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Abstract

Decision trees are flexible models that are well suited for many statistical regression prob-
lems. In the Bayesian framework for regression trees, Markov Chain Monte Carlo (MCMC)
search algorithms are required to generate samples of tree models according to their poste-
rior probabilities. The critical component of such MCMC algorithms is to construct “good”
Metropolis-Hastings steps to update the tree topology. Such algorithms frequently suffer
from poor mixing and local mode stickiness; therefore, the algorithms are slow to converge.
Hitherto, authors have primarily used discrete-time birth/death mechanisms for Bayesian
(sums of) regression tree models to explore the tree-model space. These algorithms are
efficient, in terms of computation and convergence, only if the rejection rate is low which is
not always the case. We overcome this issue by developing a novel search algorithm which
is based on a continuous-time birth-death Markov process. The search algorithm explores
the tree-model space by jumping between parameter spaces corresponding to different tree
structures. The jumps occur in continuous time corresponding to the birth-death events
which are modeled as independent Poisson processes. In the proposed algorithm, the moves
between models are always accepted which can dramatically improve the convergence and
mixing properties of the search algorithm. We provide theoretical support of the algo-
rithm for Bayesian regression tree models and demonstrate its performance in a simulated
example.
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1. Introduction

Classification and regression trees (Breiman et al., 1984) provide a flexible modeling approach
using a binary decision tree via splitting rules based on a set of predictor variables. Tree
models often perform well on benchmark data sets, and they are, at least conceptually, easy
to understand (De’ath and Fabricius, 2000). Tree-based models, and their extensions such
as ensembles of trees (Prasad et al., 2006) and sums of trees (Chipman et al., 2010) are an
active research area and arguably some of the most popular machine learning tools(Biau,
2012; Biau et al., 2008; Chipman et al., 1998; Denison et al., 1998; Chipman et al., 2002;
Wu et al., 2007; Linero, 2018; Au, 2018; Probst and Boulesteix, 2017; Pratola et al., 2014).

Much contemporary research work has focused on Bayesian formulations of regression
trees (see, e.g., Denison et al., 1998; Chipman et al., 2010). The Bayesian paradigm provides,
next to a good predictive performance, a principled method for quantifying uncertainty
(Robert, 2007). This Bayesian formulation can, amongst other uses, be extremely valuable
in sequential decision problems (Robbins, 1985; Gittins et al., 2011) and active learning
(Cohn et al., 1996) for which popular approaches include Thompson sampling (Thompson,
1933; Agrawal and Goyal, 2012). It is vital to know not merely the expected values (or
some other point estimate) of the modeled outcome, but rather to obtain a quantitative
formulation of the associated uncertainty (Eckles and Kaptein, 2014, 2019). This is exactly
what Bayesian methods readily provide (Robert, 2007).

Recent Bayesian formulations of regression trees have already found their way into many
applications (Gramacy and Lee, 2008), but computationally efficient sampling algorithms
for tree models and sum-of-tree models have proven non-trivial: the tree-model space of
possible trees grows rapidly as a function of the number of features and efficient explo-
ration of this space has proven cumbersome (Pratola, 2016). Numerous methods have been
proposed to address this problem; indeed, the popular sums-of-trees model specification pro-
posed by Chipman et al. (2010) is itself an attempt to reduce the tree depth and thereby
partly mitigate the problem. Other recent approaches have focussed on efficiently generating
Metropolis-Hasting (MH) proposals in the Markov Chain Monte Carlo (MCMC) algorithm
(see Pratola, 2016; Wu et al., 2007, for examples), or alternatives to the MH sampler such as
sequential MCMC (Taddy et al., 2011) and particle-based approaches (Lakshminarayanan
et al., 2013).

To the best of our knowledge, the most effective search algorithm known at this point
in time is provided by Pratola (2016), who efficiently integrates earlier advances and adds
a number of novel methods to generate tree proposals. Pratola (2016) implements these
methods to explore the tree-space by using a search algorithm that is known as reversible
jump MCMC (RJ-MCMC) (Green, 1995) which is based on an ergodic, discrete-time Markov
chain. The RJ-MCMC algorithm often suffers from high rejection rates especially when
the model space is large which is the case for the decision tree models. Therefore, these
algorithms often are poor mixing and slow to converge.

In this paper, to overcome this issue, we make a significant contribution to the Bayesian
decision tree literature by proposing a novel continuous-time MCMC (CT-MCMC) search
algorithm which is essentially the continuous version of the RJ-MCMC algorithm. The main
advantage of the CT-MCMC algorithm is that each step of the MCMC algorithm considers
the whole set of transitions and a transition always occurs; in fact, there is no rejection.
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Thus, the CT-MCMC has clearly better performances in terms of computational time and
convergence rate. The proposed CT-MCMC search algorithm is based on the construction
of continuous-time Markov birth-death processes (introduced by Preston 1977) with the
appropriate stationary distribution. Sampling algorithms based on these processes have
already been used successfully in the context of mixture distributions by Stephens (2000);
Cappé et al. (2003); Mohammadi et al. (2013). In the case of mixture distributions, the
birth-death mechanisms have been implemented in the MCMC algorithm in such a way
that the algorithm explores the model space by adding/removing a component for the case
of a birth/death event. More recently, such MCMC algorithms have been used in the field of
(Gaussian) graphical models (Mohammadi and Wit, 2015; Mohammadi et al., 2017a; Dobra
and Mohammadi, 2018; Wang et al., 2020; Dobra and Mohammadi, 2018; Hinne et al., 2014;
Mohammadi and Wit, 2019; Mohammadi et al., 2017b). For the case of graphical models,
the birth-death mechanisms have been implemented in the MCMC algorithm in such a way
that the algorithm explores the graph space by adding/removing a link for the case of a
birth/death event.

We apply this continuous-time MCMC mechanism to the classification and regression
tree (CART) model context, by considering the parameters of the model as a point process,
in which the points represent the nodes in the tree model. The MCMC algorithm explores
the tree space by allowing new terminal nodes to be born and existing terminal nodes to die.
These birth and death events occur in continuous time, as independent Poisson processes;
see Figure 3. We design the MCMC algorithm in such a way that the relative rates of the
birth/death events determine the stationary distribution of the process. In Section 3 we
formalize the relationship between the birth/death rates and the stationary distribution.
Based on this we construct the MCMC search algorithm in which the birth/death rates are
the ratios of the posterior distributions. We show how to use the advantage of continuous-
time sampling to efficiently estimate the parameter of interest based on model averaging,
using Rao-Blackwellization Cappé et al. (2003).

