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Abstract

Linear discriminant analysis (LDA) is a popular classifier that is built on the assumption
of common population covariance matrix across classes. The performance of LDA depends
heavily on the quality of estimating the mean vectors and the population covariance ma-
trix. This issue becomes more challenging in high-dimensional settings where the number
of features is of the same order as the number of training samples. Several techniques for
estimating the covariance matrix can be found in the literature. One of the most popular
approaches are estimators based on using a regularized sample covariance matrix, giving
the name regularized LDA (R-LDA) to the corresponding classifier. These estimators are
known to be more resilient to the sample noise than the traditional sample covariance ma-
trix estimator. However, the main challenge of the regularization approach is the choice
of the optimal regularization parameter, as an arbitrary choice could lead to severe degra-
dation of the classifier performance. In this work, we propose an improved LDA classifier
based on the assumption that the covariance matrix follows a spiked covariance model. The
main principle of our proposed technique is the design of a parametrized inverse covariance
matrix estimator, the parameters of which are shown to be easily optimized. Numerical
simulations, using both real and synthetic data, show that the proposed classifier yields
better classification performance than the classical R-LDA while requiring lower computa-
tional complexity.

Keywords: Linear Discriminant Analysis, Spiked Covariance Models, High-Dimensional
Data, Random Matrix Theory.

1. Introduction

Linear Discriminant Analysis (LDA) based classifiers, originally proposed by R. A. Fisher
(Fisher, 1936), are among the simplest algorithms used for classification tasks. Grounded in
the use of the maximum likelihood principle, LDA turns out to be the optimal classifier that
achieves the lowest misclassification rate under the assumption that the data is Gaussian
with perfectly known statistics, and common covariance matrix across classes (Hastie et al.,
2001). However, in practice, the population covariance matrix and means associated with
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each class could not be perfectly known. It is common practice to replace them in the
discriminant score of the LDA by the sample estimates computed based on the training
data. This should not affect severely the performance if the number of training samples
is sufficiently large compared to the number of features. However, in high-dimensional
settings, the estimation of the covariance matrix and the means associated with each class
is highly inaccurate, causing a severe degradation in the classification performance. The
impact of the estimation noise has been discussed in (Fan and Fan, 2008) and a solution
based on feature selection has been proposed. In some extreme situations in which the
sample size is lower than the number of features, the use of the sample covariance matrix as
a plug-in estimator is not allowed, as the discriminant score of the LDA involves computing
the inverse of the covariance matrix.

One popular attempt to solve all these issues is to use the regularized sample covariance
matrices as a plug-in estimator of the population covariance matrix. The resulting clas-
sifier is known as Regularized LDA (R-LDA) in reference to the regularization parameter
in use. However, the choice of the regularization parameter is critical to achieving good
performance. Several works propose to choose the regularization parameter as the optimal
value that minimizes the misclassification rate, an approximation of which can be derived
using recent results from random matrix theory (Zollanvari and Dougherty, 2015; Bakirov
et al., 2016; Elkhalil et al., 2017a). However, this approach presents two major drawbacks.
First, the estimation of the optimal regularization parameter is computationally expensive.
Second, it does not take advantage of available prior information on the structure of the
covariance matrix.

In this paper, we propose, a novel approach based on the assumption that the pop-
ulation covariance matrix is isotropic except for a finite number of symmetry breaking
directions (Hoyle and Rattray, 2003; Reimann et al., 1996). Such a model, known as spiked-
model covariance matrix, has been used in many real applications including detection (Zhao
et al., 1986), EEG signals (Davidson, 2009; Fazli et al., 2011) and financial econometrics
(Passemier et al., 2017; Kritchman and Nadler, 2008). Based on this model, we propose to
consider a class of sample covariance matrix estimators that follow the same spiked model,
that is they can be written as a finite rank perturbation of a scaled identity matrix. The
directions of the low-rank perturbation are given by the principal eigenvectors of the sample
covariance matrix, while its eigenvalues are some design parameters that are chosen so that
an approximation of the misclassification rate rate is minimized. Such an approximation is
computed based on results from random matrix theory.

Interestingly, the optimal parameters are obtained in closed form, avoiding the need for
using the standard cross-validation approach. Compared to the classical R-LDA, the pro-
posed classifier constitutes a novel improved LDA classifier, which we refer to as ”I-LDA”,
that presents a lower complexity and a higher classification performance. The reduction
in the computational cost is achieved since, unlike the R-LDA which requires the use of
a grid search to optimize the regularization parameter (Hastie et al., 2001; Bishop, 2006;
Zollanvari and Dougherty, 2015; Elkhalil et al., 2017a) the optimal hyper-parameters of our
proposed classifier admit closed-form expressions that depend only on the training data. We
also show that not only the proposed classifier outperforms R-LDA but also other popular
classification techniques such as support vector machine (SVM) and k-nearest neighbors
(KNN).
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We also show that further improvement in the case of imbalanced classes can be obtained
by optimizing the intercept of the proposed classifier. This improvement is shown to be
significant in such cases, as shown by a set of numerical simulations. Moreover, extension
of the multi-class classification is discussed in section 3.4.

The main literature in relation to this work is represented by the works of Donoho et
al. in (Donoho and Ghorbani, 2018; Donoho et al., 2018) which consider the problem of
covariance matrix estimation under the assumption of a spiked covariance matrix model.
However, in contrast to our work, the aforementioned papers consider generic loss functions
that are not directly related to the objective of interest which is herein the misclassification
rate. Specifically, (Donoho and Ghorbani, 2018) considers the design of the optimal shrink-
age that optimizes a condition number loss function while (Donoho et al., 2018) examines
the optimization of 26 loss functions. As evidenced later through numerical simulations in
section 4, as far as LDA classification is considered, the proposed classifier yields better
performance. Under the setting of incomplete data, the problem of high-dimensional LDA
has also been considered through the prism of optimality theory in (Cai and Zhang, 2019)
where a classification algorithm based on an adaptive constrained `1 minimization approach
has been proposed and compared with (Shao et al., 2011).

The rest of the paper is organized a follows. In the next section, we give a brief overview
of LDA and R-LDA classifiers. In section 3, the steps of designing the proposed classifier
are detailed. The performance of our technique is studied in section 4 using numerical
simulations before concluding in section 5.

Throughout this work, boldface lower case is used for denoting column vectors, x, and
upper case for matrices, X. XT denotes the transpose. Moreover, Ip denotes the p × p
identity matrix and ‖.‖ is used to denote the `2-norm for vectors and spectral norm for
matrices. The notation

a.s.−→ is used for the almost sure convergence of sequence of random
variables. The trace of a matrix A is denoted by tr A and diag(x1, · · · , xn) stands for the
diagonal matrix with diagonal entries x1, · · · , xn. The notation f(x) = O(g(x)) means that

|f(x)g(x) | is bounded as x −→∞.

