
Journal of Machine Learning Research 21 (2020) 1-48 Submitted 3/19; Revised 2/20; Published 5/20

ProxSARAH: An Efficient Algorithmic Framework for
Stochastic Composite Nonconvex Optimization

Nhan H. Pham† nhanph@live.unc.edu

Lam M. Nguyen‡ lamnguyen.mltd@ibm.com

Dzung T. Phan‡ phandu@us.ibm.com
‡IBM Research, Thomas J. Watson Research Center
Yorktown Heights, NY10598, USA

Quoc Tran-Dinh† quoctd@email.unc.edu
†Department of Statistics and Operations Research

The University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA.

Editor: Zaid Harchaoui

Abstract

We propose a new stochastic first-order algorithmic framework to solve stochastic composite
nonconvex optimization problems that covers both finite-sum and expectation settings. Our
algorithms rely on the SARAH estimator introduced in Nguyen et al. (2017a) and consist of
two steps: a proximal gradient and an averaging step making them different from existing
nonconvex proximal-type algorithms. The algorithms only require an average smoothness
assumption of the nonconvex objective term and additional bounded variance assumption
if applied to expectation problems. They work with both constant and dynamic step-
sizes, while allowing single sample and mini-batches. In all these cases, we prove that our
algorithms can achieve the best-known complexity bounds in terms of stochastic first-order
oracle. One key step of our methods is the new constant and dynamic step-sizes resulting
in the desired complexity bounds while improving practical performance. Our constant
step-size is much larger than existing methods including proximal SVRG scheme in the
single sample case. We also specify our framework to the non-composite case that covers
existing state-of-the-arts in terms of oracle complexity bounds. Our update also allows
one to trade-off between step-sizes and mini-batch sizes to improve performance. We test
the proposed algorithms on two composite nonconvex problems and neural networks using
several well-known data sets.

Keywords: Stochastic proximal gradient descent; variance reduction; composite noncon-
vex optimization; finite-sum minimization; expectation minimization.

1. Introduction

In this paper, we consider the following stochastic composite, nonconvex, and possibly
nonsmooth optimization problem:

min
w∈Rd

{
F (w) := f(w) + ψ(w) ≡ E [f(w; ξ)] + ψ(w)

}
, (1)

c©2020 Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, and Quoc Tran-Dinh.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-248.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-248.html

Pham H., Nguyen M., Phan T., and Tran-Dinh

where f(w) := E [f(w; ξ)] is the expectation of a stochastic function f(w; ξ) depending on a
random vector ξ in a given probability space (Ω,P), and ψ : Rd → R ∪ {+∞} is a proper,
closed, and convex function.

As a special case of (1), if ξ is a random vector defined on a finite support set Ω :=
{ξ1, ξ2, · · · , ξn} with a probability distribution p, then by defining fi(w) := npif(w; ξi), (1)
can be written into the following composite finite-sum minimization problem:

min
w∈Rd

{
F (w) := f(w) + ψ(w) ≡ 1

n

n∑
i=1

fi(w) + ψ(w)
}
. (2)

We can also obtain (2) from (1) through a sample average approximation (SAA) (Nemirovski
et al., 2009). Note that problem (2) is often referred to as a regularized empirical risk
minimization in machine learning and finance.

1.1. Motivation

Problems (1) and (2) cover a broad range of applications in machine learning and statistics,
especially in neural networks (see Bottou, 1998, 2010; Bottou et al., 2018; Goodfellow et al.,
2016; Sra et al., 2012). Hitherto, state-of-the-art numerical optimization methods for solving
these problems rely on stochastic approaches (see Johnson and Zhang, 2013; Schmidt et al.,
2017; Shapiro et al., 2009; Defazio et al., 2014; Frostig et al., 2015; Lei and Jordan, 2017;
Lin et al., 2015). In the convex case, both non-composite and composite settings of (1)
and (2) have been intensively studied with different schemes such as standard stochastic
gradient (Robbins and Monro, 1951), proximal stochastic gradient (Ghadimi and Lan, 2013;
Nemirovski et al., 2009), stochastic dual coordinate descent (Shalev-Shwartz and Zhang,
2013), variance reduction methods (Allen-Zhu, 2017; Defazio et al., 2014; Johnson and
Zhang, 2013; Nitanda, 2014; Schmidt et al., 2017; Shalev-Shwartz and Zhang, 2014; Xiao
and Zhang, 2014), stochastic conditional gradient (Frank-Wolfe) methods (Reddi et al.,
2016a), and stochastic primal-dual methods (Chambolle et al., 2018). The most popular
variance reduction methods in the literature are perhaps SAGA and SVRG. While SAGA
(fast incremental gradient algorithm) is a successor of SAG (Stochastic Average Gradient)
(Schmidt et al., 2017) and aims at solving finite-sum problems, SVRG (Stochastic Variance
Reduced Gradient) (Johnson and Zhang, 2013) can solve both finite-sum and expectation
problems. Thanks to variance reduction techniques, several efficient methods with constant
step-sizes have been developed for convex settings that match the lower-bound worst-case
complexity (Agarwal et al., 2010). However, variance reduction methods for nonconvex
settings are still limited and heavily focus on the non-composite form of (1) and (2), i.e.,
ψ = 0, and the SVRG estimator.

Theory and stochastic methods for nonconvex problems are still in progress and require
substantial effort to obtain efficient algorithms with rigorous convergence guarantees. It is
shown in Fang et al. (2018); Zhou and Gu (2019) that there is still a gap between the upper-
bound complexity in state-of-the-art methods and the lower-bound worst-case complexity
for the nonconvex problem (2) under standard smoothness assumption. Motivated by this
fact, we attempt to develop a new algorithmic framework that can reduce and at least
nearly close this gap in the composite finite-sum setting (2). In addition to the best-known
complexity bounds, we expect to design practical algorithms advancing beyond existing

2

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

methods by providing a dynamic rule to update step-sizes with rigorous complexity analysis.
Our algorithms rely on a recent biased stochastic estimator for the objective gradient, called
SARAH (StochAstic Recursive grAdient algoritHm), introduced in Nguyen et al. (2017a)
for convex problems.

1.2. Related Work

In the nonconvex case, both problems (1) and (2) have been intensively studied in recent
years with a vast number of research papers. While numerical algorithms for solving the non-
composite setting, i.e., ψ = 0, are well-developed and have received considerable attention
(see Allen-Zhu, 2018; Allen-Zhu and Li, 2018; Allen-Zhu and Yuan, 2016; Fang et al., 2018;
Lihua et al., 2017; Nguyen et al., 2017b, 2018b, 2019; Reddi et al., 2016b; Zhou et al., 2018),
methods for composite setting remain limited (Reddi et al., 2016b; Wang et al., 2019). In
terms of algorithms, Reddi et al. (2016b) study a non-composite finite-sum problem as a
special case of (2) using SVRG estimator from Johnson and Zhang (2013). Additionally,
they extend their method to the composite setting by simply applying the proximal operator
of ψ as in the well-known forward-backward scheme. Another related work using SVRG
estimator can be found in Li and Li (2018). These algorithms have some limitation as will
be discussed later. The same technique is applied in Wang et al. (2019) to develop other
variants for both (1) and (2), but using the SARAH estimator from Nguyen et al. (2017a).
The authors derive a large constant step-size, but at the same time control mini-batch size
to achieve desired complexity bounds. Consequently, it has an essential limitation as will
also be discussed in Subsection 3.4. Both algorithms achieve the best-known complexity
bounds for solving (1) and (2). In addition, Reddi et al. (2016a) propose a stochastic Frank-
Wolfe method that can handle constraints as special cases of (2). Recently, a stochastic
variance reduction method with momentum was studied in Zhou et al. (2019) for solving
(2) which can be viewed as a modification of SpiderBoost in Wang et al. (2019).

Our algorithm remains a variance reduction stochastic method, but it is different from
these works at two major points: an additional averaging step and two different step-sizes
(cf. Algorithm 1). Having two step-sizes allows us to flexibly trade-off them and develop a
dynamic update rule. Note that our averaging step looks similar to the robust stochastic
gradient method in Nemirovski et al. (2009), but is fundamentally different since it evaluates
the proximal step at the averaging point. In fact, it is closely related to averaged fixed-
point schemes in the literature (see Bauschke and Combettes, 2017). While we only focus on
stochastic gradient-type methods in this paper, some recent techniques such as Nesterov’s
momentum, catalyst, and nonlinear acceleration (see Paquette et al., 2018) could also be
interesting to investigate for developing new variants of our methods.

In terms of theory, many researchers have focused on theoretical aspects of existing
algorithms. For example, Ghadimi and Lan (2013) appears to be one of the first pioneering
works studying convergence rates of stochastic gradient descent-type methods for nonconvex
and non-composite finite-sum problems. They later extend it to the composite setting in
Ghadimi et al. (2016). Wang et al. (2019) also investigate the gradient dominance case,
and Karimi et al. (2016) consider both finite-sum and composite finite-sum under different
assumptions, including Polyak- Lojasiewicz condition.

3

Pham H., Nguyen M., Phan T., and Tran-Dinh

Whereas many researchers have been trying to improve complexity upper bounds of
stochastic first-order methods using different techniques (Allen-Zhu, 2018; Allen-Zhu and
Li, 2018; Allen-Zhu and Yuan, 2016; Fang et al., 2018), other researchers attempt to con-
struct examples for lower-bound complexity estimates. In the convex case, there exist
numerous research papers including Agarwal et al. (2010); Nemirovskii and Yudin (1983);
Nesterov (2004). In Fang et al. (2018); Zhou and Gu (2019), the authors have constructed
a lower-bound complexity for nonconvex finite-sum problem covered by (2). They showed
that the lower-bound complexity for any stochastic gradient method using only smoothness
assumption to achieve an ε-stationary point in expectation is Ω

(
n1/2ε−2

)
given that the

number of objective components n does not exceed O
(
ε−4
)
, where ε is a desired accuracy.

For the expectation problem (1), the best-known complexity bound to achieve an ε-
stationary point in expectation is O

(
σε−3 + σ2ε−2

)
as shown in Fang et al. (2018); Wang

et al. (2019), where σ > 0 is an upper bound of the variance (see Assumption 2.3). This
complexity matches the lower bound recently developed in Arjevani et al. (2019) up to a
given constant under the same assumptions for the non-composite setting of (1).

1.3. Our Approach and Contributions

We exploit the SARAH estimator, a biased stochastic recursive gradient estimator, in
Nguyen et al. (2017a), to design new proximal variance reduction stochastic gradient al-
gorithms to solve both composite expectation and finite-sum problems (1) and (2). The
SARAH algorithm is simply a double-loop stochastic gradient method with a flavor of
SVRG (Johnson and Zhang, 2013), but using a novel biased estimator that is different from
SVRG. SARAH is a recursive method as SAGA (Defazio et al., 2014), but can avoid the
major issue of storing gradients as in SAGA. Our method will rely on the SARAH estimator
as in SPIDER and SpiderBoost combining with an averaging proximal-gradient scheme to
solve both (1) and (2).

The ultimate goal of this paper is to develop a new stochastic gradient-based algorithmic
framework that covers different variants with constant and dynamic step-sizes, single sam-
ple and mini-batch, and achieves best-known theoretical oracle complexity bounds. More
specifically, our main contributions can be summarized as follows:

(a) Novel algorithms: We propose a new and general stochastic variance reduction
framework (Algorithm 1) relying on the SARAH estimator to solve both expectation
and finite-sum problems (1) and (2) in composite settings. As usual, the algorithm
has double loops, where the outer loop can either take full gradient or mini-batch to
reduce computational burden in large-scale and expectation settings. The inner loop
can work with single sample or a broad range of mini-batch sizes. This framework
has two different step-sizes as opposed to existing methods. We also derive different
variants of Algorithm 1 for using constant or dynamic step-sizes and for non-composite
settings of (1) and (2) (i.e., ψ = 0)

(b) Best-known complexity guarantees under constant step-sizes: We analyze
our framework and its variants to design appropriate constant step-sizes instead of
diminishing step-sizes as in standard Stochastic Gradient Descent (SGD) methods.
In the finite-sum setting (2), our methods achieve O

(
n+ n1/2ε−2

)
complexity bound

to attain an ε-stationary point in expectation under only the smoothness of fi. This

4

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

complexity matches the lower-bound worst-case complexity in Fang et al. (2018); Zhou
and Gu (2019) up to a constant factor when n ≤ O

(
ε−4
)
. In the expectation setting

(1), our algorithms require O
(
σ2ε−2 + σε−3

)
stochastic first-order oracle calls of f

to achieve an ε-stationary point in expectation under only the smoothness of f and
bounded variance σ2 > 0. To the best of our knowledge, this is the best-known
complexity so far for (1) under standard assumptions in both the single sample and
mini-batch cases. This complexity also matches the lower bound recently studied in
Arjevani et al. (2019) up to a constant.

(c) Best-known complexity guarantees under dynamic step-sizes: Apart from
constant step-size algorithms, we also analyze variants of Algorithm 1 using dynamic
step-sizes for both composite and non-composite settings in both single sample and
mini-batch cases. Our dynamic step-sizes are increasing along the inner iterations
rather than diminishing as usually used in standard SGDs.

Our result covers the non-composite setting in the finite-sum case (Nguyen et al., 2019),
and matches the best-known complexity in Fang et al. (2018); Wang et al. (2019) for both
problems (1) and (2). Since the composite setting covers a broader class of nonconvex
problems including convex constraints, we believe that our method has better chance to
handle new applications than non-composite methods. It also allows one to deal with
composite problems under different type of regularizers such as sparsity or constraints on
weights as in neural network training applications.

Algorithms Finite-sum Expectation Composite Step-size D-step-size Mb-range

GD (Nesterov, 2004) O
(
n
ε2

)
NA �3 O

(
1
L

)
�3 �7

SGD (Ghadimi and Lan, 2013) NA O
(
σ2

ε4

)
�3 O

(
1
L

)
�3 �3

SVRG/SAGA (Reddi et al., 2016b) O
(
n+ n2/3

ε2

)
NA �3 O

(
1
nL

)
→ O

(
1
L

)
�7 �7

SVRG+ (Li and Li, 2018) O
(
n+ n2/3

ε2

)
O
(

σ2

ε10/3

)
�3 O

(
1
nL

)
→ O

(
1
L

)
�7 �7

SCSG (Lihua et al., 2017) O
(
n+ n2/3

ε2

)
O
(
σ2

ε2
+ σ

ε10/3

)
�7 O

(
1
L(1

n2/3 ∧ ε4/3)
)

�3 �7

SNVRG (Zhou et al., 2018) O
(

(n+ n1/2

ε2
) log(n)

)
O
(

(σ
2

ε2
+ σ

ε3
) log(1

ε)
)

�7 O
(

1
L

)
�7 �7

SPIDER (Fang et al., 2018) O
(
n+ n1/2

ε2

)
O
(
σ2

ε2
+ σ

ε3

)
�7 O

(
ε
L

)
�3 �3

SpiderBoost (Wang et al., 2019) O
(
n+ n1/2

ε2

)
O
(
σ2

ε2
+ σ

ε3

)
�3 O

(
1
L

)
�7 �7

ProxSARAH (This work) O
(
n+ n1/2

ε2

)
O
(
σ2

ε2
+ σ

ε3

)
�3 O

(
1

L
√
m

)
→ O

(
1
L

)
�3 �3

Table 1: Comparison on SFO (Stochastic First-order Oracle) complexity for nonsmooth nonconvex

optimization (both non-composite and composite case). Here, ”D-step-size” stands for

“using dynamic step-sizes” and ”Mb-range” means that the algorithm can obtain the

best-known complexity bound with a large range of mini-batch sizes instead of specific

values. In addition, m is the number of inner iterations (epoch length) and σ > 0 is the

variance in Assumption 2.3. Note that all the complexity bounds here must depend on the

Lipschitz constant L of the smooth components and F (w̃0) − F ?, the difference between

the initial objective value F (w̃0) and the lower-bound F ?. For the sake of presentation,

we assume that L = O (1) and ignore these quantities in the complexity bounds.

5

Pham H., Nguyen M., Phan T., and Tran-Dinh

1.4. Comparison Between Our Methods and Existing Work

Hitherto, we have found three different variance reduction algorithms of the stochastic prox-
imal gradient method for nonconvex problems that are most related to our work: proximal
SVRG (called ProxSVRG) in Reddi et al. (2016b), ProxSVRG+ in Li and Li (2018), and
ProxSpiderBoost in Wang et al. (2019). Other methods such as proximal stochastic gradient
descent (ProxSGD) scheme (Ghadimi et al., 2016), ProxSAGA in Reddi et al. (2016b), and
Natasha variants in Allen-Zhu (2018) are quite different and already intensively compared
in previous works (see Li and Li, 2018; Reddi et al., 2016b; Wang et al., 2019), and we do
not include them here.

In terms of theory, Table 1 compares different methods for solving (1) and (2) regarding
the stochastic first-order oracle calls (SFO), the applicability to finite-sum and/or expecta-
tion and composite settings, step-sizes, and the use of dynamic step-sizes and mini-batches.

Now, let us compare in detail our algorithms and four methods: ProxSVRG, Prox-
SVRG+, SPIDER, and ProxSpiderBoost for solving (1) and (2), or their special cases.

(a) Assumptions: In the finite-sum setting (2), ProxSVRG, ProxSVRG+, and Prox-
SpiderBoost all use the smoothness of each component fi in (2), which is stronger than
the average smoothness in Assumption 2.2 stated below. They did not consider (2) under
Assumption 2.2. However, Assumption 2.2 is often stronger than the L-smoothness of f .

(b) Single sample for the finite-sum case: The performance of gradient descent-
type algorithms crucially depends on the step-size (or learning rate). Let us make a com-
parison between different methods in terms of step-size for single sample case, and the
corresponding complexity bound.

• As shown in Reddi et al. (2016b, Theorem 1), in the single sample case, i.e., the
mini-batch size of the inner loop b̂ = 1, ProxSVRG for solving (2) has a small step-
size η = 1

3Ln , and its corresponding complexity is O
(
nε−2

)
(see Reddi et al., 2016b,

Corollary 1), which is the same as in standard proximal gradient methods.
• ProxSVRG+ in Li and Li (2018, Theorem 3) is a variant of ProxSVRG, and in the

single sample case, it uses a different step-size η = min
{

1
6L ,

1
6mL

}
. This step-size is

only better than that of ProxSVRG if 2m < n. With this step-size, the complexity of
ProxSVRG+ remains O

(
n2/3ε−2

)
as in ProxSVRG.

