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Abstract

We analyze the practices of reservoir computing in the framework of statistical learning
theory. In particular, we derive finite sample upper bounds for the generalization error
committed by specific families of reservoir computing systems when processing discrete-time
inputs under various hypotheses on their dependence structure. Non-asymptotic bounds
are explicitly written down in terms of the multivariate Rademacher complexities of the
reservoir systems and the weak dependence structure of the signals that are being handled.
This allows, in particular, to determine the minimal number of observations needed in order
to guarantee a prescribed estimation accuracy with high probability for a given reservoir
family. At the same time, the asymptotic behavior of the devised bounds guarantees the
consistency of the empirical risk minimization procedure for various hypothesis classes of
reservoir functionals.

Keywords: Reservoir computing, RC, echo state networks, ESN, state affine systems,
SAS, random reservoirs, Rademacher complexity, weak dependence, empirical risk mini-
mization, PAC bounds, risk bounds.

1. Introduction

Reservoir computing (RC) is a well established paradigm in the supervised learning of dy-
namic processes, which exploits the ability of specific families of semi-randomly generated
state-space systems to solve computational and signal treatment tasks, both in determinis-
tic and in stochastic setups. In recent years, both researchers and practitioners have been
paying increasing attention to reservoir systems and their applications in learning. The
main reasons behind this growing interest are threefold. Firstly, training strategies in reser-
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voir computing are easy to implement as they simply consist in estimating the weights of
memoryless static readouts, while the internal weights of the reservoir network are randomly
created; this feature is closely linked to ideas originating in biology and the neurosciences
in relation with the design of brain-inspired computing algorithms. Second, there is an im-
portant interplay between reservoir systems and the theory of dynamical systems, recurrent
neural networks, and nonlinear discrete-time state-space systems, which makes the collec-
tion of tools available for their analysis very rich and explains in part why RC appears in the
literature assimilated to other denominations, such as Liquid State Machines (see Maass
and Sontag, 2000; Maass et al., 2002; Natschläger et al., 2002; Maass et al., 2004, 2007) or
Echo State Networks (see Jaeger and Haas, 2004; Jaeger, 2010)). Finally, several families
of reservoir systems have shown excellent performance in various classification and forecast-
ing exercises including both standard machine learning benchmarks (see Lukoševičius and
Jaeger, 2009, and references therein) and sophisticated applications that range from learn-
ing the attractors of chaotic nonlinear infinite dimensional dynamical systems (see Jaeger
and Haas, 2004; Pathak et al., 2017, 2018; Lu et al., 2018) to the detection of Steady-State
Visual Evoked Potentials (SSVEPs) in electroencephalographic signals as in Ibáñez-Soria
et al. (2019). It is also important to point out that RC implementations with dedicated
hardware have been proved to exhibit information processing speeds that significantly out-
perform standard Turing-type computers (see, for instance, Appeltant et al., 2011; Rodan
and Tino, 2011; Vandoorne et al., 2011; Larger et al., 2012; Paquot et al., 2012; Brunner
et al., 2013; Vandoorne et al., 2014; Vinckier et al., 2015; Laporte et al., 2018).

For a number of years, the reservoir computing community has worked hard on char-
acterizing the key properties that explain the performance of reservoirs in classification,
forecasting, and memory reconstruction tasks and also on formulating necessary conditions
for a given state-space system to serve as a properly functioning reservoir system. Salient
features of reservoir systems that have been shown to be important are the fading mem-
ory property (FMP), which appears in the context of systems theory (Volterra, 1959;
Wiener, 1958; Boyd and Chua, 1985), computational neurosciences (Maass et al., 2004),
physics (Coleman and Mizel, 1968), or mechanics (see Fabrizio et al., 2010, and references
therein), the echo state property (ESP) (Jaeger, 2010; Yildiz et al., 2012; Manjunath
and Jaeger, 2013), and the pairwise separation property (SP) (see, for instance, Legen-
stein and Maass, 2007; Lukoševičius and Jaeger, 2009; Maass, 2011, and references therein).
Much effort has been made to provide rigorous definitions for these concepts and to char-
acterize their relations under various hypotheses (see Jaeger, 2010; Grigoryeva and Ortega,
2019, and references therein). In particular, the crucial importance of these properties man-
ifests itself in a series of universal approximation results which have been obtained for RC
systems (see for example Maass et al., 2007; Grigoryeva and Ortega, 2018a,b; Gonon and
Ortega, 2020b,a). This feature is a dynamic analog to well-established universal approx-
imation properties for static machine learning paradigms, like neural networks (Cybenko,
1989; Funahashi, 1989; Hornik et al., 1989), for which the so-called approximation error
(see Cucker and Smale, 2002; Smale and Zhou, 2003; Cucker and Zhou, 2007) can be made
arbitrary small.

From the point of view of learning theory, the most important feature for any paradigm
is its ability to generalize. Here this means that the performance of a given RC architecture
on a training sample should be comparable to its behavior on previously unseen realizations
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of the same data generation process. In the RC literature, this problem has been tradi-
tionally tackled using the notion of memory capacity, that has been the subject of much
research (Jaeger, 2002; White et al., 2004; Ganguli et al., 2008; Hermans and Schrauwen,
2010; Dambre et al., 2012; Grigoryeva et al., 2015; Couillet et al., 2016; Grigoryeva et al.,
2016). Unfortunately, it has been recently shown that optimizing memory capacity does
not necessarily lead to higher prediction performance (see Marzen, 2017). Moreover, the
recently proved universal approximation properties of RC that we just brought up do not
guarantee that a given universal reservoir system will exhibit small generalization errors.
In other words, they guarantee the availability of RC architectures that exhibit arbitrarily
small training errors but give no control on their generalization power.

Following the standard learning theoretical approach to measure the generalization
power would lead to consider the difference between the training error (empirical risk)
and the testing error (statistical risk or generalization error) and aim at controlling it uni-
formly over a given class of reservoir systems by using a measure of the class complexity. A
number of complexity measures for function classes have been proposed over the years. We
can name the Vapnik-Chervonenkis (VC) dimension (Vapnik, 1998), Rademacher and Gaus-
sian complexities (Bartlett and Mendelson, 2003), uniform stability (Mukherjee et al., 2006;
Bousquet and Elisseeff, 2002; Poggio et al., 2004), and their modifications. In particular, a
vast literature is available also on complexities and probably approximately correct (PAC)
bounds for multilayer neural networks or recurrent neural networks (see, for instance, Haus-
sler, 1992; Koiran and Sontag, 1998; Sontag, 1998; Anthony and Bartlett, 1999; Bartlett
et al., 2017; Zhang et al., 2018, and references therein).

However, it is important to emphasize that using this traditional learning theoreti-
cal approach to formulate generalization error bounds in the case of reservoir systems is
challenging and requires non-trivial extensions of this circle of ideas. Indeed, since a key
motivation for our analysis are time series applications, the standard i.i.d. assumption on
inputs and outputs cannot be invoked anymore, which makes a number of conventional
tools unsuitable. Here the signals to be treated are stochastic processes with a particular
dependence structure, which introduces mathematical difficulties that only a few works have
analyzed in a learning theory context. In most of the available contributions on learning
in a non-i.i.d. setting, stationarity and specific mixing properties of the input are key as-
sumptions (see, for instance, McDonald et al., 2017; Kuznetsov and Mohri, 2017, 2018, and
references therein). The time series applications that we are interested motivate us, how-
ever, to part with the latter. A common argument in this direction (Kuznetsov and Mohri,
2018) is that many standard time-series processes happen to be non-mixing; for example,
one can easily construct AR(1) and ARFIMA processes which are not mixing (see Andrews,
1983; Baillie, 1996, respectively). On the other hand, it has been pointed out (see Adams
and Nobel, 2010) that the convergence of empirical quantities to population-based ones can
be arbitrarily slow for general stationary data and one cannot hope to obtain distribution-
free probability bounds as they exist for the i.i.d. case. Motivated by these observations,
in this article we restrict to a particular type of dependent processes, namely, we focus on
dependence structures created by causal Bernoulli shifts (see, for instance, Dedecker et al.,
2007; Alquier and Wintenberger, 2012) and hence the error bounds that we obtain are valid
for any input process with such a dependence structure. Apart from trivially incorporat-
ing the i.i.d. case, the Bernoulli shifts category includes the VARMA time-series class of
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models, financial econometric models such as various GARCH specifications (Engle, 1982;
Bollerslev, 1986; Engle, 2009), and the ARFIMA (Beran, 1994) processes that allow the
modeling of long memory behavior exhibited by many financial time series (for example
realized variances). As we show later on, even though the bounds that we obtain depend on
the weak dependence assumptions, they hold true without making precise the distributions
of the input and the outputs, which are generally unknown. We hence place ourselves in a
semi-agnostic setup.

Regarding complexity measures, bounds for them are also customarily formulated in
an i.i.d. setting. Recently, some authors addressed the question of constructing versions of
Rademacher complexities for dependent inputs. For example, if one defines the risk in terms
of conditional expectations, then the so-called sequential Rademacher complexities can be
used to derive bounds (see, for instance, Rakhlin et al. (2010, Proposition 15) and Rakhlin,
Sridharan, and Tewari (2014)). In this paper we pursue a more traditional approach in terms
of the definition of the expected risk and hence the associated Rademacher complexity.