2. Linear Discriminant Analysis

Consider a set of n vector observations x1, · · · ,xn in Rp×1 belonging to two classes C0 and
C1. For i ∈ {0, 1}, we denote by ni the number of observations in Ci and by Ti the set
of their indexes. Moreover, all observations are assumed to be independent and drawn
from a Gaussian mixture model in which both classes have different means but a common
covariance matrix. In particular, for i ∈ {0, 1},

xi ∈ Ci ⇔ xi ∼ N (µi,Σ),

where µi and Σ are respectively the mean vector and the covariance matrix associated with
class Ci. We assume that the class labels associated with vector observations {x`}n`=1 are
perfectly known. These observations constitute the training sample that is used to build a
classifier, the aim of which is to predict the class label of an unseen observation x.

For the reader convenience, we start by presenting the classical LDA classifier. Its corre-
sponding discriminant score is (Hastie et al., 2001; Bishop, 2006; Zollanvari and Dougherty,
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2015):

WLDA(x) =

(
x− µ0 + µ1

2

)T
Σ−1(µ0 − µ1)− log

π1
π0
, (1)

where πi is the prior probability corresponding to class i. The unseen observation x is
assigned to class C0 if WLDA(x) > 0 and to class C1 otherwise. In practice, the class
statistics namely its mean vector and covariance matrix are unknown. They are usually
estimated from training data using the empirical means xi and the pooled sample covariance
matrix Σ̂ defined as:

µ̂i = xi =
1

ni

∑
`∈Ti

x`, (2)

Σ̂ =
(n0 − 1)Σ̂0 + (n1 − 1)Σ̂1

n− 2
, (3)

where

Σ̂i =
1

ni − 1

∑
`∈Ti

(x` − xi)(x` − xi)
T , i = 0, 1.

with ni is the number of observations belonging to class Ci and Ti is the set of indexes
of observations belonging to class Ci. Replacing µi and Σ by their estimates yields the
following LDA discriminant rule:

ŴLDA(x) =

(
x− x0 + x1

2

)T
Σ̂
−1

(x0 − x1)− log
π1
π0
. (4)

In the case where the size of the observations p is higher than the number of available
training samples n, Σ̂ is singular. One popular solution consists in using ridge estimators
of the inverse covariance matrix (Hastie et al., 2001; Zollanvari and Dougherty, 2015):

H =
(
Ip + γΣ̂

)−1
, γ > 0. (5)

as a plug-in estimator of the inverse of the covariance matrix. The corresponding dis-
criminant score is known as regularized LDA (R-LDA) in reference to the regularization
parameter γ and is given by:

ŴR−LDA(x) =

(
x− x0 + x1

2

)T
H(x0 − x1)− log

π1
π0
. (6)

Conditioning on the training samples, the discriminant score ŴLDA(x) is Gaussian in x. In
light of this observation, the conditional misclassification rate associated with class Ci can
be expressed as:

εLDA
i = Φ

(−1)i+1G(µi,x0,x1, Σ̂) + (−1)i log π1
π0√

D(x0,x1, Σ̂,Σ)

 , (7)
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where Φ(.) is the cumulative distribution function of a standard normal random variable
and

G(µi,x0,x1, Σ̂) =

(
µi −

x0 + x1

2

)
Σ̂
−1

(x0 − x1),

D(x0,x1, Σ̂,Σ) = (x0 − x1)
T Σ̂
−1

ΣΣ̂
−1

(x0 − x1).

The total misclassification rate can be expressed as:

εLDA = π0ε
LDA
0 + π1ε

LDA
1 . (8)

Along the same arguments, the misclassification rate associated with R-LDA takes the same

expression with Σ̂
−1

being replaced by H in (8). The resulting expression cannot provide
insights into how the theoretical mean and covariance of each class impact the classification
performances. Such information is critical to properly choose the regularization parameter.

One approach to get around this issue is to use asymptotic results from random matrix
theory which lead to approximate the quantities G(µi,x0,x1, Σ̂) and D(x0,x1, Σ̂,Σ) by
deterministic equivalents that solely involve {µi}

2
i=1 and Σ (Zollanvari and Dougherty, 2015;

Elkhalil et al., 2017b; Dobriban and Wager, 2018). An approximation of the classification
performance is thus obtained by replacing G(µi,x0,x1, Σ̂) and D(x0,x1, Σ̂,Σ) with their
deterministic equivalents in (8). Such an approximation cannot still be directly used to
optimize the regularization parameter since it depends on the unknown covariance matrix Σ
and {µi}

1
i=0. The works in (Zollanvari and Dougherty, 2015; Elkhalil et al., 2017b) proposes

consistent estimates of the misclassification rates, which were then optimized through a grid
search.

This approach has been shown through simulations to outperform the classical cross-
validation technique used often for the setting of the regularization parameter. It however
presents two major drawbacks. First, the optimization of the regularization parameter
involves a grid-search procedure which can lead to prohibitively high computational costs
when high dimension settings are considered. Second, it uses the sample covariance matrix
as a plug-in estimator of the covariance matrix. Such an estimator is no longer consistent
when the number of samples is comparable with that of features, which leads to high
estimation noises and in turn to low classification performances.

In this paper, we propose an improved LDA classifier that overcomes both drawbacks
and that is particularly suitable in scenarios wherein Σ takes the following particular form
(Hoyle and Rattray, 2003; Reimann et al., 1996):

Σ = σ2Ip + σ2
r∑
j=1

λjvjv
T
j , (9)

where σ2 > 0, λ1 ≥ · · · ,≥ λr > 0 and v1, · · · ,vr are orthonormal. The above model is
encountered in many real applications, among which detection (Zhao et al., 1986), EEG
signals (Davidson, 2009; Fazli et al., 2011) and financial econometrics (Passemier et al.,
2017; Kritchman and Nadler, 2008) are the best representatives. The design of the improved
classifier will be detailed in the next section.
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3. Improved LDA

3.1. Proposed estimation approach

In this section, we present our improved LDA classifier, which unlike the traditional R-LDA,
leverages the particular finite rank perturbation property of the true covariance matrix.
For the sake of simplicity, we assume that σ2 and r are perfectly known. In practice, one
can resort to the existing efficient algorithms available in the literature for the estimation
of these parameters. We refer the reader to the following works and the references therein
(Kritchman and Nadler, 2008; Johnstone and Lu, 2009; Ulfarsson and Solo, 2008; Passemier
et al., 2017). In our numerical simulations, we have used the method of (Ulfarsson and Solo,
2008). Starting from the eigen decomposition of the pooled covariance matrix:

Σ̂ =

p∑
j=1

sjuju
T
j ,

with sj being the j-th largest eigenvalue and uj its corresponding eigenvector, and noting
that:

Σ−1 =
1

σ2

Ip −
r∑
j=1

λj
1 + λj

vjv
T
j

 , (10)

it is sensible to seek for estimators of Σ−1 that takes the form:

Ĉ−1 =
1

σ2

Ip +

r∑
j=1

wjuju
T
j

 , (11)

where {wj}rj=1 are some design parameters to be optimized. We assume that wj ∈ R =
[−1 + ζ, χ) for some 0 < ζ < 1 and χ > 1. From a practical point of view, we only need to
assume that wj > −1 to ensure that Ĉ−1 is positive definite. However, the restriction to
the range R is needed later for the proof of the uniform convergence results. Plugging (11)

in place of Σ̂
−1

into (1), yields the following discriminant score:

Ŵ I−LDA =

(
x− x0 + x1

2

)T
Ĉ−1(x0 − x1)− log

π1
π0
. (12)

It is worth mentioning that the estimator Ĉ−1 can be seen as an instance of the wider class
of estimators taking the form

∑p
j=1 ηjuju

T
j , where uj being the eigenvector of the sample

covariance matrix associated with its j-th largest eigenvalue and scalars ηj are referred to
as shrinkage functions that need to be designed (Daniels and Kass, 2001; Ledoit and Wolf,
2004; Karoui, 2018; Chen et al., 2010; Ledoit and Wolf, 2017). Indeed, Ĉ−1 is obtained by
setting ηr+1 = . . . = ηp = 1

σ2 and wj = σ2ηj − 1. The main challenge is how to select the
appropriate values of the design parameters wj .

3.2. Parameter optimization

Given the application into consideration, it is sensible to select the wj so that they minimize
the total misclassification rate:

w? = argmin
w

εI−LDA(w), (13)
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where w = [w1, · · · , wr]T and εI−LDA(w) is obtained by replacing Σ̂
−1

by Ĉ−1 in (8).
Finding the optimal w that exactly solves (13) could not be in general obtained. To

get around this problem, we invoke results from random matrix theory that approximate
the total misclassification rate under the asymptotic growth regime defined in the following
assumption.

Assumption 1 Throughout this work, we assume that

(i) n, p −→∞, with fixed ratio c = p/n.

(ii) n0, n1,−→∞, with p/n0 , c0, p/n1 , c1 where c0 and c1 are fixed constants.

(iii) r is fixed and λ1 > · · · > λr >
√
c, independently of p and n.

(iv) The mean difference vector µ , µ1 − µ0 has a bounded Euclidean norm, that is
‖µ‖ = O(1).

(v) The spectral norm of Σ is bounded, that is ‖Σ‖ = O(1).

Remark 1 • Assumptions (i), (ii) and (iii) are key assumptions that are generally used
in the framework of the theory of large random matrices.

• Assumption (iii) is fundamental in our analysis since it guarantees, as per standard
results from random matrix theory, the one-to-one mapping between the sample eigen-
values sj and the unknown λj. In fact, when λj >

√
c, λj can be consistently estimated

using its corresponding sj as we will see later. In the case where λj ≤
√
c, the relation

between sj and λj no longer holds and λj cannot be estimated (Couillet and Debbah,
2011; Baik et al., 2005).

• Assumption (iv) controls the order of the euclidean norm of µ that ensures asymptot-
ically non-trivial classification.

It should be noted that from a methodological perspective, the approach undertaken in this
work that consists in optimizing a loss function for a spiked covariance model is similar to
the one introduced earlier in (Donoho et al., 2018). It basically consists in computing an
asymptotic approximation for the considered loss function based on the asymptotics of the
eigenvalues and eigenvectors of the spiked model characterized in (Baik et al., 2005) and
(Paul, 2007) and then optimizing the parameters that optimize this approximation. How-
ever, the main difference with the approach of (Donoho et al., 2018) is that the considered
loss function is relevant to the underlying application. In doing so, better performances are
expected compared to the approach that considers generic loss functions. Depending on the
scenario into consideration, different loss functions can be considered, including the Sharp
Ratio in the context of Markowitz portfolio allocation or the SNR in the context the design
of MVDR beamforming, as examined in (Yang et al., 2018).

Theorem 1 Under the settings of Assumption 1, we have

G(µi,x0,x1, Ĉ)− 1

2

[
(−1)i‖µ‖2

σ2
G(w)− p

n0
+

p

n1

]
a.s.−→ 0, (14)
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D(x0,x1, Ĉ,Σ)−
[
‖µ‖2

σ2
D(w) +

p

n0
+

p

n1

]
a.s.−→ 0, (15)

where

G(w) = 1 +

r∑
j=1

ajbjwj ,

D(w) = 1 +
r∑
j=1

[λjbj + 2ajbj(λj + 1)wj ] +
r∑
j=1

[
ajbj(1 + λjaj)w

2
j

]
,

with

µ = µ0 − µ1, aj =
1− c/λ2j
1 + c/λj

, bj =
µTvjv

T
j µ

‖µ‖2
, j = 1, · · · , r (16)

Proof See Appendix A.

Using these deterministic equivalents and after some manipulations, a deterministic equiv-
alent of the global misclassification rate can be obtained as:

εI−LDA(w)− ε̄I−LDA(w)
a.s.−→ 0.

where

ε̄I−LDA(w) = π0Φ

−√α(G(w)− η)

2
√
D(w) + κ

+ π1Φ

−√α(G(w) + η)

2
√
D(w) + κ

 (17)

with α = ‖µ‖2
σ2 , η = 1

α [c/π0−c/π1+2 log π1
π0

] and κ = 1
α [p/n0+p/n1]. In order to ensure that

the this convergence result is guaranteed at optimality, we need to establish the uniform
convergence of εI−LDA(w). This is the objective of the following theorem.

Theorem 2 Under the settings of Assumption 1, we have

sup
w∈Rr

|εI−LDA(w)− ε̄I−LDA(w)| a.s.−→ 0.

where ε̄I−LDA(w) is given in (17).

Proof See Appendix D

Now, with the asymptotic equivalent of the misclassification rate on hand, we can determine
the optimal parameters w?j .

Theorem 3 Under the settings of Assumption 1, the optimal parameters {w?j} that mini-

mize ε̄I−LDA(w) are given by:

w?j =
u?

β

γj
αj
− βj , j = 1, · · · , r (18)
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where

αj = λja
2
jbj + ajbj , βj =

λj + 1

λjaj + 1
, γj = ajbj , j = 1, ..., r,

β =
√∑r

j=1 γ
2
j /αj, and u? is the minimizer of the scalar function g̃(u) given by

g̃(u) = π0Φ

(
−
√
α

2

βu+ d0√
u2 + b

)
+ π1Φ

(
−
√
α

2

βu+ d1√
u2 + b

)
,

with

b = 1 + κ+

r∑
j=1

[
λjbj −

(λjajbj + ajbj)
2

λja2jbj + ajbj

]
, (19)

d0 = 1− η −
r∑
j=1

λjajbj + ajbj
λjaj + 1

, (20)

d1 = 1 + η −
r∑
j=1

λjajbj + ajbj
λjaj + 1

. (21)

Proof See Appendix B.

