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Abstract
We derive generalization and excess risk bounds for neural networks using a family of
complexity measures based on a multilevel relative entropy. The bounds are obtained by
introducing the notion of generated hierarchical coverings of neural networks and by using
the technique of chaining mutual information introduced by Asadi et al. ’18. The resulting
bounds are algorithm-dependent and multiscale: they exploit the multilevel structure of
neural networks. This, in turn, leads to an empirical risk minimization problem with a
multilevel entropic regularization. The minimization problem is resolved by introducing a
multiscale extension of the celebrated Gibbs posterior distribution, proving that the derived
distribution achieves the unique minimum. This leads to a new training procedure for neural
networks with performance guarantees, which exploits the chain rule of relative entropy
rather than the chain rule of derivatives (as in backpropagation), and which takes into
account the interactions between different scales of the hypothesis sets of neural networks
corresponding to different depths of the hidden layers. To obtain an efficient implementation
of the latter, we further develop a multilevel Metropolis algorithm simulating the multiscale
Gibbs distribution, with an experiment for a two-layer neural network on the MNIST data
set.
Keywords: neural networks, multilevel relative entropy, chaining mutual information,
multiscale generalization bound, multiscale Gibbs distribution

1. Introduction

Deep neural networks have found profound applications in many areas of artificial intelligence,
yet they are lacking solid theoretical grounds. Constructing a theory for understanding
neural networks and for how to design their architecture and better train them is of vital
interest and a main challenge in machine learning. Nowadays, deep neural networks are
dominantly trained by stochastic gradient descent (SGD) or its variants. In this paper,
based on ideas from high dimensional probability and information theory, we present a new
perspective on designing the architecture of neural nets and propose a novel algorithm which
is fundamentally different from SGD and its variants.
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Chaining, originated from Kolmogorov in 1934, is a powerful multiscale method in high
dimensional probability for bounding the suprema of random processes. Furthermore, one
may realize at a high-level that the multiscale argument in chaining has the potential to
apply naturally to the multilevel architecture of deep neural networks. We thus raise the
following question:

Can we use the intrinsic power of chaining to devise learning algorithms for deep neural
networks with performance guarantees?

Motivated by this question, we show that the multilevel architecture of neural networks
makes them ideal for devising a training procedure based on the recent information-theoretic
and algorithm-dependent extension of chaining, that is, the chaining mutual information
(CMI) technique introduced by Asadi et al. (2018). The CMI is a combination of classical
chaining with the mutual information bound of Russo and Zou (2016) and Xu and Raginsky
(2017). We give a brief overview of this technique in Section 2.

A key tool used in both classical chaining and CMI is the notion of hierarchical coverings
of index sets and hypothesis sets, with controlled diameters. We strengthen and extend
the CMI technique of Asadi et al. (2018) and adapt it to the architecture of deep neural
nets. Then, using our strengthened CMI technique, we obtain new multiscale and algorithm-
dependent generalization bounds for neural nets. We show that these chaining-style and
information-theoretic generalization bounds are capable of creating a new method of training
neural nets, modeled as a conditional probability distribution. This multilevel algorithm is
intrinsically different from algorithms which treat the whole net as a single block, such as
the widely used SGD and its variants. It is also distinct from layer-wise training algorithms
in which the layers under training are oblivious to the untrained layers at each stage. In fact,
this multilevel algorithm differentiates between the different scales of the hypothesis set of
deep neural nets, corresponding to different depth of its hidden layers, and takes into account
the interactions between them. Crucially, using the generalization bound, we demonstrate
that the excess risk of our proposed training algorithm satisfies a chaining-style multiscale
bound.

These generalization and excess risk bounds introduce a family of complexity measures
for the hypotheses of neural nets, based on a multilevel relative entropy ; see Definition 8.
These complexity measures take into account the multilevel and compositional structure of
neural nets, as opposed to the classical relative entropy (KL-divergence) derived from the
PAC-Bayesian bounds (see e.g. Catoni, 2007), or mutual information bounds (Russo and
Zou, 2016; Xu and Raginsky, 2017).

More precisely, in the main results of this paper, we first demonstrate an advantage of
the multilevel architecture of deep neural nets by showing how one can obtain accessible
hierarchical coverings for their hypothesis sets, introducing the notion of generated coverings
in Section 3. Since these hierarchical coverings are naturally generated from the architecture
of deep neural nets, they are easily accessible and convenient for use in the training algorithm.
Furthermore, we show how one can regularize the hypothesis set of neural nets to make
these hierarchical sequence of generated coverings possess controlled diameters suitable
for the chaining argument; see Section 4 on multilevel regularization. The effect of such
regularization on the representation ability of neural nets has been recently studied, such
as by Hardt and Ma (2016) and Bartlett et al. (2018) for the special case where layers
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are restricted to nearly-identity functions similar to residual networks (He et al., 2016).
Then, we derive our generalization bound for arbitrarily deep feedforward neural nets via
applying our strengthened CMI technique and using their hierarchical sequence of generated
coverings. Although such a sequence of coverings may not be the sequence which gives the
tightest possible generalization bound, it has the major advantage of being easily accessible,
and hence can be exploited in devising multilevel training algorithms. Designing training
algorithms based on hierarchical coverings of hypothesis sets which achieve chaining-style
excess risk (or regret) bounds has first been studied by Cesa-Bianchi and Lugosi (1999),
and has recently regained traction in, for example, works by Gaillard and Gerchinovitz
(2015) and Cesa-Bianchi et al. (2017), all in the context of online learning and prediction
of individual sequences. With such approaches, hierarchical coverings are no longer viewed
merely as methods of proof for generalization bounds: they further allow for algorithms
achieving low statistical error. However, a major difficulty of using the algorithms given in
the aforementioned prior works is in constructing suitable hierarchical coverings. In this
paper, we show how this task is easy for the multilevel architecture of neural nets. Moreover,
to the best of our knowledge, we are the first to devise chaining-based multilevel algorithms
for the batch learning setting.

In our case, the derived generalization bound puts forward a multilevel relative entropy
as a regularization term. We then turn to minimizing the empirical error with this induced
regularization, called here the multilevel entropic regularization. Interestingly, we can solve
this minimization problem exactly, obtaining a multiscale extension of the celebrated Gibbs
algorithm (posterior distribution); see Sections 5 and 6. This target conditional distribution is
obtained in a backwards manner by successive marginalization and tilting of the classical Gibbs
distribution, as described in the marginalize-tilt algorithm introduced in Section 6. Unlike
the classical Gibbs distribution which has a global temperature parameter, its multiscale
counter-part possesses a temperature vector. We then present a multilevel training algorithm
by simulating our target distribution via a multilevel Metropolis algorithm introduced for a
two layer net in Section 8. In contrast to the celebrated backpropagation algorithm which
exploits the chain rule of derivatives, our target distribution and its simulated version are
derived from the chain rule of relative entropy, and take into account the interactions between
different scales of the hypothesis sets of neural nets corresponding to different depths of the
hidden layers.

This paper introduces the new concepts and main results behind this alternative approach
to training neural nets. Many directions emerge from this approach, in particular for its
applicability. It is worth noting that Markov chain Monte Carlo (MCMC) methods are known
to often better cope with non-convexity issues than gradient descent, since they are able to
backtrack from local minima (Geman and Geman, 1984). Furthermore, in contrast to gradient
descent, MCMC methods take into account parameter uncertainty that helps preventing
overfitting (Welling and Teh, 2011). However, compared to gradient based methods, these
methods are typically computationally more demanding.

Notice that in this work, instead of endeavoring to theoretically explain the performance
of currently used algorithms in practice, we take the reverse course of proposing an entirely
new and different method for training neural networks and designing their architectures,
driven by new rigorous theory. It is widely believed that neural nets learn features from
data in a hierarchical manner; see e.g. LeCun et al. (2015). Supportive to this belief, the
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new training algorithm proposed in this paper has a hierarchical and multilevel structure, in
contrast to SGD which trains all the layers together on each pass.

1.1. Further Related Literature

Information-theoretic approaches to statistical learning have been studied in PAC-Bayesian
theory; see works by McAllester (1999), Catoni (2007), Guedj (2019), Audibert and Bousquet
(2004) and references therein, and with the recent mutual information generalization bound
such as by Russo and Zou (2016), Xu and Raginsky (2017), Raginsky et al. (2016), Jiao
et al. (2017), Pensia et al. (2018), Bassily et al. (2018) and Bu et al. (2020). PAC-Bayes
generalization bounds have been specifically derived for neural networks in recent works such
as by Dziugaite and Roy (2017a, 2018), Neyshabur et al. (2017) and Zhou et al. (2018). The
statistical properties of the Gibbs distribution, also known as the Boltzmann distribution,
or the exponential weights distribution (Rigollet and Tsybakov, 2012), have been studied
in the information-theoretic works by Zhang (1999, 2006a,b), Xu and Raginsky (2017) and
Raginsky et al. (2016). The Gibbs distribution has been applied in devising and analyzing
training algorithms in recent studies such as by Chaudhari et al. (2016), Raginsky et al. (2017)
and Dziugaite and Roy (2017b). Tilted distributions in unsupervised and semi-supervised
statistical learning problems has also been studied by Asadi et al. (2017) in the context
of community detection. A notion of multiscale entropy, related to our multilevel relative
entropy, has been used by Bubeck et al. (2018) in the context of online algorithms and the
k-server problem.