The main contribution of this paper is the formulation of the first explicit generalization
bounds for reservoir systems such as recurrent neural networks with input data exhibiting a
sequential dependence structure for the classical notion of risk defined as an expected loss.
The uniform high-probability bounds which we state in this paper depend exclusively on the
weak dependence behavior of the input and target processes and a quantitative measure of
the capacity (Rademacher complexity) of the set of functionals generated by the considered
reservoir systems. The finite sample guarantees provided by our generalization bounds
explicitly answer practical questions concerning the bounds for the parameters within a
particular reservoir family, the rates of uniform convergence, and hence the length of the
training sample required to achieve a desired learning generalization quality within a given
RC class. Finally, when one wishes to apply empirical risk minimization (ERM) in order
to pick the reservoir functional within the hypothesis class, the asymptotic behavior of the
devised bounds guarantees the consistency of ERM for reservoir systems.

The paper is organized as follows:

• Section 2 describes the notation used in the paper. We introduce reservoir systems, the
associated filters and functionals, as well as a detailed description of various families
of popular reservoir systems in the literature.

• Section 3 sets up the statistical learning problem for reservoir computing systems. It
starts by introducing a general framework for the learning procedure, necessary risk
definitions, and criteria of risk-consistency for the particular case of empirical risk
minimization (ERM). The second subsection constitutes the main part of Section 3
and we present in it the setting in which reservoir systems are analyzed in the rest of
the paper. First, three alternative core assumptions regarding the weak dependence
structure of the input and target processes are analyzed and illustrated with examples.
Second, the hypothesis classes of reservoir maps and functionals are constructed under
a set of mild assumptions. Finally, the strategy for the derivation of risk bounds for
a given choice of loss function is discussed.

• Section 4 contains the main results of the paper. Proofs and auxiliary results are
postponed to the appendices. Section 4 is structured as follows. In the first subsec-
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tion the expected value of the worst-case difference between the generalization and
training errors over the class of reservoir functionals is shown to be bounded by its
Rademacher complexity and terms related to the weak dependence structure of the
input and target processes. The obtained rates differ depending on the various as-
sumptions invoked. The second subsection provides explicit expressions for upper
bounds of the Rademacher complexities associated to the families of reservoir systems
presented in Section 2. The third subsection concludes with the formulation of high-
probability finite-sample generalization bounds for reservoir systems. We emphasize
that previously such bounds were not available in the literature. The asymptotic
behavior of these bounds shows in passing the weak risk-consistency of the ERM
procedure for reservoir systems. The last subsection contains a result that provides
high-probability bounds for families of reservoir systems whose reservoir maps have
been generated randomly. This result is a theoretical justification of the well-known
good empirical properties of this standard modus operandi in reservoir computing.

2. Preliminaries

We start by specifying our notation and introducing reservoir computing systems for which
in the following sections we will set up a statistical learning strategy. In the last subsection
we provide a list of particular families of reservoir systems which are popular in the RC
literature and in applications.

2.1 Notation

We use the symbol N (respectively, N+) to denote the set of natural numbers with the
zero element included (respectively, excluded). Z denotes the set of all integers, and Z−
(respectively, Z+) stands for the set of the negative (respectively, positive) integers with
the zero element included. Let d, n,m ∈ N+. Given an element x ∈ Rn, we denote by
R[x] the real-valued multivariate polynomials on x with real coefficients. Given a vector
v ∈ Rn, the symbol ‖v‖2 stands for its Euclidean norm. We denote by Mm,n the space of
real m × n matrices. When n = m, we use the symbol Mn to refer to the space of square
matrices of order n. For any A ∈ Mm,n, |||A|||2 denotes its matrix norm induced by the
Euclidean norms in Rm and Rn, which satisfies that |||A|||2 = σmax(A) with σmax(A) the
largest singular value of A. |||A|||2 is sometimes referred to as the spectral norm of A (see
Horn and Johnson, 2013).

When working in a deterministic setup, the inputs and outputs will be modeled using
semi-infinite sequences z ∈ (Rd)Z− and y ∈ (Rm)Z− , respectively. We shall restrict very fre-
quently to input sequences that exhibit additional convergence properties that are imposed
with the help of weighting sequences. A weighting sequence w is a strictly decreasing se-
quence with zero limit w : N −→ (0, 1] such that w0 = 1. We define the weighted 1-norm
or the (1, w)-norm ‖·‖1,w in the space of semi-infinite sequences (Rd)Z− as

‖z‖1,w :=
∑
t∈Z−

‖zt‖2w−t, for any z ∈ (Rd)Z− .

We then set
`1,w− (Rd) :=

{
z ∈ (Rd)Z− | ‖z‖1,w <∞

}
.
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This weighted sequence space can be characterized as a Bochner space (Hytönen et al.,
2016) by noticing that(

`1,w− (Rd), ‖·‖1,w
)

=
(
L1(Z−,P(Z−), µw;Rd), ‖·‖L1(Z−;Rd)

)
,

where P(Z−) stands for the power set of Z− and µw is the measure defined on (Z−,P(Z−))
generated by the assignments µ({t}) := w−t, for any t ∈ Z−. This equality guarantees that

the pair
(
`1,w− (Rd), ‖·‖1,w

)
forms a separable Banach space.

Let now τ ∈ Z− and define the time delay operator T−τ : (Rd)Z− −→ (Rd)Z− by
T−τ (z)t := zt+τ , for any t ∈ Z−. We call T−τ (z) ∈ (Rd)Z− the τ-shifted version of the
semi-infinite sequence z ∈ (Rd)Z− . It can be proved (Grigoryeva and Ortega, 2019) that

T−τ restricts to a continuous linear operator in
(
`1,w− (Rd), ‖·‖1,w

)
and that the operator

norm of the resulting maps T−τ : `1,w− (Rd) −→ `1,w− (Rd) satisfies

|||T1|||1,w = Lw and |||T−τ |||1,w ≤ L
−τ
w , for all τ ∈ Z−, (1)

provided that the condition Lw <∞ holds, where 1 ≤ Lw ≤ ∞ is the inverse decay ratio
of w defined as

Lw := sup
t∈N

{
wt
wt+1

}
.

We define for future reference the decay ratio Dw of w as

Dw := sup
t∈N

{
wt+1

wt

}
≤ 1.

The other weighted norm of much use in the context of reservoir computing is the (∞, w)-
norm, defined by

‖z‖∞,w := sup
t∈Z−
{‖zt‖2w−t}, for any z ∈ (Rd)Z− .

We then set `∞,w− (Rd) :=
{

z ∈ (Rd)Z− | ‖z‖∞,w <∞
}

. It can also be showed that the pair

(`∞,w− (Rd), ‖·‖∞,w) is a Banach space (Grigoryeva and Ortega, 2018b). Additionally, the

time delay operators also restrict to `∞,w− (Rd) and the corresponding operator norms satisfy
(1).

2.2 Filters and reservoir computing systems

The objects at the core of this paper are input/output maps of the form U :
(
Rd
)Z −→

(Rm)Z. We will restrict to the case in which the maps U are causal and time-invariant (see
Grigoryeva and Ortega, 2019, for definitions and the proofs of the facts that we now state)

and hence it suffices to work with the restrictions U :
(
Rd
)Z− −→ (Rm)Z− . Moreover, causal

and time-invariant filters U uniquely determine functionals of the type HU :
(
Rd
)Z− −→ Rm

by

HU (z) := U(z)0, for any z ∈
(
Rd
)Z−

.
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In this setup, we shall say that U :
(
Rd
)Z− −→ (Rm)Z− is a filter and that HU :

(
Rd
)Z− −→

Rm is its corresponding functional. Conversely, given a functional H :
(
Rd
)Z− −→ Rm,

there is a unique causal and time-invariant filter UH :
(
Rd
)Z− −→ (Rm)Z− determined by

it as

UH(z)t := H(T−t(z)), for any z ∈
(
Rd
)Z−

, t ∈ Z−. (2)

Suppose that given a weighting sequence w, the filter U restricts to a map between
weighted (∞, w)-spaces, that is, U : `∞,w− (Rd) −→ `∞,w− (Rm) and that, additionally, U is
continuous with respect to the norm topology in those spaces. In that case we say that U
has the fading memory property (FMP) with respect to w.

We shall provide an answer to the supervised learning of filters by estimating approxi-
mants built as reservoir filters. Reservoir filters are obtained out of a reservoir system,
that is, a state-space system made out of two recurrent equations of the form:{

xt = F (xt−1, zt),
yt = h(xt),

(3)

for all t ∈ Z− and where F : DN × Dd −→ DN and h : DN −→ Rm are maps, Dd ⊂ Rd,
DN ⊂ RN . The sequences z ∈ (Dd)

Z− and y ∈ (Rm)Z− stand for the input and the output
(target) of the system, respectively, and x ∈ (DN )Z− are the associated reservoir states.

A reservoir system determines a filter when the first equation in (3) satisfies the so-
called echo state property (ESP), that is, when for any z ∈ (Dd)

Z− there exists a
unique x ∈ (DN )Z− such that (3) holds. In that case, we talk about the reservoir filter
UFh : (Dd)

Z− −→ (Rm)Z− associated to the reservoir system (3) that is defined by:

UFh := h ◦ UF , where UF (z) := x,

with z ∈ (Dd)
Z− and x ∈ (DN )Z− linked by the first equation in (3) via the ESP. It is easy

to show that reservoir filters are automatically causal and time-invariant (Grigoryeva and
Ortega, 2018b, Proposition 2.1) and hence determine a reservoir functional HF

h : (Dd)
Z− −→

Rm.

