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Abstract

We consider the problem of learning high-dimensional, nonparametric and structured
(e.g., Gaussian) distributions in distributed networks, where each node in the network
observes an independent sample from the underlying distribution and can use k bits to
communicate its sample to a central processor. We consider three different models for
communication. Under the independent model, each node communicates its sample to a
central processor by independently encoding it into k bits. Under the more general sequen-
tial or blackboard communication models, nodes can share information interactively but
each node is restricted to write at most k bits on the final transcript. We characterize the
impact of the communication constraint k on the minimax risk of estimating the underlying
distribution under `2 loss. We develop minimax lower bounds that apply in a unified way
to many common statistical models and reveal that the impact of the communication con-
straint can be qualitatively different depending on the tail behavior of the score function
associated with each model. A key ingredient in our proofs is a geometric characterization
of Fisher information from quantized samples.

Keywords: Fisher information, statistical estimation, communication constraints, learn-
ing distributions

1. Introduction

Estimating a distribution from samples is a fundamental unsupervised learning problem that
has been studied in statistics since the late nineteenth century (Pearson, 1895). Consider
the following distribution estimation model

X1, X2, · · · , Xn
i.i.d.∼ P,
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where we would like to estimate the unknown distribution P under squared `2 loss. Unlike
the traditional statistical setting where samples X1, · · · , Xn are available to the estimator
as they are, in this paper we consider a distributed setting where each observation Xi is
available at a different node and has to be communicated to a central processor by using k
bits. We consider three different types of communication protocols:

1. Independent communication protocols ΠInd: each node sends a k-bit string Mi si-
multaneously (independent of the other nodes) to the central processor and the final
transcript is Y = (M1, . . . ,Mn);

2. Sequential communication protocols ΠSeq: the nodes sequentially send k-bit strings
Mi, where quantization of the sample Xi can depend on the previous messages
M1, . . . ,Mi−1;

3. Blackboard communication protocols ΠBB (Kushilevitz and Nisan, 1997): all nodes
communicate via a publicly shown blackboard while the total number of bits each
node can write in the final transcript Y is limited by k. When one node writes a
message (bit) on the blackboard, all other nodes can see the content of the message
and depending on the written bit another node can take the turn to write a message
on the blackboard.

Upon receiving the transcript Y , the central processor produces an estimate P̂ of the dis-
tribution P based on the transcript Y and known procotol Π which can be of type ΠInd,
ΠSeq, or ΠBB. Our goal is to jointly design the protocol Π and the estimator P̂ (Y ) so as to
minimize the worst case squared `2 risk, i.e., to characterize

inf
(Π,P̂ )

sup
P∈P

EP ‖P̂ − P‖22,

where P denotes the class of distributions which P belongs to. We study three different
instances of this estimation problem:

1. High-dimensional discrete distributions: in this case we assume that P = (p1, · · · , pd)
is a discrete distribution with known support size d and P denotes the probability
simplex over d elements. By “high-dimensional” we mean that the support size d of
the underlying distribution may be comparable to the sample size n.

2. Non-parametric densities: in this case X1, · · · , Xn
i.i.d.∼ f , where f is some density that

possesses some standard Hölder continuity property (Nemirovski, 2000).

3. Parametric distributions: in this case, we assume that we have some additional infor-
mation regarding the structure of the underlying distribution or density. In particular,
we assume that the underlying distribution or density can be parametrized such that

X1, X2, · · · , Xn
i.i.d.∼ Pθ,

where θ ∈ Θ ⊂ Rd. In this case, estimating the underlying distribution can be
thought of as estimating the parameters of this distribution, and we are interested in
the following parameter estimation problem under squared `2 risk

inf
(Π,θ̂)

sup
θ∈Θ

Eθ‖θ̂ − θ‖22,
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where θ̂(·) is an estimator of θ.

Statistical estimation in distributed settings has gained increasing popularity over the
recent years motivated by the fact that modern data sets are often distributed across multi-
ple machines and processors, and bandwidth and energy limitations in networks and within
multiprocessor systems often impose significant bottlenecks on the performance of algo-
rithms. There are also an increasing number of applications in which data is generated in
a distributed manner and the data (or features of it) are communicated over bandwidth-
limited links to central processors. For example, there is a recent line of works (Zhang
et al., 2013; Braverman et al., 2016; Garg et al., 2014) which focus on the distributed pa-
rameter estimation problem where the underlying distribution has a Gaussian structure,
i.e., Pθ = N (θ, Id) with θ ∈ Θ ⊆ Rd, often called the Gaussian location model. The high-
dimensional discrete distribution estimation problem is studied in Diakonikolas et al. (2017);
Han et al. (2018a), where extensions to distributed property testing are studied in Acharya
et al. (2019b,a). These works show that the dependence of the estimation performance on
k can be qualitatively different: the estimation error decays linearly in k for the Gaussian
location model, while for distribution estimation/testing it typically decays exponentially
in k. This difference was first studied in Han et al. (2018b) which develops geometric lower
bounds for distributed estimation, where the Gaussian mean estimation problem and dis-
tribution estimation problem admit different geometric structures. However, the arguments
heavily rely on hypothesis testing and the specific geometric objects remain implicit.

Another closely-related thread is the locally private estimation problem, which shares
many similarities with communication-constrained problems (Duchi and Rogers, 2019). We
refer to Duchi et al. (2013) for a general treatment of estimation problems under locally
differentially private (LDP) constraints, while optimal schemes (and lower bounds) for es-
timating discrete distributions are proposed in Kairouz et al. (2016); Wang et al. (2016);
Ye and Barg (2018); Acharya et al. (2019c). Similar to the previous discussions, strong
or distributed data-processing inequalities (Duchi et al., 2013; Xu and Raginsky, 2017) are
typically used in scenarios where the linear/quadratic dependence on the pricacy parameter
ε is tight, and explicit modeling becomes necessary in scenarios where the tight dependence
on ε is exponential.

In this paper, we approach all distributed estimation problems under communication
constraints in a unified way. Specifically, we propose an explicit geometric object related to
the Fisher information, and develop a framework that characterizes the Fisher information
for estimating an underlying unknown parameter from a quantized sample. Equivalently,
we ask the question: how can we best represent X ∼ Pθ with k bits so as to maximize the
Fisher information it provides about the underlying parameter θ? This framework was first
introduced in Barnes et al. (2018, 2019), and there has been some previous work in analyzing
Fisher information from a quantized scalar random variable such as Venkitasubramaniam
et al. (2006, 2005); Ribeiro and Giannakis (2005); Lam and Reibman (1993). Different from
these works, here we consider the arbitrary quantization of a random vector and are able to
study the impact of the quantization rate k along with the dimension d of the underlying
statistical model on the Fisher information. As an application of our framework, we use
upper bounds on Fisher information to derive lower bounds on the minimax risk of the
distributed estimation problems discussed above and recover many of the existing results
in the literature (Zhang et al., 2013; Braverman et al., 2016; Garg et al., 2014; Han et al.,
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2018a), which are known to be rate-optimal. Our technique is significantly simpler and more
transparent than those in Zhang et al. (2013); Braverman et al. (2016); Garg et al. (2014);
Han et al. (2018a). In particular, the strong/distributed data processing inequalities used in
Zhang et al. (2013); Braverman et al. (2016); Garg et al. (2014) are typically technical and
seem to be only applicable to models where the fundamental dependence of the minimax
risk on the quantization rate k is linear, e.g., the Gaussian location model. Moreover, our
approach points out that the Fisher information is the same as the explicit geometric object
from Han et al. (2018b), and we recover most of the results from that work via this simpler
approach. We also extend the results of Han et al. (2018b) to derive minimax lower bounds
for statistical models with sub-exponential score functions, which is useful, for example,
when we are interested in estimating the variance of a Gaussian distribution.