This paper is structured as follows. In the next section we introduce the tree and sums
of tree models more formally and introduce the sampling challenges associated with this
model in more detail. Next, in Section 3 we detail our suggested alternative birth-death
approach and provide both an efficient algorithm and the theoretical justification for our
proposal. Subsequently, we extend this proposal to also include the rotation moves suggested
by Pratola (2016). In Section 4 we compare the performance of our method—in terms of
both its statistical properties and its computation time—to the current state of the art
(Pratola, 2016) using a simple, well-known, example that is notoriously challenging for tree
models (Wu et al., 2007). Finally, in Section 5 we discuss the limitations of our contribution
and provide pointers for future work.

2. Bayesian tree models

We consider binary regression or classification trees and sum of trees models. Given a feature
vector x = (x1, ..., xd), and a scalar output of interest y we can denote the tree model as
follows

y = g(x;T, θT ) + ε, ε ∼ N (0, σ2)
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where T denotes the interior nodes of the tree, θT denotes a set of maps associated with
the terminal nodes. Effectively, T encodes all the (binary) split rules that jointly generate
the tree structure. This is often expressed using a list of tuples {(ν1, c1), (ν2, c2), . . . } where
νi ∈ {1, . . . , d} indicates which element of the feature vector to split on, and ci denotes the
associated value of the split (see, e.g., Pratola, 2016). This way of expressing the tree is
however limited since it does not encode the actual topology τ of the tree, which encodes the
number of nodes in a tree, whether a node is internal or terminal, parent/child edges, and
node depths. Hence, more precisely τ and {(ν1, c1), (ν2, c2), . . . } jointly make up the full
tree structure T . Figure 1 illustrates our notation at this point in the paper; in Section 3 we
will gradually introduce some additional notation necessary for our theoretical justification.

T = { τ, (ν1,c1), (ν2,c2)}

θT = {µ1, µ2, µ3}

η1

ν1 < c1

ν2 < c2

η2

µ1 µ2

µ3

Figure 1: A simple example of our main notation for a tree model which has 2 interior
nodes (η1, η2). T encodes both the split rules {(ν1, c1), (ν2, c2), . . . } as well as the
topology τ . The set of maps θT = {µ1, µ2, . . . , µnt} determines the values of the
terminal nodes.

Given the number of terminal nodes, nt, the maps θT = {µ1, µ2, . . . , µnt} take as input
a feature vector x and produce a response µj(x). In typical tree regression models the maps
are constants; µj(x) = µj . Taken together, T represents a partitioning of the feature space
and a mapping from an input feature x to a response value encoded in θT .

The Bayesian formulation of the tree model is completed by using priors of the form

π(T, θT , σ
2) = π(θT |T )π(T )π(σ2).

Note that the sum-of-trees model (Chipman et al., 2010) provides a conceptually straight-
forward extension of the above specified single tree model

y =

M∑
m=1

g(x;Tm, θTm) + ε (1)
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where the sum runs over M distinct trees whose outputs are added. In the case of the
sum-of-trees model we have

π(T1, θT1 , ..., TM , θTM , σ
2) =

[
M∏
m=1

π(θTm |Tm)π(Tm)

]
π(σ2).

For more details related to the sum-of-tree models we refer to Pratola (2016).

2.1 Specification of the tree prior

We specify the prior π(T ) by three parts,

− The distribution on the splitting variable assignments at each interior node ν as a
discrete random quantity in {1, ..., d} .

− The distribution on the cut-point c as a discrete random quantity in{
0,

1

nν − 1
, ...,

nν − 2

nν − 1

}
where nν is the resolution of discretization for variable η.

− The prior probability that a node i (ηi) at depth di is non-terminal to be

π(ηi) ∝
α

(1 + di)β
, α ∈ (0, 1), β > 0.

To specify the prior distributions on bottom-node ν’s, we use standard conjugate form

θT = {µ1, µ2, . . . , µnt}|T
iid∼ N (µ̂, σ2µ).

In practice, the observed Y can be used to guide the choice of the prior parameter values
for (µ̂, σ2µ); See e.g. Chipman et al. (1998). Here for simplicity we assume µ̂ = 0.

For a prior specification of the σ, we also use a conjugate inverse chi-square distribution
prior

σ2 ∼ IG
(
ν

2
,
νλ

2

)
which results in simple Gibbs updates for the variance. In practice, the observed Y can be
used to guide the choice of the prior parameter values for (ν, λ); See e.g. Chipman et al.
(1998).

2.2 Sampling from tree-models

For a single tree the full posterior of the model, for given tree (T, θT ), σ, and data D is

Pr(T, θT , σ | D) ∝ L(T, θT , σ)π(θT | T )π(T )π(σ). (2)

For a single tree—which could easily be extended to the sum-of-tree case—sampling from
the full posterior of the model 2 is conceptually carried out by iterating the following steps
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1. Draw a new topology τ |y, σ2, {(νi, ci)} using some method of generating new topologies
such as a birth/death or rotation and subsequently accepting or rejecting the proposal.

2. Draw the split rules (νi, ci)|y, τ, σ2, {(ν−i, c−i)}, ∀i using perturb or perturb within
change-of-variable proposals.

3. Draw µj |y, τ, σ2, {(νi, ci)} using conjugate Gibbs sampling.

4. Draw σ2|y, τ, {µj}, {(νi, ci)} also using conjugate Gibbs scheme.

The above algorithm has been implemented successfully in earlier work (see Pratola,
2016). Steps 3 and 4 are the standard Gibbs sampling using conjugate priors. Also Step 2 is
efficiently implemented by (Pratola, 2016, Section 4). For the sampling of τ |y, σ2, {(νi, ci)}
(i.e., in step 1 above) the current state-of-the art is to use an RJ-MCMC search algorithm. In
practice the RJ-MCMC algorithm performs well if the rejection rate is low (the computation
of which is detailed in Equation 4 of Pratola, 2016). However, when the rejection rate is
not low—which is often the case—the mixing of the chain is poor and the exploration of
the full tree-model space is notoriously slow. To overcome this issue, in the next section, we
introduce a novel search algorithm which has basically no rejection rate. So the novelty of
our work mainly lies in the new search algorithm for step 1.