• In the non-composite case, SPIDER (Fang et al., 2018) relies on a dynamic step-size

ηt := min
{

ε
L‖vt‖

√
n
, 1

2L
√
n

}
, where vt is the SARAH stochastic estimator. Clearly, this

step-size is very small if the target accuracy ε is small, and/or ‖vt‖ is large. However,
SPIDER achieves O

(
n+ n1/2ε−2

)
complexity bound, which is nearly optimal. Note

that this step-size is problem-dependent since it depends on vt. We also emphasize
that SPIDER did not consider the composite problems.
• In our constant step-size ProxSARAH variants, we use two step-sizes: averaging step-

size γ =
√

2√
3mL

and proximal-gradient step-size η = 2
√

3m
4
√

3m+
√

2
, and their product

presents a combined step-size, which is η̂ := γη = 2
L(4
√

3m+
√

2)
(see (25) for our

definition of step-size). Clearly, our step-size η̂ is much larger than that of both
ProxSVRG and ProxSVRG+. It can be larger than that of SPIDER if ε is small and
‖vt‖ is large. With these step-sizes, our complexity bound is O

(
n+ n1/2ε−2

)
, and if

ε ≤ O
(
n−1/4

)
, then it reduces to O

(
n1/2ε−2

)
, which is also nearly optimal.

6

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

• As we can observe from Algorithm 1 in the sequel, the number of proximal operator
calls in our method remains the same as in ProxSVRG and ProxSVRG+.

(c) Mini-batch for the finite-sum case: Now, we consider the mini-batch case.

• As indicated in Reddi et al. (2016b, Theorem 2), if we choose the batch-size b̂ = bn2/3c
and m = bn1/3c, then the step-size η can be chosen as η = 1

3L , and its complexity is

improved up to O
(
n+ n2/3ε−2

)
for ProxSVRG. However, the mini-batch size n2/3 is

close to the full data set n. Reddi et al. (2016b) do not consider a full range of b̂.
• For ProxSVRG+ (Li and Li, 2018), based on Theorem 1, we need to set b̂ = bn2/3c

and m = b
√
b̂c = bn1/3c to obtain the best complexity bound for this method, which

is O
(
n+ n2/3ε−2

)
. Nevertheless, its step-size is η = 1

6L , which is twice smaller than
that of ProxSVRG. In addition, ProxSVRG requires the bounded variance assumption
for (2), which can be avoided in our methods by using full batch for snapshot points.
• For SPIDER, again in the non-composite setting, if we choose the batch-size b̂ =

bn1/2c, then its step-size is ηt := min
{

ε
L‖vt‖ ,

1
2L

}
. In addition, SPIDER limits the

batch-size b̂ in the range of [1, n1/2], and did not consider larger mini-batch sizes.
• For SpiderBoost (Wang et al., 2019), it requires to properly set mini-batch size to

achieve O
(
n+ n1/2ε−2

)
complexity for solving (2). More precisely, from Wang et al.

(2019, Theorem 1), we can see that one needs to set m = b
√
nc and b̂ = b

√
nc to

achieve such a complexity. This mini-batch size can be large if n is large, and less
flexible to adjust the performance of the algorithm. Unfortunately, ProxSpiderBoost
does not have theoretical guarantee for the single sample case.
• In our methods, it is flexible to choose the epoch length m and the batch-size b̂ such

that we can obtain different step-sizes and complexity bounds. Our batch-size b̂ can be

any value in [1, n−1] for (2). Given b̂ ∈ [1,
√
n], we can properly choose m = O

(
n/b̂
)

to obtain the best-known complexity bound O
(
n+ n1/2ε−2

)
when n > O

(
ε−4
)

and

O
(
n1/2ε−2

)
, otherwise. More details can be found in Subsection 3.4.

(d) Online or expectation problems: For online or expectation problems, a mini-
batch is required to evaluate snapshot gradient estimators for the outer loop.

• In the online or expectation case (1), SPIDER (Fang et al., 2018, Theorem 1) achieves
an O

(
σε−3 + σ2ε−2

)
complexity. In the single sample case, SPIDER’s step-size be-

comes ηt := min
{

ε2

2σL‖vt‖ ,
ε

4σL

}
, which can be very small, and depends on vt and σ.

Note that σ is often unknown or hard to estimate. Moreover, in early iterations, ‖vt‖
is often large potentially making this method slow.
• ProxSpiderBoost (Wang et al., 2019) achieves the same complexity bound as SPIDER

for the composite problem (1), but requires to set the mini-batch for both outer and
inner loops. The size of these mini-batches has to be fixed a priori in order to use a
constant step-size, which is certainly less flexible. The total complexity of this method
is O

(
σε−3 + σ2ε−2

)
.

• As shown in Theorem 9, our complexity is O
(
σε−3

)
given that σ ≤ O

(
ε−1
)
. Oth-

erwise, it is O
(
σε−3 + σ2ε−2

)
, which is the same as in ProxSpiderBoost. Note that

our complexity can be achieved for both single sample and a wide range of mini-batch
sizes as opposed to a predefined mini-batch size of ProxSpiderBoost.

7

Pham H., Nguyen M., Phan T., and Tran-Dinh

From an algorithmic point of view, our method, Algorithm 1, is fundamentally different from
existing methods due to its averaging step and large step-sizes in the composite settings.
Moreover, our methods have more chance to improve the performance due to the use of
dynamic step-sizes and an additional damped step-size γt, and the flexibility to choose the
epoch length m, the inner mini-batch size b̂, and the snapshot batch-size bs.

1.5. Paper Organization

The rest of this paper is organized as follows. Section 2 discusses the fundamental assump-
tions and optimality conditions. Section 3 presents the main algorithmic framework and
its convergence results for two settings. Section 4 considers extensions and special cases
of our algorithms. Section 5 provides some numerical examples to verify our methods and
compare them with existing state-of-the-arts.

2. Mathematical Tools and Preliminary Results

Firstly, we recall some basic notation and concepts in optimization, which can be found in
Bauschke and Combettes (2017); Nesterov (2004). Next, we state our blanket assumptions
and discuss the optimality condition of (1) and (2). Finally, we provide preliminary results
needed in the sequel.

2.1. Basic Notation and Concepts

We work with finite dimensional spaces, Rd, equipped with standard inner product 〈·, ·〉
and Euclidean norm ‖ · ‖. Given a function f : Rd → R ∪ {+∞}, we use dom(f) :={
w ∈ Rd | f(w) < +∞

}
to denote its (effective) domain. If f is proper, closed, and convex,

∂f(w) :=
{
v ∈ Rd | f(z) ≥ f(w) + 〈v, z − w〉, ∀z ∈ dom(f)

}
denotes its subdifferential at

w, and proxf (w) := arg minz
{
f(z) + (1/2)‖z − w‖2

}
denotes its proximal operator. Note

that if f is the indicator of a nonempty, closed, and convex set X , i.e., f(w) = δX (w),
then proxf (·) = projX (·), the projection of w onto X . Any element ∇f(w) of ∂f(w) is
called a subgradient of f at w. If f is differentiable at w, then ∂f(w) = {∇f(w)}, the
gradient of f at w. A continuous differentiable function f : Rd → R is said to be Lf -
smooth if ∇f is Lipschitz continuous on its domain, i.e., ‖∇f(w) − ∇f(z)‖ ≤ Lf‖w − z‖
for w, z ∈ dom(f). We use Up(S) to denote a finite set S := {s1, s2, · · · , sn} equipped with
a probability distribution p over S. If p is uniform, then we simply use U(S). For any real
number a, bac denotes the largest integer less than or equal to a. We use [n] to denote the
set {1, 2, · · · , n}. Finally, for the sake of clarity, Table 2 provides some notations commonly
used in this paper.

2.2. Fundamental Assumptions

To develop numerical methods for solving (1) and (2), we rely on some basic assumptions
usually used in stochastic optimization methods.

Assumption 2.1 (Bounded from below) Both problems (1) and (2) are bounded from
below. That is F ? := infw∈Rd F (w) > −∞. Moreover, dom(F) := dom(f) ∩ dom(ψ) 6= ∅.

8

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

Notation Meaning Type and range

ε The target accuracy for stochastic gradient mapping positive real
m The epoch length (i.e., the number of iterations of the inner loop t) positive integer
Bs The mini-batch of the snapshot point w̃s−1 finite set of realizations
bs The size of the mini-batch Bs of the snapshot point w̃s−1 positive integer

B̂(s)
t The mini-batch for evaluating SARAH estimator in the inner loop t finite set of realizations

b̂
(s)
t The size of the mini-batch B̂(s)

t positive integer

Table 2: Common quantities used in this paper.

This assumption usually holds in practice since f often represents a loss function which is
nonnegative or bounded from below. In addition, the regularizer ψ is also nonnegative or
bounded from below, and its domain intersects dom(f).

Our next assumption is the smoothness of f with respect to the argument w.

Assumption 2.2 (L-average smoothness) In the expectation setting (1), for any re-
alization of ξ ∈ Ω, f(·; ξ) is L-smooth (on average), i.e., f(·; ξ) is continuously differen-
tiable and its gradient ∇wf(·; ξ) is Lipschitz continuous with the same Lipschitz constant
L ∈ (0,+∞), i.e.:

Eξ
[
‖∇wf(w; ξ)−∇wf(ŵ; ξ)‖2

]
≤ L2‖w − ŵ‖2, w, ŵ ∈ dom(f). (3)

In the finite-sum setting (2), the condition (3) reduces to

1

n

n∑
i=1

‖∇fi(w)−∇fi(ŵ)‖2 ≤ L2‖w − ŵ‖2, w, ŵ ∈ dom(f). (4)

We can write (4) as Ei
[
‖∇fi(w)−∇fi(ŵ)‖2

]
≤ L2‖w − ŵ‖2. Note that (4) is weaker than

assuming that each component fi is Li-smooth, i.e., ‖∇fi(w) − ∇fi(ŵ)‖ ≤ Li‖w − ŵ‖ for
all w, ŵ ∈ dom(f) and i ∈ [n]. Indeed, the individual Li-smoothness implies (4) with
L2 := 1

n

∑n
i=1 L

2
i . Conversely, if (4) holds, then ‖∇fi(w) − ∇fi(ŵ)‖2 ≤

∑
i=1 ‖∇fi(w) −

∇fi(ŵ)‖2 ≤ nL2‖w − ŵ‖2 for i ∈ [n]. Therefore, each component fi is
√
nL-smooth, which

is larger than (4) within a factor of
√
n in the worst-case. We emphasize that ProxSVRG,

ProxSVRG+, and ProxSpiderBoost all require the L-smoothness of each component fi in
(2). However, the condition (3) is stronger than the L-smoothness of the expected function
f (i.e., ‖∇f(w) − ∇f(ŵ)‖ ≤ Lf‖w − ŵ‖ for w, ŵ ∈ dom(f)) as used in standard SGD
algorithms (Ghadimi and Lan, 2013).

It is well-known that the L-smooth condition leads to the following bound

Eξ [f(ŵ; ξ)] ≤ Eξ [f(w; ξ)] + Eξ [〈∇wf(w; ξ), ŵ − w〉] +
L

2
‖ŵ − w‖2, w, ŵ ∈ dom(f). (5)

Indeed, from (3), we have

‖∇f(w)−∇f(ŵ)‖2 = ‖Eξ [∇wf(w; ξ)−∇wf(ŵ; ξ)] ‖2

≤ Eξ
[
‖∇wf(w; ξ)−∇wf(ŵ; ξ)‖2

]
≤ L2‖w − ŵ‖2,

9

Pham H., Nguyen M., Phan T., and Tran-Dinh

which shows that ‖∇f(w)−∇f(ŵ)‖ ≤ L‖w − ŵ‖. Hence, using either (3) or (4), we get

f(ŵ) ≤ f(w) + 〈∇f(w), ŵ − w〉+
L

2
‖ŵ − w‖2, w, ŵ ∈ dom(f). (6)

The L-smooth condition also leads to the L-almost convexity of f (see Zhou and Gu, 2019)
since f(·) + L

2 ‖ · ‖
2 is convex.

In the expectation setting (1), we need the following bounded variance condition:

Assumption 2.3 (Bounded variance) For the expectation problem (1), there exists a
uniform constant σ ∈ (0,+∞) such that

Eξ
[
‖∇wf(w; ξ)−∇f(w)‖2

]
≤ σ2, ∀w ∈ dom(f). (7)

For the finite-sum problem (2), there exists a uniform constant σ ∈ (0,+∞) such that

1

n

n∑
i=1

‖∇fi(w)−∇f(w)‖2 ≤ σ2, ∀w ∈ dom(f). (8)

This assumption is standard in stochastic optimization and often required in almost any
solution method for solving (1) (see Ghadimi and Lan, 2013). For problem (2), if n is
extremely large, passing over n data points is exhaustive or impossible. We refer to this case
as the online case mentioned in Fang et al. (2018), and can be cast into Assumption 2.3.
Therefore, we do not consider this case separately. However, our theory and algorithms
developed in this paper do apply to such a setting. In addition, for the finite-sum problem
(2), if we define σ2

n(w) := 1
n

∑n
i=1

[
‖∇fi(w)‖2 − ‖∇f(w)‖2

]
, then (8) becomes σ2

n(w) ≤ σ2

for all w ∈ dom(f), which is consistent to (7). We only use the condition (8) in Remark 7.

2.3. Optimality Conditions

Under Assumption 2.1, we have dom(f)∩dom(ψ) 6= ∅. When f(·; ξ) is nonconvex in w, the
first order optimality condition of (1) can be stated as

0 ∈ ∂F (w?) ≡ ∇f(w?) + ∂ψ(w?) ≡ Eξ [∇wf(w?; ξ)] + ∂ψ(w?). (9)

Here, w? is called a stationary point of F . We denote S? the set of all stationary points.
The condition (9) is called the first-order optimality condition, and also holds for (2).

Since ψ is proper, closed, and convex, its proximal operator proxηψ satisfies the nonex-

pansiveness, i.e., ‖proxηψ(w)− proxηψ(z)‖ ≤ ‖w − z‖ for all w, z ∈ Rd.
Now, for any fixed η > 0, we define the following quantity

Gη(w) :=
1

η

(
w − proxηψ(w − η∇f(w))

)
. (10)

This quantity is called the gradient mapping of F (Nesterov, 2004). Indeed, if ψ ≡ 0,
then Gη(w) ≡ ∇f(w), which is exactly the gradient of f . By using Gη(·), the optimality
condition (9) can be equivalently written as

‖Gη(w?)‖2 = 0. (11)

10

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

If we apply gradient-type methods to solve (1) or (2), then we can only aim at finding an
ε-approximate stationary point w̃T to w? in (11) after at most T iterations within a given
accuracy ε > 0, i.e.:

E
[
‖Gη(w̃T)‖2

]
≤ ε2. (12)

The condition (12) is standard in stochastic nonconvex optimization methods. Stronger
results such as approximate second-order optimality or strictly local minimum require addi-
tional assumptions and more sophisticated optimization methods such as cubic regularized
Newton-type schemes (see Nesterov and Polyak, 2006).

2.4. Stochastic Gradient Estimators

One key step to design a stochastic gradient method for (1) or (2) is to query an estimator
for the gradient ∇f(w) at any w. Let us recall some existing stochastic estimators.

2.4.1. Single sample estimators

A simple estimator of ∇f(w) can be computed as follows:

∇̃f(wt) := ∇wf(wt; ξt), (13)

where ξt is a realization of ξ. This estimator is unbiased, i.e., E
[
∇̃f(wt) | Ft

]
= ∇f(wt),

but its variance is fixed for any wt, where Ft is the history of randomness collected up to
the t-th iteration, i.e.:

Ft := σ
(
w0, w1, · · · , wt

)
. (14)

This is a σ-field generated by random variables {w0, w1, · · · , wt}. In the finite-sum setting
(2), we have ∇̃f(wt) := ∇fit(wt), where it ∼ U([n]) with [n] := {1, 2, · · · , n}.

In recent years, there has been huge interest in designing stochastic estimators with
variance reduction properties. The first variance reduction method was perhaps proposed
in Schmidt et al. (2017) since 2013, and then in Defazio et al. (2014) for convex optimization.
However, the most well-known method is SVRG introduced by Johnson and Zhang (2013)
that works for both convex and nonconvex problems. The SVRG estimator for ∇f in (2)
is given as

∇̃f(wt) := ∇f(w̃) +∇fit(wt)−∇fit(w̃), (15)

where ∇f(w̃) is the full gradient of f at a snapshot point w̃, and it is a uniformly random

index in [n]. It is clear that E
[
∇̃f(wt) | Ft

]
= ∇f(wt), which shows that ∇̃f(wt) is an

unbiased estimator of ∇f(wt). Moreover, its variance is reduced along the snapshots.
Our methods rely on the SARAH estimator introduced in Nguyen et al. (2017a) for the

non-composite convex problem instances of (2). We instead consider it in a more general
setting to cover both (2) and (1), which is defined as follows:

vt := vt−1 +∇wf(wt; ξt)−∇wf(wt−1; ξt), (16)

for a given realization ξt of ξ where v0 is a snapshot gradient estimator whose definition is
presented in Section 3.2 and 3.5. Each evaluation of vt requires two gradient evaluations.
Clearly, the SARAH estimator is biased, since E [vt | Ft] = vt−1 + ∇f(wt) − ∇f(wt−1) 6=
∇f(wt). However, it has a variance reduced property.

11

Pham H., Nguyen M., Phan T., and Tran-Dinh

2.4.2. Mini-batch estimators

We consider a mini-batch estimator of the gradient ∇f in (13) and of the SARAH estimator
(16) respectively as follows:

∇̃fBt(wt) :=
1

bt

∑
ξi∈Bt

∇wf(wt; ξi),

and vt := vt−1 +
1

bt

∑
ξi∈Bt

(∇wf(wt; ξi)−∇wf(wt−1; ξi)) ,

(17)

where Bt is a mini-batch of the size bt := |Bt| ≥ 1. For the finite-sum problem (2), we
replace f(·; ξi) by fi(·). In this case, Bt is a uniformly random subset of [n]. Clearly, if
bt = n, then we take the full gradient ∇f as the exact estimator.