1.1 Organization of the Paper

In the next section, we introduce the problem of characterizing Fisher information from a
quantized sample. We present a geometric characterization for this problem and derive two
upper bounds on Fisher information as a function of the quantization rate. We also evaluate
these upper bounds for common statistical models. In Section 3, we formulate the problem
of distributed learning of distributions under communication constraints with independent,
sequential and blackboard communication protocols. We use the upper bounds on Fisher
information from Section 2 to derive lower bounds on the minimax risk of distributed
estimation of discrete and parametric distributions. There we also provide a more detailed
comparison of our results with those in the literature. Finally, in Section 4 we discuss
extending these results to non-parametric density estimation.

2. Fisher information from a quantized sample

Let {Pθ}θ∈Θ be a family of probability measures on the measurable space (X ,A) parame-
terized by θ ∈ Θ ⊆ Rd. Suppose that {Pθ}θ∈Θ is a dominated family and that each Pθ has
density f(x|θ) with respect to some dominating measure ν. Let X ∈ X be a single sample
drawn from f(x|θ). Any (potentially randomized) k-bit quantization strategy for X can be
expressed in terms of the conditional probabilities

bm(x) = p(m|x) for m ∈ [2k], x ∈ X .

We assume that p(m|x) is a regular conditional probability. Under any given Pθ and quan-
tization strategy, denote by p(m|θ) the likelihood that the quantized sample M takes a
specific value m. Let

Sθ(m) = (Sθ1(m), . . . , Sθd(m))

=

(
∂

∂θ1
log p(m|θ), . . . , ∂

∂θd
log p(m|θ)

)
∈ Rd
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be the vector-valued score function of M under Pθ. With a slight abuse of notation, we also
denote the score function of X under Pθ as

Sθ(x) = (Sθ1(x), . . . , Sθd(x))

=

(
∂

∂θ1
log f(x|θ), . . . , ∂

∂θd
log f(x|θ)

)
∈ Rd .

Consequently, the Fisher information matrices of estimating θ from M and from X are
defined as

IM (θ) = E[Sθ(M)Sθ(M)T ],

IX(θ) = E[Sθ(X)Sθ(X)T ],

respectively.
We will assume throughout that f(x|θ) satisfies the following regularity conditions:

(1) The function θ 7→
√
f(x|θ) is continuously differentiable coordinate-wise at ν-almost

every x ∈ X ;

(2) For all θ, the Fisher information matrix IX(θ) exists and is continuous coordinate-wise
in θ.

These two conditions justify interchanging differentiation and integration as in

∇θp(m|θ) = ∇θ
∫
f(x|θ)p(m|x)dν(x)

=

∫
∇θf(x|θ)p(m|x)dν(x),

and they also ensure that p(m|θ) is continuously differentiable with respect to θ coordinate-
wise (Borovkov, 1998, Section 26, Lemma 1).

The following two lemmas establish a geometric interpretation of the trace Tr(IM (θ)),
and are slight variants of Theorems 1 and 2 from ichi Amari (2011).

Lemma 1 For i ∈ [d], the (i, i)-th entry of the Fisher information matrix IM (θ) is

[IM (θ)]i,i = E
[
E [Sθi(X)|M ]2

]
,

where the inner conditional expectation is with respect to the distribution f(x|θ,m), and the
outer expectation is over the conditioning random variable M .

Proof For any m ∈ [2k], we have

Eθ [Sθi(X)|m] =

∫
Sθi(x)

f(x|θ)p(m|x)

p(m|θ)
dν(x)

=

∫ ∂
∂θi
f(x|θ)

f(x|θ)
f(x|θ)p(m|x)

p(m|θ)
dν(x)

=
1

p(m|θ)

∫
∂

∂θi
f(x|θ)p(m|x)dν(x)

=
1

p(m|θ)
∂

∂θi

∫
f(x|θ)p(m|x)dν(x)

= Sθi(m).

5



Barnes, Han, and Özgür

Squaring both sides and taking expectation with respect to M completes the proof.

Lemma 2 The trace of the Fisher information matrix IM (θ) can be written as

Tr(IM (θ)) =
∑
m∈[2k]

p(m|θ)‖E[Sθ(X)|m]‖22 . (1)

Proof By Lemma 1,

d∑
i=1

[IM (θ)]i,i =

d∑
i=1

E
[
E [Sθi(X)|M ]2

]
= E

[
d∑
i=1

E [Sθi(X)|M ]2
]

= E
[
‖E[Sθ(X)|M ]‖22

]
=
∑
m

p(m|θ)‖E[Sθ(X)|m]‖22 .

In order to get some geometric intuition for the quantity (1), consider a special case
where the quantization is deterministic and the score function Sθ(x) is a bijection between X
and Rd. In this case, the quantization map partitions the space X into disjoint quantization
bins, and this induces a corresponding partitioning of the score functions values Sθ(x).
Each vector E[Sθ(X)|m] is then the centroid of the set of Sθ(x) values corresponding to
quantization bin m (with respect to the induced probability distribution on Sθ(X)). Lemma
2 shows that Tr(IM (θ)) is equal to the average squared magnitude of these centroid vectors.

2.1 Upper Bounds on Tr(IM (θ))

In this section, we give two upper bounds on Tr(IM (θ)) depending on the different tail
behaviors of Sθ(X), with proofs deferred to Appendix A. The first theorem upper bounds
Tr(IM (θ)) in terms of the variance of Sθ(X) when projected onto any unit vector.

Theorem 1 If for any θ ∈ Θ and any unit vector u ∈ Rd,

Var(〈u, Sθ(X)〉) ≤ I0 ,

then

Tr(IM (θ)) ≤ min{Tr(IX(θ)), 2kI0} .

The first upper bound Tr(IM (θ)) ≤ Tr(IX(θ)) follows easily from the data processing
inequality for Fisher information (Zamir, 1998). The second upper bound in Theorem 1
shows that when I0 is finite, the trace Tr(IM (θ)) can increase at most exponentially in k.
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Our second theorem upper bounds Tr(IM (θ)) in terms of the Ψp Orlicz norm of Sθ(X)
when projected onto any unit vector. Recall that for p ≥ 1, the Ψp Orlicz norm of a random
variable X is defined as

‖X‖Ψp = inf{K ∈ (0,∞) | E[Ψp(|X|/K)] ≤ 1},

where

Ψp(x) = exp(xp)− 1 .

Note that a random variable with finite Ψ1 Orlicz norm is sub-exponential, while a random
variable with finite Ψ2 Orlicz norm is sub-Gaussian (Vershynin, 2010).

Theorem 2 If for any θ ∈ Θ and any unit vector u ∈ Rd,

‖〈u, Sθ(X)〉‖2Ψp ≤ I0

holds for some p ≥ 1, then

Tr(IM (θ)) ≤ min{Tr(IX(θ)), Ck
2
p I0},

where C = 4 .