3. Continuous-time birth-death MCMC search algorithm

The issue of a low acceptance rate in step 1 of the algorithm mentioned in the previous section
is surprisingly common: as the tree space is extremely large, proposals with a low likelihood
are frequent. This specific issue can however be overcome by adopting a continuous-time
Markov process—or a CT-MCMC search algorithm—as an alternative to RJ-MCMC. In
this sampling scheme the algorithm explores the tree-model space by either jumping to a
larger dimension (birth) or lower dimension (death) as in step 1 above. But this time each
of these events is modeled as an independent Poisson process and the time between two
successes events is exponentially distributed. The change events thus occur in continuous
time and their rates determine the stationary distribution of the process; see Figure 2 for a
graphical overview of possible birth and deaths from a given tree. Unlike the RJ-MCMC,
in the CT-MCMC search algorithm the moves between models are always accepted making
the algorithm more efficient.

Cappé et al. (2003) have shown, on appropriate re-scaling of time, that the RJ-MCMC
converges to a continuous-time birth-death chain. One advantage of CT-MCMC is its ability
to transit to low probability regions that can form a kind of “springboard” for the algorithm
to flexibly move from one mode to another.

Our strategy is to view each component of the terminal nodes of the tree as a point
in parameter space, and construct a Markov chain with the posterior distribution of the
parameters as its stationary distribution. For given tree (T, θT ) and data D, the target
posterior distribution is

Pr(T, θT | D) ∝ L(T, θT )π(T )π(θT ) (3)
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η1

ν1 < c1

ν2 < c2

η2

η1

ν1 < c1

ν2 < c2

η2

νj < ck

ηi

Death

Birth

η1

ν1 < c1

µ1

µ!
"µ!

#

µ2

µ2µ1µ3µi

µ3

Figure 2: The birth-death mechanism for adding or deleting nodes of the tree. On the
bottom left a death occurs at node η2 from the original resulting in the removal
of maps (µ2, µ3) and the emergence of a new map µi. On the bottom right a new
node ηi is born at map µ1 resulting in the removal of this map and the addition
of νj , ck, and (µli, µ

r
i ).

where L(T, θT ) is the likelihood. Note that the proposed search algorithm for sampling the
tree model can then be combined with conjugate Gibbs updates of the continuous parame-
ters such as σ2 similar to the Metropolis-within-Gibbs algorithm; see for example Stephens
(2000).

We take advantage of the theory on general classes of Markov birth-death processes from
Preston (1977, Section 7 and 8). This class of Markov jump processes evolve in jumps which
occur a finite number of times in any finite time interval. These jumps are of two types: (i)
birth in which a single point is added, and the process jumps to a state that contains the
additional point; and (ii) death in which one of the points in the current state is deleted,
and the process jumps to a state with one less point. Preston (1977) shows that this process
converges to a unique stationary distribution provided if the detailed balance conditions
hold.

To properly define the birth and death events in our case we need to introduce some
additional notation identifying the different nodes in the tree and their respective variables
and cut-points. Let (T, θT ) define the tree model as before, additionally let nt be the number
of terminal nodes, nν the number of variables, and nc the number of cut-points. Given the
current state (T, θT ):

Birth: A new terminal node is created (born) in continuous time with a birth rate Bijk(T, θT );
we denote this operation by ‘∪’. In this case, the process transits to a new state

(T bijk , θ
T
bijk ) = (T ∪ (ηi, νij , cijk), θT ∪ (µli, µ

r
i ) \ µi)
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where ηi denotes to internal node i, i ∈ 1, ..., nt, j ∈ 1, ..., nν , and k ∈ 1, ..., nc. Further,
we define the total birth rate as

B(T, θT ) =

nt∑
i=1

nν∑
j=1

nc∑
k=1

Bijk(T, θT ).

Hence, a birth event changes the topology τ of the current tree T by adding a terminal
node i. Accordingly, to complete the specification of the new tree (T bijk , θ

T
bijk ) we

also need to add variable νj and cut-point ck as well as the new terminal maps (µli, µ
r
i ).

This process is illustrated in Figure 2 on the bottom right where a birth occurs at map
µ1.

Death: In the current state (T, θT ) with nd terminal nodes, one of the terminal nodes is killed
in continuous time with death rate Di(T, θT ); we denote this operation by ‘\’ . In this
case, the process transits to state

(T di , θT di ) = (T \ (ηi, νi, ci), θT \ (µli, µ
r
i ) ∪ µi)

where i ∈ 1, ..., nd and nd is the number of possible deaths. Also, we define the total
death rate as

D(T, θT ) =

nd∑
i=1

Di(T, θT ).

Hence, a death event changes the topology τ by removing node i, including its asso-
ciated variable and cut-point, (νi, ci) and their respective maps (µli, µ

r
i ). Accordingly,

to complete the specification of the tree, we need to add a new map µi. This process
is illustrated in Figure 2 on the bottom left where a death occurs at node η2.

Since birth and death events are independent Poisson processes, the time between two
consecutive events has an exponential distribution with mean

W (T, θT ) =
1

B(T, θT ) +D(T, θT )
(4)

which is the waiting time. Note that the waiting times are calculated based on all the
possible birth and death moves from the current state (T, θT ) to a new state which would be
a tree with one more or less terminal nodes regarding to the birth/death rates. Therefore,
the waiting times essentially capture all the possible moves of each step of the CT-MCMC
search algorithm. If the waiting time from (T, θT ) is large then the process tends to stay
longer in the current state while if the waiting time is small, the process tends to transition
away from the current state. The birth and death probabilities involved are

Pr(birth at node ηi for variable νj and cut-point ck) =
Bijk(T, θT )

B(T, θT ) +D(T, θT )
, (5)

Pr(death at node ηi) =
Di(T, θT )

B(T, θT ) +D(T, θT )
. (6)

The corresponding Markov process converges to the target posterior distribution in Equation
3 given sufficient conditions that are provided in the following theorem.
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Theorem 1 The birth-death process defined by the birth and death probabilities in Equations
5 and 6 has stationary distribution Pr(T, θT | D), provided birth and death rates satisfy

Bijk((T, θT )Pr(T, θT | D)Pr(µnl )Pr(µnr ) = Di(T
bijk , θ

T
bijk )Pr(µi) Pr(T bijk , θ

T
bijk | D).

Proof. Our proof draws on the theory of general continuous-time Markov birth-death
processes derived by (Preston, 1977, Section 7 and 8). The process evolves by jumps which
occur a finite number of times in any finite time interval. The jumps are of two types: a birth
in which the process jumps to a state with the additional point, whereas a death in which
the process jumps to a state with one less point by deleting one of the points in the current
state. For the general case, Preston (1977, Theorem 7.1) proves the process converges to
the target stationary distribution if the detailed balance conditions hold, as described in
Theorem 1. For the case of a decision tree, if a birth occurs then we add one node to the
current tree and if a death occurs we remove one node from the current tree. We design the
CT-MCMC search algorithm in such a way that the stationary distribution of the process
is our target posterior distribution Equation 3. For a detailed proof see the Appendix A.

