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Abstract

We formulate the problem of matrix completion with and without side information as a
non-convex optimization problem. We design fastImpute based on non-convex gradient
descent and show it converges to a global minimum that is guaranteed to recover closely
the underlying matrix while it scales to matrices of sizes beyond 105 × 105. We report
experiments on both synthetic and real-world datasets that show fastImpute is competitive
in both the accuracy of the matrix recovered and the time needed across all cases. Further-
more, when a high number of entries are missing, fastImpute is over 75% lower in MAPE
and 15 times faster than current state-of-the-art matrix completion methods in both the
case with side information and without.
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1. Introduction

Low-rank matrix completion is one of the most studied problems after its successful ap-
plication in the Netflix Competition. It has been used in computer vision (Candes and
Plan (2010)), signal processing (Ji et al. (2010)), and control theory (Boyd et al. (1994))
to generate a completed matrix from partially observed entries, among several other areas.
Given a data matrix A ∈ Rn×m , the low-rank assumption assumes that rank(A) is small
- in other words there are only a few, but still unknown, common linear factors that affect
Aij .
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In recent years, as noted by Nazarov et al. (2018), there has been a rise in interest for
inductive matrix completion, where the common linear factors are chosen from a set of
given vectors in the form of side information.

In this paper, we present an optimization based approach that improves upon the state
of the art in matrix completion with and without side information. We next review the
literature in both the general matrix completion and the inductive matrix completion areas.

Literature

General Matrix Completion

Matrix completion has been applied successfully for many tasks, including recommender
systems Koren et al. (2009), social network analysis Chiang et al. (2014) and clustering
Chen et al. (2014b). After Candès and Recht (2009) first proved a theoretical guarantee
for the retrieval of the exact matrix under the nuclear norm convex relaxation, a lot of
methods have focused on the nuclear norm problem (see Mazumder et al. (2010), Beck and
Teboulle (2009), Jain et al. (2010), and Tanner and Wei (2013) for examples). Alternative
methods include alternating projections by Recht and Ré (2013) and Grassmann manifold
optimization by Keshavan et al. (2009). There has also been work where the uniform distri-
butional assumptions required by the theoretical guarantees are violated, such as Negahban
and Wainwright (2012) and Chen et al. (2014a).

Despite the non-convexity of the problem, many gradient-descent based approaches have
also been proposed. Many works, including Koren et al. (2009), Jain and Netrapalli (2015),
Zheng and Lafferty (2016) and Jin et al. (2016), utilize the Burer-Monteiro factorization
(A = UV T , where U ∈ Rn×k and V ∈ Rm×k) and conduct various forms (projected,
stochastic, lifted, etc) of gradient descent on U and V . Numerical experiments suggest
that such algorithms can often converge to the global optimal solution despite their local
nature.

Recently, a line of work, including Chen and Wainwright (2015), Ge et al. (2016), and Ma
et al. (2019), investigated the reasons behind this uncanny efficiency of gradient descent on
matrix completion. Collectively, they showed that for the case where A is positive semi-
definite (PSD), gradient descent on the symmetric factorization A = UUT can converge
linearly to the global optimum under restricted isometry conditions.

This work has also been reproduced in the non-PSD case considered here (A = UV T ) if
special regularization terms are added (see for example Sun and Luo (2016)).

Our work differs from previous work in one significant way: After writing A = UV T ,
instead of performing gradient descent on both U and V , we derive U as a function of V ,
g(V ), and then directly perform gradient updates for V , with a projection to a fixed-norm
hypersphere ‖V ‖2 = 1 to ensure scaling invariance.
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Using this formulation, we are able to prove convergence guarantees without special regu-
larization terms on the objective. Numerical experiments show that we are able to retrieve
the matrix faster than the top performing methods discussed here.

Inductive Matrix Completion

Interest in inductive matrix completion intensified after Xu et al. (2013) showed that given
predictive side information, one only needs O(log n) samples to retrieve the full matrix.
Thus, most of this work (see Xu et al. (2013), Jain and Dhillon (2013), Farhat et al. (2013),
Natarajan and Dhillon (2014)) have focused on the case in which the side information
is assumed to be perfectly predictive so that the theoretical bound of O(log n) sample
complexity Xu et al. (2013) can be achieved. Chiang et al. (2015) explored the case in
which the side information is corrupted with noise, while Shah et al. (2017) and Si et al.
(2016) incorporated nonlinear combination of factors into the side information. As pointed
out by a recent article Nazarov et al. (2018), there is a considerable lack of effort to introduce
sparsity into inductive matrix completion, with Lu et al. (2016), Soni et al. (2016), Nazarov
et al. (2018) as examples. Bertsimas and Li (2018) introduced a convex binary formulation
of the sparse inductive matrix completion problem, and constructed randomized algorithms
for scaling.

Our work differs from the work in Lu et al. (2016), Soni et al. (2016), and Nazarov et al.
(2018) as it does not consider the heuristic convex relaxation of sparsity in the nuclear
norm, but rather the exact sparse problem. Bertsimas and Li (2018) consider the problem
where the low-rank factorization needs to be selected from features in the side information,
while we allow the factorization to be any linear combination of the features in the side
information. This greatly increases the flexibility of the algorithm, provides higher modeling
power, and leads to stronger matrix recovery.

Contributions and Structure

Our contributions in this paper are as follows:

1. We reformulate the low-rank matrix completion problem, both with side information
and without, as a separable optimization problem. We show that the general matrix
completion problem is in fact a special case of the matrix completion problem with
side information.

2. We propose a novel algorithm using projected gradient descent and Nesterov’s accel-
erated gradient to solve the reformulated matrix completion problem. We prove that
the algorithm is guaranteed to converge to the optimal solution under mild conditions.

3. We present computational results on both synthetic and real-world datasets that shows
the algorithm outperforms current state-of-the-art methods in scalability and accuracy
with and without side information. In particular, for the general matrix completion
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problem, we show the algorithm is about 15 times faster than the fastest algorithm
available, while achieving on average a 75% decrease in error of retrieval on synthetic
datasets.

The structure of the paper is as follows. In Section 2, we introduce the separable refor-
mulation of the low-rank matrix completion problem. In Section 3, we introduce the base
projected gradient descent method, projImpute. In Section 4, we introduce fastImpute, the
stochastic version of projImpute designed for use with side information. We report on its
computational complexity, derive theoretical results, and compare it with other algorithms.
in Section 5, we report results on both synthetic and real-world datasets with side infor-
mation using fastImpute and compare its performance with other algorithms. In Section 6,
we show how the calculations can be further simplified when there is no side information.
We report results on both synthetic and real-world datasets without side information using
fastImpute and compare its performance with other algorithms. In Section 7, we provide
our conclusions.

2. Reformulation of Matrix Completion

The classical matrix completion problem considers a matrix A ∈ Rn×m in which Ω =
{(i, j) | Aij is known} is the set of known values. We aim to recover a matrix X = UV T

of rank k that minimizes the distance between X and A on the known entries A:

min
X

1

nm

∑
(i,j)∈Ω

(Xij −Aij)2 subject to Rank(X) = k.

The problem we consider here is that for every column j = 1, . . . ,m, we have a given p-
dimensional feature vector Bj with p ≥ k that contains the information we have on column
j. In the Netflix example, column j corresponds to movie j, and thus the feature vector
Bj includes information about the jth movie: Budget, Box Office revenue, IMDB rating,
etc. We represent all this side information with a matrix B ∈ Rm×p. Given side data B we
postulate that X = USTBT , where U ∈ Rn×k is the matrix of feature exposures, and

S =


s11 s12 · · · s1k

s21 s22 · · · s2k
...

...
. . .

...

sp1 sp2 · · · spk

 ∈ Rp×k.

Then, the matrix completion problem with side data B can be written as:

min
S

min
U

1

nm

∑
(i,j)∈Ω

(Xij −Aij)2 subject to X = USTBT , ‖S‖2 = 1.

The norm constraint on S reduces the space of feasible solutions without loss of generality,
as the problem is invariant under the transformation U → UD−1 and ST →DST for any
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diagonal matrix D ∈ Rk×k that is invertible. Throughout the paper ‖ · ‖2 is the Frobenius
norm. We note that since S is a p×k matrix, the rank of matrix X is indeed k. Further,we
note that if p = m, and B = Im, then the problem is reduced back to the general low-rank
matrix completion problem with no feature information.

Similar to linear regression and for robustness purposes as shown in Bertsimas and Copen-
haver (2018), we address in this paper the problem with a Tikhonov regularization term.
Specifically, the matrix completion problem with side information and regularization we
address is

min
‖S‖2=1

min
U

1

nm

 ∑
(i,j)∈Ω

(Xij −Aij)2 +
1

γ
‖U‖22

 subject to X = USTBT , (1)

where γ > 0 is a given parameter that controls the strength of the regularization term. We
can reformulate Problem (1) as followed:

Proposition 1 Problem (1) can be reformulated as a separable optimization problem:

min
‖S‖2=1

c(S) =
1

nm

n∑
i=1

ai

(
Im − V

(
Ik
γ

+ V TWiV

)−1

V T

)
aTi , (2)

where V = BS, W1, · · · ,Wn ∈ Rm×m are diagonal matrices:

(Wi)jj =

{
1, (i, j) ∈ Ω,

0, (i, j) 6∈ Ω,

and ai = aiWi, i = 1 . . . , n, so that ai ∈ R1×m is the ith row of A with unknown entries
taken to be 0.

Proof With the diagonal projection matrices Wi defined above, we can rewrite the sum in
(1) over known entries of A,

∑
(i,j)∈Ω(Xij −Aij)2, as a sum over the rows of A:

n∑
i=1

‖(xi − ai)Wi‖22,

where xi is the ith row of X. Using X = USTBT , then xi = uiS
TBT where ui is the ith

row of U . Moreover,

‖U‖22 =

n∑
i=1

‖ui‖22.