Theorem 2 shows that when the score function Sθ(X) has a lighter tail, then the trace

Tr(IM (θ)) can increase at most polynomially in k at the rate O(k
2
p ).

2.2 Applications to Common Statistical Models

We next apply the above two results to common statistical models. We will see that
depending on the statistical model, either bound may be tighter. The proofs of Corollaries
1 through 4 appear in Appendix B. In the next section, we show that Corollaries 1, 3, 4 yield
tight results for the minimax risk of the corresponding distributed estimation problems.

For the Gaussian location model, Corollary 1 follows by showing that the score function
associated with this model has finite Ψ2 Orlicz norm and applying Theorem 2.

Corollary 1 (Gaussian location model) Consider the Gaussian location model X ∼
N (θ, σ2Id) where we are trying to estimate the mean θ of a d-dimensional Gaussian random
vector with fixed covariance σ2Id. In this case,

Tr(IM (θ)) ≤ min

{
d

σ2
, C

k

σ2

}
(2)

where

C =
32

3
.

For covariance estimation in the independent Gaussian sequence model, Corollary 2
follows by showing that the score function associated with this model has finite Ψ1 Orlicz
norm and applying Theorem 2.
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Corollary 2 (Gaussian covariance estimation) Suppose X ∼ N (0,diag(θ1, . . . , θd)) and
Θ ⊆ [σ2

min, σ
2
max]d with σmax > σmin > 0. In this case,

Tr(IM (θ)) ≤ min

{
d

2σ4
min

, C

(
k

σ2
min

)2
}

where

C =
16(log 4 + 2(2 +

√
2))2

(log 2)2
.

For distribution estimation, Corollary 3 is a consequence of Theorem 1 along with char-
acterizing the variance to the score function associated with this model.

Corollary 3 (Distribution estimation) Suppose that X = {1, . . . , d+ 1} and that

f(x|θ) = θx .

Let θ1, . . . , θd be the free parameters of interest and suppose they can vary from 1
4d ≤ θi ≤

1
2d .

In this case,
Tr(IM (θ)) ≤ 6 min{d2, d2k} . (3)

For the product Bernoulli model, the tightness of Theorems 1 and 2 differ in different
parameter regions, as shown in the following Corollary 4.

Corollary 4 (Product Bernoulli model) Suppose that X ∼
∏d
i=1 Bern(θi). If Θ =

[1/2− ε, 1/2 + ε]d for some 0 < ε < 1/2, i.e., the model is relatively dense, then

Tr(IM (θ)) ≤ C min{d, k}

for some constant C that depends only on ε. If Θ = [(1
2 − ε)

1
d , (

1
2 + ε)1

d ]d, i.e., the model is
relatively sparse, then

Tr(IM (θ)) ≤ 2d
1
2 − ε

min{d, 2k} .

In the product Bernoulli model,

Sθi(x) =

{
1
θi
, xi = 1

− 1
1−θi , xi = 0

.

Hence, when Θ = [1/2− ε, 1/2 + ε]d, Var(〈u, Sθ(X)〉) and ‖〈u, Sθ(X)〉‖2Ψ2
are both Θ(1). In

this case, Theorem 1 gives
Tr(IM (θ)) = O(2k),

while Theorem 2 gives
Tr(IM (θ)) = O(k) .

In this situation Theorem 2 gives the better bound. On the other hand, if Θ = [(1
2−ε)

1
d , (

1
2 +

ε)1
d ]d, then Var(〈u, Sθ(X)〉) = Θ(d) and ‖〈u, Sθ(X)〉‖2Ψ2

= Θ(d2). In this case Theorem 1
gives

Tr(IM (θ)) = O(d2k),
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while Theorem 2 gives
Tr(IM (θ)) = O(d2k) .

In the sparse case Tr(IM (θ)) ≤ Tr(IX(θ)) = Θ(d2), so only the bound from Theorem 1 is
non-trivial. It is interesting that Theorem 2 is able to use the sub-Gaussian structure in
the first case to yield a better bound—but in the second case, when the tail of the score
function is essentially not sub-Gaussian, Theorem 1 yields the better bound.

The upper bounds on the Fisher information matrix in the examples of this section are
all sharp within multiplicative constants, with the exception of Corollary 2 whose sharpness
is unknown. This in turn also implies the tightness of Theorems 1 and 2 (at least in the
case p = 2). There are two ways to show the tightness. First, for the statistical models
studied in Section 3.3, the tightness holds whenever the risk lower bounds for the associated
estimation problem are matched by an communication/estimation scheme. In fact, a smaller
upper bound on the Fisher information matrix would imply a risk lower bound higher than
what can be achieved, which cannot happen. Second, we may also directly look at the
Fisher information matrix with explicit quantization schemes. For example, in the Gaussian
location model in Corollary 1, we may let k′ = min{k, d} and use the quantization scheme
m = (m1, · · · ,mk′) ∈ {0, 1}k

′
with mi = 1(Xi ≥ 0). Then for θ = 0, we may explicit

compute the Fisher information matrix as

IM (θ) = diag

(
2

πσ2
, · · · , 2

πσ2
, 0, · · · , 0

)
,

and therefore Tr(IM (θ)) = 2 min{k, d}/(πσ2), matching the claimed upper bound of Corol-
lary 1.

3. Distributed Parameter Estimation

In this section, we apply the results in the previous section to the distributed estimation
of parameters of an underlying statistical model under communication constraints. In this
section we only focus on parametric models, while in the next section we generalize to
non-parametric models by parametric reduction. The main technical exercise involves the
application of Theorems 1 and 2 to statistical estimation with multiple quantized samples
where the quantization of different samples can be independent or dependent as dictated
by the communication protocol.

3.1 Problem Formulation

Let

X1, X2, · · · , Xn
i.i.d.∼ Pθ,

where θ ∈ Θ ⊂ Rd. We consider three different types of protocols for communicating
each of these samples with k bits to a central processor that is interested in estimating the
underlying parameter θ:

(1) Independent communication protocols ΠInd: each sample is independently quantized
to k-bits and then communicated. Formally, for i ∈ [n], each sample Xi is encoded
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to a k-bit string Mi by a possibly randomized quantization strategy, denoted by
qi : X → [2k], which can be expressed in terms of the conditional probabilities

p(mi|xi) for mi ∈ [2k], xi ∈ X .

(2) Sequential communication protocols ΠSeq: samples are communicated sequentially
by broadcasting the communication to all nodes in the system including the central
processor. Therefore, the quantization of the sample Xi can depend on the previously
transmitted quantized samples M1, . . . ,Mi−1 corresponding to samples X1, . . . , Xi−1

respectively. Formally, each sample Xi, for i ∈ [n], is encoded to a k-bit string Mi

by a set of possibly randomized quantization strategies {qm1,...,mi−1 : X → [2k] :
m1, . . . ,mi−1 ∈ [2k]}, where each strategy qm1,...,mi−1(xi) can be expressed in terms
of the conditional probabilities

p(mi|xi;m1, . . . ,mi−1) for mi ∈ [1 : 2k] andxi ∈ X .