1.2. Notation

In this paper, all logarithms are in natural base and all information-theoretic measures
are in nats. Let ıP‖Q, D(P‖Q) and Dλ(P‖Q) denote the relative information, the relative
entropy, and the Rényi divergence of order λ between probability measures P and Q, and
let D(PY |X‖QY |X |PX) ,

∫
D(PY |X=ω‖QY |X=ω)dPX(ω) denote conditional relative entropy

(see Appendix A for precise definitions). In the framework of supervised statistical batch
learning, X denotes the instances domain, Y is the labels domain, Z = X × Y denotes
the examples domain and H = {hw : w ∈ W} is the hypothesis set, where the hypotheses
are indexed by an index set W. Let ` : W × Z → R+ be the loss function. A learning
algorithm receives the training set S = (Z1, Z2, ..., Zn) of n examples with i.i.d. random
elements drawn from Z with an unknown distribution µ, thus PS = µ⊗n. Then it picks
an element hW ∈ H as the output hypothesis according to a random transformation PW |S .
For any w ∈ W, let Lµ(w) , E[`(w,Z)] denote the statistical (or population) risk of
hypothesis hw, where Z ∼ µ. For a given training set S, the empirical risk of hypothesis
hw is defined as LS(w) , 1

n

∑n
i=1 `(w,Zi), and the generalization error of hypothesis hw

(dependent on the training set) is defined as gen(w) , Lµ(w)−LS(w). Averaging with respect
to the joint distribution PS,W = µ⊗nPW |S , we denote the expected generalization error by
gen(µ, PW |S) , E[gen(W )], and the expected statistical risk by risk(µ, PW |S) , E[Lµ(W )].
Throughout the paper, ‖A‖2 denotes the spectral norm of matrix A and |b|2 denotes the
Euclidean norm of vector b. Let δw denote the Dirac measure centered at w.
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2. Preliminary: The CMI Technique

Chaining, originated from Kolmogorov and developed by Dudley, Talagrand, Fernique and
others, is a powerful technique in high dimensional probability for bounding the expected
suprema of random processes while taking into account the dependencies between their
random variables in a multiscale manner using maximal inequalities. Here we emphasize
the core idea of the chaining technique: performing refined approximations of the random
variables of a process by using a telescoping sum, named as chaining sum. If T is an arbitrary
index set and {Xt}t∈T is a random process, then for any t ∈ T one can write

Xt = Xπ1(t) +
(
Xπ2(t) −Xπ1(t)

)
+ · · ·+

(
Xπd(t) −Xπd−1(t)

)
+
(
Xt −Xπd(t)

)
,

where π1(t), π2(t), . . . , πd(t) are finer and finer approximations of the index t. Each of the
differences Xπk(t) −Xπk−1(t), k = 1, 2, . . . , d, is called a link of the chaining sum. Informally
speaking, if the approximations πk(t), k = 1, 2, . . . , d, are close enough to each other and
πd(t) is close to t, then, in many important applications, controlling the expected supremum
of each of the links with union bounds and summing them up will give a much tighter
bound than bounding the supremum of Xt upfront with a union bound.1 For instance, the
approximations may be the projections of t on an increasing sequence of partitions of T ,
which are partitions of T at different scales. For more information, see van Handel (2016),
Vershynin (2018), Talagrand (2014) and references therein.

The technique of chaining mutual information, recently introduced by Asadi et al. (2018),
can be interpreted as an algorithm-dependent version of the above, extending a result of
Fernique (1976) by further taking into account such dependencies, and adjusting chaining
for statistical learning problems. Assume that, for the given random process {Xt}t∈T , the
goal is to obtain an upper bound on the expected bias E[XW ], where W is the output of an
algorithm which takes values on the index set T . In brief, Asadi et al. (2018) assert that one
can replace the metric entropy in chaining with the mutual information between the input
{Xt}t∈T and the discretized output πk(W ). By writing the chaining sum with random index
W and after taking expectations, we obtain:

E [XW ] = E
[
Xπ1(W )

]
+ E

[
Xπ2(W ) −Xπ1(W )

]
+ · · ·+ E

[
XW −Xπd(W )

]
. (1)

With this technique, rather than bounding E [XW ] with a single mutual information term
(Russo and Zou, 2016; Xu and Raginsky, 2017), one bounds each link E

[
Xπk(W ) −Xπk−1(W )

]
,

k = 1, 2, . . . , d, and then sums them up. This gives a multiscale and algorithm-dependent
upper bound on E [XW ].

Remark 1 The notion of metric entropy is similar to Hartley entropy in the information
theory literature. To deal with the effect of noise in communication systems, Hartley entropy
was generalized and replaced by mutual information by Shannon (see Verdú, 1998).

In this paper, first we note that unlike the classical chaining method in which we
require finite size partitions whose cardinalities appear in the bounds,2 that requirement
is unnecessary for the CMI technique. Therefore one may use a hierarchical sequence of

1. The idea is that the increments may capture more efficiently the dependencies.
2. Finite partitions is not required in the theory of majorizing measures (generic chaining).
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coverings of the index set which includes covers of possibly uncountably infinite size. This
fact will be useful for analyzing neural networks with continuous weight values in the next
sections. For details, see Appendix B.

The second important contribution is to design the coverings to meet the multilayer
structure of neural nets. In the classical chaining and the CMI of Asadi et al. (2018), these are
applied on an arbitrary infinite sequence of 2−k-partitions. In this paper, we take a different
and new approach and use the hierarchical sequences of generated coverings associated with
multilevel architectures, as defined in the next section.

Remark 2 Using Theorem 2 of Bu et al. (2020), we also show that for empirical processes,
one can replace the mutual information between the whole input set and the discretized
output with mutual informations between individual examples and the discretized output to
obtain a tighter CMI bound. For details, see Appendix B.

3. Multilevel Architectures and Their Generated Coverings

Assume that in a statistical learning problem, the hypothesis set H = {hw : w ∈ W} consists
of multilevel functions, that is, the index set W = W1 × · · · × Wd can be written as a
Cartesian product and consists of elements w ∈ W representable with d ≥ 2 components
as w = (W1, . . . ,Wd). Examples for neural nets can be: 1. When the components are the
layers. 2. When the components are stacks of layers plus skip connections, such as in residual
networks. For all 1 ≤ k ≤ d, let Gk be the exact covering of W determined by all possible
values of the first k components, that is, any two indices are in the same set if and only their
first k components match:

Gk , {{W1} × · · · × {Wk} ×Wk+1 × · · · ×Wd : (W1, . . . ,Wk) ∈ W1 × · · · ×Wk} .

Notice that {Gk}dk=1 is a hierarchical sequence of exact coverings of the index set W, and
the projection set of any w ∈ W in Gk, that is, the unique set in Gk which includes w, is
determined only by the values of the first k components of w. We call {Gk}dk=1 the hierarchical
sequence of generated coverings of the index set W, and will use CMI with this sequence in
the next sections.3

Remark 3 The notion of generated coverings of W is akin in nature to the notion of
generated filtrations of random processes in probability theory (for a definition, see Çınlar
2011, p. 171) and applying the CMI technique on this sequence is akin to the martingale
method for concentration bounds.

We provide the following simple yet useful example by revisiting Example 1 of Asadi et al.
(2018):

Example 1 Consider a canonical Gaussian process Xt , 〈t, Gn〉, t ∈ T where n = 2,
G2 = (G1, G2) has independent standard normal components and T , {t ∈ R2 : |t|2 = 1}.
The process {Xt}t∈T can also be expressed according to the phase of each point t ∈ T , i.e.
the unique number φ ∈ [0, 2π) such that t = (sinφ, cosφ). Assume that the indices are in

3. Notice that for a given architecture, one can re-parameterize the components with different permutations
of {1, 2, . . . , d} to give different generated coverings.
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the phase form and define the following dyadic sequence of partitions of T : For all integers
k ≥ 1,

Pk ,
{[

0,
2π

2k

)
,

[
2π

2k
, 2× 2π

2k

)
, ...,

[(
2k − 1

) 2π

2k
, 2π

)}
.

Can T and the sequence {Pk}∞k=1 be related to the hypothesis set of a multilevel architecture

and its generated coverings? For all integers i ≥ 1, letWi ,

{[
cos θ − sin θ
sin θ cos θ

]∣∣∣∣θ ∈ {− π
2i
, π
2i

}}
.

Notice that for each t = [t1, t2] ∈ T , one can write

Xt =
[
t1 t2

]
G2

=
[
1 0

]
(· · ·W2W1)G

2,

where eachWi ∈ Wi is uniquely determined by t. For all k ≥ 1, fixing the values ofW1, . . . ,Wk

and allowing the rest of the matrices to take arbitrary values in their corresponding Wi gives
one of the elements of Pk. Therefore, the sequence of generated coverings associated with
the index set of the infinite-depth linear neural net

fW (G2) =
[
1 0

]
(· · ·W2W1)G

2

is {Pk}∞k=1.

