
Journal of Machine Learning Research 21 (2020) 1-6 Submitted 6/19; Revised 2/20; Published 8/20

apricot: Submodular selection for data summarization in
Python

Jacob Schreiber jmschr@cs.washington.edu
Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195-
4322, USA

Jeffrey Bilmes bilmes@uw.edu
Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195-4322, USA

William Stafford Noble william-noble@uw.edu
Department of Genome Science, University of Washington, Seattle, WA 98195-4322, USA

Editor: Balazs Kegl

Abstract
We present apricot, an open source Python package for selecting representative subsets from
large data sets using submodular optimization. The package implements several efficient greedy
selection algorithms that offer strong theoretical guarantees on the quality of the selected set.
Additionally, several submodular set functions are implemented, including facility location, which
is broadly applicable but requires memory quadratic in the number of examples in the data set,
and a feature-based function that is less broadly applicable but can scale to millions of examples.
Apricot is extremely efficient, using both algorithmic speedups such as the lazy greedy algorithm
and memoization as well as code optimization using numba. We demonstrate the use of subset
selection by training machine learning models to comparable accuracy using either the full data set
or a representative subset thereof. This paper presents an explanation of submodular selection,
an overview of the features in apricot, and applications to two data sets. The code and tutorial
Jupyter notebooks are available at https://github.com/jmschrei/apricot
Keywords: submodular selection, submodularity, big data, machine learning, subset selection.

1. Introduction

Recent years have seen a surge in the number of massive publicly available data sets across a variety
of fields. Relative to smaller data sets, larger data sets offer higher coverage of important modalities
that exist within the data, as well as examples of rare events that are nonetheless important. However,
as data sets become larger, they risk containing redundant data. Indeed, Recht et al. (2018) found
almost 800 nearly identical images in the popular CIFAR-10 (Krizhevsky, 2009) data set of images.

Several existing Python packages focus on selecting subsets of features (Pedregosa et al., 2011;
Urbanowicz et al., 2018); however, we are not aware of packages that identify subsets of examples
from large data sets. Submodular optimization has emerged as a potential solution to this problem
(Lin and Bilmes, 2009), by providing a framework for selecting examples that minimize redundancy
with each other (Lin and Bilmes, 2010) (for brevity, we refer to this process as “submodular selection”).
Specifically, submodular functions are those that, for any two sets X,Y satisfying X ⊆ Y and any
example v /∈ Y , have the “diminishing returns” property f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y). A
function is also monotone if f(X) ≤ f(Y). In the setting of selecting examples from a large data set
(called the “ground set”), a monotone submodular function operates on a subset of the ground set and,

c©2020 Jacob Schreiber, Jeffrey Bilmes, and William Stafford Noble.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v21/19-467.html.

https://github.com/jmschrei/apricot
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-467.html

Schreiber, Bilmes, and Noble

due to the diminishing returns property, returns a value that is inversely related to the redundancy.
Finding the subset of examples that maximizes this value, subject to a cardinality constraint, is
NP-hard. Fortunately, a greedy algorithm can find a subset whose objective value is guaranteed to
be within a constant factor (1− e−1) of the optimal subset (Nemhauser and Wolsey, 1978). For a
more thorough introduction to submodularity, we recommend Fujishige (2005); Krause and Golovin
(2014); Lovász (1983).

Here, we describe apricot, a Python package that implements submodular optimization for the
purpose of summarizing large data sets. The implementation of these optimization approaches is
extremely efficient due to algorithmic tricks, such as memoization, and code optimization using numba
(Lam et al., 2015). These functions are implemented using the API of scikit-learn transformers,
allowing them to be easily dropped into existing machine learning workflows. Lastly, because far
more submodular functions exist than those currently included, apricot can be easily extended to
user-defined submodular functions simply by defining what the gain would be of adding an example
to the growing subset. Apricot can be easily installed using pip install apricot-select.

2. Organization

Internally, apricot is organized in a similar manner to deep learning packages such as keras (Chollet
et al., 2015). Accordingly, the code is comprised of two main components: (1) the selector objects,
which are analogous to keras’s model objects, that specify the submodular function and cache
important statistics to accelerate the selection process (memoization) and (2) the optimizer objects
that implement algorithms for selecting the subset. These components are independent of each other
in that each optimizer can be used with each function, and custom selectors and optimizers can easily
work with existing ones.