While these two models can be motivated by a distributed estimation scenario where the
topology of the underlying network can dictate the type of the protocol (see Figure 1a) to
be used, they can also model the quantization and storage of samples arriving sequentially
at a single node. For example, consider a scenario where a continuous stream of samples is
captured sequentially and each sample is stored in digital memory by using k bits/sample.
In the independent model, each sample would be quantized independently of the other
samples (even though the quantization strategies for different samples can be different and
jointly optimized ahead of time), while under the sequential model the quantization of each
sample Xi would depend on the information M1, . . . ,Mi−1 stored in the memory of the
system at time i. This is illustrated in Figure 1b.

We finally introduce a third type of communication protocol that allows nodes to com-
municate their samples to the central processor in a fully interactive manner while still
limiting the number of bits used per sample to k bits. Under this model, each node can see
the previously written bits on a public blackboard, and can use that information to deter-
mine its quantization strategy for subsequently transmitted bits. This is formally defined
below.

(3) Blackboard communication protocols ΠBB: all nodes communicate via a publicly
shown blackboard while the total number of bits each node can write in the final
transcript Y is limited by k bits. When one node writes a message (bit) on the black-
board, all other nodes can see the content of the message. Formally, a blackboard
communication protocol Π ∈ ΠBB can be viewed as a binary tree (Kushilevitz and
Nisan, 1997), where each internal node v of the tree is assigned a deterministic label
lv ∈ [n] indicating the identity of the node to write the next bit on the blackboard if
the protocol reaches tree node v; the left and right edges departing from v correspond
to the two possible values of this bit and are labeled by 0 and 1 respectively. Because
all bits written on the blackboard up to the current time are observed by all nodes,
the nodes can keep track of the progress of the protocol in the binary tree. The value
of the bit written by node lv (when the protocol is at node v of the binary tree) can
depend on the sample Xlv observed by this node (and implicitly on all bits previously
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written on the blackboard encoded in the position of the node v in the binary tree).
Therefore, this bit can be represented by a function bv(x) = pv(1|x) ∈ [0, 1], which
we associate with the tree node v; node lv transmits 1 with probability bv(Xlv) and 0
with probability 1− bv(Xlv). Note that a proper labeling of the binary tree together
with the collection of functions {bv(·)} (where v ranges over all internal tree nodes)
completely characterizes all possible (possibly probabilistic) communication strategies
for the nodes.

The k-bit communication constraint for each node can be viewed as a labeling con-
straint for the binary tree; for each i ∈ [n], each possible path from the root node to
a leaf node can visit exactly k internal nodes with label i. In particular, the depth
of the binary tree is nk and there is a one-to-one correspondence between all possible
transcripts y ∈ {0, 1}nk and paths in the tree. Note that there is also a one-to-one
correspondence between y ∈ {0, 1}nk and the k-bit messages m1, . . . ,mn transmitted
by the n nodes. In particular, the transcript y ∈ {0, 1}nk contains the same amount
of information as m1, . . . ,mn, since given the transcript y (and the protocol) one can
infer m1, . . . ,mn and vice versa (for this direction note that the protocol specifies the
node to transmit first, so given m1, . . . ,mn one can deduce the path followed in the
protocol tree).

Under all three communication protocols above, the ultimate goal is to produce an
estimate θ̂ of the underlying parameter θ from the nk bit transcript Y or equivalently the
collection of k-bit messages M1, . . . ,Mn observed by the estimator. Note that the encoding
strategies/protocols used in each case can be jointly optimized and agreed upon by all
parties ahead of time. Formally, we are interested in the following parameter estimation
problem under squared `22 risk

inf
(Π,θ̂)

sup
θ∈Θ

Eθ‖θ̂ − θ‖22,

where θ̂(M1, . . . ,Mn) is an estimator of θ based on the quantized observations. Note that
with an independent communication protocol, the messages M1, . . . ,Mn are independent,
while this is no longer true under the sequential and blackboard protocols.

3.2 Main Results for Distributed Parameter Estimation

We next state our main theorem for distributed parameter estimation. We will show in the
next subsection that this theorem can be applied to obtain tight lower bounds for distributed
estimation under many common statistical models, including the discrete distribution esti-
mation and the Gaussian mean estimation.

Theorem 3 Suppose [−B,B]d ⊂ Θ. For any estimator θ̂(M1, . . . ,Mn) and communication
protocol Π ∈ ΠInd, ΠSeq, or ΠBB, if Sθ(X) satisfies the hypotheses in Theorem 1 then

sup
θ∈Θ

E‖θ̂ − θ‖22 ≥
d2

I02kn+ dπ2

B2

,

and if Sθ(X) satisfies the hypotheses in Theorem 2 then

sup
θ∈Θ

E‖θ̂ − θ‖22 ≥
d2

CI0k2/pn+ dπ2

B2

,

11



Barnes, Han, and Özgür

Sensor 1

θ

Sensor 2

θ

. . . Sensor n

θ

Quantizer 1 Quantizer 2 . . . Quantizer n

Estimator

X1 X2 Xn

M1 M2

Mn

θ̂

(a) Distributed communication of samples

Sensor

θ

Quantizer
Limited
Memory Estimator

Xi Mi Mi θ̂

(b) Storing a stream of samples

Figure 1: Two applications that require quantization of samples. The quantization strategy
can be independent or sequential.
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where C = 4.

We next prove Theorem 3 for Π ∈ ΠInd or ΠSeq by a straightforward application of the
Van Trees Inequality combined with the conclusions of Theorems 1 and 2. The proof for
Π ∈ ΠBB requires more work and is deferred to the Appendix C.

Proof of Theorem 3 We are interested in the quantity

I(M1,...,Mn)(θ)

under each model. We have

Tr(I(M1,...,Mn)(θ)) =
d∑
j=1

[I(M1,...,Mn)(θ)]j,j

=
n∑
i=1

d∑
j=1

[IMi|(M1,...,Mi−1)(θ)]j,j

=

n∑
i=1

∑
m1,...,mi−1

p(m1, . . . ,mi−1|θ)Tr(IMi|(m1,...,mi−1)(θ)) (4)

due to the chain-rule for Fisher information. Under the independent model,

[IMi|(m1,...,mi−1)(θ)]j,j = [IMi(θ)]j,j .

Under the the sequential model, conditioning on specific m1, . . . ,mi−1 only effects the dis-
tribution p(mi|θ) by fixing the quantization strategy for Xi. Formally, for the sequential
model,

P(Mi = mi|θ;m1, . . . ,mi−1) = P(qm1,...,mi−1(Xi) = mi|θ;m1, . . . ,mi−1)

= P(qm1,...,mi−1(Xi) = mi|θ) ,

where the last step follows since X1, . . . , Xi−1 is independent of Xi and therefore condi-
tioning of m1, . . . ,mi−1 does not change the distribution of Xi. Since the bounds from
Theorems 1 and 2 apply for any quantization strategy, they apply to each of the terms in
(4), and the following statements hold under both quantization models:

(i) Under the hypotheses in Theorem 1,

Tr(IM1,...,Mn(θ)) ≤ nI02k .

(ii) Under the hypotheses in Theorem 2,

Tr(IM1,...,Mn(θ)) ≤ nCI0k
2
p .

13
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Consider the squared error risk in estimating θ:

E‖θ − θ̂‖22 =
d∑
i=1

E[(θi − θ̂i)2] .