4. Multilevel Regularization

The purpose of multilevel regularization is to control the diameters of the generated coverings4

and the links of its corresponding chaining sum. Consider a d layer feedforward neural net
with parameters w , (W1,W2, . . . ,Wd) ∈ W, where for all 1 ≤ k ≤ d, Wk ∈ Rτk×τk−1

is a matrix between hidden layers k − 1 and k. Let φ denote any non-linearity which is
1-Lipschitz5 and satisfies φ(0) = 0, such as the entry-wise ReLU activation function, and
let φo either be the soft-max function, or the identity function. For a given R > 0, assume
that the instances domain is X , {x ∈ Rm : |x|2 ≤ R}. The feedforward neural net with
parameters w is a function hw : X → Rτd defined as hw(x) , φo(Wd(φ(· · ·φ(W1(x)) · · · ))).
For all 1 ≤ k ≤ d, let Mk ∈ Rτk×τk−1 be a fixed matrix such that ‖Mk‖2 > 0, and for αk > 0,
define the following set of matrices:

Sk , {W ∈ Rτk×τk−1 : ‖W −Mk‖2 ≤ αk‖Mk‖2}. (2)

We assume that the domain of Wk, that is Wk, is a subset of Sk. We are regularizing Wk

with Mk and αk, for all 1 ≤ k ≤ d, to constrain the links of the chaining sum, as we will
see in Lemma 4. We name Mk and αk as the reference6 and radius of Wk, respectively. A
common example used in practice is to let the references be identity matrices, such as for
residual nets; e.g. by Hardt and Ma (2016) and Bartlett et al. (2018, 2017). For instance, for

4. The diameter of a covering for a metric space is defined as the supremum of the diameters of its blocks.
5. One can readily replace the ReLU activation function with any other ρ-Lipschitz activation function

which maps the origin to origin. Our bounds in the next section will then depend on ρ.
6. This is similar to the terminology of “reference matrices” by Bartlett et al. (2017).
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the linear neural net in Example 1, one can take Mk = I2×2 and αk = π2−k, for all k ≥ 1.
We define the projection of w on the generated covering Gk as

(W1, . . . ,Wk,Mk+1, . . . ,Md).

Let M ,
∏d
j=1 ‖Mj‖2.

Lemma 4 Let 2 ≤ k ≤ d. Let w1 = (W1, . . . ,Wk−1,Wk,Mk+1, . . . ,Md) and w2 =
(W1, . . . ,Wk−1,Mk,Mk+1, . . . ,Md) be the projections of w on Gk and Gk−1, respectively.
Then, for all x ∈ X ,

|hw1(x)− hw2(x)|2 ≤ αk exp

(
k−1∑
i=1

αi

)
M |x|2.

For a proof, see Appendix C.
Notice that for any w ∈ W and any x ∈ X , if φo is the soft-max function, then

|hw(x)|2 ≤ 1, and if φo is the identity function, then from (2) and the triangle inequality,
we derive |hw(x)|2 ≤ exp

(∑d
i=1 αi

)
MR. Let the loss function ` be chosen such that

there exists7 L > 0 for which for any w1, w2 ∈ W and any z = (x, y) ∈ Z we have
|`(w1, z) − `(w2, z)| ≤ L|hw1(x) − hw2(x)|2 . A commonly used example is the squared `2
loss, that is, for the net with parameters w and for any example z = (x, y) ∈ Z, define
`(w, z) , |hw(x) − y|22. For classification problems, assume that the labels y are one-hot
vectors, otherwise, let |y|2 ≤ 1. Note that for this loss function, based on triangle inequality,
if φo is the soft-max function, then one can assume L = 4, and if φo is the identity function,
then one can take L = 2 + 2 exp

(∑d
i=1 αi

)
MR.

Notice that if αi = 1
d and Mi = Iτ×τ for all 1 ≤ i ≤ d and R = O(1) as assumed by

Hardt and Ma (2016), then L = O(1). If αi = log d
d and Mi = Iτ×τ for all 1 ≤ i ≤ d and

R = O(1) as assumed by Bartlett et al. (2018), then L = O(d). The choice of the radii αk,
k = 1, . . . , d, depends on the representation ability that we require from the neural net.

5. Generalization and Excess Risk Bounds

For simplicity in the notation, we first give the following definition:

Definition 5 For all 1 ≤ k ≤ d, let

h[W1,...,Wk] , h[W1,...,Wk,Mk+1,...,Md],

`([W1, . . . ,Wk], z) , `([W1, . . . ,Wk,Mk+1, . . . ,Md], z),

and
gen(W1, . . . ,Wk) , gen([W1, . . . ,Wk,Mk+1, . . . ,Md]).

For all 1 ≤ k ≤ d, let βk , αk exp
(∑k−1

i=1 αi

)
and assume that Wk denotes a random matrix.

We can now state the following multiscale and algorithm-dependent generalization bound
derived from CMI using the sequence of generated coverings, in which mutual informations
between the training set S and the first k layers appear:

7. This assumption is similar to the assumption of Lemma 17.6 of Anthony and Bartlett (2009).

8



Chaining Meets Chain Rule

Theorem 6 Given the assumptions in the previous section, we have

gen(µ, PW |S) ≤
LMR

√
2√

n

d∑
k=1

βk
√
I(S;W1, . . . ,Wk). (3)

Proof According to (1), one can write the chaining sum with respect to the sequence of
generated coverings as

gen(µ, PW |S) = E[gen(W )] = E[gen(W1)] + E[gen(W1,W2)− gen(W1)] + . . .

+ E[gen(W )− gen(W1, . . . ,Wd−1)]. (4)

Based on the Azuma–Hoeffding inequality, {gen(w)}w∈W is a subgaussian process with the
metric

d(w,w′) ,
‖`(w, ·)− `(w′, ·)‖∞√

n
,

regardless of the choice of distribution µ on Z. For any example z = (x, y) ∈ Z, we have

|`(w, z)− `(w′, z)| ≤ L |hw(x)− hw′(x)|2 .

Therefore
‖`(w, ·)− `(w′, ·)‖∞ ≤ L sup

x∈X
|hw(x)− hw′(x)|2. (5)

Based on Lemma 4, for all 1 ≤ k ≤ d, we have

sup
x∈X
|h[W1,...,Wk](x)− h[W1,...,Wk−1](x)|2 ≤ βkMR. (6)

Using (5), we deduce

‖`([W1, . . . ,Wk], ·)− `([W1, . . . ,Wk−1], ·)‖∞ ≤ LβkMR. (7)

Notice that knowing the value of (W1, . . . ,Wk) is enough to determine which one of the
random variables {gen(W1, . . . ,Wk)− gen(W1, . . . ,Wk−1)}w∈W is chosen according to W .
Therefore (W1, . . . ,Wk) is playing the role of the random index, and since

gen(W1, . . . ,Wk)− gen(W1, . . . ,Wk−1)

is d2 ([W1, . . . ,Wk], [W1, . . . ,Wk−1])-subgaussian, based on (7), Theorem 2 of Xu and
Raginsky (2017) and an application of the data processing inequality on the Markov chain
{gen(w)}w∈W ↔ S ↔W ↔ (W1, . . . ,Wk), we obtain

E[gen(W1, . . . ,Wk)− gen(W1, . . . ,Wk−1)] ≤
LMR

√
2βk√

n

√
I(S;W1, . . . ,Wk). (8)

From (4) and (8) we deduce

gen(µ, PW |S) = E[gen(W )] ≤ LMR
√
2√

n

d∑
k=1

βk
√
I(S;W1, . . . ,Wk).

9



Asadi and Abbe

Notice that we can rewrite (3) as

risk
(
µ, PW |S

)
= E[Lµ(W )] ≤ E[LS(W )] +

C√
n

d∑
k=1

βk
√
I(S;W1, . . . ,Wk), (9)

where C , LMR
√
2. The goal in statistical learning is to find an algorithm PW |S which

minimizes risk
(
µ, PW |S

)
= E[Lµ(W )]. To that end, we derive an upper bound on E[Lµ(W )]

from inequality (9) whose minimization over PW |S is algorithmically feasible. If for each
k = 1, 2, . . . , d, we define Q(k)

W1...Wk
to be a fixed distribution on W1 × · · · ×Wk that does not

depend on the training set S, which we name as prior distribution,8 then from (9) we deduce

risk
(
µ, PW |S

)
≤ E[LS(W )] +

C√
n

d∑
k=1

βk

(
γkI(S;W1, . . . ,Wk) +

1

4γk

)
(10)

≤ E[LS(W )] +
C√
n

d∑
k=1

βk

(
γkD

(
PW1...Wk|S

∥∥∥Q(k)
W1...Wk

∣∣∣PS)+ 1

4γk

)
, (11)

where (10) follows from the inequality
√
x ≤ cx + 1

4c for all x, c > 0, which is upper
bounding the concave function

√
x with a tangent line, and (11) follows from the difference

decomposition of mutual information: I(X;Y ) = D(PY |X‖QY |PX)−D(PY ‖QY ); see Lemma
19 in Appendix A.9 Given fixed parameters γk, k = 1, 2, . . . , d, and for any fixed n, let P ?W |S
be the conditional distribution that minimizes the right side of (11), that is,

P ?W |S , argmin
PW |S

{
E[LS(W )] +

C√
n

d∑
k=1

βkγkD
(
PW1...Wk|S

∥∥∥Q(k)
W1...Wk

∣∣∣PS)} . (12)

Note that we made the expression in (12) linear in PS . This is crucial, since, in turn, it
implies that the algorithm P ?W |S does not depend on the unknown input distribution µ (recall
that PS = µ⊗n), which is a desired property of P ?W |S . The excess risk of P ?W |S satisfies the
following multiscale bound:

Theorem 7 Let ŵ(µ) denote the index of a hypothesis which achieves the minimum statistical
risk among W. For ε ≥ 0, let B(ε)

W1...Wd
denote the uniform distribution over a neighborhood

Uε of ŵ(µ) for which all w ∈ Uε satisfy Lµ(w) ≤ infw∈W Lµ(w) + ε. Then

risk
(
µ, P ?W |S

)
− inf
w∈W

Lµ(w) ≤ ε+
C√
n

d∑
k=1

βk

(
γkD

(
B

(ε)
W1...Wk

∥∥∥Q(k)
W1...Wk

)
+

1

4γk

)
. (13)

Proof By plugging in PW1...Wk|S ← B
(ε)
W1...Wk

in the right side of (11), and by noting that
P ?W |S is defined as the conditional distribution which minimizes that expression, we obtain

8. This is similar to the terminology in PAC-Bayes theory (see e.g. Catoni, 2007).
9. Bassily et al. (2018) show a relation between the difference decomposition of mutual information with

PAC-Bayesian bounds.