As the following Proposition shows, a sufficient condition guaranteeing that the echo
state property holds is that DN is a closed ball and that the map F is continuous and a
contraction in the first argument.

Proposition 1 Let S > 0, BS = {x ∈ RN : ‖x‖2 ≤ S} and suppose that F : BS×Dd → BS
is continuous. Assume that F is a contraction in the first argument, that is, there exists
0 < r < 1 such that for all x1,x2 ∈ BS, z ∈ Dd it holds that

‖F (x1, z)− F (x2, z)‖2 ≤ r‖x1 − x2‖2. (4)

Then the system (3) has the echo state property and hence its first equation determines a
unique causal and time-invariant filter UF : (Dd)

Z− −→ (BS)Z− as well as a functional
HF : (Dd)

Z− → BS that are continuous (where both (Dd)
Z− and (BS)Z− are equipped with

the product topologies).
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Remark 2 If we have a continuous function F : RN ×Dd → RN which satisfies (4) for all
x1,x2 ∈ RN and ‖F (0, z)‖2 ≤ c for all z ∈ Dd and a certain c > 0, then choosing any
S ≥ c/(1− r) it is easy to see that for all u ∈ BS

‖F (u, z)‖2 ≤ ‖F (u, z)− F (0, z)‖2 + ‖F (0, z)‖2 ≤ r‖u‖2 + c ≤ rS + c ≤ S.

Thus, F (BS ×Dd) ⊂ BS and so the restriction of F to BS ×Dd satisfies the assumptions
of Proposition 1.

2.3 Families of reservoir systems

The following paragraphs introduce various families of reservoir systems that appear in
applications. We shall later on explicitly construct for these specific families the risk bounds
contained in the main results of the paper.

Reservoir systems with linear reservoir maps (LRC)

In this case one associates to each input signal z ∈ (Dd)
Z− an output y ∈ (Rm)Z− via the

two recurrent equations

xt = Axt−1 + Czt + ζ, (5)

yt = h(xt), (6)

with t ∈ Z− and A ∈ MN , C ∈ MN,d, ζ ∈ RN . Systems with linear reservoir maps of the
type (5) have been vastly studied in the literature in numerous contexts and under different
denominations. In the RC setting, systems of the type (5)-(6) with polynomial readout
maps h : DN −→ Rm have been proved in Grigoryeva and Ortega (2018a) to be universal
approximators in the category of fading memory filters either when presented with uniformly
bounded inputs in the deterministic setup (see Corollary 3.4) or with almost surely uniformly
bounded stochastic inputs (see Corollary 4.8). These boundedness hypotheses have been
dropped in Gonon and Ortega (2020b) by considering density with respect to Lp norms,
1 ≤ p <∞, defined using the law of the input data generating process. Sufficient conditions
which ensure the echo state property and the fading memory property for these systems
have been established (see Section 3.1 in Grigoryeva and Ortega, 2019). More specifically,
consider the reservoir map FA,C,ζ : DN ×Dd −→ DN of the system (5)-(6) given by

FA,C,ζ(x, z) = Ax + Cz + ζ.

It is easy to see that FA,C,ζ is a contraction in the first entry whenever the matrix A satisfies
|||A|||2 < 1. For these systems we consider only the case of uniformly bounded input signals:

Case with uniformly bounded inputs. Suppose now |||A|||2 < 1. If the inputs are
uniformly bounded, that is, if Dd = BM for some M > 0 and so z ∈ KM with KM :={
z ∈ (Rd)Z− |‖zt‖2 ≤M for all t ∈ Z−

}
, then the reservoir system (5)-(6) has the echo state

property and defines a unique causal and time-invariant reservoir filter UA,C,ζ : KM −→
(DN )Z− given by UA,C,ζ(z)t :=

∑∞
j=0A

j(Czt−j + ζ), t ∈ Z−. Here DN = BMF
with

MF = (|||C|||2M + ‖ζ‖2)/(1− |||A|||2) (see Remark 2 and part (ii) in the first example in
Section 4.1 of Grigoryeva and Ortega, 2019). In particular, the corresponding functional
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HA,C,ζ : KM → DN satisfies that ‖HA,C,ζ(z)‖2 ≤ MF for all z ∈ KM . Additionally, it can
be shown that the reservoir system (5)-(6) has the fading memory property with respect to
any weighting sequence.

In what follows we consider a particular subfamily of systems (5)-(6), namely reservoir
systems with linear reservoir and linear readout maps, in which case h : DN −→ Rm is given
by applying W ∈Mm,N .

Echo State Networks (ESN)

Echo State Networks (Matthews, 1992; Jaeger and Haas, 2004) are a family of reservoir
systems that exhibit excellent performance in many practical applications and have been
recently proved to have universal approximation properties. More specifically, Grigoryeva
and Ortega (2018b) proved ESNs to be universal in the category of fading memory filters
with semi-infinite uniformly bounded inputs in a deterministic setup, and Gonon and Ortega
(2020b) obtained universality results for ESNs in the stochastic situation with respect to
Lp-type criteria for stochastic discrete-time semi-infinite inputs.

An echo state network of dimension N ∈ N+ with reservoir matrix A ∈MN , input mask
C ∈MN,d, input shift ζ ∈ RN , and readout matrix W ∈Mm,N is the system

xt = σ(Axt−1 + Czt + ζ), (7)

yt = Wxt, (8)

which for each t ∈ Z− transforms the input zt ∈ Dd ⊂ Rd into the reservoir state xt ∈
DN ⊂ RN and, consequently, into the corresponding output yt ∈ Rm. The reservoir map
F σ,A,C,ζ : DN ×Dd −→ DN of the system (7)-(8) is given by

F σ,A,C,ζ(x, z) = σ(Ax + Cz + ζ),

where σ : RN → RN is defined by the componentwise application of a given activation
function σ : R→ R. Throughout, we assume that σ is Lipschitz-continuous with Lipschitz-
constant Lσ. It is straightforward to verify that F σ,A,C,ζ is a contraction in the first entry
whenever Lσ|||A|||2 < 1. The sufficient conditions which ensure the echo state and the fading
memory properties of (7)-(8) have been also carefully studied in the literature (see Buehner
and Young, 2006; Yildiz et al., 2012; Grigoryeva and Ortega, 2018b, for details) and depend
both on the type of the activation function σ : R→ R and on the type of the input presented
to the network. We consider the following two cases:

Case with arbitrary input signals and bounded activation function. In this situa-
tion, Dd is arbitrary and so generic input signals z ∈ (Dd)

Z− are considered, but we assume
that the range of the activation function σ is bounded and contained in [σmin, σmax] with
σmin < σmax ∈ R. Then, by Proposition 1, the condition Lσ|||A|||2 < 1 suffices to ensure that
the system (7)-(8) has the echo state property and hence defines a unique causal and time-
invariant filter Uσ,A,C,ζ : (Dd)

Z− −→ (DN )Z− as well as a functional Hσ,A,C,ζ : (Dd)
Z− →

DN that are additionally continuous with respect to the product topologies on the spaces
(Dd)

Z− and (DN )Z− . Here DN = BMF
with MF =

√
N max(|σmin|, |σmax|) and in particu-

lar, we obviously have that ‖Hσ,A,C,ζ(z)‖2 ≤MF .
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Case with uniformly bounded inputs. Suppose that Lσ|||A|||2 < 1 and Dd = BM for
some M > 0 and so the inputs are uniformly bounded, that is, z ∈ KM with KM :={
z ∈ (Rd)Z− |‖zt‖2 ≤M for all t ∈ Z−

}
. In this case the reservoir system (7)-(8) has the

echo state property and defines a unique causal and time-invariant reservoir filter Uσ,A,C,ζ :
KM −→ (DN )Z− as well as a functional Hσ,A,C,ζ : KM → DN , where DN = BM1

F
with

M1
F := [Lσ(|||C|||2M + ‖ζ‖2) +

√
Nσ(0)]/(1− Lσ|||A|||2) (see Proposition 1 and Remark 2 or

part (ii) in the first example in Section 4.1 of Grigoryeva and Ortega, 2019). Additionally,
the fading memory property holds with respect to any weighting sequence. Note that these
results hold true even though the range of the activation function is not assumed to be
bounded and ‖Hσ,A,C,ζ(z)‖2 ≤MF with MF = M1

F when the activation function σ has an
unbounded range and with MF = min(M1

F ,
√
N max (|σmin|, |σmax|)), otherwise.

State-Affine Systems (SAS)

The so-called homogeneous state-affine systems have been first introduced in the systems
theory literature and were shown to exhibit universality properties in the discrete-time
setting for compact times (see Fliess and Normand-Cyrot, 1980; Sontag, 1979a,b). A non-
homogeneous version of these systems was introduced in Grigoryeva and Ortega (2018a),
where they were proved to be universal approximants in the category of fading memory
filters for the non-compact discrete-time deterministic setup. Trigonometric state-affine
systems were later on studied in a stochastic setup in Gonon and Ortega (2020b), where
their universality for stochastic discrete-time semi-infinite inputs with respect to Lp-criteria
was established. State-affine systems serve as an excellent example of reservoir systems
with easy-to-train linear readouts and even though little is known about their empirical
performance in learning tasks, we find it important to provide explicit risk bounds for this
family. In the rest of the paper we reserve the name State-Affine Systems (SAS) for the
non-homogeneous version if not stated otherwise and leave the trigonometric family for
future work.