Remark 2 In the case of equiprobable classes, u? can be computed in closed form
expression as u? = βb

d , where d = d0+d1
2 = 1−

∑r
j=1

λjajbj+ajbj
λjaj+1 .

3.3. Improved LDA with optimal intercept

Bias correction is a general procedure that aims to optimize the bias in the discriminant
score of a given classifier to minimize the misclassification rate. It has been considered in
several previous works; see for instance (Chan and Peter, 2009) and (Huang et al., 2010)
and the references therein, and has been recently applied to LDA and R-LDA in (Cheng and
Binyan, 2018). Generally, bias correction allows to bring a gain in performance especially
in high-dimensional settings and imbalanced classes. This is because the original bias in
LDA, introduced essentially to calibrate the case of unequal sample sizes across classes, is
devised under the assumption that the sample size is sufficiently high. There is thus room
for further improvement to adapt this bias to high-dimensional settings. Following this line
of ideas, we apply the bias correction procedure to the improved LDA classifier and show
that not only the optimization of the parameters get simplified but also a significant gain is
obtained once the bias is optimally set. The resulting classifier will be named as ”OII-LDA”
in reference to optimal-intercept-improved-LDA. Starting off from our proposed classifier
classifier and replacing the constant term with a parameter θ, the score function can be
written as:

ŴOII−LDA =

(
x− x0 + x1

2

)T
Ĉ−1(x0 − x1) + θ,

9
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where θ is a parameter that will be optimized. The corresponding misclassification rate can
be expressed in this case as,

εOII−LDA = π0Φ

−G(µ0,x0,x1, Ĉ)− θ√
D(x0,x1, Ĉ,Σ)

+ π1Φ

G(µ1,x0,x1, Ĉ) + θ√
D(x0,x1, Ĉ,Σ)

 .
Following similar steps as in the previous section, the asymptotic equivalent of εOII−LDA

can be obtained as for εI−LDA:

εOII−LDA − ε̄OII−LDA a.s.−→ 0.

where

ε̄OII−LDA =π0Φ

−√α
[
G(w)− 1

α

(
p
n0
− p

n1
− 2θ

)]
2
√
D(w) + κ

+π1Φ

−√α
[
G(w) + 1

α

(
p
n0
− p

n1
− 2θ

)]
2
√
D(w) + κ


Taking the derivative of ε̄OII−LDA and equating it to zero yields the optimal θ:

θ? =
1

2

[
p

n0
− p

n1

]
− D(w) + κ

G(w)
log

π1

π0

Replacing θ? by its expression, the asymptotic misclassification rate becomes

εOII−LDA =π0Φ

 −√αG(w)

2
√
D(w) + κ

+

√
D(w) + κ
√
αG(w)

log
π1

π0

+π1Φ

 −√αG(w)

2
√
D(w) + κ

−

√
D(w) + κ
√
αG(w)

log
π1

π0


(22)

Now, we are able to find the new optimal parameter vector w that minimizes the asymptotic
misclassification rate ε̄OII−LDA.

Theorem 4 The optimal parameter vector w that minimizes ε̄OII−LDA is given by

w?j =
b

d

γj
αj
− βj , j = 1, · · · , r. (23)

where b, αj, βj and γj are defined in Theorem 3 and d is given by:

d = 1−
r∑
j=1

λjajbj + ajbj
λjaj + 1

. (24)

Proof See Appendix C.

Remark 3 Interestingly, the optimal parameters of OII-LDA are obtained in closed-form even in
the case of imbalanced classes. Thus, in practice OII-LDA should be used instead I-LDA proposed
in the previous section, since it yields better performance and the optimization of its parameters are
less computationally demanding.
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The optimal design parameters in Theorems 3 and 4 could not be directly used in practice, since
they depend on the unobservable quantities λj and bj . To solve this issue, consistent estimators for
these quantities need to be retrieved. This is the objective of the following result:

Proposition 5 Under the settings of Assumption 1, we have

|α− α̂| a.s.−→ 0, |λj − λ̂j |
a.s.−→ 0, and |bj − b̂j |

a.s.−→ 0,

where

α̂ =
‖µ̂‖2

σ2
− c1 − c0

λ̂j =
sj/σ

2 + 1− c+
√

(sj/σ2 + 1− c)2 − 4sj/σ2

2
− 1,

b̂j =
1 + c/λ̂j

1− c/λ̂2
j

µ̂Tuju
T
j µ̂

‖µ̂‖2 − c1σ2 − c0σ2
, j = 1, · · · , r.

with c0 = p
n0 , c1 = p

n1 , µ̂ = x0 − x1, and sj is the j-th largest eigenvalue of the pooled covariance
matrix.

Proof The proof is a direct application of results from (Couillet and Debbah, 2011, Theorem 9.1
and Theorem 9.9) and it is thus omitted.

Replacing α, λj and bj by their estimates yields a consistent estimator ŵ?j of w?j . Even though we have
assumed that the data follow a Gaussian distribution, our results hold for non-Gaussian data under
some moment assumptions on the entries. This is due to the fact that all the results regarding the
covariance spiked model were proven for non-Gaussian data in (Benaych-Georges and Nadakuditi,
2011). Moreover, the optimal parameters of our proposed classifier OII-LDA, are independent of the
specific distribution, that is, replacing Φ with other cumulative distribution function will not affect
the expressions of the optimal parameters in (23).

3.4. Extension to multi-class classification

The proposed binary classifier can be easily extended to the case of multi-class classification. In the
machine learning literature, this can be performed by combining the use of multiple binary classifiers
to devise a multi-class classifier. Two popular methods have been proposed towards this aim. These
are commonly known as One vs. Rest and One vs. One approaches Assume that the total number of
classes is C. The one vs the rest approach consists in training one binary classifier for each class by
considering the rest of the classes as forming one class. Then, the output of these C binary classifiers
are combined to decide the class of the unseen observation x. On the other hand, the one vs one
consists in training C(C−1)/2 binary classifiers corresponding to each possible pair of classes. Then,
the output of these binary classifiers are combined to predict the class of the unseen observation x.
In our case and this also holds for R-LDA, the one vs the rest approach is not applicable since the
class formed by the remaining observations from the C − 1 classes is not homogeneous in the sense
that it is formed by observations drawn from a mixture of Gaussian distribution rather than from
a Gaussian distribution as required by our results. However, the second approach (one vs. one) is
applicable in our case and should allow extending our binary classifier to the multi-class classification
case. As already known, the one vs one approach may lead to ambiguities (Bishop, 2006) as some
classes may receive the same number of votes. This issue can be solved by giving priority to the
decision with the highest scores.

