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Abstract

We study the question of whether parallelization in the exploration of the feasible set can
be used to speed up convex optimization, in the local oracle model of computation and in
the high-dimensional regime. We show that the answer is negative for both deterministic
and randomized algorithms applied to essentially any of the interesting geometries and
nonsmooth, weakly-smooth, or smooth objective functions. In particular, we show that it
is not possible to obtain a polylogarithmic (in the sequential complexity of the problem)
number of parallel rounds with a polynomial (in the dimension) number of queries per
round. In the majority of these settings and when the dimension of the space is polynomial
in the inverse target accuracy, our lower bounds match the oracle complexity of sequential
convex optimization, up to at most a logarithmic factor in the dimension, which makes
them (nearly) tight. Another conceptual contribution of our work is in providing a general
and streamlined framework for proving lower bounds in the setting of parallel convex opti-
mization. Prior to our work, lower bounds for parallel convex optimization algorithms were
only known in a small fraction of the settings considered in this paper, mainly applying to
Euclidean (`2) and `∞ spaces.

Keywords: lower bounds, convex optimization, parallel algorithms, randomized algo-
rithms, non-Euclidean optimization

1. Introduction

Given the scale of modern data sets resulting in extremely large problem instances, an
attractive approach to reducing the time required for performing computational tasks is via
parallelization. Indeed, many classical discrete optimization problems are well-known to be
solvable in polylogarithmic number of rounds of parallel computation, with polynomially-
bounded number of processors.
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When it comes to convex optimization, parallelization is in general highly beneficial
in computing local function information (at a single point from the feasible set), such as
its gradient or Hessian, and can generally be exploited to improve the performance of
optimization algorithms. However, a natural barrier for further speedups is parallelizing
the exploration of the feasible set. This leads to the following question:

Is it possible to reduce the complexity of convex optimization via parallelization?

The notion of complexity considered in this paper is the local oracle complexity, and it
is defined as the number of adaptive rounds over which an algorithm needs to query an
arbitrary oracle providing local information about the function before reaching a solution
with a specified accuracy. Examples of local function information include its value, gradient,
Hessian, or a Taylor approximation at the queried point from the feasible set. Most of
the commonly used optimization methods, such as, e.g., gradient descent, mirror descent,
Newton’s method, the ellipsoid method, Frank-Wolfe, and Nesterov’s accelerated method,
all work in this local oracle model.

The study of parallel oracle complexity of convex optimization was initiated by Ne-
mirovski (1994). In this work, it was shown that for deterministic nonsmooth Lipschitz-
continuous optimization over the `∞ ball, it is not possible to attain polylogarithmic parallel
round complexity with polynomially many processors. Since the work of Nemirovski (1994)
and until very recently, there was no further progress in obtaining lower bounds for other
settings, such as, e.g., the setting of randomized algorithms and weakly/strongly smooth
optimization over more general feasible sets.

Very recently, motivated by the applications in online learning, local differential privacy,
and adaptive data analysis, lower bounds for parallel convex optimization over the Euclidean
space have been obtained (Smith et al., 2017; Balkanski and Singer, 2018; Woodworth et al.,
2018; Duchi et al., 2018). Our main result shows that it is not possible to improve the
oracle complexity of convex optimization via parallelization, for deterministic or randomized
algorithms, different levels of smoothness, and essentially any of the interesting geometries—
general `p spaces for p ∈ [1,∞], together with their matrix spectral analogues, known as
Schatten spaces, Schp. The resulting lower bounds are robust to enlargements of the feasible
set, and thus apply in the unconstrained case as well. This is a much more general setting
than previously addressed in the literature. The general `p settings considered in this
paper are of fundamental interest. For example, `1-setups naturally appear in sparsity-
oriented learning applications; Sch1 (a.k.a. nuclear norm) appears in matrix completion
problems (Nesterov and Nemirovski, 2013); finally, smooth `∞-setups have been used in the
design of fast algorithms for network flow problems (Lee et al., 2013; Kelner et al., 2014;
Sherman, 2017).

1.1. Our Results

Our results rule out the possibility of improvements by parallelization, showing that, in
high dimensions, sequential methods are already optimal for any amount of parallelization
that is polynomial in the dimension.1 Our approach is to provide a generic lower bound

1. Ruling out parallelization via an exponential number of queries is unlikely, since such a high number of
queries would, in general, allow an algorithm to construct an ε-net over the feasible set and choose the
best point from it.
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Table 1: High probability lower bounds for parallel convex optimization, in the `dp and Schdp

setups. Here, d denotes the dimension, ε denotes the accuracy, K denotes the
number of parallel queries per round, and 1 − γ denotes the confidence. Except
for (∗), the high dimensional regime requires d = Ω(poly(1/ε, ln(K/γ))).

for parallel oracle algorithms and use reductions between different classes of optimization
problems. Below, ε > 0 is the target accuracy, K is the number of parallel queries per
round, and d is the dimension.

Theorem 1 (Informal) Unless K is exponentially large in the dimension d, any (possibly
randomized) algorithm working in the local oracle model and querying up to K points per
round, when applied to the following classes of convex optimization problems over `p balls
and Schp balls:

• Nonsmooth (Lipschitz-continuous) minimization for 1 < p <∞, d = Ω(poly( 1
εp+p/(p−1) ));

• Smooth (Lipschitz-continuous gradient) minimization for 2 ≤ p ≤ ∞, d = Ω(poly(1
ε ));

• Weakly-smooth (Hölder-continuous gradient) minimization for 2 ≤ p ≤ ∞, d =
Ω(poly(1

ε ))

takes asymptotically at least as many rounds to reach an ε-approximate solution as it would
take without any parallelization, up to, at most, a 1/ln(d) factor.

As mentioned before, our result easily extends to unconstrained optimization over `p normed
spaces. The small subset of the possible cases not included in the theorem are off by
small factors and are still very informative: they rule out the possibility of any significant
improvement in the round complexity via parallelization (see Table 1 and the discussions
in Sections 1.2 and 3).

To present the results in a unified manner, we use the definition of weakly-smooth
functions, i.e., functions with κ-Hölder-continuous gradient, which interpolates between the
classes of nonsmooth (κ = 0) and smooth functions (κ = 1) (see Section 1.4 for a precise
definition). These two special cases are summarized in Table 1. For the precise statements
encompassing the weakly-smooth cases (κ ∈ (0, 1)) as well as the specific high-dimensional
regime for d, see Section 3.

The largest gap obtained by our results is in the nonsmooth `1-setup. Here, the Ω(1/ε2/3)
bound comes from a reduction from the `∞ case, which explains the discontinuity in the
first row of the table. Further, it is impossible to apply the same strategy to this setup as
in the other `p-setups, due to the loss of concentration on the `1-ball (see the discussion in
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Section 3.1.1). Finally, we also provide lower bounds for nonstandard `q/`p setups, where
the function is regular w.r.t. ‖ · ‖p, while the feasible set is an `q-ball. Nonstandard settings
allow for more flexible exploitation of the feasible set geometry and function regularity;
examples and applications include the dual of sparse PCA (d’Aspremont, 2008, Section 4.1)
and optimization formulations for sampling strategies in linear inverse problems (Boyer
et al., 2014, Section 4.2.2.). For a description of the state of the art on the complexity of
nonstandard settings we refer to the open problem of Guzmán (2015). For these nonstandard
settings, we obtain lower bounds of the following type: given any p, q such that 1 ≤ p < q
and the radius of the `q ball is 1/d1/p−1/q (so that the `q ball can be inscribed in the unit
`p ball), the lower bound matches the lower bound of the standard `p setting from Table 1.
As a special case, this result gives an Ω( 1

ε2
) lower bound for nonsmooth `1 minimization

over any `q-ball with q > 1 that is inscribed in the unit `1-ball. In our view, this example
provides strong evidence towards stronger lower bounds for the standard `1-setting.

1.2. Overview of the Techniques

A principled approach to establish lower complexity bounds for convex optimization (see,
e.g., Nemirovsky and Yudin 1983; Guzmán and Nemirovski 2015; Woodworth et al. 2018;
Balkanski and Singer 2018) is to construct a family of convex functions defined as the
maximum of affine functions. Each affine function fi is defined by its direction vector zi

and offset δi. Examples of the direction vectors that are typically used in these works include
signed orthant vectors, signed Hadamard bases, uniform vectors from the unit sphere and
scaled Rademacher sequences. At an intuitive level, a careful choice of these affine functions
prevents any algorithm from learning more than one direction vector zi per adaptive round.
At the same time, an appropriately chosen set of affine functions ensures that the algorithm
needs to learn all of the vectors zi before being able to construct an ε-approximate solution.
We take the same approach in this paper.

Most relevant to our work are the recent lower bounds for parallel convex optimization
over Euclidean (`2) spaces (Balkanski and Singer, 2018; Woodworth et al., 2018; Bubeck
et al., 2019), which are tight in the large-scale regime. In these works, the argument about
learning one vector zi at a time is derived by an appropriate concentration inequality,
while the upper bound on the optimal objective value is obtained from a good candidate
solution, built as a combination of the random vectors. However, there is no obvious way of
generalizing the lower bounds for the Euclidean setting to the more general `p geometries.
For example, in the `p-setup for p > 2, these arguments only lead to a lower bound of
Ω(1/ε2), which is far from the sequential complexity Θ(1/εp). On the other hand, the use
of relationships between the `p norms leads to uninformative lower bounds. In particular,
for p ∈ [1, 2), the appropriate application of inequalities relating `p norms needs to be
done for both feasible sets (relating ‖ · ‖p and ‖ · ‖2) and the Lipschitz (or smoothness)
constants (relating ‖ ·‖p∗ and ‖ ·‖2, where p∗ = p

p−1). Unless p ≈ 2, this approach leads to a
degradation in the lower bound by a polynomial factor in d. For example, if `2 case is used
to infer a lower bound for the `1 setup, the resulting lower bound would be of the order
1/(dε2) and 1/(d

√
ε), for nonsmooth and smooth cases, respectively. Such quantities are

not only far from the sequential lower bounds Ω(ln(d)/ε2) and Ω(1/
√
ε) for the nonsmooth
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and smooth settings, respectively, but they are also uninformative: the existing parallel
lower bounds for the `2 setup only apply in the high-dimensional regime d = Ω(poly(1/ε)).

