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Abstract

Derivatives play an important role in bandwidth selection methods (e.g., plug-ins), data
analysis and bias-corrected confidence intervals. Therefore, obtaining accurate derivative
information is crucial. Although many derivative estimation methods exist, the majority
require a fixed design assumption. In this paper, we propose an effective and fully data-
driven framework to estimate the first and second order derivative in random design. We
establish the asymptotic properties of the proposed derivative estimator, and also propose
a fast selection method for the tuning parameters. The performance and flexibility of the
method is illustrated via an extensive simulation study.
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1. Introduction

The next section describes previous methods and the current state-of-the-art for nonpara-
metric derivative estimation. Also, we summarize the main differences between derivative
estimation in the equispaced and random design for our type of estimator and give a brief
overview of local polynomial regression.

1.1. Previous work and current state-of-the-art

Since the mid sixties nonparametric density and regression estimation have become a popu-
lar and well studied area in statistics. These methods have provided researchers with more
flexibility to analyze data without relying on parametric assumptions. Although the litera-
ture of nonparametric regression estimators is vast, see e.g., Fan and Gijbels (1996), Györfi
et al. (2006) and Tsybakov (2008), derivative estimation also plays an important role in
different research areas and applications such as exploration of the structure of data (de-
tecting jump discontinuities (Gijbels and Goderniaux, 2005), revealing important features
from curve estimation (Chaudhuri and Marron, 1999), analyzing significant trends (Ron-
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donotti et al., 2007)), comparing regression curves (Park and Kang, 2008), bias-corrected
confidence intervals (Eubank and Speckman, 1993; Xia, 1998), analyzing human growth
data (Müller, 2012; Ramsay and Silverman, 2007) and neural network pruning (Hassibi and
Stork, 1993).

Our proposed methodology provides a data-driven way to estimate derivatives nonpara-
metrically without having to estimate the regression model first. This is especially impor-
tant when the regression function is difficult to estimate. Although a myriad of papers are
published regarding derivative estimation in the mid nineties, many open problems still re-
main. Ramsay (1998) noted that typically one sees derivatives go wild at the extremes, and
the higher the order of the derivative, the wilder the behavior. Further, problems arise in
the smoothing parameter or bandwidth selection processes where cross-validation (CV) and
generalized CV can be poor guides (Härdle, 1990). Based on Rice (1986), Charnigo et al.
(2011) proposed a generalized Cp criterion to determine the smoothing/tuning parameters
for derivative estimation for the equispaced design case.

Nonparametric derivative estimation methods can be categorized in three groups: local
polynomial regression, regression/smoothing splines, and difference quotients (Müller et al.,
1987). Due to the tremendous and well established work done in the field of local polyno-
mial smoothing, the research activity regarding to nonparametric regression and derivative
estimation seems to be somewhat stalled. In local polynomial regression, the derivative can
be estimated by the coefficient of the q-th order derivative of the local polynomial regression
fitted at point x, i.e. the local slope. Theoretical properties are studied in Fan and Gijbels
(1996) and Delecroix and Rosa (1996). The bandwidth choice for the derivative estimator
(based on a factor rule) is discussed in Fan and Gijbels (1996). Stone (1985) showed that
derivative estimation with splines can achieve the optimal L2 rate of convergence under
mild assumptions. Further asymptotic properties are obtained by Zhou and Wolfe (2000)
in the random design setting. However, the smoothing parameter selection problem re-
mained unanswered. Wahba and Wang (1990) noticed that this was particularly difficult
for smoothing splines since the smoothing parameter depends on the order of the derivative.

Difference quotient based derivative estimators (Müller et al., 1987; Härdle, 1990) pro-
duce a noisy data set which can be smoothed by any nonparametric regression estimator.
Smoothing turns out to be quite difficult in practice due to difference quotient’s large vari-
ance which is O(n2), where n is the sample size. Therefore, the main goal is to significantly
reduce the variance at the cost of a slight bias increase. To obtain such a variance re-
duction, Iserles (2009) proposed a variance-reducing linear combination of k symmetric
difference quotients in the field of numerical mathematics where k is considered to be a
tuning parameter. Difference quotients are certainly not new (Müller et al., 1987; Charnigo
et al., 2011; De Brabanter et al., 2013), but all results were obtained under the equispaced
design assumption. Extending these estimators to the random design setting is possible,
however they are no longer consistent for derivatives of order higher than two. This is due
to the accumulation of errors associated with the design which will cause higher order terms
to blow up. Such an effect is not present when considering equispaced design. Wang and
Lin (2015) proposed a sequence of approximate linear regression representations in which
the derivative is the intercept term. Although their results are very appealing, they rely
on rather stringent assumptions on the regression function. These assumptions are relaxed
in Dai et al. (2016) where a linear combination of the dependent variables, depending on two
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tuning parameters, are used to obtain derivatives. The variance reducing weights are ob-
tained by solving a constraint optimization problem for which the authors derived a closed
form solution. They further showed that the symmetric form used in Charnigo et al. (2011)
and De Brabanter et al. (2013) reduces the order of estimation bias without increasing the
estimation variance in the interior. They proposed an asymmetric estimator for the deriva-
tives at the boundaries. All results from Wang and Lin (2015) and Dai et al. (2016) assume
an equispaced design and both authors do not mention the extension to the random design
setting.

In this paper we extend the difference quotient based estimator to the random design to
estimate the first order derivative and propose a new consistent estimator for second order
derivatives. This framework is flexible so it can be used to extend other difference based
estimators in fixed design to the random design. An initial idea of this paper is given in
the conference paper of Liu and De Brabanter (2018). Since it is not straightforward to
propose an asymptotically consistent estimator for the general case, we will first provide a
framework to estimate the first and second order derivative in the uniform random design
and then generalize it to arbitrary distributions. Because this method produces a new
data set containing correlated errors, we use the local polynomial regression estimator with
bandwidth selection method of De Brabanter et al. (2018) to smooth the noisy derivatives
and derive the asymptotic properties of the smoothed derivative estimators.

The paper is organized as follows. We discuss the main theoretical differences between
equispaced and random design for this type of estimator and give a short description of local
polynomial regression. Section 2 illustrates the first order derivative estimation based on
variance reducing weighted difference quotients. Bias, variance and pointwise consistency
are established. In addition, bandwidth selection and behavior at the boundary for noisy
derivative estimators are also described. Finally, we discuss how to smooth the data with
correlated noise and study the asymptotic properties of the smoothed derivatives. Section
3 extends the framework to second order derivatives. In section 4, we conduct Monte
Carlo experiments to compare the proposed methodology with smoothing splines and local
polynomial regression. Finally, Section 5 states the conclusions and future work.

1.2. Equispaced design vs. random design

Consider the data (X1, Y1),. . .,(Xn, Yn) which form an independent and identically dis-
tributed (i.i.d.) sample from a population (X,Y ), where Xi ∈ X = [a, b] ⊆ R and Y ∈ R
for all i = 1, . . . , n. In the equispaced design case, the response variables are assumed to
satisfy

Yi = m(xi) + ei, i = 1, . . . , n, (1)

where x1, . . . , xn are nonrandom numbers and xi+1 − xi = (b − a)/(n − 1) is constant for
all i. In this setting, the regression function is given by m(x) = E[Y ] and we assume that
E[e] = 0 and Var[e] = σ2

e < ∞. In contrast to the equispaced design, the X are random
variables in random design and are generated from an unknown density and distribution f
and F respectively. Consider the following model

Yi = m(Xi) + ei, i = 1, . . . , n, (2)
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where the regression function is given by m(X) = E[Y |X = x] and assume that E[e] =
0, Var[e] = σ2

e < ∞, X and e are independent. The derivative estimators discussed
in Charnigo et al. (2011) and De Brabanter et al. (2013) use the symmetric property
xi+j − xi = xi − xi−j since they both assumed equispaced design. However, in the random
design this property no longer holds which introduces extra estimation error. In addition, it
is fairly complicated to obtain an asymptotic expression for the difference Xi+j −Xi when
the X’s are generated from an unknown distribution, leading to theoretical difficulties in
obtaining asymptotic properties of the derivative estimator.

1.3. Local Polynomial Regression

The local polynomial regression estimator in an arbitrary point x is given by minimizing
the following weighted least squares problem (Fan and Gijbels, 1996)

min
βj∈R

n∑
i=1

{
Yi −

p∑
j=0

βj (Xi − x)j
}2
Kh(Xi − x), (3)

where βj are the solutions to the weighted least squares problem, K is a symmetric prob-

ability density function with Kh(·) = K(·/h)/h. Note that m̂(q)(x) = q!β̂q is an estimator
for the q-th order derivative m(q)(x), q = 0, 1, . . . , p. In matrix notation the solution is

β̂ = (XT W X)−1 XT W y,

where y = (Y1, . . . , Yn)T , β = (β0, . . . , βp)
T and

X =

1 (X1 − x) · · · (X1 − x)p

...
...

...
1 (Xn − x) · · · (Xn − x)p

 ,

with W = diag{Kh(Xi−x)} a n×n diagonal matrix of weights based on the kernel function
and the bandwidth h.

2. First order derivative estimation

Müller et al. (1987) introduced the first order difference quotients to produce noisy derivative
data. However, all their results are obtained for the equispaced design setting. In case of
random design, their estimator for the first order (noisy) derivative at design point Xi is

denoted by q̂
(1)
i and is

q̂(1)(Xi) = q̂
(1)
i =

Yi − Yi−1

Xi −Xi−1
. (4)

Although quite appealing and intuitive, this estimator has major drawbacks, i.e. (i) a large
variance and (ii) difficulties in studying its asymptotic properties in random design. The
variance is O(n2) and Op{(Xi−Xi−1)−2} for the equispaced and random design respectively.
In the latter case, it is obvious that this can be very large when the distance between two
neighboring X is small. Consequently, reducing variance in these type of estimators is
paramount and can be accomplished by means of a variance-reducing linear combination
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of symmetric difference quotients. Second, in order to discuss the asymptotic properties
of this different quotient, we need to obtain an asymptotic expression for the difference
Xi−Xi−1 which is not trivial in the random design setting. However, in a special case, i.e.
X = U ∼ U(0, 1) and arranging the random variables in order of magnitude according to U
(order statistics), the asymptotic properties of the first order quotient (4) can be obtained.
In what follows, U(0, 1) denotes the uniform distribution between 0 and 1. For the sake of
simplicity, we will first discuss a special case, i.e. U = X ∼ U(0, 1), before we formulate the
estimator for arbitrary distributions.

2.1. Approach based on order statistics

Consider n bivariate data forming an i.i.d sample from a population (U, Y ) and further
assume U ∼ U(0, 1). Arrange the bivariate data (U, Y ) in order of magnitude according to
U , i.e. U(1) < U(2) < . . . < U(n) where U(i), i = 1, . . . , n is the i-th order statistic. In order
to avoid ties and hence division by zero we also require U(i) 6= U(j) for i 6= j. The first order
difference quotient (4) is

q̂(1)(U(i)) = q̂
(1)
i =

Yi − Yi−1

U(i) − U(i−1)
. (5)

The difference U(i)−U(i−1) is the difference of uniform order statistics and it is well-known
that (David and Nagaraja, 1970, p. 14)

U(s) − U(r) ∼ Beta(s− r, n− s+ r + 1) for s > r.

This result immediately leads to Lemma 1.

Lemma 1 Let U
i.i.d.∼ U(0, 1). Arrange the random variables in order of magnitude U(1) <

U(2) < · · · < U(n). Then, for i > j

U(i+j) − U(i−j) =
2j

n+ 1
+Op

(√
j

n2

)
,

U(i+j) − U(i) =
j

n+ 1
+Op

(√
j

n2

)
and

U(i) − U(i−j) =
j

n+ 1
+Op

(√
j

n2

)
.