Then, Problem (1) becomes:

min
‖S‖2=1

min
U

1

nm

(
n∑
i=1

(
‖(uiSTBT − ai)Wi‖22 +

1

γ
‖ui‖22

))
.
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We then notice that within the sum
∑n

i=1 each row of U can be optimized separately,
leading to:

min
‖S‖2=1

1

nm

(
n∑
i=1

min
ui

(
‖(uiSTBT − ai)Wi‖22 +

1

γ
‖ui‖22

))
. (3)

The inner optimization problem min
ui
‖(uiSTBT −ai)Wi‖22 +

1

γ
‖ui‖22 can be solved in closed

form given S, as it is a weighted linear regression problem with Tikhonov regularization.
The closed form solution is:

aiWi(Im + γWiBSS
TBTW T

i )−1Wia
T
i = ai(Im + γWiBSS

TBTWi)
−1aTi .

So Problem (3) can be simplified to:

min
‖S‖2=1

1

nm

(
n∑
i=1

ai(Im + γWiBSS
TBTW T

i )−1aTi

)
.

Then, let us define V = BS, and write:

1

nm

(
n∑
i=1

ai(Im + γWiBSS
TBTW T

i )−1aTi

)

=
1

nm

(
n∑
i=1

ai(Im + γWiV V
TW T

i )−1aTi

)

=
1

nm

n∑
i=1

ai

(
Im − V

(
Ik
γ

+ V TWiV

)−1

V T

)
aTi ,

which is the needed form in (2). The second equality comes from the matrix inversion
lemma, as derived in Woodbury (1950):

Lemma 1 For matrices U ∈ Rn×k and V ∈ Rk×n, we have the following equivalence:

(In +UV )−1 = In −U(Ik + V U)−1V .

3. A Gradient Descent Algorithm

In this section, we describe a gradient descent algorithm to solve the separable optimization
problem (2), and examine its properties. First, we introduce

αi(S) = aiγi(S) = ai

(
Im − V

(
Ik
γ

+ V TWiV

)−1

V T

)
aTi , i = 1, . . . , n. (4)

6



Fast Exact Matrix Completion

Here αi(S) is a scalar and γi(S) is a m × 1 vector. Then the function c(S) in (2) can be
expressed as

c(S) =
1

nm

n∑
i=1

αi(S) =
1

nm

n∑
i=1

aiγi(S).

Using this notation, we then can calculate the derivative of c(S):

Lemma 2

∇c(S) = −2γ

n

n∑
i=1

BTγi(S)γi(S)TV . (5)

Proof By the standard result of the derivative of the inverse matrix, we have:

∇αi(S) = ∇aiγi(S)

= −2γBTγi(S)ai(Im + γWiV V
TW T

i )−1BS

= −2γBTγi(S)γi(S)TV .

Then, since c(S) = 1
nm

∑n
i=1 αi(S), we have the required result.

Using Lemma 2, we apply a projected gradient descent algorithm (as discussed in Bertsekas
(1997)) on the hypersphere ‖S‖2 = 1 and obtain in Algorithm 1. (Note that 0p×k denotes
a zero matrix of dimension p× k).

We explain the reasoning behind some key steps of Algorithm 1.

Nesterov Step This is Step 7 of Algorithm 1. We update the gradient with the acceler-
ated formula in Nesterov (1983) by adding the gradient of the current step to t−1

t+2 times the
previous gradient, which introduces damping in the resulting gradient and enables faster
convergence.

Projection and Update Steps This is Step 8 and 9 of Algorithm 1. There are two
reasons why we are optimizing over the ‖S‖2 = 1: (a) as explained, rescaling S does not
change the objective, so the restriction can guarantee a smaller set of feasible solutions; (b)
such restriction enables us to effectively approximate the objective value, and its derivative
using random sampling, see Theorem 1.

Because we are optimizing on the hypersphere ‖S‖2 = 1, our gradient updates need to be
projected to the tangent plane of the sphere at the current point St. Thus, we project the
raw gradient, ˜∇St+1 onto the tangent plane to get ∇St+1. Then the update step ensures
the norm of the updated S is renormalized to 1.

Note that updating the gradient on the hypersphere is a rotation on the great circle formed

by St and ∇St+1, so the update formula is St cos θ + ∇St+1

‖∇St+1‖2
sin θ.
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Algorithm 1 Gradient Descent algorithm for matrix completion with side information.

1: procedure projImpute(A,B,k,θ,tmax) . A ∈ Rn×m the masked matrix, B ∈ Rp×m
the feature matrix, k the desired rank, θ the step size, and tmax the number of steps

2: S1 ← random initial matrix with ‖S1‖2 = 1 . Randomized Start
3: η0 ←∞ . Initialize objective value
4: η1,G1 ← c(S1),∇c(S1) . Initialize objective value and gradient
5: ∇S̃1 ← 0p×k . Initialize accelerated gradient
6: while t < tmax do . While we have not reached tmax iterations
7: ∇S̃t+1 = Gt + t−1

t+2∇S̃t . Nesterov accelerated gradient update step

8: ∇St+1 = −∇S̃t+1 + (∇S̃t+1 · St)St . Project gradient to tangent plane of St

9: St+1 ← St cos θ + ∇St+1

‖∇St+1‖2
sin θ . Update St by projected gradient

10: ηt+1,Gt+1 ← c(St+1),∇c(St+1) . Update the new cost and derivative.
11: t← t+ 1
12: end while
13: S∗ ← St
14: i← 1
15: for i < n do
16: ai ← aiBS

∗(BS∗WiBS
∗TBT )−1S∗TBT . Calculate the final A matrix

17: end for
18: return A . Return the filled matrix A
19: end procedure

3.1 Discussion on Computational Complexity

There are two key computational steps of the algorithm - Step 10, where the cost and the
derivative is calculated in every gradient update, and Step 16 where the final matrix is
calculated. We next derive the asymptotic complexity of such steps.

Proposition 2 The computation complexity of Step 10 in projImpute is

O

(
|Ω|
(
p+ k2 +

pk + k3

mα

))
,

where |Ω| is the number of samples given in the original matrix A and α = |Ω|
mn is the

percentage not missing. The computational complexity of Step 16 is

O

(
|Ω|
(
k2 +

k

α
+

k3

mα

))
.

Proof We analyze Steps 10 and 16 separately.
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Computational Complexity of Step 10

Recall we have that:

αi(S) = aiγi(S) = ai

(
Im − V

(
Ik
γ

+ V TWiV

)−1

V T

)
aTi , i = 1, . . . , n,

First let us denote mi as the number of non-zero entries of Wi. This is the number of
known entries per row. Then define VWi ∈ Rmi×k as the matrix of WiV after removing the
all-zero columns, as illustrated below:

WiV = Diag(1, 0, 1, · · · , 0)×


— v1 —

— v2 —

— v3 —
...

...
...

— vk —



=


— v1 —

— 0 —

— v3 —
...

...
...

— 0 —

 
— v1 —

— v3 —
...

...
...

 := VWi . (6)

Note that VWi can be created efficiently through subsetting, and its creation does not impact
the asymptotic running time. Then similarly, we denote aWi ∈ R1×mi as aWi with all the
zero elements removed. Then we have the following equality, using (4):

c(S) =
1

nm

n∑
i=1

aiγi(S)

=
1

nm

n∑
i=1

ai

(
Im − V

(
Ik
γ

+ V TWiV

)−1

V T

)
aTi

=
1

nm

n∑
i=1

aWi

(
Imi − VWi

(
Ik
γ

+ V T
Wi
VWi

)−1

V T
Wi

)
aTWi

(7)

=
1

nm

n∑
i=1

aWia
T
Wi
− aWiVWi

(
Ik
γ

+ V T
Wi
VWi

)−1

V T
Wi
aTWi

.

The equality (7) follows directly from the definition of VWi and aWi as all the removed
elements/columns are zero.

Then, the complexity of each term in the sum (7) is O(mik
2 + k3). Summing over n terms

and noting that:
n∑
i=1

nmi = |Ω|,
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we obtain that the full complexity of the objective function is thus

O(|Ω|k2 + nk3) = O

(
|Ω|
(
k2 +

1

mα
k3

))
.

Now let us further define:

γWi(S) =

(
Imi − VWi

(
Ik
γ

+ V T
Wi
VWi

)−1

V T
Wi

)
aTWi

, (8)

and BWi in the same fashion as defined in (6). Then we can similarly show that the
derivative (5) is equivalent to the following expression:

∇c(S) = −2γ

n

n∑
i=1

BTγi(S)γi(S)TV (9)

= −2γ

n

n∑
i=1

BT
Wi
γWi(S)γWi(S)TVWi . (10)

The matrix multiplication in the final expression (10) has computational complexity of
O(mi(p+ k) + pk) (every individual term has been previously calculated), so summing over
n terms the computational complexity is

O

(
|Ω|
(
p+ k +

pk

mα

))
.

Thus, the computational complexity of the entire step is:

O

(
|Ω|
(
p+ k2 +

pk + k3

mα

))
.

Computational Complexity of Step 16

Recall that Step 16 of projImpute does the following calculation for every i ∈ {1, · · · , n}:

ai ← aiBS
∗(BS∗WiBS

∗TBT )−1S∗TBT , (11)

where S∗ is the imputed S. Now define V ∗ = BS∗, and define V ∗Wi
in the same fashion as

defined in (6). Then we have that:

aiBS
∗(BS∗WiBS

∗TBT )−1S∗TBT = aiV
∗(V ∗TWiV

∗)−1V ∗T

= aWiV
∗(V ∗TWi

V ∗Wi
)−1V ∗TWi

. (12)

The final expression (12) has a matrix multiplication complexity of O(kmi+k
2mi+k

3+mk),
so summing over n samples the total computational complexity of Step 16 is:

O

(
|Ω|
(
k2 +

k

α
+

k3

mα

))
.

Using these results we can easily arrive at the following corollary:
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Corollary 1 The projImpute algorithm terminates in tmax number of steps. Furthermore,
it has complexity

O

(
|Ω|
(
p+ k2 +

pk + k3

mα

))
.

Proof The computational complexity follows immediately from Proposition 2.