The following notation for multivariate polynomials will be used: for any multi-index
α ∈ Nd and any z ∈ Rd, we write zα := zα1

1 · · · z
αd
d . Furthermore, the space MN,M [z],

N,M ∈ N+, of polynomials in the variable z ∈ Rd with matrix coefficients in MN,M is the
set of elements p of the form

p(z) =
∑
α∈Vp

zαAα, z ∈ Rd,

where Vp ⊂ Nd is a finite subset and the elements Aα ∈MN,M are matrix coefficients. The
degree deg(p) of the polynomial p is defined as

deg(p) = max
α∈Vp

{‖α‖1} , where ‖α‖1 := α1 + · · ·+ αd.

We also define the following norm on MN,M [z]:

|||p||| = max
α∈Vp

|||Aα|||2. (9)

The non-homogeneous state-affine system (SAS) of dimension N ∈ N+ associated to two
given polynomials p ∈ MN,N [z] and q ∈ MN,1[z] with matrix and vector coefficients, re-
spectively, is the reservoir system determined by the following state-space transformation

10
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of each input signal z ∈ (Dd)
Z− into the output signal y ∈ (Rm)Z− ,

xt = p(zt)xt−1 + q(zt), (10)

yt = Wxt, (11)

for t ∈ Z−, with W ∈ Mm,N the readout map. The reservoir map F p,q : DN ×Dd −→ DN

of the system (10)-(11) is given by

F p,q(x, z) = p(z)x + q(z). (12)

Additionally, we define

Mp := sup
z∈Dd

|||p(z)|||2,

Mq := sup
z∈Dd

|||q(z)|||2.

First, we notice that for regular SAS defined by nontrivial polynomials, the set Dd needs
to be bounded in order for Mp and Mq to be finite. It is easy to see that F in (12) is a
contraction in the first entry with constant Mp whenever Mp < 1, which is a condition that
we will assume holds true together with Mq <∞ in the next paragraph.

Case with uniformly bounded input signals. Let Dd = BM for some M > 0 so that
we consider inputs z ∈ KM with KM :=

{
z ∈ (Rd)Z− |‖zt‖2 ≤M for all t ∈ Z−

}
. In that

case the system (10)-(11) has the echo state property and determines (see Proposition 1 and
Remark 2 or part (ii) in the third example in Section 4.1 of Grigoryeva and Ortega, 2019)
a unique reservoir filter Up,q : KM −→ (DN )Z− as well as a functional Hp,q : KM → DN ,
where DN = BMF

with MF = Mq/(1−Mp). In addition, the fading memory property holds
with respect to any weighting sequence. Moreover, in this case the filter can be explicitly
written as (Up,q(z))t =

∑∞
j=0(

∏j−1
k=0 p(zt−k))q(zt−j), t ∈ Z−, and ‖Hp,q(z)‖2 ≤ MF , for all

z ∈ KM .

3. The learning problem for reservoir computing systems

In this paper we work in the setting of supervised learning in a probabilistic framework
and our goal is to provide performance estimates for reservoir systems from the statistical
learning theory perspective. With that in mind, we start this section by stating the general
learning problem for systems with stochastic input and target signals. We then introduce
three alternative assumptions on the weak dependence of input and output processes which
will be assumed later on in the paper and provide examples of important time series models
that satisfy the conditions under consideration. We define the statistical risk and its empir-
ical analogs for reservoir functionals and motivate the need for generalization error bounds.
More specifically, on the one hand the in-class generalization error (risk) can be used to
bound the estimation error of a class. On the other hand, whenever the learner follows
the empirical risk minimization (ERM) strategy to select the reservoir computing system
within the RC hypothesis class based on minimization of the empirical (training) error, gen-
eralization error bounds can be used to prove the weak universal risk-consistency of ERM
for reservoir systems. If the inputs are i.i.d. (which is a particular case of our setup), this
definition is essentially equivalent to saying that the hypothesis class of reservoir functionals
is a (weak) uniform Glivenko-Cantelli class (see for example Mukherjee et al., 2006).

11
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3.1 General setup of the learning procedure

Input and target stochastic processes. We fix a probability space (Ω,A,P) on which
all random variables are defined. The triple consists of the sample space Ω, which is the
set of possible outcomes, the σ-algebra A (a set of subsets of Ω (events)), and a probability
measure P : A −→ [0, 1]. The input and target signals are modeled by discrete-time
stochastic processes Z = (Zt)t∈Z− and Y = (Yt)t∈Z− taking values in Dd ⊂ Rd and Rm,
respectively. Moreover, we write Z(ω) = (Zt(ω))t∈Z− and Y(ω) = (Yt(ω))t∈Z− for each
outcome ω ∈ Ω to denote the realizations or sample paths of Z and Y, respectively. Since Z
can be seen as a random sequence in Dd ⊂ Rd, we write interchangeably Z : Z−×Ω −→ Dd

and Z : Ω −→ (Dd)
Z− . The latter is necessarily measurable with respect to the Borel

σ-algebra induced by the product topology in (Dd)
Z− . The same applies to the analogous

assignments involving Y.

Hypothesis class H, loss functions, statistical, and empirical risk. Let F be
the class of all measurable functionals H : (Dd)

Z− −→ Rm, Dd ⊂ Rd, that is F :=
{H : (Dd)

Z− −→ Rm | H is measurable}. Consider a smaller hypothesis class H of admis-
sible functionals H ⊂ F . For a fixed loss, that is, a measurable function1 L : Rm×Rm → R
and for any functional H ∈ F we define the statistical risk (sometimes just referred to as
risk) or generalization error associated with H as

R(H) := E[L(H(Z),Y0)], (13)

where by definition the expectation is taken with respect to the joint law of (Z,Y). The
ultimate goal of the learning procedure consists in determining the Bayes functional
H∗F ∈ F that exhibits the minimal statistical risk (Bayes risk) in the class of all measurable
functionals, which we denote as

R∗F := R(H∗F ) = inf
H∈F

R(H). (14)

Even though this task is generally infeasible, one may hope to solve it for the best-in-class
functional H∗H ∈ H with the minimal associated in-class statistical risk (Bayes in-class
risk), which is assumed achievable, and which we denote as

R∗H := R(H∗H) = inf
H∈H

R(H).

The standard learning program is then based on the following error decomposition. For any
H ∈ H we can write that

R(H)−R∗F = (R(H)−R∗H) + (R∗H −R∗F ),

where the first term is called the estimation error and the second one is the approxima-
tion error. In this paper we focus on upper bounds of the estimation component, while the
same problem for the approximation error will be treated in the forthcoming work, namely

1. It is customary in the literature to consider nonnegative loss functions. This automatically guarantees
that the expectation in (13) is well-defined, although it is not necessarily finite. In this paper, for the
sake of mathematical convenience, we allow for general real-valued loss functions but carefully address
technical questions where relevant.

12
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Gonon, Grigoryeva, and Ortega (2020). We emphasize that since the universal approxima-
tion properties of reservoir systems have been established in numerous situations (see the
introduction and Section 2.3) the approximation error can be made arbitrarily small by
choosing an appropriate hypothesis class H.

The distribution of (Z,Y) is generally unknown, and hence computing the risks (13) or
(14) is in practice infeasible. This implies, in particular, that the estimation error cannot
be explicitly evaluated. Therefore, the usual procedure is in this case to use an empirical
counterpart for (13) which can be computed using a training dataset.

Suppose that a training sample for both the input and the target discrete-time stochastic
processes is available up to some n ∈ N+ steps into the past, namely (Z−i,Y−i)i∈{0,...,n−1}.
For each time step i ∈ {0, . . . , n − 1} we define the truncated training sample for the
input stochastic process Z as

Z−n+1
−i := (. . . ,0,0,Z−n+1, . . . ,Z−i−1,Z−i). (15)

In this time series context the training error or the empirical risk analog R̂n(H) of (13)
is given by

R̂n(H) =
1

n

n−1∑
i=0

L(H(Z−n+1
−i ),Y−i) =

1

n

n−1∑
i=0

L(UH(Z−n+1
0 )−i,Y−i), (16)

where UH denotes the filter associated to the functional H as introduced in (2). In what
follows we will also make use of what we call its idealized empirical risk version defined
as

R̂∞n (H) =
1

n

n−1∑
i=0

L(H(Z−∞−i ),Y−i) =
1

n

n−1∑
i=0

L(UH(Z−∞0 )−i,Y−i), (17)

which makes use of a larger training sample containing all the past values of the input
process Z.

Remark 3 The results of this paper are also valid if one replaces the zero elements in the
truncated training sample (15) by an arbitrary sequence (deterministic, random, or depen-
dent on the training sample). More specifically, consider an arbitrary function I : (Dd)

Z− →
(Dd)

Z− that we use to extend the input training sample, for each i ∈ {0, . . . , n− 1}, as

Z̃−n+1
−i = (. . . , (I(Z−n+1

0 ))−1, (I(Z−n+1
0 ))0,Z−n+1, . . . ,Z−i−1,Z−i), (18)

and use this sample to define the empirical risk as in (16). Later on in Proposition 5, we
show that the difference between the empirical risk (16) and its idealized counterpart (17)
can be made arbitrarily small under various assumptions that we shall consistently invoke.
The proof of that result remains valid for the more general definition of empirical risk using
(18). Moreover, that result is used to justify why, in the rest of the paper, it will be sufficient
to work almost exclusively with the idealized empirical risk (17).