Our lower bounds are based on families of random vectors z1, . . . , zM which: (i) satisfy
concentration along their marginals, so the “learning one vector per round” argument ap-
plies; and (ii) lead to a large negative optimal value via a minimax duality argument. Each
particular regime requires different constructions of the random vectors that we describe in
Section 3. However, all lower bounds are obtained from a general result (Theorem 3) that
shows that (i) and (ii) suffice to get a lower bound for parallel convex optimization and
completely streamlines the analysis.

1.3. Related Work

As mentioned earlier, until very recently, the literature on black-box parallel convex opti-
mization was extremely scarce. Here we summarize the main lines of related work.

Worst-case Lower Bounds for Sequential Convex Optimization. Classical theory of (sequen-
tial) oracle complexity in optimization was developed by Nemirovsky and Yudin (1983).
This work provides sharp worst-case lower bounds for nonsmooth optimization, and a sub-
optimal (and rather technical) lower bound for randomized algorithms, for `p settings, where
1 ≤ p ≤ ∞. Smooth convex optimization in this work is addressed by lower bounding the
oracle complexity of convex quadratic optimization, which only applies to deterministic
algorithms and the `2 setup. Nearly-tight lower bounds for deterministic non-Euclidean
smooth convex optimization were obtained only recently (Guzmán and Nemirovski, 2015),
mostly by the use of a smoothing of hard nonsmooth families. It is worth mentioning that
none of these lower bounds are robust to parallelization. Further, prior to our work, there
were no known lower bounds against sequential (K = 1) randomized algorithms in the gen-
eral setting of weakly and strongly smooth minimization over `p spaces. The only exception
is the lower bound for (strongly) smooth minimization over the Euclidean (`2) space, due
to Woodworth and Srebro (2016).

Parallel Convex Optimization. The study of parallel oracle complexity in convex optimiza-
tion was initiated by Nemirovski (1994), where a worst-case lower bound Ω

(
( d

ln(2Kd))
1
3 ln(1

ε )
)

on the complexity in the `∞-setup was proved. The argument from this work is based on a
sequential use of the probabilistic method to generate the subgradients of a hard instance
and applies to an arbitrary dimension beyond a fixed constant. The author conjectured that
this lower bound is suboptimal, which still remains an open problem. The construction of
the hard instance family from this work is in fact the starting point for our approach, which
we adapted to apply to more general geometries and randomized algorithms.

More recently, several lower bounds have been obtained for various settings of parallel
convex optimization, but all applying only to either box (`∞-ball) or `2-ball constrained
Euclidean spaces. In particular, Smith et al. (2017) showed that poly-log in 1/ε oracle
complexity is not possible with polynomially-many in d parallel queries for nonsmooth
Lipschitz-continuous minimization. This bound was further improved by Duchi et al. (2018),
in the context of stochastic minimization with either Lipschitz-continuous or smooth and
strongly convex objectives.

Tight lower bounds in the Euclidean setup have been obtained by Woodworth et al.
(2018) and Balkanski and Singer (2018). Both of these works provide a tight lower bound
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Ω(1/ε2) for randomized algorithms and nonsmooth Lipschitz objectives, when the dimension
is sufficiently high (polynomial in 1/ε, which is similar to our setting). The work of Balkanski
and Singer (2018) further considers strongly convex Lipschitz objectives. While this setting
is not considered in our work, we note that it is possible to incorporate it in our framework
using the ideas from Srebro and Sridharan (2012). To obtain lower bounds that apply
against randomized algorithms, Balkanski and Singer (2018) use an intricate adaptivity
argument. Our lower bound is based on a more direct application of the probabilistic
method, and is arguably simpler.

The work of Woodworth et al. (2018) further considered an extension to stochastic
and smooth objectives. However, the “statistical term” used in their argument comes
from a typical minimax estimation bound, and its accuracy can, in fact, be reduced by
parallelization at a rate 1/

√
N , where N is the total number of queries. Their construction

of subgradients for the hard function is based on random vectors from the unit sphere; our
use of Rademacher sequences makes the analysis simpler and more broadly applicable. On
the other hand, Woodworth et al. (2018) also provide lower bounds for (non-local) prox
oracles, which are not considered in this paper.

The high-dimensional regime for the `2 setup (i.e., where an Ω(1/ε2) parallel lower
bound applies) has been recently improved to d = Ω(1/ε4) by Bubeck et al. (2019), by
an application of a novel random wall function construction. They also showed that for
d = o(1/ε4) (i.e., in the low-dimensional regime) strict improvements on parallel complexity
can be obtained via accelerated randomized smoothing, improving upon a similar positive
result for low-dimensional regime due to Duchi et al. (2012).

Adaptive Data Analysis. In a separate line of work, there has been significant progress
in understanding adaptivity in data analysis, with the goal of preventing overfitting. The
typical learning model used in this framework is the Statistical Query (SQ) model, which
applies to stochastic convex optimization (Feldman et al., 2017). In this literature, it was
proved that, given a data set of size n, the number of adaptive SQs that can be accurately
answered is Θ̃(n2), and this is achieved by an application of results from differential pri-
vacy (Dwork et al., 2015; Steinke and Ullman, 2015). Negative results in this literature do
not translate to general convex optimization; however, our negative results rule out specific
approaches to improve the sample complexity of stochastic convex optimization.

1.4. Notation and Preliminaries

We now introduce the definitions and notation that are needed to formally state our results.

1.4.1. Vector Spaces and Classes of Functions

Let (E, ‖ · ‖) be a d-dimensional normed vector space, where d < ∞. We denote vectors
in this space by bold letters, e.g., x,y, etc., and by (E∗, ‖ · ‖∗) its dual space. We use the
bracket notation 〈z,x〉 to denote the evaluation of the linear functional z ∈ E∗ at a point
x ∈ E; in particular, ‖z‖∗ = sup‖x‖≤1 〈z,x〉. We denote the ball of E centered at x and of
radius r by B‖·‖(x, r), and the unit ball by B‖·‖ := B‖·‖(0, 1). Our most important case of

study is the space `dp = (Rd, ‖ · ‖p), where 1 ≤ p ≤ ∞. For simplicity, in this case we use

the notation Bdp(x, r) := B‖·‖p(x, r). The dual space of `dp is isometrically isomorphic to `dp∗ ,

where p∗ = p/(p − 1); in this case, the bracket is just the standard inner product in Rd.
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Another important example is the case of Schatten spaces: Schdp = (Rd×d, ‖ · ‖Sch,p). Here,

for any X ∈ Rd×d, ‖X‖Sch,p = (
∑d

i=1 σi(X)p)1/p, where σ1(X), . . . , σd(X) are the singular
values of X.

Given 0 ≤ κ ≤ 1, Fκ(E,‖·‖)(µ) denotes the class of convex functions f : E→ R such that

‖∇f(y)−∇f(x)‖∗ ≤ µ‖y − x‖κ (∀x, y ∈ E), (1)

where ∇f(x) ∈ ∂f(x) is any subgradient of f at x. To clarify this definition, let us
provide some useful examples: (i) κ = 0 corresponds to bounded variation of subgradients,
‖∇f(x) − ∇f(y)‖∗ ≤ µ. This class contains all µ/2-Lipschitz convex functions, but is
also invariant under affine perturbations;2 (ii) κ ∈ (0, 1) corresponds to Hölder continuous
gradients, ‖∇f(y) − ∇f(x)‖∗ ≤ µ‖y − x‖κ; and (iii) κ = 1 corresponds to Lipschitz-
continuity of the gradient, ‖∇f(y)−∇f(x)‖∗ ≤ µ‖y − x‖.

1.4.2. Optimization Problems, Algorithms, and Oracles

We consider convex programs of the form

min{f(x) : x ∈ X},

where f : E→ R is a convex function from a given class of objectives F (such as the ones
described above), and X ⊆ E is convex and closed. We denote by f∗ the optimal value of
the problem. Our goal is, given an accuracy ε > 0, to find an ε-solution; i.e., an x ∈ X
such that f(x)− f∗ ≤ ε.

We study complexity of convex optimization in the oracle model of computation. In
this model, the algorithm queries points from the feasible set X , and it obtains partial
information about the objective via a local oracle O. Given objective f ∈ F , and a query
x ∈ X , we denote the oracle answer by Of (x) (when f is clear from the context we omit it
from the notation). We say that an oracle O is local if given two functions f, g : E→ R such
that f ≡ g in the neighborhood of some point x ∈ X , it must be that Of (x) = Og(x). An
important example of a local oracle is the gradient over the class Fκ‖·‖(µ), with 0 < κ ≤ 1.3

In the K-parallel setting of convex optimization (Nemirovski, 1994), an algorithm works
in rounds. At every round, it performs a batch of queries Xt = {xt1, . . . ,xtK}, for xtk ∈
X (∀k ∈ [K]), where we have used the shorthand notation k ∈ [K] to denote k ∈
{1, . . . ,K}. Given the queries, the local oracle O replies with a batch of answers: Of (Xt) :=
(Of (xt1), . . . ,Of (xtK)).

The algorithm may work adaptively over rounds: every batch of queries may depend on
queries and answers from previous rounds:

Xt+1 = U t+1(X1,Of (X1), . . . , Xt,Of (Xt)) (∀t ≥ 1), (2)

where the first round of queries X1 = U1(∅) is instance-independent (the algorithm has no
specific information about f at the beginning). Functions (U t)t≥1, may be deterministic

2. Our lower bounds for nonsmooth optimization are in fact given by classes of Lipschitz convex functions,
but to keep the notation unified we use (1) instead.

3. When κ = 0, not every subgradient oracle is local. However, this is a reasonable assumption for black-box
algorithms (e.g., when we cannot access a dual formulation or smoothing of the objective).
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or randomized, and this would characterize the deterministic or randomized nature of the
algorithm. We are interested in the effect of parallelization on the complexity of convex
optimization in the described oracle model. Notice thatK = 1 corresponds to the traditional
notion of (sequential) oracle complexity.