Proof: see Appendix A. �

Consider the model
Yi = r(U(i)) + ei, (6)

where r(u) = E[Y |U = u] is the regression function and assume E[e] = 0, Var[e] = σ2
e <∞,

U and e are independent. Assume r is twice continuously differentiable on [0, 1]. A Taylor
expansion of r(U(i±j)) in a neighborhood of U(i) gives

r(U(i±j)) = r(U(i)) + r(1)(U(i))(U(i±j) − U(i)) +Op

(
j2

n2

)
. (7)
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Using Lemma 1 for j = 1 and (7) yields

E[q̂
(1)
i |U(i−1), U(i)] = E

[
Yi − Yi−1

U(i) − U(i−1)
|U(i−1), U(i)

]
= r(1)(ξi)

for ξi ∈ [U(i−1), U(i)] and

Var
[
q̂

(1)
i |U(i−1), U(i)

]
= Var

[
Yi − Yi−1

U(i) − U(i−1)
|U(i−1), U(i)

]
=

2σ2
e

(U(i) − U(i−1))2
= Op(n

2).

It is immediately clear that this estimator is asymptotically unbiased. However, the vari-
ance of this estimator can be arbitrary large and hence it will be difficult to estimate the
smoothed derivative function. A possible way to reduce the variance is described in Iserles
(2009) and used in Charnigo et al. (2011) and De Brabanter et al. (2013) which involves a
combination of symmetric difference quotients around the i-th point. Our proposed deriva-
tive estimator for random design involving uniform order statistics is

Ŷ
(1)
i =

k∑
j=1

wi,j ·
(

Yi+j − Yi−j
U(i+j) − U(i−j)

)
, (8)

where the weights wi,1, . . . , wi,k sum up to one. Note that (8) is valid for k+1 ≤ i ≤ n−k and
hence k ≤ (n−1)/2. For the boundary regions, i.e. 2 ≤ i ≤ k and n−k+1 ≤ i ≤ n−1, the
estimator (8) needs to be modified and is discussed in Section 2.3.2. The estimator (8) does

not provide results for Ŷ
(1)

1 and Ŷ
(1)
n . One can ignore these two points from consideration

or have them coincide with Ŷ
(1)

2 and Ŷ
(1)
n−1 (see Charnigo et al. (2011)).

The following proposition states the optimal weights wi,j , optimal in the sense of mini-
mizing the variance of the estimator (8).

Proposition 1 For k+ 1 ≤ i ≤ n− k and under model (6), the weights wi,j that minimize

the variance of (8), satisfying
∑k

j=1wi,j = 1, are given by

wi,j =
(U(i+j) − U(i−j))

2∑k
l=1(U(i+l) − U(i−l))2

, j = 1, . . . , k. (9)

Proof: see Appendix B. �

For fixed i, the j-th weight (9) is proportional to the inverse variance of the difference

quotient
Yi+j−Yi−j

U(i+j)−U(i−j)
in (8). At first sight, these weights seem to be different than the

weights obtained by Charnigo et al. (2011) and De Brabanter et al. (2013) for the equispaced
design case. Plugging in the difference ui+j−ui−j = 2j(b−a)/(n−1) for equispaced design
on [a, b] yields

wi,j =
(ui+j − ui−j)2∑k
l=1(ui+l − ui−l)2

=

4j2

(n−1)2

4
(n−1)2

∑k
l=1 l

2
=

6j2

k(k + 1)(2k + 1)
.

These are exactly the weights obtained in Charnigo et al. (2011) & De Brabanter et al.
(2013). This shows that the weights for equispaced design are a special case of the weights
in Proposition 1. However, one parameter still remains unknown, i.e. k, the number of
symmetric difference quotients (around i). Theorem 1 (asymptotic conditional bias and
variance) provides valuable insights how to choose k.
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2.2. Asymptotic properties of the first order derivative estimator

The following theorems establish the asymptotic conditional bias and variance of our pro-
posed estimator (8) for the interior points, i.e. k+1 ≤ i ≤ n−k. In what follows we denote
U = (U(i−j), . . . , U(i+j)) for i > j , i+ j ≤ n and j = 1, . . . , k.

Theorem 1 Under model (6) and assume r is twice continuously differentiable on [0, 1]
and k → ∞ as n → ∞. Then, for uniform random design on [0, 1] and the weights in
Proposition 1, the conditional (absolute) bias and conditional variance of (8) are∣∣∣bias

[
Ŷ

(1)
i |U

]∣∣∣ ≤ sup
u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)
+ op(n

−1k)

and

Var
[
Ŷ

(1)
i |U

]
=

3σ2
e(n+ 1)2

k(k + 1)(2k + 1)
+ op(n

2k−3)

uniformly for k + 1 ≤ i ≤ n− k.

Proof: see Appendix C. �

From Theorem 1, the pointwise consistency of (8) immediately follows.

Corollary 1 Under the assumptions of Theorem 1, k →∞ as n→∞ such that n−1k → 0
and n2k−3 → 0. Then, for σ2

e <∞ and the weights given in Proposition 1, we have for any
ε > 0

P(|Ŷ (1)
i − r(1)(U(i))| ≥ ε)→ 0

for k + 1 ≤ i ≤ n− k.

Proof: see Appendix D. �

According to Theorem 1 and Corollary 1, the conditional bias and conditional variance
of (8) tend to zero and k is at least O(n2/3) but slower than O(n). Next, we develop a
rule-of-thumb tuning method for k such that k = O(n4/5) and the fastest possible rate at

which E[(Ŷ
(1)
i − r(1)(U(i)))

2|U] → 0 (L2 rate of convergence) is Op(n
−2/5). Using Jensen’s

inequality, similar results can be shown for the L1 rate of convergence, i.e.

E
[∣∣Ŷ (1)

i − r(1)(U(i))
∣∣ | U] ≤ ∣∣∣bias

[
Ŷ

(1)
i |U

]∣∣∣+

√
Var

[
Ŷ

(1)
i |U

]
= Op(n

−1/5).

From Theorem 1, it is clear that the parameter k in (8) controls the bias-variance trade-
off. Based on Theorem 1, we choose k that minimizes the asymptotic upper bound of the
conditional mean integrated squared error (MISE). The result is given in Corollary 2.

Corollary 2 Under the assumptions of Theorem 1 and denote B = supu∈[0,1] |r(2)(u)|, then
k that minimizes the asymptotic upper bound of the conditional MISE is

kopt = arg min
k∈N+\{0}

{
B2 9k2(k + 1)2

16(n+ 1)2(2k + 1)2
+

3σ2
e(n+ 1)2

k(k + 1)(2k + 1)

}
.

Proof: see Appendix E. �
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Corollary 2 provides a fast and easy parameter tuning method in practice, however some
unknown quantities still need to be estimated. The error variance can be estimated by
Hall’s

√
n-consistent estimator (Hall et al., 1990)

σ̂2
e =

1

n− 2

n−2∑
i=1

(0.809Yi − 0.5Yi+1 − 0.309Yi+2)2.

The second unknown quantity B can be (roughly) estimated with a local polynomial regres-
sion estimator of order p = 3. The performance of our proposed model is not so sensitive
to the accuracy of B, thus a rough estimate of the second order derivative is sufficient. By
plugging in these two estimators for σ2

e and B in Corollary 2, the optimal value kopt can be
obtained for example by a grid search over the integer set [1,

⌊
n−1

2

⌋
] where bxc denotes the

greatest integer less than or equal to x. As an alternative, any root solving algorithm can
also be used.

Remark 1 By setting the derivative of the expression in Corollary 2 to zero, we cannot
obtain a closed form for kopt. However, by only retaining the higher order terms, we can
obtain a fairly accurate estimate for kopt. Given estimates for σ2

e and B we have

k̂opt = b24/5σ̂2/5
e B̂−2/5n4/5c.

2.3. Exact bias expression and boundary correction

In this section, we further investigate the bias and propose a simple but effect boundary
correction to reduce the variance by adding a small amount of bias.

2.3.1. Asymptotic order of the conditional bias and continuous
differentiability of the regression function

In Theorem 1, we bounded the conditional bias above. From a theoretical point of view, it
is helpful to derive an exact expression for the conditional bias and discuss its dependence
on the continuous differentiability of the regression function r. It also allows us to compare
with the bias in fixed design and explain the extra bias due to the asymmetric differences
U(i+j) − U(i) 6= U(i) − U(i−j) in random design. Assume the first q + 1 derivatives of r exist
on [0, 1]. A Taylor series of r(U(i±j)) in a neighborhood of Ui and using Lemma 1 yields

r(U(i+j)) = r(U(i)) +

q∑
l=1

1

l!
(U(i+j) − U(i))

lr(l)(U(i)) +Op(U(i+j) − U(i))
q+1

= r(U(i)) +

q∑
l=1

1

l!
(U(i+j) − U(i))

lr(l)(U(i)) +Op{(j/n)q+1}

and

r(U(i−j)) = r(U(i)) +

q∑
l=1

1

l!
(U(i−j) − U(i))

lr(l)(U(i)) +Op(U(i−j) − U(i))
q+1

= r(U(i)) +

q∑
l=1

1

l!
(U(i−j) − U(i))

lr(l)(U(i)) +Op{(j/n)q+1}.
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Using Lemma 1, assume k →∞ as n→∞, and for the weights in Proposition 1 we obtain
the asymptotic order of the exact conditional bias for different values of q

bias
[
Ŷ

(1)
i |U

]
=


Op
(
k
n

)
, q = 1.

Op

(
max

{
k
1
2

n ,
k2

n2

})
, q ≥ 2.

The proof is given in Appendix F. For q = 1 (i.e. r is twice continuously differentiable), the
leading order of exact conditional bias is the same as that of the bias upperbound given in
Theorem 1. For q = 2, r is three times continuously differentiable on [0, 1], the exact bias
achieves smaller order than Op(k/n). Unfortunately, adding additional assumptions on the
differentiability of r, i.e. q > 2, will no longer improve the asymptotic rate of the bias. This
can be seen as follows: for q ≥ 2, the bias is

bias
[
Ŷ

(1)
i |U

]
=

∑k
j=1(U(i+j) − U(i−j))

[∑q
l=2

r(l)(U(i)){(U(i+j)−U(i))
l−(U(i−j)−U(i))

l}
l! +Op

{
(j/n)q+1

}]∑k
p=1(U(i+p) − U(i−p))2

.

This can be split into two terms: odd and even with l ≥ 2

biasodd[Ŷ
(1)
i |U

]
= Op

(
k2

n2

)
and biaseven[Ŷ

(1)
i |U

]
= Op

(
k

1
2

n

)
.

resulting in

bias
[
Ŷ

(1)
i |U

]
= biasodd[Ŷ

(1)
i |U

]
+ biaseven[Ŷ

(1)
i |U

]
= Op

{
max

(
k2

n2
,
k

1
2

n

)}
.

In fixed design, biaseven = 0 due to symmetry: u(i+j) − u(i) = u(i) − u(i−j). Unfortunately,
in the random design, we cannot remove biaseven. It is this fact that will lead to the
inconsistency of third and higher order derivatives if these estimators are defined in a fully
recursive way as in Charnigo et al. (2011).

2.3.2. Boundary Correction

We discussed the proposed estimator at the interior points and in this section we provide
a simple but effective boundary correction. Points with index i < k + 1 and i > n − k
are points located at the left and right boundary respectively. Since there are not enough
k pairs of neighbors at the boundary, we use a weighted linear combination of k(i) pairs
of points Ui instead, where k(i) = i − 1 for the left boundary and k(i) = n − i for the
right boundary. This is the approach of Charnigo et al. (2011) and De Brabanter et al.
(2013). The first order derivative estimator at the boundary is obtained by replacing k
with k(i) in (8) and weights in Proposition 1. From Section 2.3.1, we know that if r is
three times continuously differentiable on [0, 1] the asymptotic order of the conditional bias

at the boundary is Op
{

max
(k(i)2

n2 , k(i)1/2

n

)}
, which is smaller than for the interior points.
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However, the asymptotic order of the conditional variance is Op

{
3σ2

e(n+1)2

k(i)(k(i)+1)(2k(i)+1)

}
and

attains Op(n
2), as i is close to either 2 or n− 1.

In order to reduce the variance at the boundary we propose the following modification
to (8). For points at the left boundary, i < k + 1, consider the estimator

Ŷ
(1)
i =

k(i)∑
j=1

wi,j ·
(

Yi+j − Yi−j
U(i+j) − U(i−j))

)
+

k∑
j=k(i)+1

wi,j ·
(

Yi+j − Yi
U(i+j) − U(i)

)
(10)

with

wi,j =



(U(i+j) − U(i−j))
2∑k(i)

l=1(U(i+l) − U(i−l))2 +
∑k

l=k(i)+1(U(i+l) − U(i))2
, 1 ≤ j ≤ k(i);

(U(i+j) − U(i))
2∑k(i)

l=1(U(i+l) − U(i−l))2 +
∑k

l=k(i)+1(U(i+l) − U(i))2
, k(i) < j ≤ k.

