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Abstract

Regularization methods for the Cox proportional hazards regression with high-dimensional
survival data have been studied extensively in the literature. However, if the model is mis-
specified, this would result in misleading statistical inference and prediction. To enhance
the prediction accuracy for the relative risk and the survival probability, we propose three
model averaging approaches for the high-dimensional Cox proportional hazards regression.
Based on the martingale residual process, we define the delete-one cross-validation (CV)
process, and further propose three novel CV functionals, including the end-time CV, inte-
grated CV, and supremum CV, to achieve more accurate prediction for the risk quantities
of clinical interest. The optimal weights for candidate models, without the constraint of
summing up to one, can be obtained by minimizing these functionals, respectively. The
proposed model averaging approach can attain the lowest possible prediction loss asymp-
totically. Furthermore, we develop a greedy model averaging algorithm to overcome the
computational obstacle when the dimension is high. The performances of the proposed
model averaging procedures are evaluated via extensive simulation studies, demonstrat-
ing that our methods achieve superior prediction accuracy over the existing regularization
methods. As an illustration, we apply the proposed methods to the mantle cell lymphoma
study.
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1. Introduction

High-dimensional survival data often arise in clinical studies where the number of predic-
tors is large and sometimes even much larger than the sample size. Under the sparsity
assumption that only a few among a large number of predictors are truly associated with
survival times, regularization methods have been extended from linear regression to the Cox
proportional hazards regression (Cox, 1972). These methods include, to name a few, the
LASSO (Tibshirani, 1996; Huang et al., 2013), the adaptive LASSO (Zhang and Lu, 2007),
the SCAD (Fan and Li, 2002), and the Dantzig selector (Antoniadis et al., 2010). The effec-
tiveness of such regularization approaches relies heavily on the correctness of model speci-
fication, which is essential for drawing sound statistical conclusions. However, model mis-
specification often occurs in practice, especially for complex data such as high-dimensional
survival data that are subject to right censoring. As a remedy, model averaging that com-
bines the strength of a set of candidate models can mitigate the risk of misspecification,
and thus enhance the prediction accuracy for statistical quantities of practical interest, such
as the relative risk and the survival probability at a particular time. However, research in
model averaging for survival data is very limited, let alone for high-dimensional survival
data.

Most of the model averaging approaches are developed under standard settings where
the sample size is larger than the number of predictors and the responses can be completely
observed without censoring. In the Bayesian model averaging framework (Hoeting et al.,
1999; Eklund and Karlsson, 2007), the posterior model probabilities are assigned to the
candidate models. From the frequentist perspective, various strategies have been proposed
to determine the weights for individual models, for example, the Mallows Cp model averag-
ing (Hansen, 2007; Wan et al., 2010), optimal mean squared error averaging (Liang et al.,
2011), optimal model averaging for linear mixed-effects models (Zhang et al., 2014), jack-
knife model averaging (Hansen and Racine, 2012), predictive likelihood model averaging
(Ando and Tsay, 2010), and optimal model averaging for generalized linear models based
on the Kullback–Leibler loss with a penalty term (Zhang et al., 2016). Nevertheless, all the
aforementioned methods are developed for the situation where the sample size is larger than
the number of predictors as well as under the constraint that the sum of weights of all can-
didate models is equal to one. Without imposing the summation constraint, Ando and Li
(2014) proposed the delete-one cross-validation (CV) model averaging for high-dimensional
linear regression and showed that it achieves the lowest possible prediction loss asymptot-
ically. Recently, Ando and Li (2017) made a further extension to the high-dimensional
generalized linear regression models.

As far as model averaging in survival analysis, Hjort and Claeskens (2006) extended the
focused information criterion model averaging from linear regression to the Cox proportional
hazards regression. Their approach aims to enhance the prediction accuracy for regression
parameters of interest by considering the local root-n perturbation. However, it is difficult
to apply their method to the high-dimensional survival data setting because regression
parameter estimation itself is a nontrivial task. Based on the martingale residual process,
we define the delete-one CV process, and further propose three novel model averaging
approaches: the end-time CV, integrated CV, and supremum CV, for high-dimensional
Cox regression to enhance the prediction accuracy for the relative risk and the survival
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probability. The optimal weights for candidate models, without constraining the summation
to be one, can be obtained by minimizing these functionals. Under certain conditions, we
show that, based on the resulting optimal weights, all the three functionals of the CV
process attain the lowest possible prediction loss asymptotically.

The number of candidate models is typically large when considering model averaging for
high-dimensional data, which makes it challenging to find the optimal weights for candidate
models. Ando and Li (2014) adopted the sure independent screening (SIS) procedure (Fan
and Lv, 2008) to screen out the predictors that are less correlated with response marginally,
so as to reduce the dimension of optimization. However, such SIS-based dimension reduction
may remove some truly important predictors. Moreover, the choice of the cutting point for
the number of predictors to be retained has not been explored. We develop a greedy model
averaging algorithm to bypass these practical issues. Instead of ranking the predictors,
we rank the candidate models, and the importance of candidate models is assessed in the
greedy model averaging algorithm.

The rest of the article is organized as follows. We propose the model averaging proce-
dures for the Cox regression with high-dimensional survival data in Section 2. We estab-
lish the asymptotic optimality of the proposed model averaging procedures in Section 3.
To overcome the computational burden when the dimension is very high, we develop the
greedy model averaging algorithm in Section 4. In Section 5, extensive simulation studies
are conducted to demonstrate the superiority of the proposed methods in comparison with
traditional regularization procedures for the high-dimensional Cox regression, which is fur-
ther illustrated with the mantle cell lymphoma study in Section 6. Section 7 concludes with
some remarks, and technical proofs are relegated to the Appendix.

2. Model Averaging Cox Regression

We first briefly review the partial likelihood estimation procedure for the conventional (low-
dimensional) Cox proportional hazards regression model and then illustrate the strategy of
preparing candidate Cox models in the high-dimensional case. We further propose three
functionals of the CV process to produce the optimal weights for model averaging.

2.1 Partial Likelihood and Survival Prediction

Let T denote the failure time and C denote the censoring time. Let Z be a p-vector of
predictors, X = T ∧C be the observed time, and ∆ = I(T ≤ C) be the censoring indicator,
where a ∧ b is the minimum of a and b, and I(·) is the indicator function. Assume that T
and C are conditionally independent given Z. The conditional hazard function associated
with covariate Z is defined as

λ(t|Z) = lim
h→0+

P(t ≤ T < t+ h|T ≥ t,Z)/h.

The Cox proportional hazards model (Cox, 1972) takes the form of

λ(t|Z) = λ(t) exp(Z>β), (1)

where λ(t) is an unspecified baseline hazard function and β is a p-vector of unknown regres-
sion parameters. For i = 1, . . . , n, let (Xi,∆i,Zi) be independent and identically distributed
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copies of (X,∆,Z). The log partial likelihood (Cox, 1975) based on the observed data can
be written as

ln(β) =
n∑
i=1

∫ τ

0

Z>i β − log


n∑
j=1

Yj(u) exp(Z>j β)


dNi(u),

where Ni(t) = ∆iI(Xi ≤ t) denotes the counting process, Yi(t) = I(Xi ≥ t) the at-
risk process and τ the end time of the study duration. By maximizing ln(β), we obtain
a consistent and efficient estimator of β, denoted as β̂. Further, the Breslow estimator
(Breslow, 1975) for the cumulative baseline hazard function, defined as Λ(t) =

∫ t
0 λ(u)du,

is given by

Λ̂(t) =

∫ t

0

∑n
i=1 dNi(u)∑n

i=1 Yi(u) exp(Z>i β̂)
.

In practice, it is common to predict some risk quantity Q(β,Λ) for a specific patient at
a particular time. For example, Q(β,Λ) = exp(z>β) represents the relative risk for patients
with Z = z, and Q(β,Λ) = exp{−Λ(t0) exp(z>β)} is the survival probability for patients
with Z = z at time point t0 ∈ [0, τ ].

2.2 Candidate Cox Models

When the dimension p of predictors Z is larger than sample size n, the usual partial like-
lihood approach to predicting the risk indices of interest would not work. Although regu-
larization methods such as the LASSO, MCP (Zhang, 2010), SCAD, and Dantzig selector
can be applied, the fundamental assumption is that model (1) is correct under the sparsity
setting. Obviously, correct specification of the true model is a nontrivial task and model
diagnostic for high-dimensional regression itself is challenging. As a viable alternative, we
propose a model averaging approach to predicting the risk quantities based on the high-
dimensional survival data. To emphasize the dependence of the dimension p on sample size
n, we rewrite p as pn.

For simplicity, we use [pn] to denote the set {1, . . . , pn}. Let {Ak : k = 1, . . . ,Kn}
be a family of sets with each element Ak being a nonempty subset of [pn], where Kn is
some positive integer depending on n. Furthermore, the cardinality of Ak, |Ak|, is assumed
to be much smaller than sample size n for k = 1, . . . ,Kn. For a pn-dimensional vector
a = (a1, . . . , apn)>, let a(k) denote the subvector of a indexed by set Ak, or equivalently,

a(k) = (aj : j ∈ Ak)>. Consequently, based on these index subsets Ak’s, we can construct
Kn candidate Cox models with the kth model given by

λk(t|Z(k)) = λ∗k(t) exp{Z>(k)β∗k}, (2)

where Z(k) is the subvector of Z consisting of coordinates indexed by set Ak, λ∗k(t) is
an unknown baseline hazard function and β∗k is an |Ak|-vector of unknown regression
parameters. It is worth emphasizing that no model is imposed between survival time T and
the predictors Z directly, while a set of candidate models is used to explore the large model
space. Let β̂∗k denote the maximizer of the working log partial likelihood function,

lnk(β∗k) =

n∑
i=1

∫ τ

0

Z>i(k)β∗k − log


n∑
j=1

Yj(u) exp{Z>j(k)β∗k}


dNi(u), (3)
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where Zi(k) = (Zij : j ∈ Ak)> and Zi = (Zi1, . . . , Zip)
>. Moreover, the estimator for

Λ∗k(t) =
∫ t
0 λ∗k(u)du is given by

Λ̂∗k(t) =

∫ t

0

∑n
i=1 dNi(u)∑n

i=1 Yi(u) exp{Z>i(k)β̂∗k}
.