10
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(13).

In particular, for discrete W, one may choose ε = 0 and use the Dirac measure on ŵ to
obtain

risk
(
µ, P ?W |S

)
− inf
w∈W

Lµ(w) ≤
C√
n

d∑
k=1

βk

(
γkD

(
δŵ1...ŵk

∥∥∥Q(k)
W1...Wk

)
+

1

4γk

)
, (14)

where, for all 1 ≤ k ≤ d,

D
(
δŵ1...ŵk

∥∥∥Q(k)
W1...Wk

)
= log

1

Q
(k)
W1...Wk

(ŵ1, . . . , ŵk)
.

For a high-probability version of Theorem 7, see Appendix C. A case of special and practical
interest is when the prior distributions are consistent, that is, when there exists a single
distribution QW1...Wd

such that Q(k)
W1...Wk

= QW1...Wk
for all 1 ≤ k ≤ d. In this case, both

(12) and (13) can be expressed with the following divergence:

Definition 8 (Multilevel relative entropy) For probability measures PX1...Xn and
QX1...Xn, and a vector a = (a1, . . . , an) ∈ Rn+, define the multilevel relative entropy as

D(a) (PX1...Xn‖QX1...Xn) ,
n∑
i=1

aiD (PX1...Xi‖QX1...Xi) . (15)

The prior distributions Q(k)
W1...Wk

may be given by Gaussian matrices truncated on bounded-
norm sets.

It is shown by Xu and Raginsky (2017) (with a related result by Zhang, 2006b) that
the Gibbs posterior distribution P γ,QW |S ∝ e

−γLs(w)Q, as defined precisely in Definition 29 in
Appendix D, is the unique solution to

argmin
PW |S

{
E[LS(W )] +

1

γ
D(PW |S‖Q|PS)

}
,

where γ is called the inverse temperature. Thus, based on (12), the desired distribution
P ?W |S is a multiscale extension of the Gibbs distribution. In the next section, we obtain the
functional form of P ?W |S . Inspired from the terminology for the Gibbs distribution, we call

the vector of coefficients
(
Cβ1γ1√

n
, . . . , Cβdγd√

n

)
in (12) the temperature vector of P ?W |S . Note

that for minimizing the excess risk bound (13), the optimal value for γk, for all 1 ≤ k ≤ d, is

γ?k =
1

2

√
D
(
B

(ε)
W1...Wk

∥∥∥Q(k)
W1...Wk

) .
Furthermore, as a byproduct of the above analysis, we give new excess risk bounds for

the Gibbs distribution in Propositions 31 and 33 in Appendix D (a related result has recently
been obtained by Kuzborskij et al., 2019, though using stability arguments). These results
generalize Corollaries 2 and 3 of Xu and Raginsky (2017) to arbitrary subgaussian losses,
and unlike their proof which is based on stability arguments of Raginsky et al. (2016), merely
uses the mutual information bound (Russo and Zou (2016); Xu and Raginsky (2017)).

11
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6. The Marginalize-Tilt (MT) Algorithm

The optimization problem (12), which was derived by chaining mutual information, can be
solved via the chain rule of relative entropy, and based on a key property of conditional
relative entropy (Lemma 36 in Appendix E), can be shown to have a unique solution, as we
illustrate in this section. Assume that we know the solution to the following more general
relative entropy sum minimization:

argmin
PX1...Xd

{
a1D

(
PX1

∥∥∥R(1)
X1

)
+ a2D

(
PX1X2

∥∥∥R(2)
X1X2

)
+ · · ·+ adD

(
PX1...Xd

∥∥∥R(d)
X1...Xd

)}
,

(16)
where ai > 0 and distributions R(i)

X1...Xi
are given for all 1 ≤ i ≤ d. Then, we can use that to

solve for P ?W |S=s in (12) for any s ∈ Zn, by assuming the following: Xi ,Wi and ai ← Cβiγi√
n

for all 1 ≤ i ≤ d, R(i) ← Q(i) for all 1 ≤ i ≤ d− 1, and

R(d)(dx)← e
−
√
n

Cβdγd
Ls(x)Q(d)(dx)

E
[
e
−
√
n

Cβdγd
Ls(X̃)

] , X̃ ∼ Q(d),

where we combined the expected empirical risk with the last relative entropy in (12) and
ignored the resulting term which does not depend of PX1...Xn (such combination is similarly
performed in Section IV of the work by Zhang, 2006b, for proving the optimality of the
single-scale Gibbs distribution). The solution to (16), denoted as P ?X1...Xd

, is the output
of Algorithm 1. If P and Q are distributions on a set A, then let the relative information
ıP‖Q(a) = log dP

dQ(a) denote the logarithm of the Radon–Nikodym derivative of P with respect
to Q for all a ∈ A. The algorithm uses the following notion, which is basically the geometric
mixture between distributions:

Definition 9 (Tilted distribution) Given distributions P and Q defined on a set A, let R
be a dominating measure such that R� P and R� Q. The tilted distribution (P,Q)λ � R
for λ ∈ [0, 1] is defined with

ı(P,Q)λ‖R(a) = λıP‖R(a) + (1− λ)ıQ‖R(a) + (1− λ)Dλ(P‖Q),

for all a ∈ A. If P ⊥ Q, then (P,Q)λ is not defined for λ ∈ (0, 1).

Remark 10 In the special case that P and Q are distributions on a discrete set A, for all
a ∈ A, we have

(P,Q)λ(a) =
P λ(a)Q1−λ(a)∑
x∈A P

λ(x)Q1−λ(x)
.

In the case that P and Q are distributions of real-valued absolutely continuous random
variables with probability density functions f0 and f1, the tilted random variable has
probability density function

fλ(x) =
eλ log f0(x)+(1−λ) log f1(x)∫∞

−∞ e
λ log f0(t)+(1−λ) log f1(t)dt

.

Notice that (P,Q)λ traverses between Q and P as λ traverses between 0 and 1.

12
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Remark 11 The tilted distribution is known as the generalized escort distribution in the
statistical physics and the statistics literatures (see e.g. Bercher, 2012).

The following shows the useful role of tilted distributions in linearly combining relative
entropies. For a proof, see Theorem 30 of Van Erven and Harremos (2014).

Lemma 12 Let λ ∈ [0, 1]. For any P � Q and P � R,

λD(P‖Q) + (1− λ)D(P‖R) = D (P‖(Q,R)λ) + (1− λ)Dλ(Q‖R).

Algorithm 1 Marginalize-tilt (MT)

Input: Distributions R(i)
X1...Xi

and coefficients ai, for all 1 ≤ i ≤ d.
Output: Solution P ?X1...Xd

to the minimization problem (16).

1: U
(d)
X1...Xd

← R
(d)
X1...Xd

2: for k = d− 1 to 1 do
3: MX1...Xk ← U

(k+1)
X1...Xk

. The marginalization step

4: U
(k)
X1...Xk

←
(
R

(k)
X1...Xk

,MX1...Xk

)
ak

ak+···+ad

. The tilting step

5: return P ?X1...Xd
= U

(1)
X1
U

(2)
X2|X1

. . . U
(d)
Xd|X1...Xd−1

. The unique solution to (16)

Theorem 13 The output of Algorithm 1 is the unique solution to (16).

Proof Note that we can rewrite the expression in (16) as follows:

d∑
i=1

aiD
(
PX1...Xi‖R

(i)
X1...Xi

)
=

d−1∑
i=1

aiD
(
PX1...Xi

∥∥∥R(i)
X1...Xi

)
+ ad

(
D
(
PX1...Xd−1

∥∥∥R(d)
X1...Xd−1

)
+D

(
PXd|X1...Xd−1

∥∥∥R(d)
Xd|X1...Xd−1

∣∣∣PX1...Xd−1

))
(17)

=

d−2∑
i=1

aiD
(
PX1...Xi

∥∥∥R(i)
X1...Xi

)
+ (ad−1 + ad)D

(
PX1...Xd−1

∥∥∥∥∥(R(d−1)
X1...Xd−1

, R
(d)
X1...Xd−1

)
ad−1

ad−1+ad

)
+ adD ad−1

ad−1+ad

(
R

(d−1)
X1...Xd−1

∥∥∥R(d)
X1...Xd−1

)
+ adD

(
PXd|X1...Xd−1

∥∥∥R(d)
Xd|X1...Xd−1

∣∣∣PX1...Xd−1

)
, (18)

where (17) follows from the chain rule of relative entropy (see Lemma 18 in Appendix A)
and (18) follows from Lemma 12. Notice that we can set

P ?Xd|X1...Xd−1
← R

(d)
Xd|X1...Xd−1

= U
(d)
Xd|X1...Xd−1

,

13
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to make the last conditional relative entropy in the right side of (18) vanish (and hence
minimized, due to Lemma 36 in Appendix E), regardless of any choice for PX1...Xd−1

that we
may take later on. Since the Rényi divergence in (18) does not depend on PX1...Xd , we can
ignore that term, and repeat this process to the sum of the remaining terms iteratively to
obtain P ?Xi|X1...Xi−1

= U
(i)
Xi|X1...Xi−1

for all 1 ≤ i ≤ d− 1, where the intermediate distributions

U
(i)
X1...Xi

are defined as in Algorithm 1. In view of the fact that

P ?X1...Xd
= P ?X1

P ?X2|X1
. . . P ?Xd|X1...Xd−1

,

we have obtained the desired distribution P ?X1...Xd
, up to almost sure equality, as

P ?X1...Xd
= U

(1)
X1
U

(2)
X2|X1

. . . U
(d)
Xd|X1...Xd−1

.