Based on Theorem 1, we can derive the birth and death rates as a function of the ratio
of the target posterior distribution as follows

Bijk(T, θT ) = min

{
1,

Pr(T bijk , θ
T
bijk | D)Pr(µi)

Pr(T, θT | D)Pr(µnl )Pr(µnr )

}
(7)

and

Di(T, θT ) = min

{
1,

Pr(T di , θT di | D)Pr(µil)Pr(µ
i
r)

Pr(T, θT | D)Pr(µn)

}
. (8)

Given the results provided above, our proposed algorithm for the posterior sampling from a
(sums of) tree model is presented in the Algorithm 1.

Algorithm 1 . CT-MCMC search algorithm
Input: A tree (T, θT ), data D.
for N iterations do
for all the possible moves (for i ∈ 1, ..., nt, j ∈ 1, ..., nν , k ∈ 1, ..., nc) in parallel do

Draw the new split rules (νj , ck).
Draw the new µi’s.
Calculate the birth ratesBijk(T, θT ) and death ratesDi(T, θT ) according to Equations
7 and 8.

end for
Calculate the waiting time W (T, θT ) given by Equation 4.
Update the new topology τ based on birth/death probabilities in Equations 5 and 6.
Update σ2 using standard Gibbs sampling scheme.

end for
Output: Samples from the full posterior distribution, Equation 2.

Algorithm 1 presents the pseudo-code for the CT-MCMC search algorithm which samples
from the posterior distribution in Equation 2 by using the continuous-time birth-death
mechanism that is described above. Basically, in the CT-MCMC search algorithm, we only
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simulate the jump chain and store each tree which visits and the corresponding waiting time.
For the graphical visualization of the algorithm see Figure 3.

τ"
τ#
τ$

τ%
τ&
τ'

Pr τ data timet' t& t% t$ t# t" t- .Pr τ data

τ ττ

W'

τ"
τ#
τ$

τ%
τ&
τ'

CT-MCMC algorithm
RJ-MCMC algorithm

Estimated tree
distribution

Tree distribution

W&

Figure 3: Graphical representation of the CT-MCMC algorithm versus RJ-MCMC algo-
rithm. The left panel presents the target posterior distribution of the tree
topologies. The middle panel shows the sampling scheme of CT-MCMC and
RJ-MCMC search algorithms. CT-MCMC algorithm samples in continuous time
and {W1,W2, ...} stand for waiting times (or holding times) and {t1, t2, ...} stand
for jumping times of the CT-MCMC algorithm; while the RJ-MCMC algorithm
samples in discrete-time and dots visualize the sampling scheme of the algorithm.
The right panel shows the estimated posterior distribution of the tree topologies
based on the CT-MCMC sampler which are the proportional to the total wait-
ing times of the visited trees, according to the Rao-Blackwellized estimator; see
Subsection 3.2.

One important feature of the CT-MCMC search algorithm is that a continuous time
jump process is associated with the birth and death rates (Equations 7 and 8): whenever a
jump occurs, the corresponding move is always accepted. In fact, the acceptance probability
of usual RJ-MCMC search algorithm is replaced by the waiting times (4) in the CT-MCMC
search algorithm. Particularly, implausible trees, i.e. trees with low posterior probabilities
have small waiting times and as a result die quickly; Conversely, plausible trees, i.e. trees
with high posterior probabilities have larger waiting times. Thus, the CT-MCMC search
algorithm are efficient to detect the high posterior probabilities regimes particularly for
high-dimensional space models.

3.1 Computational improvements and further additions

The key computational bottleneck of the CT-MCMC search algorithm is the computation
of the birth and death rates over all the possible moves of the next step; The number
of all possible moves exponentially increases with respect to the size of the tree-topology.
Fortunately, in each step of the search algorithm, the birth and death rates can be calculated
independently of each other; Thus, the rates can be computed in parallel which represents
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a key computational improvement of the CT-MCMC search algorithm with respect to RJ-
MCMC. We implement this step of the above algorithm in parallel using using OpenMP in
C to speed up the computations.

While Algorithm 1 is feasible, in practice, it can be improved by

a) exploiting conjugacy,

b) including rotation proposals (as initially suggested by Pratola, 2016, for the RJ-MCMC
case).

Below we detail each in turn.
Conjugate priors on the terminal node parameters µi ∈ ΘT , i ∈ {1, . . . , nt}, can simplify

the CT-MCMC algorithm. In the example below we are interested in modeling a continuous
response which leads to i.i.d. priors π(µi) ∼ N(0, τ2) (Chipman et al., 2010). Marginalizing
out a single terminal node parameter µi, the integrated likelihood is given by

Pr(T, θT |D) =

∫
µi

Pr(T, θT )π(µi)dµi

which is available in closed form for conjugate priors (similarly for integrating two terminal
node parameters). Applying this marginalization to Equations 7 and 8, the updated birth
and death rates for CT-MCMC search algorithm are

Bijk(T, θT ) = min

{
1,

Pr(T bijk , θ
T
bijk | D)

Pr(T, θT | D)

}
(9)

and

Di(T, θT ) = min

{
1,

Pr(T di , θT di | D)

Pr(T, θT | D)

}
. (10)

Considering the above birth and death rates, we present our implemented CT-MCMC search
algorithm in Algorithm 2.

Algorithm 2 . CT-MCMC search algorithm - exploiting conjugacy
Input: A tree (T, θT ), data D.
for N iterations do
for all the possible moves (for i ∈ 1, ..., nt, j ∈ 1, ..., nν , k ∈ 1, ..., nc) in parallel do

Draw the new split rules (νj , ck).
Calculate the birth ratesBijk(T, θT ) and death ratesDi(T, θT ) according to Equations
9 and 10.

end for
Calculate the waiting time W (T, θT ) given by Equation 4, using Equations 9 and 10.
Update the new topology τ based on birth/death probabilities in Equations 5 and 6,
using Equations 9 and 10.
Update σ2 using standard Gibbs sampling scheme.

end for
Output: Samples from the full posterior distribution, Equation 2.
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By integrating out the terminal node parameters µi ∈ ΘT , i ∈ {1, . . . , nt} in our tree
model, we essentially exclude a sampling step inside the nested for loop in the Algorithm 2;
Thus, this algorithm is computationally more efficient than Algorithm 1.