Based the kth candidate model, the prediction for the risk index can be written as Q̂k =
Q(β̂∗k, Λ̂∗k), while it is critical to develop a sensible way to combine Q̂k, k = 1, . . . ,Kn, for
enhancing the overall prediction accuracy.

2.3 Optimal Weights

The σ-field, defined by

F it = σ{Ni(u), I(Xi ≤ u,∆i = 0),Zi : 0 ≤ u ≤ t},

represents the history information for the ith subject up to time t. The conditional hazard
function satisfies

E{dNi(t)|F it−} = Yi(t)λ(t|Zi)dt, (4)

where dNi(t) = Ni{(t + dt)−} − Ni(t−) is the increment of Ni(·) over the small interval
[t, t+dt). Following the work of Lin et al. (2000) and the independent censoring assumption,
(4) implies that

E{dNi(t)|Zi, Ci ≥ t} = E{dNi(t)|Zi} = Yi(t)λ(t|Zi)dt.

Define the integrated intensity function

µi(t) = E{Ni(t)|Zi} =

∫ t

0
Yi(u)λ(u|Zi)du, (5)

which is unspecified as no model assumption is imposed on Ti and Zi. Let µ(t) = (µ1(t), . . . ,
µn(t))>, and we aim to approximate µ(t) using the Kn candidate Cox models. Mimicking
(5), we define the integrated intensity function associated with the kth working model in
(2) as

µik(t,β∗k,Λ∗k) =

∫ t

0
Yi(u) exp{Z>i(k)β∗k}dΛ∗k(u).

Denote µ̂ik(t) = µik(t, β̂∗k, Λ̂∗k) and µ̂k(t) = (µ̂1k(t), . . . , µ̂nk(t))
>. Let the Kn-vector

weight ω = (ω1, . . . , ωKn)> be from the unit hypercube of RKn ,

Ωn = {ω = (ω1, . . . , ωKn)> ∈ [0, 1]Kn : 0 ≤ ωk ≤ 1, k = 1, . . . ,Kn}.

The averaged intensity function is given by

µ̂(t) =

Kn∑
k=1

ωkµ̂k(t),
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which can be considered as an approximation for the true intensity function µ(t) if the
weights are chosen properly. To obtain the weights, we construct the quadratic loss process,

Ln(ω, t) = ‖µ(t)− µ̂(t)‖2, (6)

where ‖·‖ denotes the Euclidean norm. However, minimization of the quadratic loss process
is an infeasible task, as it involves the unknown intensity function µ(t).

To circumvent the difficulty, we adopt the delete-one CV approach in Hansen and Racine
(2012) to obtain the optimal weights. Let M̂ik(t) = Ni(t)− µ̂ik(t) denote the pseudo mar-

tingale residual process associated with the kth candidate model, and then
∑n

i=1 M̂ik(t) = 0

for any t ∈ [0, τ ] and
∑n

i=1 Zi(k)M̂ik(τ) = 0. Despite the usual properties of residuals in
linear regression, the nuisance function Λ∗k and the dependence on time t certainly require
extra efforts.

Let β̃
(−i)
∗k denote the delete-one estimator for β∗k based on all the observations except for

the ith subject (Xi,∆i,Zi(k)). The corresponding delete-one estimator for Λ∗k(t) is given
by

Λ̃
(−i)
∗k (t) =

∫ t

0

∑n
j 6=i dNj(u)∑n

j 6=i Yj(u) exp{Z>j(k)β̃
(−i)
∗k }

.

For ease of expression, let µ̃ik(t) = µik(t, β̃
(−i)
∗k , Λ̃

(−i)
∗k ) and µ̃k(t) = (µ̃1k(t), . . . , µ̃nk(t))

>.
The averaged delete-one intensity function estimator is then given by

µ̃(t) =

Kn∑
k=1

ωkµ̃k(t),

and we further define the delete-one CV process as

CVn(ω, t) = ‖N(t)− µ̃(t)‖2

for t ∈ [0, τ ]. At the end time of the study duration, we propose the end-time cross-validation
(ECV) criterion,

ECVn(ω) = CVn(ω, τ),

and the corresponding optimal weight is defined as ω̂E = arg minω∈Ωn
ECVn(ω). Alterna-

tively, similar to the Cramér–von Mises approach, we propose an integrated cross-validation
(ICV) criterion by “smoothing” out time t as

ICVn(ω) =

∫ τ

0
CVn(ω, t)dt,

and the optimal weight is given by ω̂I = arg minω∈Ωn
ICVn(ω). In fact, both the ECV

and ICV criteria can be considered as special cases of the general cross-validation (GCV)
criterion which smooths out time t with some known non-negative weight function φ(t) as
follows,

GCVn(ω) =

∫ τ

0
CVn(ω, t)φ(t)dt.
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By taking φ(t) = δτ (t) where δτ (t) = I(t = τ) is the Dirac measure, GCV reduces to ECV;
if φ(t) = 1, GCV reduces to ICV. Motivated by the Kolmogorov–Smirnov approach, we
further propose the supremum cross-validation (SCV) criterion,

SCVn(ω) = sup
t∈[0,τ ]

CVn(ω, t),

and the corresponding optimal weight ω̂S can be obtained by minimizing SCVn(ω).
In general, the three criteria can be viewed as the functionals of the delete-one CV pro-

cess. The preservation of convexity facilitates both theoretical and numerical development.
For ease of expression, let ω̂ be any of the optimal weights ω̂E, ω̂S, or ω̂I. To predict
the risk index of interest, we combine estimators from individual models as ω̂>Q̂, with
Q̂ = (Q̂1, . . . , Q̂Kn)>.

3. Theory of Optimality

Based on the quadratic loss function Ln(ω, t) in (6), we define the corresponding risk func-
tion,

Rn(ω, t) = E{Ln(ω, t) | Z1, . . . ,Zn}.

We denote an = infω∈Ωn inft∈[c0,τ ]Rn(ω, t) for some c0 > 0 small enough and a∗n =

infω∈Ωn supt∈[0,τ ]Rn(ω, t). Suppose that β̂∗k converges to β0k in probability and Λ̂∗k con-

verges to Λ0k. Denote µ0(t) =
∑Kn

k=1ωkµ
0
k(t), where µ0

k(t) = (µ01k(t), . . . , µ
0
nk(t))

> and
µ0ik(t) = µik(t,β0k,Λ0k). We impose the following conditions throughout the theoretical
derivation.

C1 Z is mean-zero sub-Gaussian vector. There exists a universal constant c† ≥ 1 such
that

1/c† ≤ λmin(Σ) ≤ λmax(Σ) ≤ c†,

where Σ is the covariance matrix of Z and λmin(·) and λmax(·) denotes the minimum
and maximum eigenvalues of matrix Σ, respectively.

C2 The size of each candidate model, |Ak|, is fixed, where k = 1, . . . ,Kn.

C3 The parametric space Bk of β∗k is compact and
∫ τ
0 λ∗k(t)dt is bounded uniformly over

k; infZ∈Z P (Y (τ) = 1|Z) is bounded away from zero, where Z is the support of Z.

C4 For each k, infβk∈Bk λmin(Ik(βk)) is bounded away from zero, where Ik(βk) is the
information matrix under the kth candidate model.

C5 For any ε > 0, it holds

P

(
sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖ ≥ ε

)
≤ 2 exp(−c‡n−1/2K−2n ε2)

for some constant c‡ > 0.

C6 (i) a−1n K2
n%

2
nn
−1log(nKn)→ 0 and (ii) a−1n K2

n%
2
n(n log n)1/2 → 0 in probability, where

%n = exp{(log(nKn))2/3}.
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C7 n/a∗n → 0 in probability.

Condition C1 is a common assumption in high-dimensional data analysis. Condition
C2 requires that the size of each candidate model should not be divergent while conditions
C3 and C4 are regular assumptions in survival analysis, which guarantee that all candidate
models can yield feasible estimators. Even when the model is misspecified, it was shown
by Lin and Wei (1989) that β̂∗k − β0k = Op(n

−1/2), and so is for Λ̂∗k. Condition C5 states
the asymptotic order of difference between the true and model-based predictions, implicitly
illustrating the effectiveness of candidate models. Condition C6 states the divergence rate
of the minimum risk for the ECV and ICV criteria, which excludes the degenerate case
of t = 0 due to sparse data, a common treatment in survival analysis. In particular,
if an = Op(n

η+1/2 log n) for some constant η > 0, condition C6 is satisfied by choosing
Kn = O(nδ), where 0 < δ < η/2, as there exists a constant 0 < υ < η − 2δ small enough
such that %2n ≤ nυ. Condition C7 needs a higher divergence rate of the minimum risk for
SCV as it considers the worst-case scenario, which holds if η ≥ 1/2.