1.4.3. Notion of Complexity

Let O be a local oracle for a class of functions F , and let AK(O) be the class of K-parallel
deterministic algorithms interacting with oracle O. Given ε > 0, f ∈ F , and A ∈ AK(O),
define the running time T (A, f, ε) as the minimum number of rounds before algorithm
A finds an ε-solution. The notion of complexity used in this work is known as the high
probability complexity, defined as:

ComplγHP(F ,X ,K, ε) = sup
F∈∆(F)

inf
A∈AK(O)

inf{τ : Pf∼F [T (A, f, ε) ≤ τ ] ≥ γ},

where γ ∈ (0, 1) is a confidence parameter and ∆(F) is the set of probability distributions
over the class of functions F . The high probability complexity subsumes other well-known
notions of complexity, including distributional, randomized, and worst-case, in the local ora-
cle model. More details about the relationship between these different notions of complexity
can be found in the work of Braun et al. (2017).

1.4.4. Additional Background

Additional background and statements of several useful definitions and facts that are im-
portant for our analysis are provided in Appendix A.

1.5. Organization of the Paper

Section 2 provides a general lower bound that is the technical backbone of all the results
in this paper. Section 3 then overviews the applications of this result in the general `p
setups. Section 4 provides lower bounds for some nonstandard `q/`p setups. We conclude
in Section 5.

2. General Complexity Bound

To prove the claimed complexity results from the introduction, we work with a suitably
chosen class of random nonsmooth Lipschitz-continuous problem instances. The results for
the classes of problems with higher order of smoothness are established (mostly) through
the use of smoothing maps. In particular, we make use of the following definition of locally
smoothable spaces:

Definition 2 A space (E, ‖ · ‖) is said to be (κ, η, r, µ)-locally smoothable if there exists a
mapping

S : F0
(E,‖·‖)(1) → Fκ(E,‖·‖)(µ)

f 7→ Sf
,

referred to as the local smoothing, such that:

(i) ‖f − Sf‖∞ ≤ η; and
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(ii) if f, g ∈ F0
(E,‖·‖)(1) and x ∈ E are such that f |B‖·‖(x,2r) ≡ g|B‖·‖(x,2r) then

Sf |B‖·‖(x,r) ≡ Sg|B‖·‖(x,r).

Namely, a space (E, ‖ · ‖) is (κ, η, r, µ)-locally smoothable if there exists a mapping S that
maps all nonsmooth functions to functions in Fκ(E,‖·‖)(µ), such that a function f and its
map Sf do not differ by more than η when evaluated at any point from E, and the map
preserves the equivalence of functions over r-neighborhoods of points from E. The last
property is crucial to argue about the behavior of a local oracle.

The following theorem is the backbone of all the results from this paper: all complexity
bounds will be obtained as its applications.

Theorem 3 Let (E, ‖ · ‖) be a normed space, let X ⊇ B‖·‖ be a closed and convex set, and
let ε > 0 and µ > 0. Suppose that there exist a positive integer M , independent random
vectors z1, . . . , zM supported on B‖·‖∗, α > 0, and 0 < γ < 1/2, such that, if we define

δ̄ = 16

√
ln(MK/γ)

α , we have:

(a) (E, ‖ · ‖) is (κ, η, r, µ̄)-locally smoothable, with µ̄ > 0, 0 < r ≤ δ̄/8, and η ≤ εµ̄/[4µ];

(b) P
[

infλ∈∆M

∥∥∑
i∈[M ] λiz

i
∥∥
∗ ≤ 4εµ̄/µ

]
≤ γ;

(c) For any i ∈ [M ], x ∈ B‖·‖, and δ > 0

P[
〈
zi,x

〉
≥ δ] ≤ exp{−αδ2} and P[〈zi,x〉 ≤ −δ] ≤ exp{−αδ2};

(d) δ̄ ≤ εµ̄/[Mµ].

Then, the high probability complexity of class Fκ(E,‖·‖)(µ) on X satisfies

Compl2γHP(Fκ(E,‖·‖)(µ),X ,K, ε) ≥M.

Remark 4 The assumption X ⊇ B‖·‖ can be substituted by X being only full-dimensional
(possibly with a loss in the lower bound). Given a lower bound for problem class Fκ(E,‖·‖)(µ)
and domain X , we can immediately obtain lower bounds for rescalings of the feasible set,
RX , where R > 0. Indeed, if f ∈ Fκ(E,‖·‖)(µ) then g(x) := f(Rx) ∈ Fκ(E,‖·‖)(R

κ+1µ), by the
chain rule. Since local oracles and queries are also in one-to-one correspondence, we have

Compl2γHP(Fκ(E,‖·‖)(µ), RX ,K, ε) = Compl2γHP(Fκ(E,‖·‖)(R
κ+1µ),X ,K, ε).

Further, X can be centered at zero by a simple translation. This allows us to translate
and rescale any full-dimensional convex body so that it contains B‖·‖. Finally, even the
full-dimensionality can be relaxed, by considering the linear span of X .

Remark 5 In some cases, it is of interest to consider domains which are vastly different
from the unit ball, thus, the rescalings proposed in the previous remark would lead to weak
lower bounds. We can avoid this in the case where X is compact, obtaining the same
conclusion as in Theorem 3, by replacing Assumption (b) by

P
[

minλ∈∆M
maxx∈X

〈∑
i∈[M ] λiz

i,x
〉
≤ 4εµ̄/µ

]
≤ γ. (b’)

To do this, we simply omit the norm term in the definition of F (see Eq. (3) below), and
the proof follows analogously. We will see some applications of this different version of the
result in Section 4.
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2.1. Proof of Theorem 3

To prove Theorem 3, we need to build a distribution over Fκ(E,‖·‖)(1) such that any K-
parallel deterministic algorithm interacting with a local oracle on X needs M rounds to
reach an ε solution, with probability 1− 2γ. We propose a family of objectives as follows.
Given z1, . . . , zM as in the theorem, consider the problem (P) min{F (x) : x ∈ X}, where:

F (x) :=
µ

µ̄
S
(

max
{1

2
max
i∈[M ]

[ 〈
zi, ·
〉
− iδ̄

]
, ‖ · ‖ − 1

2
(3(1 + r) +Mδ̄)

})
(x), (3)

By construction, F ∈ Fκ‖·‖(µ) surely. Observe that, since ‖zi‖∗ ≤ 1, for all i:

(O1) When ‖x‖ ≤ 1 + 2r, it must be

1

2
max
i∈[M ]

[ 〈
zi,x

〉
− iδ̄

]
≥ ‖x‖ − 1

2
(3(1 + r) +Mδ̄);

i.e., within the unit ball, F is only determined by its left term.

(O2) When ‖x‖ ≥ 3(1 + r) + (M − 1)δ̄, it must be

1

2
max
i∈[M ]

[ 〈
zi,x

〉
− iδ̄

]
≤ ‖x‖ − 1

2
(3(1 + r)−Mδ̄);

i.e., outside the ball of radius 3(1 + r) + (M − 1)δ̄ ≤ 4,4 F is only determined by the
norm term (and not by z1, . . . , zM ).

In particular, the resulting optimization problem is inf-compact.

We claim that any K-parallel deterministic algorithm that works in M rounds, with
probability 1 − 2γ, will fail to query a point with optimality gap less than ε. This suffices
to prove the theorem. The proof consists of three parts: (i) establishing an upper bound
on the minimum value F ∗ of (3), which holds with probability 1 − γ, (ii) establishing a
lower bound on the value of the algorithm’s output min{F (x) : x ∈

⋃
t∈[M ]X

t}, which
holds with probability 1−γ, and (iii) combining (i) and (ii) to show that the optimality gap
min{F (x)− F ∗ : x ∈

⋃
t∈[M ]X

t} of the best solution found by the algorithm in M rounds
is higher than ε, with probability 1− 2γ.

2.1.1. Upper Bound on the Optimum

The upper bound on F ∗ is obtained based on Assumptions (b) of Theorem 3, as follows.

Lemma 6 If P
[

infλ∈∆M

∥∥∑
i∈[M ] λiz

i
∥∥
∗ ≤ 4εµ̄/µ

]
≤ γ;, then

P[F ∗ ≤ −2ε+ (η − δ̄/2)µ/µ̄] ≥ 1− γ,

where F ∗ = minx∈X F (x) for F (x) defined in (3), and S is a smoothing map that satisfies
the assumptions from Theorem 3.

4. From Assumption (b) we may assume that 4µ̄ε/µ ≤ 1, and then using the bounds on r and δ̄ from (a)
and (d), we get the bound.

10
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Proof Observe first that:

F ∗ ≤ µ

µ̄
min
x∈X
S
(

max
{1

2
max
i∈[M ]

[ 〈
zi, ·
〉
− iδ̄

]
, ‖ · ‖ − 1

2
(3(1 + r) +Mδ̄)

})
(x)

≤ µ

µ̄
min
x∈X

(
max

{1

2
max
i∈[M ]

[ 〈
zi,x

〉
− iδ̄

]
, ‖x‖ − 1

2
(3(1 + r) +Mδ̄)

}
+ η
)

≤ µ

2µ̄

(
min
‖x‖≤1

max
i∈[M ]

〈
zi,x

〉 )
+
µ

µ̄
(η − δ̄/2),

where we have used Property (i) from the definition of local smoothing, Property (O1) (to
assert that the maximum is achieved by the left term), and X ⊇ B‖·‖.

The rest of the proof is a simple corollary of minimax duality. In particular,

min
‖x‖≤1

max
i∈[M ]

〈
zi,x

〉
= min
‖x‖≤1

max
λ∈∆M

∑
i∈[M ]

λi
〈
zi,x

〉
= max
λ∈∆M

min
‖x‖≤1

〈∑
i∈[M ]

λiz
i,x

〉
,

where at the last step we used the minimax theorem. Finally,

F ∗ ≤ − µ

2µ̄

(
min
λ∈∆M

∥∥∥ m∑
i=1

λiz
i
∥∥∥
∗

)
+

µ

2µ̄
(2η − δ̄),

and it remains to apply the assumption from the statement of the lemma.

2.1.2. Lower Bound on the Algorithm’s Output

Lower bound on the algorithm’s output requires more technical work and is based on show-
ing that, at every round t, w.h.p., the algorithm can only learn z1, . . . , zt and (aside from
implicit bounds) has no information about zt+1, . . . zM . Then, due to Assumption (c) of
Theorem 3, w.h.p., none of the queried points up to round M can align well with vector
zM , which will allow us to show that for all the queried points x up to round M , F (x) is
Ω(ε)-far from the optimum F ∗.