While until now we have introduced our main results focusing merely on birth-death
moves for simplicity, building on recent work by Pratola (2016) we can extend our sampling
approach to so-called rotate proposals: rotate proposals can be thought of as a multivariate
generalization of the simple univariate rotation mechanism found in the binary search tree
literature (see, e.g., Sleator et al., 1988) and implemented in Gramacy and Lee (2008). This
generalization allows dimension-changing proposals to occur at any interior node of a tree,
and directly moves between modes of high likelihood and is described in detail in Pratola
(2016). In Appendix B, we demonstrate the correctness of this approach once added to the
proposed birth-death mechanism in the CT-MCMC case. Moreover, we present an efficient
way of implementing rotate proposals within Algorithm 1 and 2 using marginalization.

3.2 Posterior inference by samples in continuous time

Figure 3 shows the sampling scheme of CT-MCMC versus RJ-MCMC algorithm and how to
estimate posterior quantities of interest using sampling in continuous time, based on model
averaging.

Basically, for the case of discrete time RJ-MCMC sampler, we monitor its output after
each iteration. In this case, based on model averaging, the posterior means are estimated
by sample means

E [g(T, θT )] ≈ 1

N

N∑
i=1

g(Ti, θTi) (11)

in which N is the number of MCMC iterations. For the CT-MCMC sampler, at each jump,
we store each state that it visits and the corresponding waiting time which are {W1,W2, ...}
in Figure 3. Note that alternative sampling schemes have been proposed – for instance,
similar to Stephens (2000), the process may be sampled at regular times; see Cappé et al.
(2003).

We use the Rao-Blackwellized estimator (Cappé et al., 2003) to estimate parameters of
the models, based on model averaging. It is proportional to the expectation of length of the
holding time in that tree which is estimated as the sum of the waiting times in that tree. In
this case, the posterior means are estimated by sample means

E [g(T, θT )] ≈
∑N

i=1Wi (Ti, θTi) g(Ti, θTi)∑N
i=1Wi (Ti, θTi)

. (12)

Effectively, the Rao-Blackwellized estimator depends on the waiting times (4) of the visited
trees by the CT-MCMC sampler. The waiting times are calculated based on all the possible
birth and death moves from the current state (T, θT ); Therefore, the waiting times essentially
capture all the possible moves in each step . Therefore, by containing the waiting times in
the Rao-Blackwellized estimator, all possible moves are incorporated into our estimation,
not only those that are selected. Moreover, according to the Rao-Blackwell theorem, the
variances of estimators built from the sampler output are decreased (Cappé et al., 2003).

Note that the Rao-Blackwellized estimator is based on model averaging, which has the
advantage that it provides a coherent way of combining results over different models. As a

12
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result, the estimation of the parameter of interest is not based on only one single tree. In
fact, the estimation is based on the all trees that are visited by the MCMC search algorithm.

4. Empirical evaluation of our sampling approach

We examine here the performance of the proposed CT-MCMC search algorithm based on
a simulation scenario that is often used in the regression tree literature. This simulation
scenario serves as a simple demonstration where proper mixing of the regression trees topo-
logical structure is important (Wu et al., 2007). The synthetic data set consists of n = 300
data points with (x1, x2, x3) covariates where

x1i ∼

{
Unif(0.1, 0.4), for i = {1, ..., 200}
Unif(0.6, 0.9), for i = {201, ..., 300}

(13)

x2i ∼


Unif(0.1, 0.4), for i = {1, ..., 100}
Unif(0.6, 0.9), for i = {101, ..., 200}
Unif(0.1, 0.9), for i = {201, ..., 300}

(14)

x3i ∼

{
Unif(0.6, 0.9), for i = {1, ..., 200}
Unif(0.1, 0.4), for i = {201, ..., 300}

(15)

Figure 4 shows the partition of the simulation data set with respect to the covariates. Note
that, following Wu et al. (2007); Pratola (2016), we generate covariates such that the effects
of x1 and x3 (see the middle panel in the Figure 4) are confounded which makes this data
generating scheme particularly challenging.
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Figure 4: Partition of the simulation data set with respect to the covariates x1, x2, and x3
with the three regions defined in 13, 14, and 15.
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The response y is calculated for n = 300 data points as:

y =


1 +N (0, σ2) if x1 ≤ 0.5, x2 ≤ 0.5

3 +N (0, σ2) if x1 ≤ 0.5, x2 > 0.5

5 +N (0, σ2) if x1 > 0.5.

(16)

Figure 5 presents the above regression tree model with the partitions based on the covariates
x1 and x2.

η1

!" ≤ 0.5

η2

µ1=1 µ2=3

µ3=5

!" > 0.5

!( ≤ 0.5 !( > 0.5

0.5

µ1=1

µ2=3

µ3=5

!"

!(

1

0.5

0

1

Figure 5: True tree model (left) for the regression tree model in 16 where y ∼ N (µ, σ2) with
three partitions (right) based on the covariates x1 and x2.

Following Pratola (2016) we fit a single tree model (thus M = 1 in Equation 1) to this
data using the following approaches:

• RJ-A: Here we use a straightforward RJ-MCMC algorithm which is based on discrete
time birth-death proposals as described in Pratola (2016).

• RJ-B: Here we use discrete time RJ-MCMC algorithm to which we add the rotation
proposals as described in Pratola (2016).

• RJ-C: Here we use discrete time RJ-MCMC algorithm including rotation proposals
and perturbation. The latter addition concerns the second step of the sampling pro-
cedure as outlined in Section 2 which concerns the sampling of the split rules (νi, ci).
This is not the main focus of this paper, however, we want to see whether this addi-
tional mechanism is also useful for the CT-MCMC approach (see Pratola, 2016, for
detail).

• CT-A: Here we use our proposed CT-MCMC algorithm which is based on continuous-
time birth-death approach but without perturbation; see Algorithm 2.

• CT-B: Here we add rotation proposals to the CT-MCMC algorithm described in
Algorithm 2, again without perturbation; for details we refer to Appendix B.
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• CT-C: Here we use both birth-death and rotation proposals and we add perturbation
proposals to the second step of Algorithm 2.

To evaluate the performance of the CT-MCMC search algorithm with compare with the
RJ-MCMC, we run all the above search algorithms in the same conditions with 20,000 itera-
tions and 1,000 as a burn-in. We perform all the computations in R and the computationally
intensive tasks are implemented in parallel in C and interfaced in R. All the computations
were carried out on an MacBook Pro with 2.9 GHz processor and Quad-Core Intel Core i7.