2.5. Basic Properties of Stochastic and SARAH Estimators

We recall some basic properties of the standard stochastic and SARAH estimators for (1)
and (2). The following result was proved in Nguyen et al. (2017a).

Lemma 1 Let {vt}t≥0 be defined by (16) and Ft be defined by (14). Then

E [vt | Ft] = ∇f(wt) + εt 6= ∇f(wt), where εt := vt−1 −∇f(wt−1).

E
[
‖vt −∇f(wt)‖2 | Ft

]
= ‖vt−1 −∇f(wt−1)‖2 + E

[
‖vt − vt−1‖2 | Ft

]
− ‖∇f(wt)−∇f(wt−1)‖2.

(18)

Consequently, for any t ≥ 0, we have

E
[
‖vt −∇f(wt)‖2

]
= E

[
‖v0 −∇f(w0)‖2

]
+
∑t

j=1 E
[
‖vj − vj−1‖2

]
−
∑t

j=1 E
[
‖∇f(wj)−∇f(wj−1)‖2

]
.

(19)

Our next result is some properties of the mini-batch estimators in (17). Most of the proof
have been presented in Harikandeh et al. (2015); Lohr (2009); Nguyen et al. (2017b, 2018a),
and we only provide the missing proof of (23) and (24) in Appendix A.

Lemma 2 If ∇̃fBt(wt) is generated by (17), then, under Assumption 2.3, we have

E
[
∇̃fBt(wt) | Ft

]
= ∇f(wt)

and E
[
‖∇̃fBt(wt)−∇f(wt)‖2 | Ft

]
=

1

bt
E
[
‖∇wf(wt; ξ)−∇f(wt)‖2 | Ft

]
≤ σ2

bt
.

(20)

If ∇̃fBt(wt) is generated by (17) for the finite-sum problem (2), then

E
[
∇̃fBt(wt) | Ft

]
= ∇f(wt)

and E
[
‖∇̃fBt(wt)−∇f(wt)‖2 | Ft

]
≤ 1

bt

(
n−bt
n−1

)
σ2
n(wt),

(21)

12

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

where σ2
n(w) is defined as

σ2
n(w) :=

1

n

n∑
i=1

[
‖∇fi(w)‖2 − ‖∇f(w)‖2

]
. (22)

If vt is generated by (17) for the finite-sum problem (2), then

E
[
‖vt − vt−1‖2 | Ft

]
= n(bt−1)

bt(n−1)‖∇f(wt)−∇f(wt−1)‖2

+ (n−bt)
bt(n−1) ·

1
n

∑n
i=1 ‖∇fi(wt)−∇fi(wt−1)‖2.

(23)

If vt is generated by (17) for the expectation problem (1), then

E
[
‖vt − vt−1‖2 | Ft

]
=

(
1− 1

bt

)
‖∇f(wt)−∇f(wt−1)‖2

+ 1
bt
E
[
‖∇wf(wt; ξ)−∇wf(wt−1; ξ)‖2 | Ft

]
.

(24)

Note that if bt = n, i.e., we take a full gradient estimate, then the second estimate of (21)
is vanished and independent of σn(·). The second term of (23) is also vanished.

3. ProxSARAH Framework and Convergence Analysis

We describe our unified algorithmic framework and then specify it to solve different in-
stances of (1) and (2) under appropriate structures. The general algorithm is described in
Algorithm 1, which is abbreviated by ProxSARAH.

Algorithm 1 (Proximal SARAH with stochastic recursive gradient estimators)

1: Initialization: An initial point w̃0 and necessary parameters ηt > 0 and γt ∈ (0, 1]
(will be specified in the sequel).

2: Outer Loop: For s := 1, 2, · · · , S do

3: Generate a snapshot v
(s)
0 at w

(s)
0 := w̃s−1 using (37) for (1) and (29) for (2).

4: Update ŵ
(s)
1 := proxη0ψ(w

(s)
0 − η0v

(s)
0) and w

(s)
1 := (1− γ0)w

(s)
0 + γ0ŵ

(0)
1 .

5: Inner Loop: For t := 1, · · · ,m do

6: Generate a proper single random sample or mini-batch B̂(s)
t .

7: Evaluate v
(s)
t := v

(s)
t−1 + 1

|B̂(s)t |

∑
ξ
(s)
t ∈B̂

(s)
t

[
∇wf(w

(s)
t ; ξ

(s)
t)−∇wf(w

(s)
t−1; ξ

(s)
t)
]
.

8: Update ŵ
(s)
t+1 := proxηtψ(w

(s)
t − ηtv

(s)
t) and w

(s)
t+1 := (1− γt)w(s)

t + γtŵ
(s)
t+1.

9: End For

10: Set w̃s := w
(s)
m+1

11: End For

In terms of algorithm, ProxSARAH is different from SARAH where it has one proximal
step followed by an additional averaging step, Step 8. However, using an approximation G̃η
of the gradient mapping Gη defined by (10), we can view Step 8 as:

w
(s)
t+1 := w

(s)
t − ηtγtG̃ηt(w

(s)
t), (25)

13

Pham H., Nguyen M., Phan T., and Tran-Dinh

where G̃ηt(w
(s)
t) := 1

ηt

(
w

(s)
t −proxηtψ(w

(s)
t − ηtv

(s)
t)
)

can be considered as an approximation

of Gηt(w
(s)
t) and η̂t := ηtγt can be viewed as a combined step-size. Hence, the update (25)

is similar to the gradient step applying to the approximate gradient mapping G̃ηt(w
(s)
t) of

F . In particular, if we set γt = 1, then we obtain a vanilla proximal SARAH variant which
is similar to ProxSVRG, ProxSVRG+, and ProxSpiderBoost discussed above. ProxSVRG,
ProxSVRG+, and ProxSpiderBoost are simply vanilla proximal gradient-type methods in

stochastic setttings. If ψ = 0, then G̃ηt(w
(s)
t) ≡ v(s)

t and ProxSARAH is reduced to SARAH
in Nguyen et al. (2017a,b, 2018b) with a step-size η̂t := γtηt. Note that Step 8 can be

represented as a weighted averaging step with given weights {τ (s)
j }mj=0:

w
(s)
t+1 :=

1

Σ
(s)
t

t∑
j=0

τ
(s)
j ŵ

(s)
j+1, where Σ

(s)
t :=

t∑
j=0

τ
(s)
j and γ

(s)
j :=

τ
(s)
j

Σ
(s)
t

.

Compared to Ghadimi and Lan (2012); Nemirovski et al. (2009), ProxSARAH evaluates vt

at the averaged point w
(s)
t instead of ŵ

(s)
t . Therefore, it can be written as

w
(s)
t+1 := (1− γt)w(s)

t + γtproxηtψ(w
(s)
t − ηtv

(s)
t),

which is similar to averaged fixed-point schemes (e.g., the Krasnosel’skii—Mann scheme) in
the literature (see Bauschke and Combettes, 2017).

In addition, we will show in our analysis a key difference in terms of step-sizes ηt and
γt, mini-batch, and epoch length between ProxSARAH and existing methods, including
SPIDER (Fang et al., 2018) and SpiderBoost (Wang et al., 2019).

3.1. Analysis of The Inner-Loop: Key Estimates

This subsection proves two key estimates of the inner loop for t = 1 to m. We break
our analysis into two different lemmas, which provide key estimates for our convergence

analysis. We assume that the mini-batch size b̂ := |B̂(s)
t | in the inner loop is fixed.

Lemma 3 Let {(wt, ŵt)} be generated by the inner-loop of Algorithm 1 with |B̂(s)
t | = b̂ ∈

[n− 1] fixed. Then, under Assumption 2.2, we have

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]

+
ρL2

2

m∑
t=0

γt
(
1 + 2η2

t

) t∑
j=1

γ2
j−1E

[
‖ŵ(s)

j − w
(s)
j−1‖

2
]

− 1

2

m∑
t=0

γt

(
2

ηt
− Lγt − 3

)
E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
+

1

2
σ̄(s)

(m∑
t=0

βt

)
−

m∑
t=0

γtη
2
t

2
E
[
‖Gηt(w

(s)
t)‖2

]
,

(26)

where σ̄(s) := E
[
‖v(s)

0 −∇f(w
(s)
0)‖2

]
≥ 0, ρ := 1

b̂
if Algorithm 1 solves (1), and ρ := (n−b̂)

b̂(n−1)

if Algorithm 1 solves (2).

14

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

The proof of Lemma 3 is deferred to Appendix B.1. The next lemma shows how to
choose constant step-sizes γ and η by fixing other parameters in Lemma 3 to obtain a
descent property. The proof of this lemma is given in Appendix B.2.

Lemma 4 Under Assumption 2.2 and b̂ := |B̂(s)
t | ∈ [n − 1], let us choose ηt = η > 0 and

γt = γ > 0 in Algorithm 1 such that

γt = γ :=
1

L
√
ωm

and ηt = η :=
2
√
ωm

4
√
ωm+ 1

, (27)

where ω := 3
2b̂

if Algorithm 1 solves (1) and ω := 3(n−b̂)
2b̂(n−1)

if Algorithm 1 solves (2). Then

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]
− γη2

2

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]

+
γθ

2
(m+ 1)σ̄(s), (28)

where θ := 1 + 2η2 ≤ 3
2 .

Remark 5 As mentioned in (25), the main update at Step 8 of Algorithm 1 can be written

as w
(s)
t+1 := w

(s)
t − ηtγtG̃ηt(w

(s)
t), where η̂t := ηtγt can be viewed as a combined step-size.

Using (27), we have η̂t = 2
L(4
√
ωm+1)

= O
(

1
L

)
. This step-size is proportional to 1

L as

commonly seen in gradient-based methods (Nesterov, 2004).

3.2. Convergence Analysis for The Composite Finite-Sum Problem (2)

In this subsection, we specify Algorithm 1 to solve the composite finite-sum problem (2).

We replace v
(s)
0 at Step 3 and v

(s)
t at Step 7 of Algorithm 1 by the following ones:

v
(s)
0 :=

1

bs

∑
j∈Bs

∇fj(w(s)
0), and v

(s)
t := v

(s)
t−1 +

1

b̂
(s)
t

∑
i∈B̂(s)t

(
∇fi(w(s)

t)−∇fi(w(s)
t−1)

)
, (29)

where Bs is an outer mini-batch of a fixed size bs := |Bs| = b, and B̂(s)
t is an inner mini-batch

of a fixed size b̂
(s)
t := |B̂(s)

t | = b̂. Moreover, Bs is independent of B(s)
t .

We consider two separate cases of this algorithmic variant: dynamic1 step-sizes and
constant step-sizes, but with fixed inner mini-batch size b̂ ∈ [n− 1]. The following theorem
proves the convergence of the dynamic step-size variant, whose proof is in Appendix B.3.

Theorem 6 Assume that we apply Algorithm 1 to solve (2), where the estimators v
(s)
0 and

v
(s)
t are defined by (29) such that bs = b ∈ [n] and b̂

(s)
t = b̂ ∈ [n − 1], respectively. Let

ηt := η ∈ (0, 2
3) be fixed, ωη := (1+2η2)(n−b̂)

b̂(n−1)
, and δ := 2

η − 3 > 0. Let {γt}mt=0 be the sequence

of step-sizes updated in a backward mode as

γm :=
δ

L
, and γt :=

δ

L
[
η + ωηL

∑m
j=t+1 γj

] , t = 0, · · · ,m− 1, (30)

Then, the following statements hold:

1. We call γt defined by (30) a dynamic step-size since γt is computed based on its previously computed
candidates γt+1, γt+2, · · · , γm.

15

Pham H., Nguyen M., Phan T., and Tran-Dinh

(a) The sequence of step-sizes {γt}mt=0 satisfies

δ

L(1 + δωηm)
≤ γ0 < γ1 < · · · < γm,

and Σm :=

m∑
t=0

γt ≥ 2δ(m+1)

L(
√

2δωηm+1+1)
.

(31)

(b) Under Assumptions 2.1 and 2.2, and σ2
n(w) defined by (22) (σ2

n(w) can be unbounded),
the following bound holds:

1

SΣm

S∑
s=1

m∑
t=0

γtE
[
‖Gη(w(s)

t)‖2
]
≤ 2

η2SΣm

[
F (w̃0)− F ?

]
+

3

2η2S

S∑
s=1

(n− bs)σ2
n(w̃s−1)

nbs
.

(32)

(c) Under Assumptions 2.1 and 2.2, if we choose η := 1
2 , m :=

⌊
n
b̂

⌋
, bs := n, and

b̂ ∈ [1,
√
n], then for w̃T ∼ Up

(
{w(s)

t }s=1→S
t=0→m

)
such that

Prob
(
w̃T = w

(s)
t

)
= p(s−1)m+t :=

γt
SΣm

,

we have

E
[
‖Gη(w̃T)‖2

]
≤ 4
√

6L [F (w̃0)− F ?]
S
√
n

. (33)

Consequently, the number of outer iterations S needed to obtain an output w̃T of

Algorithm 1 such that E
[
‖Gη(w̃T)‖2

]
≤ ε2 is at most S := 4

√
6L[F (w̃0)−F ?]√

nε2
. Moreover,

if 1 ≤ n ≤ 96L2[F (w̃0)−F ?]2

ε4
, then S ≥ 1.

The number of individual stochastic gradient evaluations ∇fi does not exceed

Tgrad :=
20
√

6L
√
n [F (w̃0)− F ?]
ε2

= O
(
L
√
n

ε2
[F (w̃0)− F ?]

)
.

The number of proxηψ operations does not exceed Tprox := 4
√

6(
√
n+1)L[F (w̃0)−F ?]

b̂ε2
.

Remark 7 When n is sufficiently large, if we choose bs < n, then to guarantee con-
vergence of Algorithm 1 for solving (2), we need to impose Assumption 2.3 and choose
bs := O

(
n ∧ ε−2

)
. Then we can derive similar conclusions as in Theorem 6(c).

Alternatively, Theorem 8 below shows the convergence of Algorithm 1 for the constant
step-size case, whose proof is given in Appendix B.4.

Theorem 8 Assume that we apply Algorithm 1 to solve (2), where the estimators v
(s)
0 and

v
(s)
t are defined by (29) such that bs = b ∈ [n] and b̂

(s)
t = b̂ ∈ [n− 1].

16

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

Let us choose constant step-sizes γt = γ and ηt = η as

γ :=
1

L
√
ωm

and η :=
2
√
ωm

4
√
ωm+ 1

, where ω :=
3(n− b̂)
2b̂(n− 1)

and b̂ ∈ [1,
√
n]. (34)

Then, under Assumptions 2.1 and 2.2, if we choose m :=
⌊
n
b̂

⌋
, bs := n, and w̃T ∼

U
(
{w(s)

t }s=1→S
t=0→m

)
, then the number of outer iterations S to achieve E

[
‖Gη(w̃T)‖2

]
≤ ε2

does not exceed

S :=
16
√

3L√
2nε2

[
F (w̃0)− F ?

]
.

Moreover, if n ≤ 384L2

ε4

[
F (w̃0)− F ?

]2
, then S ≥ 1.

Consequently, the number of stochastic gradient evaluations Tgrad does not exceed

Tgrad :=
16
√

3L
√
n√

2ε2

[
F (w̃0)− F ?

]
= O

(
L
√
n

ε2

[
F (w̃0)− F ?

])
.

The number of proxηψ operations does not exceed Tprox := 16
√

3L(
√
n+1)

b̂
√

2ε2

[
F (w̃0)− F ?

]
.

Note that the condition n ≤ O
(
ε−4
)

is to guarantee that S ≥ 1 in Theorems 6 and

8. In this case, our complexity bound is O
(
n1/2ε−2

)
. Otherwise, when n > O

(
ε−4
)
, then

our complexity becomes O
(
n+ n1/2ε−2

)
due to the full gradient snapshots. In the non-

composite setting, this complexity is the same as SPIDER (Fang et al., 2018), and the
range of our mini-batch size b̂ ∈ [1,

√
n], which is the same as in SPIDER, instead of fixed

b̂ = b
√
nc as in SpiderBoost (Wang et al., 2019). We can extend our mini-batch size b̂ such

that
√
n < b̂ ≤ n− 1, but our complexity bound is no longer the best-known one.

The step-size η in (34) can be bounded by η ∈ [2
5 ,

1
2] for any batch-size b̂ and m instead

of fixing at η = 1
2 . Nevertheless, this interval can be enlarged by slightly modifying the

proof of Lemma 3. For example, we can show that η can go up to 2
3 by appropriately

manipulating the parameters in the proof of Lemma 3. The step-size γ ∈ (0, 1] can change
from a small to a large value close to 1 as the batch-size b̂ and the epoch length m change
as we will discuss in Subsection 3.4.

3.3. Lower-Bound Complexity for The Finite-Sum Problem (2)

Let us analyze a special case of (2) with ψ = 0. We consider any stochastic first-order
methods to generate an iterate sequence {wt} as follows:

[wt, it] := At−1
(
ω,∇fi0(w0),∇fi1(w1), · · · ,∇fit−1(wt−1)

)
, t ≥ 1, (35)

where At−1 are measure mapping into Rd+1, fit is an individual function chosen by At−1

at iteration t, ω ∼ U([0, 1]) is a random vector, and [w0, i0] := A0(ω). Clearly, Algorithm 1
can be cast as a special case of (35). As shown in Fang et al. (2018, Theorem 3) and later in
Zhou and Gu (2019, Theorem 4.5.), under Assumptions 2.1 and 2.2, for any L > 0 and 2 ≤
n ≤ O

(
L2
[
F (w0)− F ?

]2
ε−4
)

, there exists a dimension d = Õ(L2
[
F (w0)− F ?

]2
n2ε−4)

such that the lower-bound complexity of Algorithm 1 to produce an output w̃T such that

E
[
‖∇f(w̃T)‖2

]
≤ ε2 is Ω

(
L[F (w0)−F ?]

√
n

ε2

)
. This lower-bound clearly matches the upper

bound Tgrad in Theorems 6 and 8 up to a given constant factor.

