2 max
t≤T

∣∣∣∣∫ t

0
σ(X(u))dB(u)

∣∣∣∣ = OP (m−1/2δ1/2),

where the last equality is due to Burkholder’s inequality.

Lemma 17
max
t≤T
|Xm

δ (t)− X̌m
δ (t)| = OP (m−1δ).

where Xm
δ (t) and X̌m

δ (t) are the solutions of (4.21) and (4.22), respectively.
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Proof. We have

|Xm
δ (t)− X̌m

δ (t)| ≤
∫ t

0
|∇g(Xm

δ (u))−∇g(X̌m
δ (u))|du

+m−1/2δ1/2

∣∣∣∣∫ t

0
[σ(X(u))− σ(X̌m

δ (u))]dB(u)

∣∣∣∣
≤ C

∫ t

0
|Xm

δ (u)−X(u)|du+m−1/2δ1/2

∣∣∣∣∫ t

0
[σ(X(u))− σ(X̌m

δ (u))]dB(u)

∣∣∣∣ .
E[|Xm

δ (t)− X̌m
δ (t)|2] ≤ C

∫ t

0
E[|Xm

δ (u)− X̌m
δ (u)|2]du

+ 2m−1δE

[∣∣∣∣∫ t

0
[σ(X(u))− σ(X̌m

δ (u))]dB(u)

∣∣∣∣2
]

≤ C
∫ t

0
E[|Xm

δ (u)− X̌m
δ (u)|2]du+ 2m−1δ

∫ t

0
E[|σ(X(u))− σ(X̌m

δ (u))|2]du

≤ C
∫ t

0
E[|Xm

δ (u)− X̌m
δ (u)|2]du+ C1m

−1δ

∫ t

0
E[|X(u)−Xm

δ (u)|2]du

+ C1m
−1δ

∫ t

0
E[|Xm

δ (u)− X̌m
δ (u)|2]du,

where the last inequality is due to

|σ(X(u))− σ(X̌m
δ (u))| ≤ C|X(u)− X̌m

δ (u)| ≤ C|X(u)−Xm
δ (t)|+ C|Xm

δ (t)− X̌m
δ (t)|.

The Gronwall inequality leads to

E[|Xm
δ (t)− X̌m

δ (t)|2] ≤ Cm−1δmax
s≤t

E[|X(s)−Xm
δ (s)|2].

Using Lemma 16, we have

max
s≤t

E[|X(s)−Xm
δ (s)|2] ≤ Cm−1δE

[
max
s≤t

∣∣∣∣∫ s

0
σ(X(u))dB(u)

∣∣∣∣2
]

≤ Cm−1δE

[∫ t

0
[σ(X(u))]2du

]
,

where the last inequality is from Burkholder’s inequality. Hence

E[|Xm
δ (t)− X̌m

δ (t)|2] ≤ Cm−2δ2E

[∫ t

0
[σ(X(u))]2du

]
,

and we can adopt the same argument to establish it for t as a bounded stopping time.
Finally, we prove the lemma by applying Lenglart’s inequality for semi-martingale with
ηi = Dim

−1δ for some positive constants Di,

P

(
max
s≤t
|X(s)−Xm

δ (s)| > η1

)
≤
Cm−2δ2

∫ t
0 [σ(X(u))]2du

η2
1

+ P

(
Cm−2δ2

∫ t

0
[σ(X(u))]2du > η2

2

)
→ 0, as Di →∞.
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Lemma 18 As δ → 0 and m,n → ∞, we have V m
δ (t) and V̌ m

δ (t) both weakly converge to
V (t). Moreover, if m(nδ)1/2 → 0, and m1/2δ| log δ|1/2 → 0, (m/δ)1/2[xmδ (t)−X(t)] weakly
converges to V (t).

Proof. As the solutions of (4.21) and (4.22) have difference of order m−1δ, they have the
same asymptotic distribution, and we can easily establish the result for V̌ m

δ (t) by that for
V m
δ (t) and Lemma 13.

Let us consider the easier one for Xm
δ (t). From (4.21) and (2.3), we have

d[Xm
δ (t)−X(t)] = −[∇g(Xm

δ (t)−∇g(X(t))]dt−m−1/2δ1/2σ(X(t))dB(t),

and for t ∈ [0, T ],

Xm
δ (t)−X(t) = −

∫ t

0
[IHg(Xξ)][X

m
δ (u)−X(u)]du−m−1/2δ1/2

∫ t

0
σ(X(u))dB(u),

where Xξ is between X(u) and Xm
δ (u) and, thus, Lemma 16 shows that uniformly over

[0, T ],
|Xξ −X(u)| ≤ |Xm

δ (u)−X(u)| = OP (m−1/2δ).

Then, we obtain

V m
δ (t) = −

∫ t

0
[IHg(Xξ)]V

m
δ (u)du−

∫ t

0
σ(X(u))dB(u). (5.69)

First as δ → 0, m,n→∞, equation (5.69) converges to (4.24).
We need to show stochastic equicontinuity for V m

δ (t). From (5.69), we obtain

|V m
δ (t)| ≤ C

∫ t

0
|V m
δ (u)|du+

∣∣∣∣∫ t

0
σ(X(u))dB(u)

∣∣∣∣ ,
and by the Gronwall inequality, we have

max
t≤T
|V m
δ (t)| ≤ C max

t≤T

∣∣∣∣∫ t

0
σ(X(u))dB(u)

∣∣∣∣ ,
that is V m

δ (t) is bounded in probability uniformly over [0, T ]. Again, (5.69) indicates that
for any s, t ∈ [0, T ], and t ∈ [s, s+ γ],

V m
δ (t)− V m

δ (s) = −
∫ t

s
[IHg(Xξ)]V

m
δ (u)du−

∫ t

s
σ(X(u))dB(u),

|V m
δ (t)− V m

δ (s)| ≤ C
∫ t

s
|V m
δ (u)|du+

∣∣∣∣∫ t

s
σ(X(u))dB(u)

∣∣∣∣
≤ C

∫ t

s
|V m
δ (u)− V m

δ (s)|du+ C(t− s)|V n
δ (s)|+

∣∣∣∣∫ t

s
σ(X(u))dB(u)

∣∣∣∣ .
Finally, applying the Gronwall inequality, we obtain uniformly for t ∈ [s, s+ γ],

|V m
δ (t)− V m

δ (s)| ≤ Cγ|V n
δ (s)|+ C max

s≤t≤s+γ

∣∣∣∣∫ t

s
σ(X(u))dB(u)

∣∣∣∣ = OP (γ + γ1/2| log γ|1/2),

which proves stochastic equicontinuity for V n
δ (t).
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5.5 Proof of Theorem 7

Theorem 7 can be proved by the same proof argument of Theorem 4, except for changing
the step size from δ to δ1/2.

5.6 Proof of Theorem 8

We prove Theorem 8 in two subsections, with one for solutions of the second-order SDEs
(4.35) and (4.36) and one for weak convergence of V m

δ (t).

5.6.1 The Unique Solution of the Second-Order SDEs

In this subsection, we prove Lemma 25 below that the second-order SDEs (4.35) (with fixed
δ and m) and (4.36) have unique (weak) solutions in the distributional sense.

Due to the similarity, we provide representative proof arguments only for the following
second-order SDE,

V̈ (t) +
3

t
V̇ (t) + [∇g(X(t))]V (t) + σ(X(t))Ḃ(t) = 0, (5.70)

where initial conditions V (0) = c and V̇ (0) = 0, B(t) is a standard Brownian motion, V̇ (t)

and V̈ (t) are the first and second derivatives of V (t), respectively, Ḃ(t) = dB(t)
dt is white

noise in the sense that for any smooth function h(t) with compact support,∫
h(t)Ḃ(t)dt =

∫
h(t)dB(t),

and the right-hand side is an Itô integral.
The second-order SDE (5.70) is equivalent to

Y (t) = V (t) +
t

2
V̇ (t), Ẏ (t) = − t

2
[∇g(X(t))]V (t)− t

2
σ(X(t))Ḃ(t), (5.71)

where V (0) = c, V̇ (0) = 0, and Y (0) = V (0) = c. Denote by Vη(t) the solution of the
smoothed second-order SDE

V̈η(t) +
3

t ∨ η
V̇η(t) + [∇g(X(t))]Vη(t) + σ(X(t))Ḃ(t) = 0, (5.72)

with initial conditions Vη(0) = c and V̇η(0) = 0.
Recall the notation Ma(s, t;Y ) defined in (5.53). In the proofs of Theorems 1 and 4, we

have employed Ma(s, t;Y ) with a = 1, as curves and processes are solutions of ODE and,
thus, differentiable. For this protion of proofs, we need to handle the Brownian motion and
SDEs, and the related processes have less than 1/2-derivatives, so we fix a ∈ (0, 1/2) and
consider Ma(s, t;Y ) with a < 1/2.

Lemma 19

|∇g(X(t))| ≤ |∇g(X(s))|+ L(t− s)|Ẋ(s)|+ LMa(s, t;X)(t− s)1+a/(1 + a),

|∇g(X(t))Vη(t)−∇g(X(s))Vη(s)| ≤ L|Vη(s)|(t− s)|Ẋ(s)|+ |∇g(X(t))|(t− s)|V̇η(s)|
+ [L|Vη(s)|Ma(s, t;X) + |∇g(X(t))|Ma(s, t;Vη)](t− s)1+a/(1 + a).
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Proof. We prove the lemma by the following direct calculation

|∇g(X(t))Vη(t)−∇g(X(s))Vη(s)| ≤ |∇g(X(t))||Vη(t)− Vη(s)|
+ |∇g(X(t))−∇g(X(s))||Vη(s)|
≤ |∇g(X(t))||Vη(t)− Vη(s)|+ L|Vη(s)||X(t)−X(s)|

≤ L|Vη(s)||
∫ t

s
[Ẋ(v)− Ẋ(s)]dv + (t− s)Ẋ(s)|

+ |∇g(X(t))||
∫ t

s
[V̇η(v)− V̇η(s)]dv + (t− s)V̇η(s)|

≤ L|Vη(s)|(t− s)|Ẋ(s)|+ |∇g(X(t))|(t− s)|V̇η(s)|

+ L|Vη(s)||
∫ t

s
(v − s)a Ẋ(v)− Ẋ(s)

(v − s)a
dv|+ |∇g(X(t))||

∫ t

s
(v − s)a V̇η(v)− V̇η(s)

(v − s)a
dv|

≤ L|Vη(s)|(t− s)|Ẋ(s)|+ |∇g(X(t))|(t− s)|V̇η(s)|
+ [L|Vη(s)|Ma(s, t;X) + |∇g(X(t))|Ma(s, t;Vη)(t− s)1+a/(1 + a),

|∇g(X(t))| ≤ |∇g(X(s))|+ L|X(t)−X(s)|
≤ |∇g(X(s))|+ L(t− s)|Ẋ(s)|+ LMa(s, t;X)](t− s)1+a/(1 + a).

Lemma 20 There exists η0 > 0, such that for η ∈ (0, η0], 1 − |∇g(X(0))|η2/[(1 + a)(2 +
a)]−LMa(0, η;X)η3+a/[(1 + a)2(3 + 2a)] is bounded below from zero. Then, for η ∈ (0, η0],
we have

Ma(0, η;Vη) ≤
1

1− |∇g(X(0))|η2/[(1 + a)(2 + a)]− LMa(0, η;X)η3+a/[(1 + a)2(3 + 2a)][
|∇g(X(0))Vη(0)|η1−a +

L|Vη(0)|Ma(0, η;X)η2

(1 + a)(2 + a)
+ max
t∈(0,η]

∣∣∣∣ 1

ta
e−3t/η

∫ t

0
e3u/ησ(X(u))dB(u)

∣∣∣∣].
Proof. As ∇g(X(0)) and Ma(0, η;X) for each η are deterministic and finite, and Ma(0, η;X)
is continuous and increasing in η, we easily show that |∇g(X(0))|η2/[(1 + a)(2 + a)] +
LMa(0, η;X)η3+a/[(1 + a)2(3 + 2a)] approaches zero as η → 0, which leads to the existence
of η0. Then, Lemma 19 indicates

|∇g(X(u))Vη(u)−∇g(X(0))Vη(0)|
≤ [L|Vη(0)|Ma(0, u;X) + |∇g(X(u))|Ma(0, u;Vη)]u

1+a/(1 + a),

|∇g(X(u))| ≤ |∇g(X(0))|+ LMa(0, u;X)u1+a/(1 + a).

For t ∈ (0, η], Vη satisfies

V̈η(t) +
3

η
V̇η(t) + [∇g(X(t))]Vη(t) + σ(X(t))Ḃ(t) = 0,

which is equivalent to[
V̇η(t)e

3t/η
]′

= −e3t/η[∇g(X(t))]Vη(t)− e3t/ησ(X(t))Ḃ(t),
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V̇η(t)e
3t/η = −

∫ t

0
e3u/η[∇g(X(u))]Vη(u)]du−

∫ t

0
e3u/ησ(X(u))Ḃ(u)du

= −∇g(X(0))Vη(0)

∫ t

0
e3u/ηdu−

∫ t

0
e3u/η[∇g(X(u))Vη(u)−∇g(X(0))Vη(0)]du

−
∫ t

0
e3u/ησ(X(u))dB(u).

Thus, for t ∈ (0, η], we have∣∣∣∣∣ V̇η(t)ta

∣∣∣∣∣ ≤ 1

ta
e−3t/η|[∇g(X(0))]Vη(0)|

∫ t

0
e3u/ηdu+

1

ta
e−3t/η

∣∣∣∣∫ t

0
e3u/ησ(X(u))dB(u)

∣∣∣∣
+

1

(1 + a)ta
e−3t/η

∫ t

0
[L|Vη(0)|Ma(0, u;X) + |∇g(X(u))|Ma(0, u;Vη)]u

1+ae3u/ηdu,

≤ t1−a|∇g(X(0))Vη(0)|+ [L|Vη(0)|Ma(0, t;X) + |∇g(X(0))|Ma(0, t, Vη)]η
2

(1 + a)(2 + a)

+
LMa(0, t;X)Ma(0, t, Vη)η

3+a

(1 + a)2(3 + 2a)
+

1

ta
e−3t/η

∣∣∣∣∫ t

0
e3u/ησ(X(u))dB(u)

∣∣∣∣ .
Taking the maximum over t ∈ (0, η] on both sides of the above inequality, and using the
definition of Ma(0, t; ·) (which is increasing in t), we can easily prove the lemma through
simple algebra manipulation (which is also employed in the proof of Lemma 4).