This modification leads to

bias[Ŷ
(1)
i |U

]
= Op

{
max

(
k(i)7/2

k3n
,
k(i)5

k3n2
,
k − k(i)

n

)}
and

Var[Ŷ
(1)
i |U

]
= Op

{
max

(
n2

k3
,
n2(k − k(i))2

k4

)}
.

The proof is given in Appendix G. The bias[Ŷ
(1)
i |U

]
→ 0 when n → ∞ indicating

that (10) is still asymptotically unbiased at the boundary. Worst case scenario, the variance
is of the order Op(n

2/k2) which is smaller than Op(n
2). A similar result can be obtained

for the right boundary.

2.4. Smoothing the noisy derivatives

Noisy first order derivative estimators (8) and (10) have two problems: (i) derivative esti-
mators contain the noise coming from the unknown errors ei, i = 1, . . . , n in model (6) and
(ii) derivative estimators can only be evaluated at the design points U(i), i = 1, . . . , n. Hence
some type of smoothing will be needed to remove the noise and evaluate the derivative in
an arbitrary point. The first order derivative estimator (8) can be written as

Ŷ
(1)
i =

k∑
j=1

wi,j ·
(
r(U(i+j))− r(U(i−j))

U(i+j) − U(i−j)

)
+

k∑
j=1

wi,j ·
(

ei+j − ei−j
U(i+j) − U(i−j)

)
(11)

where the second term ẽi =
∑k

j=1wi,j ·
(

ei+j−ei−j

U(i+j)−U(i−j)

)
is the new error and wi,j are given in

Proposition 1. We have Yi, i = 1, . . . n are independent and ei, i = 1, . . . n are independent.

It is clear that ẽi, i = 2, . . . , n − 1 are correlated and the generated derivatives Ŷ
(1)
i , i =

10



Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients

2, . . . , n− 1 are also correlated. In order to obtain a smoothed version of the derivative, we
regard the (correlated) data (U, Ŷ (1)) as being generated from the model

Ŷ (1)(U) = r(1)(U) + ẽ.

Since the i.i.d. assumption of the errors is no longer valid for the above model, bandwidth
selection for any nonparametric smoothing method becomes increasingly difficult (Opsomer
et al., 2001; De Brabanter et al., 2018). In this paper we use the idea of De Brabanter et al.
(2018) by using a kernel K such that K(0) = 0. By using such a kernel, De Brabanter
et al. (2018) have shown that under mild assumptions, the effect of the correlation on the
bandwidth selection process is removed without any prior knowledge about the correlation
structure.

For interior points k + 1 ≤ i ≤ n − k, all Ŷ
(1)
i are asymptotic consistent estimators.

Without loss of generality, we show the properties of the smoothed derivative estimator in
the interior. The local polynomial estimator at an arbitrary point u0 is

r̂(1)(u0) = εT1 β̂ = εT1 S−1
n Uu

T Wu Ŷ
(1)

(12)

where ε1 = (1, 0, . . . , 0)T is a unit vector with 1 in the first position and r̂(q+1)(u0) = q!β̂q.

Ŷ
(1)

= (Ŷ
(1)
k+1, . . . , Ŷ

(1)
n−k), Wu is the diagonal matrix of weights, i.e. diag{Kh(U(i) − u0)}

with kernel K, bandwidth h and Kh(·) = K(·/h)/h, Sn = Uu
T Wu Uu, and

Uu =

1 (U(k+1) − u0) · · · (U(k+1) − u0)p

...
...

...
1 (U(n−k) − u0) · · · (U(n−k) − u0)p

 .

The term ẽi =
∑k

j=1wi,j ·
(

ei+j−ei−j

U(i+j)−U(i−j)

)
in (11) satisfies E[ẽi|U ] = 0 and Cov(ẽi, ẽj |U(i), U(j)) =

σ2
ẽρn(U(i)−U(j)) for i 6= j with σ2

ẽ <∞ and ρn is a stationary correlation function satisfying
ρn(0) = 1, ρn(u) = ρn(−u) and |ρn(u) |≤ 1 for all u. The subscript n allows the correlation
function ρn to shrink as n → ∞ (De Brabanter et al., 2018). In what follows, we denote
Ũ = (U(1), . . . , U(n)). Under the following assumptions:

• Assumption 1. h→ 0 and nh→∞ as n→∞;

• Assumption 2. There exists a constant Kmax such that |K(x)| < Kmax, and K(x) ≥ 0
for all x;

• Assumption 3. K is symmetric and Lipschitz continuous at 0;

• Assumption 4. lim|u|→∞ |u|lK(u) <∞ for l = 0, . . . , p;

• Assumption 5. The correlation function ρn is an element of a sequence {ρn} with
the following properties for all n: there exists constants ρmax and ρc such that
n
∫
|ρn(x)|dx < ρmax and limn→∞ n

∫
ρn(x)dx = ρc; and for any sequence εn > 0

satisfying nεn →∞,

n

∫
|x|≥εn

|ρn(x)|dx→ 0, n→∞,

11
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Assumption 5 requires the correlation to be short range dependent (Opsomer et al., 2001;
Francisco-Fernández et al., 2004). This is a not uncommon assumption in the area of spatial
statistics (Cressie, 1993). Two correlation functions satisfying Assumption 5 are

ρn(x) = exp(−αn|x|) and ρn(x) =
1

1 + αn2x2
, α > 0. (13)

Via semi-variograms and autocorrelation plots, we can verify the claim that the ẽi’s support
the hypothesis of short-range dependency (and hence Assumption 5 holds). For brevity, we
have not included this in the current paper but the interested reader can contact the second
author to obtain these results.

Next, we derive the conditional bias and variance of the smoothed derivative r̂(1)(u0)
(for random uniform design on [0, 1]) by applying Theorem 1 in De Brabanter et al. (2018).

Theorem 2 Assume r(p+1)(·), p ≥ 1 be continuous in a neighbourhood of u0. Under As-
sumptions 1 − 7, k → ∞ as n → ∞, σ2

e < ∞ and the weights given in Proposition 1, the
conditional bias and conditional variance of (12) for p odd is

bias
[
r̂(1)(u0)|Ũ

]
≤ εT1 S−1

[
cp

(p+ 1)!
r(p+2)(u0)hp+1 + B 3k(k + 1)

4(n+ 1)(2k + 1)
c̃p

]
{1 + op(1)}

=

[(∫
tp+1K∗0 (t)dt

)
1

(p+ 1)!
r(p+2)(u0)hp+1

+ B 3k(k + 1)

4(n+ 1)(2k + 1)

(∫
K∗0 (t)dt

)]
{1 + op(1)}

and

Var
[
r̂(1)(u0)|Ũ

]
=

3σ2
e(n+ 1)2

k(k + 1)(2k + 1)

1 + ρc
h(n− 2k)

εT1 S−1 S∗ S−1 ε1{1 + op(1)}

=

∫
K∗20 (t)dt

3σ2
e(n+ 1)2

k(k + 1)(2k + 1)

1 + ρc
h(n− 2k)

{1 + op(1)}

where B = supu∈[0,1] |r(2)(u)|, S = (µi+j)0≤i,j≤p with µj =
∫
ujK(u)du, S∗ = (νi+j)0≤i,j≤p

with νj =
∫
ujK2(u)du, cp = (µp+1, . . . , µ2p+1)T , c̃p = (µ0, µ1, . . . , µp)

T , ε1 = (1, 0, . . . , 0)T ,
and the equivalent kernel K∗0 (t) = εT1 S

−1(1, t, . . . , tp)TK(t).

Proof: see Appendix H. �

The asymptotic upper bound of the conditional MISE is minimized for h = O(n
− 2

5p+6 )

and k = O(n
3p+4
5p+6 ). The corresponding L2 rate of convergence is Op(n

− 4p+4
5p+6 ). In this pa-

per, we will not use the variance-bias trade-off in Theorem 2 to select the bandwidth h
and the parameter k simultaneously, since it requires estimating ρc, which is not straight-
forward. To have an easy and efficient tuning method at the cost of a slower rate of
convergence, we use Corollary 2 to select k then select bandwidth h as follows. First,
use kernel K(u) = (2/

√
π)u2 exp(−u2) to obtain the bandwidth hb by minimizing the

residual sum of squares (RSS) of interior points (U(i), Ŷ
(1)
i ) with k + 1 ≤ i ≤ n − k, i.e.

12
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RSS(hb) = (n−2k)−1
∑n−k

i=k+1(r̂(1)(U(i))−Ŷ
(1)
i )2. RSS does not contain the boundary points,

since noisy derivatives Ŷ
(1)
i at the boundary have larger variance. Second, as bimodal ker-

nels introduce extra error in the estimation due to their non-optimality we overcome this
issue by using ĥb as a pilot bandwidth and relate it to a bandwidth ĥ of a more optimal
(unimodal) kernel, say the Gaussian kernel. As shown in De Brabanter et al. (2018), this
can be achieved without any extra smoothing step. For local cubic regression, the relation
between the bimodal and unimodal bandwidth is

ĥ = 1.01431ĥb

when using K(u) = (2/
√
π)u2 exp(−u2) and K(u) = (1/

√
2π) exp(−u2/2) as bimodal and

unimodal kernel respectively.
From Theorem 2, the pointwise consistency of (12) for p odd immediately follows.

Corollary 3 Under the assumptions of Theorem 2, h→ 0 and nh→∞ as n→∞, k →∞
as n→∞ such that n−1k → 0 and nk−3h−1 → 0. Then, for σ2

e <∞ and the weights given
in Proposition 1, we have for any ε > 0

P(|r̂(1)(u0)− r(1)(u0)| ≥ ε)→ 0

Proof: see Appendix I. �

For k = O(n4/5) in Corollary 2 and h = O(n−1/(2p+3)) for p odd, then by Corollary 1
in De Brabanter et al. (2018), we have

E[(r̂(1)(u0)− r(1)(u0))2|Ũ] = Op(n
−2/5)

which matches the convergence rate obtained by Stone (1985) for p = 2. Using Jensen’s
inequality, the L1 rate of convergence is Op(n

−1/5).

2.5. Generalizing results for first order derivatives to arbitrary distributions

It is possible to find a closed form expression for the distribution of the differences X(i+j)−
X(i−j) with X

i.i.d∼ F where F is unknown and continuous (David and Nagaraja, 1970) such
that the density function f(x) = F ′(x) and let f be bounded away from zero. Since this
result is quite unattractive from a theoretical point of view, we advocate the use of the
probability integral transform (PIT) (Casella and Berger, 2002)

F (X) ∼ U(0, 1). (14)

By using the probability integral transform we know that the new data set (F (X(1)), Y1), . . . ,
(F (X(n)), Yn) has the same distribution as (U(1), Y1), . . . , (U(n), Yn). This leads to the orig-
inal setting of uniform order statistics discussed earlier. The final step is to transform back
to the original space. In order for this step to work, we need the existence of a density f .
Since m(X) = r(F (X)) and by the chain rule

dm(X)

dX
=
dr(U)

dU

dU

dX
= f(X)

dr(U)

dU
, (15)

13
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yielding m(1)(X) = f(X)r(1)(U) which is the smoothed version of the first order derivative
in the original space. In practice, the distribution F and density f need to be estimated
yielding m̂(1)(X) = f̂(X)r̂(1)(U). In this paper we use the kernel density estimator (Rosen-
blatt, 1956; Parzen, 1962) to estimate the density f and distribution F with plug-in band-
width (Wand and Jones, 1994).

Remark 2 One of the anonymous referees noted that in real data however, it could be
that the density f of the data is multi-modal with regions of low dimension in between the
modes. Consequently, our assumption that the density f is bounded away from zero does
no longer hold and our theoretical results will no longer be valid. A possible remedy for
this problem would be to consider a ridge parameter approach similar to approach in density
deconvolution (Meister, 2009). Although beyond the scope of this paper, we believe it is an
interesting idea for further research.

3. Higher Order Derivatives

In practice, first and second order derivatives are widely used. However, higher order
derivatives become progressively more difficult to estimate, i.e. they suffer from higher bias
and variance and consequently slower rate of convergence. In this section, we construct an
efficient estimator for the second order derivative and discuss its asymptotic properties. A
similar procedure can be applied to estimate derivatives with order higher than two.