In the following, we denote the history of the algorithm-oracle interaction until round
t− 1 as Π<t := (Xs,OF (Xs))s<t. We also define the following events

E t(x) :=
{〈

zt,x
〉
> − δ̄

4

}
∩
{〈

zi,x
〉
<
δ̄

4
(∀i > t)

}
, and Et :=

⋂
x∈Xt

E t(x),

where δ̄ is defined as in Theorem 2. Further, we define the “good history” events by:

E<t :=
⋂
{Es : s < t}.

To avoid making vacuous statements, we take E<1 to be the entire probability space, so that
P
[
E<1

]
= 1. Recall that, based on Observation (O2), when we prove our claim, it suffices

to focus on vectors within the ball of radius 4. For this reason, given a batch of queries
Xt = {xt1, . . . ,xtK}, we define its relevant queries as X

t
= Xt ∩ B‖·‖(0, 4).

We first prove that, conditionally on E<t, Xt is a deterministic function of {zi}i<t.

11



Diakonikolas and Guzmán

Proposition 7 Let t ∈ [M−1] and suppose event Et holds. Then, for all x ∈ Xt
+B‖·‖(0, r),

F (x) is fully determined by vectors zi with i ≤ t, i.e.,

F (x) =
1

µ
S
(

max
{1

2
max
i∈[t]

[ 〈
zi, ·
〉
− iδ̄

]
, ‖ · ‖ − 1

2
(3(1 + r) +Mδ̄)

})
(x).

Moreover, conditionally on E<t, Xt is a deterministic function of {zi}i<t.

Proof Let f(x) = maxi∈[M ]

[ 〈
zi,x

〉
− iδ̄

]
. We will show that for any xtk ∈ X

t
and x such

that ‖x−xtk‖ ≤ 2r, we have f(x) = g(x), where g(x) = maxi∈[t]

[ 〈
zi,x

〉
− iδ̄

]
(notice that

g only includes zi for i ∈ [t]). The first part of the proposition is then obtained from Part
(ii) of Definition 2.

To prove the claim, notice that since ‖zi‖∗ ≤ 1, we have:〈
zi,x

〉
≤
〈
zi,xtk

〉
+ ‖x− xtk‖ · ‖zi‖∗ ≤

〈
zi,xtk

〉
+ 2r.

Similarly,
〈
zi,xtk

〉
≤
〈
zi,x

〉
+ ‖x− xtk‖ · ‖zi‖∗ ≤

〈
zi,x

〉
+ 2r.

Further, by the definition of Et, and since 2r ≤ δ̄/4 (by Assumption (a)),

〈
zi,x

〉
− iδ̄ ≤

〈
zi,xtk

〉
+ 2r − (t+ 1)δ̄ <

δ̄

2
− (t+ 1)δ̄

<
〈
zt,xtk

〉
− 2r − tδ ≤

〈
zt,x

〉
− tδ̄.

For the second part of the proposition, first observe that Xt = U t(Π<t), where U t is a
deterministic function; thus it suffices to prove that, conditionally on E<t, Π<t is a determin-
istic function of {zi}i<t. We prove the last claim by induction on t. For the base case, Π<1 is
empty, thus the property trivially holds. For the inductive step, suppose that conditionally
on E<t, Π<t is a deterministic function of {zi}i<t. Now notice that Xt = U t(Π<t), thus it
is a deterministic function of {zi}i<t. On the other hand, the first part of the proposition
guarantees that under Et, F |

X
t
+B‖·‖(0,r)

is a deterministic function of {zi}i≤t; this proves

that (Xt,OF (Xt)) is a deterministic function of {zi}i≤t. Finally, combining this with the
induction hypothesis, Π<t+1 = (Π<t, (Xt,OF (Xt))) is a deterministic function of {zi}i<t+1,
proving the inductive step, and thus the result.

The last result shows that, under E<t, Xt is predictable w.r.t. {zi}i<t. This means
that conditionally on the history and event E<t, Xt is fixed. This is key to leverage the
randomness of {zi}i≥t for the t-th batch of queries. However, there is still a problem: Con-
ditionally on E<t, the distribution of {zi}i≥t is different than when there is no conditioning
(as E<t itself depends on {zi}i≥t). In the next lemma we show that, similar as in Carmon
et al. (2017); Woodworth et al. (2018), even after sequential conditioning, the distribution
of {zi}i≥t remains sufficiently well-concentrated to carry out the lower bound strategy.

Lemma 8 Under Assumptions (a) and (c) from Theorem 2, we have:

P
[ ⋂
t∈[M ]

Et
]
≥ 1− γ.

12
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Proof To simplify the notation, let zi<t denote {zi}i<t. First observe that, for any 1 ≤ t ≤
M , by the law of total probability:

P[(Et)c|E<t] =

∫
ξ
P[(Et)c|E<t, zi<t = ξ] dP

[
zi<t = ξ|E<t

]
On the other hand, by the previous proposition, Xt is a deterministic function of zi<t,

conditionally on E<t. Recall that:

(Et)c =
{
∃x ∈ Xt

:
〈
zt,x

〉
< −δ̄/4 or (∃i > t)

〈
zi,x

〉
> δ̄/4

}
.

To simplify the notation, denote:

(Et)c
{Xt→X}

=
{
∃x ∈ X :

〈
zt,x

〉
< −δ̄/4 or (∃i > t)

〈
zi,x

〉
> δ̄/4

}
.

Therefore, we further have:

P[(Et)c|E<t] ≤
∫
ξ

sup
X⊆B‖·‖(0,4),

|X|≤K

P
[
(Et)c

{Xt→X}

∣∣∣E<t, zi<t = ξ
]
dP
[
zi<t = ξ|E<t

]
,

where we have used that X
t

is conditionally deterministic. Now that X is fixed, we can use
the union bound as follows:

P[(Et)c|E<t]

≤ K
∫
ξ

sup
x∈B‖·‖(0,4)

P
[ 〈

zt,x
〉
< −δ̄/4

∣∣∣E<t, zi<t = ξ
]
dP[zi<t = ξ|E<t]

+ (M − 1)K

∫
ξ

sup
x∈B‖·‖(0,4)

max
j>t

P
[ 〈

zj ,x
〉
> δ̄/4

∣∣∣E<t, zi<t = ξ
]
dP[zi<t = ξ|E<t].

Observe for the first integral in the last expression that we can write:∫
ξ

sup
x∈B‖·‖(0,4)

P
[ 〈

zt,x
〉
< −δ̄/4

∣∣∣E<t, zi<t = ξ
]
dP[zi<t = ξ|E<t]

=

∫
ξ

sup
x∈B‖·‖(0,4)

P
[ 〈

zt,x
〉
< −δ̄/4,E<t|zi<t = ξ

]
P
[
E<t|zi<t = ξ

] dP
[
zi<t = ξ|E<t

]
=

∫
ξ

sup
x∈B‖·‖(0,4)

P
[ 〈

zt,x
〉
< −δ̄/4,E<t|zi<t = ξ

]
P
[
E<t

] dP
[
zi<t = ξ

]
≤
∫
ξ

sup
x∈B‖·‖(0,4)

P
[ 〈

zt,x
〉
< −δ̄/4|zi<t = ξ

]
P
[
E<t

] dP
[
zi<t = ξ

]
=

supx∈B‖·‖(0,4) P
[ 〈

zt,x
〉
< −δ̄/4

]
P
[
E<t

] ,

13
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where we have used the Bayes rule in the second equality. Applying the same arguments
to the second integral, we finally have:

P
[
(Et)c|E<t

]
≤
MK supx∈B‖·‖(0,4) max

{
P
[ 〈

zt,x
〉
< − δ̄

4

]
,maxj>t P

[ 〈
zj ,x

〉
> δ̄

4

]}
P[E<t]

≤ MK exp{−αδ̄2/256}
P[E<t]

≤ γ

P[E<t]
.

Inductively, each E<t happens with non-zero probability, as P
[
E<1

]
= 1 and γ < 1.

We conclude the proof by conditioning:

P
[ ⋂
t∈[M ]

Et
]

=
P
[⋂

t∈[M ] E
t
]

P
[⋂

t<M Et
] P[ ⋂

t<M

Et
]

= P
[
EM
∣∣∣E<M]P[E<M] ≥ 1− γ.

Finally, Lemma 8 and Proposition 7 imply the following lower bound on the algorithm’s
output:

P
[

min
t∈[M ], k∈[K]

F (xtk) ≥ −
δ̄µ

2µ̄

(1

4
+M +

2η

δ̄

)]
≥ 1− γ, (4)

as, when all events {Et : t ∈ [M ]} hold simultaneously (and, in particular, when event EM
holds), we have, by the definitions of these events and the random problem instance (3),
that:

min
t∈[M ],k∈[K]

F (xtk) ≥
µ

2µ̄
min

{〈
zM ,x

〉
−Mδ̄ : x ∈ ∪t∈[M ]X

t
}
− ηµ

µ̄

≥ − δ̄µ
8µ̄
−M δ̄µ

2µ̄
− ηµ

µ̄
.

2.1.3. Bounding the Optimality Gap

To complete the proof of Theorem 3, it remains to combine the results from the last two
subsections and argue that, w.p. 1 − γ, the optimality gap of any solution output by the
algorithm is higher than ε.

Remaining Proof of Theorem 3. Applying Lemma 6, with probability 1 − γ, F ∗ ≤ −2ε +

(η− δ̄/2)µ/µ̄. From Eq. (4), w.p. 1− γ, mint∈[M ], k∈[K] F (xtk) ≥ −
δ̄µ
2µ̄

(
1
4 +M + 2η

δ̄

)
. Hence,

with probability 1− 2γ,

min
t∈[M ], k∈[K]

F (xtk)− F ∗ ≥ 2ε− δ̄µ

2µ̄

(
M − 3

4

)
− 2ηµ

µ̄
> ε,

as, by the theorem assumptions, δ̄ ≤ εµ̄/[Mµ] and η ≤ εµ̄/[4µ]. �
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3. Lower Bounds for Parallel Convex Optimization over `p Balls

In this section, we show how the general complexity bound from Theorem 3 can be applied
to obtain several lower bounds for parallel convex optimization. Our main case of study
will be `dp spaces. For convenience, we will also restrict ourselves to R = µ = 1, though our
results can be directly applied to obtain bounds for general radius and regularity constant
(see Remark 4).