17

Pham H., Nguyen M., Phan T., and Tran-Dinh

3.4. Mini-Batch Size and Learning Rate Trade-offs

Although our step-size defined by (34) in the single sample case is much larger than that of
ProxSVRG (Reddi et al., 2016b, Theorem 1), it still depends on

√
m, where m is the epoch

length. To obtain larger step-sizes, we can choose m and the mini-batch size b̂ using the
same trick as in Reddi et al. (2016b, Theorem 2). Let us first fix γ := γ̄ ∈ (0, 1]. From (34),
we have ωm = 1

L2γ̄2
. It makes sense to choose γ̄ close to 1 in order to use new information

from ŵ
(s)
t+1 instead of the old one in w

(s)
t .

Our goal is to choose m and b̂ such that ωm = 3(n−b̂)m
2b̂(n−1)

= 1
L2γ̄2

. If we define C := 2
3L2γ̄2

,

then the last condition implies that b̂ := mn
Cn+m−C ≤

m
C provided that m ≥ C. Our

suggestion is to choose

γ := γ̄ ∈ (0, 1], b̂ :=
⌊ mn

Cn+m− C

⌋
, and η :=

2

4 + Lγ̄
. (36)

If we choose m = bn1/3c, then b̂ = O
(
n1/3

)
≤ n1/3

C . This mini-batch size is much smaller

than bn2/3c in ProxSVRG. Note that, in ProxSVRG, they set γ := 1 and η := 1
3L .

In ProxSpiderBoost (Wang et al., 2019), m and the mini-batch size b̂ were chosen as m =
b̂ = bn1/2c so that they can use constant step-sizes γ = 1 and η = 1

2L . In our case, if γ = 1,
then η = 2

4+L . Hence, if L = 1, then ηProxSpiderBoost = 1
2 > ηProxSARAH = 2

5 > ηProxSVRG =
1
3 . But if L > 4, then our step-size ηProxSARAH dominates ηProxSpiderBoost. However, by
manipulating some parameters in the proof of Lemma 3, we can obtain ηProxSARAH = 2

3 ,
which shows that ηProxSARAH > ηProxSpiderBoost = 1

2 when L = 1.

If we choose m = O
(
n1/2

)
and b̂ = O

(
n1/2

)
, then we maintain the same complexity

bound O
(
n1/2ε−2

)
as in Theorems 6 and 8. Nevertheless, if we choose m = O

(
n1/3

)
and

b̂ = O
(
n1/3

)
, then the complexity bound becomes O

(
(n2/3 + n1/3)ε−2

)
, which is similar to

ProxSVRG. The choice of m in Theorem 6 affects the values of {γt}mt=0. Hence, a reasonably
small value of m is recommended in the dynamic step-size case.

3.5. Convergence Analysis for The Composite Expectation Problem (1)

In this subsection, we apply Algorithm 1 to solve the general expectation setting (1). In
this case, we generate the snapshot at Step 3 of Algorithm 1 as follows:

v
(s)
0 :=

1

bs

∑
ζ
(s)
i ∈Bs

∇wf(w
(s)
0 ; ζ

(s)
i), (37)

where Bs :=
{
ζ

(s)
1 , · · · , ζ(s)

bs

}
is a mini-batch of i.i.d. realizations of ξ at the s-th outer

iteration and independent of ξt from the inner loop, and bs := |Bs| = b ≥ 1 is fixed.

Now, we analyze the convergence of Algorithm 1 for solving (1) using (37) above. For
simplicity of discussion, we only consider the constant step-size case. The dynamic step-size
variant can be derived similarly as in Theorem 6 and we omit the details. The proof of the
following theorem can be found in Appendix B.5.

18

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

Theorem 9 Let us apply Algorithm 1 to solve (1) using (37) for v
(s)
0 at Step 3 of Algo-

rithm 1 with fixed outer loop batch-size bs = b ≥ 1 and inner loop batch-size b̂ := |B(s)
t | ≥ 1.

If we choose fixed step-sizes γ and η as

γ :=
1

L
√
ω̄m

and η :=
2
√
ω̄m

4
√
ω̄m+ 1

, with ω̄ :=
3

2b̂
, (38)

then, under Assumptions 2.1, 2.2, and 2.3, we have the following estimate:

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]
≤ 2

γη2(m+ 1)S

[
F (w̃0)− F ?

]
+

3σ2

2η2b
. (39)

In particular, if we choose b :=
⌊

75σ2

ε2

⌋
and m :=

⌊
σ2

b̂ε2

⌋
for b̂ ≤ σ2

ε2
, then after at most

S :=
32L[F (w̃0)− F ?]

σε

outer iterations, we obtain E
[
‖Gη(w̃T)‖2

]
≤ ε2, where w̃T ∼ U

(
{w(s)

t }s=1→S
t=0→m

)
.

Consequently, the number of individual stochastic gradient evaluations ∇wf(w
(s)
t ; ξt) and

the number of proximal operations proxηψ, respectively do not exceed:

Tgrad :=
2464σL[F (w̃0)− F ?]

ε3
, and Tprox :=

32σL[F (w̃0)− F ?]
b̂ε2

.

If σ = 0, i.e., no stochasticity involved in our problem (1), then (39) reduces to

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]
≤ 2

γη2(m+ 1)S

[
F (w̃0)− F ?

]
,

where the expectation is taken over all the randomness generated by the algorithm. From
this bound, we can derive the well-known O

(
ε−2
)

oracle complexity bound for gradient-
based methods in the deterministic case as often seen in the literature.

If σ > 0, then Theorem 9 achieves the best-known complexity O
(
σLε−3

)
for the com-

posite expectation problem (1) as long as σ ≤ 32L[F (w̃0)−F ?]
ε2

. Otherwise, our complexity

is O
(
σε−3 + σ2ε−2

)
due to the snapshot gradient for evaluating v

(s)
0 . This complexity is

the same as SPIDER (Fang et al., 2018) in the non-composite setting and ProxSpiderBoost
(Wang et al., 2019) in the mini-batch setting. It also matches the lower bound complexity re-
cently studied in Arjevani et al. (2019) up to a constant under the same set of assumptions,
but only for the non-composite setting of (1). Hence, our complexity is nearly optimal.
Note that our method does not require to perform mini-batch in the inner loop, i.e., it is

independent of B̂(s)
t , and the mini-batch is independent of the number of iterations m of

the inner loop, while in (Wang et al., 2019), the mini-batch size |B̂(s)
t | must be proportional

to
√
|Bs| = O

(
ε−1
)
, where Bs is the mini-batch of the outer loop. This is perhaps the

reason why ProxSpiderBoost can take a large constant step-size η = 1
2L as discussed in

Subsection 3.4.

Remark 10 We have not attempted to optimize the constants in the complexity bounds of
all theorems above, Theorems 6, 8, and 9. Our analysis can be refined to possibly obtain
smaller constants in these complexity bounds by manipulating different parameters.

19

Pham H., Nguyen M., Phan T., and Tran-Dinh

4. Dynamic Step-size Variants for Non-Composite Problems

In this section, we consider the non-composite settings of (1) and (2) as special cases of
Algorithm 1. Note that if we solely apply Algorithm 1 with constant step-sizes to solve
the non-composite case of (1) and (2) when ψ ≡ 0, then by using the same step-size as in
Theorems 6, 8, and 9, we can obtain the same complexity as stated in Theorems 6, 8, and
9, respectively. However, we will modify our proof of Theorem 6 to take advantage of the

extra term
∑m

t=0
γt
2 E
[
‖∇f(w

(s)
t)− v(s)

t − (ŵ
(s)
t+1 − w

(s)
t)‖2

]
in the proof of Lemma 3. The

proof of this theorem is given in Appendix C.

Theorem 11 Let {w(s)
t } be generated by a variant of Algorithm 1 to solve the non-composite

instance of (1) or (2) using the following update for both Step 4 and Step 8:

w
(s)
t+1 := w

(s)
t − η̂tv

(s)
t . (40)

Let ρ := 1
b̂

for (1) and ρ := n−b̂
b̂(n−1)

for (2), and η̂t is computed recursively as:

η̂m =
1

L
and η̂t :=

1

L
(
1 + ρL

∑m
j=t+1 η̂j

) , ∀t = 0, · · · ,m− 1. (41)

Then, we have Σm :=
∑m

t=0 η̂t ≥
2(m+1)

(
√

2ρm+1+1)L
.

Suppose that Assumptions 2.1 and 2.2 hold. Then, we have

1

SΣm

S∑
s=1

m∑
t=0

η̂tE
[
‖∇f(w

(s)
t)‖2

]
≤ (
√

2νm+ 1 + 1)L

S(m+ 1)

[
f(w̃0)− f?

]
+

1

S

S∑
s=1

σ̂s, (42)

where σ̂s := E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]
.

Let w̃T ∼ Up

(
{w(s)

t }s=1→S
t=0→m

)
such that Prob

(
w̃T = w

(s)
t

)
= p(s−1)m+t := η̂t

SΣm
for all

s = 1, · · · , S and t = 0, · · · ,m, be the output of Algorithm 1. Then:
(a) The finite-sum case: If we apply this variant of Algorithm 1 to solve (2) with ψ = 0

using bs := n, m := bn
b̂
c, and b̂ ∈ [1,

√
n], then under Assumptions 2.1 and 2.2:

E
[
‖∇f(w̃T)‖2

]
≤ 2L

S
√
n

[f(w̃0)− f?]. (43)

Consequently, the total of outer iterations S to achieve E
[
‖∇f(w̃T)‖2

]
≤ ε2 does not

exceed S := 2L[f(w̃0)−f?]√
nε2

. The number of individual stochastic gradient evaluations

∇fi does not exceed Tgrad := 10
√
nL[f(w̃0)−f?]

ε2
.

(b) The expectation case: If we apply this variant of Algorithm 1 to solve (1) with

ψ = 0 using bs = b := 2σ2

ε2
for the outer-loop, m := σ2

b̂ε2
, and b̂ ≤ σ2

ε2
, then under

Assumptions 2.1, 2.2, and 2.3:

E
[
‖∇f(w̃T)‖2

]
≤ 2L

S
√
b̂m

[
f(w̃0)− f?

]
+
σ2

b
. (44)

20

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

Consequently, the total of outer iterations S to achieve E
[
‖∇f(w̃T)‖2

]
≤ ε2 does not

exceed S := 4L[f(w̃0)−f?]
σε . The number of individual stochastic gradient evaluations

does not exceed Tgrad := 16σL[f(w̃0)−f?]
ε3

, provided that σ ≤ 8L[f(w̃0)−f?]
ε .

Note that the first statement (a) of Theorem 11 covers the nonconvex case of Nguyen
et al. (2019) by fixing step-size η̂t = η̂ = 2

L(1+
√

4m+1)
. However, this constant step-size is

rather small if m ≤ O (n) is large. Hence, it is better to update η̂t dynamically increasing
as in (41), where η̂m = 1

L is a large step-size. In addition, Nguyen et al. (2019) only study
the finite-sum problem, while we also consider the expectation setting (1).

Again, by combining the first statement (a) of Theorem 11 and the lower-bound complex-
ity in Fang et al. (2018), we can conclude that this algorithmic variant still achieves a nearly-
optimal complexity O

(
n1/2ε−2

)
for the non-composite finite-sum problem in (2) to find an

ε-stationary point in expectation if n ≤ O
(
ε−4
)
. In Statement (b), if σ > 8L[f(w̃0)−f?]

ε , then
the complexity of our method is O

(
σ2ε−2 + σε−3

)
due to the gradient snapshot of the size

b = O
(
σ2ε−2

)
to evaluate v

(s)
0 . It matches the lower bound in (Arjevani et al., 2019).

5. Numerical Experiments

We present three numerical examples to illustrate our theory and compare our methods
with state-of-the-art algorithms in the literature. We implement 8 different variants of our
ProxSARAH algorithm:

• ProxSARAH-v1: Single sample and fixed step-sizes γ :=
√

2
L
√

3m
and η := 2

√
3m

4
√

3m+
√

2
.

• ProxSARAH-v2: γ := 0.95 and mini-batch size b̂ :=
⌊√n
C

⌋
and m := b

√
nc.

• ProxSARAH-v3: γ := 0.99 and mini-batch size b̂ :=
⌊√n
C

⌋
and m := b

√
nc.

• ProxSARAH-v4: γ := 0.95 and mini-batch size b̂ :=
⌊
n

1
3

C

⌋
and m := bn

1
3 c.

• ProxSARAH-v5: γ := 0.99 and mini-batch size b̂ :=
⌊
n

1
3

C

⌋
and m := bn

1
3 c.

• ProxSARAH-A-v1: Single sample (i.e., b̂ = 1), and dynamic step-sizes.
• ProxSARAH-A-v2: γm := 0.99 and mini-batch size b̂ := b

√
nc and m := b

√
nc.

• ProxSARAH-A-v3: γm := 0.99 and mini-batch size b̂ := bn
1
3 c and m := bn

1
3 c.

Here, C is given in Subsection 3.4. We also implement 4 other algorithms:

• ProxSVRG: The proximal SVRG algorithm in Reddi et al. (2016b) for single sample
with theoretical step-size η = 1

3nL , and for the mini-batch case with b̂ := bn2/3c, the

epoch length m := bn1/3c, and the step-size η := 1
3L .

• ProxSpiderBoost: The proximal SpiderBoost method in Wang et al. (2019) with b̂ :=
b
√
nc, m := b

√
nc, and step-size η := 1

2L .
• ProxSGD: Proximal stochastic gradient descent scheme (Ghadimi and Lan, 2013) with

step-size ηt :=
η0

1+η̃bt/nc , where η0>0 and η̃≥0 will be given in each example.

• ProxGD: Standard proximal gradient descent algorithm with step-size η := 1
L .

All algorithms are implemented in Python running on a single node of a Linux server
(called Longleaf) with configuration: 3.40GHz Intel processors, 30M cache, and 256GB
RAM. For the last example, we implement these algorithms in TensorFlow (Abadi et al.,
2015) running on a GPU system. Our code is available online at

21

https://www.tensorflow.org

Pham H., Nguyen M., Phan T., and Tran-Dinh

https://github.com/unc-optimization/StochasticProximalMethods.

To be fair for comparison, we compute the norm of gradient mapping ‖Gη(w(s)
t)‖ for visu-

alization at the same value η := 0.5 in all methods. To compute the relative loss residuals
F (w̃T)−F ∗

|F ∗| , we use F ∗ := min
{
F̃ ∗j | j

}
as the minimum loss values F̃ ∗j generated by all

algorithms. To increase the readability of figures, we only plot the performance of some
representative variants among the 8 instead of reporting them all. We run the first and
second examples for 20 and 30 epochs, respectively whereas we increase it up to 150 and
300 epochs in the last example. Several data sets used in this paper are from (Chang and
Lin, 2011)2. Two other well-known data sets are mnist3 and fashion mnist4.

5.1. Nonnegative Principal Component Analysis

We reconsider the problem of non-negative principal component analysis (NN-PCA) studied
in Reddi et al. (2016b). More precisely, for a given set of samples {zi}ni=1 in Rd, we solve
the following constrained nonconvex problem:

f? := min
w∈Rd

{
f(w) := − 1

2n

n∑
i=1

w>(ziz
>
i)w | ‖w‖ ≤ 1, w ≥ 0

}
. (45)

By defining fi(w) := −1
2w
>(ziz

>
i)w for i = 1, · · · , n, and ψ(w) := δX (w), the indicator

of X :=
{
w ∈ Rd | ‖w‖ ≤ 1, w ≥ 0

}
, we can formulate (45) into (2). Moreover, since zi

is normalized, the Lipschitz constant of ∇fi is L = 1 for i = 1, · · · , n. Since (45) is
nonconvex, it may have different stationary points. For a given algorithm to approximate
a good stationary point of (45), it crucially depends on initial point. Following Reddi et al.
(2016b), we use ProxSGD to generate an initial point and use it for all algorithms.

(a) Small and medium data sets: We test all the algorithms on three different well-
known data sets: mnist (n = 60000, d = 784), rcv1-binary (n = 20242, d = 47236), and
real-sim (n = 72309, d = 20958). In ProxSGD, after manipulating different values, we set
η0 := 0.1 and η̃ := 1.0 that allow us to obtain good performance.

Experiment 1 (Single sample comparison): We first verify our theory by running 5
algorithms with single sample (i.e., b̂ = 1). The relative objective residuals and the absolute
norm of gradient mappings of these algorithms after 20 epochs are plotted in Figure 1.

Figure 1 shows that both ProxSARAH-v1 and its dynamic variant work really well
and dominate all other methods. ProxSARAH-A-v1 is still better than ProxSARAH-v1.
ProxSVRG is slow since its theoretical step-size 1

3nL is too small.

Experiment 2 (The effect o mini-batch sizes on ProxSARAH): In this experiment, we
evaluate the effect of mini-batch sizes on the performance of ProxSARAH by running Prox-
SARAH on these data sets with different mini-batch sizes. We choose b̂ among 6 values
{n1/2, 0.75n1/2, 0.5n1/2, 0.25n1/2, 0.1n1/2, 0.05n1/2}. The results are shown in Figure 2.

As we can see from Figure 2 that the performance of each particular batch-size varies be-
tween data sets. Variants with larger mini-batch sizes work well in the mnist data set while

2. Available online at https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
3. Available online at http://yann.lecun.com/exdb/mnist/
4. Available online at https://github.com/zalandoresearch/fashion-mnist

22

https://github.com/unc-optimization/StochasticProximalMethods
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

Number of effective passes
0 5 10 15 20

T
ra
in
in
g
L
os
s:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Training Loss: mnist

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20

T
ra
in
in
g
L
o
ss
:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Training Loss: rcv1_train.binary

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20

T
ra
in
in
g
L
os
s:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Training Loss: real-sim

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20

N
or
m

of
G
ra
d
ie
n
t
M
ap

p
in
g
‖G

η
(w̃

T
)‖

10
-15

10
-10

10
-5

Norm of Gradient Mapping: mnist

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20

N
or
m

of
G
ra
d
ie
n
t
M
a
p
p
in
g
‖
G

η
(w̃

T
)‖

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Norm of Gradient Mapping: rcv1_train.binary

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20

N
or
m

of
G
ra
d
ie
n
t
M
ap

p
in
g
‖G

η
(w̃

T
)‖

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Norm of Gradient Mapping: real-sim

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Figure 1: The objective value residuals and gradient mapping norms of (45) on three data
sets: mnist, rcv1-binary, and real-sim.

variants with smaller mini-batch sizes are better in rcv1 train.binary and real-sim. It is
unclear for our methods to show that a larger mini-batch size leads to a better performance
or vice versa. Therefore, to achieve the best performance, a search over mini-batch size is
recommended for each particular data set.