Lemma 21 There exists η0 > 0, such that for η ∈ (0, η0] and η < t < η + η0, 1 −
(t−η)2

(1+a)(2+a) |∇g(X(η))| − LMa(η,t;X)(t−η)3+a

(1+a)2(3+2a)
is bounded below from zero. Then, for η ∈ (0, η0]

and η < t < η + η0, we have

Ma(η, t;Vη)

[
1− (t− η)2

(1 + a)(2 + a)
|∇g(X(η))| − LMa(η, t;X)(t− η)3+a

(1 + a)2(3 + 2a)

]
≤ C1Ma(0, η;Vη) + C2|∇g(X(η))Vη(η)|

+
(t− η)2−a

2
[L(|Vη(η)|+ 1)|Ẋ(η)|+ |∇g(X(η)|] +

(t− η)3

(1 + a)(3 + a)
L|V̇η(η)|Ma(η, t;X)

+
(t− η)2

(1 + a)(2 + a)
L|Vη(η)|Ma(η, t;X) + max

t0∈(η,t]

∣∣∣∣ 1

t30(t0 − η)a

∫ t0

η
u3σ(X(u))Ḃ(u)du

∣∣∣∣ .
Proof. Since ∇g(X(η)) and Ma(η, t;X) are deterministic and continuous in η, their max-

imum over η in a neighborhood of 0 is finite. As t − η → 0, (t−η)2

(1+a)(2+a) |∇g(X(η))| +
LMa(η,t;X)(t−η)3+a

(1+a)2(3+2a)
approaches zero, and the existence of η0 is obvious. For t > η, Vη satisfies

V̈η(t) +
3

t
V̇η(t) + [∇g(X(t))]Vη(t) + σ(X(t))Ḃ(t) = 0,

which is equivalent to[
t3V̇η(t)

]′
= −t3[∇g(X(t))]Vη(t)− t3σ(X(t))Ḃ(t),

66



Joint Computational and Statistical Analysis of Gradient Descent Algorithms

and

t3V̇η(t) = η3V̇η(η)−
∫ t

η
u3[∇g(X(u))]Vη(u)du−

∫ t

η
u3σ(X(u))Ḃ(u)du

= η3V̇η(η)−
∫ t

η
u3[∇g(X(u))Vη(u)−∇g(X(η))Vη(η)]du−

∫ t

η
u3[∇g(X(η))]Vη(η)du

−
∫ t

η
u3σ(X(u))Ḃ(u)du.

Thus, we obtain

|V̇η(t)− V̇η(η)|
(t− η)a

≤ (t3 − η3)ηa

t3(t− η)a
|V̇η(η)|
ηa

+
t4 − η4

4t3(t− η)a
|∇g(X(η))Vη(η)|

+
1

t3(t− η)a

∫ t

η
[L|Vη(η)|(u− η)|Ẋ(η)|+ |∇g(X(u)|(u− η)|V̇η(η)|]u3du

+
1

(1 + a)t3(t− η)a

∫ t

η
[L|Vη(η)|Ma(η, u;X) + |∇g(X(u))|Ma(η, u;Vη)]u

3(u− η)1+adu

+
1

t3(t− η)a

∣∣∣∣∫ t

η
u3σ(X(u))Ḃ(u)du

∣∣∣∣
≤ (t3 − η3)ηa

t3(t− η)a
Ma(0, η;Vη) +

t4 − η4

4t3(t− η)a
|∇g(X(η))Vη(η)|

+
(t− η)2−a

2
[L(|Vη(η)|+ 1)|Ẋ(η)|+ |∇g(X(η)|] +

(t− η)3

(1 + a)(3 + a)
L|V̇η(η)|Ma(η, t;X)

+
(t− η)2

(1 + a)(2 + a)
[L|Vη(η)|Ma(η, t;X) + |∇g(X(η))|Ma(η, t;Vη)]

+
LMa(η, t;X)Ma(η, t, Vη)(t− η)3+a

(1 + a)2(3 + 2a)
+

1

t3(t− η)a

∣∣∣∣∫ t

η
u3σ(X(u))Ḃ(u)du

∣∣∣∣ .
As in the proof of Lemma 20, replacing t by u in the above inequality, taking the maximum
over u ∈ (η, t] on both sides, and using the definition of Ma(η, t; ·) (which is increasing in
t), we conclude that

Ma(η, t;Vη) ≤ C1Ma(0, η;Vη) + C2|∇g(X(η))Vη(η)|

+
(t− η)2−a

2
[L(|Vη(η)|+ 1)|Ẋ(η)|+ |∇g(X(η)|] +

(t− η)3

(1 + a)(3 + a)
L|V̇η(η)|Ma(η, t;X)

+
(t− η)2

(1 + a)(2 + a)
[L|Vη(η)|Ma(η, t;X) + |∇g(X(η))|Ma(η, t;Vη)]

+
LMa(η, t;X)Ma(η, t;Vη)(t− η)3+a

(1 + a)2(3 + 2a)
+ max
t0∈(η,t]

∣∣∣∣ 1

t30(t0 − η)a

∫ t0

η
u3σ(X(u))Ḃ(u)du

∣∣∣∣ ,
which leads to the lemma.
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Lemma 22 There exists η0 > 0, such that for η ∈ (0, η0] and η < s < t < η + s ≤ T ,

1− (t−s)2
(1+a)(2+a) |∇g(X(s))|−LMa(s,t;X)(t−s)3+a

(1+a)2(3+2a)
is bounded below from zero. Then, for η ∈ (0, η0]

and η < s < t < η + s, we have

Ma(s, t;Vη)

[
1− (t− s)2

(1 + a)(2 + a)
|∇g(X(s))| − LMa(s, t;X)(t− s)3+a

(1 + a)2(3 + 2a)

]
≤ C1Ma(0, s;Vη) + C2|∇g(X(s))Vη(s)|

+
(t− s)2−a

2
[L(|Vη(s)|+ 1)|Ẋ(s)|+ |∇g(X(s)|] +

(t− s)3

(1 + a)(3 + a)
L|V̇η(s)|Ma(s, t;X)

+
(t− s)2

(1 + a)(2 + a)
L|Vη(s)|Ma(s, t;X) + max

t0∈(s,t]

∣∣∣∣ 1

t30(t0 − s)a

∫ t0

s
u3σ(X(u))Ḃ(u)du

∣∣∣∣ .
Proof. Note that for s, t > η, Vη satisfies[

t3V̇η(t)
]′

= −t3[∇g(X(t))]Vη(t)− t3σ(X(t))Ḃ(t),

and

t3V̇η(t) = s3V̇η(s)−
∫ t

s
u3[∇g(X(u))]Vη(u)du−

∫ t

s
u3σ(X(u))Ḃ(u)du

= s3V̇η(s)−
∫ t

s
u3[∇g(X(u))Vη(u)−∇g(X(s))Vη(s)]du−

∫ t

s
u3[∇g(X(s))]Vη(s)du

−
∫ t

s
u3σ(X(u))Ḃ(u)du.

Then, we work on
|V̇η(t)−V̇η(s)|

(t−s)a . The reminder of the proof argument is the same as in the
proof of Lemma 21 with η replaced by s.

Lemma 23 We have

P

(
max
v∈(s,t]

∣∣∣∣ 1

v3(v − s)a

∫ v

s
u3σ(X(u))dB(u)

∣∣∣∣ <∞ for all 0 < s < t

)
= 1.

Proof. We need to show that the Gaussian process
∫ v
s u

3σ(X(u))dB(u) has the a-th deriva-
tive. Indeed, we have

1

v3(v − s)a

∫ v

s
u3σ(X(u))d[B(u)−B(s)] = σ(X(v))

[B(v)−B(s)]

(v − s)a

− 1

v3(v − s)a

∫ v

s

d[u3σ(X(u))]

du
[B(u)−B(s)]du

=
[B(v)−B(s)]

(v − s)a
σ(X(v))− 1

v3

∫ v

s

d[u3σ(X(u))]

du

(u− s)a

(v − s)a
B(u)−B(s)

(u− s)a
du,

which is a.s. finite, due to the fact that 0 < (u − s)a/(v − s)a ≤ 1, X(·) and σ(·) are con-
tinuously differentiable and Lipschitz, and the Brownian motion has a well-known property
that for all u > s > 0, sups<u

|B(u)−B(s)|
(u−s)a is a.s. finite.
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Lemma 24 For any given T > 0, Vη(t) is stochastically equicontinuous and stochastically
bounded on [0, T ] uniformly over η.

Proof. Take η∗ to be the smallest η0 defined in Lemmas 20-22. Divide the interval [0, T ]
into N = [T/η∗ + 1] number of subintervals with length almost equal to η∗ (except for the
last one), and denote by Ii = [si−1, si], i = 1, · · · , N (with s0 = 0, sN = T , I1 = [0, T/N ],
1/N < η∗/T , IN = [sN−1, T ]). First, for t ∈ I1, we have

|V̇η(t)| ≤ |I1|aMa(I1;Vη), |Vη(t)| ≤ |Vη(0)|+
∫
I1
|V̇η(u)|du,

and the upper bounds on V̇η(t) and Vη(t) over I1 are a.s. finite uniformly over η, which
implies that Vη(t) is stochastically equicontinuous and stochastically bounded over I1.

For t ∈ Ii, i = 2, · · · , N , we have

|V̇η(t)− V̇η(si−1)| ≤ |Ii|aMa(Ii;Vη),

and

|Vη(t)| ≤ |Vη(si−1)|+ |Ii||V̇η(si−1)|+
∫
Ii
|V̇η(u)− V̇η(si−1)|du.

Note that N is free of η. We use the above two inequalities to prove by induction that the
upper bounds of Vη(t) and V̇η(t) on [0, T ] are a.s. finite uniformly over η. Assume that the
upper bounds of Vη(t) and V̇η(t) on ∪i−1

j=1Ij are a.s. finite uniformly over η. The above-
mentioned two inequalities immediately show that their upper bounds on Ii are also a.s.
finite uniformly over η. This implies that the uniform finite bounds of Vη(t) and V̇η(t) on
∪Nj=1Ij = [0, T ] and, thus, Vη(t) is stochastically equicontinuous and stochastically bounded
on [0, T ].

Lemma 25 For fixed (δ,m), the second-order SDEs (4.35) and (4.36) have unique solutions
in the distributional sense.

Proof. Due to the similarity, we provide proof arguments for (5.70) only. We take a
decreasing sequence of η in the following manner: ηk, k = 1, 2, · · · , are decreasing, and as
k → ∞, ηk → 0. Lemma 24 implies that {Vηk(t), k = 1, 2, . . . , } is tight and, thus, there
exists a subsequence that has a weak limit process V†(t). We show that V†(t) satisfies (4.36).
Without loss of generality, we may assume that Vηk(t) weakly converges to V†(t). Further,
using Skorokhod’s representation theorem, we may assume that Vηk(t) converges to V†(t)
a.s.. Vηk(t) obeys the initial condition Vηk(0) = V̇ηk(0) = 0; thus, V†(0) = 0, and

|V†(t)− V†(0)|
t

= lim
k→∞

|Vηk(t)− Vηk(0)|
t

= lim
k→∞

|V̇ηk(ξk)| ≤ lim sup
k→∞

[taMa(0, t, Vηk)].

Since Ma(0, t, Vηk) is a.s. finite uniformly over ηk, taking t → 0, we obtain V̇†(0) = 0.
For t > ηk, the second-order SDE (5.72) is equivalent to the following smoothed stochastic
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differential equation system,

V̇ηk(t) =
2

t
Yηk(t)− 2

t
Vηk(t)

Ẏηk(t) = − t
2

[∇g(X(t))]Vηk(t)− t

2
σ(X(t))Ḃ(t).

Its inherited initial conditions are Vηk(0) = Yηk(0) = c and V̇ηk(0) = 0. The right-hand side
of the second equation in the above system implies that as k →∞, Yηk(t) converges to Y (t)
defined by

Ẏ (t) = − t
2

[∇g(X(t))]V†(t)−
t

2
σ(X(t))Ḃ(t), Y (0) = c,

which in turn shows that V̇ηk(t) converges to V̇∗(t), given by

V̇∗(t) =
2

t
Y (t)− 2

t
V†(t).

Since Vηk(t) converges to V†(t), V̇∗(t) = V̇†(t). Thus, V†(t) satisfies

V̇†(t) =
2

t
Y (t)− 2

t
V†(t),

which impies that V†(t) obeys

V̈†(t) +
3

t
V̇†(t) + [∇g(X(t))]V†(t) + σ(X(t))Ḃ(t) = 0.

Suppose that the equation has two solutions (V (t),B(t)) and (V∗(t),B∗(t)). Then, we
may realize both solutions on some common probability space such that B(t) = B∗(t).
Hence, U(t) = V (t)− V∗(t) obeys

Ü(t) +
3

t
U̇(t) + [∇g(X(t))]U(t) = 0, U(0) = U̇(0) = 0,

which has a unique solution zero, as it is a second-order ODE similar to ODEs (2.6) and
(3.15). Thus V (t) = V∗(t)—that is, the two solutions have an identical distribution, which
proves the unique solution.

Remark 15 As in Section 5.1, the inhomogeneous linear SDE (4.36) has a corresponding
homogeneous linear ODE, and its solution V (t) enjoys an explicit expression in terms of
the solution for the homogeneous linear ODE. We may prove the unique solution result by
analyzing the ODE and using the explicit expression. In fact, denote by Π1(t) an invertible
solution of the following 2nd order linear matrix ODE,

Π̈1(t)− Π̇1(t)

[
3

t
+∇log IHg(X(t))

]
+ Π1(t)[IHg(X(t))] = 0,

and by Π2(t) the solution of the following matrix ODE,

Π̇2(t) = Π2(t)

[
Π̇1(t)

IHg(X(t))

]−1

Π1(t), Π2(0) = I.
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Let

Π∗(t) =
Π̇1(t)

IHg(X(t))
.

Then, (Π1(t),Π∗(t),Π2(t)) satisfies the 1st order linear ODE system
dΠ1(t) = Π∗(t)IHg(X(t))dt,
dΠ∗(t) =

[
3
tΠ∗(t)−Π1(t)

]
dt,

dΠ2(t) = Π2(t)[Π∗(t)]
−1Π1(t), Π2(0) = I.

Direct calculations with Itô lemma lead to

Π2(t)V (t) = −
∫ t

0

{∫ t

s
Π2(v) [Π∗(v)]−1 dv

}
[Π∗(s)]

−1 σ((X(s))dB(s).