Risk bounds and risk-consistency. As we have already discussed, the learner is inter-
ested in obtaining upper bounds of the estimation error (R(H)−R∗H). In many cases, these
bounds can be constructed by bounding the statistical risk (generalization error) or

∆n := sup
H∈H
{R(H)− R̂n(H)}.
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An upper bound of ∆n (or its version with the absolute value of the difference) allows to
quantify the worst in-class error between the statistical risk and its empirical analog. We
emphasize that bounding this worst in-class error gives guarantees of performance for any
learning algorithm which builds upon the idea of using the empirical risk to pick a concrete
Ĥn out of the hypothesis class H based on available training data.

A standard example of such learning rules is the so-called empirical risk minimiza-
tion (ERM) principle for which generalization error bounds or bounds for ∆n can be used
in a straightforward manner to bound the estimation error and, moreover, to establish some
important consistency properties.

More specifically, in the ERM procedure the learner chooses the desired functional Ĥn

out of the hypothesis class H of the admissible ones using (16) (the empirical version of
(13)), that is,

Ĥn = arg min
H∈H

R̂n(H), (19)

which is well defined provided that such a minimizer exists and is unique; otherwise one
may define Ĥn to be an ε-minimizer of the empirical risk (see Alon et al., 1997, for details).
We say that the ERM is strongly consistent within the hypothesis class H if the gener-
alization error R(Ĥn) (or statistical risk) and the training error R̂n(Ĥn) (or empirical risk)
as defined in (13) and in (16), respectively, for a sequence of functionals (Ĥn)n∈N picked by
ERM from H using random samples of increasing length, both converge almost surely to
the Bayes in-class risk R∗H in (14), that is

lim
n→∞

R(Ĥn) = R∗H a.s. (20)

and
lim
n→∞

R̂n(Ĥn) = R∗H a.s. (21)

When no assumptions on the distribution of (Z,Y) are used to prove (20) and (21), then this
means that (20) and (21) hold for all distributions and one talks about universal strong
risk-consistency of the ERM principle over the class H. This is essentially the case in
our setting, since we are working in a semi-agnostic setup and only invoke assumptions on
the temporal dependence (but not on the marginal distributions of the input and target
stochastic processes (Z,Y)).

A standard approach to proving the strong risk-consistency of the ERM procedure for
the hypothesis class of functionals H consists in finding a sequence (ηn)n∈N converging to
zero for which the inequality

∆n := sup
H∈H

|R̂n(H)−R(H)| ≤ ηn,

holds P-a.s. To see that this implies (20) and (21) one notes the following inequalities:

R(Ĥn)−R∗H =
(
R(Ĥn)− R̂n(Ĥn)

)
+
(
R̂n(Ĥn)− R̂n(H∗H)

)
+
(
R̂n(H∗H)−R∗H

)
≤ 2ηn +

(
R̂n(Ĥn)− R̂n(H∗H)

)
≤ 2ηn, (22)

where the last inequality follows from the fact that, by definition (19), Ĥn is a minimizer
of the empirical risk R̂n.
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In the context of reservoir systems, we shall be working with a weak version of con-
sistency which imposes all the convergence conditions to hold only in probability. In what
follows we devise bounds for ∆n that allow us to establish the risk-consistency of the ERM
procedure for reservoir systems. Additionally, we formulate high-probability bounds for ∆n

which provide us with convergence rates for the ERM-based estimation of RC systems that,
to our knowledge, are not yet available in the literature. It is well known that in some cases
(for small classes with zero Bayes risk, see for example Bartlett et al., 2006) the argument
that we just discussed results in unreasonably slow rates. We defer the discussion of possible
refinements of the rates obtained in this paper to future projects.

3.2 Learning procedure for reservoir systems

The following paragraphs describe the implementation of the empirical risk minimization
procedure in the setting of reservoir computing. We spell out the assumptions needed to
derive the results in the next sections, construct the hypothesis classes, and set up the ERM
learning strategy for the different families of reservoir systems discussed in Section 2.3.

Input and target stochastic processes. For both the input Z and the target Y pro-
cesses we assume a causal Bernoulli shift structure (see for instance Dedecker et al., 2007;
Alquier and Wintenberger, 2012). More precisely, for I = y, z and qI ∈ N+ suppose that the
so-called causal functional GI : (RqI )Z− → DoI (with oz = d and Doy = Rm) is measurable
and that ξ = ((ξyt , ξ

z
t ))t∈Z− are independent and identically distributed Rqy × Rqz -valued

random variables. We assume then that the input Z and target processes Y are Bernoulli
shifts, that is, they are the (strictly) stationary processes determined by

Zt = Gz(. . . , ξzt−1, ξ
z
t ), t ∈ Z−,

Yt = Gy(. . . , ξyt−1, ξ
y
t ), t ∈ Z−,

(23)

with E[‖Z0‖2] <∞, E[‖Y0‖2] <∞.

Many processes derived from stationary innovation sequences have causal Bernoulli shift
structure including some that are of non-mixing type (see for instance the introduction in
Dedecker et al., 2007). In order to obtain risk bounds for reservoir functionals as learning
models, we need to additionally impose assumptions on the weak dependency of the pro-
cesses (23). More specifically, each of the three main results provided in the next section is
formulated under a different weak dependence assumption which we now spell out in detail.

We start with the strongest assumption of the three but which will allow us to obtain
the strongest conclusions in terms of risk bounds for reservoir systems.

Assumption 1 For I = y, z the functional GI is LI-Lipschitz continuous when restricted

to (`1,w
I

− (RqI ), ‖·‖1,wI ) for some strictly decreasing weighting sequence wI : N −→ (0, 1] with

finite mean, that is,
∑

j∈N jw
I
j <∞. More specifically, there exists LI > 0 such that for all

uI = (uIt )t∈Z− ∈ `
1,wI

− (RqI ) and vI = (vIt )t∈Z− ∈ `
1,wI

− (RqI ) it holds that

‖GI(uI)−GI(vI)‖2 ≤ LI
∥∥uI − vI∥∥

1,wI
. (24)

Additionally, let the innovations in (23) satisfy E[‖ξI0‖2] <∞ for I = y, z.
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The following example shows that one can easily construct causal Bernoulli shifts using
reservoir functionals.

Example 1 (Causal Bernoulli shifts out of reservoir functionals) Let I ∈ {y, z} and
consider a reservoir system of the type (3) (see also the examples in Section 2.3) determined
by the Lipschitz-continuous reservoir map F : DN ×Dd −→ DN with Dd ⊂ Rd, DN ⊂ RN .
Assume, additionally, that F is a r-contraction on the first entry and denote by L > 0
the Lipschitz constant of F with respect to the second entry. Let w : N −→ (0, 1] be a
strictly decreasing weighting sequence with finite mean, that is

∑
j∈N jwj <∞, and a finite

associated inverse decay ratio Lw (see Section 2.1). Let now Vd ⊂ (Dd)
Z− ∩ `w,1− (Rd) be a

time-invariant set and consider inputs z ∈ Vd. Suppose that the reservoir system (3) has
a solution (x0, z0) ∈ (DN )Z− × Vd, that is, x0

t = F (x0
t−1, z

0
t ), for all t ∈ Z−. Then, by

Theorem 4.1 and Remark 4.4 in Grigoryeva and Ortega (2019), if

rLw < 1,

then the reservoir system associated to F with inputs in Vd has the echo state property
and hence determines a unique continuous, causal, and time-invariant reservoir filter UF :
(Vd, ‖·‖1,w) −→ ((DN )Z− , ‖·‖1,w) which is Lipschitz-continuous with constant

LUF :=
L

1− rLw
.

It hence also has the fading memory property with respect to w. The Lipschitz continuity
of the filter UF implies that the associated functional HUF is also Lipschitz-continuous with
the same Lipschitz constant ((see Proposition 3.7 in Grigoryeva and Ortega, 2019). Taking
GI := HUF , it is easy to see that (24) indeed holds with LI = LUF .

The next assumption is weaker and it is satisfied by many discrete-time stochastic
processes. The results that we obtain in the following sections invoking this type of weak
dependence will be also less strong than under Assumption 1.

Assumption 2 For I = y, z denote by (ξ̃It )t∈Z− an independent copy of (ξIt )t∈Z− and define

θI(τ) := E[‖GI(. . . , ξI−1, ξ
I
0)−GI(. . . , ξ̃I−τ−1, ξ̃

I
−τ , ξ

I
−τ+1, . . . , ξ

I
0)‖2], τ ∈ N+. (25)

Assume that for I = y, z there exist λI ∈ (0, 1) and CI > 0 such that it holds that

θI(τ) ≤ CIλτI , for all τ ∈ N+. (26)

Remark 4 Note that whenever the weighting sequence wI in Assumption 1 can be chosen
to be a geometric one, that is, wIj = λjI , j ∈ N with λI ∈ (0, 1), then Assumption 2 is also
automatically satisfied. The argument proving this appears for instance in the proof of part
(i) of Corollary 8.