In what follows, we will prove several lower bounds for `p-setups. Interestingly, we can
obtain analog lower bounds for Schatten spaces. This follows by simply noting that the
restriction of the Schatten norm to diagonal matrices coincides with ‖ · ‖p, and therefore
we can embed Bdp , as well as Fκ

`dp
(1) through this restriction (for more details, we refer

the reader to Guzmán and Nemirovski 2015). This embedding has a quadratic cost in the
large-scale regime; in particular, it remains polynomial in 1/ε and ln(K/γ).

3.1. Nonsmooth Optimization

To apply Theorem 3 in the nonsmooth case, we do not need to apply any smoothing at
all. This is formally stated as “any normed space is (0, 0, 0, 1)-locally smoothable,” and
its consequence is that Assumption (a) of the theorem is automatically satisfied. Thus,
it suffices to construct a probability distribution over zi’s that under suitable constraints
on α and the number of rounds M satisfies Assumptions (b) and (c) from the theorem.
Assumption (d) simply constrains M by M ≤ ε

δ̄
.

Let ri denote an independent (over i) d-dimensional vector of independent Rademacher
entries (i.e., a vector whose entries take values ±1 w.p. 1/2, independently of each other).
Let IiL denote the d× d diagonal matrix, whose L ≤ d diagonal entries take value 1, while
the remaining entries are zero. The positions of the non-zero entries on the diagonal of IiL
will, in general, depend on i, and will be specified later. Given p ≥ 1, vectors zi ∈ Bdp∗ are
then defined as:

zi =
1

L1/p∗
IiLri. (5)

3.1.1. Bounds for 1 ≤ p ≤ 2

When p ∈ [1, 2], it suffices to choose L = d, so that zi = d−1/p∗ri. We start by proving
a lower bound that applies in the regime when d = Ω(poly(log(K/γ), 1/εp

∗
)). Hence the

bound deteriorates as p tends to one, and, in particular, does not apply to the case when
p = 1. However, we will later show (see Section 4) that it is possible to derive a high-
dimensional lower bound for the same function class over the `q ball inscribed in the `1
ball, for any q > 1. Further, we will show lower bounds for the `1 setting which are
polynomial in 1/ε by reduction from the `∞ setting (see Theorem 15). Finally, to justify
these alternative approaches, we note that it is unlikely to directly apply Theorem 3 and
obtain an informative lower bound for the `1 setup (see the discussion at the end of this
subsection).

The following lemma gives a sufficient condition for Assumption (b) from Theorem 3 to
hold. Its proof is provided in Appendix B.
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Lemma 9 Let 1 < p ≤ 2, q ≥ p, and let z1, . . . , zM be chosen according to Eq. (5), where

M ≤ min
{ 1

200ε2
,
cqd− ln(1/γ)

ln(3/ε)

}
,

and cq > 0 is a constant that only depends on q. Then, for all γ ∈ (1/poly(d), 1) :

P
[

min
λ∈∆M

1

d1/p−1/q

∥∥∥ ∑
i∈[M ]

λiz
i
∥∥∥
q∗
≤ 4ε

]
≤ γ.

To obtain the claimed lower bound for the nonsmooth case, we only need to establish the
concentration of inner products within the feasible domain. When p > 1, this is obtained
as a simple application of Hoeffding’s Inequality. These two facts provide the claimed lower
bound.

Theorem 10 Let 1 < p ≤ 2 and X ⊇ Bdp. Let ε ∈ (0, 1/2) and γ ∈ ( 1
poly(d) , 1). Then:

ComplγHP(F0
`dp

(1),X ,K, ε) ≥M := min
{ 1

200ε2
,

εd1/p∗

32
√

ln(MK/γ)

}
.

Proof We verify the conditions of Theorem 3. Recall that in the nonsmooth case condition
(a) is automatically satisfied. Property (b) is obtained from Lemma 9 (with p = q), which
requires bounding M according to the lemma. For (c), by a direct application of Hoeffding’s
Inequality, for all x ∈ Bdp

P[〈zi,x〉 > δ] = P[〈ri,x〉 > d1/p∗δ] ≤ exp{−d2/p∗δ2}.

In particular, we have that α = d2/p∗ suffices to satisfy Assumption (c). Assumption

(d) holds as long as M ≤ ε/δ̄. As δ̄ = 16

√
ln(MK/γ)

α , it is sufficient to require: M ≤
εd1/p

∗

32
1√

ln(MK/γ)
.

Remark 11 Even though M is implicitly defined in Theorem 10, an explicit definition for
M can be obtained by using a looser bound ln(dK/γ) instead of ln(MK/γ). We keep this
definition to highlight the large scale regime for d. In particular, the high-dimensional regime

is determined by solving for d the inequality εd1/p
∗

32
√

ln(MK/γ)
≥ 1

200ε2
.

We can conclude from Theorem 10 that as long as d is “sufficiently large” (namely, as long

as d = Ω(
(√

ln(K/(εγ))/ε3
)p∗

)), any ε-approximate K-parallel algorithm takes Ω(1/ε2)
iterations, which is asymptotically optimal—this bound is tight in the sequential case (when
K = 1) and is thus unimprovable (Nemirovsky and Yudin, 1983).

Unfortunately, this lower bound becomes uninformative when p∗ = Ω(ln d); and, in
particular, when p = 1. This is not merely an artifact of the specific arguments we used
to satisfy the assumptions of Theorem 3; the whole construction breaks in the `1 case and
the “hard instance” from its proof can be learned with one round of polynomially-many
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queries, with high probability. To see this,5 partition the coordinates {1, ..., d} into sets
S1, ...,Sbd/(2 log(M))c, each with 2 log(M) of the coordinates. For each of the sets Sj , consider
all possible queries with uniform weights and observe that there are M2 such queries. Thus,
the total number of queries is M2

⌊
d

2 log(M)

⌋
, which is polynomial in d and M.

Further, note that due to Assumption (d) from Theorem 3 it holds δ̄ < 1
2 log(M) , as

otherwise we would need to have M
2 logM < ε, which is uninformative. Thus, if one of the

chosen queries x has the same signs on its non-zero coordinates as exactly one of the zis,
then that zi is the subgradient returned by the local oracle. It follows that for the algorithm
to learn all of the zis, it suffices that no two zis have the same signs on all of the coordinate
subsets S1, ...,Sbd/(2 log(M))c. Fix one coordinate subset Sj . The probability that there are

no two zis whose signs match on Sj is (M2)!
(M2−M)!M2M > 1

M .6 Thus, the probability that for

at least one of the coordinate subsets Sj no two zis have the same signs is greater than

1− (1− 1
M )bd/(2 logM)c ≥ 1− e−

d
M logM .

Finally, we note that other choices of vectors zi would encounter similar problems in the
lower bound argument. On one hand, large `∞ norm of vectors zi is needed for certifying an
upper bound of −Ω(ε) on the optimum (Section 2.1.1). On the other, this large `∞ norm
makes it easier for the algorithm to uncover all vectors zi, similarly as in the discussion
above. Hence, it appears unlikely that any direct extension of our techniques, or any other
techniques for proving lower bounds that we are aware of, would lead to lower bounds of
the form Ω̃( 1

ε2
) for the `1 setting. However, we will show in Theorem 15 that it is possible

to obtain a lower bound that is polynomial in 1/ε, by application of embedding techniques.

3.1.2. Bounds for p ≥ 2

It is possible to extend Lemma 9 to the case of p ≥ 2. However, due to the upper bound on
M from Lemma 9, the best dimension-independent lower bound on the number of queries
we could obtain in this setting would be of the order 1/ε2. Given that in the sequential
setting the best dimension-independent lower bound is Ω(1/εp), we need a stronger result
than what we obtained in Lemma 9.

This is achieved through a different construction of zi’s, where these vectors are no
longer supported on all d coordinates, but only on L < d of them; moreover, we will choose
their supports to be disjoint. The construction is as follows. Let {Ji}Mi=1 be a collection
of subsets of {1, . . . , d} such that |Ji| = L and Ji ∩ Ji′ = ∅, ∀i 6= i′ (here, we assume that
d ≥ML). Set IiL = diag(1Ji), i.e., the (j, j) element of the diagonal matrix IiL is 1 if j ∈ Ji
and 0 otherwise. From eqn. (5), zi is defined as zi = 1

L1/p∗ I
i
Lri, where (rij)i∈[M ],j∈[d] is an

independent Rademacher sequence.
Our next result addresses the nonsmooth p ≥ 2 case, by a direct application of Theorem 3

to our construction above. More details are provided in Appendix B.

Theorem 12 Let p ≥ 2, X ⊇ Bdp, and ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1). Then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M := min
{ 1

(4ε)p
,
ε2/3

8

( d

ln(MK/γ)

)1/3}
.

5. The following argument is based on private communication with Daniel Kane.
6. This follows by the same argument as in the birthday problem.

17



Diakonikolas and Guzmán

In particular, the required number of queries to reach an ε-approximate solution is
Ω( 1

εp ), as long as d = Ω( ln(K/γ)+p ln(1/ε)
ε3p+2 ). When p→∞, the right term in the definition of

M dominates, and we have M = Ω
(
ε2/3

(
d

ln(dK/γ)

)1/3)
, which, for constant ε, matches the

best known bound for deterministic algorithms in this setting, due to Nemirovski (1994).

3.2. Smooth and Weakly Smooth Optimization

To apply Theorem 3 and obtain lower bounds for (weakly) smooth classes of functions, we
need to design an appropriate local smoothing. This is indeed possible for p ≥ 2, as we
show below.

Remark 13 Let 2 ≤ p ≤ ∞, d ∈ N, and 0 ≤ κ ≤ 1. Then, for any η > 0, the space
`dp = (Rd, ‖ · ‖p) is (κ, η, η, µ)-locally smoothable when µ = 21−κ(min{p,ln d}

η )κ. We prove this
in the Appendix A, following Guzmán and Nemirovski (2015).

Our next result addresses the smooth `dp-setup when p ≥ 2. Its proof is provided in
Appendix B.

Theorem 14 Let p ≥ 2, X ⊇ Bdp, and ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1). Then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M := min

{( 1

23+4κ ε (min{p, ln(d)})κ
) p

1+κ(1+p)
,

d

29 ln(MK/γ)

(
2

1+3p+2κ(1+p)
1+p min{p, ln(d)}κε

) 2(1+p)
1+κ(1+p)

}
.