Thus, the solution of SDE (4.36) has the following expression,

V (t) = −[Π2(t)]−1

∫ t

0
Π2(v)

[
Π̇1(v)

IHg(X(v))

]−1

∫ v

0

[
Π̇1(u)

IHg(X(u))

]−1

σ((X(u))dB(u)

 dv.

5.6.2 Weak Convergence of V m
δ (t)

Lemma 26 For X(t), Xm
δ (t), and V m

δ (t), we have

M1(s, t;X) ≤ 1

1− L(t− s)2/6

[(
3

s
+
L(t− s)

2

)
|Ẋ(s)|+ |∇g(X(s))|

]
, if t− s <

√
3

L
,

Ma(s, t;X
m
δ ) ≤ 1

1− L(t− s)2/[(a+ 1)(a+ 2)]

[
(t− s)1−a

(
3

s
+
L(t− s)

2

)
|Ẋm

δ (s)|

+(t− s)1−a|∇g(Xm
δ (s))|+ max

v∈(s,t]

δ1/4m−1/2

4v3(v − s)a

∣∣∣∣∫ v

s
u3σ(X(u))dB(u)

∣∣∣∣
]
,

Ma(s, t;V
m
δ ) ≤ 1

1− L(t− s)2/[(a+ 1)(a+ 2)][
(t− s)1−a

{
2L|V m

δ (s)|+ [3/s+ L(t− s)]|V̇ m
δ (s)|

}
+ max
v∈(s,t]

1

v3(v − s)a

∣∣∣∣∫ v

s
u3σ(X(u))Ḃ(u)du

∣∣∣∣] ,
when s > 0 and t− s <

√
(a+ 1)(a+ 2)/(2L). In particular, for s = 0 we have

M1(0, t;X) ≤ |∇g(x0)|
1− Lt2/6

,

Ma(0, t;X
m
δ ) ≤

t1−a|∇g(x0)|+ maxv∈(s,t]
δ1/4(mT )−1/2

4v3+a

∣∣∫ v
0 u

3σ(X(u))dB(u)
∣∣

1− Lt2/[(a+ 1)(a+ 2)]
,

Ma(0, t;V
m
δ ) ≤ 1

1− Lt2/[(a+ 1)(a+ 2)]
max
v∈(0,t]

[
1

v3+a

∣∣∣∣∫ v

0
u3σ(X(u))Ḃ(u)du

∣∣∣∣] .
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Proof. Because of similarity, we provide proof arguments only for M1(s, t;V m
δ . Let H(t;V m

δ )

= δ−1/4m1/2[∇g(Xm
δ (t))−∇g(X(t))], and J(s, t;H,V m

δ ) =
∫ t
s u

3[H(u;V m
δ )−H(s;V m

δ )]du.
Then, we obtain

|H(t;V m
δ )| ≤ Lδ−1/4m1/2|Xm

δ (t)−X(t)| = L|V m
δ (t)|,

|H(t;V m
δ )−H(s;V m

δ )| = δ−1/4m1/2|∇[g(Xm
δ (t))− g(Xm

δ (s))− g(X(t)) + g(X(s))]|
≤ Lδ−1/4m1/2|Xm

δ (t)−X(t)|+ Lδ−1/4m1/2|Xm
δ (s)−X(s)| = L|V n(t)|+ L|V m

δ (s)|,

V m
δ (t) =

∫ t

s
V̇ m
δ (u)du+ V m

δ (s) =

∫ t

s
[V̇ m
δ (u)− V̇ n(s)]du+ V m

δ (s) + (t− s)V̇ n(s),

|H(t;V m
δ )−H(s;V m

δ )| ≤ L
∫ t

s
|V̇ m
δ (u)− V̇ m

δ (s)|du+ L[2|V m
δ (s)|+ |(t− s)V̇ m

δ (s)|],∫ t

s
|V̇ m
δ (u)− V̇ m

δ (s)|du ≤
∫ t

s
(u− s)a

|V̇ m
δ (u)− V̇ m

δ (s)|
(u− s)a

du ≤
∫ t

s
(u− s)aMa(s, t;V

m
δ )du

=
Ma(s, t;V

m
δ )(t− s)a+1

a+ 1
,

L

a+ 1

∫ t

s
Ma(s, u;V m

δ )u3(u− s)a+1du ≤
LMa(s, t;V

m
δ )t3(t− s)a+2

(a+ 1)(a+ 2)
,

|J(s, t;H,V m
δ )| ≤ Lt3(t− s)a+2

(a+ 1)(a+ 2)
Ma(s, t;V

m
δ ) + L[2|V m

δ (s)|+ (t− s)|V̇ m
δ (s)|]t3(t− s).

SDE (4.35) is equivalent to

t3V̇ m
δ (t)

dt
= −t3H(t;V m

δ )− t3σ(X(t))Ḃ(t), which implies that

t3V̇ m
δ (t)− s3V̇ m

δ (s) = −
∫ t

s
u3H(u;V m

δ )du−
∫ t

s
u3σ(X(u))Ḃ(u)du

= − t
4 − s4

4
H(s;V m

δ )− J(s, t;H,V m
δ )−

∫ t

s
u3σ(X(u))Ḃ(u)du,

V̇ m
δ (t)− V̇ m

δ (s)

t− s
= − t3 − s3

t3(t− s)
V̇ m
δ (s)− t4 − s4

4t3(t− s)
H(s;V m

δ )−
J(s, t;H,V m

δ )

t3(t− s)

− 1

t3(t− s)

∫ t

s
u3σ(X(u))Ḃ(u)du,

and using the upper bounds of H(s;V m
δ ) and J(s, t;H,V m

δ ) and algebraic manipulations,
we obtain

|V̇ m
δ (t)− V̇ m

δ (s)|
t− s

≤ t3 − s3

t3(t− s)
|V̇ m
δ (s)|+ t4 − s4

4t3(t− s)
|H(s;V m

δ )|+
|J(s, t;H,V m

δ )|
t3(t− s)

+
1

t3(t− s)

∣∣∣∣∫ t

s
u3σ(X(u))Ḃ(u)du

∣∣∣∣
≤ t2 + st+ s2

t3
|V̇ m
δ (s)|+ (t2 + s2)(t+ s)

2t3
L|V m

δ (s)|+Ma(s, t;V
m
δ )

L(t− s)a+1

(a+ 1)(a+ 2)

+ L[2|V m
δ (s)|+ (t− s)|V̇ m

δ (s)|] +
1

t3(t− s)

∣∣∣∣∫ t

s
u3σ(X(u))Ḃ(u)du

∣∣∣∣ .
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As the above inequality holds for any s < t, an application of the definition of Ma(s, t;V
m
δ )

leads to

Ma(s, t;V
m
δ ) ≤ (t− s)1−a

{
3

s
|V̇ m
δ (s)|+ L[4|V m

δ (s)|+ (t− s)|V̇ m
δ (s)|]

}
+Ma(t, s;V

m
δ )

L(t− s)2

(a+ 1)(a+ 2)
+ max
v∈(s,t]

1

v3(v − s)a

∣∣∣∣∫ v

s
u3σ(X(u))Ḃ(u)du

∣∣∣∣ ,
and solving for Ma(s, t : V m

δ ) to obtain

Ma(s, t;V
m
δ ) ≤ 1

1− L(t− s)2/[(a+ 1)(a+ 2)][
(t− s)1−a

{
4L|V m

δ (s)|+ [3/s+ L(t− s)]|V̇ m
δ (s)|

}
+ max
v∈(s,t]

1

v3(v − s)a

∣∣∣∣∫ v

s
u3σ(X(u))Ḃ(u)du

∣∣∣∣] ,
when s > 0 and t − s <

√
(a+ 1)(a+ 2)/(2L). If s = 0, we replace the coefficient 3/s by

1/t in above inequality, and V m
δ (0) = V̇ m

δ (0) = 0, Xm
δ (0) = X(0) = x0. Then, we conclude

that

Ma(0, t;V
m
δ ) ≤ 1

1− Lt2/[(a+ 1)(a+ 2)]
max
v∈(0,t]

[
1

v3+a

∣∣∣∣∫ v

0
u3σ(X(u))Ḃ(u)du

∣∣∣∣] ,
which proves the lemma.

Lemma 27 For any given T > 0, we have

max
t∈[0,T ]

|V m
δ (t)| = OP (1), max

t∈[0,T ]
|Xm

δ (t)−X(t)| = OP (δ1/4m−1/2),

max
t∈[0,T ]

|V̇ m
δ (t)| = OP (1), max

t∈[0,T ]
|Ẋm

δ (t)− Ẋ(t)| = OP (δ1/4m−1/2).

Proof. As V m
δ (t) = δ−1/4m1/2[Xm

δ (t) − X(t)], we need to establish the results for V m
δ (t)

only. Divide interval [0, T ] into N =
[
T
√

2L/{(a+ 1)(a+ 2)}
]

+ 1 number of subintervals

with length
√

(a+ 1)(a+ 2)/(2L) (except for the last one), and denote the subintervals by
Ii = [si−1, si], i = 1, · · · , N (with s0 = 0, sN = T , I1 = [0,

√
3/L], IN = [sN−1, T ]). First,

for t ∈ I1, from Lemma 26 we have

|V̇ m
δ (t)| ≤ |I1|aMa(I1;V m

δ ) ≤ C max
v∈(0,s1]

[
1

v3+a

∣∣∣∣∫ v

0
u3σ(X(u))Ḃ(u)du

∣∣∣∣] ,
|V m
δ (t)| ≤ |V m

δ (0)|+
∫
I1
|V̇ m
δ (u)|du ≤ C max

v∈(0,s1]

[
1

v3+a

∣∣∣∣∫ v

0
u3σ(X(u))Ḃ(u)du

∣∣∣∣] .
The upper bounds of V m

δ (t) and V̇ m
δ (t) on I1 are a.s. finite uniformly over (δ,m).
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For t ∈ Ii, i = 2, · · · , N , from Lemma 26 we have

|V̇ m
δ (t)− V̇ m

δ (si−1)| ≤ |Ii|aMa(Ii, V m
δ ) ≤ C

[
4L|V m

δ (si−1)|+ (3/s1 + Ls1)|V̇ m
δ (si−1)|

]
+ C max

v∈(si−1,si]

1

v3(v − si−1)a

∣∣∣∣∣
∫ v

si−1

u3σ(X(u))Ḃ(u)du

∣∣∣∣∣ ,
|V m
δ (t)| ≤ |V m

δ (si−1)|+ |Ii||V̇ m
δ (si−1)|+

∫
Ii
|V̇ m
δ (u)− V̇ m

δ (si−1)|du

≤ |V m
δ (si−1)|+

√
3/L|V̇ m

δ (si−1)|+ C
[
4L|V m

δ (si−1)|+ (3/s1 + Ls1)|V̇ m
δ (si−1)|

]
+ C max

v∈(si−1,si]

1

v3(v − si−1)a

∣∣∣∣∣
∫ v

si−1

u3σ(X(u))Ḃ(u)du

∣∣∣∣∣ .
We use the above two inequalities to prove by induction that the upper bounds of

V m
δ (t) and V̇ m

δ (t) on [0, T ] are a.s. finite uniformly over (m, δ). Assume that the upper
bounds of V m

δ (t) and V̇ m
δ (t) on ∪i−1

j=1Ij are a.s. finite uniformly over (m, δ). Note that

maxv∈(si−1,si]
1

v3(v−si−1)a

∣∣∣∫ vsi−1
u3σ(X(u))Ḃ(u)du

∣∣∣ is a.s. finite, and N is free of (m, δ). The

above-mentioned two inequalities immediately show that the upper bounds of V m
δ (t) and

V̇ m
δ (t) on Ii are also a.s. finite uniformly over (m, δ). This implies that the uniform finite

bounds of V m
δ (t) and V̇ m

δ (t) on ∪Nj=1Ij = [0, T ].

Lemma 28 For any given T > 0, as δ → 0 and m → ∞, V m
δ (t) is stochastically equicon-

tinuous on [0, T ].

Proof. Lemma 27 proves that maxt∈[0,T ] |V m
δ (t)| = OP (1) and maxt∈[0,T ] |V̇ m

δ (t)| = OP (1),
which implies that V m

δ (t) is stochastically equicontinuous on [0, T ].
Proof of Theorem 8. Lemma 25 indicates the unique solutions of SDEs. Moreover,

(4.36) is a linear SDE, and its constant term linearly depends on B(t); thus, its solution
V (t) is Gaussian. As in Section 5.1.2, we can easily establish finite distribution convergence
for V m

δ (t). Lemma 28 along with the finite distribution convergence immediately lead to
the conclusion that as δ → 0 and m→∞, V m

δ (t) weakly converges to V (t).

5.7 Proof of Theorem 9

Recall that sequences {xk, yk} and {xmk , ymk } are defined by algorithms (2.4) and (4.26),
respectively, with initial values xm0 = ym0 = x0; Xm

δ (t) and X(t) are the solutions of ODE
(2.6) and SDE (4.35), respectively.

We discretize SDE (4.34), which is equivalent to (4.35), to define a new sequence in
the following manner. Let {x̌mk , y̌mk } be the sequence, with initial values x̌m0 = y̌m0 = x0,
generated by

x̌mk = y̌mk−1−δ∇g(y̌mk−1)−m−1/2δ3/4[H(tk)−H(tk−1)], y̌mk = x̌mk +
k − 1

k + 2
(x̌mk −x̌mk−1), (5.73)

where H(t) =

∫ t

0
σ(X(u))dB(u) and tk = kδ1/2.
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We rewrite algorithm (4.26) to generate {xmk , ymk } as follows:

xmk = ymk−1 − δ∇g(ymk−1)−m−1/2δ3/4[Hm
δ (tk)−Hm

δ (tk−1)], ymk = xmk +
k − 1

k + 2
(xmk − xmk−1).

(5.74)
Note that (5.73) and (5.74) share the same recursive structure with the only difference

being between Hm
δ (t) and H(t). The approach to our proof is that (i) Lemma 34 below

reveals that {xmk , ymk } and {x̌mk , y̌mk } can be realized on certain probability spaces within
a small order distance; (ii) Lemma 38 below derives an order bound for the discretization
error x̌mk −Xm

δ (tk); (iii) the theorem is proved by combining two lemmas in (i) and (ii).

Lemma 29

max
k≤Tδ−1/2

|xk −X(tk)| = O(δ1/2| log δ|), max
k≤Tδ−1/2

|zk − Ẋ(tk)| = O(δ1/2| log δ|),

max
k≤Tδ−1/2

|yk − xk| = O(δ1/2).