For each of the above search algorithms, we report the following measurements:

• MSE: This is the Mean Square Error. To calculate the MSE, we generate another
synthetic data set consists of n = 300 data points as a test set. Then, we compute
the MSE of these test set based on the estimated tree models from the above MCMC
search algorithms.

• Effective Sample Size: This is the number of effective independent draws that the
algorithm generates.

• Activity: This is the proportion of splits on a given variable making up the tree
decision rules. In this synthetic example it is possible to derive the variable activity
analytically which should be approximately 0.3, 0.4, and 0.3 respectively.

• Unique Trees: The number of unique trees the algorithm generates.

• Effective Sample Size per Second: The number of effective samples drawn per
second of computation time.

For the CT-MCMC approach, we estimate the parameter of interest based on the Rao-
Blackwellized estimator in Equation 12 and for the case of RJ-MCMC it is based on sample
means in Equation 11. Thus, all estimates are based on model averaging across all visited
tree models; see Figure 3.

Table 1 presents the results for σ2 = 1 which is a relatively challenging, high-noise,
scenario. On average, over 100 replications, the prediction error of each of the models
is similar, and hence, as expected, the different sampling methods do not differentiate in
terms of predictive performance. However, in terms of computational efficiency, measured
as the effective sample size computed based on the posterior draws, it is clear that the CT-
MCMCmethods perform better than the RJ-MCMC approaches across the board. Our most
elaborate proposal—combining CT-MCMC with both rotation proposals and perturbation
proposals (CT-C) —provides the best performance. This is especially prominent when
looking at the exploration behavior of the different sampling methods as summarized by the
number of unique trees visited.

Finally, it is clear that the computation time, measured as effective samples per second,
of our newly proposed methods is on par, or faster, than the current state-of-art methods.
To summarize, across the board we find a good empirical performance of our suggested
CT-MCMC method(s). Appendix C provides additional simulation results for the cases
σ2 ∈ (0.01, 0.1) showing that in both of these cases our suggested method again outperforms
the RJ methods. In fact, in these lower noise scenarios the RJ methods fail to properly
explore the parameters space while our suggested CT method maintains proper variable
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Method MSE Effective Sample Size Activity
σ2 x1 x2 x3 x1 x2 x3

RJ-A 1.02 19758 1037 2370 1265 0.27 0.45 0.28
RJ-B 1.02 19774 1419 2899 1482 0.25 0.49 0.26
RJ-C 1.02 19625 13134 1306 13144 0.25 0.5 0.25
CT-A 1.02 19282 14160 32374 14128 0.28 0.43 0.28
CT-B 1.02 19577 40041 74608 37925 0.27 0.48 0.25
CT-C 1.02 20474 14452 51557 14518 0.26 0.47 0.26

Method Unique Trees Effective Sample Size per Second
σ2 x1 x2 x3

RJ-A 1.83 26344 1382 3160 1686
RJ-B 3.07 21971 1576 3221 1646
RJ-C 8.29 11410 7636 759 7642
CT-A 11.44 5371 3944 9018 3935
CT-B 3.82 5515 11279 21016 10683
CT-C 11.71 4611 3255 11612 3270

Table 1: Overview of the performance measures of different sampling methods for simulation
example for the case σ2 = 1 in Equation 16 . The table reports the average over 100
replications of the prediction error, the sampling efficiency, the exploration behavior
in terms of variable activity measured as the average proportion of internal rules
involving each variable, the exploration behavior in terms of the average number of
unique trees visited, and computational efficiency in effective samples per second.

activity while better sampling tree-space. We also note that the Rao-Blackwellization makes
a greater impact in these low-noise scenarios, with an unweighted MSE of 0.014 for CT-C
versus Rao-Blackwellized estimate of 0.01 reported in Table 2 and an unweighted MSE of
1.98E-3 for CT-C versus the Rao-Blackwellized estimate of 1.04E-4 reported in Table 3.

5. Discussion

In this paper we introduced a continuous-time MCMC search algorithm for posterior sam-
pling from Bayesian regression trees and sums of trees (BART). Our work is inspired by
earlier work in this space demonstrating the efficiency of continuous-time MCMC search
algorithms (see, e.g., Mohammadi and Wit, 2015; Mohammadi et al., 2017a). Using the
general theory described by Preston (1977) we have shown analytically that our proposed
sampling approach converges to our desired target posterior distribution Pr(T, θT | D) in
the case of birth-death proposals. Next, we extended this result to also include the novel
rotate proposals initially proposed by Pratola (2016). Jointly, these suggestions lead to an
efficient sampling mechanism for Bayesian (additive) regression trees; a model that is gain-
ing popularity in applied studies (see, e.g., Logan et al., 2019) and hence effective sampling
methods are sought after.
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The current work provides theoretical guarantees regarding the convergence of the CT-
MCMC search algorithm. There is still room for additional computational improvements:
while our marginalizing approach, combined with our mixture approach to include rotation
proposals (see Appendix B), provide important steps in providing a computationally feasible
CT-MCMC method, we believe additional gains might be possible. Furthermore, while our
current implementation parallelizes parts of the sampling process, additional gains might
be achieved here. The current implementation of the methods proposed in this paper are
available at https://bitbucket.org/mpratola/openbt.

We hope our current results improve the practical usability of Bayesian regression tree
models for applied researchers by speeding up, and improving the accuracy, of the sampling
process. Our methods seem to work well for reasonably sized problems (e.g., thousands of
observations, tens of variables); we think their actual performance on big data sets needs to
be further investigated.

Appendix A. Proof of Theorem 1

Our proof here is based on the theory of general continuous-time Markov birth-death pro-
cesses derived by Preston (1977). We use the notation defined in the body of this paper.
Assume that at a given time, the process is in a tree state (T, θT ). The process is charac-
terized by the birth rates Bijk(T, θT ), the death rates Di(T, θT ), and the birth and death
transition kernels KB((T, θT )→ (T ∗, θT ∗)) and KD((T, θT )→ (T ∗, θT ∗)).