The key point of the previous proof is to rewrite the expression in (16) as the sum of some
Rényi divergences which do not depend on PX1...Xd , and some conditional relative entropies
which can all be set equal to zero, simultaneously. This shows the uniqueness of the solution
as well. The proof also implies that the minimum value of the expression in (16) is a
summation of Rényi divergences between functions of distributions R(i)

X1...Xi
, 1 ≤ i ≤ d.

7. Discussion on the Multiscale Gibbs Algorithm

Using the MT algorithm, we can find the functional form of the “twisted” distribution P ?W |S .
Notice that what makes P ?W |S different from the classical Gibbs distribution is the repetitive
tilting steps in Algorithm 1. In fact, when the temperature vector has 0 as its first d − 1
entries, then the multiscale Gibbs distribution P ?W |S has the same exponential form of the
Gibbs distribution, as (12) will have the same form of (16). In this case, Algorithm 1
only performs marginalization of the Gibbs distribution, and by definition of conditional
distribution, reverses those marginalizations and simply outputs the Gibbs distribution.
However, to assuredly achieve the chaining-style multiscale excess risk of Theorem 7, those
tilting operations are essential.

Note that the MT algorithm describes how the intermediate distributions can be derived
from each other in a back-wards manner. Once these distributions are obtained, based on
line 5, samples from the multilevel Gibbs distribution can be obtained from a forward pass on
these intermediate distributions. This demonstrates the forwards and backwards interactions
between the different scales of the neural net while simulating P ?W |S .

8. Multilevel Entropic Training

We now seek an efficient sampling implementation of the multiscale Gibbs distribution. We
have defined multilevel entropic training as simulating P ?W |S=s, given the training set S = s.
For a two layer net, we implement this with Algorithm 2. Let f(w1, w2) , e−Ls(w1,w2), where
w1 and w2 are the matrices of the first and second layer, respectively.10 In the important

10. In this section, we are denoting matrices with lower case for clarity.
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case of having consistent product priors, i.e., when we can write Q(1)(w1) = Q̃(1)(w1) and
Q(2)(w1, w2) = Q̃(1)(w1)Q̃

(2)(w2), assuming temperature vector (a1, a2), we have

P ?W |S=s(w1, w2) =(∫
v2
f(w1, v2)

1
a2 Q̃(2)(v2)dv2

) a2
a1+a2 Q̃(1)(w1)∫

v1

(∫
v2
f(v1, v2)

1
a2 Q̃(2)(v2)dv2

) a2
a1+a2 Q̃(1)(v1)dv1

× f(w1, w2)
1
a2 Q̃(2)(w2)∫

v2
f(w1, v2)

1
a2 Q̃(2)(v2)dv2

, (19)

see Appendix F for more details. Algorithm 2 consists of two Metropolis algorithms, one

Algorithm 2 Two-level Metropolis

Input: Distributions Q̃(1) and Q̃(2), temperature vector a = (a1, a2), proposals q1 and q2,
inner level running time T ′, and initializations (w(1)

1 , w
(0)
2 ).

Output: A sequence (w
(t)
1 , w

(t)
2 )Tt=1 drawn from P ?W |S=s in (19).

1: for t = 1 to T do
2: ŵ1 ∼ q1

(
w

(t)
1

)
. Symmetric proposal

3: Initialize v
(0)
2 ← w

(t−1)
2 , generate sequence {v(i)2 }T

′
i=0 drawn from distribution

f
(
w

(t)
1 ,v2

) 1
a2 Q̃(2)(v2)∫

v2
f
(
w

(t)
1 ,v2

) 1
a2 Q̃(2)(v2)dv2

, and let w(t)
2 ← v

(T ′)
2 . . Inner level Metropolis algorithm

4: Approximate
∫
v2
f(ŵ1,v2)

1
a2 Q̃(2)(v2)dv2∫

v2
f
(
w

(t)
1 ,v2

) 1
a2 Q̃(2)(v2)dv2

≈ 1
T ′
∑T ′

i=1

(
f
(
ŵ1,v

(i)
2

)
f
(
w

(t)
1 ,v

(i)
2

)
) 1

a2

, A.

5: α← A
a2

a1+a2 × Q̃(1)(ŵ1)

Q̃(1)
(
w

(t)
1

) . Acceptance ratio

6: U ∼ Unif[0, 1] . Uniform distribution
7: if U ≤ α then
8: w

(t+1)
1 ← ŵ1 . Accept proposal

9: else w(t+1)
1 ← w

(t)
1 . Reject proposal and keep current state

in an outer level to sample {w(t)
1 }Tt=1 with distribution as the first fraction in (19), and the

other in the inner level at line 3 to sample {w(i)
2 }T

′
i=1 given w(t)

1 with conditional distribution
equal to second fraction in (19). Line 4, which can be run concurrently with line 3, shows
how the inner level sampling is used in the outer level algorithm: Note that to compute the
acceptance ratio of the outer level algorithm, we can write

∫
v2
f (ŵ1, v2)

1
a2 Q̃(2)(v2)dv2∫

v2
f
(
w

(t)
1 , v2

) 1
a2 Q̃(2)(v2)dv2

=

∫
v2

(
f(ŵ1,v2)

f
(
w

(t)
1 ,v2

)
) 1

a2

f
(
w

(t)
1 , v2

) 1
a2 Q̃(2)(v2)dv2∫

v2
f
(
w

(t)
1 , v2

) 1
a2 Q̃(2)(v2)dv2

,

= E


 f (ŵ1, V2)

f
(
w

(t)
1 , V2

)
 1

a2

 ,
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Figure 1: Training and test errors in Ex-
ample 2
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Figure 2: Training and test errors in Ex-
ample 2

where for any fixed w(t)
1 ,

V2 ∼
f
(
w

(t)
1 , v2

) 1
a2 Q̃(2)(v2)dv2∫

v2
f
(
w

(t)
1 , v2

) 1
a2 Q̃(2)(v2)dv2

.

This justifies the Monte Carlo approximation in line 4. The initialization at line 3 is chosen
to let the inner level algorithm mix faster along with the mixing of the outer level algorithm.
Algorithm 2 reduces the dimensionality of the proposal distributions, which is a desired
property, compared to simulating the Gibbs distribution when w1 and w2 are sampled jointly.
For more details and explanations about Algorithm 2, see Appendix F.

Example 2 We tested a basic implementation of Algorithm 2 with random walk Gaussian
proposals on the MNIST data set (as a proof of concept). We used a two-layer net of size
784 − 100 − 10 with ReLU activation function for the hidden layer, soft-max activation
function for the output layer, and with squared `2 loss function. We let a = (2× 10−6, 10−6),
T ′ = 10 and ran the outer level algorithm for T = 40000 iterations; see Figures 1 and 2.
This number of iterations is large, in part due to the fact that we did not use any tricks to
speed up the algorithm, such as tuning the proposals variances during the burn-in period,
or lowering the temperatures gradually as in simulated annealing. For more details about
this experiment, see Appendix G. The code is available at https://github.com/ARAsadi/
Multilevel-Metropolis.

Tuning the temperature parameter for simulating the Gibbs distribution is usually done with
cross-validation (see Catoni, 2007; Guedj, 2019). We leave for future work the problem of
tuning the temperature vector for achieving low test error while having low mixing time.

To simulate P ?W |S for more than two layers, similar to line 4 of Algorithm 2, one can
compute Monte Carlo approximations to the acceptance ratio of each layer, based on the
samples from the next layers and the inner level algorithms. However, this will make the
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algorithm computationally expensive to scale up on larger neural networks and it would be
interesting to make this algorithm faster.

Various ideas could be used to decrease the running time of simulating the multiscale
Gibbs distribution P ?W |S . In particular, one may use gradients as in Hamiltonian Monte Carlo
(Neal, 1992; Chen et al., 2014) and stochastic gradient Langevin dynamics (Welling and Teh,
2011), divide the training set into mini-batches with divide-and-conquer approaches, use sub-
sampling methods (Bardenet et al., 2017), or simulate a variational Bayes approximation to
the multiscale Gibbs distribution (Alquier et al., 2016, discuss approximating the single-scale
Gibbs distribution). However, significant work is required in order to obtain algorithms with
efficiency comparable to SGD. We leave this for future work.