3.1. Asymptotic Results for Second Order Noisy Derivatives Under Standard
Uniform Distribution

As before, assume U ∼ U(0, 1), and (U, Y ) are sorted according to ascending order of U .
We define the second order noisy derivative estimator as

Ŷ
(2)
i = 2

k2∑
j=1

wi,j,2

(
Yi+j+k1

−Yi+j

U(i+j+k1)
−U(i+j)

− Yi−j−k1
−Yi−j

U(i−j−k1)
−U(i−j)

)
U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

(16)

where both k1 and k2 are positive integers and the weights wi,j,2 sum up to one. The

subscript 2 is used to indicate the weight for the second order derivative. Let +Ŷ
(1)
i+j =

Yi+j+k1
−Yi+j

U(i+j+k1)
−U(i+j)

, which is an asymptotically conditional unbiased estimator of r(1)(U(i+j)).

Var[+Ŷ
(1)
i+j |Ũ] = Op(

σ2
en

2

k21
), where the parameter k1 controls the variance of +Ŷ

(1)
i+j . The

left superscript “+” indicates the estimator only uses data on the right hand side of Yi+j .

Similarly −Ŷ
(1)
i−j =

Yi−j−k1
−Yi−j

U(i−j−k1)
−U(i−j)

is an asymptotically conditional unbiased estimator of

r(1)(U(i−j)) and the conditional variance is Op(
σ2
en

2

k21
). The left superscript “−” indicates

the estimator only uses data on the left hand side of Yi−j . Hence the estimator (16) can be
rewritten as

Ŷ
(2)
i =

k2∑
j=1

wi,j,2

+Ŷ
(1)
i+j − −Ŷ

(1)
i−j

Ci,j,k1

14
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where Ci,j,k1 = (U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j))/2. By defining the estimator in

this way, the variance of Ŷ
(2)
i is reduced by decreasing the correlation between different

quotients. Assume r is three times continuously differentiable on the compact interval
[0, 1], k1 →∞ and k2 →∞ as n→∞. Applying Lemma 1 gives

E[+Ŷ
(1)
i+j −

−Ŷ
(1)
i−j |Ũ] =

r(U(i+j+k1))− r(U(i+j))

U(i+j+k1) − U(i+j)
−
r(U(i−j−k1))− r(U(i−j))

U(i−j−k1) − U(i−j)

= r(1)(U(i+j)) +
1

2
r(2)(U(i+j))(U(i+j+k1) − U(i+j)){1 + op(1)}

− r(1)(U(i−j))−
1

2
r(2)(U(i−j))(U(i−j−k1) − U(i−j)){1 + op(1)}

=
1

2
r(2)(U(i))(U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)){1 + op(1)}

where Ci,j,k1 is chosen such that each individual quotient
+Ŷ

(1)
i+j−

−Ŷ
(1)
i−j

Ci,j,k1
, j = 1, . . . , k2 is an

asymptotic unbiased estimator of the second order derivative r(2)(U(i)).

The exact weight is selected to be proportional to the inverse of the conditional variance

of each quotient
+Ŷ

(1)
i+j−

−Ŷ
(1)
i−j

Ci,j,k1

w̃i,j,2 =

1/Var

(
Yi+j+k1

−Yi+j

U(i+j+k1)
−U(i+j)

−
Yi−j−k1

−Yi−j

U(i−j−k1)
−U(i−j)

)
U(i+j+k1)

+U(i+j)−U(i−j−k1)
−U(i−j)

|Ũ


∑k2

j=1 1/Var

(
Yi+j+k1

−Yi+j

U(i+j+k1)
−U(i+j)

−
Yi−j−k1

−Yi−j

U(i−j−k1)
−U(i−j)

)
U(i+j+k1)

+U(i+j)−U(i−j−k1)
−U(i−j)

|Ũ


By Lemma 1, the leading order of the weight w̃i,j,2 is

wi,j,2 =
(2j + k1)2∑k2
j=1(2j + k1)2

(17)

such that w̃i,j,2 = wi,j,2{1 + op(1)} for k1 →∞ and k2 →∞ as n→∞. Similar to the first
order noisy derivative, boundary issues arise in (16) when i <

∑2
j=1 kj+1 or i > n−

∑2
j=1 kj .

Theorem 3 states the asymptotic conditional bias and variance of (16) using the weights (17).
It is difficult to get the exact asymptotic expression for the conditional bias and variance of
the noisy second order derivative estimator. Therefore, we provide a suitable upperbound.

Theorem 3 Under model (6) and assume r is three times continuously differentiable on
[0, 1], k1 → ∞ and k2 → ∞ as n → ∞. Then, for the weights (17), the conditional
(absolute) bias and the conditional variance of (16) are bounded above

∣∣∣bias
[
Ŷ

(2)
i |Ũ

]∣∣∣ ≤ supu∈[0,1] |r(3)(u)|
n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j
{1 + op(1)}
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and

Var[Ŷ
(2)
i |Ũ] ≤ 4(n+ 1)4σ2

e

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}

uniformly for
∑2

j=1 kj + 1 ≤ i ≤ n−
∑2

j=1 kj.

Proof: see Appendix J.

From Theorem 3 the pointwise consistency easily follows

Corollary 4 Under the assumptions of Theorem 3 and for the weight sequence defined
in (17), k1 →∞ and k2 →∞ as n→∞ such that n−1k1 → 0, n−1k2 → 0, n4k−2

1 k−3
2 → 0

and n4k−4
1 k−1

2 → 0, it follows for any ε > 0

P
[∣∣Ŷ (2)

i − r(2)(U(i))
∣∣ > ε]→ 0.

Proof: see Appendix K.

Assuming the order of k1 is the same as the order of k2, then according to Theorem 3 and
Corollary 4, the conditional bias and conditional variance of (16) tends to zero as k1 →∞
and k2 → ∞ asymptotically faster than n4/5 but slower than n. It is easy to show that

the fastest possible rate at which E[(Ŷ
(2)
i − r(2)(Ui))

2| | Ũ] → 0 (L2 rate of convergence)
is Op(n

−2/7) and the fastest rate is attained for k1 = O(n6/7) and k2 = O(n6/7). Using
Jensen’s inequality, similar results can be shown for the L1 rate of convergence, i.e.

E
[∣∣Ŷ (2)

i − r(2)(U(i))
∣∣ | Ũ] ≤ ∣∣∣bias

[
Ŷ

(2)
i |Ũ

]∣∣∣+

√
Var

[
Ŷ

(2)
i |Ũ

]
= Op(n

−1/7).

3.2. Optimal Tuning parameter selection for k1 and k2

As for the first order derivative with one tuning parameter, the second order derivative has
two, which control the bias-variance trade-off. Based on the asymptotic upperbounds of
the bias and variance in Theorem 3, we choose k1 and k2 as follows.

Corollary 5 Under the assumptions of Theorem 3 and denote B2 = supu∈[0,1] |r(3)(u)|,
then k1 and k2 that minimize the asymptotic upper bound of the conditional MISE are

(k1, k2)opt = arg min
k1,k2∈N+\{0}

{(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j

)2

+
4(n+ 1)4σ2

e

k2
1

∑k2
j=1(2j + k1)2

}

Proof: see Appendix L. �

The second unknown quantity B2 can be (roughly) estimated with a local polynomial
regression estimator of order p = 4. By plugging in two estimators for σ2

e (Hall et al., 1990)
and B2 in Corollary 5, the optimal value pair (k1, k2)opt can be obtained using a grid search
(or any other optimization method) over a Cartesian product set.
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3.3. Exact Bias

Although we use the upper bound of the absolute conditional bias to tune the parameters
in the estimator of second order derivatives, the exact conditional bias for noisy second
order derivative estimation (16) is also important. It provides a clear comparision with the
second order derivative estimator used in fixed design (Charnigo et al., 2011; De Brabanter
et al., 2013) and illustrates why we can not use a similar framework in random design.

Adapting the fixed design framework from Charnigo et al. (2011) and De Brabanter
et al. (2013) to random design under the standard uniform distribution for the q-th order
derivative

Ŷi
(q)

=

kq∑
i=1

wi,j
Ŷ

(q−1)
i+j − Ŷ (q−1)

i−j
Ui+j − Ui−j

, q = 1, 2, . . . (18)

where k1, k2, . . . , kq are tuning parameters. Due to the asymmetry U(i+j) − U(i) 6= U(i) −
U(i−j) in random design, extra bias will be introduced in the first order noisy derivative

estimator Ŷ
(1)
i , i = 2, . . . , n − 1. Using the recursive relation in (18), the extra bias will

accumulate as q increases in random design. The estimator (18) is no longer a consistent
estimator when q > 2. The exact bias of the proposed second order derivative estimator
in (16) is smaller and is given by

bias
[
Ŷ

(2)
i |Ũ

]
= Op

max

k
1
2
1

n
,
k

1
2
2

n
,
k2

1

n2
,
k2

2

n2


 (19)

The proof is given in Appendix M. The boundary issue still arises for the second order

derivative estimator since there are not enough k2 pairs of +Ŷ
(1)
i+j and −Ŷ

(1)
i−j at the boundary.

Similar to Section 2.3.2, at the boundary i < 1+k1 +k2 and i > n−k1−k2, k1(i) and k2(i)
are the maximum number of available quotients in the first and second empirical derivatives.

3.4. Smoothing the noisy second order derivatives

The second order derivative estimator (16) can be written as

Ŷ
(2)
i = 2

k2∑
j=1

wi,j,2

(
r(U(i+j+k1)

)−r(U(i+j))

U(i+j+k1)
−U(i+j)

− r(U(i−j−k1)
)−r(U(i−j))

U(i−j−k1)
−U(i−j)

)
U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

+ 2

k2∑
j=1

wi,j,2

(
ei+j+k1

−ei+j

U(i+j+k1)
−U(i+j)

− ei−j−k1
−ei−j

U(i−j−k1)
−U(i−j)

)
U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

(20)

where the second term is the new error term and is denoted as éi. It is clear that for
éi, i = 3, . . . , n − 2 the i.i.d. assumption is no longer valid. Similar to Section 2.4, we
apply a kernel K such that K(0) = 0 to remove the effects of correlation on the bandwidth
selection process (De Brabanter et al., 2018).

Without loss of the generality, we show the properties of the smoothed estimator for the
interior points

∑2
j=1 kj + 1 ≤ i ≤ n−

∑2
j=1 kj . For an arbitrary point u0

r̂(2)(u0) = εT1 β̂ = εT1 S−1
n Uu

T Wu Ŷ
(2)

(21)
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where ε1 = (1, 0, . . . , 0)T is a unit vector with 1 in the first position. Ŷ
(2)

= (Ŷ
(2)
k1+k2+1, . . . , Ŷ

(2)
n−k1−k2),

Wu is the diagonal matrix of weights, i.e. diag{Kh(U(i) − u0)} with kernel K, bandwidth

h and Kh(·) = K(·/h)/h, Sn = Uu
T Wu Uu, and

Uu =

1 (U(k1+k2+1) − u0) · · · (U(k1+k2+1) − u0)p

...
...

...
1 (U(n−k1−k2) − u0) · · · (U(n−k1−k2) − u0)p


with éi in (20) satisfying E[éi|U ] = 0 and Cov(éi, éj |U(i), U(j)) = σ2

éρ
′
n(U(i)−U(j)) for i 6= j

with σ2
é < ∞ and ρ′n is a stationary correlation function satisfying ρ′n(0) = 1, ρ′n(u) =

ρ′n(−u) and |ρ′n(u) |≤ 1 for all u. Applying Theorem 1 in De Brabanter et al. (2018) yields
the following theorem.