Birth and death events occur as independent Poisson processes with rates Bijk(T, θT )
and Di(T, θT ) respectively. Given that a specific birth occurs, the probability that the
following jump leads to a point in H ⊂ Ω

T
bijk (where Ω

T
bijk is the space of θ

T
bijk ) is

KB((T, θT )→ (T bijk , H)) = Pr(T → T bijk)× Pr(θ
T
bijk → H|T → T bijk)

=
Bijk(T, θT )

B(T, θT )

∫
I(θ

T
bijk ∈ H)Pr(µnl)Pr(µnr)dµnldµnr

in which B(T, θT ) =
∑

ijk Bijk(T, θT ) and Pr(.) is a proposal distribution for µ’s.
Similarly, given a specific death occurs, the probability that the following jump leads to

a point in F ⊂ ΩT di (where ΩT di is the space of θT di ) is

KD((T, θT )→ (T di , F )) = Pr(T → T di)× Pr(θT di → F |T → T di)

=
Di(T, θT )

D(T, θT )

∫
I(θT di ∈ F )Pr(µi)dµi (17)

in which D(T, θT ) =
∑

iDi(T, θT ) and Pr(.) is a proposal distribution for µ’s.
This birth-death process satisfies the detailed balance conditions if∫

H
B(T, θT ) Pr(T, θT | D)dθT = (18)∑

ijk

∫
θ
T
bijk

D(T bijk , θ
T
bijk )KD((T bijk , θ

T
bijk )→ (T, F )) Pr(T bijk , θ

T
bijk | D)dθ

T
bijk ,

17
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and ∫
F
D(T, θT ) Pr(T, θT | D)dθT =∑

i

∫
θ
Tdi

B(T di , θT di )KB((T di , θT di )→ (T, F )) Pr(T di , θT di | D)dθT di .

We check the first part of the detailed balance conditions (Equation 18) as follows. For
the left hand side (LHS) we have

LHS =

∫
F
B(T, θT ) Pr(T, θT | D)dθT

=

∫
θT

I(θT ∈ F )B(T, θT ) Pr(T, θT | D)dθT

=

∫
θT

I(θT ∈ F )
∑
ijk

Bijk(T, θT ) Pr(T, θT | D)dθT

=
∑
ijk

∫
θT

I(θT ∈ F )Bijk(T, θT ) Pr(T, θT | D)dθT

=
∑
ijk

∫
θT

I(θT ∈ F )Bijk(T, θT ) Pr(T, θT | D)

[∫
(µnl ,µ

n
r )
Pr(µnl )Pr(µnr )dµnl dµ

n
r

]
dθT

[Pr(.) must integrate to 1]

=
∑
ijk

∫
θT

∫
(µnl ,µ

n
r )
I(θT ∈ F )Bijk(T, θT ) Pr(T, θT | D)Pr(µnl )Pr(µnr )dµnl dµ

n
r dθT .

Furthermore, for the right hand side (RHS) of Equation 18, by using Equation 17 we have

RHS =
∑
ijk

∫
θ
T
bijk

D(T bijk , θ
T
bijk )KD((T bijk , θ

T
bijk ); (T, F )) Pr(T bijk , θ

T
bijk | D)dθ

T
bijk

[Equation 17 ]

=
∑
ijk

∫
θ
T
bijk

Di(T
bijk , θ

T
bijk )

[∫
µi

I(θT ∈ F )Pr(µi)dµi

]
Pr(T bijk , θ

T
bijk | D)dθ

T
bijk

=
∑
ijk

∫
θ
T
bijk

∫
µi

I(θT ∈ F )Di(T
bijk , θ

T
bijk )Pr(µi) Pr(T bijk , θ

T
bijk | D)dµidθT bijk .

Note that the number of terminal nodes nt for performing a birth in the original tree T
equals the number of ways we can return by deaths nd.

It follows that we have LHS=RHS provided that

Bijk((T, θT )Pr(T, θT | D)Pr(µnl )Pr(µnr ) = Di(T
bijk , θ

T
bijk )Pr(µi) Pr(T bijk , θ

T
bijk | D).
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Appendix B. Extending of CT-MCMC algorithm to rotate mechanism

Here we consider extending the CT-MCMC algorithm to include the rotate mechanism.
Following the construction of Preston (1977), let the state space be Ω = ∪∞n=0Ωn where Ωn

is made up of all states of cardinality n and are disjoint. Further, let Ωb(n) be the states from
which a birth into Ωn originates, let Ωd(n) be the states from which a death into Ωn originates
and let Ωr(n) be the states from which a rotate into Ωn originates where Ωb(n),Ωd(n),Ωr(n)

are disjoint; that is Ωb(n) ≡ Ωn−1, Ωd(n) ≡ Ωn+1 and Ωr(n) ⊂ Ω \ (Ωb(n) ∪ Ωd(n)).

Let Fn be the σ-field of subsets of Ωn and let F be the σ-field on Ω generated by the
Fn. We consider a jump process that can jump from state x ∈ Ωn to a point in one of
Ωb(n),Ωd(n),Ωr(n). Let µ denote a measure on (Ω,F) and µn denote µ restricted to Ωn. Let
B,D,R : Ω→ R+ be F-measurable withD(x) = R(x) = 0 for x ∈ Ω0 and let α = B+D+R.
For n ≥ 1 we define the transition probability kernels

K
(n)
B : Ωn ×Fb(n) → R+,

K
(n)
D : Ωn ×Fd(n) → R+,

and
K

(n)
R : Ωn ×Fr(n) → R+.

Then the overall transition kernel is given by (Preston, 1977)

K(x, F ) =
B(x)

α(x)
K

(n)
B (x, Fb(n)) +

D(x)

α(x)
K

(n)
D (x, Fd(n)) +

R(X)

α(x)
K

(n)
R (x, Fr(n))

for x ∈ Ωn, n ≥ 1 and let B(x)
α(x) = D(x)

α(x) = R(X)
α(x) = 1

2 if α(x) = 0, and

K(x, F ) = K
(0)
B (x, Fb(0))

if x ∈ Ω0.

A rotate event goes to state (T rij , θT rij ) with rotate rate Rij(T, θT ) where i ∈ 1, ..., nr and
nr is the number of possible rotatable nodes (see Pratola, 2016, for details) and j ∈ 1, . . . , nj
is the number of possible outcomes from a rotate at the i’th rotatable node. Furthermore
we define R(T, θT ) =

∑nr
i=1

∑ni
j=1Rij(T, θT ). Hence, a rotate event changes the topology τ

by rearranging internal nodes according to the rules described in Pratola (2016).
In total, we consider the overall number of topological changes to the tree to occur via

birth and death moves (as defined earlier) and rotate moves which occur with respective
rates Bijk(T, θT ), Di(T, θT ) and Rij(T, θT ) given the tree is in state (T, θT ). With rotate,
we do not know how many of the j possible outcomes of a rotate at node i will increase the
dimension of θT thereby creating a new µ parameter. So, to make things easier—and since
this is what we do in practice—we integrate out all of these parameters and work directly
with the marginal likelihood. In this case, the birth/death transition kernels from above
become:

KB(T → T bijk) =
Bijk(T )

B(T )
,
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KD(T → T di) =
Di(T )

D(T )
,

and

KR(T → T rij ) =
Rij(T )

R(T )
.