Note that with p� k sufficiently large, the computational complexity of Step 10 dominates
that of Step 16. In particular, such step scales scales linearly in m, n, and p, which is
undesirable when all of these are large, as it is commonly in real-world settings. In the next
section, we design an algorithm that reduces the computational complexity on Step 10.

4. fastImpute: An Adaptive Stochastic Projected Gradient Descent
Algorithm for Matrix Completion

In the previous section, we introduced the projImpute algorithm, which conducted full
projected gradient updates for every step t ∈ {1, · · · , tmax} using all n rows and m columns.
However, it is computationally prohibitively expensive, especially when n,m, p is large.

In this section, we introduce fastImpute that uses random sampling of rows and columns
to estimate the gradient update at step t. Specifically, at each step, we randomly select n0

rows and for each row, we randomly select m0 columns to calculate the sampled derivative
for that row. Let [nt] denote the random set of numbers from {1, · · · , n} of size n0 at step
t, and [mi

t] denote a set of numbers from {1, · · · ,m} of size m0 at step t corresponding to
the random sample for row i. Then the objective function evaluated with rows [nt] and
columns [mi

t] is:

ct(S) =
1

n0m0

∑
i∈[nt]

aimit

(
Imit − Vmit

(
Ik
γ

+ V T
mit
Wimit

Vmit

)−1

V T
mit

)
aTimit

,

where Vmit is the submatrix of V formed with [mi
t] columns, and similarly with other terms.

We use the notation mi
t to explicitly indicate that the columns are selected for each row

i ∈ [nt] and independent across rows. Similarly, using Lemma 2, the derivative evaluated
with rows [nt] and columns [mi

t] is:

∇ct(S) =
1

n0m0

∑
i∈[nt]

−2γBT
mit

(
Imit − Vmit

(
Ik
γ

+ V T
mit
Wimit

Vmit

)−1

V T
mit

)
aTimit

× aimit

(
Imit − Vmit

(
Ik
γ

+ V T
mit
Wimit

Vmit

)−1

V T
mit

)T
Vmit .

We then present the algorithm as Algorithm 2. It is the same procedure as projImpute,
except with stochastic gradient updates of n0 rows and m0 columns. For this algorithm to
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Algorithm 2 Gradient Descent algorithm for matrix completion with side information.

1: procedure fastImpute(A,B,k,θ, tmax) . A ∈ Rn×m the masked
matrix, B ∈ Rp×m the feature matrix, k the desired rank, θ the step size, and tmax the
number of gradient steps

2: t← 1
3: α← |Ω|

mn . Define existing percentage of A. |Ω| is the set of non-zero entries in A
4: S1 ← random initial matrix with ‖S1‖2 = 1 . Randomized Start
5: η0 ←∞ . Initialize objective value
6: q1 ← 0 . Initialize counter for non-improving steps
7: m0 ← min(2p,m) . Define initial gradient update size for columns

8: n0 ←
⌊
k
√
nm log(

√
nm)

8m0α

⌋
. Define initial gradient update size for rows

9: [n0] ⊂ {1, · · · , n} . Initialize rows selected
10: for i ∈ [n0] do
11: [mi

0] ⊂ {1, · · · ,m} . Initialize columns selected
12: end for
13: η1,G1 ← ct(S1),∇ct(S1) . Initialize objective value and gradient
14: ∇S̃1 ← 0k×p . Initialize accelerated gradient
15: while t < tmax do . While we have not reached tmax iterations
16: [nt] ⊂ {1, · · · , n} . Select new rows
17: for i ∈ [nt] do
18: [mi

t] ⊂ {1, · · · ,m} . Select new columns
19: end for
20: ∇S̃t+1 = Gt + t−1

t+2∇S̃t . Nesterov accelerated gradient update step

21: ∇St+1 = −∇S̃t+1 + (∇S̃t+1 · St)St . Project gradient to the tangent plane of
St

22: St+1 ← St cos θ + ∇St+1

‖∇St+1‖2
sin θ . Update St based on projected gradient

23: ηt+1,Gt+1 ← ct(St+1),∇ct(St+1) . Update the cost and derivative.
24: t← t+ 1
25: end while
26: S∗ ← St
27: i← 1
28: for i < n do
29: ai ← aiBS

∗(BS∗WiBS
∗TBT )−1S∗TBT . Calculate the final A matrix

30: end for
31: return A . Return the filled matrix A
32: end procedure

work, we need the stochastic gradient to be “close” to the true gradient, which is true using
a theorem adapted from Bertsimas and Li (2018):

Theorem 1 Let A be a partially known matrix, B a known feature matrix, and Wi as
defined in Proposition 1. Then, with probability at least 1−ε, for any t, and any S satisfying

12



Fast Exact Matrix Completion

‖S‖ = 1, we have:

|ct(S)− c(S)| ≤

√
Ak log

(
k
ε

)
n0

,

‖∇ct(S)−∇c(S)‖2 ≤

√
Bk log

(
k
ε

)
n0

.

Inverting the statements, we have that:

P(|ct(S)− c(S)| > ε) ≤ ke−
n0ε

2

Ak ,

P(‖∇ct(S)−∇c(S)‖ > ε) ≤ ke−
n0ε

2

Bk .

Theorem 1 shows that the probability the stochastic objective value and its derivative is
ε away from the true value is exponentially vanishing with increasing n0. This property
affects how we choose n0 and m0, which is discussed in Section 4.2.

In the next section, we show that fastImpute recovers the true solution for matrix completion
under relatively mild conditions.

4.1 Convergence Rates and Guarantees

In this section, we derive results that show Algorithm 2 converges to the global minimum
of c(S). for the case 1/γ = 0 and without side information (p = m and B = Im). Under
such assumptions, our objective can be written as:

c(S) =
1

nm

n∑
i=1

ai

(
Im − S

(
STWiS

)−1
ST
)
aTi .

The analysis can be easily extended to the case where B is a general feature matrix, at the
expense of increased notational complexity. The analysis below also holds for 1

γ < ε0 for
some sufficiently small ε0 with minimal changes. To facilitate the theoretical analysis, we
would further assume that the final projected gradient is perturbed by some asymptotically
vanishing Gaussian noise (immediately before Step 22):

∇St+1 ← ∇St+1 +O

(
1

√
n0m

)
E

Where E ∈ Rk×p has iid entries with the standard normal distribution. As n0 and m is
large, this does not significantly change the resultant gradient, and numerical experiments
suggest that this has no appreciable impact on the final solution.

Over the last few years, various researchers have proven related results using different for-
mulations for matrix completion (see Ge et al. (2016); Ma et al. (2019) for the case where
the recovered matrix is semi-definite, and Zheng and Lafferty (2016) for the general case
using a lifting formulation). The proofs follow a two-step process:

13
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• Prove the proposed algorithm converges to a local minimum of the objective function.

• Prove all local minima of the objective function are global minima (equivalently, the
objective function has “no spurious local minima”). This condition has been shown
to be true for various formulations of nonconvex low rank problems, as explored in
e.g. Ge et al. (2017).

In our new formulation of matrix completion, we show how proving the first result is equiv-
alent to checking the “strict saddle” condition on the objective function introduced in Ge
et al. (2015). We then prove the objective function c(S) does indeed satisfy the strict saddle
condition, and moreover has no spurious local minima.

Before we layout our detailed results, we need to specify a random sampling model for
the known entries of A. Generally in the literature (see e.g. Candès and Tao (2010); Jin
et al. (2016); Ge et al. (2016) for examples), the uniform sampling model is used, where
every element is assumed to be present independently with a probability r0. To simplify
the proof, we specify a row-sampling model: For every row ai of A, we randomly sample
(without replacement) l out of m entries to be known. Thus, each entry has a probability of
r = l

m being selected. By results in Candès and Tao (2010) and Gross and Nesme (2010),
it is known that convergence results under row-sampling models with sampling rate r hold
true under the uniform sampling model with a rate r0 = O(log n)r, where the factor log n
is essentially due to the coupon collector effect (for more discussion please see Candès and
Tao (2010)).

We next show that proving Algorithm 2 converges to a local minimum is equivalent to
verifying c(S) satisfies the “strict saddle” condition. We first formally define such concept,
as introduced in Ge et al. (2015):

Definition 1 A function f : Rd → R is (θ, ζ, η)-strict saddle if for every x, at least one of
the following hold for constants θ, ζ, η > 0:

1. ‖∇f(x)‖ ≥ θ.

2. λmin(∇2f(x)) ≤ −ζ.

3. There exists a local minimum x∗ such that ‖x− x∗‖ ≤ η.

Using this definition, the following theorem from Fang et al. (2019) (see also Daneshmand
et al. (2018); Ge et al. (2015)) establishes that a stochastic gradient algorithm converges to
a local minimum if the function f being optimized over satisfies the strict saddle condition:

Theorem 2 Assume that f(x) is a function of x ∈ Rd that is a (θ, ζ, η)-strict saddle.
Then, a stochastic gradient descent algorithm with stochastic gradient ∇̃f(x) and added
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Gaussian noise σ√
d
ε where ε ∼ N(0, Id) converges in O

(
poly

(
1
δ

))
iterations to a point δ

close to a local minimum, where we have:

P(‖∇̃f(x)−∇f(x)‖ > ε) ≤ e−
ε2

2σ2 .

In the current problem, Theorem 1 shows that a valid bound on the standard deviation

is
√

Bk log(k)
n0

. Therefore, as d = mk, a stochastic gradient descent algorithm with noise

of O( 1√
n0m

) would converge to a local minimum of c(S). However, Algorithm 2 is a pro-

jected stochastic gradient descent algorithm (with such added perturbation), so we cannot
immediately apply Theorem 2. Thus, we next connect Algorithm 2 with the standard
stochastic gradient algorithm. Note that for the case 1/γ = 0, the stochastic gradient is
always orthogonal to S:

Lemma 3 Let 1/γ = 0. Then for all S and any random sample [nt], [mt] of rows and
columns, we have

ST∇ct(S) = 0.