Remark 14 As a side result, in Appendix H, we show how to alternatively achieve the
excess risk bound of Theorem 7 with an average predictor for the special case of binary
classification with `1 loss, based on an idea of Cesa-Bianchi and Lugosi (1999).
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Appendix A. Information-Theoretic Tools

In this section, we present some information-theoretic tools.

Definition 15 (Relative information) Given probability measures P and Q defined on a
measurable space (A,F ), such that P � Q, the relative information between P and Q in
a ∈ A is the logarithm of the Radon–Nikodym derivative of P with respect to Q:

ıP‖Q(a) = log
dP

dQ
(a).

Definition 16 (Relative entropy) The relative entropy between distributions P and Q
defined on the same measurable space (A,F ), if P � Q, is

D(P‖Q) = E[ıP‖Q(X)], X ∼ P,

otherwise, we define D(P‖Q) =∞.

Definition 17 (Conditional relative entropy) The conditional relative entropy is de-
fined as

D(PY |X‖QY |X |PX) =
∫
D(PY |X=ω‖QY |X=ω)dPX(ω)

= E[D(PY |X(·|X)‖QY |X(·|X))], X ∼ PX .

The following lemma is known as the chain rule of relative entropy. For a proof of this
property of relative entropy, see e.g. Theorem 2.5.3 of Cover and Thomas (2012):
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Lemma 18 (Chain rule of relative entropy) We have

D(PXY ‖QXY ) = D(PX‖QX) +D(PY |X‖QY |X |PX).

More generally,

D (PX1...Xn‖QX1...Xn) =

n∑
i=1

D
(
PXi|X1...Xi−1

‖QXi|X1...Xi−1
|PX1...Xi−1

)
.

The following is a well-known and important property of mutual information:

Lemma 19 (Difference decomposition of mutual information) For any QY such that
D(PY ‖QY ) <∞, we have

I(X;Y ) = D(PY |X‖QY |PX)−D(PY ‖QY ).

We give the general definition of Rényi divergence from Verdú (2015):

Definition 20 (Rényi divergence) Given distributions P and Q defined on the same
probability space, let probability measure R be such that P � R and Q� R, and let Z ∼ R.
Then, the Rényi divergence of order α ∈ (0, 1) ∪ (1,∞) between P and Q is defined as

Dα(P‖Q) =
1

α− 1
logE

[
exp

(
αıP‖R(Z) + (1− α)ıQ‖R(Z)

)]
.

Due to its limiting behavior, for α = 1 we define D1(P‖Q) = D(P‖Q).

For instance, for discrete distributions P and Q defined on a set A and for any α ∈
(0, 1) ∪ (1,∞), we have

Dα(P‖Q) =
1

α− 1
log

(∑
a∈A

Pα(a)Q1−α(a)

)
.

Appendix B. Chaining Mutual Information

In this section, we strengthen the results of Asadi et al. (2018). First we give the necessary
definitions:

Definition 21 (Subgaussian process) The random process {Xt}t∈T on the metric space
(T, d) is called subgaussian if E[Xt] = 0 for all t ∈ T and

E[eλ(Xt−Xs)] ≤ e
1
2
λ2d2(t,s) for all t, s ∈ T, λ ≥ 0.

The following is a technical assumption which holds in almost all cases of interest:

Definition 22 (Separable process) The random process {Xt}t∈T is called separable if
there is a countable set T0 ⊆ T such that Xt ∈ lim s→t

s∈T0
Xs for all t ∈ T a.s., where x ∈

lim s→t
s∈T0

xs means that there is a sequence (sn) in T0 such that sn → t and xsn → x.
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For instance, if t→ Xt is continuous almost surely, then Xt is a separable process (see e.g.
van Handel, 2016).

Notice that, unlike a partition, an exact cover P = {Ai : i ∈ M} of the set T may
have countably or uncountably infinite number of blocks, that is, M may have countably or
uncountably infinite size.

Definition 23 (ε-cover) We call a cover P = {Ai : i ∈M} of the set T an ε-cover of the
metric space (T, d) if for all i ∈M , Ai can be contained within a ball of radius ε.

Definition 24 (Hierarchical sequence of covers) A sequence of covers {Pk}∞k=m of a
set T is called a hierarchical sequence (or an increasing sequence) if for all k ≥ m and each
A ∈ Pk+1, there exists B ∈ Pk such that A ⊆ B. For any such sequence of exact covers and
any t ∈ T , let [t]k denote the unique set A ∈ Pk such that t ∈ A.

IfN is a set, letXN , {Xi : i ∈ N} denote a random process indexed by the elements ofN .
For any bounded metric space (T, d), let k1(T ) be an integer such that 2−(k1(T )−1) ≥ diam(T ).

Theorem 25 Assume that {gen(w)}w∈W is a separable subgaussian process on the bounded
metric space (W, d). Let {Pk}∞k=k1(W) be a hierarchical sequence of exact coverings of W,
where for each k ≥ k1(W), Pk is a 2−k-cover of (W, d).

(a) Then,

gen(µ, PW |S) ≤ 3
√
2

∞∑
k=k1(W)

2−k
√
I([W ]k;S),

(b) If 0 ∈ {`(hw, ·) : w ∈ W}, then

gen+(µ, PW |S) ≤ 3
√
2

∞∑
k=k1(W)

2−k
√
I([W ]k;S) + log 2,

where 0 is a function identically equal to zero and gen+(µ, PW |S) , E [|Lµ(W )− LS(W )|].

Theorem 25 is in the context of statistical learning. The more general counterpart in the
context of random processes is Theorem 26:

Theorem 26 Assume that {Xt}t∈T is a separable subgaussian process on the bounded metric
space (T, d). Let {Pk}∞k=k1(T ) be a hierarchical sequence of exact coverings of T , where for
each k ≥ k1(T ), Pk is a 2−k-cover of (T, d). Let W be a random variable taking values from
T .

(a) Then,

E[XW ] ≤ 3
√
2

∞∑
k=k1(T )

2−k
√
I([W ]k;XT ).
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(b) For any arbitrary t0 ∈ T ,

E[|XW −Xt0 |] ≤ 3
√
2

∞∑
k=k1(T )

2−k
√
I([W ]k;XT ) + log 2.

Proof For an arbitrary k ≥ k1(T ), consider Pk = {A(k)
i : i ∈Mk}. Since Pk is a 2−k-cover of

(T, d), based on Definition 23, there exists a multi-set Nk , {ai : i ∈Mk} ⊆ T and a mapping
πNk : T → Nk such that πNk(t) = ai if t ∈ A(k)

i for all i ∈ Mk, and d (t, πNk(t)) ≤ 2−k for
all t ∈ T . For an arbitrary t0 ∈ T , let Nk0 , {t0}. For any integer n ≥ k1(T ), we can write

XW = Xt0 +
n∑

k=k1(T )

(
XπNk (W ) −XπNk−1

(W )

)
+
(
XW −XπNn (W )

)
.

Based on the definition of subgaussian processes, the process is centered, thus E[Xt0 ] = 0.
Therefore

E[XW ]− E
[
XW −XπNn (W )

]
=

n∑
k=k1(T )

E
[
XπNk (W ) −XπNk−1

(W )

]
.

For every k ≥ k1(T ) and t ∈ T , based on the triangle inequality,

d
(
πNk(t), πNk−1

(t)
)
≤ d (t, πNk(t)) + d

(
t, πNk−1

(t)
)

≤ 3× 2−k.

Knowing the value of
(
πNk(W ), πNk−1

(W )
)
is sufficient to determine which one of the random

variables
{
XπNk (t)

−XπNk−1
(t)

}
t∈T

is chosen according to W . Therefore(
πNk(W ), πNk−1

(W )
)
is playing the role of the random index, and since XπNk (t)

−XπNk−1
(t)

is d2
(
πNk(t), πNk−1

(t)
)
-subgaussian, based on Theorem 2 of Xu and Raginsky (2017), an

application of the data processing inequality and by summation, we have

n∑
k=k1(T )

E
[
XπNk (W ) −XπNk−1

(W )

]
≤

n∑
k=k1(T )

3
√
2× 2−k

√
I(πNk(W ), πNk−1

(W );XT ).

Since {Pk}∞k=k1(T ) is a hierarchical sequence of coverings, for any t ∈ T , knowing Nk(t) will
uniquely determine Nk−1(t). Therefore

I
(
πNk(W ), πNk−1

(W );XT

)
= I (πNk(W );XT )

= I ([W ]k;XT ) .

The rest of the proof follows from the definition of separable processes and the fact that

lim
n→∞

E
[
XW −XπNn (W )

]
= 0.
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If in Theorem 26, we let T ,W and Xw , gen(w) for all w ∈ W, then for each k ≥ k1(T ),
due to the Markov chain

XT = {gen(w)}w∈W ↔ S ↔W ↔ [W ]k (20)

and the data processing inequality, we deduce I([W ]k;XT ) ≤ I([W ]k;S). Therefore Theorem
25 follows from Theorem 26.

If we use Theorem 2 of Bu et al. (2020) instead of Theorem 2 of Xu and Raginsky
(2017), then we can tighten the bound of Theorem 25 to the following result. Recall that
S = (Z1, . . . , Zn) denotes the training set.