2.1. Functions and Selectors

The selectors in apricot follow the form of scikit-learn transformers. As with all scikit-learn models,
parameters of the selection process and hyperparameters of submodular function are passed into the
constructor upon initialization. The API consists of the three signature functions from scikit-learn:
(1) fit, which performs the submodular selection step and stores the resulting ranking of examples,
(2) transform, which uses the stored ranking to select a subset of examples from the data set, and
(3) fit_transform, which successively calls the fit and then the transform functions on a data set.
The parameters of the selector depend on the function used but include the number of examples to
select, the similarity metric to use for graph-based functions, and the optimizer to use. An example
of selecting a subset of size 100 from a data set X using a facility location function with (negative)
Euclidean distance as the similarity measure is

from apricot import FacilityLocationSelection
selector = FacilityLocationSelection(100, ‘euclidean’, optimizer=’lazy’, verbose=True)
X_subset = selector.fit_transform(X)

Selectors can be written for custom submodular functions by inheriting from the BaseSelector
(or BaseGraphSelector) objects and implementing three private methods. The first method,
_initialize, initializes the important attributes of the model and optionally caches statistics about
an initial subset of data that the process is building upon. The second method, _calculate_gains,
returns a vector specifying the gain in set function value associated with each unselected element.
This method usually takes the majority of time so the built-in selectors rely on numba-accelerated
functions that are compiled to efficient machine code using LLVM (Lattner and Adve, 2004). The
third method, _select_next, takes the next example selected by the optimizer (see below) and
updates the cached statistics and attributes.

2

apricot: Submodular selection for data summarization in Python

MNIST
MNIST Performance Fashion MNIST Performance

Fashion MNISTA. B.

10 20 50 100 200
Examples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc
ur
ac

y

500 1000 2000

C. D.

Facility Location
Random

10 20 50 100 200 500 1000 2000
Examples

0.3

0.4

0.5

0.6

0.7

0.8

Facility Location
Random

A
cc
ur
ac

y

Figure 1: Example usage of apricot. (A) A UMAP projection of 10% of the MNIST digits data
set (downsampled for visualization purposes), with the first 10 examples selected using the
facility location function (orange boxes). (B) The same as A, but for the Fashion MNIST
data set. (C) The accuracy (y-axis) of a logistic regression model trained on subsets of
varying sizes (x-axis) from the MNIST training data chosen using either facility location
(orange) or random selection (grey, band shows min and max accuracy). (D) The same as
C but for the Fashion MNIST data set.

2.2. Optimizers

Optimizers encapsulate an algorithm for selecting a subset of data given a submodular function.
Most of these algorithms are greedy procedures that select examples one at a time. The optimizer
objects in aprricot have a single method, select, that takes a data set, a budget, and optionally the
cost of including each element in the subset, and chooses the examples that should be in the subset
subject to the budget. When costs are passed in the optimization is automatically performed subject
to knapsack constraints.

The implementation of the optimization process involves iterative communication between the
optimizer and the selector. Although the exact details differ across algorithms, the general idea is
that the optimizer retrieves the gain of unselected elements from the ground set through calls to the
_calculate_gains method of the selector object and, after making a choice based on these gains,
informs the selector of this choice using the _select_next method. Thus, optimizers are agnostic
to the mathematical details of the submodular function that they are optimizing, and selectors are
agnostic to the algorithm used to optimize them.

The apricot software implements several built-in optimizers. The simplest optimizer implements
the naive greedy algorithm, which simply iterates through each unselected example in the ground
set in parallel and then selects the example with the largest gain, repeating this procedure until the
budget is exhausted. However, discarding all knowledge of the ranking at each iteration is suboptimal
in terms of speed. Accordingly, an extension of this selection procedure, called the accelerated greedy
algorithm Minoux (1978), can dramatically improve speed by ordering not-yet-chosen examples using
a priority queue. Other optimizers include the stochastic greedy (Mirzasoleiman et al., 2015), sample
greedy (Mirzasoleiman et al., 2015), approximate lazy greedy (Wei et al., 2014), and bidirectional
greedy algorithms (Feige et al., 2011), as well as GreeDi (Mirzasoleiman et al., 2016), an approximation
based on the modular upper-bound, and a two-stage optimizer that switches from using one algorithm
initially to a second algorithm after some number of iterations.

3. Applications to Machine Learning

A common application of submodular selection is to select a subset of data for faster training of
machine learning models (Lin and Bilmes, 2009; Kirchhoff and Bilmes, 2014; Wei et al., 2015).
The reasoning is that the selected set will preserve the diversity of the data, and so yield accurate
estimators, but will reduce the redundancy in the data, and thus allow estimators to be trained

3

Schreiber, Bilmes, and Noble

significantly faster. To illustrate this approach in apricot, we consider two data sets: classifying digits
from images in the MNIST data set (LeCun et al., 1998) and classifying articles of clothing from
images in the Fashion MNIST data set (Xiao et al., 2017).

First, we visualize the examples selected using a facility location function. Facility location is a
canonical submodular function that is parameterized by similarities between pairs of examples, such
as correlations or cosine similarities. Specifically, the facility location function takes the form

f(X) =
∑
y∈Y

max
x∈X

φ(x, y) (1)

where Y is a data set, X is the selected subset where X ⊆ Y , x and y are examples in that data set,
and φ(x, y) is the similarity between the examples. When facility location functions are maximized,
the chosen examples tend to represent the space of the data well. This property can be seen when
visualizing the MNIST (Figure 1A) and Fashion MNIST (Figure 1B) data sets and highlighting the
first 10 examples that are chosen in each data set.

To demonstrate the practical utility of the selected examples, we evaluated logistic regression
models trained on subsets of examples from the two data sets. The subsets were chosen solely from
the training sets (of 60,000 examples each) using either a facility location function or 20 iterations of
random selection. The model is evaluated on the full test set each time. For both MNIST (Figure 1C)
and Fashion MNIST (Figure 1D) the models trained using examples selected by submodular selection
are more accurate, substantially so on MNIST, than those selected randomly.