Proof. As X(t) is the solution of ODE (2.6), it is shown that X(t), Ẋ(t), and ∇g(X(t))
are uniformly bounded on [0, T ], and Lemma 4 further indicates that Ẋ(t) is Lipschitz.
Let Z(t) = Ẋ(t). With deterministic sequence {xk, yk} given by algorithm (2.4), we define
z0 = 0, zk = (xk − xk−1)/δ1/2. Lemma 8 indicates that

max
k≤Tδ−1/2

|xk −X(tk)| = O(δ1/2| log δ|), max
k≤Tδ−1/2

|zk − Z(tk)| = O(δ1/2| log δ|),

and yk − xk = 3k+4
k+3 δ

1/2zk, which implies that

max
k≤Tδ−1/2

|yk − xk| ≤ 3δ1/2

(
max

k≤Tδ−1/2
|zk − Z(tk)|+ max

k≤Tδ−1/2
|Z(tk)|

)
= O(δ1/2).

As in the proofs of Theorems 4-6, we use notations Rm(θ; U∗m(t)) = (Rm1 (θ; U∗m(t)), · · · ,
Rmp (θ; U∗m(t)))′, where

Rmj (θ; U∗m(t)) =
√
m

[
1

m

m∑
i=1

∂

∂θj
`(θ;U∗i (t))− ∂

∂θj
g(θ)

]
, j = 1, · · · , p.

Lemma 30

max
k≤Tδ−1/2

E[|Rm(X(tk−1); U∗mk)|4] ≤ C.

Proof. For simplicity, we write Ri = Rm(X(ti); U
∗
m(i+1)), and rq = ∇`(X(ti);U

∗
q(i+1)) −

∇g(X(ti)). Then, Ri = m−1/2
m∑
q=1

rq. Since X(t) is deterministic, and U∗qk, q = 1, 2, · · · ,m,

are independent, we have that r1, r2, . . . , rm are independent with mean 0, and

|rq| ≤ h1(U∗q(i+1))|X(ti)− θ0|+ |∇`(θ0;U∗q(i+1))|+ |∇g(X(ti))|,
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E|rq|2 ≤ 3 · (E[h2
1(U)]|X(ti)− θ0|2 + E|∇`(θ0;U)|2 + |∇g(X(ti))|2),

E|rq|4 ≤ 27 · (E[h4
1(U)]|X(ti)− θ0|4 + E|∇`(θ0;U)|4 + |∇g(X(ti))|4).

Note that sup
t
|X(t)−θ0| and sup

t
|∇g(X(t))| are bounded, and Assumption A1 implies that

E|rq|2 and E|rq|4 are uniformly bounded. Therefore, we obtain

E|Ri|2 = m−1E

∣∣∣∣∣∣
m∑
q=1

rq

∣∣∣∣∣∣
2

= m−1
m∑
q=1

E|rq|2 ≤ C,

E|Ri|4 = m−2E

∣∣∣∣∣∣
m∑
q=1

rq

∣∣∣∣∣∣
4

= m−2E

 m∑
q=1

r′q

 m∑
q=1

rq

 m∑
q=1

r′q

 m∑
q=1

rq


= m−2E

 m∑
q=1

|rq|4 +
∑
p<q

(4(r′prq)
2 + 2|rp|2|rq|2)


≤ m−2

 m∑
q=1

E|rq|4 +
∑
p<q

6E|rp|2E|rq|2


≤ m−2(mC + 3m2C2) ≤ C + 3C2,

where we use the inequality (r′prq)
2 ≤ |rp|2|rq|2. In other words, we show that E(|Ri|2) and

E(|Ri|4) are uniformly bounded.

Lemma 31

max
t∈[0,T ]

E[|Gmδ (t)− Ǧmδ (t)|2] ≤ C max
k≤kT

E[|ymk −X(tk)|2],

where Gmδ (t) and Ǧmδ (t) are defined in (5.78) and (5.80) below, respectively.

Proof. Define filtration Ft = σ(ymδ (s),U∗m(s); s ≤ t), where ymδ (t) and U∗m(t) are given by
(4.27). Then, for i > j, we obtain

E{(Rm(ymi ; U∗m(i+1))−R
m(X(ti); U

∗
m(i+1)))

′(Rm(ymj ; U∗m(j+1))−R
m(X(tj); U

∗
m(j+1))}

= E{E[(Rm(ymi ; U∗m(i+1))−R
m(X(ti); U

∗
m(i+1)))

′

(Rm(ymj ; U∗m(j+1))−R
m(X(tj); U

∗
m(j+1)))|Ftj ]}

= E{(Rm(ymi ; U∗m(i+1))−R
m(X(ti); U

∗
m(i+1)))

′

E[Rm(ymj ; U∗m(j+1))−R
m(X(tj); U

∗
m(j+1))|Ftj ]}

= 0.
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Set rqi = ∇`(ymi ;U∗q(i+1))−∇g(ymi )− (∇`(X(ti);U
∗
q(i+1))−∇g(X(ti)). Then, we have

Di
4
= Rm(ymi ; U∗m(i+1))−R

m(X(ti); U
∗
m(i+1)) = m−1/2

m∑
q=1

rqi,

and for q 6= s,

E(r′qirsi) = E(E(r′qirsi|Fti)) = E(E(r′qi|Fti)E(rsi|Fti)) = 0.

On the other hand, we obtain |rqi| ≤ (h1(Uq(i+1)) + L)|ymi −X(ti)|,

E(|rqi|2) ≤ E(E[(h1(Uq(i+1)) + L)2|ymi −X(ti)|2|Fti ]) ≤ C · E|ymi −X(ti)|2,

and, thus, we arrive at

E|Di|2 ≤ C · E|ymi −X(ti)|2.

Direct calculations show that for tk+1 ≤ t < tk+2,

E|Gmδ (t)− Ǧmδ (t)|2 =
δ1/2

c2
k

E

∣∣∣∣∣
k∑
i=1

ciDi

∣∣∣∣∣
2

=
δ1/2

c2
k

k∑
i=1

c2
iE|Di|2

≤ kδ1/2C · max
1≤i≤k

E|ymi −X(ti)|2 ≤ C · max
1≤i≤k

E|ymi −X(ti)|2,

and, therefore, we conclude that

max
t∈[0,T ]

E|Gmδ (t)− Ǧmδ (t)|2 ≤ C · max
k≤kT

E|ymk −X(tk)|2.

Lemma 32

max
k≤Tδ−1/2

E[|ymk − yk|4] = O(m−2), max
k≤Tδ−1/2

E[|ymk −X(tk)|4] = O(m−2 + δ1/2| log δ|).

Proof. The second result can be easily established from the first one and Lemma 29. We
prove the first result below.

Recall that d0 = 0, dk = xk − xk−1, dm0 = 0, dmk = xmk − xmk−1, ak = |xk − xmk |,
bk = |dk − dmk |. We have a0 = 0, b0 = 0,

ak ≤ |xk−1 − xmk−1|+ |dk − dmk | = ak−1 + bk ≤ Sk,

where Sk = b0 + b1 + · · ·+ bk. Moreover, we obtain

dk+1 =
k − 1

k + 2
dk − δ∇g(yk),

dmk+1 =
k − 1

k + 2
dmk − δ∇g(ymk )− δm−1/2Rm(ymk ; U∗m(k+1)),

|ymk − yk| ≤ ak + bk.
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Since maxk≤kT |yk−X(tk)| = O(δ1/2| log δ|), we have maxk≤kT |yk| = O(1), and as in Lemma
30, maxk≤Tδ−1/2 E[|Rm(yk; U

∗
m(k+1))|

4]=O(1). For simplicity, we letRk= |Rm(yk; U
∗
m(k+1))|.

Recall that

|Rm(ymk ; U∗m(k+1))| ≤Rk +m−1/2
m∑
i=1

[h1(U∗i(k+1)) + L]|ymk − yk|

≤Rk +m−1/2

∣∣∣∣∣
m∑
i=1

[h1(U∗i(k+1))− E(h1(U))]

∣∣∣∣∣ · |ymk − yk|
+m1/2(E(h1(U)) + L) · |ymk − yk|.

Let hk = m−1/2
∣∣∣∑m

i=1[h1(U∗i(k+1))− E(h1(U))]
∣∣∣. Then, we have

max
k≤Tδ−1/2

E[h4
k] = O(1),

bk+1 ≤ bk + Lδ(ak + bk) + δm−1/2Rk + (δm−1/2hk + Cδ)(ak + bk),

and using ak + bk ≤ 2Sk, we obtain

bk+1 ≤ bk + Cδ(1 +m−1/2hk)Sk + δm−1/2Rk.

Define a sequence b′k that satisfies b′0 = 0,

b′k+1 = b′k + Cδ(1 +m−1/2hk)S
′
k + δm−1/2Rk.

Then, bk ≤ b′k, b′k is non-decreasing, and since kδ1/2 ≤ T ,

b′k+1 ≤ b′k+Cδ(1+m−1/2hk)kb
′
k+δm−1/2Rk ≤ (1+Cδ1/2)(1+Cδ1/2m−1/2hk)b

′
k+δm−1/2Rk.

Define another sequence b∗k that satisfies b∗0 = 0,

b∗k+1 = (1 + Cδ1/2)(1 + Cδ1/2m−1/2hk)b
∗
k + δm−1/2Rk.

Then, b′k ≤ b∗k, and

b∗k =

k−1∑
i=0

(1 + Cδ1/2)k−i−1

 k−1∏
j=i+1

(1 + Cδ1/2m−1/2hj)

 δm−1/2Ri


≤ Cδm−1/2

k−1∑
i=0


 k−1∏
j=i+1

(1 + Cδ1/2m−1/2hj)

Ri
 .

Since for r = Cδ1/2m−1/2 < 1,

E(1 + rhj)
4 ≤ 1 + 4rEhj + 6rEh2

j + 4rEh3
j + rEh4

j ≤ 1 + Cr,
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and Ri, hi+1, . . . , hk−1 are independent, we obtain

max
k≤kT

Ea4
k ≤ E(kT b

∗
kT

)4

≤ Cδ2m−2k3
T

kT−1∑
i=0

E


 kT−1∏
j=i+1

(1 + Cδ1/2m−1/2hj)

Ri


4

≤ Cδ1/2m−2
kT−1∑
i=0


 kT−1∏
j=i+1

E(1 + Cδ1/2m−1/2hj)
4

ER4
i


≤ Cδ1/2m−2kT (C(1 + Cδ1/2m−1/2)kT )

= O(m−2).

Finally, we conclude that

max
k≤kT

E[|ymk − yk|4] ≤ max
k≤kT

E[(ak + bk)
4] ≤ C max

k≤kT
E[a4

k + b4k] = O(m−2).

Lemma 33

max
k≤Tδ−1/2

E[|Rm(ymk−1; U∗mk)|4] ≤ C.

Proof. Define filtration Ft = σ(ymδ (s),U∗m(s); s ≤ t), where ymδ (t) and U∗m(t) are given
by (4.27). For simplicity, we write Rmk = Rm(ymk ; U∗m(k+1)), and rqk = ∇`(ymk , U∗q(k+1)) −
∇g(ymk ). Then, given Ftk , r1k, . . . , rqk are conditionally independent with conditional mean
0,

Rmk = m−1/2
m∑
q=1

rqk,

E|rqk|4 ≤ C
(
E[|h1(U∗q(k+1))|

4|ymk − θ0|4] + E|ymk − θ0|4 + E|∇`(θ0, U
∗
q(k+1))|

4 + |∇g(θ0)|4
)
,

which is bounded uniformly over 1 ≤ k ≤ kT , since E[|ymk −θ0|4] ≤ E[|ymk −yk|4]+|yk−θ0|4] ≤
C (implied by Lemmas 29 and 32), and

E[|h1(U∗q(k+1))|
4|ymk −θ0|4]=E[E[|h1(U∗q(k+1))|

4|ymk −θ0|4|Ftk ]]=E(|h1(U)|4)E[|ymk −θ0|4]≤C.

Finally, we conclude that

E|Rmk |4 = m−2E

E
 m∑

q=1

r′qk

 m∑
q=1

rqk

 m∑
q=1

r′qk

 m∑
q=1

rqk

∣∣∣∣∣∣Ftk


≤ m−2

 m∑
q=1

E|rqk|4 + 6
∑
p<q

(E|rpk|4 · E|rqk|4)
1
2


≤ C.
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Lemma 34 There exist simultaneous realizations {x̃mk , ỹmk }, {˜̌xmk , ˜̌ymk }, standard Brown-

ian motion B̃, and H̃(t) =

∫ t

0
σ(X(u))dB̃(u) on some common probability spaces, such

that sequences {x̃mk , ỹmk , k ≤ T/δ1/2} have the same distribution as {xmk , ymk , k ≤ T/δ1/2},
and sequences {˜̌xmk , ˜̌ymk , k ≤ T/δ1/2} are generated from H̃(t) in the same manner as
{x̌mk , y̌mk , k ≤ T/δ1/2} generated from H(t) according to (5.73), and as δ → 0,m → ∞,

max
k≤T/δ1/2

|x̃mk − ˜̌xmk | = op(m
−1/2δ1/4). (5.75)

Proof. For k ≥ 1, let ďmk = x̌mk+1 − x̌mk ,

ďm0 = −δ∇g(x0)−m−1/2δ3/4(H(t1)−H(t0)),

and rewrite (5.73) as

x̌mk+1 = x̌mk +
k − 1

k + 2
(x̌mk − x̌mk−1)− δ∇g(y̌mk )−m−1/2δ3/4(H(tk+1)−H(tk)).

Then, we obtain

ďmk =
k − 1

k + 2
ďmk−1 − δ∇g(y̌mk )−m−1/2δ3/4(H(tk+1)−H(tk))

=
k − 1

k + 2

(
k − 2

k + 1
ďmk−2 − δ∇g(y̌mk−1)−m−1/2δ3/4(H(tk)−H(tk−1))

)
−δ∇g(y̌mk )−m−1/2δ3/4(H(tk+1)−H(tk))

= −
k∑
i=1

(
k − 1

k + 2
· k − 2

k + 1
· · · · · i

i+ 3

)
(δ∇g(y̌mi ) +m−1/2δ3/4(H(ti+1)−H(ti)))

= −
k∑
i=1

(i+ 2)(i+ 1)i

(k + 2)(k + 1)k
(δ∇g(y̌mi ) +m−1/2δ3/4(H(ti+1)−H(ti))). (5.76)

Similarly, let dmk = xmk+1 − xmk ,

dm0 = −δ∇L̂m(x0; U∗m1) = −δ∇g(x0)− δ(∇L̂m(x0; U∗m1)−∇g(x0)),

and we have

dmk = −
k∑
i=1

(i+ 2)(i+ 1)i

(k + 2)(k + 1)k
δ∇L̂m(ymi ; U∗m(i+1)) (5.77)

= −
k∑
i=1

(i+ 2)(i+ 1)i

(k + 2)(k + 1)k

(
δ∇g(ymi ) + δ

(
∇L̂m(ymi ; U∗m(i+1))−∇g(ymi )

))
.