In order to lower bound this risk, we will use the van Trees inequality (Gill and Levit, 1995).
Suppose we have a prior µi for the parameter θi. For convenience denote M = (M1, . . . ,Mn).
The van Trees inequality for the component θi gives∫ B

−B
E[(θ̂i(M)− θi)2]µi(θi)dθi ≥

1∫ B
−B[IM (θ)]i,iµi(θi)dθi + I(µi)

, (5)

where I(µi) =
∫ B
−B

µ′i(θ)
2

µi(θ)
dθ is the Fisher information of the prior µi. Note that the required

regularity condition E[Sθi(M)] = 0 used in (5) holds trivially since the expectation over M
is just a finite sum:

E[Sθi(M)] =
∑
m

∂

∂θi
p(m|θ) =

∂

∂θi

∑
m

p(m|θ) = 0 .

The prior µi can be chosen to minimize this Fisher information and achieve I(µi) = π2/B2

(Borovkov, 1998). Let θ = (θ1, · · · , θd) and µ(θ) =
∏
i µi(θi). By the van Trees inequality

(5) on one dimension,∫
[−B,B]d

E[(θ̂i(M)− θi)2]µ(θ)dθ =

∫
[−B,B]d−1

(∫ B

−B
E[(θ̂i(M)− θi)2]µi(θi)dθi

)∏
j 6=i

[µj(θj)dθj ]

≥
∫

[−B,B]d−1

1∫ B
−B[IM (θ)]i,iµi(θi)dθi + I(µi)

∏
j 6=i

[µj(θj)dθj ]

≥ 1∫
[−B,B]d−1

[∫ B
−B[IM (θ)]i,iµi(θi)dθi + I(µi)

]∏
j 6=i[µj(θj)dθj ]

=
1∫

[−B,B]d [IM (θ)]i,iµ(θ)dθ + π2/B2
,

where the last inequality follows from the convexity of x 7→ 1/x for x > 0. Consequently,∫
[−B,B]d

d∑
i=1

E[(θi − θ̂i)2]µ(θ)dθ ≥
d∑
i=1

1∫
[−B,B]d [IM (θ)]i,iµ(θ)dθ + π2/B2

≥ d 1∑d
i=1

1
d

∫
[−B,B]d [IM (θ)]i,iµ(θ)dθ + π2/B2

=
d2∫

[−B,B]d Tr(IM (θ))µ(θ)dθ + dπ2/B2
,

where the second inequality is again due to the convexity of x 7→ 1/x for x > 0. Therefore,

sup
θ∈Θ

E‖θ̂(M)− θ‖2 ≥ d2

supθ∈Θ Tr(IM (θ)) + dπ2

B2

. (6)
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We could have equivalently used the multivariate version of the van Trees inequality (Gill
and Levit, 1995) to arrive at the same result, but we have used the single-variable version
in each coordinate instead in order to simplify the required regularity conditions.

Combining (6) with (i) and (ii) proves the theorem.

3.3 Applications to Common Statistical Models

Using the bounds in Section 2.2, Theorem 3 gives lower bounds on the minimax risk for the
distributed estimation of θ under common statistical models. We summarize these results
in the following corollaries.

Corollary 5 (Gaussian location model) Let X ∼ N (θ, σ2Id) with [−B,B]d ⊂ Θ. For
nB2 min{k, d} ≥ dσ2, we have

sup
θ∈Θ

E‖θ̂ − θ‖22 ≥ Cσ2 max

{
d2

nk
,
d

n

}
for any communication protocol Π of type ΠInd, ΠSeq, or ΠBB and any estimator θ̂, where
C > 0 is a universal constant independent of n, k, d, σ2, B.

Note that the condition nB2 min{k, d} ≥ dσ2 in the above corollary is a weak condition
that ensures that we can ignore the second term in the denominator of (6). For fixed B, σ,
this condition is weaker than just assuming that n is at least order d, which is required
for a consistent estimation anyways. We will make similar assumptions in the subsequent
corollaries.

The corollary recovers the results in Zhang et al. (2013); Garg et al. (2014) (without
logarithmic factors in the risk) and the corresponding result from Han et al. (2018b) without
the condition k ≥ log d. An estimator using the blackboard communication protocol that
achieves this result is given in Garg et al. (2014).

Corollary 6 (Gaussian covariance estimation) Suppose that X ∼ N (0,diag(θ1, . . . , θd))

with [σ2
min, σ

2
max]d ⊂ Θ. Then for n

(
σ2

max − σ2
min

)2
min{k2, d} ≥ dσ4

min, we have

sup
θ∈Θ

E‖θ̂ − θ‖22 ≥ Cσ4
min max

{
d2

nk2
,
d

n

}
for any communication protocol Π of type ΠInd, ΠSeq, or ΠBB and any estimator θ̂, where
C > 0 is a universal constant independent of n, k, d, σmin, σmax.

The bound in Corollary 6 is new, and it is unknown whether or not it is order optimal.

Corollary 7 (Distribution estimation) Suppose that X = {1, . . . , d+ 1} and that

f(x|θ) = θx .

Let Θ be the probability simplex with d+ 1 variables. For nmin{2k, d} ≥ d2, we have

sup
θ∈Θ

E‖θ̂ − θ‖22 ≥ C max

{
d

n2k
,

1

n

}
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for any communication protocol Π of type ΠInd, ΠSeq, or ΠBB and any estimator θ̂, where
C > 0 is a universal constant independent of n, k, d.

This result recovers the corresponding result in Han et al. (2018b) and matches the upper
bound from the achievable scheme developed in Han et al. (2018a) (when the performance
of the scheme is evaluated under `22 loss rather than `1).

Corollary 8 (Product Bernoulli model) Suppose that X = (X1, . . . , Xd) ∼
∏d
i=1 Bern(θi).

If Θ = [0, 1]d, then for nmin{k, d} ≥ d we have

sup
θ∈Θ

E‖θ̂ − θ‖22 ≥ C max

{
d2

nk
,
d

n

}
for any communication protocol Π of type of type ΠInd, ΠSeq, or ΠBB and any estimator θ̂,
where C > 0 is a universal constant independent of n, k, d.

If Θ = {(θ1, . . . , θd) ∈ [0, 1]d :
∑d

i=1 θi = 1}, then for nmin{2k, d} ≥ d2, we get instead

sup
θ∈Θ

E‖θ̂ − θ‖22 ≥ C max

{
d

n2k
,

1

n

}
.

The corollary recovers the corresponding result from Han et al. (2018b) and matches
the upper bound from the achievable scheme presented in the same paper.

4. Distributed Estimation of Non-Parametric Densities

Finally, we turn to the case where the Xi are drawn independently from some probability
distribution on [0, 1] with density f with respect to the Lebesgue measure. We will assume
that f is Hölder continuous with smoothness parameter s ∈ (0, 1] and constant L, i.e.,

|f(x)− f(y)| ≤ L|x− y|s, ∀x, y ∈ [0, 1].

Let HsL([0, 1]) be the space of all such densities. We are interested in characterizing the
minimax risk

inf
(Π,f̂)

sup
f∈HsL([0,1])

E‖f − f̂‖22

where the estimators f̂ are functions of the transcript Y . We have the following theorem.

Theorem 4 For any blackboard communication protocol Π ∈ ΠBB and estimator f̂(Y ),

sup
f∈HsL([0,1])

E‖f − f̂‖22 ≥ cmax{n−
2s

2s+1 , (n2k)−
s
s+1 } .