Theorem 1 Under conditions C1–C6, it holds for the ECV criterion that

LE
n(ω̂E)

infω∈Ωn L
E
n(ω)

→ 1

in probability as n→∞, where LE
n(ω) = Ln(ω, τ).

Theorem 2 Under conditions C1–C6, it holds for the ICV criterion that

LI
n(ω̂I)

infω∈Ωn L
I
n(ω)

→ 1

in probability as n→∞, where LI
n(ω) =

∫ τ
0 Ln(ω, t)dt.

Theorem 3 Under conditions C1–C7, it holds for the SCV criterion that

LS
n(ω̂S)

infω∈Ωn L
S
n(ω)

→ 1

in probability as n→∞, where LS
n(ω) = supt∈[0,τ ] Ln(ω, t).

Theorems 1–3 lay out the theoretical foundations of the proposed model averaging ap-
proaches for high-dimensional survival data. Although the smallest possible quadratic losses
are infeasible to achieve because the underlying true intensity function µ(t) is unknown,
the functional delete-one CV criteria provide a viable solution. It is worth noting that
Theorems 1 and 2 still hold under less stringent conditions as they consider a single time
point τ or integration with respect to t. We delineate the proofs of theorems in a unified
structure based on Lemmas 1–7 in the Appendix.
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4. Computation

We formulate a general framework to construct the candidate models by partitioning the
indices of predictors [pn], while in practice important predictors are usually grouped together
by utilizing some prior information. The SIS methods for ultrahigh-dimensional survival
data (Zhao and Li, 2012; Song et al., 2014; Wu and Yin, 2015) are effective tools to rank and
group predictors based on their marginal dependence on survival times. As the screening
method of Zhao and Li (2012) is particularly designed for the Cox proportional hazards
model, we adopt it to rank the pn predictors and then evenly partition them into Kn

groups without overlapping; each group is formulated as a candidate model.

Intuitively, more candidate models should be considered as the dimension of predictors
grows. When the number of candidate models Kn is moderate, the optimal weights can be
readily obtained via the quadratic programming optimization with box constraints. How-
ever, such optimization turns out to be challenging for large Kn due to the computational
burden of quadratic programming. To alleviate the high-dimensional optimization issue,
we develop a greedy model averaging algorithm, which is described in detail as follows.

Algorithm 1 Greedy model averaging algorithm based on the ECV criterion

Initialize ω̂
(0)
E ∈ Ωn

for ` = 1, 2, . . . , do

γ̂
(`)
E = arg minγ∈Ωn〈∇ECVn(ω̂

(`−1)
E ),γ〉, where 〈·, ·〉 is the inner product

α̂
(`)
E = arg minα∈[0,1] ECVn(ω̂

(`−1)
E + α(γ̂

(`)
E − ω̂

(`−1)
E ))

ω̂
(`)
E = ω̂

(`−1)
E + α̂

(`)
E (γ̂

(`)
E − ω̂

(`−1)
E )

if ‖ω̂(`)
E − ω̂

(`−1)
E ‖∞ ≤ κ, then break

end for

Output ω̂
(`)
E

Denote the infinity norm by ‖ · ‖∞, and set κ = 0.001 and the initial value ω̂
(0)
E as 0,

1, or e1, where e1 denotes the first vector of the canonical basis of RKn . We choose the
best coordinate according to the gradient ∇ECVn(·), which is standard in the greedy-type
algorithm. In particular, it selects candidate models by optimizing a linear function of
gradient over the box constraints at each iteration, which thus overcomes the difficulty
caused by high dimensionality. Dai et al. (2012) proposed a greedy algorithm for model
aggregation, while they set α̂(`) = 2/(` + 1) and minimized the linear function of gradient
over the canonical basis. Likewise, we can replace the ECV criterion by ICV or SCV in the

algorithm to obtain ω̂
(`)
I or ω̂

(`)
S in the `th iteration.

9
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Theorem 4 (a) For the ECV criterion, let hE,n = maxk∈[Kn] ‖µ̃k(τ)‖2, then

ECVn(ω̂
(`+1)
E ) ≤ min

ω∈Ωn

ECVn(ω) +
16K2

nhE,n
`

.

(b) For the ICV criterion, let hI,n = maxk∈[Kn]

∫ τ
0 ‖µ̃k(t)‖

2dt and assume that the derivative
with respect to ω and the integral with respect to t are exchangeable, then

ICVn(ω̂
(`+1)
I ) ≤ min

ω∈Ωn

ICVn(ω) +
16K2

nhI,n
`

.

(c) For the SCV criterion, let hS,n = supω∈Ωn
λmax(∇2SCVn(ω)), then

SCVn(ω̂
(`+1)
S ) ≤ min

ω∈Ωn

SCVn(ω) +
8KnhS,n

`
.

If a sufficient number of iterations are carried out in the greedy model averaging algo-
rithms, the resulting weights can reach the optimal solutions as the remainders approach
zero as ` goes to infinity. The proof of Theorem 4 is also provided in the Appendix. For a
unified exposition, Theorem 4 quantifies the approximation starting from the second-step
iteration. Although not crucial in practice, the first-step approximation is declared in the
proof.

5. Simulation Studies

We evaluate the finite-sample performances of the proposed model averaging methods and
make comparisons with various regularization methods via simulation studies, including the
LASSO, MCP, SCAD, Elastic Net (EN) with ratio 0.5, Ridge, adaptive LASSO (ALASSO)
approaches. We generate survival time Ti from the Cox proportional hazards model,

λ(t|Zi) = λ(t) exp(ZT
i β),

where the baseline hazard function is λ(t) = (t− 0.5)2 and the high-dimensional predictor
Zi = (Zi1, . . . , Zipn)> follows a pn-dimensional normal distribution with mean 0 and co-
variance matrix Σ = (0.8|j−j

′|) for j, j′ = 1, . . . , pn. The first 15 elements of β are set to
be 0.2 and the rest 0. The censoring time is Ci = C̃i ∧ τ , where C̃i is generated from an
exponential distribution, Exp(0.12), and the study duration τ is chosen to yield a censoring
rate of 20%. We consider sample size n = 100 and 200, coupled with the dimension of
predictors pn = 1000 and 2000.

The SIS method of Zhao and Li (2012) is adopted to rank the importance of each
predictor and then every 10 or 20 predictors are grouped together to formulate a candidate
Cox model. This leads to a total of Kn = 100 or 50 candidate models for pn = 1000 and
Kn = 200 or 100 for pn = 2000. We evaluate the relative risk (RR) for a subject with
predictors drawn from a pn-dimensional normal distribution with mean 0 and covariance
matrix Σ, as well as the survival probability (SP) at time t0 = 2. For each configuration,
we replicate 100 simulations and present the mean squared errors (MSEs) of predictions for
the RR and SP.
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Figure 1: Mean squared errors for predictions of the relative risk (left) and survival proba-
bility (right) using the greedy model averaging algorithms and the LASSO method
in the first 100 iterations with n = 200, pn = 1000 and Kn = 100 when the failure
times are generated from the Cox model.

Table 1 summarizes the simulation results for the proposed methods and various reg-
ularization approaches. In most cases, the proposed methods yield smaller MSEs for the
predictions of the relative risk and survival probability than regularization ones. Our meth-
ods also benefit from the increasing number of candidate models as they could explore the
model space more sufficiently. Figure 1 exhibits the MSEs in the first 100 iterations for the
case with n = 200, pn = 1000 and Kn = 100 where we also plot those of LASSO for com-
parison, demonstrating superior performances and stable convergence paths of the greedy
model averaging algorithms.

We also consider an accelerated failure time (AFT) model,

log Ti = ZT
i β + εi,

where the error εi follows the standard normal distribution. The remaining setups are kept
the same as those under the Cox model. Obviously, the proportional hazards structure
does not hold under the AFT model. Nevertheless, the proposed model averaging methods
under the Cox model framework are still applied to the data arise from the AFT model,
aiming to investigate the robustness of our approach. Simulation results in Table 2 show
that the proposed methods deliver much smaller MSEs than the regularization methods.
It indicates that the proposed Cox model averaging methods do not rely upon the correct
specification of the underlying model as much as the regularization methods.
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The delete-one CV procedure, which is also called the n-fold CV, is advocated for the
proposed model averaging methods. Nevertheless, our methods can be readily coupled with
general ν-fold CV with ν < n. Essentially, we can use 100× (1−1/ν)% of the total samples
to train the proposed methods to predict the remaining samples. We consider ν = 5 and 10
to investigate the performances of the proposed methods. It can be seen from simulation
results in Table 3 that the proposed methods perform equally well for different values of ν.
We also plot the first 10 weights for n = 200 and pn = 1000 in Figure 2, which shows that
the first two models attain the largest weights. The drastically decreasing trend further
demonstrates that the greedy model averaging algorithm can quickly identify the effective
candidate models. Further, we compare the running time in minutes per simulation by
taking an average over 100 simulations for each method as shown in Table 4, when the failure
times are generated form the Cox model. Compared with the regularization methods, the
proposed methods are time costly as they all involve CV procedure, especially for the ICV
and SCV criteria where integrating and maximizing the functional CV process over [0, τ ]
consume substantial computational memory. However, the running time under the 5-fold
ECV criterion is comparable to that of the regularization methods, indicating the proposed
greedy model averaging algorithm may not be the cause of the burden of computation.
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Figure 2: First 10 components of weights using the greedy model averaging algorithms in
the last iteration with n = 200, pn = 1000 and Kn = 100 when the failure times
are generated from the Cox model.
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Proposed methods
ECV ICV SCV

n pn Kn ν = 5 ν = 10 ν = n ν = 5 ν = 10 ν = n ν = 5 ν = 10 ν = n

100 1000 50 0.034 0.063 0.058 0.466 0.868 0.943 0.171 0.318 0.290
100 0.107 0.470 0.866 1.749 9.222 17.058 0.538 2.369 4.345