The bound from Theorem 14 may be difficult to read, so let us point out a few notable
special cases:

• When κ = 0, p → ∞, the bound is uninformative, and one should instead use The-
orem 12. This is a consequence of the particular choice of L in the proof, and its
dependence on κ.

• When κ ∈ (0, 1], p→∞, if d = Ω
(

(ln(Kγ ) + 1
κ ln(1

ε ))(1
ε )

3
κ

)
, thenM = 1

ln(d)( 1
23+4κε

)1/κ,

which is tight up to a factor 1
ln(d) and achieved for K = 1 by the Frank-Wolfe

method (Frank and Wolfe, 1956).

• When κ = 0, p < ∞, and d = Ω
(
(ln(K/γ) + p ln(1/ε))(1

ε )3p+2
)
, then M = ( 1

8ε)
p,

which is achieved for K = 1 by the Mirror-Descent method (Nemirovsky and Yudin,
1983).

• When κ = 1, p < ∞, and d = Ω
(
max{(ln(K/γ) + ln(1/ε))(1

ε )3, exp(p)}
)
, then

M = ( 1
128pε)

p
p+2 . These bounds are unimprovable and are achieved for K = 1

by the Nemirovski-Nesterov accelerated method (Nemirovskii and Nesterov, 1985;
d’Aspremont et al., 2018).
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3.2.1. `p Setups, for 1 ≤ p < 2

Unfortunately, the smoothing approach is not immediately applicable when 1 ≤ p < 2, due
to the fact that there are no known regularizers for an infimal convolution smoothing. This
is related to the fact that these spaces are not 2-uniformly smooth (Ball et al., 1994) which
leads to a natural barrier for the approach. However, this difficulty has been circumvented
by Guzmán and Nemirovski (2015), where lower bounds in this regime are shown by a
reduction from the p =∞ case, specifically through a linear embedding of problem classes.
We follow the same approach, and provide its proof in Appendix B.

Theorem 15 Let 1 ≤ p ≤ 2, 0 < κ ≤ 1, X ⊇ Bdp, ε ∈ (0, 1/2), γ ∈ ( 1
poly(d) , 1). Then, there

exist constants ν, cκ > 0, such that if d ≥ 1
ν

⌈
2(ln(νdK/γ))

2κ
3+2κ

(
1
ε

) 6
3+2κ

⌉
, then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M :=
cκ

ln(1/ε) + κ ln ln(dK/γ)

(1

ε

) 2
3+2κ

.

Let us consider some special cases of the bound from Theorem 15. Suppose that d is
sufficiently high-dimensional so that the theorem applies (note that d = Ω(ln(dK/γ)ε−2)
suffices). When κ = 1, then M = Ω( 1

ln(1/ε)+ln ln(dK/γ)(1
ε )2/5). This bound does not match

the sequential complexity Θ(1/
√
ε) of this problem—apart from the logarithmic factors, the

exponent in 1/ε is off by 1/10. This is a direct consequence of the right term in Theorem 14
not being large enough for p→∞, as the bound in Theorem 15 is obtained from this case.
Further improvements of this term would also improve the bound for the nonsmooth `∞ case
of Nemirovski (1994) for, at least, some regimes of ε. Similarly, when κ = 0, the exponent
in 1/ε is 2/3, which is off by additive 4/3 from the sequential complexity of this setting.
This is aligned with the intuition that smooth lower bounds have a milder high-dimensional
regime than nonsmooth ones (which holds in the sequential case). This way, the embedding
approach is stronger on higher levels of smoothness.

The main difficulty in obtaining tighter bounds in these regimes (`∞ and its implica-
tions on smooth and weakly-smooth p ∈ [1, 2) settings) is in relaxing Assumption (d) from
Theorem 3. It seems unlikely that this would be possible without completely changing the
hard instance used in its proof (as Assumption (d) is crucially used in bounding below the
optimality gap), and would likely require a fundamentally different approach from the one
used here. The only work where such a relaxation has been obtained is due to Bubeck
et al. (2019); however, their approach seems to heavily rely on Euclidean structure, and it
is unclear how to extend this idea to the `∞ setup.

4. Lower Bounds for Nonstandard `q/`p Settings

In this section, we show that it is possible to use our proof technique to obtain lower
bounds for nonstandard `q/`p setups; i.e., classes of problems with objective functions that
are regular w.r.t. ‖ ·‖p, and with feasible sets given by Bdq . As a special case of these results,
we get that the parallel complexity of nonsmooth `1 optimization over any `q ball inscribed
in the `1 ball, where q is bounded away from one, is Ω( 1

ε2
) (Theorem 16). Recall that we

were not able to obtain such a result for q = 1. It is an interesting open question whether
the special structure of the `1-ball is beneficial for gaining from parallelization.
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Theorem 16 Let ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1), p ∈ [1, 2], and q > p. Then:

ComplγHP(F0
`dp

(1),Bdq (1/d1/p−1/q),K, ε) ≥M := min
{ 1

200ε2
, c

εα1/2√
ln(MK/γ)

}
,

where c > 0 is a constant that only depends on q, α = d2−2/q if q ≤ 2, and α = d, if q > 2.

Proof As before, we will prove this result as an application of Theorem 3. Let ri be
an independent standard Rademacher sequence in Rd and zi = 1

d1/p
∗ ri. Assumption (a) is

automatically satisfied since κ = 0. From Remark 5, we will verify Assumption (b’); indeed,

min
x∈Bq(1/d1/p−1/q)

max
λ∈∆M

〈 ∑
i∈[M ]

λiz
i,x
〉

= − 1

d1/p−1/q
min
λ∈∆M

∥∥∥ ∑
i∈[M ]

λiz
i
∥∥∥
q∗
,

where q∗ = q
q−1 . Moreover, applying Lemma 9:

P
[

min
λ∈∆M

1

d1/p−1/q

∥∥∥ ∑
i∈[M ]

λiz
i
∥∥∥
q∗
≤ 4ε

]
≤ γ,

for any M ≤ min
{

1
200ε2

,
cqd−ln(1/γ)

ln(3/ε)

}
, where cq > 0 is a constant that only depends on q.

On the other hand, the concentration required in Assumption (c) is satisfied for any
x ∈ Bdq (1/d1/p−1/q) by Hoeffding:

P[〈zi,x〉 > δ] ≤ exp{−δ2d2/p∗/‖x‖22} ≤

{
exp{−d2−2/qδ2}, if q ≤ 2

exp{−dδ2}, if q > 2.

Indeed, in the case q ≤ 2, we have ‖x‖2 ≤ ‖x‖q ≤ d1/q−1/p; therefore, δ2d2/p∗/‖x‖2 ≥
d2−2/qδ2. In the case q > 2, we bound ‖x‖2 ≤ d1/2−1/q‖x‖q ≤ d1/2−1/p, which gives
δ2d2/p∗/‖x‖2 ≥ dδ2. This way, we can choose α = d2−2/q if q ≤ 2 and α = d, if q > 2.

Finally, Assumption (d) is satisfied for M ≤ ε
δ = ε

16

√
α

ln(MK/γ) , completing the proof.

Theorem 17 Let ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1), p > 2, and q > p. Then:

ComplγHP(F0
`dp

(1),Bdq (1/d1/p−1/q),K, ε) ≥M := min
{c1

εp
, c2

( ε2d

ln(MK/γ)

)1/3}
,

where c1, c2 are absolute constants.

The proof is a simple extension of the case p = q (proof of Theorem 12), where it suffices to
apply the same duality argument as in the proof of Theorem 16 and use q > p and L ≤ d
in the proofs of supporting lemmas. It is omitted for brevity.
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5. Conclusion

This paper rules out the possibility of significantly improving the complexity of convex
optimization via parallelization in the exploration of the feasible set with polynomially-
bounded (in the dimension) number of queries per round, for essentially all interesting
geometries and classes of functions with different levels of smoothness, and in the high-
dimensional regime. Most of the obtained lower bounds match the sequential complexity
of these problems, up to, at most, a logarithmic factor in the dimension, and are, thus,
(nearly) tight.

However, our bounds are not known to be tight in the nonsmooth and weakly-smooth
`1 and `∞ settings. In the standard `1 setting, as discussed in Section 3, it is unclear
how to apply Theorem 3. Similarly, it is unclear how to apply any of the other existing
proof techniques to this case. To obtain a nontrivial lower bound for the `1 case, we use
a reduction from the `∞ case. The tightest lower bound known for the `∞ case is due
to Nemirovski (1994) and it amounts to Ω(( d

ln(dK))1/3 ln(1/ε)). If this lower bound was

improved to Ω(( d
ln(dK)) ln(1/ε)) as conjectured by Nemirovski (1994), then a nearly tight

lower bound of Ω( 1
ε2

) for the `1 case would immediately follow using the same reduction as
in our work. However, it is an open question whether such lower bounds are possible, or if `1
and `∞ setups are more amenable to efficient parallel optimization. Further, our bounds only
apply to the high-dimensional setting, where d = Ω(1/poly(ε)). For the low-dimensional
setting, it was recently shown that, at least in the nonsmooth Euclidean setting, it is possible
to reduce the number of parallel rounds by using polynomially-many local oracle queries
per round (Bubeck et al., 2019; Duchi et al., 2012). It is an open question whether it is
possible to obtain similar results for other `p and Schp setups.
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Appendix A. Additional Background

For completeness, this section provides additional background and statements of some
known facts that are used in the proofs of our lower bounds.

A.1. Notions of Complexity in the Local Oracle Model

The worst-case oracle complexity is defined as:

ComplWC(F ,X ,K, ε) = inf
A∈AK(O)

sup
f∈F

T (A, f, ε).

For the case of randomized algorithms, it can be shown (Nemirovsky and Yudin, 1983)
that the complexity is equivalent to the one obtained from the expected running time over
mixtures of deterministic algorithms. Thus, we can define the randomized oracle complexity
as:

ComplR(F ,X ,K, ε) = inf
R∈∆(AK(O))

sup
f∈F

EA∼R[T (A, f, ε)],

where ∆(B) is the set of probability distributions on the set B.
An even weaker notion is the distributional oracle complexity, defined as

ComplD(F ,X ,K, ε) = sup
F∈∆(F)

inf
A∈AK(O)

Ef∼F [T (A, f, ε)].