Moreover, this rate is achieved by an independent protocol Π? ∈ ΠInd so that

inf
f̂ .Π∈ΠInd

sup
f∈HsL([0,1])

E‖f − f̂‖22 ≤ C max{n−
2s

2s+1 , (n2k)−
s
s+1 },

where c, C are constants that depend only on s, L.
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Proof We start with the lower bound. Fix a bandwidth h = 1/d for some integer d, and
consider a parametric subset of the densities in HsL([0, 1]) that are of the form

fP (x) = 1 +
d∑
i=1

pi − h
h

g

(
x− xi
h

)
where P = (p1, . . . , pd), xi = (i−1)h, and g is a smooth bump function that vanishes outside
[0, 1] and has

∫
g(x)dx = 1. The function fP is in HsL([0, 1]) provided that maxi∈[d] |pi−h| ≤

c0h
s+1 for some constant c0. Let

P =

{
P :

∑
i

pi = 1, pi ≥ 0, |pi − h| ≤ c0h
s+1

}
.

For P ∈ P and any estimator f̂ define P̂ = (p̂1 . . . , p̂d) by p̂i =
∫ xi+1

xi
f̂(x)dx. By Cauchy-

Schwarz, we then have

E‖fP − f̂‖22 = E
[∫ 1

0
(fP (x)− f(x))2dx

]
= E

[
d∑
i=1

∫ xi−1

xi

(fP (x)− f̂(x))2dx

]

≥ d E

[
d∑
i=1

(∫ xi−1

xi

(fP (x)− f̂(x))dx

)2
]

= d E‖P − P̂‖22 . (7)

By the proofs of Theorem 1 and Corollary 7, the quantity in (7) can be upper bounded

provided that h is not too small. In particular we can pick hs+1 = (nmin{2k, d})−
1
2 so that

sup
P∈P

E‖fP − f̂‖22 ≥ cmax{n−
2s

2s+1 , (n2k)−
s
s+1 }

as desired.
For the achievability side note that

E‖f − f̂‖22 ≤ 2E‖f − fh‖22 + 2E‖fh − f̂‖22

and fh can be chosen to be a piece-wise constant function of the form

fh(x) =

d∑
i=1

pi
h

1(x ∈ [xi, xi+1)),

which satisfies
‖f − fh‖22 ≤ C0h

2s

for a constant C0 that depends only on L. Choosing

f̂(x) =
d∑
i=1

p̂i
h

1(x ∈ [xi, xi+1))
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for some P̂ = (p̂1, . . . , p̂d) we get

E‖f − f̂‖22 ≤ 2C0h
2s + 2dE‖P − P̂‖22 .

We use the following procedure for defining the estimator P̂ along with the communication
protocol. See also Han et al. (2018b).

(i) Without loss of generality we assume d ≥ 2k. Divide the indices i = 1, . . . , d into
m = d

2k−1
groups of 2k − 1 indices each. We assume m is an integer for simplicity.

(ii) Each sample Xj gets associated with one group of indices such that there are n
m

samples associated with each group.

(iii) Each sample Xj is examined by its node, and if it matches one of the 2k − 1 different
outcomes associated with the node’s group, then the sample is communicated exactly
using a unique k-bit string. If the sample is not one of the 2k− 1 outcomes associated
with the node’s group then it is ignored and we can use the 2kth unique k-bit string
to signal this outcome.

(iv) The estimate of each symbol probability p̂i is then the empirical frequency of that
symbol being communicated to the centralized estimator, normalized by the effective
sample size n

m instead of the original sample size n.

This estimator achieves

E‖P − P̂‖22 =
d∑
i=1

m

n
pi(1− pi) ≤

m

n
≤ C1

d

nmin{2k, d}
,

and therefore

E‖f − f̂‖22 ≤ 2C0h
2s + 2C1

d2

nmin{2k, d}
.

Optimizing over h by setting h2(s+1) = (nmin{2k, d})−1 gives the final result.
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Appendix A. Proofs of Theorems 1 and 2

Consider some m and fix its likelihood t = p(m|θ). We will proceed by upper-bounding
‖E[Sθ(X)|m]‖2 from the right-hand side of (1). Note that

E[Sθ(X)|m] =
E[Sθ(X)bm(X)]

t

18
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where E[bm(X)] = t and 0 ≤ bm(x) ≤ 1 for all x ∈ X . We use 〈·, ·〉 to denote the usual
inner product. Let U be a d-by-d orthogonal matrix with columns u1, u2, . . . , ud and whose
first column is given by the unit vector

u1 =
1

‖E[Sθ(X)|m]‖
E[Sθ(X)|m] .

We have

tE[Sθ(X)|m] =

∫
Sθ(x)bm(x)f(x|θ)dν(x)

=

∫ ( d∑
i=1

ui〈ui, Sθ(x)〉

)
bm(x)f(x|θ)dν(x)

=
d∑
i=1

(∫
〈ui, Sθ(x)〉bm(x)f(x|θ)dν(x)

)
ui

and since u2, . . . , ud are all orthogonal to E[Sθ(X)|m],

E[Sθ(X)|m] =
1

t

(∫
〈u1, Sθ(x)〉bm(x)f(x|θ)dν(x)

)
u1 .

Therefore,

‖E[Sθ(X)|m]‖2 =
1

t
E[〈u1, Sθ(X)〉bm(X)] . (8)

A.1 Proof of Theorem 1

To finish the proof of Theorem 1, note that the upper bound Tr(IM (θ)) ≤ Tr(IX(θ)) follows
easily from the data processing inequality for Fisher information Zamir (1998). Using (8)
and the Cauchy-Schwarz inequality,

t‖E[Sθ(X)|m]‖22 =
1

t
(E[〈u1, Sθ(X)〉bm(X)])2

≤ 1

t
E[〈u1, Sθ(X)〉2]E[bm(X)2]

≤ 1

t
E[〈u1, Sθ(X)〉2]E[bm(X)]

= E[〈u1, Sθ(X)〉2] .

So if Var〈u1, Sθ(X)〉 ≤ I0, then because score functions have zero mean,

t‖E[Sθ(X)|m]‖2 ≤ I0 .

Therefore by Lemma 2,

Tr(IM (θ)) ≤ 2kI0 .
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A.2 Proof of Theorem 2

Turning to Theorem 2, we now assume that for some p ≥ 1 and any unit vector u ∈ Rd, the
random vector 〈u, Sθ(X)〉 has finite squared Ψp norm at most I0. For p = 1 or p = 2, this
is the common assumption that Sθ(X) is sub-exponential or sub-Gaussian, respectively, as
a vector.

In particular ‖〈u1, Sθ(X)〉‖2Ψp ≤ I0, and the convexity of x 7→ exp(|x|p) gives

2 ≥ E[exp(|〈u1, Sθ(X)〉|p/Ip/20 )]

≥ E[bm(X) exp(|〈u1, Sθ(X)〉|p/Ip/20 )]

= tE[exp(|〈u1, Sθ(X)〉|p/Ip/20 |m]

≥ t exp
(
|E[〈u1, Sθ(X)〉|m]|p/Ip/20

)
so that

E[〈u1, Sθ(X)〉|m] ≤
√
I0

(
log

(
2

t

)) 1
p

.