Set ci = (i+ 2)(i+ 1)i,

Rm(θ; U∗mk) = m1/2
(
∇L̂m(θ; U∗mk)−∇g(θ)

)
,
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and define càdlàg processes Gmδ (t) and Gδ(t) as follows:

Gmδ (t) =



0, 0 ≤ t < t1,

δ1/4Rm(x0; U∗m1), t1 ≤ t < t2,

δ1/4 1

ck

k∑
i=1

ciR
m(ymi ; U∗m(i+1)), tk+1 ≤ t < tk+2,

(5.78)

Gδ(t) =


0, 0 ≤ t < t1,

H(t1)−H(t0), t1 ≤ t < t2,

1

ck

k∑
i=1

ci(H(ti+1)−H(ti)), tk+1 ≤ t < tk+2.

(5.79)

By Assumption A4, Rm(θ; U∗mk) weakly converges to N(0,σ2(θ)) uniformly over θ as

m→∞. Note that H(ti+1)−H(ti) follows N(0,

∫ ti+1

ti

σ2(X(u))du), and Var(δ1/4Rm(ymi ;

U∗m(i+1))) is approximately equal to
∫ ti+1

ti
σ2(X(u))du. According to Lemma 35 below,

there exist G̃mδ (t) and H̃(t) =

∫ t

0
σ(X(u))dB̃(u) on some common probability spaces, such

that G̃mδ (t) and Gmδ (t) are identically distributed, G̃δ(t) is generated by H̃(t) in the same

manner as Gδ(t) by H(t) via scheme (5.79), and as δ → 0,m→∞,

max
t≤T
|G̃mδ (t)− G̃δ(t)| = op(1).

Using G̃mδ (t), we define associated sequences {R̃k} and {x̃mk , ỹmk } as follows:

R̃0 = δ−1/4G̃mδ (t1), x̃m0 = ỹm0 = x0,

x̃mk = ỹmk−1 − δ∇g(ỹmk−1)− δm−1/2R̃k−1, ỹ
m
k = x̃mk +

k − 1

k + 2
(x̃mk − x̃mk−1),

R̃k = δ−1/4G̃mδ (tk+1)− 1

ck

k−1∑
i=1

ciR̃i.

Since G̃mδ (t1), ..., G̃mδ (tk) have the same distribution as Gmδ (t1), ...Gmδ (tk), we easily conclude
that {x̃mk , ỹmk } are identically distributed as {xmk , ymk }, and d̃mk = x̃mk+1 − x̃mk satisfies

d̃m0 = −δ∇g(x0)−m−1/2δ3/4G̃mδ (t1), d̃mk = −
k∑
i=1

ci
ck
δ∇g(ỹmi )−m−1/2δ3/4G̃mδ (tk+1).

Similarly, we define {˜̌xmk , ˜̌ymk } by G̃δ(t), and set ˜̌dmk = ˜̌xmk+1 − ˜̌xmk , so that

˜̌dm0 = −δ∇g(x0)−m−1/2δ3/4G̃δ(t1), ˜̌dmk = −
k∑
i=1

ci
ck
δ∇g(˜̌ymi )−m−1/2δ3/4G̃δ(tk+1).
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Let ak = |x̃mk − ˜̌xmk |, bk = |d̃mk −
˜̌dmk |, Sk = b0 + · · ·+ bk, and Y = m−1/2δ3/4 max

t≤T
|G̃mδ (t)−

G̃δ(t)|. Then, we have b0 ≤ Y,

ak = |x̃mk−1 + d̃mk−1 − ˜̌xmk−1 −
˜̌dmk−1| ≤ ak−1 + bk−1 ≤ b0 + b1 + · · ·+ bk−1 = Sk−1,

|ỹmk − ˜̌ymk | =
∣∣∣∣x̃mk +

k − 1

k + 2
d̃k−1 − ˜̌xmk −

k − 1

k + 2
˜̌dk−1

∣∣∣∣ ≤ ak + bk−1 ≤ Sk−1 + bk−1,

bk ≤ Lδ
k∑
i=1

|ỹmi − ˜̌ymi |+ Y ≤ Lδ
k∑
i=1

(Si−1 + bi−1) + Y ≤ 2LδkSk−1 + Y ≤ Cδ1/2Sk−1 + Y.

Let b∗0 = Y, b∗k = Cδ1/2S∗k−1 + Y, where S∗k = b∗0 + . . . + b∗k. Then, by induction we easily
conclude that

b0 ≤ b∗0, bk ≤ Cδ1/2Sk−1 + Y ≤ Cδ1/2S∗k−1 + Y = b∗k, Sk ≤ S∗k .

Since b∗k+1 = Cδ1/2S∗k +Y leads to b∗k+1− b∗k = Cδ1/2b∗k for all k ≥ 0, we immediately obtain

the geometric sequence b∗k = (1 + Cδ1/2)kY and find its sum S∗k . Finally, we conclude that

max
k≤T/δ1/2

|x̃mk − ˜̌xmk | ≤ SbT/δ1/2c−1 ≤ S
∗
bT/δ1/2c−1

≤ T/δ1/2(1 + Cδ1/2)T/δ
1/2Y

≤ CY/δ1/2 = op(m
−1/2δ1/4).

Lemma 35 Given that Gmδ (t) and Gδ(t) are defined by (5.78) and (5.79), respectively, we

can show that there exist G̃mδ (t) and H̃(t) =

∫ t

0
σ(X(u))dB̃(u) on some common probability

spaces, such that G̃mδ (t) and Gmδ (t) are identically distributed, G̃δ(t) are generated by H̃(t)
in the same manner as Gδ(t) by H(t) via scheme (5.79), and as δ → 0,m→∞,

max
t≤T
|G̃mδ (t)− G̃δ(t)| = op(1).

Proof. Define a càdlàg process

Ǧmδ (t) =



0, 0 ≤ t < t1,

δ1/4Rm(x0; U∗m1), t1 ≤ t < t2,

δ1/4 1

ck

k∑
i=1

ciR
m(X(ti); U

∗
m(i+1)), tk+1 ≤ t < tk+2.

(5.80)

Note that the only change in (5.80) is to replace ymi in (5.78) by X(ti). Define G(t) =
1

t3

∫ t

0
u3σ(X(u))dB(u). We prove that Ǧmδ (t) weakly converges to G(t). Set Cδi = δ3/2ci =

titi+1ti+2, and for any fixed 0 = τ0 < τ1 < τ2 < · · · < τl ≤ T, let kδj = max(0, bτj/δ1/2c− 1).

Then, Cδ
kδj

= δ3/2kδj (k
δ
j + 1)(kδj + 2)→ τ3

j , as δ → 0. Using the definition of Ǧmδ (t), we have

Ǧmδ (τj) = δ1/4 1

Cδ
kδj

kδj∑
i=1

CδiRm(X(ti); U
∗
m(i+1)),
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Cδ
kδj+1

Ǧmδ (τj+1)− Cδ
kδj
Ǧmδ (τj) = δ1/4

kδj+1∑
i=kδj+1

CδiRm(X(ti); U
∗
m(i+1)).

The right-hand side of the above equation is the sum of independent random variables,
by Assumption A4, as m → ∞, δ → 0, Cδ

kδj+1
Ǧmδ (τj+1) − Cδ

kδj
Ǧmδ (τj) converges in distribu-

tion to a normal distribution with mean 0 and variance

∫ τj+1

τj

u6σ2(X(u))du. Because of

independence between consecutive differences, we can easily arrive at that(
Cδ
kδ1
Ǧmδ (τ1), Cδ

kδ2
Ǧmδ (τ2)− Cδ

kδ1
Ǧmδ (τ1), . . . , Cδ

kδl
Ǧmδ (τl)− Cδkδl−1

Ǧmδ (τl−1)
)

converges in distribution to(
τ3

1G(τ1), τ3
2G(τ2)− τ3

1G(τ1), . . . , τ3
l G(τl)− τ3

l−1(τl−1)
)
,

which immediately shows that
(
Cδ
kδ1
Ǧmδ (τ1), Cδ

kδ2
Ǧmδ (τ2), . . . , Cδ

kδl
Ǧmδ (τl)

)
converges in distri-

bution to
(
τ3

1G(τ1), τ3
2G(τ2), . . . , τ3

l G(τl)
)
. Since Cδ

kδj
→ τ3

j as δ → 0, we conclude that(
Ǧmδ (τ1), Ǧmδ (τ2), . . . , Ǧmδ (τl)

)
converges in distribution to (G(τ1), G(τ2), . . . , G(τl)) . Thus,

we prove the finite-dimensional distribution convergence of Ǧmδ (t).
We establish the tightness of Ǧmδ (t) by proving that for any 0 ≤ r ≤ s ≤ t ≤ T,

E{|Ǧmδ (t)− Ǧmδ (s)|2|Ǧmδ (s)− Ǧmδ (r)|2} ≤ C(t− r)2. (5.81)

To simplify some notation, we let Ri = Rm(X(ti); U
∗
m(i+1)). First, we show that for any

fixed 1 ≤ j < k < l,

E


∣∣∣∣∣ 1

ck

k∑
i=1

ciRi −
1

cj

j∑
i=1

ciRi

∣∣∣∣∣
2 ∣∣∣∣∣ 1

cl

l∑
i=1

ciRi −
1

ck

k∑
i=1

ciRi

∣∣∣∣∣
2
 ≤ C(l − j)2, (5.82)

where C is a generic constant free of the choice of (j, k, l).
Lemma 30 implies that E(|Ri|2) and E(|Ri|4) are uniformly bounded over 1 ≤ i ≤

Tδ−1/2. Since R0, R1, R2, . . . are independent with mean 0, we have

E

∣∣∣∣∣
k∑
i=1

ciRi

∣∣∣∣∣
2

=
k∑
i=1

c2
iE|Ri|2 ≤ Ckc2

k,

E

∣∣∣∣∣
k∑
i=1

ciRi

∣∣∣∣∣
4

≤
k∑
i=1

c4
iE|Ri|4 +

∑
i<j

6c2
i c

2
jE|Ri|2E|Rj |2 ≤ Ck2c4

k,

where we recall the convention that C denotes any generic constant free of (δ,m, n) and
(i, j, k, l), and its value may change from appearance to appearance.

Let

D1 =

j∑
i=1

ciRi, D2 =
k∑

i=j+1

ciRi, D3 =
l∑

i=k+1

ciRi.
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Then, D1, D2, and D3 are independent, and similarly we can show that

E|D2|2 ≤ C(k − j)c2
k, E|D2|4 ≤ C(k − j)2c4

k,

E|D3|2 ≤ C(l − k)c2
l , E|D3|4 ≤ C(l − k)2c4

l ,

(ck − cj)2

c2
k

≤ ck − cj
ck

= 1− j(j + 1)(j + 2)

k(k + 1)(k + 2)
≤ 1− j3

k3
≤ 3

(
k − j
k

)
.

Therefore, we establish (5.82) as follows:

E


∣∣∣∣∣ 1

ck

k∑
i=1

ciRi −
1

cj

j∑
i=1

ciRi

∣∣∣∣∣
2 ∣∣∣∣∣ 1

cl

l∑
i=1

ciRi −
1

ck

k∑
i=1

ciRi

∣∣∣∣∣
2


= E

{∣∣∣∣D1 +D2

ck
− D1

cj

∣∣∣∣2 ∣∣∣∣D1 +D2 +D3

cl
− D1 +D2

ck

∣∣∣∣2
}

= E

{∣∣∣∣D2

ck
− ck − cj

ckcj
D1

∣∣∣∣2 ∣∣∣∣D3

cl
− cl − ck

clck
(D1 +D2)

∣∣∣∣2
}

≤ C · E

{(
|D2|2

c2
k

+
(ck − cj)2

c2
kc

2
j

|D1|2
)(
|D3|2

c2
l

+
(cl − ck)2

c2
l c

2
k

(|D1|2 + |D2|2)

)}

≤ 9C · E

{(
|D2|2

c2
k

+
k − j
kc2
j

|D1|2
)(
|D3|2

c2
l

+
l − k
lc2
k

(|D1|2 + |D2|2)

)}

≤ C

(
(k − j)c2

k(l − k)c2
l

c2
kc

2
l

+
(k − j)c2

k(l − k)jc2
j

c2
klc

2
k

+
(l − k)(k − j)2c4

k

lc4
k

)

+C

(
(k − j)jc2

j (l − k)c2
l

kc2jc
2
l

+
(k − j)(l − k)j2c4

j

kc2j lc
2
k

+
(k − j)jc2

j (l − k)(k − j)c2
k

kc2
j lc

2
k

)
≤ C(l − j)2.

Second, we prove

E


∣∣∣∣∣ 1

ck

k∑
i=1

ciRi −
1

cj

j∑
i=1

ciRi

∣∣∣∣∣
2 ∣∣∣∣∣ 1

cj

j∑
i=1

ciRi

∣∣∣∣∣
2
 ≤ Ck2. (5.83)

Indeed, similar direct calculations lead to
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E


∣∣∣∣∣ 1

ck

k∑
i=1

ciRi −
1

cj

j∑
i=1

ciRi

∣∣∣∣∣
2 ∣∣∣∣∣ 1

cj

j∑
i=1

ciRi

∣∣∣∣∣
2


= E

{∣∣∣∣D1 +D2

ck
− D1

cj

∣∣∣∣2 ∣∣∣∣D1

cj

∣∣∣∣2
}

≤ C · E

{(
|D2|2

c2
k

+
(ck − cj)2

c2
kc

2
j

|D1|2
)
|D1|2

c2
j

}

≤ C

(
(k − j)c2

kjc
2
j

c2
kc

2
j

+
j2c4

j

c4
j

)
≤ Ck2.

Third, for any 0 ≤ r ≤ s ≤ t ≤ T , we may choose (j, k, l) such that tj+1 ≤ r < tj+2, tk+1 ≤
s < tk+2, tl+1 ≤ t < tl+2. If j = k or k = l, then r = s or s = t, and (5.81) is obvious.
Assume that j < k < l, and we prove (5.81) for each scenario. If j = −1 and k = 0, then

E
{
|Ǧmδ (t)− Ǧmδ (s)|2|Ǧmδ (s)− Ǧmδ (r)|2

}
= δE


∣∣∣∣∣ 1

cl

l∑
i=1

ciRi −R0

∣∣∣∣∣
2

|R0|2


≤ Cδl2 = C(tl+1 − t1)2 ≤ C(t− r)2.