One of the things we need is that birth is inverse of death, death is inverse of birth and
rotate is inverse of rotate. This means that in this case our detailed balance condition will
consist of 3 equations, essentially the birth/death balances from earlier as well as a rotate
balance condition

B(T ) Pr(T | D) =
∑
ijk

D(T bijk)KD((T bijk)→ T ) Pr(T bijk | D),

D(T ) Pr(T | D) =
∑
i

B(T di)KB((T di)→ T ) Pr(T di | D),

and

R(T ) Pr(T | D) =
∑
ij

R(T rij )KR((T rij )→ T ) Pr(T rij | D),

where T rij is the tree state generated from previously choosing the j’th rotate generated at
rotatable node i and Pr(T | D) =

∫
θT Pr(T, θT | D) is the marginal posterior.

For the rotate balance, we have

R(T ) Pr(T | D) =
∑
ij

R(T rij )KR(T rij → T ) Pr(T rij | D)

∑
ij

Rij(T ) Pr(T | D) =
∑
ij

Rij(T rij)P (T rij | D)

which is satisfied if

Rij(T )P (T | D) = Rij(T
rij)P (T rij | D).

Thus, the corresponding rate for the rotate move is

Rij(T ) = min

{
1,

Pr(T rij | D)

Pr(T | D)

}
and similarly working with the integrated posterior, the corresponding rates for the birth/death
moves become

Bijk(T ) = min

{
1,

Pr(T bijk | D)

Pr(T | D)

}
and

Di(T ) = min

{
1,

Pr(T di | D)

Pr(T | D)

}
.

20



Continuous-Time Birth-Death MCMC for Bayesian Regression Tree Models

Given this construction, the probability of birth, death and rotate moves occur with
probabilities given by

Pr(birth at node ηi for variable νj and cut-point ck) =
Bijk(T )

B(T ) +D(T ) +R(T )
,

Pr(death at node ηi) =
Di(T )

B(T ) +D(T ) +R(T )

and
Pr(rotate j at node ηi) =

Rij(T )

B(T ) +D(T ) +R(T )
.

Note that in practice this approach is too expensive because we have to calculate B(T )+
D(T ) +R(T ) at each iteration. To address this problem we split this move into two moves:
a birth/death part and a rotate part can be performed separately to reduce computational
burden.To do so, we introduce parameter α. The idea is that with probability α ∈ [0, 1] we
perform a birth/death move via CT-MCMC, and with probability 1−α we perform a rotate
move via CT-MCMC. That is, our move corresponds to the mixture distribution

α

[
Bijk(T )

B(T ) +D(T )
+

Di(T )

B(T ) +D(T )

]
+ (1− α)

Rij(T )

R(T )

for some fixed, known α. Note that if

α =
B(T ) +D(T )

B(T ) +D(T ) +R(T )

then this mixture distribution corresponds exactly to the distribution for the full CT-MCMC
algorithm.

Appendix C. Additional simulation results

Here we present a number of additional simulation results for the simulation scenario in the
Section 4 and described in the main text for σ2 ∈ (0.1, 0.01). Tables 2 and 3 demonstrate
that also in these cases our proposed CT-MCMC method performs well.
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Method MSE Effective Sample Size Activity
σ2 x1 x2 x3 x1 x2 x3

RJ-A 0.01 19735 1279 2275 996 0.29 0.45 0.26
RJ-B 0.01 19707 1203 3021 1818 0.23 0.47 0.30
RJ-C 0.01 19660 13247 2141 13255 0.25 0.5 0.25
CT-A 0.01 24759 14276 39968 14333 0.28 0.44 0.28
CT-B 0.01 19703 36275 75526 39250 0.25 0.48 0.27
CT-C 0.01 29061 14470 55343 14467 0.26 0.47 0.26

Method Unique Trees Effective Sample Size per Second
σ2 x1 x2 x3

RJ-A 1.67 26669 1729 3074 1346
RJ-B 2.68 21656 1322 3319 1997
RJ-C 7.98 11702 7885 1274 7890
CT-A 10.24 6897 3977 11133 3993
CT-B 3.00 5582 10276 21395 11119
CT-C 10.0 6590 3281 12550 3280

Table 2: Overview of the performance measures of different sampling methods for simulation
example for the case σ2 = 0.1 in Equation 16 . The table reports the average over
100 replications of the prediction error, the sampling efficiency, the exploration
behavior in terms of variable activity measured as the average proportion of internal
rules involving each variable, the exploration behavior in terms of the average
number of unique trees visited, and computational efficiency in effective samples
per second.
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Method MSE Effective Sample Size Activity
σ2 x1 x2 x3 x1 x2 x3

RJ-A 1.02E-4 19739 1410 3029 1620 0.25 0.44 0.31
RJ-B 1.02E-4 19742 2687 5290 2603 0.29 0.49 0.22
RJ-C 1.02E-4 19719 13315 3602 13319 0.25 0.5 0.25
CT-A 1.03E-4 15230 14095 21063 14131 0.28 0.43 0.28
CT-B 1.02E-4 19713 34644 75182 40538 0.24 0.48 0.28
CT-C 1.04E-4 19254 14308 43675 14283 0.27 0.46 0.27

Method Unique Trees Effective Sample Size per Second
σ2 x1 x2 x3

RJ-A 1.61 26675 1905 4094 2189
RJ-B 2.80 22434 3053 6011 2958
RJ-C 7.71 11738 7926 2144 7928
CT-A 15.8 4290 3971 5933 3981
CT-B 3.00 5585 9814 21298 11484
CT-C 10.0 4269 3173 9684 3167

Table 3: Overview of the performance measures of different sampling methods for simulation
example for the case σ2 = 0.01 in Equation 16 . The table reports the average
over 100 replications of the prediction error, the sampling efficiency, the exploration
behavior in terms of variable activity measured as the average proportion of internal
rules involving each variable, the exploration behavior in terms of the average
number of unique trees visited, and computational efficiency in effective samples
per second.
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