Therefore by (8),

‖E[Sθ(X)|m]‖2 ≤
√
I0

(
log

(
2

t

)) 1
p

. (9)

By Lemma 2,

Tr(IM (θ)) =
∑
m

p(m|θ)‖E[Sθ(X)|m]‖2 ,

and therefore by (9),

Tr(IM (θ)) ≤ I0

∑
m

p(m|θ)
(

log

(
2

p(m|θ)

)) 2
p

.

To bound this expression, let φ be the upper concave envelope of x 7→ x
(
log 2

x

) 2
p on [0, 1].

We have

Tr(IM (θ)) ≤ I02k
∑
m

1

2k
φ(p(m|θ))

≤ I02kφ

(∑
m

1

2k
p(m|θ)

)

= I02kφ

(
1

2k

)
. (10)

It can be easily checked that φ(x) = x
(
log 2

x

) 2
p for 0 < x ≤ 1/2, and therefore

Tr(IM (θ)) ≤ I0

(
log 2k+1

) 2
p

≤ I0(k + 1)
2
p

≤ 4I0k
2
p .
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Appendix B. Proof of Corollaries 1 through 4

In this appendix we provide proofs of Corollaries 1, 2, 3, and 4.

B.1 Proof of Corollary 1

The score function for the Gaussian location model is

Sθ(x) =
1

σ2
(x− θ)

so that Sθ(X) ∼ N
(
0, 1

σ2 Id
)
. Therefore 〈u, Sθ(X)〉 is a mean-zero Gaussian with variance

1/σ2 for any unit vector u ∈ Rd. Hence, the Ψ2 norm of the projected score function vector
is

‖〈u, Sθ(X)〉‖Ψ2 =
1

σ

√
8

3

since it can be checked that ∫
σ√
2π
e−

σ2x2

2 e(
x
c )

2

dx = 2

when c = 1
σ

√
8
3 . By Theorem 2,

Tr(IM (θ)) ≤ min

{
d

σ2
, C

k

σ2

}
where

C =
32

3
.

B.2 Proof of Corollary 2

The components of the score function are

Sθi(x) =
x2
i

2θ2
i

− 1

2θi
.

Therefore each independent component Sθi(X) is a shifted, scaled verson of a chi-squared
distributed random variable χ2

1 with one degree of freedom. The Ψ1 norm of each component
Sθi(X) can be bounded by

‖Sθi(X)‖Ψ1 ≤
2

σ2
min

. (11)

This follows since the pdf of Y = Sθi(X) is

fY (y) =
2θi√
2π

exp
(
−(θiy + 1

2)
)

√
2θiy + 1
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for y ≥ − 1
2θi

, and we have∫ ∞
− 1

2θi

2θi√
2π

exp
(
−(θiy + 1

2)
)

√
2θiy + 1

exp
∣∣∣ y
K

∣∣∣ dy =

√
θi
π

∫ ∞
0

1
√
y

exp

(
−θiy +

∣∣∣∣∣y −
1

2θi

K

∣∣∣∣∣
)
dy

≤
√
θi
π

∫ ∞
0

1
√
y

exp

(
−θiy +

(
y + 1

2θi

K

))
dy

=

√
θi
π

exp

(
1

2θiK

)∫ ∞
0

1
√
y

exp

(
−
(
θi −

1

K

)
y

)
dy .

By picking K = 2
θi

and using the identity∫ ∞
0

1
√
y
e−cydy =

√
π/c

for c > 0, we get

E
[
exp

∣∣∣∣YK
∣∣∣∣] ≤ √2e

1
4 ≤ 2 .

This proves (11). We next turn our attention to bounding

‖〈u, Sθ(X)〉‖Ψ1

for any unit vector u = (v1, . . . , vd) ∈ Rd. To this end note that Markov’s inequality implies

P(|Y | ≥ t) = P
(
e
|Y |
K ≥ e

t
K

)
≤ 2e−

t
K , (12)

and we have the following bound on the moments of Y :

E[|Y |p] =

∫ ∞
0

P(|Y | ≥ t)ptp−1dt

≤
∫ ∞

0
2e−

t
K ptp−1dt

≤ 2p

∫ ∞
0

e−
t
K tp−1dt = 2Kp · p! . (13)

This leads to a bound on the moment generating function for Y as follows:

E
[
e
uiY

K

]
≤ 1 + E

[
uiY

K

]
+

∞∑
p=2

E
[

1

p!

(
uiY

K

)p]

≤ 1 +

∞∑
p=2

2|ui|p = 1 +
2u2

i

1− |ui|
≤ e

2u2i
1−|ui| (14)

for |ui| < 1. Applying (14) to the moment generating function for 〈u, Sθ(X)〉 gives

E

[
exp

(
d∑
i=1

uiSθi(X)

K

)]
= exp

(
ui0Sθi0 (X)

K

)∏
i 6=i0

exp

(
uiSθi(X)

K

)
≤ 2e2(2+

√
2), (15)
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where i0 is the only index such that |ui0 | > 1√
2

(if one exists). Thus

E

[
exp

∣∣∣∣∣
d∑
i=1

uiSθi(X)

K

∣∣∣∣∣
]

≤ E

[
exp

(
d∑
i=1

uiSθi(X)

K

)]
+ E

[
exp

(
d∑
i=1

−uiSθi(X)

K

)]
≤ 4e2(2+

√
2), (16)

and by the concavity of x 7→ xα for x ≥ 0 and α ∈ [0, 1],

E

[
exp

∣∣∣∣∣
d∑
i=1

uiSθi(X)

K/α

∣∣∣∣∣
]
≤

(
E

[
exp

∣∣∣∣∣
d∑
i=1

uiSθi(X)

K

∣∣∣∣∣
])α

≤ (4e2(2+
√

2))α = 2, (17)

where α = log 2

log 4+2(2+
√

2)
. Hence, we see that

‖〈u, Sθ(X)〉‖Ψ1 ≤
2

σ2
minα

,

and using Theorem 2,

Tr(IM (θ)) ≤ 16(log 4 + 2(2 +
√

2))2

(log 2)2

(
k

σ2
min

)2

.

For the other bound note that Var(Sθi(X)) = 1
2θ2i

so that

Tr(IX(θ)) ≤ d

2σ4
min

.

B.3 Proof of Corollary 3

Note that

θd+1 = 1−
d∑
i=1

θi,

and

Sθi(x) =


1
θi
, x = i

− 1
θd+1

, x = d+ 1

0, otherwise
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for i = 1, . . . , d. Recall that by assumption we are restricting our attention to 1
4d ≤ θi ≤

1
2d

for i = 1, . . . , d. Then for any unit vector u = (v1, . . . , vd),

Var(〈u, Sθ(X)〉) =

d+1∑
x=1

θx

(
d∑
i=1

uiSθi(x)

)2

= θd+1
1

θ2
d+1

(
d∑
i=1

ui

)2

+
d∑

x=1

θx

(
d∑
i=1

uiSθi(x)

)2

≤ 2d+

d∑
x=1

θxu
2
x

1

θ2
x

≤ 6d .

Finally by Theorem 1,

Tr(IM (θ)) ≤ 6 min{d2, d2k} .