If j = −1 and k ≥ 1, then

E
{
|Ǧmδ (t)− Ǧmδ (s)|2|Ǧmδ (s)− Ǧmδ (r)|2

}
= δE


∣∣∣∣∣ 1

cl

l∑
i=1

ciRi −
1

ck

k∑
i=1

ciRi

∣∣∣∣∣
2 ∣∣∣∣∣ 1

ck

k∑
i=1

ciRi

∣∣∣∣∣
2


≤ Cδl2 = C(tl+1 − t1)2 ≤ C(t− r)2.

If j = 0, then

E
{
|Ǧmδ (t)− Ǧmδ (s)|2|Ǧmδ (s)− Ǧmδ (r)|2

}
= δE


∣∣∣∣∣ 1

cl

l∑
i=1

ciRi −
1

ck

k∑
i=1

ciRi

∣∣∣∣∣
2 ∣∣∣∣∣ 1

ck

k∑
i=1

ciRi −R0

∣∣∣∣∣
2


≤ Cδl2 ≤ 4C(tl+1 − t2)2 ≤ 4C(t− r)2.

If j ≥ 1, then

E
{
|Ǧmδ (t)− Ǧmδ (s)|2|Ǧmδ (s)− Ǧmδ (r)|2

}
= δE


∣∣∣∣∣ 1

cl

l∑
i=1

ciRi −
1

ck

k∑
i=1

ciRi

∣∣∣∣∣
2 ∣∣∣∣∣ 1

ck

k∑
i=1

ciRi −
1

cj

j∑
i=1

ciRi

∣∣∣∣∣
2


≤ Cδ(l − j)2 ≤ 4C(tl+1 − tj+2)2 ≤ 4C(t− r)2.
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Now, with the established finite-dimensional distribution convergence and tightness for
Ǧmδ (t), we conclude that Ǧmδ (t) weakly converges to G(t).

Note that the only difference between Ǧmδ (t) and Gmδ (t) is ymi and X(ti) used in
Rm(·; U∗mi). By Lemmas 31 and 32, we immediately show the finite-dimensional distri-
bution convergence of Gmδ (t) to G(t).

The same argument for deriving the tightness of Ǧmδ (t) can be used to establish the
tightness of Gmδ (t) by proving that for any 0 ≤ r ≤ s ≤ t ≤ T,

E{|Gmδ (t)−Gmδ (s)|2|Gmδ (s)−Gmδ (r)|2} ≤ C(t− r)2. (5.84)

Again, for simplicity, we let Rk = Rm(ymk ; U∗m(k+1)), and we show that for any fixed 1 ≤
j < k < l,

E


∣∣∣∣∣ 1

ck

k∑
i=1

ciRi −
1

cj

j∑
i=1

ciRi

∣∣∣∣∣
2 ∣∣∣∣∣ 1

cl

l∑
i=1

ciRi −
1

ck

k∑
i=1

ciRi

∣∣∣∣∣
2
 ≤ C(l − j)2. (5.85)

Indeed, recall that ci = i(i + 1)(i + 2), and define Sk =
∑k

i=1 ciR
m
i . Then, there exists

a constant C1 = γ2C, γ > 1, such that E|Sk|4 ≤ C1k
2c4
k, which we prove by induction.

Lemma 33 implies that it holds for k = 1. Assume that it holds for k − 1; then, using
Lemma 33, we obtain

E|Sk|4 =E

[(
k∑
i=1

ci(R
m
i )′

)(
k∑
i=1

ciR
m
i

)(
k∑
i=1

ci(R
m
i )′

)(
k∑
i=1

ciR
m
i

)]

≤E|Sk−1|4 + c4
kE|Rmk |4 + 4

k−1∑
i=1

cic
3
kE(|Rmi | · |Rmk |3) + 6c2

kE(|Sk−1|2|Rmk |2)

+ 4
∑
i,j,l<k

cicjclckE((Rmi )′Rmj (Rml )′Rmk )

≤C1(k − 1)2c4
k + c4

kC + 4(k − 1)c4
kC + 6c2

k

√
C1(k − 1)c2

k

√
C

≤c4
k(C1(k − 1)2 + (4 + 6γ)Ck)

≤c4
k(C1(k − 1)2 + γ2Ck)

≤C1k
2c4
k,

where we take γ = 7 so that 4 + 6γ < γ2, and we employ the Cauchy-Schwarz inequality
multiple times. Moreover, in the above derivation, we use the fact that

E(|Rmi | · |Rmk |3) ≤ (E|Rmi |4)
1
4 · (E|Rmk |4)

3
4 ≤ C,

E(|Sk−1|2|Rmk |2) ≤
√
E|Sk−1|4 · E|Rmk |4 ≤

√
C1(k − 1)c2

k

√
C

and the zero conditional mean for i, j, l < k,

E((Rmi )′Rmj (Rml )′Rmk ) = E[E[(Rmi )′Rmj (Rml )′Rmk |Ftk ]] = E[(Rmi )′Rmj (Rml )′E[Rmk |Ftk ]] = 0.
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Note that all we have used in proving E|Sk|4 ≤ C1k
2c4
k are the above zero conditional mean

and E|Rmk |4 ≤ C implied by Lemma 33. Applying the argument to Sk − Sj , we obtain
E|Sk − Sj |4 ≤ C1(k − j)2c4

k. Since

(ck − cj)2

c2
k

≤ ck − cj
ck

= 1− j(j + 1)(j + 2)

k(k + 1)(k + 2)
≤ 1− j3

k3
≤ 3

(
k − j
k

)
,

direct calculations show

E

∣∣∣∣Skck − Sj
cj

∣∣∣∣4 = E

∣∣∣∣Sk − Sjck
− ck − cj

cjck
Sj

∣∣∣∣4
≤ 8

(
E|Sk − Sj |4

c4
k

+
E|Sj |4(ck − cj)4

c4
jc

4
k

)

≤ 8

(
C1(k − j)2 +

9C1j
2(k − j)2

k2

)
≤ C2(k − j)2.

Hence, for j < k < l, we conclude that

E

[∣∣∣∣Slcl − Sk
ck

∣∣∣∣2 ∣∣∣∣Skck − Sj
cj

∣∣∣∣2
]
≤

(
E

∣∣∣∣Slcl − Sk
ck

∣∣∣∣4
) 1

2
(
E

∣∣∣∣Skck − Sj
cj

∣∣∣∣4
) 1

2

≤ C2(l − j)2,

which proves (5.85). The remaining arguemnts for establishing (5.84) are easy and pretty
much the same as those for establishing (5.81).

The finite-dimensional distribution convergence and (5.84) show that Gmδ (t) has the
same weak convergence limit, G(t), as Ǧmδ (t). Skorokhod’s representation theorem indicates
that there exist G̃mδ (t) and G̃(t) on some common probability spaces, such that G̃mδ (t) and
Gmδ (t) are identically distributed, G̃(t) and G(t) are identically distributed, and as δ → 0
and m→∞, under the metric d in D[0, T ],

d(G̃mδ (t), G̃(t)) = op(1).

By Lemma 37 below, we obtain that if we further prove the tightness of G̃(t), then
the above-mentioned op(1) result under the metric in D[0, T ] can be strengthened to the
maximum norm—that is,

max
t≤T
|G̃mδ (t)− G̃(t)| = op(1). (5.86)

We must establish the tightness of G̃(t). Because G(t) and G̃(t) are identically distributed,
if we show that for any 0 ≤ r ≤ s ≤ t ≤ T ,

E
{
|G(t)−G(s)|2|G(s)−G(r)|2

}
≤ C(t− r)2. (5.87)

Then, G̃ also satisfies the above inequality and both G(t) and G̃(t) are tight.
We prove (5.87). If r > 0, let

D1 =

∫ r

0
u3σ(X(u))dB(u), D2 =

∫ s

r
u3σ(X(u))dB(u), D3 =

∫ t

s
u3σ(X(u))dB(u).
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By Assumption A3, we have

‖σ2(X(t))‖ ≤ ‖σ2(θ0)‖+ L|X(t)− θ0| ≤ C.

D2 follows a normal distribution with mean 0 and variance Σ =

∫ s

r
u6σ2(X(u))du, and

‖Σ‖ ≤
∫ s

r
u6‖σ2(X(u))‖du ≤ C(s− r)s6.

Taking eigen-matrix decomposition Σ = Γ′ΛΓ, we obtain that ΓD2 follows a normal distri-
bution with mean 0 and variance matrix Λ, and

E|D2|2 = E|ΓD2|2 = tr(Λ) ≤ C(s− r)s6,

E|D2|4 ≤ CE|ΓD2|4 ≤ Ctr(Λ2) ≤ C(s− r)2s12.

Similarly, we have
E|D1|2 ≤ Cr7, E|D1|4 ≤ Cr14,

E|D3|2 ≤ C(t− s)t6, E|D3|4 ≤ C(t− s)2t12.

Putting them together, we arrive at

E
{
|G(s)−G(r)|2|G(t)−G(s)|2

}
= E

{∣∣∣∣D1 +D2

s3
− D1

r3

∣∣∣∣2 ∣∣∣∣D1 +D2 +D3

t3
− D1 +D2

s3

∣∣∣∣2
}

≤ C · E
{(
|D2|2

s6
+

(s3 − r3)2

s6r6
|D1|2

)(
|D3|2

t6
+

(t3 − s3)2

t6s6
(|D1|2 + |D2|2)

)}
≤ 9C · E

{(
|D2|2

s6
+
s− r
sr6
|D1|2

)(
|D3|2

t6
+
t− s
ts6

(|D1|2 + |D2|2)

)}
≤ C

(
(s− r)s6(t− s)t6

s6t6
+

(s− r)s6(t− s)r7

ts12
+

(t− s)(s− r)2s12

ts12

)
+C

(
(s− r)r7(t− s)t6

sr6t6
+

(s− r)(t− s)r14

sr6ts6
+

(s− r)r7(t− s)(s− r)s6

sr6ts6

)
≤ C(t− r)2.

In addition, similar arguments show that for 0 < r < s,

E
{
|G(s)−G(r)|2|G(r)|2

}
= E

{∣∣∣∣D1 +D2

s3
− D1

r3

∣∣∣∣2 ∣∣∣∣D1

r3

∣∣∣∣
}

≤ C · E
{(
|D2|2

s6
+
s− r
sr6
|D1|2

)
|D1|2

r6

}
≤ C

(
(s− r)s6r7

s6r6
+

(s− r)r14

sr12

)
≤ Cs2.
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With H̃(t) =

∫ t

0
σ(X(u))dB̃(u), G̃δ(t) generated by H̃(t) via scheme (5.79), G̃(t) =

1

t3

∫ t

0
u3dH̃(u). Lemma 36 below indicates that as δ → 0,

max
t≤T
|G̃δ(t)− G̃(t)| = op(1).

Finally, combining the above result with (5.86), we conclude

max
t≤T
|G̃mδ (t)− G̃δ(t)| ≤ max

t≤T
|G̃mδ (t)− G̃(t)|+ max

t≤T
|G̃δ(t)− G̃(t)| = op(1).

Lemma 36 Given Brownian motion B(t), we define G(t) = t−3
∫ t

0 u
3σ(X(u))dB(u) and

Gδ(t) by (5.79), as in the proof of Lemma 35. Then, we have

max
t|leqT

|Gδ(t)−G(t)| = op(1).

Proof. Denote by Σk the variance of Gδ(tk)−G(tk). Then

Gδ(t1)−G(t1) =
1

t31

∫ t1

0
(t31 − u3)σ(X(u))dB(u),

Σ1 =
1

t61

∫ t1

0
(t31 − u3)2σ2(X(u))du,

‖Σ1‖ ≤
Ct71
t61
≤ Cδ1/2.

Let Cδi = titi+1ti+2. We have for k ≥ 1,

Gδ(tk+1)−G(tk+1) =
1

Cδkt
3
k+1

k∑
i=0

∫ ti+1

ti

(Cδi t
3
k+1 − Cδku3)σ(X(u))dB(u),

Σk+1 =
1

t2kt
2
k+1t

2
k+2t

6
k+1

k∑
i=0

∫ ti+1

ti

(titi+1ti+2t
3
k+1 − tktk+1tk+2u

3)2σ2(X(u))du.

Since |titi+1ti+2t
3
k+1 − tktk+1tk+2u

3| ≤ Ct5k+1δ
1/2, tktk+2 ≥ t2k+1/2, we obtain

‖Σk+1‖ ≤
C

t12
k+1

k∑
i=0

∫ ti+1

ti

t10
k+1δdu ≤

Cδ

tk+1
≤ Cδ1/2.

In other words, ‖Σk‖ ≤ Cδ1/2 uniformly over k ≤ Tδ−1/2. As both Gδ(t) and G(t) are
normally distributed, we get

E|Gδ(tk)−G(tk)|4 ≤ Cδ,
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and, hence, for any η > 0, we have

P (max
k≤kT

|Gδ(tk)−G(tk)| > η) ≤
kT∑
k=0

P (|Gδ(tk)−G(tk)| > η)

≤
kT∑
k=0

E|Gδ(tk)−G(tk)|4

η4
≤

kT∑
k=0

Cδ

η4
≤ CTδ1/2

η4
→ 0.

Finally, the tightness of G(t) implies that

max
s,t≤T,|t−s|≤δ1/2

|G(t)−G(s)| = op(1),

and, thus, we conclude that

max
t≤T
|Gδ(t)−G(t)| ≤ max

k≤kT
|Gδ(tk)−G(tk)|+ max

k≤kT ,tk≤t<tk+1

|G(t)−G(tk)| = op(1).

The following lemma is a known result, but we state it explicitly in our context.

Lemma 37 Let D[0, T ] be the space of all càdlàg functions on [0, T ], equipped with metric
d(X(t), Y (t)) given by

d(X(t), Y (t)) = inf
{
δ : ∃one to one map Γ on [0, T ]such that supt≤T |Γ(t)− t| ≤ δ,

supt≤T |X(Γ(t))− Y (t)| ≤ δ
}
.

For processes Xn(t) and X(t) in D[0, T ], assume that X(t) is tight, and as n → ∞,
d(Xn(t), X(t)) = op(1) under the metric in D[0, T ]. Then, we have

sup
t≤T
|Xn(t)−X(t)| = op(1).