Proposition 27 Assume that {gen(w)}w∈W is a separable subgaussian process on the
bounded metric space (W, d). Let {Pk}∞k=k1(W) be an increasing sequence of partitions of W,
where for each k ≥ k1(W), Pk is a 2−k-partition of (W, d). Then

gen(µ, PW |S) ≤ 3
√
2

∞∑
k=k1(W)

2−k

(
n∑
i=1

√
I([W ]k;Zi)

)
, (21)

Appendix C. Proofs for Generalization and Excess Risk Bounds

Proof [of Lemma 4] Since φ is 1-Lipschitz and φ(0) = 0, for all vectors x we have |φ(x)|2 ≤
|x|2. Based on the triangle inequality, for all 1 ≤ i ≤ k − 1, we can write

‖Wi‖2 ≤ ‖Wi −Mi‖2 + ‖Mi‖2
≤ (αi + 1)‖Mi‖2
≤ exp(αi)‖Mi‖2.

Thus, for all x ∈ X ,

|σ(Wk−1(. . . σ(W1(x)) . . . ))|2 ≤ exp

(
k−1∑
i=1

αi

)(
k−1∏
i=1

‖Mi‖2

)
|x|2.

This yields

|σ(Wk(. . . (σ(W1(x)) . . . )))−σ(Mk(. . . (σ(W1(x)) . . . )))|2

≤ exp

(
k−1∑
i=1

αi

)(
k−1∏
i=1

‖Mi‖2

)
‖Wk −Mk‖2|x|2

≤ αk exp

(
k−1∑
i=1

αi

)(
k∏
i=1

‖Mi‖2

)
|x|2.

Since Mi is ‖Mi‖2-Lipschitz for all k + 1 ≤ i ≤ d, and soft-max is 1-Lipschitz with respect
to the Euclidean norm (see e.g. Gao and Pavel, 2017), we conclude that

|hw1(x)− hw2(x)|2 ≤ αk exp

(
k−1∑
i=1

αi

)
M |x|2.
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In the following, the notation PX → QY |X → PY indicates that the joint distribution of
X and Y is PXY = PXQY |X . We state a high-probability result for the case of discrete W,
the more general case is similar:

Corollary 28 For a given µ, let ŵ(µ) denote the index of a hypothesis which achieves the
minimum statistical risk among W. If PS → P ?W |S → PW , then

P
[
Lµ(W ) ≤ inf

w∈W
Lµ(w) + ε

]
≥ 1− C

ε
√
n

d∑
k=1

βk

(
γkD

(
δŵ1...ŵk

∥∥∥Q(k)
W1...Wk

)
+

1

4γk

)
. (22)

Proof Based on Theorem 7, we have

E[Lµ(W )]− inf
w∈W

Lµ(w) ≤
C√
n

d∑
k=1

βk

(
γkD

(
δŵ1...ŵk

∥∥∥Q(k)
W1...Wk

)
+

1

4γk

)
.

Thus

E
[
Lµ(W )− inf

w∈W
Lµ(w)

]
≤ C√

n

d∑
k=1

βk

(
γkD

(
δŵ1...ŵk

∥∥∥Q(k)
W1...Wk

)
+

1

4γk

)
.

Since Lµ(W )− infw∈W Lµ(w) is a positive random variable, by Markov’s inequality we obtain

P
[
Lµ(W )− inf

w∈W
Lµ(w) > ε

]
≤ C

ε
√
n

d∑
k=1

βk

(
γkD

(
δŵ1...ŵk

∥∥∥Q(k)
W1...Wk

)
+

1

4γk

)
,

which yields

P
[
Lµ(W ) ≤ inf

w∈W
Lµ(w) + ε

]
≥ 1− C

ε
√
n

d∑
k=1

βk

(
γkD

(
δŵ1...ŵk

∥∥∥Q(k)
W1...Wk

)
+

1

4γk

)
.

Appendix D. Gibbs Distribution Results

Definition 29 (Gibbs distribution) The Gibbs (posterior) distribution associated to pa-
rameter γ and prior distribution Q, is denoted with P γ,QW |S and defined as follows:

P γ,QW |S=s(dw) ,
e−γLs(w)Q(dw)

E[e−γLs(W̃ )]
, W̃ ∼ Q.

Lemma 30 [Xu and Raginsky (2017)] The Gibbs distribution P γ,QW |S is the unique solution
to the optimization problem

argmin
PW |S

{
E[LS(W )] +

1

γ
D(PW |S‖Q|PS)

}
.
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The next results are new excess risk bounds for the Gibbs distribution:

Proposition 31 Assume that W is a countable set. For any input distribution µ, let ŵ(µ)
denote the index of a hypothesis which achieves the minimum statistical risk among W. If
for all w ∈ W, `(w,Z) is σ2-subgaussian where Z ∼ µ, then for any γ > 0,

risk
(
µ, P γ,QW |S

)
≤ inf

w∈W
Lµ(w) +

1

γ
D
(
δŵ(µ)

∥∥Q)+ γσ2

2n
. (23)

Proof Assuming µ⊗n = PS → P γ,QW |S → PW , we can write

risk
(
µ, P γ,QW |S

)
= E[Lµ(W )]

≤ E[LS(W )] +

√
2σ2

n
.
√
I(S;W )

≤ E[LS(W )] +

√
2σ2

n

(
1

γ

√
n

2σ2
I(S;W ) +

1

4 1
γ

√
n

2σ2

)
(24)

= E[LS(W )] +
1

γ
I(S;W ) +

γσ2

2n

≤ E[LS(W )] +
1

γ
D
(
P γ,QW |S

∥∥∥Q∣∣∣PS)+ γσ2

2n

≤ inf
w∈W

Lµ(w) +
1

γ
D
(
δŵ(µ)

∥∥Q)+ γσ2

2n
, (25)

where (24) follows from the inequality

√
x ≤ cx+

1

4c
⇐⇒ 0 ≤

(√
cx− 1

2
√
c

)2

for all x, c > 0, (26)

which is upper bounding
√
x with a tangent line, and (25) follows from Lemma 30 and by

plugging PW |S ← δŵ(µ) into

E[LS(W )] +
1

γ
D(PW |S‖Q|PS).

Corollary 32 If we set γ ← γ? , 1
σ

√
2nD

(
δŵ(µ)

∥∥Q), then we minimize the right side of
(23) to obtain

risk
(
µ, PQ,γ

?

W |S

)
≤ inf

w∈W
Lµ(w) + σ

√
D
(
δŵ(µ)

∥∥Q)
2n

.

Proposition 33 Assume that W is an uncountable set. For any input distribution µ, let
ŵ(µ) denote the index of a hypothesis which achieves the minimum statistical risk among
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W. If for all w ∈ W, `(w,Z) is σ2-subgaussian where Z ∼ µ and `(·, z) is ρ-Lipschitz for all
z ∈ Z, then for any γ > 0,

risk
(
µ, P γ,QW |S

)
≤ inf

w∈W
Lµ(w) + inf

a>0

(
aρ
√
d+

1

γ
D
(
N
(
ŵ(µ), a2Id

)∥∥Q))+
γσ2

2n
,

where N
(
ŵ(µ), a2Id

)
denotes the Gaussian distribution centered at ŵ(µ) with covariance

matrix a2Id.

Proof Assuming µ⊗n = PS → P γ,QW |S → PW , we can write

risk
(
µ, P γ,QW |S

)
= E[Lµ(W )]

≤ E[LS(W )] +

√
2σ2

n
.
√
I(S;W )

≤ E[LS(W )] +

√
2σ2

n

(
1

γ

√
n

2σ2
I(S;W ) +

1

4 1
γ

√
n

2σ2

)
(27)

= E[LS(W )] +
1

γ
I(S;W ) +

γσ2

2n

≤ E[LS(W )] +
1

γ
D
(
P γ,QW |S

∥∥∥Q∣∣∣PS)+ γσ2

2n

≤ inf
w∈W

Lµ(w) + inf
a>0

(
aρ
√
d+

1

γ
D
(
N (ŵ(µ), a2Id)‖Q

))
+
γσ2

2n
, (28)

where (27) follows from the inequality (26), and (28) follows from Lemma 30 and by plugging
PW |S ← N

(
ŵ(µ), a2Id

)
into

E[LS(W )] +
1

γ
D(PW |S‖Q|PS),

while writing

E[LS(W )] ≤ inf
w∈W

Lµ(w) + aρ
√
d (29)

and taking infimum over a > 0. Inequality (29) is based on the proof of Corollary 3 of Xu
and Raginsky (2017).

More generally, in the context of empirical processes, let F = {fw : w ∈ W} be a collection
of measurable functions from a set Z to R, indexed by the set W. Let Z1, Z2, . . . , Zn be a
sequence of i.i.d elements drawn from Z with distribution µ, and define S = (Z1, . . . , Zn).
For each w ∈ W, define the empirical mean of function fw as

µn(fw) ,
1

n

n∑
i=1

fw(Zi),

and its true mean as
µ(fw) , E [fw(Z)] , Z ∼ µ.

One can prove the following proposition, analogous to the poof of Proposition 31:
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Proposition 34 Assume that W is a countable set. For any input distribution µ, let ŵ(µ)
denote the index of a function which has the minimum true mean among functions in F . If
fw(Z), Z ∼ µ is σ2-subgaussian for all w ∈ W, then for any γ > 0,

E [µ(fW )] ≤ inf
w∈W

µ(fw) +
1

γ
D(δŵ(µ)‖Q) +

γσ2

2n
,

where µ⊗n = PS → P γ,QW |S → PW .