11
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4. Numerical Simulations

In this section, we study the performance of the proposed improved LDA classifier. We compare its
performance with R-LDA classifier and other classical classifiers based on both synthetic and real
data.

4.1. Synthetic data

In the synthetic data simulations, we use the following Monte Carlo protocol to estimate the true
misclassification rate:

• Step 1: Set σ2 = 1 and choose r = 3 orthogonal symmetry breaking directions as follows
: v1 = [1, 0, · · · , 0]T , v2 = [0, 1, 0, · · · , 0]T , v3 = [0, 0, 1, 0 · · · , 0]T and their corresponding
weights λ1 = 8, λ2 = 7, λ3 = 6. Set µ0 = 1√

p [a, a, · · · , a]T and µ1 = −µ0 where a is a finite

constant. We choose a = 2 and a = 2.5.

• Step 2: Generate ni training samples for class i.

• Step 3: Using the training set, design the improved LDA classifier as explained in section 3
and determine the optimal parameter γ∗ of R-LDA using grid search over γ ∈ {10i/10, i =
−10 : 1 : 10}.

• Step 4: Estimate the misclassification rate of both classifiers using a set of 1000 testing
samples.

• Step 5: Repeat Step 2–4, 500 times and determine the average classification true error of both
classifiers. In all figures, 95% confidence intervals are plotted along with the Monte Carlo
estimate of the misclassification rate.

In Fig. 1, we plot the misclassification rate vs. training sample size n when p = 150 and π0 = 0.2 for
the proposed improved LDA and the classical R-LDA using synthetic data. It is observed that the
improved LDA outperforms the classical R-LDA and the gap between the two schemes is significant.
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Figure 1: Misclassification rate vs. sample size n for p = 150 and π0 = 0.2. Comparison
between Improved LDA and R-LDA with synthetic data.
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Figure 2: Misclassification rate vs. sample size n. Comparison between Improved LDA and
R-LDA using USPS dataset.

4.2. Real data

For real data simulation, we use two datasets. The first one is the ”USPS” dataset which is one
of the standard datasets for handwritten digit recognition. The dataset is publicly available at
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets. For this dataset, the number of
features (observation size) is p = 256 and the total number of samples for all digits including test
samples is 9298. The second dataset is the ”Phoneme” dataset which is composed of 4509 speech
frames corresponding to five phonemes. Each frame is represented by log-periodogram of length 256.
We used in our simulations the phonemes ’aa’ and ’ao’, which are the most confusing phonemes, as
class 0 and class 1.

We use the following protocol for the real dataset:

• Step 1: Let q0 be the ratio between the total number of samples in class C0 to the total number
of samples available in the full dataset. Denote by nFull the total number of samples in the
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full dataset. Choose n < nFull the number of training samples; set n0 = bq0nc, where b.c is
the floor function and n1 = n− n0. Take ni training samples belonging to class Ci randomly
from the full dataset. The remaining samples are used as a test dataset in order to estimate
the misclassification rate.

• Step 2: Using the training dataset, design the improved LDA classifier as explained in section
3 and determine the optimal parameter γ∗ of R-LDA using grid search over γ ∈ {10i/10, i =
−10 : 1 : 10}

• Step 3: Using the test dataset, estimate the true misclassification rate for both classifiers.

• Step 4: Repeat steps 1–4 500 times and determine the average misclassification rate of both
classifiers.

In Fig. 2, the misclassification rate vs. training sample size is plotted for the R-LDA and our
proposed classifier. Three pairs of the most confusing digits are chosen for simulation; (3,8), (4,9)
and (8,9). As seen, the performance of the proposed classifier is better than R-LDA classifier and
the gain is significant. For example, more that 10% gain in terms of misclassification rate is obtained
for digits (4,9) when n = 1000.
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Figure 3: Misclassification rate vs. sample size n. Comparison between Improved LDA and
R-LDA using Phoneme dataset.

In Fig. 3, we compare the misclassification rate of our proposed classifier and the classical R-
LDA. The most confusing phonemes ’aa and ’ao’ are chosen for binary classification. The proposed
classifier exhibits significantly lower misclassification rate.

In the last experiment, we compare the proposed classifier with classical classifiers SVM and
KNN. For SVM, we used the linear and the polynomial kernels with other parameters fixed. We
also compare with the SVM with all the hyper-parameters optimized. The performance of LDA with
the covariance matrix estimator proposed in (Donoho et al., 2018) is also assessed in Table 1. The
resulting classifier is denoted by DG-LDA for notational convenience. In (Donoho et al., 2018), 26
loss functions have been used, we report here the one with the lowest misclassification rate. Using
the phonemes ’aa and ’ao’ again, we report in Table 1 the misclassification rate for different values
of the number of training samples. As observed, the proposed classifier yields the best performance
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Table 1: Comparison between the proposed classifier, R-LDA, DG-LDA, SVM, and KNN,
using Phoneme dataset.

n = 800 n = 900 n = 1000

OII-LDA 0.177 0.175 0.174

R-LDA 0.213 0.213 0.212

DG-LDA 0.186 0.185 0.184

SVM (linear kernel) 0.206 0.204 0.201

SVM (All hyper-parameters optimized) 0.179 0.178 0.176

SVM (polynomial kernel) 0.255 0.254 0.250

KNN (k = 1) 0.226 0.225 0.224

KNN (k = 5) 0.229 0.228 0.227

while presenting the lowest computationally complexity among all classifiers, the complexity of SVM
and KNN being shown to be higher than LDA (Li et al., 2006).

5. Conclusion

This work presents an improved LDA classifier to perform binary classification of observations drawn
from Gaussian distribution. The population covariance matrix is assumed to be common for both
classes and to follow a spiked model. Leveraging this particular structure, the proposed classifier
uses an estimate of the covariance matrix that follows a parametrized spiked model, the parameters
of which corresponds to its largest eigenvalues. Using standard results from random matrix theory,
asymptotic characterization of the misclassification rate is provided, and the parameters are selected
so that a consistent estimate of the misclassification rate is minimized. Interestingly, we show that
the proposed classifier provides better performance while presenting a much lower complexity as
compared to other state-of-the-art classification techniques. As a further extension, the same ideas
underlying the proposed classification method can be extended to other classification methods,
including for instance, quadratic discriminant analysis classifier or other spiked models in which the
population covariance matrix is a low-rank perturbation of a diagonal matrix not necessarily equal
to identity. The same approach could also be applied to Sharpe ratio maximization in the context
of Markowitz’s portfolio allocation.