Proof. For any ε > 0, η > 0, by the tightness of X(t), there exists δ < η/2 such that

P

(
sup

s,t≤T,|t−s|≤δ
|X(t)−X(s)| > η/2

)
< ε/2.

Let

An =

{
sup

s,t≤T,|t−s|≤δ
|X(t)−X(s)| ≤ η/2

}
∩ {d(Xn(t), X(t)) < δ} ,

Bn =

{
sup
t≤T
|Xn(t)−X(t)| ≤ η

}
.

Then, An ⊆ Bn. Indeed, if d(Xn(t), X(t)) < δ, then there exists a one-to-one map Γ on
[0, T ], such that supt≤T |Γ(t) − t| ≤ δ and supt≤T |Xn(t) − X(Γ(t))| ≤ δ. If we also have

sup
|t−s|≤δ

|X(t)−X(s)| ≤ η/2, then

sup
t≤T
|X(Γ(t))−X(t)| ≤ η/2,
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sup
t≤T
|Xn(t)−X(t)| ≤ sup

t≤T
|Xn(t)−X(Γ(t))|+ sup

t≤T
|X(Γ(t))−X(t)| ≤ δ + η/2 ≤ η.

Hence, we have P (BC
n ) ≤ P (ACn ), and

P

(
sup
t≤T
|Xn(t)−X(t)| > η

)
≤P

(
sup

s,t≤T,|t−s|≤δ
|X(t)−X(s)| > η/2

)
+P (d(Xn(t), X(t)) ≥ δ).

Since d(Xn(t), X(t)) = op(1), ∃N , for n > N , P (d(Xn(t), X(t)) ≥ δ) < ε/2, then

P

(
sup
t≤T
|Xn(t)−X(t)| > η

)
< ε/2 + ε/2 = ε.

This completes the proof.

Lemma 38
max

k≤Tδ−1/2
|x̌mk −Xm

δ (tk)| = Op(δ
1/2| log δ|),

where x̌mk and Xm
δ are defined by (5.73) and (4.35), respectively.

Proof. The same proof argument of Lemma 23 can be easily used to show

Ψa = sup
0≤s<v≤T

∣∣∣∣ 1

(v − s)a

∫ v

s
σ(X(u))dB(u)

∣∣∣∣ is a.s. finite. (5.88)

By Lemma 27, we have

max
t∈[0,T ]

|Ẋm
δ (t)| ≤ max

t∈[0,T ]
|Ẋm

δ (t)− Ẋ(t)|+ max
t∈[0,T ]

|Ẋ(t)| = Op(1),

max
t∈[0,T ]

|Xm
δ (t)| ≤ max

t∈[0,T ]
|Xm

δ (t)−X(t)|+ max
t∈[0,T ]

|X(t)| = Op(1),

max
t∈[0,T ]

|∇g(Xm
δ (t))| ≤ |∇g(θ0)|+ L · max

t∈[0,T ]
|Xm

δ (t)− θ0| = Op(1).

Let

Υm
δ = max

{
Ψa, max

t∈[0,T ]
|Ẋm

δ (t)|, max
t∈[0,T ]

|Xm
δ (t)|, max

t∈[0,T ]
|∇g(Xm

δ (t))|
}
.

Then, Υm
δ = Op(1). For simplicity, we continue to use notation Υm

δ to denote it after
multiplying and adding some generic constant C or adding random variable Ψa in (5.88),
as long as it is Op(1).

For a fixed a < 1/2, set ξ =
√

(a+ 1)(a+ 2)/2L. By Lemma 26, we have for t < ξ,

Ma(0, t;X
m
δ ) ≤ 2(t1−a|∇g(x0)|+ δ1/4m−1/2Υm

δ ),

|Ẋm
δ (t)| ≤ C(t+ taδ1/4m−1/2Υm

δ ),

and for s > 0 and t− s < ξ,

Ma(s, t;X
m
δ ) ≤

2

{
(t− s)1−a

(
3

s
+
L(t− s)

2

)
|Ẋm

δ (s)|+ (t− s)1−a|∇g(Xm
δ (s))|+ δ1/4m−1/2Υm

δ

}
.
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If further t− s ≤ s, then for s < ξ,

(t− s)1−a
(

3

s
+
L(t− s)

2

)
|Ẋm

δ (s)|

≤ C(t− s)1−a
(

3

s
+
L(t− s)

2

)
(s+ saδ1/4m−1/2Υm

δ )

≤ C(t− s)1−a
(

3 +
L(t− s)s

2

)
+ C(t− s)1−a

(
3sa−1 +

L(t− s)sa

2

)
δ1/4m−1/2Υm

δ

≤ C(t− s)1−a + C

[
3

(
t− s
s

)1−a
+
L(t− s)2−asa

2

]
δ1/4m−1/2Υm

δ

≤ C(t− s)1−a + Cδ1/4m−1/2Υm
δ ,

and for s ≥ ξ,

(t− s)1−a
(

3

s
+
L(t− s)

2

)
|Ẋm

δ (s)| ≤ C(t− s)1−aΥm
δ .

Putting them together, we conclude that

|Ẋm
δ (t)− Ẋm

δ (s)| ≤ C(t− s)(Υm
δ + 1) + C(t− s)aδ1/4m−1/2Υm

δ

≤ C(Υm
δ + 1)

[
(t− s) + (t− s)aδ1/4m−1/2

]
= Υm

δ

[
(t− s) + (t− s)aδ1/4m−1/2

]
,

where we use the notation convention noted early to write Υm
δ for C(Υm

δ + 1).
The theorem assumption implies that δa/2−1/4m−1/2 < C0 for some generic constant

C0. For δ1/2 < ξ, if t− s ≤ δ1/2 and t− s ≤ s, we obtain

|Ẋm
δ (t)− Ẋm

δ (s)| ≤
[
δ1/2 + δa/2δ1/4m−1/2

]
Υm
δ ≤ δ1/2(1 + C0)Υm

δ ≤ δ1/2Υm
δ ,

and if t ≤ δ1/2,

|Ẋm
δ (t)| ≤

[
δ1/2 + δa/2δ1/4m−1/2

]
Υm
δ ≤ δ1/2(1 + C0)Υm

δ ≤ δ1/2Υm
δ .

Recall that tk = kδ1/2 for any k ≥ 1, and tk+1 − tk = δ1/2 ≤ tk. Then, for any
t ∈ [tk, tk+1], we have

|Ẋm
δ (t)− Ẋm

δ (tk)| ≤ δ1/2Υm
δ , |Ẋm

δ (tk+1)− Ẋm
δ (t)| ≤ δ1/2Υm

δ ,

and, thus, we obtain

|Ẋm
δ (tk)| ≤ |Ẋm

δ (t1)|+ |Ẋm
δ (t2)− Ẋm

δ (t1)|+ · · ·+ |Ẋm
δ (tk)− Ẋm

δ (tk−1)| ≤ kδ1/2Υm
δ = tkΥ

m
δ ,

|Xm
δ (tk+1)−Xm

δ (tk)| ≤
∫ tk+1

tk

|Ẋm
δ (t)|dt ≤ δ1/2Υm

δ .

Define žm0 = 0, žmk = (x̌mk − x̌mk−1)/δ1/2. Using the definition of x̌mk and y̌mk in (5.73), we
obtain

žm1 = (x̌m1 − x0)/δ1/2 = −δ1/2∇g(x0)−m−1/2δ1/4(H(t1)−H(t0)).
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Then, using (5.88), we have

|žm1 | ≤ δ1/2|∇g(x0)|+m−1/2δ1/4δa/2Ψa ≤ δ1/2(|∇g(x0)|+ C0Ψa).

Again, we use the notation convention to write Υm
δ for Υm

δ + |∇g(x0)| + C0Ψa (which is
still Op(1)). Using the above result, the notation convention and the definition of x̌mk and
y̌mk in (5.73), we obtain

|x̌m1 − x0| ≤ δ1/2δ1/2Υm
δ = δΥm

δ , |Xm
δ (t1)− x0| ≤

∫ t1

0
|Ẋm

δ (t)|dt ≤ δΥm
δ .

Let ak = |x̌mk −Xm
δ (tk)|. Then, a0 = 0, a1 ≤ 2δΥm

δ . For k ≥ 2,

Xm
δ (tk) = Xm

δ (tk−1) +

∫ tk

tk−1

Ẋm
δ (t)dt

= Xm
δ (tk−1) + δ1/2Ẋm

δ (tk) +

∫ tk

tk−1

(Ẋm
δ (t)− Ẋm

δ (tk))dt.

Set Zmδ (t) = Ẋm
δ (t), bk = |žmk − Zmδ (tk)|. Then, b0 = 0, b1 ≤ 2δ1/2Υm

δ . Combining above
equality with the definition of žmk (i.e. x̌mk = x̌mk−1 + δ1/2žmk ), we conclude that

ak = |x̌mk −Xm
δ (tk)|

≤ |x̌mk−1 −Xm
δ (tk−1)|+ δ1/2|žmk − Zmδ (tk)|+

∫ tk

tk−1

|Ẋm
δ (tk)− Ẋm

δ (t))|dt

≤ ak−1 + δ1/2bk + δΥm
δ

≤ a1 + δ1/2(b2 + · · ·+ bk) + (k − 1)δΥm
δ

≤ δ1/2Sk + kδΥm
δ , (5.89)

where Sk = b1 + · · ·+ bk. Note that Zmδ (t) = Ẋm
δ (t) obeys

dZmδ (t) = −3

t
Zmδ (t)dt−∇g(Xm

δ (t))dt−m−1/2δ1/4dH(t),

and, thus, we arrive at

Zmδ (tk+1) = Zmδ (tk)−
∫ tk+1

tk

3

t
Zmδ (t)dt−

∫ tk+1

tk

∇g(Xm
δ (t))dt

−m−1/2δ1/4(H(tk+1)−H(tk))

= Zmδ (tk)−
3δ1/2

tk
Zmδ (tk)−

∫ tk+1

tk

[
3

t
Zmδ (t)dt− 3

tk
Zmδ (tk)

]
dt− δ1/2∇g(Xm

δ (tk))

−
∫ tk+1

tk

[∇g(Xm
δ (t))−∇g(Xm

δ (tk))]dt−m−1/2δ1/4(H(tk+1)−H(tk)). (5.90)
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For k ≥ 1, we have∣∣∣∣∫ tk+1

tk

[
3

t
Zmδ (t)− 3

tk
Zmδ (tk)

]
dt

∣∣∣∣
≤

∫ tk+1

tk

∣∣∣∣3t [Zmδ (t)− Zmδ (tk)]

∣∣∣∣ du+

∫ tk+1

tk

∣∣∣∣(3

t
− 3

tk

)
Zmδ (tk)

∣∣∣∣ dt
≤

3δΥm
δ

tk
+

3(tk+1 − tk)2

tktk+1
tkΥ

m
δ ≤ 6δ1/2k−1Υm

δ ,

and ∣∣∣∣∫ tk+1

tk

[∇g(Xm
δ (t))−∇g(Xm

δ (tk))]du

∣∣∣∣ ≤ L∫ tk+1

tk

|Xm
δ (t)−Xm

δ (tk)|du ≤ LδΥm
δ .

Recall (5.76) and note that žmk = ďmk−1/δ
1/2; then, we have

žmk+1 =
k − 1

k + 2
žmk − δ1/2∇g(y̌mk )−m−1/2δ1/4(H(tk+1)−H(tk)).

Using the above equality and (5.90), we arrive at

bk+1 = |žmk+1 − Zmδ (tk+1)| ≤
(

1− 3

k + 2

)
|žmk − Zmδ (tk)|+

6

k(k + 2)
|Zmδ (tk)|

+

∣∣∣∣∫ tk+1

tk

[
3

t
Zmδ (t)dt− 3

tk
Zmδ (tk)

]
dt

∣∣∣∣+ δ1/2|∇g(Xm
δ (tk))−∇g(y̌mk )|∣∣∣∣∫ tk+1

tk

[∇g(Xm
δ (t))−∇g(Xm

δ (tk))]dt

∣∣∣∣
≤ bk + 12δ1/2k−1Υm

δ + Lδ1/2

∣∣∣∣Xm
δ (tk)− x̌mk −

k − 1

k + 2
δ1/2žmk

∣∣∣∣+ LδΥm
δ

≤ bk + 12δ1/2k−1Υm
δ + Lδ1/2

(
ak + δ1/2(|Zmδ (tk)|+ |žmk − Zmδ (tk)|)

)
+ LδΥm

δ

≤ bk + 12δ1/2k−1Υm
δ + Lδ1/2(δ1/2Sk + kδΥm

δ + δ1/2(Υm
δ + bk)) + LδΥm

δ

≤ bk + CδSk + Cδ1/2k−1Υm
δ ,

where we use the fact δ ≤ Tδ1/2k−1.

Let b′1 = b1, b′k+1 = b′k + CδS′k + Cδ1/2k−1Υm
δ , where S′k = b′1 + b′2 + ...+ b′k. Then, we

prove by induction that bk ≤ b′k. Indeed, if bj ≤ b′j for j = 1, ..., k, then Sk ≤ S′k,

bk+1 ≤ bk + CδSk + Cδ1/2k−1Υm
δ ≤ b′k + CδS′k + Cδ1/2k−1Υm

δ = b′k+1.

Next, since CδS′k + Cδ1/2k−1Υm
δ ≥ 0, and {b′k} is non-decreasing, we obtain S′k ≤ kb′k,

b′k+1 ≤ b′k + Cδkb′k + Cδ1/2k−1Υm
δ .
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Similarly, let b∗1 = b′1, b∗k+1 = b∗k + Cδkb∗k + Cδ1/2k−1Υm
δ . The same argument leads to

b′k ≤ b∗k. It is easy to derive from the definition that

b∗k+1 = (1 + Cδk)b∗k + Cδ1/2k−1Υm
δ

= (1 + Cδk)((1 + Cδ(k − 1))b∗k−1 + Cδ1/2(k − 1)−1Υm
δ ) + Cδ1/2k−1Υm

δ

= · · ·

≤ (1 + Cδk)k

b∗1 + Cδ1/2Υm
δ

k∑
j=1

j−1


≤ (1 + Cδk)k

(
δ1/2Υm

δ + Cδ1/2Υm
δ (1 + log(k))

)
.

Let kT = bT/δ1/2c. Then, using (5.89) and the above bound result, we conclude that

max
k≤kT

|x̌mk −Xm
δ (tk)| = max

k≤kT
ak ≤ δ1/2S∗kT + kT δΥ

m
δ

≤ δ1/2kT b
∗
kT

+ Tδ1/2Υm
δ

≤ (1 + CδT/δ1/2)T/δ
1/2
Cδ1/2Υm

δ (1 + log(T/δ1/2)) + Tδ1/2Υm
δ

≤ CTeCT 2
δ1/2Υm

δ (1 + T + | log δ|/2) + Tδ1/2Υm
δ

= Op(δ
1/2| log δ|).