Experiment 3 (Mini-batch comparison): Next, we run all the mini-batch variants of the
methods described above to solve (45). The relative objective residuals and the norms of
gradient mapping are plotted in Figure 3.

From Figure 3, we observe that ProxSpiderBoost works well since it has a large step-size

η = 1
2L , and it is comparable with ProxSARAH-A-v2. The variants with b̂ = O

(
n

1
3

)
of

ProxSARAH and ProxSARAH-A perform well for mnist data set while the variants with b̂ =

O
(
n

1
2

)
are better for the other two data sets. Although ProxSVRG takes η = 1

3L , its choice

of batch-size and epoch length also affects the performance resulting in a slower convergence.
ProxSGD has good progress at early stage but then its relative objective residual is saturated
around 10−5 accuracy. Also, its gradient mapping norms do not significantly decrease as
in ProxSARAH variants or ProxSpiderBoost. Note that ProxSARAH variants with large
step-size γ (e.g., γ = 0.99) are very similar to ProxSpiderBoost which results in resemblance
in their performance.

(b) Large data sets: Now, we test these algorithms on larger data sets: url combined

(n = 2, 396, 130; d = 3, 231, 961), news20.binary (n = 19, 996; d = 1, 355, 191), and

23

Pham H., Nguyen M., Phan T., and Tran-Dinh

0 5 10 15 20

10
-15

10
-10

10
-5

Training Loss: mnist

0 5 10 15 20

10
-15

10
-10

10
-5

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-15

10
-10

10
-5

Training Loss: real-sim

0 5 10 15 20

10
-15

10
-10

10
-5

10
0

Norm of Gradient Mapping: mnist

0 5 10 15 20

10
-10

10
-5

Norm of Gradient Mapping: rcv1_train.binary

0 5 10 15 20
10

-15

10
-10

10
-5

Norm of Gradient Mapping: real-sim

Figure 2: The relative objective residuals and the norms of gradient mappings of Prox-
SARAH algorithms with different mini-batch sizes for solving (45) on three data
sets: mnist, rcv1-binary, and real-sim.

0 5 10 15 20

10
-15

10
-10

10
-5

Training Loss: mnist

0 5 10 15 20

10
-10

10
-8

10
-6

10
-4

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-10

10
-5

Training Loss: real-sim

0 5 10 15 20

10
-15

10
-10

10
-5

10
0

Norm of Gradient Mapping: mnist

0 5 10 15 20

10
-6

10
-5

10
-4

10
-3

10
-2

Norm of Gradient Mapping: rcv1_train.binary

0 5 10 15 20

10
-6

10
-4

Norm of Gradient Mapping: real-sim

Figure 3: The relative objective residuals and the norms of gradient mappings of 5 algo-
rithms for solving (45) on three data sets: mnist, rcv1-binary, and real-sim.

avazu-app (n = 14, 596, 137; d = 999, 990). The relative objective residuals and the ab-
solute norms of gradient mapping of this experiment are depicted in Figure 4.

24

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

0 5 10 15 20

1e-15

1e-12

1e-9

1e-6

Training Loss: url_combined

0 5 10 15 20

1e-15

1e-12

1e-9

1e-6

1e-3

Training Loss: news20.binary

0 5 10 15 20

1e-15

1e-12

1e-9

1e-6

Training Loss: avazu-app

0 5 10 15 20

1e-15

1e-12

1e-9

1e-6

1e-3

Norm of Gradient Mapping: url_combined

0 5 10 15 20

1e-12

1e-9

1e-6

1e-3

1e-2

Norm of Gradient Mapping: news20.binary

0 5 10 15 20

1e-15

1e-12

1e-9

1e-6

1e-3

Norm of Gradient Mapping: avazu-app

Figure 4: The relative objective residuals and the absolute gradient mapping norms of 4
algorithms for solving (45) on three data sets: url combined, news20.binary,
and avazu-app.

Experiment 4 (Mini-batch comparison on large data sets): Figure 4 shows that Prox-
SARAH variants still work well and depend on the data set in which ProxSARAH-A-v2 or
the variants with b̂ = O(n

1
3) dominates other algorithms. In this experiment, ProxSpider-

Boost gives smaller gradient mapping norms for url combined and avazu-app in the last
epochs than the others. However, these algorithms have achieved up to 10−13 accuracy in
absolute values, the improvement of ProxSpiderBoost may not be necessary. With the same
step-size as in the previous test, ProxSGD performs quite poorly on these three data sets,
and we did not report its performance here.

5.2. Sparse Binary Classification with Nonconvex Losses

We consider the following sparse binary classification involving nonconvex loss function:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

`(a>i w, bi) + λ‖w‖1

}
, (46)

where {(ai, bi)}ni=1 ⊂ Rd × {−1, 1}n is a given training data set, λ > 0 is a regularization
parameter, and `(·, ·) is a given smooth and nonconvex loss function as studied in Zhao
et al. (2010). By setting fi(w) := `(a>i w, bi) and ψ(w) := λ‖w‖1 for i ∈ [n], we obtain (2).

The loss function ` is chosen from one of the following three cases (Zhao et al., 2010):
• Normalized sigmoid loss: `1(s, τ) := 1 − tanh(ωτs) for a given ω > 0. Since∣∣∣d2`1(s,τ)

ds2

∣∣∣ ≤ 8(2+
√

3)(1+
√

3)ω2τ2

(3+
√

3)2
and |τ | = 1, we can show that `1(·, τ) is L-smooth with

respect to s, where L := 8(2+
√

3)(1+
√

3)ω2

(3+
√

3)2
≈ 0.7698ω2.

25

Pham H., Nguyen M., Phan T., and Tran-Dinh

• Nonconvex loss in 2-layer neural networks: `2(s, τ) :=
(

1− 1
1+exp(−τs)

)2
. For

this function, we have
∣∣∣d2`2(s,τ)

ds2

∣∣∣ ≤ 0.15405τ2. If |τ | = 1, then this function is also

L-smooth with L = 0.15405.
• Logistic difference loss: `3(s, τ) := ln(1 + exp(−τs)) − ln(1 + exp(−τs − ω)) for

some ω > 0. With ω = 1, we have |d
2`3(s,τ)
ds2

| ≤ 0.092372τ2. Therefore, if |τ | = 1, then
this function is also L-smooth with L = 0.092372.

We set the regularization parameter λ := 1
n in all the tests, which gives us relatively sparse

solutions. We test the above algorithms on different scenarios ranging from small to large
data sets, where we use 6 different data sets from LIBSVM.

(a) Small and medium data sets: We consider three small to medium data sets:
rcv1.binary (n = 20, 242, d = 47, 236), real-sim (n = 72, 309, d = 20, 958), and epsilon

(n = 400, 000, d = 2, 000).

Number of effective passes
0 5 10 15 20 25 30

T
ra
in
in
g
L
os
s:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-2

10
-1

10
0

Training Loss: rcv1_train.binary

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20 25 30

T
ra
in
in
g
L
os
s:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-2

10
-1

10
0

Training Loss: real-sim

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20 25 30

T
ra
in
in
g
L
os
s:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-2

10
-1

10
0

Training Loss: epsilon

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20 25 30

N
or
m

of
G
ra
d
ie
n
t
M
ap

p
in
g
‖
G

η
(w̃

T
)‖

10
-3

10
-2

Norm of Gradient Mapping: rcv1_train.binary

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20 25 30

N
or
m

of
G
ra
d
ie
n
t
M
ap

p
in
g
‖G

η
(w̃

T
)‖

10
-3

10
-2

Norm of Gradient Mapping: real-sim

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20 25 30

N
or
m

of
G
ra
d
ie
n
t
M
ap

p
in
g
‖G

η
(w̃

T
)‖

10
-3

10
-2

Norm of Gradient Mapping: epsilon

ProxSARAH-v1

ProxSARAH-A-v1

ProxSVRG

ProxSGD

ProxGD

Figure 5: The relative objective residuals and gradient mapping norms of (46) on three
data sets using the loss `2(s, τ) - The single sample case.

Experiment 5 (Singe sample comparison on (46)): Figure 5 shows the relative objective
residuals and the gradient mapping norms on these three data sets for the loss function `2(·)
in the single sample case. Similar to the first example, ProxSARAH-v1 and its dynamic
variant work well, whereas ProxSARAH-A-v1 is better. ProxSVRG is still slow due to small
step-size. ProxSGD appears to be better than ProxSVRG and ProxGD within 30 epochs.

Now, we test the loss function `2(·) with the mini-batch variants using the same three
data sets. Figure 6 shows the results on these data sets.

26

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

0 5 10 15 20 25 30

1e-2

1e-1

Training Loss: rcv1_train.binary

0 5 10 15 20 25 30

10
-2

10
-1

Training Loss: real-sim

0 5 10 15 20 25 30

10
-2

10
-1

Training Loss: epsilon

0 5 10 15 20 25 30

2e-3

5e-3

1e-2

Norm of Gradient Mapping: rcv1_train.binary

0 5 10 15 20 25 30

1e-3

5e-3

1e-2

Norm of Gradient Mapping: real-sim

0 5 10 15 20 25 30

1e-3

5e-3

1e-2
Norm of Gradient Mapping: epsilon

Figure 6: The relative objective residuals and gradient mapping norms of (46) on three
data sets using the loss `2(s, τ) - The mini-batch case.

We can see that ProxSARAH-A-v2 is the most effective algorithm whereas ProxSpider-
Boost also performs well due to large step-size as discussed. ProxSVRG remains slow in
this test. Notice that ProxSARAH dynamic variants normally perform better than their
corresponding fixed step-size variants in this experiment. Additionally, ProxSARAH-A-v2
still preserves the best-known complexity O

(
n+ n1/2ε−2

)
.

Experiment 6 (Mini-batch comparison on (46)): To further illustrate the advantage of
the increasing step-size, we run ProxSARAH and ProxSARAH-A with different mini-batch
sizes and select the top two variants of each for comparison when applying to solve (46)
using the loss function `2. Their results along with the chosen mini-batch sizes are depicted
in Figure 7. We can see that ProxSARAH-A performs better than ProxSARAH in all three
data sets which confirms the advantage of the dynamic step-size scheme.

(b) Large data sets: Next, we test these algorithms on three large data sets: url combined

(n = 2, 396, 130, d = 3, 231, 961), avazu-app (n = 14, 596, 137, d = 999, 990), and kddb-raw

(n = 19, 264, 097, d = 3, 231, 961).

Experiment 7 (Mini-batch comparison on large data sets): Since we use large data sets,
we only test the mini-batch variants. Figure 8 presents the results on these data sets.

Again, we can observe from Figure 8 that, ProxSARAH-A-v2 achieves the best perfor-
mance. ProxSpiderBoost also works well in this experiment while ProxSVRG are compa-
rable with ProxSARAH-v1 and ProxSARAH-v2. ProxSGD also has good performance but
is not as good as ProxSpiderBoost and ProxSARAH variants.

The complete results on these three data sets with three loss functions are presented in
Table 3. Apart from the relative objective residuals and gradient mapping norms, the table

27

Pham H., Nguyen M., Phan T., and Tran-Dinh

0 5 10 15 20
10

-3

10
-2

10
-1

Training Loss: w8a

0 5 10 15 20
10

-2

10
-1

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-2

10
-1

Training Loss: real-sim

0 5 10 15 20

10
-3

10
-2

10
-1

Norm of Gradient Mapping: w8a

0 5 10 15 20

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
Norm of Gradient Mapping: rcv1_train.binary

0 5 10 15 20

10
-2

Norm of Gradient Mapping: real-sim

Figure 7: The relative objective residuals and gradient mapping norms of (46) on three
data sets using the loss `2(s, τ).

0 5 10 15 20 25 30

10
-3

10
-2

10
-1

Training Loss: url_combined

0 5 10 15 20 25 30

10
-2

10
-1

Training Loss: kddb-raw

0 5 10 15 20 25 30

10
-5

10
-4

10
-3

10
-2

10
-1

Training Loss: avazu-app

0 5 10 15 20 25 30

10
-3

10
-2

10
-1

Norm of Gradient Mapping: url_combined

0 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

Norm of Gradient Mapping: kddb-raw

0 5 10 15 20 25 30
10

-5

10
-4

10
-3

10
-2

10
-1

Norm of Gradient Mapping: avazu-app

Figure 8: The relative objective residuals and gradient mapping norms of (46) on three
large data sets using the loss `2(s, τ) - The mini-batch case.

28

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

consists of both training and test accuracies where we use 10% of the data set to evaluate
the testing accuracy.

Algorithms
‖Gη(w̃T)‖2 (F (wT)− F ∗)/|F ∗| Training Accuracy Test Accuracy

`1-Loss `2-Loss `3-Loss `1-Loss `2-Loss `3-Loss `1-Loss `2-Loss `3-Loss `1-Loss `2-Loss `3-Loss

url combined (n = 2, 396, 130, d = 3, 231, 961)

ProxSARAH-v2 2.534e-06 5.827e-08 1.181e-07 1.941e-01 1.397e-02 8.092e-02 0.965 0.9684 0.9657 0.9636 0.9672 0.9646
ProxSARAH-v3 2.772e-06 5.515e-08 1.110e-07 2.065e-01 9.149e-03 7.399e-02 0.965 0.9685 0.9658 0.9635 0.9673 0.9647
ProxSARAH-v4 1.252e-05 6.003e-06 1.433e-05 4.749e-01 8.210e-01 1.597e+00 0.962 0.9617 0.9558 0.9614 0.9607 0.9528
ProxSARAH-v5 1.182e-05 5.595e-06 1.346e-05 4.617e-01 7.931e-01 1.546e+00 0.962 0.9617 0.9568 0.9615 0.9609 0.9537
ProxSARAH-A-v2 1.115e-06 4.969e-08 5.215e-08 9.225e-02 1.076e-05 1.268e-05 0.966 0.9687 0.9672 0.9645 0.9676 0.9662
ProxSARAH-A-v3 1.034e-05 3.639e-07 4.555e-07 4.325e-01 1.946e-01 2.619e-01 0.962 0.9644 0.9634 0.9616 0.9631 0.9625
ProxSpiderBoost 1.375e-06 6.454e-08 7.158e-08 1.178e-01 2.274e-02 2.947e-02 0.965 0.9681 0.9664 0.9641 0.9669 0.9653
ProxSVRG 7.391e-03 2.043e-04 2.697e-04 2.196e+00 1.091e+00 1.490e+00 0.958 0.9601 0.9595 0.9570 0.9585 0.9579
ProxSGD 5.005e-07 2.340e-07 5.963e-07 4.446e-03 1.406e-01 3.062e-01 0.968 0.9651 0.9633 0.9667 0.9637 0.9624

avazu-app (n = 14, 596, 137, d = 999, 990)

ProxSARAH-v2 8.647e-09 1.053e-08 5.074e-10 4.354e-04 1.958e-03 1.687e-04 0.883 0.8843 0.8834 0.8615 0.8617 0.8615
ProxSARAH-v3 9.757e-09 9.792e-09 4.776e-10 4.615e-04 1.397e-03 1.554e-04 0.883 0.8844 0.8834 0.8615 0.8617 0.8615
ProxSARAH-v4 9.087e-08 3.179e-07 1.841e-07 1.738e-03 5.102e-02 9.816e-03 0.883 0.8834 0.8834 0.8615 0.8615 0.8615
ProxSARAH-v5 8.568e-08 3.029e-07 1.702e-07 1.675e-03 5.036e-02 9.433e-03 0.883 0.8834 0.8834 0.8615 0.8615 0.8615
ProxSARAH-A-v2 3.062e-09 8.724e-09 1.814e-10 2.046e-04 5.467e-07 1.388e-08 0.883 0.8844 0.8834 0.8615 0.8617 0.8615
ProxSARAH-A-v3 7.784e-08 5.124e-08 4.405e-09 1.604e-03 2.499e-02 1.223e-03 0.883 0.8834 0.8834 0.8615 0.8615 0.8615
ProxSpiderBoost 4.050e-09 1.152e-08 2.579e-10 2.626e-04 3.090e-03 5.073e-05 0.883 0.8842 0.8834 0.8615 0.8617 0.8615
ProxSVRG 4.218e-03 1.309e-03 1.202e-04 3.137e-01 4.287e-01 2.031e-01 0.883 0.8648 0.8834 0.8615 0.8146 0.8615
ProxSGD 9.063e-10 2.839e-08 3.150e-09 6.449e-06 1.595e-02 9.536e-04 0.883 0.8835 0.8834 0.8615 0.8616 0.8615

kddb-raw (n = 19, 264, 097, d = 3, 231, 961)

ProxSARAH-v2 2.013e-08 1.770e-08 5.688e-09 7.235e-04 3.455e-03 4.295e-03 0.862 0.8654 0.8619 0.8531 0.8560 0.8534
ProxSARAH-v3 2.168e-08 1.669e-08 6.105e-09 7.903e-04 2.275e-03 3.741e-03 0.862 0.8655 0.8619 0.8530 0.8561 0.8534
ProxSARAH-v4 2.265e-07 4.066e-07 2.796e-07 3.862e-03 9.196e-02 2.203e-02 0.862 0.8617 0.8615 0.8530 0.8533 0.8531
ProxSARAH-v5 2.127e-07 3.943e-07 2.600e-07 3.725e-03 9.098e-02 2.152e-02 0.862 0.8617 0.8615 0.8530 0.8533 0.8531
ProxSARAH-A-v2 7.955e-09 1.490e-08 2.830e-09 2.106e-04 8.502e-07 2.829e-03 0.862 0.8656 0.8621 0.8531 0.8562 0.8536
ProxSARAH-A-v3 1.951e-07 1.036e-07 9.293e-09 3.539e-03 4.887e-02 9.223e-03 0.862 0.8627 0.8616 0.8530 0.8544 0.8531
ProxSpiderBoost 9.867e-09 1.906e-08 6.889e-09 3.082e-04 5.249e-03 5.026e-07 0.862 0.8652 0.8619 0.8531 0.8559 0.8534
ProxSVRG 1.225e-02 1.105e-03 5.040e-04 3.541e-01 3.471e-01 2.780e-01 0.860 0.8611 0.8599 0.8518 0.8529 0.8519
ProxSGD 6.027e-09 8.899e-08 1.331e-08 2.593e-05 4.320e-02 9.937e-03 0.862 0.8629 0.8616 0.8530 0.8546 0.8531

Table 3: The results of 9 algorithms on three data sets: url combined, avazu-app, and kddb-raw.