Appendix A. Proof of Theorem 1

For notational convenience, we define Xi ∈ Rp×ni the matrix of training data associated with class
Ci. Hence Xi can be written as Xi = Yi + µi1

T
ni such that the vectors of Yi are independent

Gaussian vectors with zero mean and covariance Σ. Using these notations, it can be easily shown
that the covariance matrix associated with class Ci writes as

Σ̂i =
1

ni − 1

(
YiY

T
i −Yi

1ni1
T
ni

ni
YT
i

)
.
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Let
1ni1

T
ni

ni
= OiEiO

T
i , the eigenvalue decomposition of

1ni1
T
ni

ni
, with Ei = diag

(
[1,0(ni−1)×1]

)
and

Oi ∈ Rni×ni orthogonal matrix whose first column is 1√
ni

1ni . Define Ỹi = YiOi. Thus, we have

Σ̂i =
1

ni − 1

(
YiOiO

T
i YT

i −YiOiEiO
T
i YT

i

)
,=

1

ni − 1

(
ỸiỸ

T
i − ỹi,1ỹ

T
i,1

)
,

where ỹi,1 is the first column of Ỹi. Let Yi be Ỹi with the first column removed. Due to the

invariance of Gaussian distribution under orthogonal transformation, the columns of Ỹi follow a
Gaussian distribution with mean 0 and covariance Σ. The pooled covariance matrix given by

Σ̂ =
1

n− 2

(
(n0 − 1)Y0Y

T

0 + (n1 − 1)Y1Y1

)
, (25)

follow a standard spiked model for which standard results from random matrix theory apply. In this
respect, we have the following results from (Couillet and Debbah, 2011)

vTj uku
T
k vj − ajδj,k

a.s.−→ 0, k = 1, . . . , r (26)

1

‖µ‖2
µTuju

T
j µ− ajbj

a.s.−→ 0, j = 1, · · · , r

where δj,k denotes the Kronecker delta and aj and bj are given in (16). With these results at hand,

we are now ready to find deterministic equivalents for G(µi,x0,x1, Ĉ) and D(x0,x1, Ĉ,Σ). We

start by the term G(µi,x0,x1, Ĉ) which can be expressed as

G(µi,x0,x1, Ĉ) =

(
(−1)i

2
µT − 1

2n0
1Tn0

YT
0 −

1

2n1
1Tn1

YT
1

)
Ĉ−1

(
1

n0
Y01n0 −

1

n1
Y11n1 + µ

)
=

(−1)i

2
µT Ĉ−1µ− 1

2n0
1Tn0

YT
0 Ĉ−1µ− 1

2n1
1Tn1

YT
1 Ĉ−1µ

+
(−1)i

2n0
µT Ĉ−1Y01n0

− (−1)i

2n1
µT Ĉ−1Y11n1

− 1

2n2
0

1Tn0
Y0Ĉ

−1Y01n0

+
1

2n2
1

1Tn1
Y1Ĉ

−1Y11n1
+

1

2n0n1

[
1Tn0

YT
0 Ĉ−1Y11n1

− 1Tn1
YT

1 Ĉ−1Y01n0

]
From (25), it follows that 1√

ni
Yi1ni = ỹi,1 is independent of Σ̂. Since Ĉ−1 is fully constructed from

the eigenvectors of Σ̂, 1√
ni

Yi1ni is also independent of Ĉ−1. This yields the following convergences

1

ni
µT Ĉ−1Yi1ni

a.s.−→ 0,

1

n0n1
1Tn0

YT
0 Ĉ−1Y11n1

a.s.−→ 0.

Using (26), it follows that

µT Ĉ−1µ− ‖µ‖
2

σ2

1 +

r∑
j=1

wjajbj

 a.s.−→ 0.

It remains to deal with the term 1
n2
i
1TniY

T
i Ĉ−1Yi1ni = 1

ni
ỹTi,1Ĉ

−1ỹi,1. Using the independence of

ỹi,1 and Ĉ−1 and applying the trace Lemma (Couillet and Debbah, 2011, Theorem 3.7), we have

1

n2
i

1TniY
T
i Ĉ−1Yi1ni −

1

ni
tr ΣĈ−1 a.s.−→ 0.
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Finally, since ΣĈ−1 is equal to identity plus a low rank perturbation matrix, we have that

1

ni
tr ΣĈ−1 =

p

ni
+ o(1).

Putting all the above results together yields the result in (14). Let us now deal with the term

D(x0,x1, Ĉ,Σ). Using the notations defined in this proof, this term can be rewritten as:

D(x0,x1, Ĉ,Σ) =

(
1

n0
Y01n0

− 1

n1
Y11n1

+ µ

)T
Ĉ−1ΣĈ−1

(
1

n0
Y01n0

− 1

n1
Y11n1

+ µ

)
. (27)

Again due to the independence between 1√
ni

Yi1ni and Ĉ−1, the cross-products in (27) will converge

to zero almost surely. Hence,

D(x0,x1, Ĉ,Σ) =
1

n2
0

1Tn0
YT

0 Ĉ−1ΣĈ−1Y01n0 +
1

n2
1

1Tn1
YT

1 Ĉ−1ΣĈ−1Y11n1

+ µT Ĉ−1ΣĈ−1µ + o(1).

Replacing Σ and C−1 by their expressions and using the results in (26), it can be easily shown that

µT Ĉ−1ΣĈ−1µ− ‖µ‖
2

σ2

1 +

r∑
j=1

λjbj + 2

r∑
j=1

ajbj [λj + 1]wj +

r∑
j=1

ajbj [1 + λjaj ]w
2
j

 a.s.−→ 0

Moreover, using the independence of ỹi,1 and Ĉ−1 and applying the trace Lemma (Couillet and
Debbah, 2011, Theorem 3.7), we have

1

n2
i

1TniY
T
i Ĉ−1ΣĈ−1Yi1ni −

1

ni
tr ΣĈ−1ΣĈ−1 a.s.−→ 0.

Finally, ΣĈ−1ΣĈ−1 is identity matrix plus a low rank matrix. Thus, we have 1
ni

tr ΣĈ−1ΣĈ−1 =
p
ni

+ o(1). Putting these results together yields the convergence result in (15).

Appendix B. Proof of Theorem 3

The objective function is given by

f(w) = π0Φ

(
−
√
α

2
f0(w)

)
+ π1Φ

(
−
√
α

2
f1(w)

)
,

where

f0(w) =
G(w)− η√
D(w) + κ

and f1(w) =
G(w) + η√
D(w) + κ

.

The numerator of f0(w) can be rewritten as

r∑
j=1

[
ajbj

(
wj +

λj + 1

λjaj + 1

)
− λjajbj + ajbj

λjaj + 1

]
+ 1− η.