Proof of Theorem 9 As in Lemma 34, we realize xmk , B(t), H(t), x̌mk , and Xm
δ (t)

[defined by B(t) via (4.35)] on some common probability spaces and consider their versions
x̃mk , B̃(t), H̃(t), ˜̌xmk , and X̃m

δ (t) on the probability spaces. An application of Lemma 38
leads to

max
k≤Tδ−1/2

|˜̌xmk − X̃m
δ (tk)| = OP (δ1/2| log δ|).

Combining the above result with Lemma 34, we obtain

max
k≤T/δ1/2

|x̃mk − X̃m
δ (tk)| = op(m

−1/2δ1/4) +OP (δ1/2| log δ|).

For process Xm
δ (t), we have shown in the proof of Lemma 38 that

max
t−s≤δ1/2

|Xm
δ (t)−Xm

δ (s)| ≤ δ1/2Υm
δ = Op(δ

1/2),

and thus the same result also holds for X̃m
δ (t). Therefore, we conclude that

max
t≤T
|x̃mδ (t)− X̃m

δ (t)| = op(m
−1/2δ1/4) +Op(δ

1/2| log δ|),

where we use the fact that xmδ (t) = xmk for tk ≤ t < tk+1. With the theorem condition
m1/2δ1/4| log δ| → 0, we immediately arrive at

m1/2δ−1/4 max
t≤T
|x̃mδ (t)− X̃m

δ (t)| = op(1),

and Theorem 8 indicates that m1/2δ−1/4[xmδ (t)−X(t)] weakly converges to V (t).

Remark 16 The proof arguments in fact also establish

max
t≤T
|ymδ (t)−X(t)| = Op(m

−1/2δ1/4 + δ1/2| log δ|).
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5.8 Proof of Theorem 10

Part (i) can be proved by using the same argument for showing Theorem 3. First, we show
parts (ii) and (iii) in one dimension. From solution (4.25) of SDE (4.24) we find that V (t)
follows a normal distribution with mean zero and variance

Γ(t) =

∫ t

0
exp

[
−2

∫ t

u
IHg(X(v))dv

]
σ2(X(u))du.

It is easy to check that Γ(t) satisfies ODE

Γ̇(t) + 2[IHg(X(t))]Γ(t)− σ2(X(t)) = 0,

and show that the limit Γ(∞) of Γ(t) as t→∞ is equal to

Γ(∞) = σ2(X(∞))[2IHg(X(∞))]−1.

Thus, as t → ∞, V (t) converges in distribution to V (∞) = [Γ(∞)]1/2Z, where Z is a
standard normal random variable.

Denote by P (θ; t) the probability distribution of Xm
δ (t) at time t. Then, from the

Fokker-Planck equation, we have

∂P (θ; t)

∂t
= ∇

[
−∇g(θ)P (θ; t)− δ

2m
σ2(X(t))∇P (θ; t)

]
,

and its stationary distribution P (θ) satisfies

0 = ∇
[
−∇g(θ)P (θ)− δ

2m
σ2(X(∞))∇P (θ)

]
,

which has solution

P (θ) ∝ exp

{
− 2m

δσ2(θ̌)
g(θ)

}
.

The corresponding stationary distribution P0(v) for V m
δ (∞) = (m/δ)1/2(Xm

δ (∞)− θ̌) takes
the form

P0(v) ∝ exp

{
− m

δσ2(θ̌)
g
(
θ̌ +

√
δ/mv

)}
∼ exp

{
− 2m

δσ2(θ̌)

[
g(θ̌) +

δIHg(θ̌)

2m
v2

]}
∝ exp

{
−IHg(θ̌)

σ2(θ̌)
v2

}
,

where we use the fact that ∇g(θ̌) = 0, and the asymptotics are based on taking δ → 0,

m → ∞. Therefore, P0 converges to N
(

0, σ
2(θ̌)

2IH(θ̌)

)
, and we conclude that V m

δ (∞) has a

limiting normal distribution with mean zero and variance σ2(θ̌)[2IHg(θ̌)]−1 = Γ(∞).

Similarly, we can show parts (ii) and (iii) in the multivariate case by following the
matrix arguments given in Gardiner (2009, Chapters 4 & 6) and Da Prato and Zabczyk
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(1996, Chapter 9) in the following manner. Using the explicit solution (4.25) of SDE (4.24),
we find that V (t) follows a normal distribution with mean zero and variance matrix

Γ(t) =

∫ t

0
exp

[
−
∫ t

u
IHg(X(v))dv

]
σ(X(u))[σ(X(u))]′ exp

[
−
∫ t

u
IHg(X(v))dv

]
du

=

∫ t

0
exp

[
−
∫ t

u
IHg(X(v))dv

]
σ(X(∞))[σ(X(∞))]′ exp

[
−
∫ t

u
IHg(X(v))dv

]
du+ ζt,

(5.91)

where

ζt =

∫ t

0
exp

[
−
∫ t

u
IHg(X(v))dv

]{
σ(X(u))[σ(X(u))]′ − σ(X(∞))[σ(X(∞))]′

}
exp

[
−
∫ t

u
IHg(X(v))dv

]
du.

Similar to the proof for Part 3 of Theorem 3, we show that as t→∞, |ζt| → 0. Indeed, for
any ε > 0, there exists t0 > 0, such that for any u > t0,

∣∣σ(X(u))[σ(X(u))]′ − σ(X(∞))[σ(X(∞))]′
∣∣ < ε,

∣∣IHg(X(u))[IHg(X(∞))]−1
∣∣ > 1− ε,∣∣∣∣∫ t0

0
exp

[
−
∫ t

u
IHg(X(v))dv

] {
σ(X(u))[σ(X(u))]′ − σ(X(∞))[σ(X(∞))]′

}
exp

[
−
∫ t

u
IHg(X(v))dv

]
du

∣∣∣∣
≤
∣∣∣∣exp

[
−2

∫ t

t0

IHg(X(v))dv

]∣∣∣∣ ∫ t0

0

∣∣σ(X(u))[σ(X(u))]′ − σ(X(∞))[σ(X(∞))]′
∣∣ du

≤ C
∣∣∣∣exp

[
−2

∫ t

t0

IHg(X(v))dv

]∣∣∣∣→ 0,∣∣∣∣∫ t

t0

exp

[
−
∫ t

u
IHg(X(v))dv

] {
σ(X(u))[σ(X(u))]′ − σ(X(∞))[σ(X(∞))]′

}
exp

[
−
∫ t

u
IHg(X(v))dv

]
du

∣∣∣∣
≤ ε

1− ε

∫ t

t0

∣∣∣∣exp

[
−2

∫ t

u
IHg(X(v))dv

]
IHg(X(u))

∣∣∣∣ du|IHg(X(∞))|−1

≤ ε

2(1− ε)

∣∣∣∣1− exp

[
−2

∫ t

t0

IHg(X(v))dv

]∣∣∣∣ |IHg(X(∞))|−1

≤ ε

2(1− ε)
|IHg(X(∞))|−1 → 0, as we let ε→ 0,

and these results implies that the integral in ζt can be divided into two parts over [0, t0]
and [t0, t], both of which go to zero as t→∞.
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Now, we verify the detailed balance condition using (5.91) and ζt → 0. Direct algebraic
manipulations show that

IHg(X(t))Γ(t) + Γ(t)IHg(X(t))

=

∫ t

0
IHg(X(t)) exp

[
−
∫ t

u
IHg(X(v))dv

]
σ(X(u))[σ(X(u))]′ exp

[
−
∫ t

u
IHg(X(v))dv

]
du

+

∫ t

0
exp

[
−
∫ t

u
IHg(X(v))dv

]
σ(X(u))[σ(X(u))]′ exp

[
−
∫ t

u
IHg(X(v))dv

]
IHg(X(t))du

=

∫ t

0
IHg(X(t)) exp

[
−
∫ t

u
IHg(X(v))dv

]
σ(X(∞))[σ(X(∞))]′ exp

[
−
∫ t

u
IHg(X(v))dv

]
du

+

∫ t

0
exp

[
−
∫ t

u
IHg(X(v))dv

]
σ(X(∞))[σ(X(∞))]′ exp

[
−
∫ t

u
IHg(X(v))dv

]
IHg(X(t))du

+ IHg(X(t))ζt + ζtIHg(X(t))

=

∫ t

0

d

du

{
exp

[
−
∫ t

u
IHg(X(v))dv

]
σ(X(∞))[σ(X(∞))]′ exp

[
−
∫ t

u
IHg(X(v))dv

]}
du

+ IHg(X(t))ζt + ζtIHg(X(t))

= σ(X(∞))[σ(X(∞))]′

− exp

[
−
∫ t

0
IHg(X(v))dv

]
σ(X(∞))[σ(X(∞))]′ exp

[
−
∫ t

0
IHg(X(v))dv

]
+ IHg(X(t))ζt + ζtIHg(X(t)),

where by assumption we have that as t → ∞,
∫ t

0 IHg(X(v))dv → ∞, which together with
ζt → 0 indicates that the last three terms on the right-hand side of the above expression
go to zero. Hence we have shown that as t → ∞, IHg(X(t))Γ(t) + Γ(t)IHg(X(t)) →
σ(X(∞))[σ(X(∞))]′—that is, their limits obey the following detailed balance condition,

IHg(X(∞))Γ(∞) + Γ(∞)IHg(X(∞)) = σ(X(∞))[σ(X(∞))]′. (5.92)

With the limit Γ(∞) of Γ(t) as t→∞, we conclude that V (t) converges in distribution to
V (∞) = [Γ(∞)]1/2Z, where Z is a standard normal random vector.

Denote by P (θ; t) the probability distribution of Xm
δ (t) at time t. Then, from the

Fokker-Planck equation, we have

∂P (θ; t)

∂t
= ∇

[
−∇g(θ)P (θ; t)− δ

2m
σ(X(t))[σ(X(t))]′∇P (θ; t)

]
and under the detailed balance condition (5.92), its stationary distribution P (θ) satisfies

0 = ∇
[
−∇g(θ)P (θ)− δ

2m
σ(X(∞))[σ(X(∞))]′∇P (θ)

]
,

which corresponds to a normal stationary distribution N(0,Γ(∞)) for V m
δ (∞) = (m/δ)1/2

(Xm
δ (∞)− θ̌). Thus, we conclude that V m

δ (∞) has a limiting normal distribution with mean
zero and variance Γ(∞).
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5.9 Proof of Theorem 11

As ∇g(θ̌) = 0, by Taylor expansion we have

g(Xm
δ (t)) = g(X(t)) + (δ/m)−1/2∇g(X(t))V m

δ (t) +
δ

2m
[V m
δ (t)]′IHg(X(t))V m

δ (t) + oP (δ/m),

∇g(Xm
δ (t)) = ∇g(X(t)) + (δ/m)−1/2IHg(X(t))V m

δ (t) + oP ((δ/m)1/2),

g(X(t)) ∼ g(θ̌) +∇g(θ̌)[X(t)− θ̌] +
1

2
[X(t)− θ̌]′IHg(θ̌)[X(t)− θ̌]

= g(θ̌) +
1

2
[X(t)− θ̌]′IHg(θ̌)[X(t)− θ̌],

∇g(X(t)) ∼ IHg(θ̌)[X(t)− θ̌], IHg(X(t)) ∼ IHg(θ̌),

g(Xm
δ (t)) ∼ g(θ̌) +

1

2
[Xm

δ (t)− θ̌]′IHg(θ̌)[Xm
δ (t)− θ̌],

Xm
δ (t)− θ̌ = X(t)− θ̌ + (δ/m)−1/2V m

δ (t).

Thus, by Theorem 5, we have that g(Xm
δ (t)) and ∇g(Xm

δ (t)) behave as, respectively,

g(X(t)) + (δ/m)1/2∇g(X(t))V (t) +
δ

2m
[V (t)]′IHg(X(t))V (t),

and ∇g(X(t)) + (δ/m)1/2IHg(X(t))V (t).

Similar to the stationary distribution part of the proof for Theorem 10, when IHg(θ̌) is
positive definite, we can derive the stationary distribution of V (t) to be a normal distribution
with mean zero and variance Γ(∞) defined by (4.38). Thus, we have

E[V (t)] = 0, E{[V (t)]′IHg(X(t))V (t)} = tr[Γ(∞)IHg(X(t))],

V ar{IHg(X(t))V (t)} = tr[Γ(∞){IHg(X(t))}2],

where the expectation is taken under the stationary distribution. Taking the trace on both
sides of (4.38), we obtain

tr[Γ(∞)IHg(X(∞))] = tr[IHg(X(∞))Γ(∞)] = tr[σ2(X(∞))]/2,

and multiplying IHg(X(∞)) on both sides of (4.38) and then performing the trace operation,
we arrive at

tr[Γ(∞){IHg(X(∞))}2] = tr[IHg(X(∞))Γ(∞)IHg(X(∞))] = tr[σ2(X(∞))IHg(X(∞))]/2.

Putting these results together and using IHg(X(t)) → IHg(X(∞)) as t → ∞, we prove
(4.46) and (4.47).

For the saddle point case, for simplicity, we assume that IHg(θ̌) is a diagonal matrix
with eigenvalues λi, i = 1, · · · , p. Then, V (t) has covariance function (Gardiner, 2009)

[Cov(V (t), V (s))]ii =
σii(X(t))

2λi

[
e−λi|t+s| − e−λi|t−s|

]
,

which, for negative λi, diverge as t, s→∞. Thus, V (t) does not have any limiting stationary
distribution.
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S. Jastrzȩbski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey. Three
factors influencing minima in SGD. arXiv preprint arXiv:1711.04623, 2018.

C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, M. I. Jordan. How to escape saddle points
efficiently. arXiv preprint arXiv:1703.00887, 2017.

K. Kawaguchi. Deep learning without poor local minima. Advances In Neural Information
Processing Systems, 586-594, 2016.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-
batch training for deep learning: generalization gap and sharp minima. International
Conference on Learning Representations, 2017.

Y. Kifer. The exit problem for small random perturbations of dynamical systems with a
hyperbolic fixed point. Israel Journal of Mathematics 40, 74-96, 1981.

J. Kim and D. Pollard. Cube root asymptotics. Annals of Statistics 18, 191-219, 1990.

P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.
Springer. 1992.
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