Theorem 4 Let r(p+1)(·), p ≥ 2 be continuous in a neighbourhood of u0. Under the As-
sumptions 1 − 5 and k1 → ∞, k2 → ∞ as n → ∞. For σ2

e < ∞ and the weights given
in (17), the conditional bias and conditional variance of (21) for p odd are bounded above

bias
[
r̂(2)(u0)|Ũ

]
≤ εT1 S−1

[
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j
c̃p

+
cp

(p+ 1)!
r(p+3)(u0)hp+1

]
{1 + op(1)}

=

[(∫
K∗0 (t)dt

)
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j

+

(∫
tp+1K∗0 (t)dt

)
1

(p+ 1)!
r(p+3)(u0)hp+1

]
{1 + op(1)}

where B2 = supu∈[0,1] |r(3)(u)| and

Var
[
r̂(2)(u0)|Ũ

]
≤ 4(n+ 1)4σ2

e

k2
1

∑k2
j=1(2j + k1)2

1 + ρ′c
h(n− 2k1 − 2k2)

εT1 S−1 S∗ S−1 ε1{1 + op(1)}

=
4(n+ 1)4σ2

e

k2
1

∑k2
j=1(2j + k1)2

1 + ρ′c
h(n− 2k1 − 2k2)

(∫
K∗20 (t)dt

)
{1 + op(1)}.

Proof: see Appendix N. �

If the order of k1 is the same as the order of k2, the asymptotic upper bound of the

conditional MISE is minimized at h = O(n
− 2

7p+8 ), k1 = O(n
5p+6
7p+8 ) and k2 = O(n

5p+6
7p+8 ) and

L2 rates of convergence is Op(n
− 4p+4

7p+8 ). The way to select the bandwidth h is the same as
for the first order smoothed derivative estimator. We use Corollary 5 to select k1 and k2,
and then select bandwidth h by minimizing the RSS in order to avoid estimating ρ′c. The
proposed estimator with a two step parameter tuning is still asymptotic consistent. From
Theorem 4, the pointwise consistency of (21) for p odd immediately follows.
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Corollary 6 Under the assumptions of Theorem 4, h → 0 and nh → ∞ as n → ∞,
k1 →∞ and k2 →∞ as n→∞ such that n−1k1 → 0, n−1k2 → 0, n3k−2

1 k−3
2 h−1 → 0 and

n3k−4
1 k−1

2 h−1 → 0. Then, for σ2
e <∞ and the weights given in (17), we have for any ε > 0

P(|r̂(2)(u0)− r(2)(u0)| ≥ ε)→ 0

Proof: Analogous to the proof in Appendix H. �.

Assume k1 and k2 have the same order, then for k1 = O(n6/7) and k2 = O(n6/7) in Corol-
lary 5, and h = O(n−1/(2p+3)) for p odd from Corollary 1 in De Brabanter et al. (2018), the
L2 rates of convergence is

E[(r̂(2)(u0)− r(2)(u0))2|Ũ] = Op(n
−2/7)

which matches the convergence rate obtained by Stone (1985) for p = 3. Using Jensen’s
inequality, the L1 rate of convergence is Op(n

−1/7).

3.5. Generalizing Noisy Second Order Derivative to arbitrary distributions

As before, we use the Probability Integral Transform (PIT) as in (14) to transform the
random variables X to U . Assume the second order derivative of F (X) exists, taking the
derivative on both sides of m(X) = r(F (X)) with respect to X

d2m

dX2
=

d

dX

(
dr

dU

dU

dX

)
=

d

dX

(
f(X)r(1)(U)

)
= f (1)(X)r(1)(U) + f(X)r(2)(U) (22)

leading to m(2)(X) = f (1)(X)r(1)(U)+f(X)r(2)(U), where f (1)(X) = df(X)
dX . The derivative

of the density can be estimated via the kernel density derivative estimator

f̂ ′(x) =
1

nh2

n∑
i=1

L′
(
x−Xi

h

)
assuming the kernel L satisfies the necessary differentiability conditions (e.g. Gaussian
kernel) and the bandwidth h > 0. An automated procedure, including bandwidth selection,
is available in the R package kedd (Arsalane, 2015).

4. Simulation Study

In Theorem 2 and Theorem 4, r̂(1)(·) and r̂(2)(·) are based on noisy derivative data for
interior points. In the simulation, we include the noisy derivative data at the boundary to
obtain the local polynomial regression estimator for the final smoothed derivatives.

4.1. First Order Derivative Estimation

Consider the following two functions

m(X) = cos2(2πX) + log(4/3 +X) for X ∼ U(0, 1) (23)

m(X) = 50e−8(1−2X)4(1− 2X) for X ∼ beta(2, 2). (24)
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In all simulations, we estimate the density f and distribution F using kernel methods (R
package ks (Duong, 2018)). The tuning parameter k is selected based on Corollary 5 over a
positive integer set {1, 2, . . . , 499}. We use local cubic regression (p = 3) with bimodal kernel
to initially smooth the data. Bandwidths h were selected from the set {0.04, 0.045, . . . , 0.1}
for both (23) and (24) and corrected for a unimodal Gaussian kernel. The sample size for
both models is n = 1000 with e ∼ N(0, 0.12) and e ∼ N(0, 22) for (23) and (24) respectively.
Figure 1 shows the raw data (X,Y ) for both model (23) and model (24). Figure 2 and 3
show the first order noisy derivative (blue dots), the true first order derivative (full line) and
smoothed first order derivative (dashed line) for both model (23) and model (24) separately.

(a) (b)

Figure 1: Raw data generated according to (a) model (23) and (b) model (24).

Next, we compare the proposed methodology with several popular methods for non-
parametric derivative estimation, i.e. the local slope of the local polynomial regression with
p = 2, p = 3 (R package locpol (Ojeda, 2012)) and penalized smoothing splines (R package
pspline (Ramsey and Ripley, 2017)). The order of the local polynomial is recommended
to be p = 2 since p minus the order of the derivative is odd (Fan and Gijbels, 1996). In
case of penalized smoothing splines, cubic splines were used. For the Monte Carlo study,
we constructed data sets of size n = 700 and generated the function

m(X) =
√
X(1−X) sin((2.1π)/(X + 0.05)) for X ∼ U(0.25, 1) (25)

100 times according to model (2) with e ∼ N(0, 0.22). Bandwidths were selected from the
set {0.03, 0.035, . . . , 0.07} and corrected for a unimodal Gaussian kernel. In order to remove
the effect of boundary issues on the performance for all three methods, we use the adjusted
mean absolute error as a performance measure defined as

MAEadjusted =
1

650

675∑
i=26

|m̂′n(Xi)−m′(Xi)|.

Figure 4 shows the raw data in one random run in Monte Carlo study and its estimated
first order derivatives using the proposed estimator, local quadratic polynomial regression
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(a) (b) Back transform according to m̂(1)(X) =

f̂(X)r̂(1)(U)

Figure 2: First order noisy derivative (dots) of model (23) based on k = 26. Smoothed
derivative based on local cubic regression (dashed line) and true derivative (full line). (a)
First step of the smoothing process for arbitrary distributions using the probability integral
transform; (b) True first order derivative (full line) and the proposed smoothed derivative
of m(X) (dashed line) in the original space. Boundary points are not shown for visual
purposes.

(a) (b) Back transform according to m̂(1)(X) =

f̂(X)r̂(1)(U)

Figure 3: First order noisy derivative (dots) of model (24) based on k = 22, smoothed
derivative based on local cubic regression (dashed line) and true derivative (full line). (a)
First step of the smoothing process for arbitrary distributions using the probability integral
transform; (b) True first order derivative (full line) and the proposed smoothed derivative
of m(X) (dashed line) in the original space. Boundary points are not shown for visual
purposes.

and cubic penalized smoothing splines. The variance in this model is large which increases
the difficulty in estimation and the proposed estimator is slightly better than local poly-
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(a) (b)

Figure 4: One random run for model (25). (a) Raw data. (b) True first order derivatives
(full solid line) with estimated first order derivatives using three different method: the
proposed estimator with k = 8 (red dash line), the local polynomial estimator with p = 2
(green dash line) and cubic penalized smoothing (blue dash line).

Figure 5: Result of the Monte Carlo study for the proposed methodology, local polynomial
regression and penalized smoothing splines for first order derivative estimation.

nomial estimator in peaks and dips and smoother then penalized smoothing on the right
part, but overall three methods have equal performance in estimating first order derivative
of this regression function.

The first three boxplots in Figure 5 represent the performance of those three methods
in 100 repetitions. The proposed model has a similar performance as the local polynomial
regression with p = 2 (locpol2) and cubic penalized smoothing splines (psplines). To illus-
trate the loss of accuracy due to estimation of the density f and distribution F we use the
true density and distribution to compute the derivative in the fourth boxplot.

22



Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients

We also run a Monte Carlo simulation for a non-uniform distribution

m(X) = X + 2 exp(−16X2) for X ∼ N (0, 0.52) (26)

100 times according to model (2) with e ∼ N(0, 0.22). Bandwidths were selected from
the set {0.04, 0.045, . . . , 0.08} and corrected for a unimodal Gaussian kernel. As before,
we compare the proposed model with local polynomial regression with p = 2 (locpol2)
and cubic penalized smoothing splines (psplines) in Figure 6. Proposed model and cubic
penalized smoothing splines are better than local polynomial regression with p = 2 in this
case. The cubic penalized smoothing splines is slightly better than the proposed model
using kernel density estimator and have similar performance with the proposed model if
using true density.

(a) (b)

Figure 6: One random run for model (26). (a) Raw data. (b) Result of the Monte Carlo
study for the proposed methodology using kernel density estimator(kde), local polynomial
regression(locpol2), penalized smoothing splines(psplines) and proposed methodology with
true normal density for first order derivative estimation.

4.2. Second Order Derivative Estimation

Similar to the first order derivative, the tuning parameters k1 and k2 could be determined by
minimizing the criterion in Corollary 5 through grid search over a product set. We use local
cubic regression (p = 3) with a kernel K such that K(0) = 0 to smooth the noisy second
order derivatives. The bandwidth obtained with the kernel K such that K(0) = 0 is then
corrected for a unimodal kernel. The second order derivative estimation for any distribution
is given in (22). In the simulation, we only show the performance of the proposed second
order derivative estimator under the assumption that X ∼ U [0, 1]. For model (24), we
change the assumption on the distribution of X as follows

m(X) = 50e−8(1−2X)4(1− 2X) for X ∼ U(0, 1). (27)

Figure 7 shows the raw data (X,Y ) for both models (23) and (27). The sample size is
taken to be n = 1000 for both functions with e ∼ N(0, 0.12) and e ∼ N(0, 22) for (23)
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and (24) respectively. In this simulation, we choose the gird search space of (k1, k2) to
be {1, 2, . . . , 100} ⊗ {1, 2, . . . , 100} for all models. Bandwidths h are selected from the
set {0.05, 0.055, . . . , 0.1} for both functions (23) and (27). The results for second order
derivative estimation of function (23) and (27) are shown in Figure 8. For visual purposes
the boundary points have been removed. Figure 8 shows the second order noisy derivative
(blue dots), the true first order derivative (full line) and smoothed first order derivative (red
dashed line) for both models (23) and (27) respectively.

(a) model (23) (b) model (27)

Figure 7: Raw Data for both models

(a) model (23) (b) model (27)

Figure 8: Second order derivatives smoothed by p = 3 local polynomial regression using a
kernel K such that K(0) = 0 (red dashed line) on the noisy second order derivative data(blue
dots) and true derivative function (full line). (a) Second order derivative of model (23), with
k1 = 42 and k2 = 23; (b) Second order derivative of model (27) with k1 = 44 and k2 = 24.
Boundary points are not shown for visual purposes.

To compare the proposed smoothed second order derivative estimator with the cubic
local polynomial estimator, we show both estimators for model (23) and model (27) in
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(a) (b)

Figure 9: Second order derivatives smoothed by p = 3 local polynomial regression using a
kernel K such that K(0) = 0 (red dashed line) on the noisy second order derivative data,
the local polynomial estimator with p = 3 (green dash line) and true derivative function
(full line). (a) Second order derivative of model (23) with k1 = 42 and k2 = 23 (b) Second
order derivative of model (27) with k1 = 44 and k2 = 24. Boundary points are not shown
for visual purposes.

Figure 9. It is clear that the proposed second order derivative estimator slightly outperforms
the local polynomial (p = 3) estimates. For the Monte Carlo study, we construct data sets
of size n = 700 for the function

m(x) = 8e−(1−5x)3(1−7x) for X ∼ U(0, 1) (28)

100 times according to model (2) with e ∼ N(0, 0.12). As a measure of performance, we
define the adjusted mean absolute error as

MAEadjusted =
1

640

670∑
i=31

|m̂(2)
n (Xi)−m(2)(Xi)|

to ignore the boundary effects in the simulation result. Bandwidths are selected from
interval {0.03, 0.035, . . . , 0.1}.