4. Discussion

Given the growing popularity of Python in data science, we anticipate that apricot will be a valuable
and widely used contribution. However, apricot is not the only implementation of submodular
optimization algorithms. One other well known alternative is the Matlab SFO toolbox (Krause,
2010). This toolbox implements several algorithms for both maximizing and minimizing submodular
functions. An important distinction between the two is that SFO is a stand-alone toolkit that requires
a Matlab license to use, whereas apricot is freely available in Python and integrates with other data
science tools such as scikit-learn.

A key challenge in any submodular selection is choosing the right input representation and the
right submodular function. Therefore, careful consideration should be given to choosing a similarity
measure for graph-based selections, or feature representation for feature-based selections. In many
cases, features that are not well suited for particular functions can be transformed using clever
tricks. For instance, while the pixel values for images may not themselves be a good input for some
submodular functions, the internal representations of these images from a pre-trained neural network
might yield higher quality results. Alternatively, data can be clustered using mixture models and
feature-based selection run on the posterior probabilities of each example, choosing examples that
are close to each cluster center. While apricot does not directly implement these transformations,
they would undoubtedly be valuable when used in conjunction with apricot.

4

apricot: Submodular selection for data summarization in Python

Acknowledgments

This work was supported by NSF IGERT award DGE-1258485 and by NIH award U01 HG009395.

References

François Chollet et al. Keras. https://keras.io, 2015.

U. Feige, S. V. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions. SIAM
J. Comput., 40(4):1133–1153, July 2011. ISSN 0097-5397. doi: 10.1137/090779346. URL https:
//doi.org/10.1137/090779346.

S. Fujishige. Submodular Functions and Optimization. Number 58 in Annals of Discrete Mathematics.
Elsevier Science, 2nd edition, 2005.

K. Kirchhoff and J. A. Bilmes. Submodularity for data selection in machine translation. In Empirical
Methods in Natural Language Processing (EMNLP), October 2014.

A. Krause. SFO: A Toolbox for Submodular Function Optimization. Journal of Machine Learning
Research, 11:1141–1144, March 2010.

A. Krause and D. Golovin. Submodular function maximization., 2014.

A. Krizhevsky. Learning multiple layers of features from tiny images. In Technical Report, University
of Toronto, 2009.

S.K. Lam, A. Pitrou, and S. Seibert. Numba: A LLVM-based Python JIT compiler. In Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pages 7:1–7:6, 2015.

C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis and transfor-
mation. In Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’04, page 75, USA, 2004. IEEE Computer
Society. ISBN 0769521029.

Y. LeCun, Bottou L., Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, volume 86, pages 2278–2324, 1998.

H. Lin and J. A. Bilmes. How to select a good training-data subset for transcription: Submodular active
selection for sequences. In Proc. Annual Conference of the International Speech Communication
Association (INTERSPEECH), Brighton, UK, September 2009.

H. Lin and J. A. Bilmes. An application of the submodular principal partition to training data subset
selection. In Neural Information Processing Society (NIPS) Workshop, 2010.

L. Lovász. Submodular functions and convexity. In M. Grotchel A. Bachem and B. Korte, editors,
Mathematical Programming – The State of the Art, pages 235–257. Springer-Verlag, 1983.

M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. Optimization
Techniques, 7:234–243, 01 1978.

B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrak, and A. Krause. Lazier than lazy greedy.
In Proc. Conference on Artificial Intelligence (AAAI), 2015.

B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Distributed submodular maximization.
Journal of Machine Learning Research, 17(235):1–44, 2016. URL http://jmlr.org/papers/v17/
mirzasoleiman16a.html.

5

https://doi.org/10.1137/090779346
https://doi.org/10.1137/090779346
http://jmlr.org/papers/v17/mirzasoleiman16a.html
http://jmlr.org/papers/v17/mirzasoleiman16a.html

Schreiber, Bilmes, and Noble

G.L. Nemhauser and L.A. Wolsey. An analysis of approximations for maximizing submodular set
functions. Mathematical Programming, pages 265–294, 1978.

F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
pages 2825–2830, 2011.

B. Recht et al. Do CIFAR-10 classifiers generalize to CIFAR-10? CoRR, abs/1806.00451, 2018.

R. J. Urbanowicz et al. Benchmarking relief-based feature selection methods for bioinformatics data
mining. Journal of Biomedical Informatics, pages 168–188, 2018.

K. Wei, R. Iyer, and J. Bilmes. Fast multi-stage submodular maximization. In International
Conference on Machine Learning (ICML), 2014.

K. Wei, R. Iyer, and J. A. Bilmes. Submodularity in data subset selection and active learning. In
International Conference on Machine Learning (ICML), Lille, France, 2015.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking machine
learning algorithms. arXiv, 2017. cs.LG/1708.07747.

6

	Introduction
	Organization
	Functions and Selectors
	Optimizers

	Applications to Machine Learning
	Discussion