2000 100 0.084 0.160 0.143 1.154 2.142 2.322 0.419 0.808 0.719
200 0.272 1.189 2.102 4.393 23.014 42.017 1.363 5.878 10.591

200 1000 50 0.058 0.110 0.103 0.848 1.558 1.750 0.298 0.551 0.524
100 0.190 1.740 3.202 3.188 34.898 62.454 0.956 8.865 16.033

2000 100 0.118 0.223 0.220 1.702 3.110 3.667 0.590 1.136 1.100
200 0.392 3.672 6.807 6.586 76.346 134.080 1.991 18.564 35.084

Regularized methods
n pn LASSO MCP SCAD EN Ridge ALASSO

100 1000 0.033 0.042 0.072 0.082 0.025 0.034
2000 0.047 0.053 0.098 0.125 0.060 0.059

200 1000 0.078 0.165 0.247 0.250 0.054 0.047
2000 0.117 0.198 0.331 0.373 0.132 0.104

Table 4: Averaged running time (in minutes) per simulation over 100 runs for prediction
MSEs of the proposed methods and various regularization methods when the fail-
ure times are generated from the Cox model.

6. Application

As an illustration, we apply the proposed model averaging approaches to the mantle cell
lymphoma (MCL) study, which was also analyzed by Rosenwald et al. (2003). The gene
expression data set available from http://llmpp.nih.gov/MCL/ contains expression values
of 6312 cDNA elements after excluding genes with missing values. Based on the morphologic
and immunophenotypic criteria, 92 patients with MCL were included in the study. During
the 14 years’ follow-up, 64 patients died of the MCL and the other 28 were censored, leading
to a censoring rate of 30.4%. Our primary goal is to predict the relative risk and survival
probability of patients with high-dimensional predictors of gene expressions.

We first apply the SIS method of Zhao and Li (2012) to rank the importance of genes,
and then construct candidate models by grouping every 10 genes, leading to Kn = 632
candidate models. A new predictor, denoted by Z0, is taken to be the column-wise median
of the 6312 gene expressions. Figure 3 shows the relative risk for the patient with predictor
Z0 over the first 100 iterations in the greedy model averaging algorithm. It shows that
the relative risks using the ECV and ICV criteria agree well with each other, while the
SCV criterion, corresponding to the worst-case consideration, yields more serious relative
risk. The regularization methods also tend to deliver higher relative risk. There is no much
difference across the n-, 10- and 5-fold CV procedures. To predict the survival probability
of the patient with predictor Z0, we confine the time duration of interest to 14 years and
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equally partition the time axis by an interval of length 0.01. The survival probabilities at
the grid points are predicted using the proposed model averaging methods and regulariza-
tion methods. As shown in Figure 4, the ECV and ICV criteria result in higher predicted
survival probabilities than the SCV criterion and regularization methods. The convergence
paths of the predicted survival probabilities are stable for the first 100 iterations. Further-
more, we take averages over all the estimated survival curves of all subjects with predictors
Zi, i = 1, . . . , n, using the model averaging methods and various regularization methods,
respectively. Figure 5 shows that the predicted survival curves using the model averaging
method with the SCV criterion, and the LASSO, EN, and MCP regularized methods gener-
ally agree well with the Kaplan–Meier curve, while the model averaging methods with the
ECV and ICV criteria tend to overestimate the survival probability.

The concordance index (C-index) is commonly used in survival analysis for assessment
of prediction performance (Uno et al., 2011), which is given by

Cn(ω̂) =

∑
i 6=j ∆iI(Xi < Xj)I(

∑Kn
k=1 ω̂kZ

>
i(k)β̂∗k >

∑Kn
k=1 ω̂kZ

>
j(k)β̂∗k)∑

i 6=j ∆iI(Xi < Xj)

in the framework of model averaging, where ω̂ represents ω̂E, ω̂I or ω̂S. A higher C-index
implies a better prediction performance. As shown in Table 5, the proposed model averaging
methods deliver higher C-index values than various regularization methods. The SCV
criterion exhibits the best concordance behavior among all the considered methods. The
overall running time that each method consumes for analyzing the mantle cell lymphoma
study is summarized in Table 6, from which we can draw conclusions similar to those of
simulations.
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Figure 3: Prediction of the relative risk for a patient with column-wise medians of gene
expressions in the mantle cell lymphoma study using the proposed methods with
the first 100 convergence pathes under the greedy model averaging algorithms,
and various regularization methods.
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Figure 4: Prediction of the survival probability for a patient with column-wise medians of
gene expressions in the mantle cell lymphoma study using the proposed methods
with the first 100 iterations under the greedy model averaging algorithms, and
the regularization methods.
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Figure 5: The Kaplan–Meier survival curve and predicted survival curve using the pro-
posed methods with the first 100 iterations under the greedy model averaging
algorithms, and various regularization methods for the mantle cell lymphoma
study.
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Proposed methods
ECV ICV SCV

ν ` = 5 ` = 10 ` = 15 ` = 20 ` = 5 ` = 10 ` = 15 ` = 20 ` = 5 ` = 10 ` = 15 ` = 20

5 0.904 0.906 0.906 0.907 0.916 0.919 0.918 0.919 0.925 0.925 0.925 0.924
10 0.911 0.912 0.911 0.911 0.906 0.918 0.916 0.912 0.923 0.929 0.928 0.928
n 0.911 0.911 0.910 0.911 0.918 0.921 0.920 0.920 0.927 0.923 0.922 0.922

Regularized methods
LASSO MCP SCAD EN Ridge ALASSO

0.890 0.800 0.833 0.903 0.765 0.868

Table 5: The C-indices of the proposed model averaging methods and various regularization
methods in the mantle cell lymphoma study.

Proposed methods

ECV ICV SCV
ν = 5 ν = 10 ν = n ν = 5 ν = 10 ν = n ν = 5 ν = 10 ν = n

0.501 0.790 5.313 13.832 27.794 246.236 48.136 74.137 512.597

Regularized methods

LASSO MCP SCAD EN Ridge ALASSO

0.118 0.109 0.162 0.227 0.208 0.159

Table 6: The overall running time (in minutes) under the proposed model averaging meth-
ods and various regularization methods in the mantle cell lymphoma study.

7. Remarks

As an effective tool for prediction, the model averaging methods have been extensively stud-
ied in linear regression, which however remain to be explored in high-dimensional survival
analysis. Utilizing the martingale residuals, we propose three functionals of the CV process
to conduct the Cox model averaging for high-dimensional survival data. The optimality of
the model averaging methods is established using empirical process theory. We also develop
the greedy model averaging algorithm to carry out the high-dimensional optimization. Nu-
merical studies show that the proposed methods in conjunction with the greedy algorithms
generally deliver superior performances over the regularization methods.

A fundamental feature of the proposed model averaging approach is that it allows the
model weight to vary freely between zero and one without the usual constraint of sum-
ming up to one. We rank the candidate models based on marginal utility that quantifies
associations between predictors and the outcome marginally, so that the higher-ranked
models capture more information than the lower-ranked ones. Borrowing information from
all working models can substantially enhance the prediction performance. Relaxation of
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the constraint makes the theoretical derivation more challenging while the theoretical de-
velopment for the constraint case can be considered as a special case. Furthermore, the
greedy algorithm facilitates the implementation of the proposed model averaging approach
in practice. The simplicity and generality of the greedy algorithm can also incorporate the
constraint case, with slight modification by selecting one candidate model at each iteration.

The general ν-fold CV procedure for the proposed model averaging approaches is also
recommended in practice for reducing the computational burden. The grid-search method
for selecting ν using the block bootstrap approach suggested by Liu et al. (2019) can be also
applicable. When the true model happens to be contained as a candidate model, the infimum
risk converges to infinity at a lower rate, making conditions C6 and C7 no longer hold. The
proposed methods thus require in theory that all candidate models are misspecified, which
nevertheless is a common assumption in the literature of model averaging (Zhu et al, 2019).

Splitting the predictors into small sets to construct a series of candidate models can
be considered as a way of dimension reduction to break the curse of high dimensionality.
We adopt the strategy by fixing the size of each candidate models as in condition C2
while increasing Kn to accommodate the growth of pn. As the set of candidate models is
increased, the possible quadratic loss is decreased. In this sense, the larger value Kn, the
better. In practice, if the computational cost is not concerned, we suggest to increase Kn

as large as possible such that the set of candidate models is increased gradually. On the
other hand, when the size of each candidate model is divergent with n, it imposes practical
and theoretical obstacles for the model averaging approach. The usage of regularization
method for each candidate model may result in tremendous computational cost and unstable
numerical results as there are a large number of tuning parameters to tune. Theoretical
derivation for evaluating the convergence rate between parameter estimation and its delete-
one counterpart under model misspecification has its own importance even for a single model
with divergent size. Instead of making effort on covering the true model using candidate
models with large size, we employ the refined pieces of candidate models with small size to
sufficiently explore the model space, which greatly facilitates the theoretical establishment
and practical implementation.
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Appendix. Theoretical Proofs

We first introduce several lemmas as follows.
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Lemma 1 Under conditions C1–C4, for k = 1, . . . ,Kn, it holds that

β̃
(−s)
∗k − β̂∗k = Op(n

−1),

sup
t∈[0,τ ]

∣∣∣Λ̃(−s)
∗k (t)− Λ̂∗k(t)

∣∣∣ = Op(n
−1),

where s = 1, . . . , n.