Similar to the first order derivative, we compare the proposed methodology with local
polynomial regression (R package locpol (Ojeda, 2012)) and penalized smoothing splines
(R package stat (Ramsey and Ripley, 2017)). The order of the local polynomial was taken
to be p = 3 since p minus the order of the derivative is odd (Fan and Gijbels, 1996). In
case of penalized smoothing splines, cubic splines were used. Figure 10 shows the raw
data in one random run in Monte Carlo study and its estimated second order derivatives
using three methods. Those three methods have equal performance in estimating second
order derivative for raw data in Figure 10. The results for Monte Carlo study is shown
in Figure 11. The proposed estimator has a slightly better performance compared to local
cubic polynomial estimates and penalized cubic splines.
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(a) (b)

Figure 10: One random run for model (28). (a) Raw data. (b) True second order derivatives
(full solid line) with estimated second order derivatives using three different method: the
proposed estimator with k1 = 15, k2 = 8 (red dash line), the local polynomial estimator
with p = 3 (green dash line) and cubic penalized smoothing (blue dash line).

Figure 11: Result of the Monte Carlo study for the proposed methodology, local polynomial
regression and penalized smoothing splines for second order derivative estimation.

One anonymous referee suggested to smooth the data first by means of adaptive splines
followed by taking discrete derivatives i.e., using first or second order differencing for the
first or second order derivatives respectively. The main idea for the first order derivative
estimator is given by

m̂(Xi)− m̂(Xi−1)

Xi −Xi−1
≈ m̂′(ξi) (29)

with ξi ∈ [Xi−1, Xi] and m̂ the adaptive spline estimator (denoted as gam). This approach
can have promising results (see Figure 12), but it does not immediately allow to evaluate
the derivatives in an arbitrary point. We conducted a Monte Carlo simulation for model 23
with global k. In Figure 12(b), the median of (29) is slightly lower than the proposed
model (kde) and the one assuming the true underlying distribution is known (uniform).
Further, the mean for the three methods is 0.267 (gam), 0.268 (uniform) and 0.302 (kde)

26



Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients

and the variances are 0.016, 0.004, 0.006 respectively. Based on this simulation we can state
that the adaptive spline estimator and the proposed method have a similar performance on
model (23).

(a) (b)

Figure 12: One random run for model (22). (a) True first order derivatives (full) with
estimated first order derivatives using an adaptive spline estimator in (29) (green dashed)
and the proposed estimator (red dashed); (b) Monte Carlo result based on 100 runs for (29)
(gam), assuming the true underlying distribution is known (uniform) and the proposed
method (kde).

5. Conclusions

We proposed a method for derivative estimation in random design and discussed the asymp-
totic properties of the proposed estimators. The proposed methodology estimates deriva-
tives nonparametrically without having to estimate the regression function. Asymptotic
bias and variance are derived, L1 and L2 rates of convergence are established. Our analysis
showed that estimating higher order derivatives becomes increasingly more difficult and
slower rates of convergence are to be expected. Further, we provide a rule-of-thumb to
choose the parameter(s) for the first and second order noisy derivatives. Finally, since the
independence assumption of the newly created data set does no longer hold, we use a simple
but effective smoothing methodology based on kernels K such that K(0) = 0 combined with
the flexibility of local polynomial regression. Additionally, we discussed the property of the
smoothed noisy derivative estimates.

One drawback of the proposed framework is that the proposed first and second order
derivative estimator requires the estimation of the density f and distribution F . A first
topic of further research interest is to adapt the proposed framework directly for arbitrary
distributions without transformation. Second, finding an efficient way to tune h and k
simultaneously would greatly benefit the rate of convergence of the proposed methodology.
A potential lead could be found in the use of empirical semi-variograms.
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Appendix A. Proof of Lemma 1

Following David and Nagaraja (1970, p. 14) we have

U(i+j) − U(i−j) ∼ Beta(2j, n+ 1− 2j).

It immediately follows that

U(i+j) − U(i−j) = E
{
U(i+j) − U(i−j)

}
+Op

[√
Var

{
U(i+j) − U(i−j)

}]
=

2j

n+ 1
+Op

(√
j

n2

)

Similarly, according to the property of uniform order statistics we have

U(i+j) − U(i) ∼ Beta(j, n+ 1− j)

and

U(i+j) − U(i) = E
{
U(i+j) − U(i)

}
+Op

[√
Var

{
U(i+j) − U(i)

}]
=

j

n+ 1
+Op

(√
j

n2

)
.

The proof of the third part of the lemma is analogous to the proof above and is therefore
omitted.

Appendix B. Proof of Proposition 1

Var
[
Ŷ

(1)
i |U

]
= Var

 k∑
j=1

wi,j ·
(

Yi+j − Yi−j
U(i+j) − U(i−j)

)
|U


=

(
1−

k∑
j=2

wi,j

)2

Var

[
Yi+1 − Yi−1

U(i+1) − U(i−1)
|U
]

+
k∑
j=2

w2
i,j Var

[
Yi+j − Yi−j

U(i+j) − U(i−j)
|U
]

=

(
1−

k∑
j=2

wi,j

)2 2σ2
e

(U(i+1) − U(i−1))2
+

2σ2
e

(U(i+j) − U(i−j))2

k∑
j=2

w2
i,j .

Setting the partial derivatives to zero yields

wi,j = wi,1
(U(i+j) − U(i−j))

2

(U(i+1) − U(i−1))2
.

Using the fact that
∑k

j=1wi,j = 1 results in

k∑
j=1

wi,j = wi,1

k∑
j=1

(U(i+j) − U(i−j))
2

(U(i+1) − U(i−1))2
= 1.
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Consequently, this gives

wi,j
(U(i+1) − U(i−1))

2

(U(i+j) − U(i−j))2

k∑
j=1

(U(i+j) − U(i−j))
2

(U(i+1) − U(i−1))2
= 1

proving the proposition.

Appendix C. Proof of Theorem 1

Since r is twice continuously differentiable on [0, 1], the following Taylor expansions are
valid for r(U(i+j)) and r(U(i−j)) in a neighborhood of U(i):

r(U(i+j)) = r(U(i)) + (U(i+j) − U(i))r
′(U(i)) +

(U(i+j) − U(i))
2

2
r(2)(ζi,i+j)

and

r(U(i−j)) = r(U(i)) + (U(i−j) − U(i))r
′(U(i)) +

(U(i−j) − U(i))
2

2
r(2)(ζi−j,i),

where ζi,i+j ∈]U(i), U(i+j)[ and ζi−j,i ∈]U(i−j), U(i)[. Using Lemma 1 and Proposition 1, the
absolute conditional bias is bounded above by

∣∣∣bias
[
Ŷ

(1)
i |U

]∣∣∣ =

∣∣∣∣∣∣E
 k∑
j=1

wi,j ·
(
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U(i+j) − U(i−j)

)
|U

− r′(Ui)
∣∣∣∣∣∣
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1

2

∣∣∣∣∣∣
k∑
j=1

wi,j
(U(i+j) − U(i))

2r(2)(ζi,i+j)− (U(i−j) − U(i))
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1

2

∣∣∣∣∣
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2r(2)(ζi−j,i)
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l=1(U(i+l) − U(i−l))2

∣∣∣∣∣
≤ 1

2
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1 +Op(

1√
k
)
}

2k(k+1)(2k+1)
3(n+1)2

{
1 +Op(

1√
k
)
}

= sup
u∈[0,1]
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1 +Op

(
1√
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.

Then for k →∞ as n→∞∣∣∣bias
[
Ŷ

(1)
i |U

]∣∣∣ ≤ sup
u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)
{1 + op(1)}
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Using Proposition 1, the conditional variance yields

Var
[
Ŷ

(1)
i |U

]
= Var

 k∑
j=1

wi,j ·
(

Yi+j − Yi−j
U(i+j) − U(i−j)

)
|U


= 2σ2

e

∑k
j=1(U(i+j) − U(i−j))

2(∑k
l=1(U(i+l) − U(i−l))2

)2
= 2σ2

e

1∑k
l=1

(
U(i+l) − U(i−l)

)2
= 2σ2

e

1
2k(k+1)(2k+1)

3(n+1)2
{1 + op(1)}

=
3σ2

e(n+ 1)2

k(k + 1)(2k + 1)
{1 + op(1)} ,

provided that k →∞ as n→∞. Both results hold uniformly for k + 1 ≤ i ≤ n− k.

Appendix D. Proof of Corollary 1

Under the conditions k → ∞ as n → ∞ such that n−1k → 0 and n2k−3 → 0, Theo-
rem 1 states that the upperbound of conditional bias and conditional variance go to zero.
Consequently, we have that

lim
n→∞

MSE
[
Ŷ

(1)
i |U

]
= 0.

According to Chebyshev’s inequality the proof is complete.

Appendix E. Proof of Corollary 2

From the bias-variance decomposition of the mean squared error (MSE), it follows that

MSE
[
Ŷ

(1)
i |U

]
≤ B2 9k2(k + 1)2

16(n+ 1)2(2k + 1)2
+

3σ2
e(n+ 1)2

k(k + 1)(2k + 1)
+ op(n

−2k2 + n2k−3),

with B = supu∈[0,1] |r(2)(u)|. Since U ∼ U(0, 1), the conditional mean integrated squared
error (MISE) which measures the average global error is:

MISE
[
Ŷ (1)|U

]
= E

∫ 1

0

[
Ŷ (1)(U)− r(1)(U)|U

]2
dU

=

∫ 1

0
E
[
Ŷ (1)(U)− r(1)(U)|U

]2
dU

≤ B2 9k2(k + 1)2

16(n+ 1)2(2k + 1)2
+

3σ2
e(n+ 1)2

k(k + 1)(2k + 1)
+ op(n

−2k2 + n2k−3)

with Ŷ (1)(U) represents the first order derivative estimator at design point U. Denote the
asymptotic conditional MISE (AMISE) by

AMISE
[
Ŷ (1)|U

]
≤ B2 9k2(k + 1)2

16(n+ 1)2(2k + 1)2
+

3σ2
e(n+ 1)2

k(k + 1)(2k + 1)
.
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Appendix F. Proof of Exact Bias

Assume the q+ 1 derivatives of r exist on [0, 1], according to lemma 1, the following Taylor
expansions are valid for r(U(i+j)) and r(U(i−j)) in a neighborhood of U(i)

r(U(i+j)) = r(U(i)) +

q∑
l=1

1

l!
(U(i+j) − U(i))

lr(l)(U(i)) +Op(U(i+j) − U(i))
q+1

= r(U(i)) +

q∑
l=1

1

l!
(U(i+j) − U(i))

lr(l)(U(i)) +Op{(j/n)q+1}

and

r(U(i−j)) = r(U(i)) +

q∑
l=1

1

l!
(U(i−j) − U(i))

lr(l)(U(i)) +Op(U(i−j) − U(i))
q+1

= r(U(i)) +

q∑
l=1

1

l!
(U(i−j) − U(i))

lr(l)(U(i)) +Op{(j/n)q+1}.

Taking expectations and for
∑k

j=1wi,j = 1

E
[
Ŷ

(1)
i |U

]
=

k∑
j=1

wi,j
r(U(i+j))− r(U(i−j))

U(i+j) − U(i−j)

=

∑k
j=1(U(i+j) − U(i−j))

[∑q
l=1

r(l)(U(i))

l!

{
(U(i+j) − U(i))

l − (U(i−j) − U(i))
l
}

+Op{(j/n)q+1}
]

∑k
p=1(U(i+p) − U(i−p))2

For q = 1, the second order derivative of r exists on [0, 1]

bias
[
Ŷ

(1)
i |U

]
=

r(1)(U(i))
∑k

j=1(U(i+j) − U(i−j))
2 +Op

(
k4/n3

)∑k
p=1(U(i+p) − U(i−p))2

− r(1)(U(i))

= Op

(
k

n

)
For q = 2, the third order derivative of r exists on [0, 1]

bias
[
Ŷ

(1)
i |U

]
=

r(2)(U(i))
∑k

j=1(U(i+j) − U(i−j))
{

(U(i+j) − U(i))
2 − (U(i−j) − U(i))

2
}

+Op
(
k5/n4

)
2
∑k

p=1(U(i+p) − U(i−p))2

=
Op(k

7
2 /n3) +Op

(
k5/n4

)
Op(k3/n2)

= Op

(
max

{
k

1
2

n
,
k2

n2

})
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The bias can be split into two terms, biaseven = Op

(
k
1
2

n

)
and biasodd = Op

(
k2

n2

)
. biaseven

indicates the bias from the even order terms in the Taylor expansion of r(U(i±j)) and biasodd

for the odd order terms respectively.
For q > 2, we have

E
[
Ŷ

(1)
i |U

]
= r(1)(U(i))

+

∑k
j=1(U(i+j) − U(i−j))

[∑q
l=2

r(l)(U(i))

l!