In this case, it is important to note that lower bounds cannot be obtained from adversarial
choices of f , as the probability distribution on instances F must be set before the algorithm
is chosen. It is easily seen that:

ComplD(F ,X ,K, ε) ≤ ComplR(F ,X ,K, ε) ≤ ComplWC(F ,X ,K, ε).

Finally, given 0 < γ < 1, high probability complexity is defined as:

ComplγHP(F ,X ,K, ε) = sup
F∈∆(F)

inf
A∈AK(O)

inf{τ : Pf∼F [T (A, f, ε) ≤ τ ] ≥ γ}.

A lower bound on the high probability complexity with confidence parameter γ gives a lower
bound on the distributional complexity, by the law of total probability

ComplD(F ,X ,K, ε) ≥ (1− γ)ComplγHP(F ,X ,K, ε).

All lower bounds in this work are for high probability complexity, with γ = 1/poly(d).

A.2. Geometry of `p Spaces

In the proof of Theorem 15, we make use Dvoretzky’s Theorem, on the existence of nearly
Euclidean sections of the ‖ · ‖p ball (for the full description and proof, see Pisier 1989,
Theorem 4.15). Here we state a concise version with what is needed for our results.
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Theorem 18 (Dvoretzky) There exists a universal constant 0 < α < 1 such that for any
d > 1, there exists a subspace F ⊆ Rd of dimension at most αd and an ellipsoid E ⊆ F such
that

1

2
E ⊆ Bdp ∩ F ⊆ E .

A.3. Smoothings

Proposition 19 Let 2 ≤ p ≤ ∞, d ∈ N, and 0 ≤ κ ≤ 1. Then, for any η > 0, the space
`dp = (Rd, ‖ · ‖p) is (κ, η, η, µ)-locally smoothable when µ = 21−κ(min{p, ln d}/η)κ.

Proof First, we use the fact (Guzmán and Nemirovski, 2015, Proposition 1) that `dp is
(1, η, η, µ)-locally smoothable with parameter µ̃ = min{p, ln d}/η. This can be achieved by
infimal convolution smoothing

Sf(x) = inf
h∈Bp(0,η)

[f(x+ h) + φ(h)] (∀x ∈ Rd),

where φ(x) = 2‖x‖2r with r = min{p, 3 ln d} as a regularizer. Furthermore, in this reference
it is proved that if f is a 1-Lipschitz function, then not only Sf ∈ F1

`dp
(µ) but also Sf is

1-Lipschitz as well; therefore, the following two inequalities hold for any x,y ∈ Rd

‖∇f(x)−∇f(y)‖1−κ∗ ≤ 21−κ

‖∇f(x)−∇f(y)‖κ∗ ≤ µ̃κ,

and multiplying these inequalities, we obtain ‖∇f(x)−∇f(y)‖∗ ≤ 21−κµ̃κ = µ.

A.4. Deviation Bounds

Here we state some specific probabilistic deviation bounds that we need for our results. The
first one is the left-sided Bernstein inequality (Wainwright, 2019, Chapter 2).

Theorem 20 (Left-Sided Bernstein Inequality) Let Y1, . . . , Yn be nonnegative inde-
pendent random variables, with finite second moment. Then, for any δ > 0,

P
[ n∑
k=1

(Yk − E[Yk]) ≤ −nδ
]
≤ exp

{
− nδ2

2
n

∑n
k=1 E[Y 2

k ]

}
.

We also remind the reader of the Khintchine inequality, which provides bounds for Lp

moments of Rademacher sequences (see, e.g., Haagerup 1981).

Theorem 21 (Khintchine) Let 0 < p < ∞. There exist constants cp, c
′
p > 0 such that

for any x1, . . . , xL ∈ R, and r1, . . . , rL a Rademacher sequence

cp‖x‖2 ≤
(
E
∣∣∣ L∑
i=1

rixi

∣∣∣p)1/p
≤ c′p‖x‖2.
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A.5. Packings and Cardinality of ε-Nets

To show that it is possible to satisfy the assumption of Lemma 6 in the proof of Theorem 3,
we will frequently rely on the following simple lemma, which follows by constructing an
(ε/M)-net w.r.t. `M∞ of the simplex, ∆M .

Lemma 22 If, ∀λ ∈ ∆M , P
[∥∥∑M

i=1 λiz
i
∥∥
∗ ≤ (c + 1)ε

]
≤ γ′ for ε ∈ (0, 1), c > 0, and

γ′ ∈ (0, 1), then:

P
[

min
λ∈∆M

∥∥ M∑
i=1

λiz
i
∥∥
∗ ≤ cε

]
≤
(3

ε

)M
γ′.

Proof The proof follows by constructing an (ε/M)-net Γ w.r.t. the `∞ norm. In particular,
let Γ be a discrete set of points from ∆M . To apply the argument, we need to establish
that: ∣∣∣∣∣ inf

λ∈∆M

∥∥∥ M∑
i=1

λiz
i
∥∥∥
∗
− inf
λ′∈Γ

∥∥∥ M∑
i=1

λ′iz
i
∥∥∥
∗

∣∣∣∣∣ ≤ ε. (6)

For (6) to hold, it suffices to show that for every λ ∈ ∆M , there exists λ′ ∈ Γ such that

∥∥∥ M∑
i=1

λ′iz
i
∥∥∥
∗
≤
∥∥∥ M∑
i=1

λiz
i
∥∥∥
∗

+ ε.

By the triangle inequality,

∥∥ M∑
i=1

λ′iz
i
∥∥
∗ −

∥∥ M∑
i=1

λiz
i
∥∥
∗ ≤

∥∥ M∑
i=1

(λ′i − λi)zi
∥∥
∗

≤M‖λ− λ′‖∞ max
i∈[M ]

‖zi‖∗

≤M‖λ− λ′‖∞,

as zi ∈ B‖·‖∗ . Hence, it suffices to have ‖λ− λ′‖∞ ≤ ε/M.

Define the discrete set ((ε/M)-net) Γ to be the set of vectors λ′ such that ∀j ∈
{1, ...,M} : λ′j = nj

⌈
M
ε

⌉−1
, where nj ≥ 0, ∀M, and

∑M
j=1 nj =

⌈
M
ε

⌉
. Clearly, for any

λ ∈ ∆M , we can choose λ′ ∈ Γ such that ‖λ − λ′‖∞ ≤ ε/M. Applying the union bound
over λ′ ∈ Γ and using the lemma assumption:

P
[

inf
λ′∈Γ

∥∥∥ M∑
i=1

λ′iz
i
∥∥∥
∗
≤ (c+ 1)ε

]
≤ |Γ|γ′.

The size of the ε-net Γ can be bounded by |Γ| =
(dMε e+M

M

)
≤
(

3
ε

)M
using the standard stars

and bars combinatorial argument. To complete the proof, it remains to apply the bound
from Eq. (6).
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Appendix B. Omitted Proofs from Section 3

B.1. Nonsmooth Optimization for 1 ≤ p ≤ 2

Lemma 23 Let 1 < p ≤ 2, q ≥ p, and let z1, . . . , zM be chosen according to Eq. (5), where

M ≤ min
{ 1

200ε2
,
cqd− ln(1/γ)

ln(3/ε)

}
,

and cq > 0 is a constant that only depends on q. Then, for all γ ∈ (1/poly(d), 1) :

P
[

min
λ∈∆M

1

d1/p−1/q

∥∥∥ ∑
i∈[M ]

λiz
i
∥∥∥
q∗
≤ 4ε

]
≤ γ.

Proof By the choice of zi’s, ‖
∑

i∈[M ]
λiz

i

d1/p−1/q ‖
q∗

q∗ = 1
d

∑
j∈[d]

∣∣∣∑i∈[M ] λir
i
j

∣∣∣q∗ . Hence, using

Lemma 22, it suffices to show that:

P
[1

d

∑
j∈[d]

∣∣∣ ∑
i∈[M ]

λir
i
j

∣∣∣q∗ ≤ (ε′)q
∗
]
≤ γ′,

for ε′ = 5ε and sufficiently small γ′ (namely, for γ′ ≤ ( ε3)Mγ).

Let Yj :=
∣∣∣∑i∈[M ] λir

i
j

∣∣∣q∗ , for j ∈ [d], and notice that Yj ’s are nonnegative and i.i.d.

Moreover, by Khintchine’s Inequality, there exist constants c, c′ such that:

E[Y1] = E
∣∣∣ ∑
i∈[M ]

λir
i
j

∣∣∣q∗ ≥ c( ∑
i∈[M ]

λ2
i

)q∗/2
= c‖λ‖q

∗

2

E[Y 2
1 ] = E

∣∣∣ ∑
i∈[M ]

λir
i
j

∣∣∣2q∗ ≤ c′( ∑
i∈[M ]

λ2
i

)2q∗/2
= c′‖λ‖2q

∗

2 .

In particular, c ≥ 1/
√

2 and c′ is a constant that only depends on q∗ (Haagerup, 1981),
which is finite, as q ≥ p > 1, by the lemma assumptions. Therefore, by the left-sided
Bernstein’s Inequality (Theorem 20) for any 0 < η < c :

P
[1

d

∑
j∈[d]

Yj ≤ (c− η)‖λ‖q
∗

2

]
≤ exp

(
−dη

2‖λ‖2q
∗

2

2c′‖λ‖2q
∗

2

)
= exp

(
−dη

2

2c′

)
.

As λ ∈ ∆M , it must be ‖λ‖2 ≥ 1/
√
M . Choosing η = c/2, we have (c− η)‖λ‖2 ≥ 1

2
√

2M
≥

5ε = ε′, and it follows that:

P
[1

d

∑
j∈[d]

∣∣∣ ∑
i∈[M ]

λir
i
j

∣∣∣q∗ ≤ (ε′)q
∗
]
≤ exp

(
− dc2

8c′

)
≤ exp

(
− d

16c′

)
.