B.4 Proof of Corollary 4

With the product Bernoulli model

Sθi(x) =

{
1
θi
, xi = 1

− 1
1−θi , xi = 0

,

so that in the case Θ = [1/2− ε, 1/2 + ε]d,

E

[
exp

[(
Sθi(X)

K

)2
]]
≤ exp

(
1

(1
2 − ε)2K2

)
,

and

‖Sθi(X)‖Ψ2 ≤
1

(1
2 − ε)

√
log 2

.

By the rotation invariance of the Ψ2 norm Vershynin (2010), this implies

‖〈u, Sθi(X)〉‖Ψ2 ≤
C

(1
2 − ε)

√
log 2

for some absolute constant C. Thus by Theorem 2,

Tr(IM (θ)) ≤ 4

(
C

(1
2 − ε)

√
log 2

)2

k .

For the other bound,

Tr(IX(θ)) ≤ d

(
1

1
2 − ε

)2

.
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Now consider the sparse case Θ = [(1
2 − ε)

1
d , (

1
2 + ε)1

d ]d. We have

Var (Sθi(X)) =
1

θ2
i

θi +

(
−1

1− θi

)2

(1− θi)

=
1

θi
+

1

1− θi

≤ 2d
1
2 − ε

,

and therefore by independence,

Var (〈u, Sθ(X)〉) ≤ 2d
1
2 − ε

.

Thus by Theorem 1

Tr(IM (θ)) ≤ 2d
1
2 − ε

min{d, 2k} .

Appendix C. Proof of Theorem 3 with Blackboard Model

In order to lower bound the minimax risk under the blackboard model, we will proceed by
writing down the Fisher information from the transcript Y that is described in Section 3.
Let bv,y(xlv) = bv(xlv) if the path τ(y) takes the “1” branch after node v, and bv,y(xlv) =
1− bv(xlv) otherwise. The probability distribution of Y can be written as

P(Y = y) = E

 ∏
v∈τ(y)

bv,y(Xlv)

 ,
so that by the independence of the Xi,

P(Y = y) =
n∏
i=1

E

 ∏
v∈τ(y) : lv=i

bv,y(Xi)


=

n∏
i=1

E [pi,y(Xi)] ,

where pi,y(xi) =
∏
v∈τ(y) : lv=i bv,y(xi). The score for component θi is therefore

∂

∂θi
logP(Y = y) =

n∑
j=1

E[Sθi(Xj)pj,y(Xj)]

E[pj,y(Xj)]
.

To get the above display, integration and differentiation have to be interchanged just like
in Lemma 1. The Fisher information from Y for estimating the component θi is then

E

[(
∂

∂θi
logP(Y = y)

)2
]

=
∑
j,k,y

P(Y = y)
E[Sθi(Xj)pj,y(Xj)]E[Sθi(Xk)pk,y(Xk)]

E[pj,y(Xj)]E[pk,y(Xk)]
.
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Note that when j 6= k the terms within this summation are zero:∑
y

P(Y = y)
E[Sθi(Xj)pj,y(Xj)]E[Sθi(Xk)pk,y(Xk)]

E[pj,y(Xj)]E[pk,y(Xk)]

= E

[
Sθi(Xj)Sθi(Xk)

∑
y

n∏
l=1

pl,y(Xl)

]
= E [Sθi(Xj)Sθi(Xk)] = 0 . (18)

The step in (18) follows since
∏n
l=1 pl,y(xl) describes the probability that Y = y for fixed

samples x1, . . . , xn, and thus
∑

y

∏n
l=1 pl,y(xl) = 1.

A related nontrivial identity, that∑
y

∏
i 6=j

E[pi,y(X)] = 2k (19)

for each j ∈ [n], will be required later in the proof. For a tree-based proof of this fact see
Han et al. (2018b).

Returning to the Fisher information from Y we have that

d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]

=
∑
y

P(Y = y)
∑
j

(
E[Sθi(Xj)pj,y(Xj)]

E[pj,y(Xj)]

)2

. (20)

Let Ej,y denote the expectation with respect to the new density

pj,y(xj)f(xj |θ)
E[pj,y(Xj)]

,

then we can simplify (20) as

d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]

=
∑
y

P(Y = y)
∑
j

‖Ej,y[Sθ(Xj)]‖22 . (21)

(i) Suppose that ‖〈u, Sθ(X)〉‖2Ψp ≤ I0 holds for any unit vector u ∈ Rd. Then letting

u =
Ej,y[Sθ(X)]

‖Ej,y[Sθ(X)]‖2
,

by the convexity of x 7→ exp(|x|p) we have

2 ≥ E[exp(|〈u, Sθ(X)〉|p/Ip/20 )]

≥ E[pj,y(X) exp(|〈u, Sθ(X)〉|p/Ip/20 )]

= E[pj,y(X)]Ej,y[exp(|〈u, Sθ(X)〉|p/Ip/20 )]

≥ E[pj,y(X)] exp
(∣∣Ej,y[〈u, Sθ(X)〉]

∣∣p/Ip/20

)
≥ E[pj,y(X)] exp

(
Ej,y[〈u, Sθ(X)〉]p/Ip/20

)
,
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and thus

‖Ej,y[Sθ(Xj)]‖2 ≤ I1/2
0

(
log

2

E[pj,y(X)]

) 1
p

.

Continuing from (21),

d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]

≤ I0

∑
y

P(Y = y)
∑
j

(
log

2

E[pj,y(X)]

) 2
p

= I0

∑
y,j

∏
i 6=j

E[pi,y(X)]

E[pj,y(X)]

(
log

2

E[pj,y(X)]

) 2
p

(22)

Finally, by upper bounding (22) with the upper concave envelope φ of x 7→ x
(
log 2

x

) 2
p

on [0, 1], and then combining (19) with Jensen’s inequality:

d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]
≤ I0

∑
y,j

∏
i 6=j

E[pi,y(X)]

φ (E[pj,y(X)])

≤ I0

∑
j

2kφ

(∑
y

1

2k
P(Y = y)

)

= I0n(k + 1)
2
p

≤ 4I0nk
2
p .

(ii) Now suppose we instead just have the finite variance condition that

Var(〈u, Sθ(X)〉) ≤ I0

for any unit vector u ∈ Rd. Picking again

u =
Ej,y[Sθ(X)]

‖Ej,y[Sθ(X)]‖2
,

the Cauchy-Schwarz inequality implies

E[pj,y(X)]‖Ej,y[Sθ(X)]‖22 =
1

E[pj,y(X)]
(E[〈u, Sθ(X)〉pj,y(X)])2

≤ 1

E[pj,y(X)]
E[〈u, Sθ(X)〉2]E[pj,y(X)2]

≤ 1

E[pj,y(X)]
E[〈u, Sθ(X)〉2]E[pj,y(X)]

= E[〈u, Sθ(X)〉2] ≤ I0 .
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Together with (21) this gives

d∑
i=1

E

[(
∂

∂θi
logP(Y = y)

)2
]

=
∑
y

P(Y = y)
∑
j

‖Ej,y[Sθ(Xj)]‖2

≤
∑
j,y

I0

∏
i 6=j

E[pi,y(X)]

= I0n2k .

The last equality follows from (19).

In both the sub-Gaussian (i) and finite variance (ii) cases, we apply the van Trees
inequality just as in the proof for the independent or sequential models to arrive at the final
result.
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