The following example illustrates that for many widely used time series models this as-
sumption does hold. In particular, we show that vector autoregressive VARMA processes
with time-varying coefficients under mild conditions and, in particular, GARCH processes
satisfy Assumption 2.
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Example 2 (VARMA process with time-varying coefficients) Suppose Z = (Zt)t∈Z−
is a vector autoregressive process of first order with time-varying coefficients, which we write
as

Zt = AtZt−1 + ηt, t ∈ Z−, (27)

where (ηt)t∈Z− ∼ IID with ηt ∈ Rd and E[‖η0‖2] < ∞, and where (At)t∈Z− ∼ IID with
At ∈ Md and E[|||A0|||2] < 1. Under these hypotheses (see for instance Brandt, 1986;
Bougerol and Picard, 1992, Theorem 1.1) there exists a unique stationary process satisfying
(23) and (27) and E[‖Z0‖2] <∞. Iterating (27) yields

Z0 = η0 +A0η−1 + · · ·+A0 · · ·A−τ+1Z−τ ,

and so by definition, using the independence of (At)t∈Z− and stationarity, one gets

θz(τ) ≤ 2E[|||A0 · · ·A−τ+1|||2]E[‖Z−τ‖2] ≤ 2E[|||A0|||2]τE[‖Z0‖2].

We now define Cz := 2E[‖Z0‖2], λz := E[|||A0|||2] and immediately obtain that (26) indeed
holds, that is, for all τ ∈ N+

θz(τ) ≤ Czλτz ,

as required.

We now consider a concrete example of an autoregressive process of the type (27) which is
extensively used to describe and eventually to forecast the volatility of financial time series,
namely the generalized autoregressive conditional heterostedastic (GARCH) family (Engle,
1982; Bollerslev, 1986; Francq and Zakoian, 2010).

Example 3 (GARCH process) Consider a GARCH(1,1) model given by the following
equations:

rt = σtεt, εt ∼ IID(0, 1), t ∈ Z− (28)

σ2
t = ω + αr2

t−1 + βσ2
t−1, t ∈ Z− (29)

with parameters that satisfy α, β, ω ≥ 0, α + β < 1, which guarantees the second order
stationarity of the process (rt)t∈Z− and the positivity of the conditional variances (σ2

t )t∈Z− .
We now check if the GARCH(1,1) process in (28)-(29) falls in the framework (27) introduced
in the previous example. Let d = 2 and define

Zt :=

(
r2
t

σ2
t

)
, ηt :=

(
ωε2

t

ω

)
, At :=

(
αε2

t βε2
t

α β

)
, t ∈ Z−.

It is easy to verify that with this choice of matrix At, t ∈ Z−, one has E[|||A0|||2] = E[αε2
0 +

β] = α + β < 1, by the stationarity condition. Additionally, E[‖η0‖2] = ωE[
√
ε4

0 + 1] ≤
ωE[ε2

0 + 1] = 2ω < ∞. Hence, the GARCH(1,1) model in (28)-(29) can be represented as
(27) and automatically satisfies Assumption 2.

Assumption 3 Assume that for I = y, z there exist αI ∈ (0,∞) and CI > 0 such that,

θI(τ) ≤ CIτ−αI , for all τ ∈ N+, (30)

with θI as in (25).
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Example 4 (ARFIMA process) Let d ∈ (−1
2 ,

1
2) and suppose that Z = (Zt)t∈Z− is an

autoregressive fractionally integrated moving average ARFIMA (0, d, 0) process (see, for
instance, Hosking, 1981; Beran, 1994, for details). The process Z admits an infinite moving
average (MA(∞)) representation

Zt =
∞∑
k=0

φkεt−k, t ∈ Z−,

with innovations (εt)t∈Z− ∼ IID(0, 1) and where the coefficients are given by φk = Γ(k+d)

Γ(k+1)Γ(d)

so that Γ(d)k1−dφk → 1, as k →∞. Using this asymptotic behavior and the independence
of the innovations one obtains

θz(τ) ≤ 2E

[∣∣∣∣∣
∞∑
k=τ

φkε−k

∣∣∣∣∣
]
≤ 2

( ∞∑
k=τ

φ2
k

)1/2

≤ 2 sup
l∈N+

{l1−dφl}

( ∞∑
k=τ

k2d−2

)1/2

.

Comparing the sum to the integral
∫∞
τ x2d−2dx = 1

1−2d
τ2d−1, it is easy to see that (30) is

satisfied with αz = 1
2 − d > 0.

Hypothesis classes of reservoir maps FRC and reservoir functionals HRC . The
next step in order to set up the learning program in the context of reservoir systems is to
construct the associated hypothesis classes. These classes need to be chosen beforehand
and consist of candidate functionals associated to causal time-invariant reservoir filters of
the type discussed in Sections 2.2 and 2.3.

For fixed N, d ∈ N+, consider a class FRC of reservoir maps F : DN × Dd −→ DN ,
0 ∈ DN ⊂ RN , Dd ⊂ Rd that we assume is (a subset of and) separable in the space of
bounded continuous functions when equipped with the supremum norm and, additionally,
satisfies the following assumptions:

Assumption 4 There exist r ∈ (0, 1) and LR > 0 such that for each F ∈ FRC :

(i) for any z ∈ Dd, F (·, z) is an r-contraction,

(ii) for any x ∈ DN , F (x, ·) is LR-Lipschitz.

Assumption 5 For any F ∈ FRC the (first equation in the) system (3) has the echo state
property. If HF is the functional associated to it, we assume that HF is measurable with
respect to the Borel σ-algebra associated to the product topology on its domain.

Notice that if the state space DN is a closed ball, then Assumption 4 implies Assumption 5
by Proposition 1. This implication holds for any reservoir system with bounded reservoir
maps, an example of which are the elements of the echo state networks family with bounded
activation functions σ in Section 2.3.

Assumption 6 There exists MF > 0 such that

‖HF (z)‖2 ≤MF , for all z ∈ (Dd)
Z− and for each F ∈ FRC .
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This assumption automatically holds for many families of reservoir systems. We care-
fully addressed this question in Section 2.3, where we discussed various families and input
types for which the reservoir functionals are indeed bounded. For example, Assumption 6 is
satisfied by construction in the case of bounded inputs for all the families in Section 2.3. In
the presence of generic unbounded inputs, Assumption 6 obviously holds for echo state net-
works (ESN) with bounded activation function. In addition, the condition in Assumption 6
appears in many applications. For instance, in the recent paper by Verzelli et al. (2019) it is
shown that using a so-called self-normalizing activation function allows one to achieve high
performances in standard benchmark tasks. It is not difficult to see that self-normalizing
functions yield ‖HF (z)‖2 ≤ 1.

Our assumptions also guarantee that various suprema over the classes HRC and FRC
that will appear in the sequel are measurable random variables. There are very general
conditions that guarantee such a fact holds (see Dudley, 2014, Corollary 5.25) but here we
simply assume that HF for all F ∈ FRC is bounded (see Assumption 6) and that FRC is
separable in the space of bounded continuous functions when equipped with the supremum
norm. This condition together with the continuity assumptions imposed below on the loss
function allows us to conclude the measurability of the suprema over HRC and FRC (see
Lemma 17 in Appendix 5.1 for the details).

Once we have spelled out Assumptions 4-6 that define the class FRC , we proceed to
construct the corresponding hypothesis class of reservoir functionals HRC . Since in most
of the cases considered in the literature the readouts h in (3) are either polynomial (as in
the case of reservoir systems with linear reservoir maps and polynomial readouts) or linear
(as in the case of reservoir systems with linear reservoir maps and linear readouts, ESNs,
and SAS in Section 2.3), we shall treat the case of generic Lipschitz readouts and the linear
case separately:

(i) Reservoir functionals hypothesis class HRC with Lipschitz readouts. We con-
sider a set FO of readout maps h : DN → Rm that are Lipschitz-continuous with
Lipschitz constant Lh > 0. We assume that for all the members of the class it holds
that Lh ≤ Lh and ‖h(0)‖2 ≤ Lh,0, for some fixed Lh, Lh,0 > 0, and that the class con-
tains the zero function and is separable in the space of bounded continuous functions
when equipped with the supremum norm. In this situation, we define the hypothesis
class HRC of reservoir functionals as

HRC := {H : (Dd)
Z− → Rm |H(z) = h(HF (z)), h ∈ FO, F ∈ FRC}. (31)

(ii) Reservoir functionals hypothesis class HRC with linear readouts. Most of the
examples of reservoir systems which we discussed in Section 2.3 are constructed using
linear readout maps, which are known to be easier to train and popular in many
practical applications. We hence treat this case separately. Let now the readouts
h be given by maps of the type h(x) = Wx + a, x ∈ DN , with W ∈ Mm,N and
a ∈ Rm. We assume that for all the members of the class it holds that |||W |||2 ≤ Lh
and ‖h(0)‖2 = ‖a‖2 ≤ Lh,0, for some fixed Lh, Lh,0 > 0. In this case, such a class of
readouts is automatically separable in the space of bounded continuous functions when
equipped with the supremum norm. In this situation we hence define the hypothesis
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class HRC of reservoir functionals as