To complete the proof, it suffices to have d ≥ 16c′ (ln(1/γ) +M ln(3/ε)) . This is clearly

satisfied for M ≤ d/(16c′)−ln(1/γ)
ln(3/ε) from the lemma’s assumptions.
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B.2. Smooth, Weakly Smooth, and Nonsmooth Optimization for p ≥ 2

We start by showing that, under suitable constraints on M and L, Assumptions (b) and (c)
from Theorem 3 are satisfied. This will suffice to apply Theorem 3 in the case of nonsmooth
optimization (i.e., for S being a (0, 0, 0, 1)-local smoothing). To obtain results in the smooth
and weakly smooth settings, we will then show how to satisfy the remaining assumptions
for a suitable local smoothing.

In terms of Assumption (b), we can in fact obtain a much stronger result than needed
in Theorem 3:

Lemma 40 Let p ≥ 2, ε ∈ (0, 1), µ̄ > 0, zi’s chosen as described in Section 3.1.2 and:

M ≤
( 1

4µ̄ε

)p
then:

P
[

min
λ∈∆M

∥∥∥ ∑
i∈[M ]

λiz
i
∥∥∥
p∗
≤ 4µ̄ε

]
= 0.

Proof Let λ ∈ ∆M be fixed. Observe that, since zi’s have disjoint support (each zi is
supported on Ji such that |Ji| = L and Ji ∩Ji′ = ∅ for all i 6= i′), vector

∑
i∈[M ] λiz

i is such

that its coordinates indexed by j ∈ Ji (L of them) are equal to λiz
i
j , ∀i ∈ [M ]. Therefore,

using the definition of zi (Equation 5):∥∥∥ ∑
i∈[M ]

λiz
i
∥∥∥p∗
p∗

=
∑
i∈[M ]

(
L ·
(
λi

1

L1/p∗

)p∗)
= ‖λ‖p

∗

p∗ .

By the relationship between `p norms and the definition of λ, we have that 1 = ‖λ‖1 ≤
M1/p‖λ‖p∗ . Hence: ∥∥∥ ∑

i∈[M ]

λiz
i
∥∥∥
p∗

= ‖λ‖p∗ ≥M−1/p ≥ 4µ̄ε.

Since this holds for all λ ∈ ∆M surely, the proof is complete.

For Assumption (c), we have the following (simple) lemma:

Lemma 41 Let p ≥ 2 and zi’s chosen as described in Section 3.1.2, then:

P[
〈
zi,x

〉
≥ δ] = P[

〈
zi,x

〉
≤ −δ] ≤ exp

(
− Lδ2

2

)
(∀x ∈ Bdp).

Proof By the definition of zi and Hoeffding’s Inequality, ∀x ∈ X :

P[
〈
zi,x

〉
> δ] = P[

〈
zi,x

〉
< −δ] = P

[∑
j∈Ji

rijxj > δL1/p∗
]

≤ exp
(
− L2/p∗δ2

2
∑

j∈Ji xj
2

)
.
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As |Ji| = L, by the relations between `p norms,

(
∑
j∈Ji

xj
2)1/2 ≤ L1/2−1/p(

∑
j∈Ji

xj
p)1/p ≤ L1/2−1/p.

Thus, it follows that:

P[
〈
zi,x

〉
> δ] = P[

〈
zi,x

〉
< −δ] ≤

(
− L2/p∗δ2

2L1−2/p

)
= exp

(
− Lδ2

2

)
.

To obtain the result for the nonsmooth case, we can take µ̄ = 1 and apply Theorem 3, as
follows.

Theorem 12 Let p ≥ 2, X ⊇ Bdp, and ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1). Then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M := min
{ 1

(4ε)p
,
ε2/3

8

( d

ln(MK/γ)

)1/3}
.

Proof For Lemma 40 to apply, it suffices to have M ≤ 1
(4ε)p , as in the nonsmooth case

µ = 1. Lemma 41 implies that it suffices to set α = L/2 = d/(2M). As δ̄ = 16

√
ln(MK/γ)

α ,

to satisfy Assumption (d) from Theorem 3 (which requires δ̄ ≤ ε/M), it suffices to have:

M ≤ ε

16

√
d

2M ln(MK/γ)
,

or, equivalently: M ≤ ε2/3

8

(
d

ln(MK/γ)

)1/3
, as claimed.

To obtain lower bounds for the κ-weakly smooth case (where κ ∈ [0, 1]; κ = 0 is the
nonsmooth case from the above and κ = 1 is the standard notion of smoothness), we need to,
in addition to using Lemmas 40 and 41, choose an appropriate local smoothing that satisfies
the remaining conditions from Theorem 3. By doing so, we can obtain the following result.

Theorem 14 Let p ≥ 2, X ⊇ Bdp, and ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1). Then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M := min

{( 1

23+4κ ε (min{p, ln(d)})κ
) p

1+κ(1+p)
,

d

29 ln(MK/γ)

(
2

1+3p+2κ(1+p)
1+p min{p, ln(d)}κε

) 2(1+p)
1+κ(1+p)

}
.

Proof From Remark 13 we have that `dp is (κ, η, η, µ̄)-locally smoothable (observe here that
r = η) for any 0 ≤ κ ≤ 1, as long as µ̄ = 21−κ(min{p, ln(d)}/η)κ.

Let η = δ̄/8. Denote µ̃ = 21−κ(8 min{p, ln(d)})κ, so that µ̄ = µ̃
δ̄κ
. To satisfy Assumptions

(a) and (d), we need to have δ̄ ≤ min{2εµ̄, εµ̄/M}, and it suffices to enforce M ≤ µ̄ε
δ̄

= εµ̃
δ̄1+κ

.
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To satisfy Assumption (c), by Lemma 41 we can choose α = L
2 , which leads to the following

bound on M :

M ≤ εµ̃

24(1+κ)

( L

2 ln(MK/γ)

) 1+κ
2
. (7)

To satisfy the remaining assumption from Theorem 3 (Assumption (b)), we need to impose
the following constraint on M (from Lemma 40):

M ≤
(

1

4µ̄ε

)p
=

(
δ̄κ

4εµ̃

)p
=
(22(2κ−1)

εµ̃

)p( L

2 ln(MK/γ)

)− pκ
2

(8)

The right-hand sides of the inequalities in Equations (7) and (8) are equal when

L = 29 ln(MK/γ) ·
(

4

(4µ̃ε)p+1

)2/[1+κ(p+1)]

and, thus, we make this choice for L. As d ≥ML, we also need to satisfy M ≤ d/L, finally
leading to the claimed bound:

M ≤ min

{(
1

41+κµ̃ε

) p
1+κ(1+p)

,
d

29 ln(MK/γ)

(
4

p
1+p µ̃ε

) 2(1+p)
1+κ(1+p)

}

The rest of the proof follows by using µ̃ = 21+2κ(min{p, ln(d)})κ in the last equation.

B.3. Smooth and Weakly Smooth Optimization for 1 ≤ p ≤ 2

Theorem 15 Let 1 ≤ p ≤ 2, 0 < κ ≤ 1, X ⊇ Bdp, ε ∈ (0, 1/2), γ ∈ ( 1
poly(d) , 1). Then, there

exist constants ν, cκ > 0, such that if d ≥ 1
ν

⌈
2(ln(νdK/γ))

2κ
3+2κ

(
1
ε

) 6
3+2κ

⌉
, then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M :=
cκ

ln(1/ε) + κ ln ln(dK/γ)

(1

ε

) 2
3+2κ

.

Proof [Proof Sketch] By Dvoretzky’s Theorem (see Appendix A), there exists a universal
constant ν > 0 such that for any T ≤ νd there exists a subspace F ⊆ Rd of dimension T ,
and a centered ellipsoid E ⊆ F , such that

1

2
E ⊆ F ∩ Bdp ⊆ E . (9)

By an application of the Hahn-Banach theorem, we can certify that there exist vectors
g1, . . . , gT ∈ Bdp∗ , such that E = {x ∈ F :

∑
i∈[T ]

〈
gi,x

〉2 ≤ 1}.
Consider now linear mapping G : (Rd, ‖ · ‖p) 7→ (RT , ‖ · ‖∞) such that

Gx := (
〈
g1,x

〉
, . . . ,

〈
gT ,x

〉
),

and notice that by the previous paragraph the operator norm of G is upper bounded by 1.
We observe that:
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• For any f ∈ Fκ
`T∞

(µ), function f̃ := f ◦G belongs to Fκ
`dp

(µ). In other words, the whole

function class Fκ
`T∞

(µ) can be obtained from Fκ
`dp

(µ) through the linear embedding G.

• We claim that any local oracle for the class {f̃ : f ∈ Fκ
`T∞

(µ)} can be obtained from a

local oracle for the class Fκ
`dp

(µ) (for a proof of this claim, see Guzmán and Nemirovski

2015, Appendix C).

• From (9), the set Y = GBdp is such that 1
2
√
T
BT∞ ⊆ 1

2B
T
2 ⊆ Y ⊆ BT2 .

From these facts, we can conclude that the oracle complexity over X with function class
Fκ
`dp

(1) is at least the one obtained in the embedded space Y with the respective embedded

function class Fκ
`T∞

(1), thus

ComplγHP(Fκ`dp(1),X ,K, ε) ≥ ComplγHP(Fκ`T∞(1),Y,K, ε)

≥ ComplγHP(Fκ`T∞(1),BT∞(0, 1/[2
√
T ]),K, ε)

Denote ε′ = 2ε
√
T . By Theorem 14 applied to p =∞, together with Remark 4, we get that

it is sufficient to require, as long as T ≤ νd, that:

M = min

{
1

ln(T )

( 1

23+4κε′

)1/κ
,

T ln2(T )

29 ln(νdK/γ)

(
23+2κε′

)2/κ}
= min

{
1

ln(T )

( 1

24(1+κ)ε
√
T

)1/κ
,

T ln2(T )

29 ln(νdK/γ)

(
22(2+κ)ε

√
T
)2/κ}

.

In the last expression, the left term in the minimum is lower whenever:

T ln2 T ≥ (29 ln(dK/γ))
2κ

3+2κ

(1

2

) 8(2+3κ)
3+2κ

(1

ε

) 6
3+2κ

,

and it suffices to choose:

T =

⌈
2(ln(νdK/γ))

2κ
3+2κ

(1

ε

) 6
3+2κ

⌉
.

Under this choice, as long as d ≥ T/ν, the oracle complexity is lower bounded by:

M =
cκ

ln(1/ε) + κ ln ln(dK/γ)

(1

ε

) 2
3+2κ

,

where cκ is an absolute constant that only depends on κ, as claimed.
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