{
(U(i+j) − U(i))

l − (U(i−j) − U(i))
l
}

+Op{(j/n)q+1}
]

∑k
p=1(U(i+p) − U(i−p))2

.

Splitting the second term in biaseven and biaseven yields

biasodd[Ŷ
(1)
i |U

] def
=

∑k
j=1(U(i+j) − U(i−j))

[∑2dq/2e−1
l=3,5,...

r(l)(U(i))

l!

(
(U(i+j) − U(i))

l − (U(i−j) − U(i))
l

)]
∑k

p=1(U(i+p) − U(i−p))2

=

∑k
j=1(U(i+j) − U(i−j))

[
r(3)(Ui)

6

(
(U(i+j) − U(i))

3 − (U(i−j) − U(i))
3

)]
∑k

p=1(U(i+p) − U(i−p))2

{
1 + op(1)

}
=

(
r(3)(U(i))(3k

2 + 3k − 1)

30(n+ 1)2
+Op

(
k

3
2

n2

)){
1 + op(1)

}
= Op

{
k2

n2

}

biaseven[Ŷ
(1)
i |U

] def
=

∑k
j=1(U(i+j) − U(i−j))

[∑2bq/2c
l=2,4,...

r(l)(U(i))

l!

(
(U(i+j) − U(i))

l − (U(i−j) − U(i))
l

)]
∑k

p=1(U(i+p) − U(i−p))2

=

∑k
j=1(U(i+j) − U(i−j))

[
r(2)(U(i))

2

(
(U(i+j) − U(i))

2 − (U(i−j) − U(i))
2

)]
∑k

p=1(U(i+p) − U(i−p))2

{
1 + op(1)

}
= Op

{
k

1
2

n

}
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Appendix G. Bias and Variance at the Left Boundary

Assume that r is three times continuously differentiable on [0, 1]. At the left boundary
i < k + 1, we have

bias[Ŷ
(1)
i |U

]
=

k(i)∑
j=1

wi,j ·

(
1
2

[
(U(i+j) − U(i))

2 − 1
2(U(i−j) − U(i))

2
]
r(2)(U(i))

U(i+j) − U(i−j)

)

+

k(i)∑
j=1

wi,j ·

(
Op
(
j3/n3

)
U(i+j) − U(i−j)

)

+
k∑

j=k(i)+1

wi,j ·
(

1

2
(U(i+j) − U(i))r

(2)(U(i))

){
1 + op(1)

}
= Op

{
max

(
k(i)7/2

k3n
,
k(i)5

k3n2
,
k − k(i)

n

)}

Var[Ŷ
(1)
i |U

]
= Var

k(i)∑
j=1

wi,j

(
Yi+j − Yi−j

U(i+j) − U(i−j)

)
|U

+ Var

 k∑
j=k(i)+1

wi,j

(
Yi+j − Yi

U(i+j) − U(i)

)
|U


= 2σ2

e

k(i)∑
j=1

(
wi,j

U(i+j) − U(i−j)

)2

+ σ2
e

k∑
j=k(i)+1

(
wi,j

U(i+j) − U(i)

)2

+ σ2
e

 k∑
j=k(i)+1

(
wi,j

U(i+j) − U(i)

)2

= Op

{
max

(
n2

k3
,
n2(k − k(i))2

k4

)}
.

Appendix H. Proof of Theorem 2

Part I (conditional bias)

bias
[
r̂(1)(u0)|Ũ

]
= E

[
r̂(1)(u0)|Ũ

]
− r(1)(u0)

= εT1 S−1
n−2k Uu

T Wu E[Ŷ
(1)|Ũ]− r(1)(u0)

= εT1 S−1
n−2k Uu

T Wu

(r
(1)(U(k+1))

...

r(1)(U(n−k))

+


bias[Ŷ

(1)
k+1|U]
...

bias[Ŷ
(1)
n−k|U]

)− r(1)(u0)
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For p odd, (see Theorem 3.1 in Fan and Gijbels (1996)), the first term is

εT1 S−1
n−2k Uu

T Wu

r
(1)(U(k+1))

...

r(1)(U(n−k))

− r(1)(u0) = εT1 S−1 cpβp+1h
p+1 + op(h

p+1)

= εT1 S−1 cp
(p+ 1)!

r(p+2)(u0)hp+1 + op(h
p+1)

(30)

where cp = (µp+1, . . . , µ2p+1)T with µj =
∫
ujK(u)du, and S = (µi+j)0≤i,j≤p.

Based on Theorem 1, for k →∞ as n→∞ the second term is

εT1 S−1
n−2k Uu

T Wu


bias[Ŷ

(1)
k+1|U]
...

bias[Ŷ
(1)
n−k|U]

 ≤ εT1 S−1
n−2k Uu

T Wu

1
...
1

 sup
u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)
{1 + op(1)}.

(31)

Ignore orders statistics among U(k+1), . . . , U(n−k), they can be treated i.i.d samples. Let

Sn−2k,l =
∑n−k

m=k+1(U(m) − u0)lKh(U(m) − u0), then for l = 0, 1, . . . , p

Sn−2k,l = E[Sn−2k,l] +Op

{√
Var[Sn−2k,l]

}
For h→ 0 and nh→∞ as n→∞ we have

E[Sn−2k,l] = (n− 2k) E[(U − u0)lKh(U − u0)]

=
(n− 2k)

h

∫
K

(
u− u0

h

)
(u− u0)lf(u)du

= (n− 2k)hl
∫
K(x)xlf(u0 + xh)dx

= (n− 2k)hlf(u0)

[∫
xlK(x)dx+ op(1)

]
= (n− 2k)hlf(u0)µl{1 + op(1)}

and similarly

Op

{√
Var[Sn−2k,l]

}
= Op

(√
(n− 2k) E[(U − u0)2lK2

h(U − u0)]

)
= Op

(√
(n− 2k)

∫
(u− u0)2lK2

h(u− u0)f(u)du

)

= Op

(√
(n− 2k)h2l−1f(u0)

∫
x2lK2(x)dx

)

= Op

(√
(n− 2k)h2l−1

)
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Thus for h→ 0 and nh→∞ as n→∞, k →∞ as n→∞ such that n−1k → 0:

Sn−2k,l = (n− 2k)hlf(u0)µl

{
1 + op(1) +Op

(√
1/(h(n− 2k))

)}
= (n− 2k)hlf(u0)µl {1 + op(1)} (32)

and

Sn−2k = Uu
T Wu Uu =


Sn−2k,0 Sn−2k,1 . . . Sn−2k,p

Sn−2k,1 Sn−2k,1 . . . Sn−2k,p+1
...

...
. . .

...
Sn−2k,p Sn−2k,p+1 . . . Sn−2k,2p


= (n− 2k)f(u0)H SH{1 + op(1)} (33)

where H = diag{1, h, . . . , hp}. Next,

Uu
T Wu

1
...
1

 =



∑n−k
m=k+1Kh(U(m) − u0)∑n−k

m=k+1(U(m) − u)Kh(U(m) − u0)
...∑n−k

m=k+1(U(m) − u)pKh(U(m) − u0)


=


Sn−2k,0

Sn−2k,1
...

Sn−2k,p


= (n− 2k)f(u0)Hc̃p{1 + op(1)} (34)

where c̃p = (µ0, µ1, . . . , µp)
T . Plugging (33),(34) into (31) gives

εT1 S−1
n−2k Uu

T Wu


bias[Ŷ

(1)
k+1|U]
...

bias[Ŷ
(1)
n−k|U]

 ≤ sup
u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)
εT1 H

−1 S−1 c̃p{1 + op(1)}

= sup
u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)
εT1 S−1 c̃p{1 + op(1)}.(35)

Based on (30) and (35), we have

bias
[
r̂(1)(u0)|Ũ

]
= εT1 S−1

n−2k Uu
T Wu

r
(1)(U(k+1))

...

r(1)(U(n−k)

− r(1)(u0) + εT1 S−1
n−2k Uu

T Wu


bias[Ŷ

(1)
k+1|U]
...

bias[Ŷ
(1)
n−k|U]


≤ εT1 S−1

[
cp

(p+ 1)!
r(p+2)(u0)hp+1 + sup

u∈[0,1]
|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)
c̃p

]
{1 + op(1)}.

(36)

Part II (conditional variance)
Provided that k →∞ as n→∞, consider the conditional variance in Theorem 1

Var[Ŷ
(1)
i |Ũ] =

3σ2
e(n+ 1)2

k(k + 1)(2k + 1)
{1 + op(1)}
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and by Theorem 1 in De Brabanter et al. (2018)

Var
[
r̂(1)(u0)|Ũ

]
= εT1 S−1

n−2k(Uu
T Wu Var[Ŷ

(1)|Ũ] Wu Uu) S−1
n−2k ε1

=
3σ2

e(n+ 1)2

k(k + 1)(2k + 1)

1 + f(u0)ρc
h(n− 2k)f(u0)

εT1 S−1 S∗ S−1 ε1{1 + op(1)} (37)

with limn→∞ n
∫
ρn(x)dx = ρc and S∗ = (νi+j)0≤i,j≤p with νj =

∫
ujK2(u)du.

For p odd, (see Theorem 3.1 in Fan and Gijbels (1996)):∫
K∗0 (t)dt = εT1 S

−1

(∫
K(t)dt,

∫
tK(t)dt, . . . ,

∫
tpK(t)dt

)T
= εT1 S

−1c̃p (38)

Similarly, we obtain∫
tp+1K∗0 (t)dt = εT1 S

−1cp,

∫
K∗20 (t)dt = εT1 S

−1S∗S−1ε1 (39)

plugging (38) and (39) into (36) and (37) provides the second part of Theorem 2.

Appendix I. Proof of Corollary 3

For h → 0, nh → ∞ and k → ∞ as n → ∞ such that n−1k → 0 and nk−3h−1 → 0, then
theorem 2 states that the upperbound of the conditional bias and conditional variance go
to zero. Consequently, we have that

lim
n→∞

MSE
[
r̂(1)(u0)|Ũ

]
= 0.

According to Chebyshev’s inequality the proof is complete.