Among three loss functions, the loss `2 gives the best training and testing accuracy. The
accuracy is consistent with the result reported in (Zhao et al., 2010). ProxSGD seems to
give good results on the `1-loss, but ProxSARAH-A-v2 is the best for the `2 and `3-losses
in the majority of the test.

5.3. Feedforward Neural Network Training Problem

We consider the following composite nonconvex optimization model arising from a feedfor-
ward neural network configuration:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

`
(
h(w, ai), bi

)
+ ψ(w)

}
, (47)

where we concatenate all the weight matrices and bias vectors of the neural network in one
vector of variable w, {(ai, bi)}ni=1 is a training data set, h(·) is a composition between all
linear transforms and activation functions as h(w, a) := σl(Wlσl−1(Wl−1σl−2(· · ·σ0(W0a+
µ0) · · ·) + µl−1) + µl), where Wi is a weight matrix, µi is a bias vector, σi is an activation
function, l is the number of layers, `(·) is the soft-max cross-entropy loss, and ψ is a convex
regularizer (e.g., ψ(w) := λ‖w‖1 for some λ > 0 to obtain sparse weights). Again, by

29

Pham H., Nguyen M., Phan T., and Tran-Dinh

defining fi(w) := `(h(w, ai), bi) for i ∈ [n], we can bring (47) into the same composite
finite-sum setting (2).

We implement our algorithms and other methods in TensorFlow (Abadi et al., 2015)
and use two data sets mnist and fashion mnist to evaluate their performance. In the first
experiment, we use a one-hidden-layer fully connected neural network: 784 × 100 × 10 for
both mnist and fashion mnist. The activation function σi of the hidden layer is ReLU
and the loss function is soft-max cross-entropy. To estimate the Lipschitz constant L, we
normalize the input data. The regularization parameter λ is set at λ := 1

n and ψ(·) := λ ‖·‖1.

Experiment 8 (784×100×10 network): We first test ProxSARAH, ProxSVRG, ProxSpi-
derBoost, and ProxSGD using mini-batch. For ProxSGD, we use the mini-batch b̂ = 245,
η0 = 0.1, and η̃ = 0.5 for both data sets. For the mnist data set, we tune L = 1 then follow
the configuration in Subsection 3.4 to choose η, γ, m, and b̂ for ProxSARAH variants. We
also tune the learning rate for ProxSVRG at η = 0.2, and for ProxSpiderBoost at η = 0.12.
However, for the fashion mnist data set, it requires a smaller learning rate. Therefore,
we choose L = 4 for ProxSARAH and follow the theory in Subsection 3.4 to set η, γ, m,
and b̂. We also tune the learning rate for ProxSVRG and ProxSpiderBoost until they are
stabilized to obtain the best possible step-size in this example as ηProxSVRG = 0.11 and
ηProxSpiderBoost = 0.15, respectively.

Figure 9 shows the convergence of different variants of ProxSARAH, ProxSpiderBoost,
ProxSVRG, and ProxSGD on three criteria for mnist and fashion mnist: training loss
values, the absolute norm of gradient mapping, and the test accuracy. For ProxSARAH, we

find that two variants with b̂ = O
(
n

1
2

)
and b̂ = O

(
n

1
3

)
perform well among other choices.

0 50 100 150

0.25

0.5

1

2

3
Training Loss: mnist

0 50 100 150

10
-4

10
-3

10
-2

10
-1

Norm of Gradient Mapping: mnist

0 50 100 150

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Test Accuracy: mnist

0 50 100 150

0.5

1

1.5

2

2.5

3
Training Loss: fashion_mnist

0 50 100 150

10
-4

10
-3

10
-2

10
-1

Norm of Gradient Mapping: fashion_mnist

0 50 100 150

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Test Accuracy: fashion_mnist

Figure 9: The training loss, gradient mapping, and test accuracy on mnist (top line) and
fashion mnist (bottom line) of 5 algorithms.

30

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

In this example, ProxSGD appears to be the best in terms of training loss and test
accuracy. However, the norm of gradient mapping is rather different from others, relatively
large, and oscillated. ProxSVRG is clearly slower than ProxSpiderBoost due to smaller
learning rate. The two variants of ProxSARAH perform relatively well, but the variants
with b̂ = O (

√
n) seem to be slightly better. Note that the norm of gradient mapping tends

to be decreasing but still oscillated since perhaps we are taking the last iterate instead of a
random choice of intermediate iterates as stated in the theory.

Experiment 9 (784× 800× 10 network): Finally, we test the above algorithm on mnist

using a 784×800×10 network as known to give a better test accuracy. We run all algorithms
for 300 epochs and the results are given in Figure 10.

0 50 100 150 200 250 300

1

1.5

2

2.5

3

3.5

4

4.5

Training Loss: mnist

0 50 100 150 200 250 300
10

-4

10
-3

10
-2

10
-1

10
0

Norm of Gradient Mapping: mnist

0 50 100 150 200 250 300

0.8

0.85

0.9

0.95

Test Accuracy: mnist

Figure 10: The training loss, gradient mapping, and test accuracy on mnist of 5 algorithms
on a 784× 800× 10 neural network (See http://yann.lecun.com/exdb/mnist/).

As we can see from Figure 10 that ProxSARAH-v2, ProxSARAH-v3, and ProxSGD
performs really well in terms of training loss and test accuracy. However, our method can
achieve lower as well as less oscillated gradient mapping norm than ProxSGD. Also, Prox-
SpiderBoost has similar performance to ProxSARAH-v4 and ProxSARAH-v5. ProxSVRG
again does not have a good performance in this example in terms of loss and test accuracy
but is slightly better than ProxSGD regarding gradient mapping norm.

6. Conclusions

We have proposed a unified stochastic proximal-gradient framework using the SARAH es-
timator to solve both the composite expectation problem (1) and the composite finite sum
problem (2). Our algorithm is different from existing stochastic proximal gradient-type
methods such as ProxSVRG and ProxSpiderBoost at which we have an additional aver-
aging step. Moreover, it can work with both single sample and mini-batch using either
constants or dynamic step-sizes. Our dynamic step-size is updated in an increasing fashion
as opposed to a diminishing step-size in ProxSGD. We have established the best-known
complexity bounds for all cases. We believe that our methods give more flexibility to trade-
off between step-sizes and mini-batch in order to obtain good performance in practice. The
numerical experiments have shown that our methods are comparable or even outperform
existing methods, especially in the single sample case.

31

http://yann.lecun.com/exdb/mnist/

Pham H., Nguyen M., Phan T., and Tran-Dinh

Acknowledgements

The work of Q. Tran-Dinh has partly been supported by the National Science Foundation
(NSF), grant no. DMS-1619884, and the Office of Naval Research (ONR), grant no. N00014-
20-1-2088 (2020-2023).

Appendix A. Technical Lemmas

This appendix provides the missing proofs of Lemma 2 and one elementary result, Lemma 12,
used in our analysis in the sequel.

Lemma 12 Given three positive constants ν, δ, and L, let {γt}mt=0 be a positive sequence
satisfying the following conditions:{

Lγm − δ ≤ 0,

νL2γt
∑m

j=t+1 γj − δ + Lγt ≤ 0, t = 0, · · · ,m− 1.
(48)

Then, the following statements hold:
(a) The sequence {γt}mt=0 computed recursively in a backward mode as

γm :=
δ

L
, and γt :=

δ

L
[
1 + νL

∑m
j=t+1 γj

] , t = 0, · · · ,m− 1, (49)

tightly satisfies (48). Moreover, we have δ
L(1+δνm) < γ0 < γ1 < · · · < γm and

Σm :=
m∑
t=0

γt ≥
2δ(m+ 1)

L
[√

1 + 2δνm+ 1
] . (50)

(b) The constant sequence {γt}mt=0 with γt := 2δ
L(
√

1+4δνm+1)
satisfies (48).

Proof (a) The sequence {γt}mt=0 given by (49) is in fact computed from (48) by setting all
the inequalities “≤” to equalities “=”. Hence, it automatically satisfies (48). Moreover, it
is obvious that γ0 < γ1 < · · · < γm. Since

∑m
t=1 γt < mγm = mδ

L , we have γ0 >
δ

L(1+δνm) .

Let Σm :=
∑m

t=0 γt. Using Σm into (48) with all equalities, we can rewrite it as

νL2γmΣm = δ − Lγm + νL2(γ2
m + γmγm−1 + γmγm−2 + · · ·+ γmγ0)

νL2γm−1Σm = δ − Lγm−1 + νL2(γ2
m−1 + γm−1γm−2 + γm−1γm−3 + · · ·+ γm−1γ0)

· · · · · · · · ·
νL2γ1Σm = δ − Lγ1 + νL2(γ2

1 + γ1γ0)

νL2γ0Σm = δ − Lγ0 + νL2γ2
0 .

Summing up both sides of these equations, and using the definition of Σm and S2
m :=∑m

t=0 η̂
2
t , we obtain

νL2Σ2
m = (m+ 1)δ − LΣm +

νL2

2
(Σ2

m + S2
m).

32

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

Since (m+ 1)S2
m ≥ Σ2

m by the Cauchy-Schwarz inequality, the last expression leads to

νL2Σ2
m + 2LΣm − 2δ(m+ 1) = νL2S2

m ≥
νL2Σ2

m

m+ 1
.

Therefore, by solving the quadratic inequation νmL2Σ2
m + 2(m+ 1)LΣm − 2δ(m+ 1)2 ≥ 0

in Σm with Σm > 0, we obtain

Σm ≥
2δ(m+ 1)

L
[
1 +
√

1 + 2δνm
] ,

which is exactly (50).

(b) Let γt := γ > 0 for t = 0, · · · ,m. Then (48) holds if νL2γ2m− δ+Lγ = 0. Solving this
quadratic equation in γ and noting that γ > 0, we obtain γ = 2δ

L(
√

1+4δνm+1)
.

Proof (The proof of Lemma 2: Properties of stochastic estimators): We only
prove (23), since other statements were proved in Harikandeh et al. (2015); Lohr (2009);
Nguyen et al. (2017b, 2018a). The proof of (23) for the finite-sum case (2) was also given
in Nguyen et al. (2018a) but under the L-smoothness of each fi, we conduct this proof here
by following the same path as in Nguyen et al. (2018a) for completeness.

Our goal is to prove (24) by upper bounding the following quantity:

At := E
[
‖vt − vt−1‖2 | Ft

]
− ‖∇f(wt)−∇f(wt−1)‖2. (51)

Let Ft := σ(w
(s)
0 ,B1, · · · ,Bt−1) be the σ-field generated by w

(s)
0 and mini-batches B1, · · · ,Bt−1,

and F0 = F1 = σ(w
(s)
0). If we define Ξi := ∇fi(wt)−∇fi(wt−1), then using the update rule

(17), we can upper bound At in (51) as

At = E
[
‖ 1
bt

∑
i∈Bt Ξi‖2 | Ft

]
− ‖ 1

n

∑n
i=1 Ξi‖2

= 1
b2t
E
[∑

i∈Bt
∑

j∈Bt〈Ξi,Ξj〉 | Ft
]
− 1

n2

∑n
i=1

∑n
j=1〈Ξi,Ξj〉

= 1
b2t
E
[∑

i,j∈Bt,i 6=j〈Ξi,Ξj〉+
∑

i∈Bt ‖Ξi‖
2 | Ft

]
− 1

n2

∑n
i=1

∑n
j=1〈Ξi,Ξj〉

= 1
b2t

[
bt(bt−1)
n(n−1)

∑n
i,j=1,i 6=j〈Ξi,Ξj〉+ bt

n

∑n
i=1 ‖Ξi‖2

]
− 1

n2

∑n
i=1

∑n
j=1〈Ξi,Ξj〉

= (bt−1)
btn(n−1)

∑n
i,j=1〈Ξi,Ξj〉+ (n−bt)

btn(n−1)

∑n
i=1 ‖Ξi‖2 −

1
n2

∑n
i=1

∑n
j=1〈Ξi,Ξj〉

= (n−bt)
btn(n−1)

∑n
i=1 ‖Ξi‖2 −

(n−bt)
(n−1)bt

‖ 1
n

∑n
i=1 Ξi‖2

= (n−bt)
bt(n−1)

1
n

∑n
i=1 ‖∇fi(wt)−∇fi(wt−1)‖2 − (n−bt)

(n−1)bt
‖∇f(wt)−∇f(wt−1)‖2,

where we use the facts that

E
[∑

i,j∈Bt,i 6=j〈Ξi,Ξj〉 | Ft
]

= bt(bt−1)
n(n−1)

∑n
i,j=1,i 6=j〈Ξi,Ξj〉

and E
[∑

i∈Bt ‖Ξi‖
2 | Ft

]
= bt

n

∑n
i=1 ‖Ξi‖2

in the third line of the above derivation. Rearranging the estimate At, we obtain (23).

33

Pham H., Nguyen M., Phan T., and Tran-Dinh

To prove (24), we define Ξi := ∇wf(wt; ξi) − ∇wf(wt−1; ξi). Clearly, E [Ξi | Ft] =
∇f(wt)−∇f(wt−1) and vt − vt−1 = 1

bt

∑
i∈Bt Ξi. Similar to (20), we have

E
[
‖(vt − vt−1)− E [Ξi | Ft] ‖2 | Ft

]
= 1

bt
E
[
‖Ξi − E [Ξi | Ft] ‖2 | Ft

]
.

Using the fact that E
[
‖X − E [X] ‖2

]
= E

[
‖X‖2

]
− ‖E [X] ‖2, after rearranging, we obtain

from the last expression that

E
[
‖vt − vt−1‖2 | Ft

]
=
(

1− 1
bt

)
‖∇f(wt)−∇f(wt−1)‖2

+ 1
bt
E
[
‖∇wf(wt; ξ)−∇wf(wt−1; ξ)‖2 | Ft

]
,

which is indeed (24).

Appendix B. The Proof of Technical Results in Section 3

We provide the full proof of the results in Section 3.

B.1. The Proof of Lemma 3: The Analysis of The Inner Loop

Proof From the update w
(s)
t+1 := (1−γt)w(s)

t +γtŵ
(s)
t+1, we have w

(s)
t+1−w

(s)
t = γt(ŵ

(s)
t+1−w

(s)
t).

Firstly, using the L-smoothness of f from (6) of Assumption 2.2, we can derive

f(w
(s)
t+1) ≤ f(w

(s)
t) + 〈∇f(w

(s)
t), w

(s)
t+1 − w

(s)
t 〉+ L

2 ‖w
(s)
t+1 − w

(s)
t ‖2

= f(w
(s)
t) + γt〈∇f(w

(s)
t), ŵ

(s)
t+1 − w

(s)
t 〉+

Lγ2t
2 ‖ŵ

(s)
t+1 − w

(s)
t ‖2.

(52)

Next, using the convexity of ψ, one can show that

ψ(w
(s)
t+1) ≤ (1− γt)ψ(w

(s)
t) + γtψ(ŵ

(s)
t+1) ≤ ψ(w

(s)
t) + γt〈∇ψ(ŵ

(s)
t+1), ŵ

(s)
t+1 − w

(s)
t 〉, (53)

where ∇ψ(ŵ
(s)
t+1) ∈ ∂ψ(ŵ

(s)
t+1).

By the optimality condition of ŵ
(s)
t+1 := proxηtψ(w

(s)
t − ηtv

(s)
t), we have ∇ψ(ŵ

(s)
t+1) =

−v(s)
t − 1

ηt
(ŵ

(s)
t+1 − w

(s)
t) for some ∇ψ(ŵ

(s)
t+1) ∈ ∂ψ(ŵ

(s)
t+1). Substituting this expression into

(53), we obtain

ψ(w
(s)
t+1) ≤ ψ(w

(s)
t) + γt〈v(s)

t , w
(s)
t − ŵ

(s)
t+1〉 −

γt
ηt
‖ŵ(s)

t+1 − w
(s)
t ‖2. (54)

Combining (52) and (54), and then using F (w) := f(w) + ψ(w) yields

F (w
(s)
t+1) ≤ F (w

(s)
t) + γt〈∇f(w

(s)
t)− v(s)

t , ŵ
(s)
t+1 − w

(s)
t 〉 −

(γt
ηt
− Lγ2

t

2

)
‖ŵ(s)

t+1 − w
(s)
t ‖2. (55)

Also, the following expression holds

〈∇f(w
(s)
t)− v(s)

t , ŵ
(s)
t+1 − w

(s)
t 〉 = 1

2‖∇f(w
(s)
t)− v(s)

t ‖2 + 1
2‖ŵ

(s)
t+1 − w

(s)
t ‖2

− 1
2‖∇f(w

(s)
t)− v(s)

t − (ŵ
(s)
t+1 − w

(s)
t)‖2.

34

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

From this expression, we can rewrite (55) as

F (w
(s)
t+1) ≤ F (w

(s)
t) +

γt
2
‖∇f(w

(s)
t)− v(s)

t ‖2 −
(γt
ηt
− Lγ2

t

2
− γt

2

)
‖ŵ(s)

t+1 − w
(s)
t ‖2 − σ

(s)
t ,

where σ
(s)
t := γt

2 ‖∇f(w
(s)
t)− v(s)

t − (ŵ
(s)
t+1 − w

(s)
t)‖2 ≥ 0.

Taking expectation both sides of this inequality over the entire history, we obtain

E
[
F (w

(s)
t+1)

]
≤ E

[
F (w

(s)
t)
]

+ γt
2 E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]

−
(
γt
ηt
− Lγ2t

2 −
γt
2

)
E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
− E

[
σ

(s)
t

]
.