The statement follows immediately from Lemma 4 in Appendix A. Therefore, the projection
step (Step 21 in Algorithm 2) is trivial and reduces to:

∇St+1 = −∇S̃t+1

In other words, the projected gradient is exactly the original gradient, and the projec-
tion step does not change the derivative. Thus, Algorithm 2 under 1/γ = 0 reduces to a
stochastic gradient algorithm.

Thus, if we can establish that c(S) is a (θ, ζ, η)-strict saddle, we can indeed use Theorem 2
to prove that Algorithm 2 converges to a local minimum. Therefore, to establish the global
convergence of Algorithm 2, we now equivalently need to establish the following two results:

1. The function c(S) is a (θ, ζ, η)-strict saddle.

2. All local minima of c(S) are global minima.

These properties and Theorem 2 will then establish that Algorithm 2 converges to a point
δ-close to the global minimum in O

(
poly

(
1
δ

))
iterations. We prove these two results simul-

taneously. To do so, we introduce a few regularity conditions that are necessary for these
statements to be true. First, the matrix A we want to recover cannot be the following:

A =


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 . (13)
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This is because to recover such matrix truthfully, we need to have to know A11 as knowing
any other element would give us no information about the 1 in the top left corner. To know
A11 we would require basically all entries to be known under a random sampling model,
which is undesirable; see Candès and Recht (2009) for further discussion. To prevent this
from happening, we introduce the following concept:

Definition 2 We define a matrix S ∈ Rm×k, for m > k, to be (α, p)-submatrix full rank if
every p× k submatrix of S is full column rank and the minimum singular value is at least
α.

We introduce the following assumption:

Assumption 1 The desired matrix to be recovered, A, is of rank k and admits a decompo-
sition A = U∗S∗T where U∗ ∈ Rn×k,S∗ ∈ Rm×k, ‖S∗‖ = 1, and U∗, S∗ is (α, l)-submatrix
full rank, where l/m is the sampling rate and α > 0.

Qualitatively, this assumption requires the decomposition of A to be “spread out” enough
so that no particular row and column is special. In particular, it excludes the pathological
matrices like the one presented in Eq. (13), as A = (1, 0, · · · , 0)(1, 0, · · · , 0)T = U∗S∗T , and
most of the submatrices of U∗ = S∗ = (1, 0, · · · , 0) have rank 0, save for those that includes
the first element. This is because the first element is special in the decomposition of such
A, and if the first element is missing, no information for A can be deduced. Assumption 1
excludes these matrices so that no element is special enough such that if it is missing, we
fail to recover A.

We now introduce a second technical assumption. If WiS has rank < k, then the inverse
(STWiS)−1 in the objective function c(S) would not be well-defined, so the objective
function is not defined. Therefore, the second assumption is that we restrict our domain to
the set of S where the objective function is defined:

Assumption 2 The set S is restricted to matrices that are (α, l)-submatrix full rank, where
l/m is the sampling rate and α > 0.

In real-world situations this assumption is almost never violated as numerical matrices
almost never have perfectly singular submatrices. If it is, any small random perturbation
around S would almost surely make the condition true.

Now, with these regularity conditions, we establish that for r sufficiently large, the two
results we aim to prove are true:

Theorem 3 Assume A follows the row-sampling model, and each element is known with
probability r = l

m > Ck
m for sufficiently large C. Further assume Assumptions 1-2 hold.

Then, with probability 1 − O( 1
n), for 1/γ = 0 and B = Im, c(S) is (ε, O( εk ), O(

√
ε))-strict

saddle for sufficiently small ε. Furthermore, all local minima of c(S) are global minima.
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The proof is contained in Appendix A. Then combining Theorem 3 with Theorem 2, we
have the desired global convergence result:

Corollary 2 Consider the minimization problem defined in (2) under 1/γ = 0 and B = Im.
Assume that Assumptions 1-2 hold. Then, under the row-sampling model, for r > Ck

m with
C sufficiently large, Algorithm 2 (with added perturbation) outputs a point that is δ-close to
a global minimum in poly(1

δ ) iterations with probability 1−O( 1
n).

As explained above, we can transfer results in the row-sampling model to the commonly
utilized uniform sampling (Bernoulli) model:

Corollary 3 Consider the minimization problem defined in (2) under 1/γ = 0 and B =
Im. Assume that Assumptions 1-2 hold. Then, under the uniform sampling model, for a
sampling rate r0 >

Cnk log(n)
mn with C sufficiently large, Algorithm 2 (with added perturbation)

outputs a point that is δ-close to a global minimum in poly(1
δ ) iterations with probability

1−O( 1
n).

The conclusion is consistent with other algorithms which require O(nkα log(n)) samples
under the uniform sampling model.

4.1.1 Necessity of Regularization

The previous results deal with the case when there is no regularization (1/γ = 0) though
it can be readily extended to any sufficiently small regularization term. Therefore, it is
natural to question the purpose of the `2 regularization term in the formulation. The
answer is two-fold:

1. The proof above is for the case when the matrix A is perfectly low rank. However, in
real-world cases, the data might be corrupted in unseen ways, and it is shown in Bert-
simas and Copenhaver (2018) that `2 regularization provides robustness properties
that could guard against such corruption.

2. There are cases in the real-world in which the the number of known entries in a row
Ai of the partially-known matrix is less than the desired rank k, and in such cases
the regularization becomes necessary to recover the true solution, as Rank(Wi) < k,
so SWiS

T is not invertible. Adding a regularization term guards against such cases.

4.2 Computational Complexity of fastImpute

Here we first discuss how m0 and n0 is chosen. By Theorem 1 on the approximation of the
stochastic gradient and objective, the error in such approximation drops exponentially with
increasing n0. Therefore, we want to ensure n0 is never too small.
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Now, by our convergence result in Theorem 3, we need O(nk log n) samples to recover the
true solution under the uniform sampling model, when n is sufficiently large. Since α is the
empirical probability that any element is known, we need to have:

m0n0α = O(nk log n).

The complexity required to discern the p factors we can choose from is O(p), thus, our
selection of n0 and m0 is:

m0 = O(p), n0 = max

{
O

(
nk log(n)

m0α

)
, n

}
.

where n is some lower bound on n0 to ensure that Theorem 3 can be applied. We now
show that such m0 and n0 reduces the computational complexity of the gradient update
step asymptotically:

Corollary 4 The computational complexity of Step 10 in Algorithm 2 is

O

(
(pk + k3)n log(n)

α

)
.

Proof For the gradient update step, we replace m with O(p) and n with O
(
kn log(n)

pα

)
in

the original formula for Step 10 in projImpute to get that its computational complexity is:

O

(
kn log(n)

α

(
p+ k2 +

k

α
+
k3 + pk

pα

))
= O

(
(pk + k3)n log(n)

α

)
.

Where we have suppressed the last two terms as they are dominated by the first two.

We note that the dependence of m is completely removed (for sufficiently large n) when
compared with Algorithm 1. This, however, does not reduce the asymptotic complexity with
regards to m for the full algorithm as eventually the step to fill the matrix A dominates,
and that scales linearly with m. Our dependence on k is cubic, but k is usually small in
real-world applications, so it is not a large concern.

In the next section, we discuss experiments for fastImpute.

5. Experiments on fastImpute with Side Information

In this section, we compare fastImpute with other inductive matrix completion algorithms
on both synthetic datasets and real-world datasets to explore its performance and scaling
behavior.
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5.1 Synthetic Data Experiments

For synthetic data experiments, we assume that the underlying matrix satisfies the form
A = USTBT , where U ∈ Rn×k, S ∈ Rp×k, and B ∈ Rm×p. The elements of U , S, and B
are selected from a uniform distribution of [0, 1], where a fraction µ is missing. We report
statistics on various combinations of (m,n, p, k, µ).

All algorithms are tested on a server with 16 CPU cores. For each combination (m,n, p, k, µ),
we ran 10 tests and report the average value for every statistic. The algorithms tested are:

• fastImpute: We use the sampling parameters:

m0 = min(2p,m), n0 = max

{
nk log(n)

8m0α
, 100

}
.

with tmax = 50, and θ = π
64 , and regularization parameter γ = 106. We explicitly

stress here that no parameter tuning is done on fastImpute as we intend to show that
the algorithm is not parameter sensitive. We implement our algorithm in Julia 0.6
with only the base packages.

• IMC: This algorithm is a well-accepted benchmark for testing Inductive Matrix Com-
pletion algorithms developed by Natarajan and Dhillon (2014). For each combination
of (m,n, p, k, µ), we tune the regularization parameter λ by imputing random matri-
ces with such combination and find the λ that gives the best results. We utilize the
implementation provided by the authors in Matlab.

To further understand the benefits of the stochastic algorithm, we also compare against
projImpute, the full gradient descent algorithm. We report the following statistics for each
algorithm:

• n,m - the dimensions of A.

• p - the number of features in the feature matrix.

• k - the true number of features.

• µ - The fraction of missing entries in A.

• T - the total time of algorithm execution.

• MAPE - the Mean Absolute Percentage Error (MAPE) for the retrieved matrix Â:

MAPE =
1

nm

n∑
i=1

m∑
j=1

|Âij −Aij |
|Aij |

.