Proof Following (3), the log partial likelihood function for the kth working model can also
be rewritten as

lnk(β∗k) =
n∑
i=1

∆iZ
>
i(k)β∗k −

n∑
i=1

∆i logSnk(Xi,β∗k),

where Snk(t,β∗k) =
∑n

j=1 Yj(t) exp(Z>j(k)β∗k). Without loss of generality, assume that the
n observations are rearranged according to the order, X1 < X2 < · · · < Xn. When the
sth observation is deleted, the log partial likelihood function based on the remaining n− 1
observations can be written as

l
(−s)
nk (β∗k) =

n∑
i=1,i 6=s

∆iZ
>
i(k)β∗k −

s−1∑
i=1

∆i log
{
Snk(Xi,β∗k)− exp(Z>s(k)β∗k)

}
−

n∑
i=s+1

∆i logSnk(Xi,β∗k).

Denote l
(s)
nk (β∗k) = lnk(β∗k)− l

(−s)
nk (β∗k). Straightforward calculation yields that

l̇
(s)
nk (β∗k) =

∂l
(s)
nk (β∗k)

∂β∗k

= ∆sZs(k) −∆s
Ṡnk(Xs,β∗k)

Snk(Xs,β∗k)

+
s−1∑
i=1

∆i

exp(Z>s(k)β∗k)
{
Ṡnk(Xi,β∗k)− Snk(Xi,β∗k)Zs(k)

}
Snk(Xi,β∗k)

{
Snk(Xi,β∗k)− exp(Z>s(k)β∗k)

} ,

where Ṡnk(t,β∗k) =
∑n

j=1 Yj(t) exp(Z>j(k)β∗k)Zj(k). It follows from conditions C1–C3 and

Anderson and Gill (1982) that supβk∈Bk ‖l̇
(s)
nk (βk)‖ = Op(1). For simplicity, we further

denote S̈nk(t,β∗k) =
∑n

j=1 Yj(t) exp(Z>j(k)β∗k)Z
⊗2
j(k), where a⊗2 = aa> for a vector a. We

have

l̈
(s)
nk (β∗k) =

∂2l
(s)
nk (β∗k)

∂β∗k∂β
>
∗k

= −∆s
Snk(Xs,β∗k)S̈nk(Xs,β∗k)− Ṡ⊗2nk (Xs,β∗k)

S2
nk(Xs,β∗k)

+
s−1∑
i=1

exp(Z>s(k)β∗k)∆iS̈nk(Xi,β∗k)

Snk(Xi,β∗k)
{
Snk(Xi,β∗k)− exp(Z>s(k)β∗k)

}
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−
s−1∑
i=1

exp(Z>s(k)β∗k)Z
⊗2
s(k)∆i

Snk(Xi,β∗k)− exp(Z>s(k)β∗k)

−
s−1∑
i=1

exp(Z>s(k)β∗k)∆iṠ
⊗2
nk (Xi,β∗k)

S2
nk(Xi,β∗k)

{
Snk(Xi,β∗k)− exp(Z>s(k)β∗k)

}
+

s−1∑
i=1

2 exp(Z>s(k)β∗k)∆iṠnk(Xi,β∗k)Z
>
s(k){

Snk(Xi,β∗k)− exp(Z>s(k)β∗k)
}2

−
s−1∑
i=1

exp(Z>s(k)β∗k)∆iṠ
⊗2
nk (Xi,β∗k)

Snk(Xi,β∗k)
{
Snk(Xi,β∗k)− exp(Z>s(k)β∗k)

}2
−
s−1∑
i=1

exp(2Z>s(k)β∗k)Z
⊗2
s(k)∆i{

Snk(Xi,β∗k)− exp(Z>s(k)β∗k)
}2 .

Likewise, we have supβk∈Bk ‖l̈
(s)
nk (βk)‖ = Op(1). We take the first-order Taylor approxima-

tion for l̇
(−s)
nk (β∗k) around β̂∗k as follows,

l̇
(−s)
nk (β∗k) = l̇

(−s)
nk (β̂∗k) + l̈

(−s)
nk (β̂∗k)(β∗k − β̂∗k) + op(‖β∗k − β̂∗k‖). (7)

By setting β∗k = β̃
(−s)
∗k in (7) and observing that l̇

(−s)
nk (β̃

(−s)
∗k ) = l̇nk(β̂∗k) = 0 and l

(−s)
nk =

lnk − l
(s)
nk , we have

l̇
(s)
nk (β̂∗k) = {l̈nk(β̂∗k)− l̈

(s)
nk (β̂∗k)}(β̃

(−s)
∗k − β̂∗k) + op(‖β̃

(−s)
∗k − β̂∗k‖). (8)

It follows from Lin and Wei (1989) that n−1 l̈nk(β̂∗k) converges to I(β0k), the information
matrix under the kth candidate model. Consequently, (8) boils down to

β̃
(−s)
∗k − β̂∗k =

{
I(β0k)−Op

(
n−1

)
+ op(1)

}−1
Op
(
n−1

)
,

which implies that

β̃
(−s)
∗k − β̂∗k = Op

(
n−1

)
under condition C4. Furthermore, following Lin and Wei (1989), we have

sup
t∈[0,τ ]

∣∣∣Λ̃(−s)
∗k (t)− Λ̂∗k(t)

∣∣∣
= sup

t∈[0,τ ]

∣∣∣∣∣∣
∫ t

0

∑n
j 6=s dNj(u)∑n

j 6=s Yj(u) exp(Z>j(k)β̃
(−s)
∗k )

−
∫ t

0

∑n
j=1 dNj(u)∑n

j 6=s Yj(u) exp(Z>j(k)β̃
(−s)
∗k )

∣∣∣∣∣∣
+ sup
t∈[0,τ ]

∣∣∣∣∣∣
∫ t

0

∑n
j=1 dNj(u)∑n

j 6=s Yj(u) exp(Z>j(k)β̃
(−s)
∗k )

−
∫ t

0

∑n
j=1 dNj(u)∑n

j=1 Yj(u) exp(Z>j(k)β̃
(−s)
∗k )

∣∣∣∣∣∣
+ sup
t∈[0,τ ]

∣∣∣∣∣∣
∫ t

0

∑n
j=1 dNj(u)∑n

j=1 Yj(u) exp(Z>j(k)β̃
(−s)
∗k )

−
∫ t

0

∑n
j=1 dNj(u)∑n

j=1 Yj(u) exp(Z>j(k)β̂∗k)

∣∣∣∣∣∣
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= sup
t∈[0,τ ]

∣∣∣∣∣∣
∫ t

0

dNs(u)∑n
j 6=s Yj(u) exp(Z>j(k)β̃

(−s)
∗k )

∣∣∣∣∣∣
+ sup
t∈[0,τ ]

∣∣∣∣∣∣
∫ t

0

Ys(u) exp(Z>s(k)β̃
(−s)
∗k )

∑n
j=1 dNj(u)

Snk(u, β̃
(−s)
∗k ){Snk(u, β̃

(−s)
∗k )− Ys(u) exp(Z>s(k)β̃

(−s)
∗k )}

∣∣∣∣∣∣
+ sup
t∈[0,τ ]

∣∣∣∣∣∣
∫ t

0

Ṡ>nk(u, β̂
†
∗k)(β̃

(−s)
∗k − β̂∗k)

S2
nk(u, β̂

†
∗k)

n∑
j=1

dNj(u)

∣∣∣∣∣∣
= Op(n

−1),

where β̂
†
∗k lies between β̂∗k and β̃

(−s)
∗k . Lemma 1 is thus shown.

Lemma 2 Under conditions C1–C2, it holds that,

max
i∈[n]

max
k∈[Kn]

‖Zi(k)‖ = Op

(
(log(nKn))1/2

)
, (9)

max
i∈[n]

max
k∈[Kn]

sup
βk∈Bk

exp(Z>i(k)βk) = Op (%n) . (10)

Proof Under condition C1, Hsu et al. (2012) showed that there exists σ > 0 such that for
all α,

E(exp(α>Z)) ≤ exp(‖α‖2σ2/2).

Following Theorem 2.1 and Remark 2.1 in Hsu et al. (2012), we have for any t > 0,

P
(
‖Z‖2 > σ2{pn + 2(pnt)

1/2 + 2t}
)
≤ exp(−t).

Some calculations yield that

P
(

max
i∈[n]
‖Zi‖ > 2σ(log n ∨ pn)1/2

)
→ 0,

where a ∨ b = max(a, b). Furthermore, we have

P
(

max
i∈[n]

max
k∈[Kn]

‖Zi(k)‖ > 2σ{log(nKn) ∨max
k
|Ak|}1/2

)
→ 0,

under condition C2,

P
(

max
i∈[n]

max
k∈[Kn]

‖Zi(k)‖ > 2σ(log(nKn))1/2
)
→ 0,

which completes the proof of (9).
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It follows from condition C3 that there exists a constant c∗ such that supk supβk∈Bk ‖βk‖ ≤
c∗. The Cauchy–Schwarz inequality furhter implies that supβk∈Bk exp(Z>i(k)βk) ≤ exp{c∗‖Zi(k)‖}.
Hence, for any t > 0, it holds that

P

(
max
i∈[n]

max
k∈[Kn]

sup
βk∈Bk

exp(Z>i(k)βk) > t

)
≤ P

(
max
i∈[n]

max
k∈[Kn]

‖Zi(k)‖ > log t/c∗

)
.