(56)

Next, recall from (10) that Gη(w) := 1
η

(
w− proxηψ(w− η∇f(w))

)
is the gradient mapping

of F . In this case, it is obvious that

ηt‖Gηt(w
(s)
t)‖ = ‖w(s)

t − proxηtψ(w
(s)
t − ηt∇f(w

(s)
t))‖.

Using this definition, the triangle inequality, and the nonexpansive property ‖proxηψ(z) −
proxηψ(w)‖ ≤ ‖z − w‖ of proxηψ, we can derive that

ηt‖Gηt(w
(s)
t)‖ ≤ ‖ŵ(s)

t+1 − w
(s)
t ‖+ ‖proxηtψ(w

(s)
t − ηt∇f(w

(s)
t))− ŵ(s)

t+1‖

= ‖ŵ(s)
t+1 − w

(s)
t ‖+ ‖proxηtψ(w

(s)
t − ηt∇f(w

(s)
t))− proxηtψ(w

(s)
t − ηtv

(s)
t)‖

≤ ‖ŵ(s)
t+1 − w

(s)
t ‖+ ηt‖∇f(w

(s)
t)− v(s)

t ‖.

Now, the last estimate leads to

η2
tE
[
‖Gηt(w

(s)
t)‖2

]
≤ 2E

[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
+ 2η2

tE
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]
.

Multiplying this inequality by γt
2 > 0 and adding the result to (56), we finally get

E
[
F (w

(s)
t+1)

]
≤ E

[
F (w

(s)
t)
]
− γtη2t

2 E
[
‖Gηt(w

(s)
t)‖2

]
+ γt

2

(
1 + 2η2

t

)
E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]

− γt
2

(
2
ηt
− Lγt − 3

)
E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
− E

[
σ

(s)
t

]
.

Summing up this inequality from t = 0 to t = m, we obtain

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]

+
1

2

m∑
t=0

γt
(
1 + 2η2

t

)
E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]

− 1

2

m∑
t=0

γt

(2

ηt
− Lγt − 3

)
E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
−

m∑
t=0

γtη
2
t

2
E
[
‖Gηt(w

(s)
t)‖2

]
−

m∑
t=0

E
[
σ

(s)
t

]
.

(57)

35

Pham H., Nguyen M., Phan T., and Tran-Dinh

We consider two cases:
Case 1: In the finite-sum setting (2), i.e., Algorithm 1 solves (2), then from (23) of

Lemma 2, the L-smoothness condition (4) in Assumption 2.2, the choice b̂
(s)
t = b̂ ≥ 1,

and w
(s)
j − w

(s)
j−1 = γj−1(ŵ

(s)
j − w

(s)
j−1), we can estimate

E
[
‖v(s)
j − v

(s)
j−1‖2 | Fj

]
(23)
= n(b̂−1)

b̂(n−1)
‖∇f(wj)−∇f(wj−1)‖2

+ n−b̂
b̂(n−1)

1
n

∑n
i=1 ‖∇fi(w

(s)
j)−∇fi(w(s)

j−1)‖2

(4)

≤ ‖∇f(wj)−∇f(wj−1)‖2 + (n−b̂)L2

b̂(n−1)
‖w(s)

j − w
(s)
j−1‖2

= ‖∇f(wj)−∇f(wj−1)‖2 +
(n−b̂)L2γ2j−1

b̂(n−1)
‖ŵ(s)

j − w
(s)
j−1‖2.

Case 2: In the expectation setting (1), i.e., Algorithm 1 solves (1), then from (24) of
Lemma 2, we have

E
[
‖v(s)
j − v

(s)
j−1‖2 | Fj

]
(24)
=
(

1− 1
b̂

)
‖∇f(wj)−∇f(wj−1)‖2

+ 1
b̂
E
[
‖∇wf(wj ; ξ)−∇wf(wj−1; ξ)‖2 | Fj

]
(3)

≤ ‖∇f(wj)−∇f(wj−1)‖2 + L2

b̂
‖w(s)

j − w
(s)
j−1‖2

= ‖∇f(wj)−∇f(wj−1)‖2 +
L2γ2j−1

b̂
‖ŵ(s)

j − w
(s)
j−1‖2.

Using either one of the two last inequalities and (19), then taking the full expectation, we
can derive

E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]

= E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]∑t

j=1 E
[
‖v(s)
j − v

(s)
j−1‖2

]
−
∑t

j=1 E
[
‖∇f(wj)−∇f(wj−1)‖2

]
≤ E

[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

+ ρL2
∑t

j=1 γ
2
j−1E

[
‖ŵ(s)

j − w
(s)
j−1‖2

]
= σ̄(s) + ρL2

∑t
j=1 γ

2
j−1E

[
‖ŵ(s)

j − w
(s)
j−1‖2

]
,

(58)

where σ̄(s) := E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]
≥ 0, and ρ := 1

b̂
if Algorithm 1 solves (1), and

ρ := n−b̂
b̂(n−1)

if Algorithm 1 solves (2).

Substituting (58) into (57) and dropping the term −
m∑
t=0

E
[
σ

(s)
t

]
(≤ 0), we finally arrive at

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]

+ ρL2

2

m∑
t=0

γt
(
1 + 2η2

t

) t∑
j=1

γ2
j−1E

[
‖ŵ(s)

j − w
(s)
j−1‖

2
]

− 1

2

m∑
t=0

γt

(
2

ηt
− Lγt − 3

)
E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
−

m∑
t=0

γtη
2
t

2
E
[
‖Gηt(w

(s)
t)‖2

]
+

1

2

m∑
t=0

γt
(
1 + 2η2

t

)
σ̄(s),

36

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

which is exactly (26).

B.2. The Proof of Lemma 4: The Selection of Constant Step-sizes

Proof Let us first fix all the step-sizes of Algorithm 1 as constants as follows:

γt := γ ∈ (0, 1] and ηt := η > 0.

We also denote a
(s)
t := E

[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
≥ 0.

Let ρ := 1
b̂

if Algorithm 1 solves (1) and ρ := n−b̂
b̂(n−1)

if Algorithm 1 solves (2). Using these

expressions into (26), we can easily show that

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]

+ ρL2γ3

2

(
1 + 2η2

) m∑
t=0

t∑
j=1

a
(s)
j−1

− γ
2

(
2
η − Lγ − 3

) m∑
t=0

a
(s)
t −

γη2

2

m∑
t=0

E
[
‖Gηt(w

(s)
t)‖2

]
+ γ

2

(
1 + 2η2

)
(m+ 1)σ̄(s)

= E
[
F (w

(s)
0)
]
− γη2

2

m∑
t=0

E
[
‖Gηt(w

(s)
t)‖2

]
+ γ

2

(
1 + 2η2

)
(m+ 1)σ̄(s) + Tm,

(59)

where Tm is defined as

Tm :=
ρL2γ3

(
1 + 2η2

)
2

m∑
t=0

t∑
j=1

a
(s)
j−1 −

γ

2

(
2

η
− Lγ − 3

) m∑
t=0

a
(s)
t .

Our goal is to choose η > 0, and γ ∈ (0, 1] such that Tm ≤ 0. We first rewrite Tm as follows:

Tm =
ρL2γ3(1+2η2)

2

[
ma

(s)
0 + (m− 1)a

(s)
1 + · · ·+ 2a

(s)
m−2 + a

(s)
m−1

]
− γ

2

(
2
η − Lγ − 3

) [
a

(s)
0 + a

(s)
1 + · · ·+ a

(s)
m

]
.

By synchronizing the coefficients of the terms a
(s)
0 , a

(s)
1 , · · · , a(s)

m , to guarantee Tm ≤ 0, we
need to satisfy ρ

(
1 + 2η2

)
L2γ2m−

(
2
η − Lγ − 3

)
≤ 0,

2
η − Lγ − 3 ≥ 0.

(60)

Assume that 2
η −Lγ− 3 = 1 > 0. This implies that η = 2

Lγ+4 . Next, since Lγ > 0, we have

η ≤ 1
2 . Therefore, we can upper bound

ρL2γ2m(1 + 2η2)−
(

2

η
− Lγ − 3

)
≤ 3ρL2γ2m

2
− 1 = 0.

37

Pham H., Nguyen M., Phan T., and Tran-Dinh

The last equation and η = 2
Lγ+4 lead to

γ :=
1

L
√
ωm

and η :=
2
√
ωm

4
√
ωm+ 1

,

which is exactly (27), where ω := 3(n−b̂)
2b̂(n−1)

for (2) and ω := 3
2b̂

for (1).

Finally, using this choice (27) of the step-sizes, we can derive that

E
[
F (w

(s)
m+1

]
≤ E

[
F (w

(s)
0)
]
− γη2

2

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]

+
γθ

2
(m+ 1)σ̄(s), (61)

which is exactly (28), where θ := 1 + 2η2 ≤ 3
2 .

B.3. The Proof of Theorem 6: The Dynamic Step-size Case

Proof Let βt := γt
(
1 + 2η2

t

)
and κt := γt

(
2
ηt
− Lγt − 3

)
. From (26) of Lemma 3 we have

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]
−

m∑
t=0

γtη
2
t

2
E
[
‖Gηt(w

(s)
t)‖2

]
+

1

2
σ̄(s)

(m∑
t=0

βt

)
+ Tm, (62)

where

Tm :=
L2(n− b̂)
2b̂(n− 1)

m∑
t=0

βt

t∑
j=1

γ2
j−1E

[
‖ŵ(s)

j − w
(s)
j−1‖

2
]
− 1

2

m∑
t=0

κtE
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
.

Now, to guarantee Tm ≤ 0, let us choose all the parameters such that κm = 0,

(n−b̂)
b̂(n−1)

L2γ2
t

∑m
j=t+1 βj − κt = 0, t = 0, · · · ,m− 1.

(63)

Then, (62) becomes

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]
−

m∑
t=0

stη
2
t

2
E
[
‖Gηt(w

(s)
t)‖2

]
+

1

2

m∑
t=0

βtσ̄
(s). (64)

If we fix ηt = η ∈ (0, 2
3), and define δ := 2

η − 3 > 0, then (63) reduces to δ − Lγm = 0,

L2(n−b̂)(1+2η2)

b̂(n−1)
γt
∑m

j=t+1 γj − δ + Lγt = 0, t = 0, · · · ,m− 1.
(65)

Applying Lemma 12(a) with ν = ωη := (n−b̂)(1+2η2)

b̂(n−1)
, we obtain from (65) that

γm :=
δ

L
, and γt :=

δ

L
[
1 + ωηL

∑m
j=t+1 γj

] , t = 0, · · · ,m− 1. (66)

38

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

Moreover, we have

δ

L(1 + ωηδm)
< γ0 < γ1 < · · · < γm, and Σm :=

m∑
t=0

γt ≥
2δ(m+ 1)

L(
√

2ωηδm+ 1 + 1)
,

which proves (31).

On the other hand, since σ̄(s) := E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

= E
[
‖∇̃fBs(w̃s−1)−∇f(w̃s−1)‖2

]
,

by using (21), we have σ̄(s) ≤
(
n−bs
nbs

)
σ2
n(w̃s−1). Using this upper bound and βt :=

γt(1 + 2η2) ≤ 3γt
2 ≤

3
2 (since γt ∈ [0, 1]), into the estimate (64), we can arrive at

1

SΣm

S∑
s=1

m∑
t=0

γtE
[
‖Gη(w(s)

t)‖2
]
≤ 2

η2SΣm

[
F (w̃0)− F ?

]
+

3

2η2S

S∑
s=1

(n− bs)σ2
n(w̃s−1)

nbs
,

which is exactly (32).

Now, let us choose η := 1
2 ∈ (0, 2

3). Then, we have δ = 1, ωη = 3(n−b̂)
2b̂(n−1)

, and Σm ≥
2δ(m+1)

L(
√

2ωηm+1+1)
. Using these facts, w̃T ∼ Up

(
{w(s)

t }s=1→S
t=0→m

)
with Prob

(
w̃T = w

(s)
t

)
=

p(s−1)m+t := γt
SΣm

, and bs = n, we obtain from (32) that

E
[
‖Gη(w̃T)‖2

]
=

1

SΣm

S∑
s=1

m∑
t=0

γtE
[
‖Gη(w(s)

t)‖2
]
≤ 4L(

√
2ωm+ 1 + 1)

S(m+ 1)

[
F (w̃0)− F ?

]
.

Next, using m = bn
b̂
c and ω := ωη = 3(n−b̂)

2b̂(n−1)
, if b̂ ≤

√
n, then we can bound

√
2ωm+ 1 + 1

m+ 1
≤ 2

√
ω√

m+ 1
≤
√

6√
n
.

Using this bound, we can further bound the above estimate obtained from (32) as

E
[
‖Gη(w̃T)‖2

]
≤ 4
√

6L [F (w̃0)− F ?]
S
√
n

,

which is (33).

To achieve E
[
‖Gη(w̃T)‖2

]
≤ ε2, we impose 4

√
6L[F (w̃0)−F ?]

S
√
n

= ε2, which shows that

the number of outer iterations S := 4
√

6L[F (w̃0)−F ?]√
nε2

. To guarantee S ≥ 1, we need n ≤
96L2[F (w̃0)−F ?]2

ε4
.

Hence, we can estimate the number of gradient evaluations Tgrad by

Tgrad = Sn+ 2S(m+ 1)b̂ ≤ 5Sn =
20
√

6L
√
n [F (w̃0)− F ?]
ε2

.

We can conclude that the number of stochastic gradient evaluations does not exceed Tgrad =

O
(
L
√
n[F (w̃0)−F ?]

ε2

)
. The number of proximal operations proxηψ does not exceed Tprox :=

S(m+ 1) ≤ 4
√

6(
√
n+1)L[F (w̃0)−F ?]

b̂ε2
.

39

Pham H., Nguyen M., Phan T., and Tran-Dinh

B.4. The Proof of Theorem 8: The Constant Step-size Case

Proof If we choose (γt, ηt) = (γ, η) > 0 for all t = 0, · · · ,m, then, by applying Lemma 4,
we can update

γ :=
1

L
√
ωm

and η :=
2
√
ωm

4
√
ωm+ 1

,

which is exactly (34), where ω := 3(n−b̂)
2(n−1)b̂

. With this update, we can simplify (28) as

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]
− γη2

2

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]

+
3γ

4
(m+ 1)σ̄(s).

With the same argument as above, we obtain

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]
≤ 2

γη2(m+ 1)S

[
F (w̃0)−F ?

]
+

3

2η2S

S∑
s=1

(n− bs)σ2
n(w̃s−1)

nbs
.

For w̃T ∼ U
(
{w(s)

t }s=1→S
t=0→m

)
with T := (m+ 1)S and bs = n, the last estimate implies

E
[
‖Gη(w̃T)‖2

]
=

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]
≤ 2

γη2(m+ 1)S

[
F (w̃0)− F ?

]
.

By the update rule of η and γ, we can easily show that γη2 ≥ 4
√
ωm

L(4
√
ωm+1)2

. Therefore, using

m := bn
b̂
c, we can overestimate

1

γη2(m+ 1)
≤ L(4

√
ωm+ 1)2

4
√
ωm(m+ 1)

≤ 8L
√
ω√

m
≤ 8
√

3L√
2n

.

Using this upper bound, to guarantee E
[
‖Gη(w̃T)‖2

]
≤ ε2, we choose S and m such that

16
√

3L
S
√

2n

[
F (w̃0) − F ?

]
= ε2, which leads to S := 16

√
3L√

2nε2

[
F (w̃0) − F ?

]
as the number of outer

iterations. To guarantee S ≥ 1, we need to choose n ≤ 384L2

ε4

[
F (w̃0)− F ?

]2
.

Finally, we can estimate the number of stochastic gradient evaluations Tgrad as

Tgrad = Sn+ 2S(m+ 1) ≤ 5Sn =
16
√

3L
√
n√

2ε2

[
F (w̃0)− F ?

]
= O

(
L
√
n

ε2

[
F (w̃0)− F ?

])
.

The number of proxηψ is Tprox = S(m+ 1) ≤ 16
√

3L(
√
n+1)

b̂
√

2ε2

[
F (w̃0)− F ?

]
.

B.5. The Proof of Theorem 9: The Expectation Problem

Proof Summing up (28) from s = 1 to s = S, and then using w
(0)
0 = w̃0, we obtain

γη2

2

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]
≤ F (w̃0)− E

[
F (w

(S)
m+1)

]
+
γθ(m+ 1)

2

S∑
s=1

σ̄(s). (67)

40

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

Note that E
[
F (w

(S)
m+1)

]
≥ F ? by Assumption 2.1. Moreover, by (20), we have

σ̄(s) := E
[
‖v(s)

0 −∇f(w
(s)
0)‖2

]
= E

[
‖∇̃fBs(w

(s)
0)−∇f(w

(s)
0)‖2

]
≤ σ2

bs
=
σ2

b
.

Recall that ρ := 1
b̂

for (1). Therefore, we have θ = 1+ 8ω̄m
(1+4

√
ω̄m)2

< 3
2 , where ω̄ := 3

2b̂
. Using

these estimates into (67), we obtain (39).

Now, since w̃T ∼ U
(
{w(s)

t }s=1→S
t=0→m

)
for T := S(m+ 1), we have

E
[
‖Gη(w̃T)‖2

]
=

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]

≤ 2

γη2(m+ 1)S
[F (w̃0)− F ?] +

3σ2

2η2b
.

Since η = 2
√
ω̄m

4
√
ω̄m+1

≥ 2
5 and 1

γη2(m+1)
≤ 25L

√
ω̄m

4(m+1) ≤
8L√
b̂m

as proved above, to guarantee

E
[
‖Gη(w̃T)‖2

]
≤ ε2, we need to set

16L

S
√
b̂m

[F (w̃0)− F ?] +
75σ2

8b
= ε2.

Let us choose b such that 75σ2

8b = ε2

2 , which leads to b := 75σ2

8ε2
. We also choose m := σ2

b̂ε2
. To

guarantee m ≥ 1, we have b̂ ≤ σ2

ε2
. Then, since 1√

b̂m
= ε

σ , the above condition is equivalent

to 16Lε
Sσ [F (w̃0)− F ?] = ε2

2 , which leads to

S :=
32L

σε
[F (w̃0)− F ?].