We have the following observations:
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n m p k µ%
projImpute fastImpute IMC

T MAPE T MAPE T MAPE

n

103 103 100 5 95% 5.1s 0.2% 3.1s 0.4% 4.4s 2.9%

104 103 100 5 95% 56.7s 0.1% 12.0s 0.1% 18s 2.5%

105 103 100 5 95% 580s 0.2% 54.8s 0.2% 173s 1.0%

106 103 100 5 95% 6035s 0.2% 390s 0.2% 1400s 0.3%

m

104 103 100 5 95% 56.7s 0.1% 12.0s 0.1% 18s 2.5%

104 104 100 5 95% 605s 0.2% 39s 0.4% 144s 0.8%

104 105 100 5 95% 5874s 0.1% 360s 0.2% 1265s 0.4%

104 106 100 5 95% N/A 0.1% 3056s 0.1% 13891s 0.2%

p

104 103 100 5 95% 56.7s 0.1% 12.0s 0.1% 18s 2.5%

104 103 200 5 95% 104s 0.05% 23s 0.1% 30s 2.7%

104 103 500 5 95% 230s 0.06% 40s 0.05% 87s 2.1%

104 103 1000 5 95% 417s 0.02% 85s 0.01% 160s 1.9%

k

104 103 100 5 95% 56.7s 0.1% 12.0s 0.1% 18s 2.5%

104 103 100 10 95% 194s 0.1% 37.6s 0.2% 32s 2.1%

104 103 100 20 95% 460s 0.2% 90s 0.4% 47s 2.2%

104 103 100 30 95% 1055s 0.3% 290s 0.5% 55s 2.6%

µ

104 103 100 5 20% 107.4s 0.5% 25.1s 0.7% 6.2s 0.01%

104 103 100 5 50% 92.6s 0.2% 19.2s 0.4% 8.9s 0.03%

104 103 100 5 80% 70.4s 0.1% 15.7s 0.1% 14s 0.7%

104 103 100 5 95% 56.7s 0.1% 12.0s 0.1% 18s 2.5%

104 103 100 5 95% 56.7s 0.1% 12.0s 0.1% 18s 2.5%

105 103 100 10 95% 1095s 0.1% 84s 0.1% 203s 0.8%

105 104 200 10 95% 14506s 0.1% 560s 0.2% 2430s 0.4%

105 105 200 10 95% N/A N/A 3170s 0.2% 25707s 0.2%

106 104 500 20 95% N/A N/A 6516s 0.2% N/A N/A

Table 1: Comparison of fastImpute and IMC on synthetic data. N/A means the algorithm
did not complete running in 20 hours, corresponding to 72000 seconds.

• fastImpute significantly improves the scaling behavior of projImpute in n and m, and
reduces the running time by over 10 times on real-world datasets.

• For small n,m, fastImpute scales roughly linearly in n and is not sensitive towards m.
Eventually it scales as O(nm) when the matrix filling step dominates, as predicted.
IMC scales similarly with slightly worse accuracy.

• Both algorithms roughly exhibit linear scaling in p, but IMC retrieves a matrix that
has much higher MAPE than fastImpute.
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• fastImpute roughly shows the O(k3) dominant behavior as expected, while IMC seems
to scale linearly in k.

• IMC’s running time increases with more missing data while it decreases for fastIm-
pute. Both algorithms achieve roughly the same performance, with IMC dropping
significantly as the number of missing entries increased.

5.2 Real-World Experiments

For real-world experiments, we utilize the Netflix Prize Dataset. This dataset was released
in a competition to predict ratings of customers on unseen movies, given over 10 million
ratings scattered across 500, 000 people and 16, 000 movies. Thus, when presented in a
matrix A where Aij represents the rating of individual i on movie j, the goal is to complete
the matrix A under a low-rank assumption.

For this experiment, we included movies where people who had at least 5 ratings present.
This gives a matrix of 471, 268 people and 14, 538 movies. To observe the scalability of
fastImpute, we created five data sets (in similar format to Bertsimas and Li (2018)):

1. Base - A1 has dimensions 3, 923× 103.

2. Small - A2 has dimensions 18, 227× 323.

3. Medium - A3 has dimensions 96, 601× 788.

4. Large - A4 has dimensions 471, 268× 1760.

5. Full - A has dimensions 471, 268× 14, 538.

These sizes are constructed such that the total number of elements in A in the successive
sizes are approximately different by approximately an order of magnitude.

The feature matrix B is constructed using data from the TMDB Database, and covers 59
features that measure geography, popularity, top actors/actresses, box office, runtime, genre
and more. The full list of 59 features is contained in Appendix C.

For comparison, we test against IMC. We split the training set in 80%/20%, where the
latter group is used for validation of the rank in IMC and fastImpute. We then report the
time taken, T , the MAPE, and the optimal chosen rank k∗ for each algorithm: We see that
fastImpute is able to outperform IMC on the Netflix dataset across the different n and m
values, while enjoying competitive scalability.
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n m p µ%
fastImpute IMC

T k∗ MAPE T k∗ MAPE

3,923 103 59 92.6% 1.7s 5 32.9% 0.8s 5 34.1%

18,227 323 59 94.8% 11 6 28.0% 7.5s 6 29.0%

96,601 788 59 94.2% 75s 7 25.7% 49s 8 28.5%

471,268 1,760 59 93.6% 460s 8 22.9% 870s 10 24.1%

471,268 14,538 59 94.1% 2934s 8 20.7% 7605s 10 21.0%

Table 2: Comparison of methods on Netflix data for fastImpute.

6. fastImpute without Side Information

In this section, we explore fastImpute in the special case where there is no side information
(p = m, and B = Im). In such case, the objective function becomes

c(S) =
1

nm

n∑
i=1

ai

(
Im − S

(
STWiS

)−1
ST
)
aTi .

This special cases give rises to two additional optimizations:

• Define d = min{m,n}. Since the problem is now symmetric in n and m, instead
of requiring O(nk log(n)) samples, we only require O(dk log(d)) as we can similarly
perform the matrix completion on AT .

• The multiplications involving B are no longer needed as B is the identity matrix and
thus does not contribute.

With these two observations, we can update our corollary about the computational com-
plexity of the gradient update step:

Corollary 5 For m = p, and B = Im, the computational complexity of Step 10 in Algo-
rithm 2 is

O

(
k3d log(d)

α

)
.

Using this further optimization, we compare fastImpute with multiple general matrix com-
pletion algorithms on both synthetic datasets and real-world datasets to explore its perfor-
mance and scaling behavior.

6.1 Synthetic Data Experiments

For synthetic data experiments, we assume that the underlying matrix satisfies the form
A = UST , where U ∈ Rn×k, S ∈ Rm×k. Then the elements of U and S are selected from a
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uniform distribution of [0, 1], where a fraction µ is missing. We report statistics on various
combinations of (m,n, k, µ).

The algorithms tested are:

• fastImpute: We use the sampling parameters:

m0 = m, n0 = max

{
nk log(n)

4m0α
, 100

}
.

with tmax = 50, and θ = π
64 , and regularization parameter γ = 106. We explicitly

stress here that no parameter tuning is done on fastImpute as we intend to show that
the algorithm is not parameter sensitive. We implement our algorithm in Julia 0.6
with only the base packages.

• softImpute-ALS (SIALS): Developed by Hastie et al. (2015), this is widely recog-
nized as a state-of-the-art matrix completion method without feature information. It
has among the best scaling behavior across all classes of matrix completion algorithms
as it utilizes fast alternating least squares to achieve scalability. For each combination
of (m,n, µ, k), we tune the regularization parameter λ by imputing random matri-
ces with such combination and find the λ that gives the best results. We utilize the
implementation in the softImpute package in R for testing.

• softImpute-SVD (SISVD): Developed by Mazumder et al. (2010), this is the orig-
inal softImpute algorithm that utilizes truncated SVDs and spectral regularization to
impute the matrix. This method is used as a fast benchmark for SVD-type meth-
ods. For each combination of (m,n, µ, k), we tune the regularization parameter λ by
imputing random matrices with such combination and find the λ that gives the best
results. We utilize the implementation in the softImpute package in R for testing.

• Matrix Factorization Stochastic Gradient Descent (MFSGD): This is a pop-
ular stochastic gradient descent algorithm (discussed in Jin et al. (2016)) which sepa-
rates A = UV , where U ∈ Rn×k and V ∈ Rk×m), and perform gradient updates for
U and V . We utilize the implementation in the Fancyimpute package of python that
utilizes Tensorflow and the latest available speed optimizations for such algorithm.

To further illustrate the favorable scaling behavior of fastImpute, we compare fastImpute
against online matrix completion algorithms. Online matrix completion algorithms com-
plete the matrix by updating the factorization U and V with sequential data input from
A over time. By their sequential nature, they are usually much faster than offline matrix
completion algorithms which consider all the data jointly. The specific online algorithm we
compare to is:

• GROUSE: This is a popular and efficient online matrix completion algorithm based
on sequential gradient updates on the Grassmann manifold, as set out in Balzano et al..
We utilize the official implementation in MATLAB along with the latest optimizations
in MATLAB R2020a.
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We note that online matrix completion is usually used in different settings than offline
algorithms and such comparison is only to note the favorable scaling behavior of fastImpute.

All of the algorithms are executed on a server with 16 CPU cores. Each combination
(m,n, k, µ) was ran 10 times, and we report the average value of every statistic. The
statistics reported are as followed:

• n,m - the dimensions of A.

• k - the true number of features.

• µ - The fraction of missing entries in A.

• T - the total time of algorithm execution.

• MAPE - the Mean Absolute Percentage Error (MAPE) for the retrieved matrix Â:

MAPE =
1

nm

n∑
i=1

m∑
j=1

|Âij −Aij |
|Aij |

.

The results are separated into sections in Table 3. The first four sections investigate fastIm-
pute’s scalability with respect to each of the 4 parameters m,n, µ, k, with the parameter
under investigation denoted in the leftmost column.The final section of the results compares
the different algorithms’ performance on large realistic combinations of (m,n, p, k).

We see that on the final set of large realistic combinations, fastImpute outperforms all
comparison algorithms in all cases. Table 4 records the average difference in time and
MAPE between fastImpute and the other algorithms, on the final set of combinations.
On average fastImpute takes 10% of the time of comparison while achieving ∼ 40 − 70%
reduction in MAPE at the same time.

Even when compared to the online algorithm GROUSE, fastImpute is on average over 80%
faster on the final set of combinations.

For scaling behavior, we have the following observations:

• n,m - We see that fastImpute scales sublinearly for low n,m as the gradient descent
step dominates, and as we move to n ∼ 106 it starts to scale as O(nm) as the step of
completing the final matrix starts to dominate. The MAPE steadily decreases as we
have more entries. In contrast, SIALS, SISVD, and MFSGD all roughly scale linearly
with n,m from the start. Interestingly, the MFSGD algorithm has increasing error
with increasing number of entries - we hypothesize this may be due to the gradient
descent in factorized form A = UV T failing to capture non-linear dynamics of the
interactions between U and V at high levels.