Appendix J. Proof of Theorem 3

The proof for the asymptotic properties of the second order derivatives is similar to that of
the first order derivatives. Since r is three times continuously differentiable on the compact
interval [0, 1], the following Taylor expansions are valid for r(U(i+j+k1)) and r(U(i−j−k1)) in
a neighborhood of U(i+j) and U(i−j) respectively

r(U(i+j+k1)) = r(U(i+j))+

2∑
q=1

1

q!
(U(i+j+k1)−U(i+j))

qr(q)(U(i+j))+
(U(i+j+k1) − U(i+j))

3

6
r(3)(ζi+j,i+j+k1)

and

r(U(i−j−k1)) = r(U(i−j))+
2∑
q=1

1

q!
(U(i−j−k1)−U(i−j))

qr(q)(U(i−j))+
(U(i−j−k1) − U(i−j))

3

6
r(3)(ζi−j−k1,i−j),

where ζi+j,i+j+k1 ∈]U(i+j), U(i+j+k1)[ and ζi−j−k1,i−j ∈]U(i−j−k1), U(i−j)[.
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Similarly, the following Taylor expansions are also valid for r(1)(U(i+j)) and r(1)(U(i−j))
in a neighborhood of U(i):

r(1)(U(i+j)) = r(1)(U(i)) + (U(i+j) − U(i))r
(2)(U(i)) +

(U(i+j) − U(i))
2

2
r(3)(ζi,i+j)

and

r(1)(U(i−j)) = r(1)(U(i)) + (U(i−j) − U(i))r
(2)(U(i)) +

(U(i−j) − U(i))
2

2
r(3)(ζi−j,i),

where ζi,i+j ∈]U(i), U(i+j)[ and ζi−j,i ∈]U(i−j), U(i)[.

r(2)(U(i+j)) = r(2)(U(i)) + (U(i+j) − U(i))r
(3)(ζ

′
i,i+j)

and

r(2)(U(i−j)) = r(2)(U(i)) + (U(i−j) − U(i))r
(3)(ζ

′
i−j,i),

where ζ
′
i,i+j ∈]U(i), U(i+j)[ and ζ

′
i−j,i ∈]U(i−j), U(i)[. Since

∑k2
j=1wi,j,2 = 1, the absolute

conditional bias is

∣∣∣bias
[
Ŷ

(2)
i |Ũ

]∣∣∣ =
∣∣∣E [Ŷ (2)

i |Ũ
]
− r(2)(U(i))

∣∣∣
=

∣∣∣∣∣∣2
k2∑
j=1

wi,j,2

(
r(U(i+j+k1)

)−r(U(i+j))

U(i+j+k1)
−U(i+j)

− r(U(i−j−k1)
)−r(U(i−j))

U(i−j−k1)
−U(i−j)

)
U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

− r(2)(U(i))

∣∣∣∣∣∣
=

∣∣∣∣2 k2∑
j=1

wi,j,2

{(
r(1)(U(i+j))− r(1)(U(i−j)) + 1

2r
(2)(U(i+j))(U(i+j+k1) − U(i+j))

)
U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

+
−1

2r
(2)(U(i−j))(U(i−j−k1) − U(i−j)) + 1

6r
(3)(ζi+j,i+j+k1)(U(i+j+k1) − U(i+j))

2

U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

+
−1

6r
(3)(ζi−j−k1,i−j)(U(i−j−k1) − U(i−j))

2

U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

}
− r(2)(U(i))

∣∣∣∣
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=

∣∣∣∣2 k2∑
j=1

wi,j,2

{ 1
2r

(3)(ζi,i+j)(U(i+j) − U(i))
2 − 1

2r
(3)(ζi−j,i)(U(i−j) − U(i))

2

U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

+
1
2r

(3)(ζ
′
i,i+j)(U(i+j) − U(i))(U(i+j+k1) − U(i+j))

U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

−
1
2r

(3)(ζ
′
i−j,i)(U(i−j) − U(i))(U(i−j−k1) − U(i−j))

U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

+
1
6r

(3)(ζi+j,i+j+k1)(U(i+j+k1) − U(i+j))
2 − 1

6r
(3)(ζi−j−k1,i−j)(U(i−j−k1) − U(i−j))

2

U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

}∣∣∣∣
≤ sup

u∈[0,1]
|r(3)(u)|

( k2∑
j=1

wi,j,2
(U(i+j) − U(i))

2 + (U(i−j) − U(i))
2

U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

+

k2∑
j=1

wi,j,2
(U(i+j) − U(i))(U(i+j+k1) − U(i+j)) + (U(i−j) − U(i))(U(i−j−k1) − U(i−j))

U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

+

k2∑
j=1

wi,j,2

1
3(U(i+j+k1) − U(i+j))

2 + 1
3(U(i−j−k1) − U(i−j))

2

U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

)

Using Lemma 1, the weights in Equation (17), k1 →∞ and k2 →∞ as n→∞ gives∣∣∣bias
[
Ŷ

(2)
i |Ũ

]∣∣∣ ≤ supu∈[0,1] |r(3)(u)|
n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j
{1 + op(1)}

Using the weights in Equation (17) and Lemma 1, the conditional variance is

Var
[
Ŷ

(2)
i |Ũ

]
= Cov

[
2

k2∑
j=1

wi,j,2

(
Yi+j+k1

−Yi+j

U(i+j+k1)
−U(i+j)

− Yi−j−k1
−Yi−j

U(i−j−k1)
−U(i−j)

)
U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j)

,

2

k2∑
l=1

wi,l,2

(
Yi+l+k1

−Yi+l

U(i+l+k1)
−U(i+l)

− Yi−l−k1
−Yi−l

U(i−l−k1)
−U(i−l)

)
U(i+l+k1) + U(i+l) − U(i−l−k1) − U(i−l)

|Ũ
]

= 4

k2∑
j=1

k2∑
l=1

wi,j,2wi,l,2
(U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j))(U(i+l+k1) + U(i+l) − U(i−l−k1) − U(i−l)){

Cov
[
Yi+j+k1 − Yi+j , Yi+l+k1 − Yi+l

]
(U(i+j+k1) − U(i+j))(U(i+l+k1) − U(i+l))

−
Cov

[
Yi+j+k1 − Yi+j , Yi−l−k1 − Yi−l

]
(U(i+j+k1) − U(i+j))(U(i−l−k1) − U(i−l))

−
Cov

[
Yi−j−k1 − Yi−j , Yi+l+k1 − Yi+l

]
(U(i−j−k1) − U(i−j))(U(i+l+k1) − U(i+l))

+
Cov

[
Yi−j−k1 − Yi−j , Yi−l−k1 − Yi−l

]
(U(i−j−k1) − U(i−j))(U(i−l−k1) − U(i−l))

}

in which Cov
[
Yi+j+k1−Yi+j , Yi+l+k1−Yi+l

]
= Cov

[
Yi+j+k1 , Yi+l+k1

]
−Cov

[
Yi+j , Yi+l+k1

]
−

Cov
[
Yi+j+k1 , Yi+l

]
+ Cov

[
Yi+j , Yi+l

]
. When j = l, the first and the fourth covariance are
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not zero, when j = l+ k1 the second covariance is not zero, and when j + k1 = l, the third
covariance is not zero. The other three covariance terms can be obtained in a similar way.
Thus,

Var
[
Ŷ

(2)
i |Ũ

]
= 4σ2

k2∑
j=1

w2
i,j,2

(U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j))2

(
2

(U(i+j+k1) − U(i+j))2
+

2

(U(i−j−k1) − U(i−j))2

)

−4σ2
k2−k1∑
j=1

wi,j,2wi,j+k1,2
(U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j))(U(i+j+2k1) + U(i+j+k1) − U(i−j−2k1) − U(i−j−k1))(

1

(U(i+j+k1) − U(i+j))(U(i+j+2k1) − U(i+j+k1))
+

1

(U(i−j−k1) − U(i−j))(U(i−j−2k1) − U(i−j−k1))

)

−4σ2
k2∑

j=1+k1

wi,j,2wi,j−k1,2
(U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j))(U(i+j) + U(i+j−k1) − U(i−j) − U(i−j+k1))(

1

(U(i+j+k1) − U(i+j))(U(i+j) − U(i+j−k1))
+

1

(U(i−j−k1) − U(i−j))(U(i−j) − U(i−j+k1))

)

≤ 4σ2
k2∑
j=1

w2
i,j,2

(U(i+j+k1) + U(i+j) − U(i−j−k1) − U(i−j))2

(
2

(U(i+j+k1) − U(i+j))2
+

2

(U(i−j−k1) − U(i−j))2

)

=
4(n+ 1)4σ2

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}

provided that k1 →∞ and k2 →∞ as n→∞. Both results hold uniformly for
∑2

j=1 kj +

1 ≤ i ≤ n−
∑2

j=1 kj .

Appendix K. Proof of Corollary 4

For k1 →∞ and k2 →∞ as n→∞ and from Theorem 3

∣∣∣bias
[
Ŷ

(2)
i |Ũ

]∣∣∣ ≤ supu∈[0,1] |r(3)(u)|
n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j
{1 + op(1)}

= Op

(
max

{
k1

n
,
k2

n

})

and

Var
[
Ŷ

(2)
i |Ũ

]
≤ 4(n+ 1)4σ2

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}

= Op

(
max

{
n4

k2
1k

3
2

,
n4

k4
1k2

})
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Under the conditions k1 → ∞ and k2 → ∞ as n → ∞ such that n−1k1 → 0, n−1k2 →
0, n4k−2

1 k−3
2 → 0 and n4k−4

1 k−1
2 → 0, Theorem 3 states that the conditional bias and

conditional variance go to zero. Consequently, we have that

lim
n→∞

MSE
[
Ŷ

(2)
i |Ũ

]
= lim

n→∞

(
bias2

[
Ŷ

(2)
i |Ũ

]
+ Var

[
Ŷ

(2)
i |Ũ

])
= 0.

According to Chebyshev’s inequality the proof is complete.

Appendix L. Proof of Corollary 5

From the bias-variance decomposition of the mean squared error (MSE), it follows that

MSE
[
Ŷ

(2)
i |Ũ

]
≤

(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j

)2

{1 + op(1)}

+
4(n+ 1)4σ2

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}

with B2 = supu∈[0,1] |r(3)(u)|. Since U ∼ U(0, 1), the mean integrated squared error (MISE)
which measures the average global error is

MISE
[
Ŷ (2)|Ũ

]
= E

∫ 1

0

[
Ŷ (2)(U)− r(2)(U)|U

]2
dU

=

∫ 1

0
E
[
Ŷ (2)(U)− r(2)(U)|U

]2
dU

≤

(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1
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j=1 j

2 + 5
3k

2
1
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j=1 j + 1

3k
3
1k2

4
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j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j

)2

{1 + op(1)}

+
4(n+ 1)4σ2

k2
1

∑k2
j=1(2j + k1)2
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where Ŷ (2)(U) represents the second order noisy derivative estimator at the design point
U. Denote the asymptotic conditional MISE (AMISE) by

AMISE
[
Ŷ (2)|Ũ

]
≤

(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j
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j=1 j + 1
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3
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4
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j=1(2j + k1)2

.
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Appendix M. Proof of Exact Bias for the Second Order Derivative

Assume the fourth order derivative of r exist on [0, 1]; using Lemma 1 and weights in
Equation (17), the exact bias of (16) is

bias
[
Ŷ

(2)
i |Ũ

]
= 2

k2∑
j=1

wi,j,2

(
r(U(i+j+k1)

)−r(U(i+j))
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−U(i+j)
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)
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2
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k31
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Appendix N. Proof of Theorem 4

The proof is analogous to the proof of Theorem 2 in Appendix H. Denote k′ = k1 + k2,
following the proof of Theorem 3.1 in Fan and Gijbels (1996) and based on Theorem 3, for
k1 →∞ and k2 →∞ as n→∞ we have

εT1 S−1
n−2k′ Uu

T Wu


bias[Ŷ

(2)
k′+1|Ũ]
...

bias[Ŷ
(2)
n−k′ |Ũ]


≤ B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j
εT1 S−1 c̃p{1 + op(1)}
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and for p odd,

εT1 S−1
n−2k′ Uu

T Wu

r
(2)(U(k′+1))

...

r(2)(U(n−k′))

− r(2)(u0) = εT1 S−1 cpβp+1h
p+1 + op(h

p+1)

= εT1 S−1 cp
(p+ 1)!

r(p+3)(u0)hp+1 + op(h
p+1).

Combining the two above expressions yields
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r̂(2)(u0)|Ũ

]
= E
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r̂(2)(u0)|Ũ

]
− r(2)(u0)

= εT1 S−1
n−2k′ Uu

T Wu E[Ŷ
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= εT1 S−1
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T Wu
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bias[Ŷ

(2)
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...
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(2)
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≤ εT1 S−1
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c̃p
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3 + 3k1
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1
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(p+ 1)!
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]
{1 + op(1)}.

Plugging (38) and (39) into this conditional bias gives the second term of the conditional
bias of Theorem 4.

According to Theorem 1 in De Brabanter et al. (2018)

Var
[
r̂(2)(u0)|Ũ

]
= εT1 S−1

n−2k′(Uu
T Wu Var[Ŷ

(2)|Ũ] Wu Uu) S−1
n−2k′ ε1

≤ 4(n+ 1)4σ2
e

k2
1

∑k2
j=1(2j + k1)2

1 + f(u0)ρ′c
h(n− 2k′)f(u0)

εT1 S−1 S∗ S−1 ε1{1 + op(1)}

with limn→∞ n
∫
ρn(x)dx = ρ′c and S∗ = (νi+j)0≤i,j≤p with νj =

∫
ujK2(u)du. Plug-

ging (38) and (39) into this conditional variance gives the second term of the conditional
variance of Theorem 4.
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