HRC := {H : (Dd)
Z− → Rm |H(z) = WHF (z) + a,W ∈Mm,N ,a ∈ Rm,

|||W |||2 ≤ Lh, ‖a‖2 ≤ Lh,0, F ∈ F
RC}. (32)

Loss function. The choice of loss function is often key to the success in quantifying risk
bounds for learning models. In this paper we work with distance-based loss functions of the
form

L(x,y) =
m∑
i=1

fi(xi − yi), (33)

for x,y ∈ Rm, where for each i ∈ {1, . . . ,m}, the so-called representing functions fi : R −→
R are all Lipschitz-continuous with the same Lipschitz constant LL/

√
m and satisfy fi(0) =

0. The assumption of Lipschitz-continuity on the loss L in the case in which its codomain
is restricted to R+ guarantees that it is also a Nemitski loss of order p = 1 (see Christmann
and Steinwart, 2008, for detailed discussion of Nemitski losses and their associated risks).
Notice that our assumptions imply in particular that

E[|L(0,Y0)|] <∞ (34)

and
|L(x,y)− L(x,y)| ≤ LL(‖x− x‖2 + ‖y − y‖2), x,x,y,y ∈ Rm. (35)

Additionally, we notice that since we restrict to reservoir systems satisfying the echo
state property and the hypothesis class HRC contains their associated reservoir functionals,
for H = h ◦HF the idealized empirical risk (17) can be written as

R̂∞n (H) =
1

n

n−1∑
i=0

L(h(HF (Z−∞−i )),Y−i) =
1

n

n−1∑
i=0

L(UFh (Z−∞0 )−i,Y−i) =
1

n

n−1∑
i=0

L(h(X−i),Y−i),

where X is the solution of the reservoir system

Xt = F (Xt−1,Zt), t ∈ Z−.

Risk consistency and risk bounds of reservoir systems. As discussed in Section 3.1
we are interested in generalization error bounds or, in particular, in deriving uniform bounds
for ∆n = supH∈HRC{R(H)−R̂n(H)}. In order to proceed, we first decompose ∆n and write

∆n = sup
H∈HRC

{R(H)− R̂n(H)} ≤ sup
H∈HRC

{R(H)− R̂n(H)− R̂∞n (H) + R̂∞n (H)}

≤ sup
H∈HRC

{
R̂∞n (H)− R̂n(H)

}
+ sup
H∈HRC

{
R(H)− R̂∞n (H)

}
≤ sup

H∈HRC

∣∣∣R̂n(H)− R̂∞n (H)
∣∣∣+ sup

H∈HRC

∣∣∣R(H)− R̂∞n (H)
∣∣∣ .
(36)

This means that one can find upper bounds for both ∆n and ∆n = supH∈HRC |R̂n(H) −
R(H)| by controlling the two summands in the right hand side of the last inequality.
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Coming back to the example of the ERM procedure that we discussed in Section 3.1,
the previous expression can also be used to deduce the weak (essentially universal) risk-
consistency of the ERM for the class HRC . More specifically, in line with classical results
due to Vapnik (1991), from the inequalities (22) it follows that in order to establish the
weak (essentially universal) risk-consistency of ERM for reservoir functionals one simply
needs to show that for any ε, δ > 0 there exists n0 ∈ N+ such that for all n ≥ n0 it holds
that

P
(
∆n > ε

)
= P

(
sup

H∈HRC

∣∣∣R(H)− R̂n(H)
∣∣∣ > ε

)
≤ δ.

Whenever the inputs are i.i.d. (which is a particular case of our setup), this definition is
essentially equivalent to saying thatHRC is a (weak) uniform Glivenko-Cantelli class (see for
example Mukherjee et al., 2006). From expression (36) it also follows then that in order to
establish the (weak) risk-consistency, it suffices to show the two-sided uniform convergence
over the class HRC of reservoir functionals, first, of the truncated versions of empirical risk
to their idealized counterparts and, second, of these idealized versions of the empirical risk
to the generalization error (or statistical risk). More explicitly, we shall separately show
that for any ε1, δ1 > 0 and ε2, δ2 > 0 there exist n1 ∈ N+ and n2 ∈ N+ such that for all
n ≥ n1 and n ≥ n2, respectively, it holds that

P

(
sup

H∈HRC

∣∣∣R̂n(H)− R̂∞n (H)
∣∣∣ > ε1

)
≤ δ1 (37)

and

P

(
sup

H∈HRC

∣∣∣R(H)− R̂∞n (H)
∣∣∣ > ε2

)
≤ δ2. (38)

One needs to start by showing that the suprema of both these differences over the class HRC
are indeed random variables. This fact has been proved in Lemma 17 in the Appendix 5.1.
Next, we need to show that the difference between the idealized and the truncated empirical
risks can be made as small as one wants by choosing an appropriate length n ∈ N+ of the
training sample. This fact is contained in the following result.

Proposition 5 Consider the hypothesis class HRC of reservoir functionals defined in (31).
Define

C0 :=
2rLLLhMF

1− r
. (39)

Then, for any n ∈ N+

sup
H∈HRC

∣∣∣R̂n(H)− R̂∞n (H)
∣∣∣ ≤ C0(1− rn)

n

holds P-a.s.

This proposition implies that (37) indeed holds. In order to complete the uniform
convergence argument, we also need to show that (38) holds. Even though in order to prove
the (essentially universal) risk-consistency of the ERM procedure for reservoir systems it
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is sufficient to show that the upper bounds of ∆n (and ∆n) can be made as small as one
wants with n → ∞, for hyper-parameter selection in practical applications the availability
of non-asymptotic bounds is also of much importance. We see in the following section that
depending on the particular weak dependence assumption imposed (Assumptions 1-3) we
will be able to use more or less strong concentration inequalities that yield finite-sample
size bounds with different rates of convergence.

4. Main Results

In this section we provide high-probability risk bounds for reservoir computing systems. The
main ingredients of the probability bounds are the expected values of Γn := supH∈HRC{R(H)−
R̂∞n (H)} and of Γn := supH∈HRC |R(H) − R̂∞n (H)|, which are the maximum difference of
the idealized training and the generalization errors over the class HRC and the maximum of
the absolute value of this difference, respectively. Since the random variables in the training
sample of the input and the output discrete-time processes are not independent and identi-
cally distributed, bounding the expected values of Γn and Γn is a challenging task. In the
first subsection we show that this problem may be circumvented using the following idea:
one may compute the empirical risk by partitioning the training sample into blocks of appro-
priate length and then exploiting the weak dependence of the input and output stochastic
processes spelled out in Assumptions 1-3. We first make use of this “block-partitioning”
idea in order to derive the bounds for the expected values of the random variables Γn and
Γn in the setting of each of those three assumptions. These bounds are expressed in terms
of the so-called Rademacher complexities of the reservoir hypothesis classes and the weak
dependence coefficients of the input and the target stochastic processes. We provide details
concerning the complexity bounds for particular families in the second subsection. In the
third subsection we then use the fact that the random fluctuations of Γn and Γn around
their expected values can be controlled using concentration inequalities, which, as we show
further, can be done either with the help of the Markov inequality under the weaker As-
sumptions 2-3, or using stronger exponential concentration inequalities (Propositions 19,
20) under the stronger Assumption 1. This approach yields explicit expressions for non-
asymptotic high-probability bounds for ∆n and hence for ∆n, which we spell out in the
third subsection. Finally, showing that these upper bounds can be made as small as one
wants as n→∞ proves the desired (weak and essentially universal) risk-consistency of the
ERM-selected reservoir systems used as learning models. All the proofs of the main results
given in this section are provided in the appendices.

4.1 Bounding the expected value

The main ingredient that needs to be introduced in order to bound the expected value of
both Γn and Γn is a complexity measure for the hypothesis classes of reservoir functionals
HRC . Many complexity measures have been discussed in the literature in recent years (see
for example Vapnik and Chervonenkis, 1968; Ledoux and Talagrand, 1991; Bartlett and
Mendelson, 2003; Ben-David and Shalev-Shwartz, 2014; Rakhlin et al., 2010). In this paper
we use the so-called (multivariate) Rademacher-type complexity associated to a given
HRC , which we denote as Rk(HRC). More explicitly, let k ∈ N+ and consider ε0, . . . , εk−1
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independent and identically distributed Rademacher random variables and let Z̃(j), j =
0, . . . , k−1, denote independent copies of Z (ghost processes), which are also independent
of ε0, . . . , εk−1. The Rademacher-type complexityRk(HRC) over k ghost processes is defined
as

Rk(HRC) =
1

k
E

 sup
H∈HRC

∥∥∥∥∥∥
k−1∑
j=0

εjH(Z̃(j))

∥∥∥∥∥∥
2

 . (40)

Note that Rk(HRC) is not an empirical Rademacher complexity and that the expectation
is taken with respect to all randomness. In this paper we do not use the standard approach
consisting in bounding the theoretical Rademacher complexity using its empirical analogue
(conditional on (Z̃(j))j∈{0,...,k−1}), since in the context of reservoir systems the ghost pro-

cesses Z̃(j) have no empirical interpretation due to the fact that it is usually only a single
trajectory and not i.i.d. samples of input data which are available to the learner.