• k - Somewhat surprisingly, fastImpute scales as O(k) even though theoretically it
scales at O(k3). We believe this is due to the small constant factor in front of the k2

and k3 terms.
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n m k µ%
fastImpute SIALS SISVD MFSGD GROUSE

T MAPE T MAPE T MAPE T MAPE T MAPE

n

103 103 5 95% 0.9s 3.5% 2.3s 19.9% 213s 21.3% 9.4s 2.1% 1.2s 5.0%

104 103 5 95% 4.2s 2.4% 25.5s 12.7% 1780s 17.5% 72.1s 2.8% 9.6s 2.6%

105 103 5 95% 18.9s 2.2% 443s 8.1% 23650s 12.1% 709s 6.1% 153s 3.1%

106 103 5 95% 104s 2.1% 6270s 6.7% N/A N/A 7605s 7.0% 1480s 2.7%

m

104 103 5 95% 4.2s 2.4% 25.5s 12.7% 1780s 17.5% 72.1s 2.8% 9.6s 2.6%

104 104 5 95% 19s 4.0% 227s 6.2% 15070s 8.9% 840s 5.4% 75s 5.1%

104 105 5 95% 140s 3.1% 3170s 9.1% N/A N/A 8010s 7.5% 748s 3.6%

104 106 5 95% 1052s 3.5% 30542s 8.0% N/A N/A N/A N/A 6309s 3.1%

k

104 103 5 95% 4.2s 2.4% 25.5s 12.7% 1780s 17.5% 72.1s 2.8% 9.6s 2.6%

104 103 10 95% 14.1s 2.8% 41.0s 9.8% 3120s 11.7% 80.7s 2.6% 17.6s 2.5%

104 103 20 95% 29.8s 3.7% 80.4s 8.2% 3609s 14.6% 83.7s 5.9% 80.2s 1.9%

104 103 30 95% 49.5s 5.0% 122s 9.3% 3670s 20.9% 82.1s 4.9% 196s 1.1%

µ

104 103 5 20% 8.4s 1.1% 3.6s 0.6% 204s 0.6% 140s 4.9% 21s 1.9%

104 103 5 50% 7.5s 1.6% 6.7s 1.0% 370s 1.1% 109s 1.2% 15.8s 2.1%

104 103 5 80% 5.7s 2.4% 13.1s 4.0% 1340s 2.7% 85s 1.9% 12.5s 2.4%

104 103 5 95% 4.2s 2.6% 25.5s 12.7% 1780s 17.5% 72.1s 2.8% 9.6s 2.6%

104 103 5 95% 4.2s 2.5% 25.5s 12.7% 1780s 17.5% 72.1s 2.8% 9.6s 2.6%

105 103 10 95% 29.0s 2.5% 403s 10.7% 25049s 14.6% 708s 6.0% 270s 2.9%

105 104 10 95% 317s 2.1% 4470s 8.9% N/A N/A 8215s 7.3% 2076s 2.4%

105 105 10 95% 3260s 2.0% 52690s 4.1% N/A N/A N/A N/A 27043s 2.2%

106 104 20 95% 5070s 1.9% N/A N/A N/A N/A N/A N/A 48740s 2.9%

Table 3: Comparison of fastImpute, SIALS, SISVD, MFSGD, and GROUSE on synthetic
data. N/A means the algorithm did not complete running in 20 hours, correspond-
ing to 72000 seconds.

SIALS SISVD MFSGD GROUSE

∆T ∆MAPE ∆T ∆MAPE ∆T ∆MAPE ∆T ∆MAPE

fastImpute vs. −90% −71% −99% −95% −96% −45% −81% −15%

Table 4: Average performance of fastImpute, SIALS, SISVD, MFSGD and GROUSE on
synthetic trials. Percentages are computed by averaging over the set of realistic
combinations.

• µ - We see that in accordance to the linear dependence on |Ω|, the number of known
entries, fastImpute runs slower as we have more filled elements, while in contrast
SIALS and SISVD both run faster. MFSGD is similar to fastImpute in that it runs
slower with more filled elements (a construct of the gradient descent method).

6.2 Real-World Experiments

For real-world experiments, we again utilize the Netflix datasets created in Section 5.2
without the feature matrix.
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n m µ%
fastImpute SIALS

T k∗ MAPE T k∗ MAPE

3,923 103 92.6% 2s 5 23.5% 4s 5 30.6%

18,227 323 94.8% 18s 8 19.8% 47s 7 27.5%

96,601 788 94.2% 109s 10 18.2% 620s 10 24.0%

471,268 1,760 93.6% 370s 10 16.5% 2837s 12 22.5%

471,268 14,538 94.1% 2098s 12 13.8% 38256s 14 20.1%

Table 5: Comparison of methods on Netflix data for fastImpute

We test against SIALS as it is the only algorithm capable of scaling to such size. We split
the training set in 80%/20%, where the latter group is used for validation of the rank in
SIALS and fastImpute. We then report the time taken, T , the MAPE, and the optimal
chosen rank k∗ for each algorithm: We see that fastImpute is able to outperform SIALS on
the Netflix dataset across the different n and m values, while enjoying superior scalability
especially as we approach the full matrix.

7. Conclusion

In conclusion, we have designed a unified optimization framework that is able to conduct
state-of-the-art matrix completion with and without side information. Using the factoriza-
tion approach A = USTBT , we wrote U = f(S) as a function of S, and derived the cost
and gradient expressions with respect to S through a separable reformulation of the prob-
lem. By then conducting non-convex gradient descent on S, our synthetic and real-world
data experiments show the competitiveness of the method in both scalability and accuracy
against a multitude of comparison algorithms.
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Appendix A. Proof of Theorem 3

For the case where we have no side information, our objective function is:

c(S) =
1

nm

n∑
i=1

ai

(
Im − S

(
STWiS

)−1
ST
)
aTi .

We first outline the roadmap to prove the two results required. As a reminder, a function
f : Rd → R is (θ, ζ, η)-strict saddle if for every x, at least one of the following hold for
constants θ, ζ, η > 0:

1. ‖∇f(x)‖ ≥ θ.

2. λmin(∇2f(x)) ≤ −ζ.

3. x is η-close to a local minimum.

We want to prove that our objective function c(S) is a (θ, ζ, η)-strict saddle. Furthermore,
we want to prove that there are no spurious local minima.

To do so, we claim that proving the following statement would imply both results.

“For all S such that ‖∇c(S)‖ ≤ ε and S more than η-away from a global minimum, we
have that λmin(∇2f(x)) ≤ −ζ for some suitable ζ.”

By construction, this statement shows that for c(S), if Condition 1 and 3 of the strict saddle
definition is not true, then 2 is always true, which implies c(S) is (θ, ζ, η)-strict saddle.

Furthermore, this statement implies that every stationary point (which satisfies ‖∇c(S)‖ ≤
ε) that is not a global minimum has a negative eigenvalue in its Hessian. Thus, every
stationary point that is not a global minimum is a saddle point, since local minima have no
negative eigenvalues in the Hessian. Therefore, there are no spurious local minima - every
local minimum is a global minimum.

Thus, proving this statement would give us the two required results we need. Therefore, we
now set out to prove the statement above.

To ease the notation burden, we define the following :

Si = WiS,

PS = Im − S(STS)−1ST ,

PSi = Wi − Si(STi Si)−1STi .

Note that the projection matrices are setup so that PSiSi = 0 and PSS = 0. Furthermore,
let us denote U∗ ∈ Rn×k,S∗ ∈ Rm×k as the true solution to the matrix completion problem
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(i.e., A = U∗S∗T ). Then we can write

c(S) =
1

nm

n∑
i=1

aiPSia
T
i . (A1)

We calculate its gradient as follows.

Lemma 4

∇c(S) =
1

nm

n∑
i=1

PSia
T
i aiSi(S

T
i Si)

−1.

Proof This follows from direct calculation of the derivative. In particular, we note that
STPSi = 0 for all i by definition, and thus every term of the derivative in the sum is
orthogonal to S.

To calculate the Hessian, note that we expressed S as a m× k matrix, so the Hessian has
dimensions (m × k) × (m × k). Therefore, to calculate the second derivative in a specific
direction M , we use the following notation to represent the quadratic form:

M : ∇2c(S) : M =
∑
i,j,k,l

Mij∇2c(S)ijklMkl.

Where ∇2c(S)ijkl = ∂2c(S)
∂Sij∂Skl

.

Lemma 5 For any matrix M ∈ Rm×k, the Hessian in the direction of M is

M : ∇2c(S) : M =
2

nm

n∑
i=1

(
aiSi(S

T
i Si)

−1MTPSiM(STi Si)
−1aTi

+ 2aiSi(S
T
i Si)

−1MTSi(S
T
i Si)

−1MTPSia
T
i

− aiM(STi Si)
−1MTPSia

T
i

+ aiSi(S
T
i Si)

−1STi M(STi Si)
−1MTPSia

T
i

)
.

Proof The result follows through by direct calculation.

As a reminder, our goal is to prove that, given ‖∇c(S)‖ ≤ ε and ‖S − S∗‖ ≥ η for any
global minima S∗, there exists a negative eigenvalue for the Hessian ∇2c(S).

Note the existence of a negative eigenvalue for the Hessian ∇2c(S) is equivalent to existence
of a matrix M such that M : ∇2c(S) : M < 0. Now let us look at the expression for the
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second derivative.

M : ∇2c(S) : M =
2

nm

n∑
i=1

(
aiSi(S

T
i Si)

−1MTPSiM(STi Si)
−1STi a

T
i︸ ︷︷ ︸

(T1)

+ 2aiSi(S
T
i Si)

−1MTSi(S
T
i Si)

−1MTPSia
T
i︸ ︷︷ ︸

(T2)

− aiM(STi Si)
−1MTPSia

T
i︸ ︷︷ ︸

(T3)

+ aiSi(S
T
i Si)

−1STi M(STi Si)
−1MTPSia

T
i︸ ︷︷ ︸

(T4)

)
.