Set log t/c∗ = 2σ(log(nKn))1/2, then t = exp{2c∗σ(log(nKn))1/2}, which indicates

max
i∈[n]

max
k∈[Kn]

sup
βk∈Bk

exp(Z>i(k)βk) = Op

(
exp{2c∗σ(log(nKn))1/2}

)
.

For any constant c > 0, it holds c ≤ (log(nKn))1/6 if n is sufficiently large. Then we
have

exp{c(log(nKn))1/2} = (nKn)c(log(nKn))−1/2 ≤ %n.

Consequently, (10) follows immediately as c∗σ can be bounded uniformly under conditions
C1 and C3.

Lemma 3 Assume that all the items related to t are continuous with respect to t ∈ [0, τ ].
Under conditions C1–C3, for k = 1, . . . ,Kn, it holds that,

sup
t∈[0,τ ]

∣∣∣µ(t)>{N(t)− µ(t)}
∣∣∣ = Op

(
(n log n)1/2

)
, (11)

sup
t∈[0,τ ]

∣∣∣µ0
k(t)

>{N(t)− µ(t)}
∣∣∣ = Op

(
%n(n log n)1/2

)
, (12)

and

sup
t∈[0,τ ]

∣∣∣N(t)>{N(t)− µ(t)} − E[N(t)>{N(t)− µ(t)}]
∣∣∣ = Op

(
(n log n)1/2

)
. (13)

Proof For simplicity, denote G∗n(t) = n−1
∑n

i=1Ni(t)µi(t) and Gn(t) = n−1
∑n

i=1 µ
2
i (t).

Choose 0 = t1 < · · · < tdn = τ such that Gn(tj+1) − Gn(tj) = (n−1 log n)1/2; thus dn ≤
(n/ log n)1/2. It further holds that

sup
t∈[0,τ ]

|G∗n(t)−Gn(t)| ≤ 2 max
1≤j≤dn

|G∗n(tj)−Gn(tj)|+ 2(n−1 log n)1/2

for sufficiently large n. On the other hand, note that, for i = 1, . . . , n, Ni(tj)µi(tj)− µ2i (tj)
are independent, E

{
Ni(tj)µi(tj)− µ2i (tj)

}
= 0, and P(supt∈[0,τ ] |Ni(t)µi(t)− µ2i (t)| ≤ 1) =
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1. Following the Hoeffding inequality (Hoeffding, 1963), we have

P

(
sup
t∈[0,τ ]

|G∗n(t)−Gn(t)| ≥ (23/2 + 2)(n−1 log n)1/2

)

≤ P
(

max
1≤j≤dn

|G∗n(tj)−Gn(tj)| ≥ (2n−1 log n)1/2
)

≤
dn∑
j=1

P
(
|G∗n(tj)−Gn(tj)| ≥ (2 log n/n)1/2

)

≤ 2

dn∑
j=1

exp
{
−2n(2n−1 log n)/4

}
≤ 2n−1dn ≤ 2(n log n)−1/2 → 0,

which completes the proof of (11). Furthermore, (12) and (13) follow by similar arguments
and Lemma 2.

Lemma 4 Under conditions C1–C3 and C5–C6, it holds that

sup
ω∈Ωn

sup
t∈[0,τ ]

∣∣∣∣Ln(ω, t)

Rn(ω, t)
− 1

∣∣∣∣→ 0

in probability.

Proof Under conditions C2 and C5, it holds

P

(
sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖2 ≥ ε

)

= P

(
sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖ ≥ ε1/2
)

≤ 2 exp{−c‡n−1/2K−2n ε}.

Setting ε = (n log n)1/2K2
n, we have

P

(
sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖2 ≥ (n log n)1/2K2
n

)
≤ 2 exp(−c‡(log n)1/2)→ 0.

Consequently, we further have

E

(
sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖2
)
≤
∫ ∞
0

2 exp{−c‡n−1/2K−2n ε}dε = 2c−1‡ n1/2K2
n.
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It follows from the Markov inequality that

P

{
E

(
sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖2 | Zn

)
≥ (n log n)1/2K2

n

}

≤
E
(

supω∈Ωn
supt∈[0,τ ] ‖µ(t)− µ0(t)‖2

)
(n log n)1/2K2

n

→ 0

as n→∞, where Zn = (Z1, . . . ,Zn). We conclude that

sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖2 = Op

(
(n log n)1/2K2

n

)
, (14)

E

(
sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖2|Zn

)
= Op

(
(n log n)1/2K2

n

)
. (15)

Noting that β̂∗k − β0k = Op(n
−1/2), Λ̂∗k(t) − Λ0k(t) = Op(n

−1/2), and Λ0k(τ) is bounded,
under conditions C1–C3, for any constant c1, we have

P

(
max
i∈[n]

max
k∈[Kn]

sup
t∈[0,τ ]

µ̂ik(t) ≥ c1%n

)
≤ P

(
max
i∈[n]

max
k∈[Kn]

sup
t∈[0,τ ]

µ0
ik(t) ≥ c1%n/2

)
→ 0,

which implies that
max
i∈[n]

max
k∈[Kn]

sup
t∈[0,τ ]

µ̂ik(t) = Op (%n) .

Under conditions C1–C3 and using Lemma 12.6 of Kosorok (2008), for every individual, we
have ∥∥µ̂ik(t){µ̂ij(t)− µ0ij(t)}∥∥∞ ≤ c1%n‖ exp{Z>i(j)β̂∗j}Λ̂∗j(t)− exp{Z>i(j)β0j}Λ0j(t)‖∞

on the event E%n = {maxi∈[n] maxk∈[Kn] supt∈[0,τ ] µ̂ik(t) ≤ c1%n}. Furthermore, it follows
from conditions C1–C3 and Goldberg and Kosorok (2012) that

P

(
n1/2 max

i∈[n]
max

k,j∈[Kn]
sup
t∈[0,τ ]

∣∣µ̂ik(t){µ̂ij(t)− µ0ij(t)}∣∣ > %nε | E%n

)
≤ 2 exp{−c2(%n)−2ε2},

where c2 is a universal constant that depends Z and the bound of the parametric space. As
a result,

P

(
n1/2 max

i∈[n]
max

k,j∈[Kn]
sup
t∈[0,τ ]

∣∣µ̂ik(t){µ̂ij(t)− µ0ij(t)}∣∣ > %nε

)
≤ 2 exp{−c2(%n)−2ε2}+ P(Ec%n)→ 0.

Setting ε = (log n)1/2%n and based on some simple calculations, we obtain

max
k,j∈[Kn]

sup
t∈[0,τ ]

∣∣∣µ̂k(t)>{µ̂j(t)− µ0
j (t)}

∣∣∣ = Op

(
%2n(n log n)1/2

)
, (16)

E

(
max

k,j∈[Kn]
sup
t∈[0,τ ]

∣∣∣µ̂k(t)>{µ̂j(t)− µ0
j (t)}

∣∣∣ | Zn) = Op

(
%2n(n log n)1/2

)
. (17)
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Similarly, we can conclude

max
k,j∈[Kn]

sup
t∈[0,τ ]

∣∣∣{µ0
k(t)}>{µ̂j(t)− µ0

j (t)}
∣∣∣ = Op

(
%2n(n log n)1/2

)
, (18)

max
j∈[Kn]

sup
t∈[0,τ ]

∣∣∣µ(t)>{µ̂j(t)− µ0
j (t)}

∣∣∣ = Op

(
%n(n log n)1/2

)
, (19)

E

(
max

k,j∈[Kn]
sup
t∈[0,τ ]

∣∣∣{µ0
k(t)}>{µ̂j(t)− µ0

j (t)}
∣∣∣ | Zn) = Op

(
%2n(n log n)1/2

)
, (20)

and

E

(
max
j∈[Kn]

sup
t∈[0,τ ]

∣∣∣µ(t)>{µ̂j(t)− µ0
j (t)}

∣∣∣∣∣∣∣∣Zn
)

= Op

(
%2n(n log n)1/2

)
. (21)

Note that

Ln(ω, t)−Rn(ω, t)

=‖µ̂(t)− µ0(t)‖2 − E{‖µ̂(t)− µ0(t)‖2 | Zn} − 2{µ̂(t)− µ0(t)}>{µ(t)− µ0(t)}
+ 2E[{µ̂(t)− µ0(t)}>{µ(t)− µ0(t)} | Zn] + ‖µ(t)− µ0(t)‖2 − E{‖µ(t)− µ0(t)‖2 | Zn}

≤ sup
ω∈Ωn

sup
t∈[0,τ ]

Kn∑
k=1

Kn∑
j=1

ωkωj
∣∣{µ̂k(t)− µ0

k(t)}>{µ̂j(t)− µ0
j (t)}

∣∣
+ sup
ω∈Ωn

sup
t∈[0,τ ]

2

Kn∑
k=1

Kn∑
j=1

ωkωj
∣∣{µ0

k(t)}>{µ̂j(t)− µ0
j (t)}

∣∣
+ sup
ω∈Ωn

sup
t∈[0,τ ]