And the square of the denominator of f0(w) can be expressed as

1 + κ+

r∑
j=1

[
(λja

2
jbj + ajbj)

(
wj +

λj + 1

λjaj + 1

)2

+ λjbj −
(λjajbj + ajbj)

2

λja2
jbj + ajbj

]
.
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Thus, f0(w) can be rewritten as

f0(w) =

∑r
j=1 γj(wj + βj) + d0√∑r
j=1 αj(wj + βj)2 + b

,

where

αj = λja
2
jbj + ajbj , βj =

λj + 1

λjaj + 1
, γj = ajbj , j = 1, ..., r

b = 1 + κ+

r∑
j=1

[
λjbj −

(λjajbj + ajbj)
2

λja2
jbj + ajbj

]
,

d0 = 1− η −
r∑
j=1

λjajbj + ajbj
λjaj + 1

.

Then, we have

f0(w) =
cT w̃ + d0√
w̃TDw̃ + b

,

where the elements of w̃ are w̃j = wj + βj , c = [γ1, · · · , γr]T and D = diag(α1, · · · , αr). Similarly,
it can be shown that

f1(w) =
cT w̃ + d1√
w̃TDw̃ + b

,

where

d1 = 1 + η −
r∑
j=1

λjajbj + ajbj
λjaj + 1

.

Thus, the objective function can be rewritten as

f(w̃) = π0Φ

(
−
√
α

2

cT w̃ + d0√
w̃TDw̃ + b

)
+ π1Φ

(
−
√
α

2

cT w̃ + d1√
w̃TDw̃ + b

)
.

Letting u = ‖D 1
2 w̃‖ and w̄ = D

1
2 w̃

‖D
1
2 w̃‖

, we have

min
w̃
f(w̃) = min

(w̄,u)
‖w̄‖=1,u>0

g(w̄, u) = min
u
u>0

min
w̄

‖w̄‖=1

g(w̄, u),

where

g(w̄, u) = π0Φ

(
−
√
α

2

cTD−
1
2 w̄u+ d0√
u2 + b

)
+ π1Φ

(
−
√
α

2

cTD−
1
2 w̄u+ d1√
u2 + b

)
.

Since u > 0 and Φ(.) is an increasing function, w̄? that minimizes g(w̄, u) subject to ‖w̄‖ = 1 is the

minimizer of −cTD−
1
2 w̄ subject to ‖w̄‖ = 1. Thus, w̄? = 1√

cTD−1c
D−

1
2 c. Replacing w̄? in g(w̄, u)

yields,

g̃(u) = π0Φ

(
−
√
α

2

βu+ d0√
u2 + b

)
+ π1Φ

(
−
√
α

2

βu+ d1√
u2 + b

)
,

where β =
√

cTD−1c =
√∑r

j=1 γ
2
j /αj . Finally, computing the minimizer u? of the function g̃(u)

yields the optimal parameters vector w̃? = u?D−
1
2 w̄? = u?√

cTD−1c
D−1c.
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Appendix C. Proof of Theorem 4

Letting R = G(w)√
D(w)+κ

, we can write

ε = π0Φ

(
−
√
α

2
R+

1√
αR

log
π1

π0

)
+ π1Φ

(
−
√
α

2
R− 1√

αR
log

π1

π0

)
, (28)

We will assume without loss of generality that π1 > π0. First, we will prove that ε is a strictly
decreasing function of R for R ∈]0,+∞[. Taking the derivative of ε with respect to R, we get

dε

dR
=

1√
2π

[
π0

(
−
√
α

2
− 1√

αR2
log

π1

π0

)
e−

[
−
√
α
2
R+ 1√

αR
log

π1
π0

]2
2 .

+π1

(
−
√
α

2
+

1√
αR2

log
π1

π0

)
e−

[√
α
2
R+ 1√

αR
log

π1
π0

]2
2

]

Multiplying both sides by 1
π0
e−

[
−
√
α
2
R+ 1√

αR
log

π1
π0

]2
2 , and after simple simplifications, we get

1

π0
e−

[
−
√
α
2
R+ 1√

αR
log

π1
π0

]2
2

dε

dR

=
1√
2π

[
−
√
α

2
− 1√

αR2
log

π1

π0
+
π1

π0

(
−
√
α

2
+

1√
αR2

log
π1

π0

)
e− log

π1
π0

]
= −

√
α√
2π

Thus, dε
dR < 0 for all R ∈]0,+∞[ and consequently ε is a strictly decreasing function of R for

R ∈]0,+∞[. On the other hand, using the notations of Appendix B, we have

R =
cT w̃ + d√
w̃TDw̃ + b

,

where

d = 1−
r∑
j=1

λjajbj + ajbj
λjaj + 1

.

Obviously, 0 < R ≤ R1 with R1 = maxw̃
cT w̃+d√
w̃TDw̃+b

. Since ε is a strictly decreasing function of R,

the optimal R is R1. It remains now to solve the following optimization problem

max
w̃

cT w̃ + d√
w̃TDw̃ + b

.

Letting u = ‖D 1
2 w̃‖ and w̄ = D

1
2 w̃

‖D
1
2 w̃‖

, we can write

max
w̃

cT w̃ + d√
w̃TDw̃ + b

= max
u

max
‖w̄‖=1

ucTD−
1
2 w̄ + d√

u2 + b
.

Clearly, w̄? = 1√
cTD−1c

D−
1
2 c. Consequently,

max
w̃

cT w̃ + d√
w̃TDw̃ + b

= max
u

βu+ d√
u2 + b

,

with β =
√

cTD−1c. Taking the derivative with respect to u and noting that d > 0, one can simply
obtain u? = βb

d . Thus, w̃? = b
dD−1c. Returning back to w yields the result of Theorem 4.
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Appendix D. Proof of Theorem 2

We will establish here the uniform convergence in w ∈ Rr of εI−LDA(w) given by

εI−LDA(w) =

2∑
i=1

πiΦ

 (−1)i+1G(µi,x0,x1, Ĉ
−1) + (−1)i log π1

π0√
D(x0,x1, Ĉ−1,Σ)

 ,

to its deterministic equivalent given in (17). For simplicity, we will prove the result in the case where
the classes are equiprobable and n0 = n1. The generalization to the case of imbalanced classes would
be easy. In the case of equiprobable classes, the misclassification rate can be written as

εI−LDA(w) =
1

2
Φ

(
−

√
N0(w)

M(w)

)
+

1

2
Φ

(√
N1(w)

M(w)

)
,

where for notational convenience, we define

Ni(w) = [G(µi,x0,x1, Ĉ(w))]2 =

[(
µi −

x0 + x1

2

)
Ĉ−1(w)(x0 − x1)

]2

, (29)

M(w) = D(x0,x1, Ĉ(w),Σ) = (x0 − x1)T Ĉ−1(w)ΣĈ−1(w)(x0 − x1), (30)

where the dependence of Ĉ on w is made explicit. Since by assumption ‖µ0 − µ1‖2 = O(1), then
there exist positive constants η0, η1 and η2 such that, almost surely,

η0 ≤ ‖x0 − x1‖2 ≤ η1 and

∥∥∥∥µi − x0 + x1

2

∥∥∥∥2

≤ η2.