We first prove that for any M , the terms (T2) and (T4) are small. Then, we exhibit a
specific M , such that (T1) is close to 0, (T3) is large and positive, and so that the resulting
quadratic form M : ∇2c(S) : M is negative.

Now let us prove that terms (T2) and (T4) are small (on the order of O(ε)) for any M .

Lemma 6 Let S satisfy Assumptions 1-2, and be such that ‖∇c(S)‖ ≤ ε. Then we have
that, for r > Ck

m for sufficiently large C, with probability at least 1−O( 1
n):∥∥∥∥∥ 1

nm

n∑
i=1

aiSi(S
T
i Si)

−1MTSi(S
T
i Si)

−1MTPSia
T
i

∥∥∥∥∥ ≤ Krε‖M‖2,∥∥∥∥∥ 1

nm

n∑
i=1

aiSi(S
T
i Si)

−1STi M(STi Si)
−1MTPSia

T
i

∥∥∥∥∥ ≤ Lrε‖M‖2,
for some absolute constants K,L.

Proof Note that we are trying to bound the second derivative when the first derivative is
approximately 0. Using Lemma 4, we can rewrite ‖∇c(S)‖ ≤ ε as∥∥∥∥∥ 1

nm

n∑
i=1

aiSi(S
T
i Si)

−1MTPSia
T
i

∥∥∥∥∥ ≤ ε‖M‖. (A2)

We only prove for term (T2) as the proof for term (T4) follows the same steps. First, we
bound the difference between the first derivative in (A2) and its “non-stochastic” version:∥∥∥∥∥ 1

nm

n∑
i=1

aiSi(S
T
i Si)

−1MTPSia
T
i −

r

nm

n∑
i=1

aiS(STS)−1MTPSa
T
i

∥∥∥∥∥ . (A3)
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Then we focus on each individual term inside the sum (taking 1
m inside). We have∥∥∥∥aiSi(STi Si)−1MTPSia

T
i

m
− l

m
aiS(STS)−1MTPSa

T
i

∥∥∥∥
≤ r

∥∥∥∥∥
(
aiSi
l
− aiS

m

)(
STi Si
l

)−1
MTPSia

T
i

l

∥∥∥∥∥
+ r

∥∥∥∥∥aiSm
((

STi Si
l

)−1

−
(
STS

m

)−1
)
MTPSia

T
i

l

∥∥∥∥∥
+ r

∥∥∥∥∥aiSm
(
STS

m

)−1(
MTPSia

T
i

l
−M

TPSa
T
i

m

)∥∥∥∥∥ .
We utilize Hoeffding’s theorem for the first and third term, along with Lemma 11 for the
second term to obtain that with probability 1− δ the sum of the three terms is less than or

equal to r

√
Dk log( 1

δ
)

l ‖M‖, where D is an absolute constant.

Then, we have, by Lemma 10, with probability 1− δ∥∥∥∥∥ 1

nm

n∑
i=1

aiSi(S
T
i Si)

−1MTPSia
T
i −

l

nm

n∑
i=1

aiS(STS)−1MTPSa
T
i

∥∥∥∥∥
≤ r

√
D′k log(1

δ )

ln
‖M‖,

where D′ is an absolute constant. We let δ = 1
n , and l ≥ Ck for some constant C. Then,

for n sufficiently large, we have

r

√
D′k log(1

δ )

ln
‖M‖ ≤ rε‖M‖.

Therefore, we know that, with probability at least 1− 1
n , we have∥∥∥∥∥ l

nm

n∑
i=1

aiS(STS)−1MTPSa
T
i

∥∥∥∥∥ ≤ 2rε‖M‖, (A4)

for any M . Now we do the same for term (T2) by bounding the difference between term
(T2) and its non-stochastic variant. The details are omitted as they follow the same logic
as above. The final result is that with probability at least 1− 1

n , we have

‖ 1

nm

n∑
i=1

aiSi(S
T
i Si)

−1MTSi(S
T
i Si)

−1MTPSia
T
i

− l

nm

n∑
i=1

aiS(STS)−1MTS(STS)−1MTPSa
T
i︸ ︷︷ ︸

(S1)

‖ ≤ rε‖M‖2. (A5)
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Now let us focus on the term (S1). Such term is exactly (A4) substituting M with
MTS(STS)−1MT . Therefore, we have∥∥∥∥∥ l

nm

n∑
i=1

aiS(STS)−1MTS(STS)−1MTPSa
T
i

∥∥∥∥∥ ≤ Krε‖M‖2, (A6)

for some constant K. Then combining (A5) and (A6) gives the required result.

We next utilize the bounds on (T2) and (T4) to explicitly construct a M to bound (T1)
and (T3). Specifically, we define M = zTx, ‖M‖ = 1, where zT ∈ Rm×1 is a non-zero
(rescaled) column of PSS

∗ (it exists because S is not optimal, so PSS
∗ 6= 0) and xT ∈ Rk×1

is an eigenvector of S∗TS(STS)−1 that has an eigenvalue of size O(ε). We utilize the row
vector convention to be consistent with our other notations. We prove the existence of the
eigenvector xT in Lemma 7 below.

Lemma 7 Let S satisfy Assumptions 1-2, and be such that ‖∇c(S)‖ ≤ ε for some ε suf-
ficiently small. Assume that minRTR=I ‖S − S∗R‖ ≥ η. Then S∗TS(STS)−1 has an
eigenvector with an eigenvalue of size O(ε).

Proof First it is easy to see that

min
RTR=I

‖S∗ − SR‖ = ‖PSS
∗‖ ≥ η. (A7)

Now, let us consider the first derivative bound from (A4):∥∥∥∥∥ 1

nm

n∑
i=1

aiS(STS)−1MTPSa
T
i

∥∥∥∥∥ ≤ 2rε‖M‖.

We prove that given this, there exists an eigenvector of S∗TS(STS)−1 that has an eigenvalue
of size O(ε). Assume that there is not. By definition ai = u∗iS

∗T , so we can write the bound
as: ∥∥∥∥∥ 1

nm

n∑
i=1

u∗iS
∗TS(STS)−1MTPSS

∗u∗Ti

∥∥∥∥∥ ≤ 2rε‖M‖. (A8)

Then since there is not an eigenvalue of magnitude O(ε), let the smallest eigenvalue of
S∗TS(STS)−1 have a magnitude of O(γ) � O(ε). Let xT ∈ Rk×1 be the eigenvector
associated with such eigenvalue. Then S∗TS(STS)−1xT = O(γ)xT . From Equation (A7)
we know that ‖PSS

∗‖ ≥ η, so let y ∈ R1×m be such that yPSS
∗ = O(η)vT where v ∈ R1×k,

and rescaled such that for M = yTx, we have ‖M‖ = O(1). Then we have∥∥∥∥∥ 1

nm

n∑
i=1

u∗iS
∗TS(STS)−1MTPSS

∗u∗Ti

∥∥∥∥∥ =

∥∥∥∥∥O(ηγ)

nm

n∑
i=1

u∗ixv
Tu∗Ti

∥∥∥∥∥ = O
(ηγ
m

)
≤ O(ε),
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where the last equality follows from the submatrix full-rank property of U∗ (note that
u∗i ∈ R1×k are row vectors here). Since η is independent from ε (η only depends on how far
S is from S∗) and γ � ε by setup, we obtain a contradiction for sufficiently small ε.

Therefore, there exists ε sufficiently small such that, there is an eigenvector of S∗TS(STS)−1,
xT , that has an eigenvalue of size O(ε).

Having proved that the desired matrix M does indeed exist, we show that indeed with such
M , (T1) is small, and (T3) is large and positive. We first bound (T1).

Lemma 8 Let S satisfy Assumptions 1-2, and be such that ‖∇c(S)‖ ≤ ε for some ε suf-
ficiently small. Assume that minRTR=I ‖S − S∗R‖ ≥ η. Then for M = zTx where z, x
defined above, with probability at least 1−O( 1

n):

∥∥∥∥∥ 1

nm

n∑
i=1

aiSi(S
T
i Si)

−1MTPSiM(STi Si)
−1STi a

T
i

∥∥∥∥∥ ≤ O(rε),

Proof From Lemma 7, we know that there is an eigenvector of S∗TS(STS)−1, xT , that
has an eigenvalue of size O(ε). Similar to the proof for Lemma 6, we can bound term (T1)
with the non-stochastic version with at least probability 1− 1

n :

∥∥∥∥∥ 1

nm

n∑
i=1

aiSi(S
T
i Si)

−1MTPSiM(STi Si)
−1STi a

T
i

− r

n

n∑
i=1

aiS(STS)−1MTPSM(STS)−1STaTi︸ ︷︷ ︸
(S2)

∥∥∥∥∥∥∥∥∥∥
≤ rε‖M‖2. (A9)

Let us look at each term in the sum (S2). Taking M = zTx. We have

‖aiS(STS)−1MTPSM(STS)−1STaTi ‖
= ‖PSM(STS)−1STaTi ‖2

= ‖PSM(STS)−1STS∗u∗Ti ‖2

= ‖PSz
Tx(STS)−1STS∗u∗Ti ‖2

= O(ε2)‖zTxu∗Ti ‖2

= O(ε2),
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where in the last equality we used the identity that PSz
T = zT . Then, we can bound the

sum (S2) as ∥∥∥∥∥ rn
n∑
i=1

aiS(STS)−1MTPSM(STS)−1STaTi

∥∥∥∥∥
≤ r

n

n∑
i=1

‖aiS(STS)−1MTPSM(STS)−1STaTi ‖

= O(rε2).

Substituting such bound on equation (S2) into (A9), we have that∥∥∥∥∥ 1

nm

n∑
i=1

aiSi(S
T
i Si)

−1MTPSiM(STi Si)
−1STi a

T
i

∥∥∥∥∥ ≤ O(rε).