2

Kn∑
j=1

ωj
∣∣µ(t)>{µ̂j(t)− µ0

j (t)}
∣∣+ sup

ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖2

+ E

 sup
ω∈Ωn

sup
t∈[0,τ ]

Kn∑
k=1

Kn∑
j=1

ωkωj
∣∣{µ̂k(t)− µ0

k(t)}>{µ̂j(t)− µ0
j (t)}

∣∣ | Zn


+ 2E

 sup
ω∈Ωn

sup
t∈[0,τ ]

Kn∑
k=1

Kn∑
j=1

ωkωj
∣∣{µ0

k(t)}>{µ̂j(t)− µ0
j (t)}

∣∣ | Zn


+ 2E

 sup
ω∈Ωn

sup
t∈[0,τ ]

Kn∑
j=1

ωj
∣∣µ(t)>{µ̂j(t)− µ0

j (t)}
∣∣ | Zn


+ E

{
sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖2 | Zn

}
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≤K2
n max
k,j∈[Kn]

sup
t∈[0,τ ]

∣∣µ̂k(t)>{µ̂j(t)− µ0
j (t)}

∣∣+ 3K2
n max
k,j∈[Kn]

sup
t∈[0,τ ]

∣∣{µ0
k(t)}>{µ̂j(t)− µ0

j (t)}
∣∣

+ 2Kn max
j∈[Kn]

sup
t∈[0,τ ]

∣∣µ(t)>{µ̂j(t)− µ0
j (t)}

∣∣+ sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖2

+K2
nE

{
max

k,j∈[Kn]
sup
t∈[0,τ ]

∣∣µ̂k(t)>{µ̂j(t)− µ0
j (t)}

∣∣ | Zn}

+ 3K2
nE

{
max

k,j∈[Kn]
sup
t∈[0,τ ]

∣∣{µ0
k(t)}>{µ̂j(t)− µ0

j (t)}
∣∣ | Zn}

+ 2KnE

{
max
j∈[Kn]

sup
t∈[0,τ ]

∣∣µ(t)>{µ̂j(t)− µ0
j (t)}

∣∣ | Zn}+ E

{
sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ(t)− µ0(t)‖2 | Zn

}
.

Therefore, it follows from (14) to (21) that

sup
ω∈Ωn

sup
t∈[0,τ ]

|Ln(ω, t)−Rn(ω, t)| = (n log n)1/2K2
n%

2
nOp(1).

Thus, conditions C2 and C6 yield

sup
ω∈Ωn

sup
t∈[0,τ ]

|Ln(ω, t)−Rn(ω, t)|
Rn(ω, t)

≤ a−1n (n log n)1/2K2
n%

2
nOp(1)→ 0,

which completes the proof of Lemma 4.

Lemma 5 Under conditions C1–C6, it holds that

sup
ω∈Ωn

sup
t∈[0,τ ]

∣∣∣∣∣ L̃n(ω, t)

Ln(ω, t)
− 1

∣∣∣∣∣→ 0 (22)

in probability, where L̃n(ω, t) = ‖µ(t)− µ̃(t)‖2.

Proof Following Lemmas 1 and 2, (10) and conditions C1–C4, we have

max
k∈[Kn]

sup
t∈[0,τ ]

‖µ̃k(t)− µ̂k(t)‖2

=

n∑
s=1

max
k∈[Kn]

sup
t∈[0,τ ]

(∫ t

0
Ys(u) exp(Z>s(k)β̃

(−s)
∗k )dΛ̃

(−s)
∗k (u)−

∫ t

0
Ys(u) exp(Z>s(k)β̂∗k)dΛ̂∗k(u)

)2

≤2 max
k∈[Kn]

n∑
s=1

sup
t∈[0,τ ]

(∫ t

0
Ys(u) exp(Z>s(k)β̃

(−s)
∗k )d{Λ̃(−s)

∗k (u)− dΛ̂∗k(u)}
)2

+ 2 max
k∈[Kn]

n∑
s=1

sup
t∈[0,τ ]

(∫ t

0
Ys(u){exp(Z>s(k)β̃

(−s)
∗k )− exp(Z>s(k)β̂∗k)}dΛ̂∗k(u)

)2

=Op
(
n−1 log(nKn)%2n

)
.
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As a result,

sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ̃(t)− µ̂(t)‖2 = sup
ω∈Ωn

sup
t∈[0,τ ]

∥∥∥∥∥
Kn∑
k=1

ωk{µ̃k(t)− µ̂k(t)}

∥∥∥∥∥
2

≤ K2
n max
k∈[Kn]

sup
t∈[0,τ ]

‖µ̃k(t)− µ̂k(t)‖2

≤ n−1K2
n log(nKn)%2nOp(1).

Under conditions C2 and C6, and using Lemma 4, we have

sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ̃(t)− µ̂(t)‖2

Ln(ω, t)
= sup

ω∈Ωn

sup
t∈[0,τ ]

‖µ̃(t)− µ̂(t)‖2

Rn(ω, t)

Rn(ω, t)

Ln(ω, t)

≤ sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ̃(t)− µ̂(t)‖2

Rn(ω, t)
sup
ω∈Ωn

sup
t∈[0,τ ]

Rn(ω, t)

Ln(ω, t)

≤ sup
ω∈Ωn

sup
t∈[0,τ ]

‖µ̃(t)− µ̂(t)‖2

an

= a−1n n−1K2
n log(nKn)%2nOp(1)→ 0 (23)

in probability. On the other hand, it follows from the Cauchy–Schwartz inequality that

|L̃n(ω, t)− Ln(ω, t)| = |‖µ̃(t)− µ̂(t)‖2 − 2〈µ(t)− µ̂(t), µ̃(t)− µ̂(t)〉|
≤ ‖µ̃(t)− µ̂(t)‖2 + 2{Ln(ω, t)}1/2‖µ̃(t)− µ̂(t)‖. (24)

Consequently, (22) follows directly from (23) and (24).

Lemma 6 Under conditions C1–C4 and C6, it holds that

sup
ω∈Ωn

sup
t∈[0,τ ]

|〈N(t)− µ(t),µ(t)− µ̃(t)〉|
Rn(ω, t)

→ 0

in probability.

Proof Using Lemmas 1–3, (10) and conditions C1–C4, we have

sup
ω∈Ωn

sup
t∈[0,τ ]

|〈N(t)− µ(t),µ(t)− µ̃(t)〉|

= sup
ω∈Ωn

sup
t∈[0,τ ]

∣∣∣∣∣
n∑
i=1

{
{Ni(t)− µi(t)}

(
µi(t)−

Kn∑
k=1

ωkµ̃ik(t)

)}∣∣∣∣∣
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≤ sup
ω∈Ωn

sup
t∈[0,τ ]

∣∣∣∣∣
n∑
i=1

{Ni(t)− µi(t)}µi(t)

∣∣∣∣∣+ sup
ω∈Ωn

sup
t∈[0,τ ]

Kn∑
k=1

ωk

∣∣∣∣∣
n∑
i=1

{Ni(t)− µi(t)}µ0ik(t)

∣∣∣∣∣
+ sup
ω∈Ωn

sup
t∈[0,τ ]

∣∣∣∣∣
n∑
i=1

(
{Ni(t)− µi(t)}

Kn∑
k=1

ωk{µik(t, β̂∗k,Λ0k)− µ0ik(t)}

)∣∣∣∣∣
+ sup
ω∈Ωn

sup
t∈[0,τ ]

∣∣∣∣∣
n∑
i=1

(
{Ni(t)− µi(t)}

Kn∑
k=1

ωk{µ̂ik(t)− µik(t, β̂∗k,Λ0k)}

)∣∣∣∣∣
+ sup
ω∈Ωn

sup
t∈[0,τ ]

∣∣∣∣∣
n∑
i=1

(
{Ni(t)− µi(t)}

Kn∑
k=1

ωk{µik(t, β̃
(−i)
∗k , Λ̂∗k)− µ̂ik(t)}

)∣∣∣∣∣
+ sup
ω∈Ωn

sup
t∈[0,τ ]

∣∣∣∣∣
n∑
i=1

(
{Ni(t)− µi(t)}

Kn∑
k=1

ωk{µ̃ik(t)− µik(t, β̃
(−i)
∗k , Λ̂∗k)}

)∣∣∣∣∣
= Op((n log n)1/2) +KnOp((n log n)1/2%n) +Op(n)Kn%n(log(nKn))1/2Op(n

−1/2)

+Op(n)Kn%nOp(n
−1/2) +Op(n)Kn%n(log(nKn))1/2Op(n

−1) +Op(n)Kn%nOp(n
−1)

= Kn(n log(nKn))1/2%nOp(1).

It follows from conditions C2 and C6 that

sup
ω∈Ωn

sup
t∈[0,τ ]

|〈N(t)− µ(t),µ(t)− µ̃(t)〉|
Rn(ω, t)

≤ a−1n Kn(n log(nKn))1/2%nOp(1)→ 0

in probability. Thus it completes the proof.

Lemma 7 Under conditions C1–C6, it holds that

CVn(ω, t)− ‖N(t)− µ(t)‖2 = Ln(ω, t){1 + op(1)},

where op(1) is uniform in ω ∈ Ωn and t ∈ [0, τ ].