Appendix E. Tools for the MT Algorithm

We first state the following lemmas. Lemma 35 shows the useful role of tilted distributions
in linearly combining relative entropies. For a proof, see Theorem 30 of Van Erven and
Harremos (2014).

Lemma 35 Let λ ∈ [0, 1]. For any P � Q and P � R,

λD(P‖Q) + (1− λ)D(P‖R) = D (P‖(Q,R)λ) + (1− λ)Dλ(Q‖R),

where (Q,R)λ denotes the tilted distribution. Therefore

argmin
P

{λD(P‖Q) + (1− λ)D(P‖R)} = (Q,R)λ,

and
min
P
{λD(P‖Q) + (1− λ)D(P‖R)} = (1− λ)Dλ(Q‖R).

The next lemma is a crucial property of conditional relative entropy:

Lemma 36 Given distribution PX defined on a set A and conditional distributions PY |X
and QY |X , we have

D(PY |X‖QY |X |PX) ≥ 0, (30)

with equality if and only if PY |X = QY |X holds on a set A′ ⊆ A of conditioning values with
PX(A′) = 1.

The simplest case of (16) is when d = 2, whose solution, characterized by the following
result, is useful for obtaining the solution to the general case:

Proposition 37 Let QX and RXY be two arbitrary distributions. For any a1, a2 > 0, we
have

argmin
PXY

(a1D(PX‖QX) + a2D(PXY ‖RXY )) = P ?XY , (31)

where P
?
X = (QX , RX) a1

a1+a2

,

P ?Y |X = RY |X .
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Proof Based on the chain rule of relative entropy, we have

D(PXY ‖RXY ) = D(PX‖RX) +D(PY |X‖RY |X |PX).

Therefore

a1D(PX‖QX) + a2D(PXY ‖RXY )
= a1D(PX‖QX) + a2(D(PX‖RX) +D(PY |X‖RY |X |PX))
= (a1D(PX‖QX) + a2D(PX‖RX)) + a2D(PY |X‖RY |X |PX)

= (a1 + a2)D
(
PX

∥∥∥(QX , RX) a1
a1+a2

)
+ a2D a1

a1+a2

(QX‖RX) + a2D(PY |X‖RY |X |PX), (32)

where (32) is based on Lemma 35. Note that, due to Lemma 36, distribution P ?XY is the
unique distribution for which both relative entropies vanish simultaneously, and since the
Rényi divergence does not depend on PXY , Equation (31) is proven.

Appendix F. The Two-level Metropolis Algorithm

Using the MT algorithm, we derive the twisted distribution P ?W |S for a two-layer net with

prior distribution Q(1)
W1

and Q(2)
W1W2

, and temperature vector (a1, a2), as

P ?W |S=s(w1, w2) =

(∫
v2
f(w1, v2)

1
a2Q(2)(w1, v2)dv2

) a2
a1+a2 Q(1)(w1)

a1
a1+a2∫

v1

(∫
v2
f(v1, v2)

1
a2Q(2)(v1, v2)dv2

) a2
a1+a2 Q(1)(v1)

a1
a1+a2 dv1

× f(w1, w2)
1
a2Q(2)(w1, w2)∫

v2
f(w1, v2)

1
a2Q(2)(w1, v2)dv2

. (33)

In the case of having consistent product prior distributions Q(1)(w1) = Q̃(1)(w1) and
Q(2)(w1, w2) = Q̃(1)(w1)Q̃

(2)(w2), Equation (33) simplifies to

P ?W |S=s(w1, w2)

=

(∫
v2
f(w1, v2)

1
a2 Q̃(2)(v2)dv2

) a2
a1+a2 Q̃(1)(w1)∫

v1

(∫
v2
f(v1, v2)

1
a2 Q̃(2)(v2)dv2

) a2
a1+a2 Q̃(1)(v1)dv1

× f(w1, w2)
1
a2 Q̃(2)(w2)∫

v2
f(w1, v2)

1
a2 Q̃(2)(v2)dv2

.

Notice that we can run line 3 and line 4 of Algorithm 2 concurrently, that is, each time
we sample v(i)2 , we can compute the next term in the sum in line 4, hence the required space
is a constant times the required space for storing matrices w1 and w2 and does not depend
on the number of iterations. The computational complexity of the algorithm depends on the
proposal distributions. The algorithm performs T × T ′ total iterations and at each of these
iterations, the algorithm computes the empirical error over the entire training set.
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Appendix G. Experiment

The MNIST data set is available at http://yann.lecun.com/exdb/mnist/. This benchmark
data set has 60000 training examples and 10000 test examples consisting of images with
28 × 28 gray pixels and with 10 classes. We flattened the images into vectors of length
784 and normalized their values to between 0 and 1. Let Im×l denote the m × l matrix
with entries equal to 1 on its main diagonal and zero elsewhere. We initialized the training
algorithm at the reference matrices M1 = I100×784 and M2 = I10×100. For simplicity, we let
the distributions Q̃(1) and Q̃(2) to be flat distributions, and we chose the temperature vector
to be a = (2 × 10−6, 10−6). The proposal distributions q1 and q2 are centered Gaussian
distributions with independent entries having variances 0.001 and 0.0005, respectively. The
training error at iteration t = 40000 reached 0.052154361878265 and the test error reached
0.066840303697749.

The computing infrastructure had the following specifications: 4.2 GHz Intel Core
i7-7700K, 16 GB 2400 MHz DDR4 Memory, and Radeon Pro 575 4096 MB Graphics.

Appendix H. Average Predictors

Definition 38 (Gibbs average predictor) We define the Gibbs average predictor as

hγ,Qs (x) , E[hW (x)], W ∼ P γ,QW |S=s.

for all s ∈ Zn and x ∈ X , where P γ,QW |S=s is the Gibbs posterior distribution defined in
Definition 29.

Notice that the Gibbs average predictor is a deterministic function from X to Y . If `(h, z) is
convex in h, then based on Jensen’s inequality,

`(hγ,Qs , z) ≤ E[`(hW , z)], W ∼ P γ,QW |S=s. (34)

Averaging both sides of (34) with respect to Z ∼ µ and swapping the expectations on the
right side gives

Lµ
(
hγ,Qs

)
≤ E[Lµ(W )], W ∼ P γ,QW |S=s.

Taking expectations with respect to PS yields

E
[
Lµ

(
hγ,QS

)]
≤ E[Lµ(W )], PS → P γ,QW |S → PW

= risk
(
µ, P γ,QW |S

)
. (35)

Assume that Y = {0, 1} and that the loss function is the `1 loss. Based on the key idea
of Equation (4.3) of Cesa-Bianchi and Lugosi (1999), since y can only take values 0 or 1, we
have the following lemma:

Lemma 39 If {h(k)w }dk=1 and {h(k)w′ }
d
k=1 are collections of functions which take values from

X to [0, 1], and ξk > 0, 1 ≤ k ≤ d are such that
∑d

k=1 ξk = 1, then∣∣∣∣∣
d∑

k=1

ξkh
(k)
w (x)− y

∣∣∣∣∣−
∣∣∣∣∣
d∑

k=1

ξkh
(k)
w′ (x)− y

∣∣∣∣∣ =
d∑

k=1

ξk

[∣∣∣h(k)w (x)− y
∣∣∣− ∣∣∣h(k)w′ (x)− y∣∣∣] . (36)

27

http://yann.lecun.com/exdb/mnist/


Asadi and Abbe

Corollary 40 Averaging both sides of (36) with respect to z = (x, y) ∼ µ yields

Lµ

(
d∑

k=1

ξkh
(k)
w

)
− Lµ

(
d∑

k=1

ξkh
(k)
w′

)
=

d∑
k=1

ξk

(
Lµ

(
h(k)w

)
− Lµ

(
h
(k)
w′

))
. (37)

Assume that W is a discrete set. We now construct an average predictor which achieves
the excess risk bound of Theorem 7. For all 1 ≤ k ≤ d, let

pk ,
βk∑d
i=1 βi

.

Note that
∑d

k=1 pk = 1. For all 1 ≤ k ≤ d, let

Hk ,
{
1

2
+
h[W1,...,Wk] − h[W1,...,Wk−1]

2βkMR
: w ∈ W

}
.

Based on inequality (6), the domain of all h ∈ Hk is [0, 1]. Given training set S, let h(k)S be
the Gibbs average predictor obtained from Hk with prior Q(k) and inverse temperature

ζk ,

√
n

γk(
∑d

i=1 βi)LMR
.

Based on (35), the proof of Proposition 31, and after taking average from both sides of (37)
with respect to PS , we get:

E

[
Lµ

(
d∑

k=1

pkh
(k)
S

)]
− inf
w∈W

Lµ(w) =
d∑

k=1

pk

(
E
[
Lµ

(
h
(k)
S

)]
− E

[
Lµ

(
h
(k)
ŵ

)])
≤ LMR

d∑
k=1

pk

(
γk(
∑d

i=1 βi)√
n

D
(
δŵ1...ŵk

∥∥∥Q(k)
W1...Wk

)
+

∑d
i=1 βi

2
√
nγk

)

=
C√
n

d∑
k=1

βk

(
γkD

(
δŵ1...ŵk

∥∥∥Q(k)
W1...Wk

)
+

1

2γk

)
.

Remark 41 The results of this section can be viewed as the “dual” of the results of Cesa-
Bianchi and Lugosi (1999) in the batch learning context.
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