As here we have ‖M‖ = O(1).

Now, finally, we prove that (T3) is large under such M .

Lemma 9 Let S satisfy Assumptions 1-2. Further assume that min
RTR=I

‖S∗−SR‖ ≥ η and

‖∇c(S)‖ ≤ ε for some ε sufficiently small. Then for M = zTx where z, x defined above,
with probability at least 1−O( 1

n):

1

nm

n∑
i=1

aiM(STi Si)
−1MTPSia

T
i ≥ O

(
rη2

k

)
,

Proof First it is easy to see that

min
RTR=I

‖S∗ − SR‖ = ‖PSS
∗‖ ≥ η. (A10)

We consider the term 1
nm

∑n
i=1 aiM(STS)−1MTPSa

T
i . We have that

l

nm

n∑
i=1

aiM(STS)−1MTPSa
T
i

=
l

nm

n∑
i=1

aiz
Tx(STS)−1xTzaTi ,

where we utilized zPS = z. By definition aTi = S∗u∗Ti , so we have

l

nm

n∑
i=1

aiz
Tx(STS)−1xTzaTi =

r

n

n∑
i=1

u∗iS
∗TzTx(STS)−1xTzS∗u∗Ti .

Since (STS)−1 is positive definite (PD), we have a sum of quadratic forms over a PD matrix,
which is positive as long as xTzS∗u∗Ti is non-zero. Since we have that z is a non-zero column
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vector of PSS
∗, and we know that ‖(PSS

∗)TS∗‖ = ‖S∗TPSS
∗‖2 ≥ O(η2), so in particular,

we have that ‖xTzS∗‖ ≥ O(η2). Thus, we only need u∗Ti to not always be in the null space
of xTzS∗. Now by the sub-matrix full rank condition of A, we know that u∗i is not in
the null space of xTzS∗ for O(n) indices. Therefore, we have that ‖xTzS∗u∗Ti ‖ = O(η2).
Then, we have

r

n

n∑
i=1

u∗iS
∗TzTx(STS)−1xTzS∗u∗Ti ≥

r

σmax(S)
Cη2,

for some constant C and where σmax(S) is the largest singular value of S. By the nuclear-
Frobenius norm inequality, we have

‖STS‖∗ ≤ Rank(STS)‖S‖2 = k.

Therefore, the maximum singular value of S is at most k, resulting in the bound

r

σmax(S)
Cη2 ≥ Crη2

k
. (A11)

By a similar proof to what is done in Lemma 6, we can show that with probability greater
than 1−O( 1

n) we have∥∥∥∥∥ 1

nm

n∑
i=1

aiPSS
∗(STS)−1S∗TPSa

T
i −

l

nm

n∑
i=1

aiPSS
∗(STS)−1S∗TPSPSia

T
i

∥∥∥∥∥ ≤ Crη2

2k
.

(A12)
Combining (A12) with (A11) proves the lemma.

Finally, we combine the results of Lemmas 6, 8 and 9 to prove that for M = zTx, ‖M‖ = 1
defined previously, we have

M : ∇2c(S) : M =
2

nm

n∑
i=1

(
aiSi(S

T
i Si)

−1MTPSiM(STi Si)
−1aTi

+ 2aiSi(S
T
i Si)

−1MTSi(S
T
i Si)

−1MTPSia
T
i

− aiM(STi Si)
−1MTPSia

T
i

+ aiSi(S
T
i Si)

−1STi M(STi Si)
−1MTPSia

T
i

)
≤ O(rε) +O(rε)−O

(
rη2

k

)
+O(rε)

= −O
(
rη2

k

)
,

as long as ε ≤ O(η
2

k ). Therefore, for ‖∇c(S)‖ ≤ ε and S at least η = O(
√
ε) away from a

global minimum, we have λmin(∇2c(S)) ≤ −O( rεk ). Thus, the desired statement

“For all S such that ‖∇c(S)‖ ≤ ε and S more than η-away from a global minimum, we
have that λmin(∇2f(x)) ≤ −ζ for some suitable ζ.”
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is true for η = O(
√
ε) and ζ = O( rεk ), with probability 1−O( 1

n).

Thus, all local minima are global minima, and in particular the function c(S) satisfies a
(ε, O( rεk ), O(

√
ε))-strict saddle for sufficiently small ε.
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Appendix B. Proof of Technical Lemmas

Lemma 10 Let X1, · · · , Xn be independent (but not necessarily identically distributed) ran-
dom variables which satisfy the following:

P

(
|Xi − ai| ≥ σi

√
log(

1

ε
)

)
≤ ε.

Then we have

P

∣∣∣∣∑n
i=1Xi − ai

n

∣∣∣∣ ≥ 2
√∑n

i=1 σ
2
i

n

√
log(

1

4ε
)

 ≤ ε. (A13)

Proof See Bertsimas and Li (2018).

Lemma 11 Assume that S satisfies Assumption 2. Then we have

P

∥∥∥∥∥
(
STS

m

)−1

−
(
STi Si
l

)−1
∥∥∥∥∥ ≤

√
D log(1

ε )

l

 ≥ 1− ε. (A14)

Proof This follows immediately from Lemma 13 and the following lemma from matrix
perturbation theory (for proof, see e.g. Stewart (1990)):

Lemma 12 Let A,B be invertible matrices and let B = A + ∆. Then, we have the
following bound:

‖A−1 −B−1‖ ≤ ‖A−1‖‖B−1‖‖∆‖. (A15)

Lemma 13

P

∥∥∥∥STSm − S
T
i Si
l

∥∥∥∥ ≤
√
C log(1

ε )

l

 ≥ 1− ε. (A16)

To prove this, we first introduce a matrix analog of the well-known Chernoff bound, the
proof of which can be found in Tropp (2012):

40



Fast Exact Matrix Completion

Lemma 14 Let X ∈ Rk×k be a finite set of positive-semidefinite matrices, and suppose that

max
X∈X

λmax(X) ≤ D,

where λmin/λmax is the minimum/maximum eigenvalue function. Sample {X1, · · · ,X`}
uniformly at random without replacement. Compute:

µmin := ` · λmin(EX1) µmax := ` · λmax(EX1).

Then:

P

λmin

∑
j

Xj

 ≤ (1− δ)µmin

 ≤ k · exp

(
−δ2µmin

4D

)
for δ ∈ [0, 1),

P

λmax

∑
j

Xj

 ≤ (1 + δ)µmax

 ≤ k · exp

(
−δ2µmax

4D

)
for δ ≥ 0.

Now we proceed with the proof.

Proof (Lemma 13) First, let us write L as the set of indices j such that (Wi)jj = 1.
Then, we decompose S = QR in a reduced QR factorization, where QTQ = mI (so that
‖R‖ = O(1)). Then define QL as the |L| × k submatrix of Q formed with the rows in L.
Then we can see that

STS = RTQTQR, STi Si = RTQT
LQLR.

Now let us decompose the inner parts, which can be written using the rows of Q, qi ∈ R1×k:

QTQ =

m∑
i=1

qTi qi,

QT
LQL =

∑
i∈L

qTi qi,

where qTi qi ∈ Rk×k rank-one positive semi-definite matrices. Therefore, we can take QT
LQL

as a random sample of size l from the set X = {qTi qi}i=1,··· ,m, which satisfies the conditions
in Lemma 14 with D = O(1). Furthermore, with X , we observe that we have EX1 =
QTQ
m = Ik, so we have

λmin(EX1) = λmax(EX1) = 1.

Therefore, we apply Lemma 14 to QT
LQL and have that

P
{
λmin

(
QT
LQL

)
≤ (1− δ)l

}
≤ exp

(
−δ2l

D′

)
,

P
{
λmax

(
QT
LQL

)
≥ (1 + δ)l

}
≤ exp

(
−δ2l

D′

)
,
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where we set D = D′

4 with D′ = O(1). Some rearrangement gives:

P

λmin

(
QT
LQL

l

)
≥ 1−

√
D′ log

(
2
ε

)
l

and λmax

(
QT
LQL

l

)
≤ 1 +

√
D′ log

(
2
ε

)
l

 ≥ 1− ε,

(A17)

Now since QTQ
m = Ik, we have

λmin

(
QTQ

m

)
= λmax

(
QTQ

m

)
= 1. (A18)

Combining equation (A18) and (A17) gives:

P


∥∥∥∥QT

LQL

l
− Q

TQ

m

∥∥∥∥ ≤
√
D′ log

(
2
ε

)
l

 ≥ 1− ε. (A19)

Then, we have

P


∥∥∥∥RTQT

LQLR

l
− R

TQTQR

m

∥∥∥∥ ≤ ‖R‖2
√
D′ log

(
2
ε

)
l

 ≥ 1− ε. (A20)

Taking C = D′‖R‖4 log(2) gives the required result.

Appendix C. List of Features for Netflix Data

• 24 Indicator Variables for Genres: Action, Adventure, Animation, Biography, Com-
edy, Crime, Documentary, Drama, Family, Fantasy, Film Noir, History, Horror, Music,
Musical, Mystery, Romance, Sci-Fi, Short, Sport, Superhero, Thriller, War, Western

• 5 Indicator Variables for Release Date: Within last 10 years, Between 10-20 years,
Between 20-30 years, Between 30-40 years, Between 40-50 Years

• 6 Indicator Variables for Top Actors/Actresses defined by their Influence Score at time
of release: Top 100 Actors, Top 100 Actresses, Top 250 Actors, Top 250 Actresses,
Top 1000 Actors, Top 1000 Actresses

• IMDB Rating

• Number of Reviews

• Total Production Budget

• Total Runtime

• Total Box Office Revenue

42



Fast Exact Matrix Completion

• Indicator Variable for whether it is US produced

• 11 Indicator Variables for Month of Year Released (January removed to prevent mul-
ticollinearity)

• Number of Original Music Score

• Number of Male Actors

• Number of Female Factors

• 3 Indicator Variables for Film Language: English, French, Japanese

• Constant
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