To guarantee S ≥ 1, we need to choose ε ≤ 32L
σ [F (w̃0)− F ?] if σ is sufficiently large.

Now, we estimate the total number of stochastic gradient evaluations as

Tgrad =
∑S

s=1 bs + 2mb̂S = (b+ 2mb̂)S = 32L
σε [F (w̃0)− F ?]

(
75σ2

ε2
+ 2σ2

b̂ε2
b̂
)

= 2464Lσ
ε3

[F (w̃0)− F ?].

Hence, the number of gradient evaluations is O
(
Lσ[F (w̃0)−F ?]

ε3

)
, and the number of proximal

operator calls is also Tprox := S(m+ 1) = 32σL
b̂ε2

[F (w̃0)− F ?].

Appendix C. The Proof of Theorem 11: The Non-Composite Cases

Proof Since ψ = 0, we have ŵ
(s)
t+1 = w

(s)
t − ηtv

(s)
t . Therefore, ŵ

(s)
t+1 − w

(s)
t = −ηtv(s)

t and

w
(s)
t+1 = (1− γt)w(s)

t + γtŵ
(s)
t+1 = w

(s)
t − γtηtv

(s)
t = w

(s)
t − η̂tv

(s)
t , where η̂t := γtηt. Using these

relations and choose ct = 1
ηt

, we can easily show that E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
= η2

tE
[
‖v(s)
t ‖2

]
,

σ
(s)
t := γt

2ct
‖∇f(w

(s)
t)− v(s)

t − ct(ŵ
(s)
t+1 − w

(s)
t)‖2 = η̂t

2 ‖∇f(w
(s)
t)‖2.

41

Pham H., Nguyen M., Phan T., and Tran-Dinh

Substituting these estimates into (56) and noting that f = F and η̂t := γtηt, we obtain

E
[
f(w

(s)
t+1)

]
≤ E

[
f(w

(s)
t)
]

+ η̂t
2 E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]

− η̂t
2

(
1− Lη̂t

)
E
[
‖v(s)
t ‖2

]
− η̂t

2 E
[
‖∇f(w

(s)
t)‖2

]
.

(68)

On the other hand, from (19), by Assumption 2.2, (16), and w
(s)
t+1 := w

(s)
t − η̂tv

(s)
t , we can

derive

E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]
≤ E

[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

+
∑t

j=1 E
[
‖v(s)
j − v

(s)
j−1‖2

]
≤ E

[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

+ ρ
∑t

j=1 E
[
‖∇wf(w

(s)
j ; ξ

(s)
j)−∇wf(w

(s)
j−1; ξ

(s)
j)‖2

]
≤ E

[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

+ ρL2
∑t

j=1 E
[
‖w(s)

j − w
(s)
j−1‖2

]
≤ E

[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

+ ρL2
∑t

j=1 η̂
2
j−1E

[
‖v(s)
j−1‖2

]
,

where ρ := 1
b̂

if Algorithm 1 solves (1) and ρ := n−b̂
b̂(n−1)

if Algorithm 1 solves (2).

Substituting this estimate into (68), and summing up the result from t = 0 to t = m,
we eventually get

E
[
f(w

(s)
m+1)

]
≤ E

[
f(w

(s)
0)
]
−

m∑
t=0

η̂t
2
E
[
‖∇f(w

(s)
t)‖2

]
+

1

2

(m∑
t=0

η̂t

)
E
[
‖∇f(w

(s)
0)− v(s)

0 ‖
2
]

+
ρL2

2

m∑
t=0

η̂t

t∑
j=1

η̂2
j−1E

[
‖v(s)
j−1‖

2
]
−

m∑
t=0

η̂t(1− Lη̂t)
2

E
[
‖v(s)
t ‖2

]
. (69)

Our next step is to choose η̂t such that

ρL2
m∑
t=0

η̂t

t∑
j=1

η̂2
j−1E

[
‖v(s)
j−1‖

2
]
−

m∑
t=0

η̂t(1− Lη̂t)E
[
‖v(s)
t ‖2

]
≤ 0.

This condition can be rewritten explicitly as[
ρL2η̂2

0(η̂1 + · · ·+ η̂m)− η̂0(1− Lη̂0)
]
E
[
‖v(s)

0 ‖2
]

+
[
ρL2η̂2

1(η̂2 + · · ·+ η̂m)− η̂1(1− Lη̂1)
]
E
[
‖v(s)

1 ‖2
]

+ · · ·

+
[
ρL2η̂2

m−1η̂m − η̂m−1(1− Lη̂m−1)
]
E
[
‖v(s)
m−1‖2

]
− η̂m(1− Lη̂m)E

[
‖v(s)
m ‖2

]
≤ 0.

Similar to (48), to guarantee the last inequality, we impose the following conditions{
−η̂m(1− Lη̂m) ≤ 0,

ρL2η̂2
t

∑m
j=t+1 η̂j − η̂0(1− Lη̂0) ≤ 0.

(70)

42

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

Applying Lemma 48 (a) with ν = ρ and δ = 1, we obtain

η̂m =
1

L
, and η̂m−t :=

1

L
(
1 + ρL

∑t
j=1 η̂m−j+1

) , ∀t = 1, · · · ,m,

which is exactly (41). With this update, we have 1
L(1+ρm) < η̂0 < η̂1 < · · · < η̂m and

Σm ≥ 2(m+1)
L(
√

2ρm+1+1)
.

Using the update (41), we can simplify (69) as follows:

E
[
f(w

(s)
m+1)

]
≤ E

[
f(w

(s)
0)
]
−

m∑
t=0

η̂t
2
E
[
‖∇f(w

(s)
t)‖2

]
+

∑m
t=0 η̂t
2

E
[
‖∇f(w

(s)
0)− v(s)

0 ‖
2
]
.

Let us define σ̂s := E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

and noting that f? := F ? ≤ E
[
f(w

(S)
m+1)

]
and

w̃0 := w
(0)
0 . Summing up the last inequality from s = 1 to S and using these relations, we

can further derive

S∑
s=1

m∑
t=0

η̂tE
[
‖∇f(w

(s)
t)‖2

]
≤ 2
[
f(w̃0)− f?

]
+
(m∑
t=0

η̂t

) S∑
s=1

σ̂s.

Using the lower bound of Σm as Σm ≥ 2(m+1)
L(
√

2ρm+1+1)
, the above inequality leads to

1

SΣm

S∑
s=1

m∑
t=0

η̂tE
[
‖∇f(w

(s)
t)‖2

]
≤ (
√

2ρm+ 1 + 1)L

S(m+ 1)

[
f(w̃0)− f?

]
+

1

S

S∑
s=1

σ̂s. (71)

Since Prob
(
w̃T = w

(s)
t

)
= p(s−1)m+t with p(s−1)m+t = η̂t

SΣm
for s = 1, · · · , S and t =

0, · · · ,m, we have

E
[
‖∇f(w̃T)‖2

]
=

1

SΣm

S∑
s=1

m∑
t=0

η̂tE
[
‖∇f(w

(s)
t)‖2

]
.

Substituting this estimate into (71), we obtain (42).
Now, we consider two cases:

Case (a): If we apply this algorithm variant to solve the non-composite finite-sum problem
of (2) (i.e., ψ = 0) using the full-gradient snapshot for the outer-loop with bs = n, then

v
(s)
0 = ∇f(w

(s)
0), which leads to σ̂s = 0. By the choice of epoch length m = bn

b̂
c and b̂ ≤

√
n,

we have
√

2ρm+1+1
m+1 ≤ 2√

n
. Using these facts into (42), we obtain

E
[
‖∇f(w̃T)‖2

]
≤ 2L

S
√
n

[
f(w̃0)− f?

]
,

which is exactly (43).
To achieve E

[
‖∇f(w̃T)‖2

]
≤ ε2, we impose 2L

S
√
n

[
f(w̃0)−f?

]
= ε2. Hence, the maximum

number of outer iterations is at most S = 2L√
nε2

[f(w̃0) − f?]. The number of gradient

evaluations ∇fi is at most Tgrad := nS + 2(m+ 1)b̂S ≤ 5nS = 10L
√
n

ε2
[f(w̃0)− f?].

43

Pham H., Nguyen M., Phan T., and Tran-Dinh

Case (b): Let us apply this algorithm variant to solve the non-composite expectation

problem of (1) (i.e., ψ = 0). Then, by using ρ := 1
b̂

and σ̂s := E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]
≤

σ2

bs
= σ2

b , we have from (42) that

E
[
‖∇f(w̃T)‖2

]
≤ 2L

S
√
b̂m

[
f(w̃0)− f?

]
+
σ2

b
.

This is exactly (44). Using the mini-batch b := 2σ2

ε2
for the outer-loop and m := σ2

b̂ε2
, we can

show that the number of outer iterations S := 4L
σε

[
f(w̃0) − f?

]
. The number of stochastic

gradient evaluations is at most Tgrad := Sb+ 2S(m+ 1)b̂ = 4Sσ2

ε2
= 16Lσ

ε3

[
f(w̃0)− f?

]
. This

holds if 2σ2

ε2
≤ 4Sσ2

ε2
= 16Lσ

ε3

[
f(w̃0)− f?

]
leading to σ ≤ 8L

ε

[
f(w̃0)− f?

]
.

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D.
Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M.
Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. URL https://www.tensorflow.org/. Software available from
tensorflow.org.

A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic
lower bounds on the oracle complexity of stochastic convex optimization. IEEE Trans-
actions on Information Theory, 99:1–1, 2010.

Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 1200–1205, Montreal,
Canada, 2017.

Z. Allen-Zhu. Natasha 2: Faster non-convex optimization than SGD. In Advances in Neural
Information Processing Systems (NIPS), pages 2675–26860, Montreal, Canada, 2018.

Z. Allen-Zhu and Y. Li. NEON2: Finding local minima via first-order oracles. In Advances
in Neural Information Processing Systems (NIPS), pages 3720–3730, Montreal, Canada,
2018.

Z. Allen-Zhu and Y. Yuan. Improved SVRG for non-strongly-convex or sum-of-non-convex
objectives. In International Conference on Machine Learning (ICML), pages 1080–1089,
New York, USA, 2016.

Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and B. Woodworth. Lower
bounds for non-convex stochastic optimization. arXiv:1912.02365, 2019.

44

https://www.tensorflow.org/

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

H. H. Bauschke and P. Combettes. Convex Analysis and Monotone Operators Theory in
Hilbert Spaces. Springer-Verlag, 2nd edition, 2017.

L. Bottou. Large-scale machine learning with stochastic gradient descent. In International
Conference on Computational Statistics (COMPSTAT), pages 177–186, Paris, France,
2010.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM Review (SIREV), 60(2):223–311, 2018.

L. Bottou. Online learning and stochastic approximations. In David Saad, editor, Online
Learning in Neural Networks, pages 9–42. Cambridge University Press, Cambridge, UK,
1998.

A. Chambolle, M. J. Ehrhardt, P. Richtárik, and C.-B. Schönlieb. Stochastic primal-dual
hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM Jour-
nal on Optimization (SIOPT), 28(4):2783–2808, 2018.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems (NIPS), pages 1646–1654, Montreal, Canada, 2014.

C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: Near-optimal non-convex optimization
via stochastic path integrated differential estimator. In Advances in Neural Information
Processing Systems (NIPS), pages 689–699, Montreal, Canada, 2018.

R. Frostig, R. Ge, S. M. Kakade, and A. Sidford. Competing with the empirical risk
minimizer in a single pass. In Conference on Learning Theory (COLT), pages 728–763,
Paris, France 2015.

S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization: A generic algorithmic framework. SIAM Journal on
Optimization (SIOPT), 22(4):1469–1492, 2012.

S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization (SIOPT), 23(4):2341–2368, 2013.

S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods for
nonconvex stochastic composite optimization. Mathematical Programming, 155(1-2):267–
305, 2016.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning, volume 1. MIT Press, 2016.

R. Harikandeh, M. O. Ahmed, A. Virani, M. Schmidt, J. Konečnỳ, and S. Sallinen. Stop-
wasting my gradients: Practical SVRG. In Advances in Neural Information Processing
Systems (NIPS), pages 2251–2259, Montreal, Canada, 2015.

45

Pham H., Nguyen M., Phan T., and Tran-Dinh

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems (NIPS), pages 315–323,
Lake Tahoe, NV, USA, 2013.

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak- lojasiewicz condition. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 795–811, Riva del
Garda, Italy, 2016.

L. Lei and M. Jordan. Less than a single pass: Stochastically controlled stochastic gradient.
In Aarti Singh and Jerry Zhu, editors, International Conference on Artificial Intelligence
and Statistics (AISTATS), PMLR 54:148–156, Fort Lauderdale, FL, USA, 2017.

Z. Li and J. Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. In Advances in Neural Information Processing Systems (NIPS), pages 5564–
5574, Montreal, Canada, 2018.

L. Lihua, C. Ju, J. Chen, and M. Jordan. Non-convex finite-sum optimization via SCSG
methods. In Advances in Neural Information Processing Systems (NIPS), pages 2348–
2358, Long Beach, CA, USA 2017.

H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In
Advances in Neural Information Processing Systems (NIPS), pages 3384–3392, Montreal,
Canada, 2015.

S. L. Lohr. Sampling: Design and Analysis. Nelson Education, 2009.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization (SIOPT), 19(4):
1574–1609, 2009.

A. Nemirovskii and D. Yudin. Problem Complexity and Method Efficiency in Optimization.
Wiley Interscience, 1983.

Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87 of
Applied Optimization. Kluwer Academic Publishers, 2004.

Y. Nesterov and B.T. Polyak. Cubic regularization of Newton method and its global per-
formance. Mathematical Programming, 108(1):177–205, 2006.

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In International Conference on
Machine Learning (ICML), PMLR 70:2613–2621, Sydney, Australia, 2017a.

L. M. Nguyen, N. H. Nguyen, D. T. Phan, J. R. Kalagnanam, and K. Scheinberg. When
does stochastic gradient algorithm work well? arXiv:1801.06159, 2018a.

L. M. Nguyen, K. Scheinberg, and M. Takac. Inexact SARAH algorithm for stochastic
optimization. arXiv:1811.10105, 2018b.

46

ProxSARAH Algorithms for Stochastic Composite Nonconvex Optimization

L. M. Nguyen, M. van Dijk, D. T. Phan, P. H. Nguyen, T.-W. Weng, and J. R. Kalagnanam.
Optimal finite-sum smooth non-convex optimization with SARAH. arXiv:1901.07648,
2019.

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takác. Stochastic recursive gradient algorithm
for nonconvex optimization. arXiv:1705.07261, 2017b.

A. Nitanda. Stochastic proximal gradient descent with acceleration techniques. In Advances
in Neural Information Processing Systems (NIPS), pages 1574–1582, Montreal, Canada,
2014.

C. Paquette, H. Lin, , D. Drusvyatskiy, J. Mairal, and Z. Harchaoui. Catalyst for gradient-
based nonconvex optimization. In International Conference on Artificial Intelligence and
Statistics (AISTATS), PMLR 84:613–622, Lanzarote, Canary Islands, 2018.

S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Stochastic Frank-Wolfe methods for non-
convex optimization. In Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 1244–1251, Monticello, IL, USA, 2016a.

S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola. Proximal stochastic methods for nons-
mooth nonconvex finite-sum optimization. In Advances in Neural Information Processing
Systems (NIPS), pages 1145–1153, Barcelona, Spain, 2016b.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1-2):83–112, 2017.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research (JMLR), 14:567–599, 2013.

S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. In International Conference on Machine Learning (ICML),
PMLR 32(1):64–72, Beijing, China, 2014.

A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on Stochastic Programming: Mod-
elling and Theory. SIAM, 2009.

S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. MIT Press, 2012.

Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh. SpiderBoost and momentum: Faster vari-
ance reduction algorithms. Advances in Neural Information Processing Systems (NIPS),
pages 2406–2416, Vancouver, Canada, 2019.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

L. Zhao, M. Mammadov, and J. Yearwood. From convex to nonconvex: a loss function
analysis for binary classification. In IEEE International Conference on Data Mining
Workshops (ICDMW), pages 1281–1288, Sydney Australia, 2010.

47

Pham H., Nguyen M., Phan T., and Tran-Dinh

D. Zhou and Q. Gu. Lower bounds for smooth nonconvex finite-sum optimization. Interna-
tional Conference on Machine Learning (ICML), PMLR 97:7574–7583, Long Beach, CA,
USA, 2019.

D. Zhou, P. Xu, and Q. Gu. Stochastic nested variance reduction for nonconvex optimiza-
tion. In Advances in Neural Information Processing Systems (NIPS), pages 3925–3936,
Montreal, Canada, 2018.

Y. Zhou, Z. Wang, K. Ji, Y. Liang, and V. Tarokh. Momentum schemes with stochastic
variance reduction for nonconvex composite optimization. arXiv:1902.02715, 2019.

48

	Introduction
	Motivation
	Related Work
	Our Approach and Contributions
	Comparison Between Our Methods and Existing Work
	Paper Organization

	Mathematical Tools and Preliminary Results
	Basic Notation and Concepts
	Fundamental Assumptions
	Optimality Conditions
	Stochastic Gradient Estimators
	Single sample estimators
	Mini-batch estimators

	Basic Properties of Stochastic and SARAH Estimators

	ProxSARAH Framework and Convergence Analysis
	Analysis of The Inner-Loop: Key Estimates
	Convergence Analysis for The Composite Finite-Sum Problem (2)
	Lower-Bound Complexity for The Finite-Sum Problem (2)
	Mini-Batch Size and Learning Rate Trade-offs
	Convergence Analysis for The Composite Expectation Problem (1)

	Dynamic Step-size Variants for Non-Composite Problems
	Numerical Experiments
	Nonnegative Principal Component Analysis
	Sparse Binary Classification with Nonconvex Losses
	Feedforward Neural Network Training Problem

	Conclusions
	Technical Lemmas
	The Proof of Technical Results in Section 3
	The Proof of Lemma 3: The Analysis of The Inner Loop
	The Proof of Lemma 4: The Selection of Constant Step-sizes
	The Proof of Theorem 6: The Dynamic Step-size Case
	The Proof of Theorem 8: The Constant Step-size Case
	The Proof of Theorem 9: The Expectation Problem

	The Proof of Theorem 11: The Non-Composite Cases