Proof We rewrite

CVn(ω, t)

= ‖N(t)− µ(t)‖2 + L̃n(ω, t) + 2〈N(t)− µ(t),µ(t)− µ̃(t)〉

= ‖N(t)− µ(t)‖2 + Ln(ω, t)

(
L̃n(ω, t)

Ln(ω, t)
+

2〈N(t)− µ(t),µ(t)− µ̃(t)〉/Rn(ω, t)

Ln(ω, t)/Rn(ω, t)

)
.

Consequently, Lemma 7 follows directly from Lemmas 4–6.

Proof of Theorem 1 Setting t = τ in Lemma 7, we have

ECVn(ω)− ‖N(τ)− µ(τ)‖2 = LE
n(ω){1 + op(1)},
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where op(1) is uniform in ω ∈ Ωn. Based on the definition of ω̂E, we obtain that

LE
n(ω̂E)

infω∈Ωn L
E
n(ω)

→ 1

in probability, which completes the proof of Theorem 1.

Proof of Theorem 2 As shown in the proof of Lemma 7 and utilizing the fact that the
integral is a linear operator, we have

ICVn(ω)−
∫ τ

0
‖N(t)− µ(t)‖2dt = LI

n(ω){1 + op(1)},

where op(1) is uniform over ω ∈ Ωn. Hence, Theorem 2 follows directly.

Proof of Theorem 3 Denote RS
n(ω) = supt∈[0,τ ]Rn(ω, t). Further calculation yields that

sup
ω∈Ωn

∣∣∣∣LS
n(ω)

RS
n(ω)

− 1

∣∣∣∣ ≤ sup
ω∈Ωn

sup
t∈[0,τ ]

∣∣∣∣Ln(ω, t)

Rn(ω, t)
− 1

∣∣∣∣→ 0

in probability using Lemma 4. Equations (11) and (13) in Lemma 3 imply that

sup
t∈[0,τ ]

‖N(t)− µ(t)‖2 ≤ sup
t∈[0,τ ]

∣∣∣∣∣
n∑
i=1

({Ni(t)− µi(t)}Ni(t)− E[{Ni(t)− µi(t)}Ni(t)])

∣∣∣∣∣
+ sup
t∈[0,τ ]

∣∣∣∣∣
n∑
i=1

E[{Ni(t)− µi(t)}Ni(t)]

∣∣∣∣∣
+ sup
t∈[0,τ ]

∣∣∣∣∣
n∑
i=1

{Ni(t)− µi(t)}µi(t)

∣∣∣∣∣
= Op

(
(n log n)1/2

)
+Op(n) +Op

(
(n log n)1/2

)
= Op(n).

Therefore,

sup
ω∈Ωn

sup
t∈[0,τ ]

‖N(t)− µ(t)‖2

LS
n(ω)

≤
supt∈[0,τ ] ‖N(t)− µ(t)‖2

infω∈Ωn R
S
n(ω)

sup
ω∈Ωn

RS
n(ω)

LS
n(ω)

≤ Op(n) (a∗n)−1 (1 + op(1))→ 0

in probability by conditions C6 and C7.
Following Lemma 7, we have

CVn(ω, t) = LS
n(ω)

Ln(ω, t)

LS
n(ω)

{
‖N(t)− µ(t)‖2

Ln(ω, t)
+ 1 + op(1)

}
= LS

n(ω)

{
‖N(t)− µ(t)‖2

LS
n(ω)

+
Ln(ω, t)

LS
n(ω)

+ op(1)

}
= Ln(ω, t) + LS

n(ω)op(1),
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which, by taking the supremum over t ∈ [0, τ ] on both sides, implies that

SCVn(ω) = LS
n(ω){1 + op(1)}.

Theorem 3 follows directly.

Proof of Theorem 4 By the Taylor expansion, for fixed t we have

CVn(ω, t) = CVn(ω†, t) + (ω − ω†)>∇CVn(ω†, t) + ‖µ̃ω(t)− µ̃ω†(t)‖2 (25)

for any ω and ω† ∈ Ωn, where µ̃ω(t) =
∑Kn

k=1 ωkµ̃k(t) is adopted to emphasize its depen-
dence on the weight ω. First, we derive the convergence of the greedy model averaging

algorithm for the ECV criterion. Setting t = τ , ω† = ω̂
(`)
E and ω = ω̂

(`)
E + α(γ̂

(`+1)
E − ω̂(`)

E )
in (25), it holds

ECVn(ω̂
(`)
E + α(γ̂

(`+1)
E − ω̂(`)

E ))− α2‖µ̃
γ̂
(`+1)
E

(τ)− µ̃
ω̂

(`)
E

(τ)‖2

= ECVn(ω̂
(`)
E ) + α(γ̂

(`+1)
E − ω̂(`)

E )>∇ECVn(ω̂
(`)
E ).

For any ω ∈ Ωn, if we define ∆
(`)
E = ECVn(ω̂

(`)
E ) − ECVn(ω), using the convexity of

ECVn(·), we have

∆
(`)
E ≤ 〈ω̂(`)

E − ω,∇ECVn(ω̂
(`)
E )〉

≤ 〈ω̂(`)
E − γ̂

(`+1),∇ECVn(ω̂
(`)
E )〉.

Consequently,

ECVn(ω̂
(`+1)
E ) ≤ ECVn(ω̂

(`)
E + α(γ̂

(`+1)
E − ω̂(`)

E ))

≤ ECVn(ω̂
(`)
E )− α∆

(`)
E + α2‖µ̃

γ̂
(`+1)
E

(τ)− µ̃
ω̂

(`)
E

(τ)‖2 (26)

for any α ∈ [0, 1]. Immediately,

∆
(`+1)
E ≤ ∆

(`)
E + min

α∈[0,1]

(
−α∆

(`)
E + α2‖µ̃

γ̂
(`+1)
E

(τ)− µ̃
ω̂

(`)
E

(τ)‖2
)

≤ ∆
(`)
E + min

α∈[0,1]
(−α∆

(`)
E + 4α2K2

nhE,n).

For ` = 0, choosing α = 1, then ∆
(1)
E ≤ 4K2

nhE,n. Furthermore, ∆
(`+1)
E ≤ ∆

(`)
E for any

` ≥ 1. It holds ∆
(`)
E ≤ 4K2

nhE,n. For ` ≥ 1, choosing α = ∆
(`)
E /(8K2

nhE,n) ∈ [0, 1/2], we
have

∆
(`+1)
E ≤ ∆

(`)
E −

{∆(`)
E }2

16K2
nhE,n

.

This recursion implies that, for any ` ≥ 1 and ω ∈ Ωn,

∆
(`+1)
E = ECVn(ω̂

(`+1)
E )− ECVn(ω) ≤

16K2
nhE,n
`

.
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Thus, we obtain the convergence of the greedy algorithm for the ECV criterion.
Assuming that the derivative with respect to ω and the integral with respect to t are

exchangeable for the ICV criterion and further noting that the integral operator is linear,
we have

∆
(`+1)
I ≤ ∆

(`)
I + min

α∈[0,1]

(
−α∆

(`)
I + α2

∫ τ

0
‖µ̃

γ̂
(`+1)
I

(t)− µ̃
ω̂

(`)
I

(t)‖2dt
)

≤ ∆
(`)
I + min

α∈[0,1]

(
−α∆

(`)
I +

∫ τ

0
2α2‖µ̃

γ̂
(`+1)
I

(t)‖2dt+

∫ τ

0
2α2‖µ̃

ω̂
(`)
I

(t)‖2dt
)

≤ ∆
(`)
I + min

α∈[0,1]
(−α∆

(`)
I + 4α2K2

nhI,n)

using similar argument for (26). Therefore, the convergence of the greedy algorithm for the
ICV criterion follows.

We finally consider the greedy algorithm for the SCV criterion. As SCVn(ω) is convex
with respect to ω, we have

SCVn(ω) = SCVn(ω†) + (ω − ω†)>∇SCVn(ω†) +
1

2
(ω − ω†)>∇2SCVn(ω†)(ω − ω†).

Setting ω† = ω̂
(`)
S and ω = ω̂

(`)
S + α(γ̂

(`+1)
S − ω̂(`)

S ) yields

SCVn(ω̂
(`)
S + α(γ̂

(`+1)
S − ω̂(`)

S ))− α2

2
(γ̂

(`+1)
S − ω̂(`)

S )>∇2SCVn(ω̂
(`)
S )(γ̂

(`+1)
S − ω̂(`)

S )

= SCVn(ω̂
(`)
S ) + α(γ̂

(`+1)
S − ω̂(`)

S )>∇SCVn(ω̂
(`)
S ).

If we define ∆
(`)
S = SCVn(ω̂

(`)
S )− SCVn(ω), by the convexity of SCVn(·),

∆
(`)
S ≤ 〈ω̂(`)

S − ω,∇SCVn(ω̂
(`)
S )〉

≤ 〈ω̂(`)
S − γ̂

(`+1)
S ,∇SCVn(ω̂

(`)
S )〉.

By the definition of hS,n and using similar argument to that of the ECV criterion, we have

∆
(`+1)
S ≤ ∆

(`)
S + min

α∈[0,1]

(
−α∆

(`)
S +

α2

2
(γ̂

(`+1)
S − ω̂(`)

S )>∇2SCVn(ω̂
(`)
S )(γ̂

(`+1)
S − ω̂(`)

S )

)
≤ ∆

(`)
S + min

α∈[0,1]
(−α∆

(`)
S + 2α2KnhS,n)

≤ ∆
(`)
S −

{∆(`)
S }2

8KnhS,n
,

from which the convergence of the greedy algorithm for the SCV criterion follows.
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