Moreover, since the uniform convergence is preserved by composition with continuous function, it
suffices to prove the uniform convergence of

ϑi(w) =
Ni(w)

M(w)
,

to its deterministic equivalent given by

ϑ(w) =
N(w)

M(w)
,

where N(w) = α
2G(w) and M(w) = αD(w) + 1 with α, G(w) and D(w) are defined in Theorem 1.

Explicitly, we need to establish that for all δ > 0 there exists K such that

sup
w∈Rr

|ϑ(w)− ϑ(w)| < Kδ, (31)

for large n almost surely. Since R is bounded, for any δ > 0, we can always construct a lattice of
wδ

1, · · · ,wδ
J ∈ Rr with J finite, such that for each w ∈ Rr, there exists w′ ∈ {wδ

1, · · · ,wδ
J} verifying

maxi∈{1,··· ,r} |wi − w′i| < δ. Thus, for such w′, we can write

sup
w∈Rr

|ϑi(w)− ϑ(w)| (32)

≤ sup
w∈Rr

[
|ϑi(w)− ϑi(w′)|+ |ϑ(w′)− ϑ(w)|+ |ϑi(w′)− ϑ(w′)|

]
≤ sup

w∈Rr
|ϑi(w)− ϑi(w′)|+ sup

w∈Rr
|ϑ(w′)− ϑ(w)|+ max

w′′∈{wδ1,··· ,wδJ}
|ϑi(w′′)− ϑ(w′′)|. (33)
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Let us begin by the first term, we have

|ϑi(w)− ϑi(w′)| =
∣∣∣∣M(w′)[Ni(w)−Ni(w′)] +Ni(w

′)[M(w′)−M(w)]

M(w)M(w′)

∣∣∣∣ .
Using the properties of the spectral norm, we have

|Ni(w)−Ni(w′)| ≤
∥∥∥∥µi − x0 + x1

2

∥∥∥∥2

‖x0 − x1‖2
∥∥∥Ĉ−1(w)− Ĉ−1(w′)

∥∥∥∥∥∥Ĉ−1(w) + Ĉ−1(w′)
∥∥∥

≤ η1η2
1

σ2
max

j∈{1,··· ,r}
|wj − w′j |

(
2 + max

j∈{1,··· ,r}
|wj + w′j |

)
< h1δ,

where h1 = 2
σ2 η1η2(1 + χ). The last inequality is obtained by recalling that wj ∈ [−1 + ζ, χ) with

q > 1. Similarly, it can be shown that

|M(w)−M(w′)| < h2δ,

where h2 = 2η1(λ1 + 1)(1 + χ). Thus,

|ϑi(w)− ϑi(w′)| < hδ,

with

h =
M(w)h1 +Ni(w

′)h2

M(w)M(w′)
.

We have to prove now that h is bounded. To this end, we begin by noting that

λmin

[
Ĉ−1(w)ΣĈ−1(w)

]
≤ M(w)

‖x0 − x1‖2
≤ λmax

[
Ĉ−1(w)ΣĈ−1(w)

]
where λmin

[
Ĉ−1(w)ΣĈ−1(w)

]
≥ ζ

σ2 and λmax

[
Ĉ−1(w)ΣĈ−1(w)

]
≤ 1

σ2 (1 +λ1)(1 +χ)2 The same

inequalities hold for M(w′). As for Ni(w
′), it can be bounded as

|Ni(w′)| ≤ η1η2(1 + χ)2 1

σ2
.

Thus, h ≤ σ2(1+λ1)(1+q)2h2+σ2η1η2(1+q)2h1

η20
, K1. With this, we have bounded the first term in (33)

as
sup

w∈Rr
|ϑi(w)− ϑi(w′)| < K1δ. (34)

We focus now on bounding the second term in (33), we start by rewriting |ϑ(w)− ϑ(w′)| as

|ϑ(w)− ϑ(w′)| =
∣∣∣∣M(w′)[N(w)−N(w′)] +N(w′)[M(w′)−M(w)]

M(w)M(w′)

∣∣∣∣ .
Now, we have

|M(w)−M(w′)| = α

∣∣∣∣∣∣
r∑
j=1

2ajbj(λj + 1)(wj − w′j) +

r∑
j=1

ajbj(ajλj + 1)(w2
j − w′2j )

∣∣∣∣∣∣
≤ α max

j∈{1,··· ,r}
|wj − w′j |

 r∑
j=1

2ajbj(λj + 1)


+ α max

j∈{1,··· ,r}
|w2
j − w′2j |

 r∑
j=1

ajbj(ajλj + 1)


< h3δ,

21



Sifaou, Kammoun, and Alouini

where

h3 = α

 r∑
j=1

2ajbj(λj + 1)

+ 2αχ

 r∑
j=1

ajbj(ajλj + 1)

 .

Replacing aj and bj by their expressions, it is easy to see that
∑r
j=1 2ajbj(λj + 1) and∑r

j=1 ajbj(ajλj + 1) are positive and finite. Similarly, we have

|N(w)−N(w′)| < h4δ,

with h4 = α
2

∑r
j=1 ajbj . Hence,

|ϑ(w)− ϑ(w′)| < h5δ,

where

h5 =
M(w′)h4 +N(w′)h3

M(w)M(w′)
.

It remains to show that h5 is bounded. This can be achieved by noting that

N(w′) < 1 + χ

r∑
j=1

ajbj , h6,

and

1 ≤M(w) ≤ 2 +

r∑
j=1

λjbj + χ

r∑
j=1

2ajbj(λj + 1) , h7,

where the inequality 1 ≤ M(w) is obtained by checking that D(w) ≥ 0 for all w. Again here,
replacing aj and bj by their expression, one can easily show that h6 and h7 are finite. Thus, h5 is
bounded as

h5 < h7h4 + h6h3 , K2.

With this, we have

sup
w∈Rr

|ϑ(w′)− ϑ(w)| < K2δ. (35)

It remains to bound the last term in (33). Since we have established that |ϑi(wk)−ϑ(wk)| a.s.−→ 0, for
all w ∈ Rr including all wδ

k in the lattice {wδ
1, · · · ,wδ

J}. Therefore, for each wδ
k ∈ {wδ

1, · · · ,wδ
J},

there exists Nk such that for all n > Nk (and p = cn),

|ϑi(wδ
k)− ϑ(wδ

k)| < δ.

Letting N = max(N1, · · · , NJ), we have for n > N ,

|ϑi(w′′)− ϑ(w′′)| < δ, ∀ w′′ ∈ {wδ
1, · · · ,wδ

J},

which implies that for sufficiently large n,

max
w′′∈{wδ1,··· ,wδJ}

|ϑi(w′′)− ϑ(w′′)| < δ. (36)

Combining (34), (35) and (36) yields the desired result in (31).
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