The following results provide upper bounds for the expected and the expected absolute
value of the largest deviation of the statistical risk from its idealized empirical analogue
within the hypothesis class of reservoir functionals HRC . The two upper bounds (41) and
(42) in the next proposition share the same first three terms, up to a factor 2 due to the
absolute value. The first term is related to the weak dependence coefficients of the input
and target signals, θz and θy, respectively. The second term involves the Rademacher-type
complexity (40) of the hypothesis class of reservoir functionals HRC . Finally, the third
term is always of order τ

n , where τ is the block length, which needs to be carefully chosen
depending on the rates of decay of θz and θy, as we show later in Corollary 8. The upper

bound for the expected absolute value (42) contains an additional term of order
√
τ√
n

.

Proposition 6 Let HRC be the hypothesis class of reservoir functionals associated to the
reservoir maps in the class FRC as given in (31) or (32). Let both the input process Z and
the target process Y have a causal Bernoulli shift structure as in (23) and take values in
(Dd)

Z− and (Rm)Z−, respectively. Then, there exist B > 0, M > 0, and {aτ}τ∈N+ with
aτ ∈ (0,∞), such that for any τ, n ∈ N+ with τ < n it holds that

E [Γn] = E

[
sup

H∈HRC

{
R(H)− R̂∞n (H)

}]
≤ kτ

n
aτ +

Bkτ

n
Rk(HRC) +

2M(n− kτ)

n
, (41)

where k = bn/τc and

E
[
Γn
]

= E

[
sup

H∈HRC

∣∣∣R(H)− R̂∞n (H)
∣∣∣] ≤ kτ

n
aτ +

2Bkτ

n
Rk(HRC) +

2M(n− kτ)

n

+
4τ
√
k

n
LLE

[
‖Y0‖22

]1/2
. (42)

In these expressions, the Rademacher complexity Rk(HRC) of the hypothesis class HRC of
reservoir functionals is defined as in (40), the constants and the sequence {aτ}τ∈N+ can be
explicitly expressed as

B = 2
√
mLL, (43)
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M = LLLhMF + E[|L(0,Y0)|] + Lh,0LL, (44)

aτ = LL(2rτMFLh + θy(τ) + LRLh

τ−1∑
l=0

rlθz(τ − l)), (45)

where for I = y, z the weak dependence coefficients θI for τ ∈ N+ are defined as in (25),
namely,

θI(τ) = E[‖GI(. . . , ξI−1, ξ
I
0)−GI(. . . , ξI−τ−1, ξ

I
−τ , ξ

I
−τ+1, . . . , ξ

I
0)‖2], (46)

with (ξ
I
t )t∈Z− an independent copy of (ξIt )t∈Z−.

We now explore the conditions required for the upper bounds in (41) and (42) to be finite
and exhibit a certain decay as a function of τ and n. Notice that (up to a factor 2) the
right-hand sides of the two inequalities are equal up to the last summand in (42) and hence
one needs to impose that E

[
‖Y0‖22

]
< ∞. Additionally, in order to better understand the

behavior of both bounds as a function of τ and n one needs to study two more ingredients,
namely the sequence {aτ}τ∈N+ and the Rademacher complexity Rk(HRC). The behavior of
the sequence {aτ}τ∈N+ is exclusively determined by the properties of the input and target
processes, while the Rademacher complexity of HRC is fully characterized by the type of
reservoir and readout maps of the given family of reservoir systems. In the following remark
we argue that under either the stronger Assumption 1 or the weaker Assumptions 2-3 the
sequence {aτ}τ∈N+ converges to zero.

Remark 7 A condition guaranteeing that the sequence {aτ}τ∈N+ in (45) converges to zero
is, for instance, that

∞∑
τ=1

θI(τ) <∞, I = y, z. (47)

To verify this, observe that this condition also implies that

∞∑
τ=1

τ−1∑
l=0

rlθz(τ − l) =

∞∑
l=0

rl
∞∑

τ=l+1

θz(τ − l) =
1

1− r

∞∑
τ=1

θz(τ) <∞,

where we used that r ∈ (0, 1). This proves that
∑∞

τ=1 aτ < ∞, which necessarily implies
that limτ→∞ aτ = 0 as required.

It is easy to verify that under Assumption 1 one has that

∞∑
τ=1

θI(τ) ≤
∞∑
τ=1

2LIE[‖ξI0‖2]
∞∑
j=τ

wIj = 2LIE[‖ξI0‖2]
∞∑
j=1

j∑
τ=1

wIj

= 2LIE[‖ξI0‖2]

∞∑
j=1

jwIj <∞,

which immediately implies that condition (47) is satisfied. Additionally, notice that under
Assumption 2, condition (47) is also automatically satisfied. However, under Assump-
tion 3 condition (47) may not be satisfied, but a straightforward argument (see the proof
of part (iii) of Corollary 8) shows that limτ→∞ aτ = 0.
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We just argued that under any of the three assumptions 1-3, the convergence to zero
of the sequence {aτ}τ∈N+ is guaranteed, which implies that if we establish the finiteness
and a certain decay of the Rademacher complexity term we shall have proved that the
upper bounds given in (41) and (42) are finite and tend to 0 as n → ∞. The rate of
convergence of these bounds is however affected by the particular dependence assumption
adopted. We address this important issue in the following corollary where we assume that
the Rademacher complexity is finite and exhibits a certain decay and we prove decay rates
for the bounds in (41) and (42) that are valid under the different assumptions 1-3. The
boundedness of the Rademacher complexities is studied in detail later on in Section 4.2 for
the different hypothesis classes of reservoir systems that we introduced in Section 2.3

Corollary 8 Assume that there exists CRC > 0 such that for all k ∈ N+ the Rademacher-
type complexity Rk(HRC) of the class HRC of reservoir functionals satisfies

Rk(HRC) ≤ CRC√
k
. (48)

Consider the following three cases that correspond to Assumptions 1, 2, and 3, respectively:

(i) Suppose that Assumption 1 holds and that, additionally, for I = y, z the weighting se-

quences wI : N −→ (0, 1] are such that the associated decay ratios DwI := supi∈N

{
wIi+1

wIi

}
<

1. Let λmax := max(r,Dwy , Dwz). Then, there exist C1, C2, C3, C3,abs > 0 such that
for all n ∈ N+ satisfying log(n) < n log(λ−1

max) it holds that

E

[
sup

H∈HRC

{
R(H)− R̂∞n (H)

}]
≤ C1

n
+
C2log(n)

n
+
C3

√
log(n)√
n

(49)

and

E

[
sup

H∈HRC

∣∣∣R(H)− R̂∞n (H)
∣∣∣] ≤ C1

n
+
C2log(n)

n
+
C3,abs

√
log(n)√
n

. (50)

The constants can be explicitly chosen as

C1 =
2MFLLLh + LLCy

λmax
, C2 =

2M

log(λ−1
max)

+
LLLRLhCz

λmax log(λ−1
max)

, (51)

C3 =
2
√
mLLCRC√
log(λ−1

max)
, C3,abs = 2C3 +

4LLE
[
‖Y0‖22

]1/2√
log(λ−1

max)
, (52)

where M is as in (44) and CI =
2LIE[‖ξI0‖2]

1−DwI
for I = y, z.

(ii) Suppose that Assumption 2 holds and let λmax := max(r, λy, λz) with λy, λz as in
(26). Then there exist C1, C2, C3, C3,abs > 0 such that for all n ∈ N+ satisfying
log(n) < n log(λ−1

max) the bounds in (49) and (50) hold. The constants can be explicitly
chosen as in (51)-(52) with CI as in (26).
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(iii) Suppose that Assumption 3 holds and denote α := min(αy, αz). Then there exist
C1, C2, C1,abs > 0 such that for all n ∈ N+ it holds that

E

[
sup

H∈HRC

{
R(H)− R̂∞n (H)

}]
≤ C1n

− 1
2+α−1 + C2n

− 2
2+α−1

and

E

[
sup

H∈HRC

∣∣∣R(H)− R̂∞n (H)
∣∣∣] ≤ C1,absn

− 1
2+α−1 + C2n

− 2
2+α−1 .

The constants can be explicitly chosen as

C1 = LL(2MFLhr
−γα + LRLhCzCα + Cy) +BCRC , C2 = 2M, (53)

C1,abs = C1 + 4LLE
[
‖Y0‖22

]1/2
+BCRC , (54)

with M , B as in (43)-(44) and

γα = max
τ∈N+

{
log(τ)αz
log(r−1)

− τ

4

}
, (55)

Cα = max(2αz , r−γα)(1−
√
r)−1, (56)

and CI , αI , for I = y, z as in (30).

4.2 Rademacher complexity of reservoir systems

In this section we show that for the most important hypothesis classes of reservoir systems,
the Rademacher complexity tends to 0 as k →∞ at the rates required in (48) of Corollary 8.
More specifically, in the next propositions we will provide upper bounds for the Rademacher
complexities of the most popular reservoir families that we spelled out in Section 2.3. For
these propositions we assume that the corresponding parameter set Θ is separable in the
respective (Euclidean) space. This is required in order to ensure that the supremum of
random variables appearing in the definition of the Rademacher complexity (40) is again a
random variable. For instance, if Θ is an open set, then it is separable.

Reservoir systems with linear reservoir map (LRC) and linear readout

We now provide a bound for the Rademacher complexity of classes of reservoir functionals
associated to linear reservoir maps and readouts. We recall that in this case we always
work with uniformly bounded inputs Z (see Section 2.3) by some constant M > 0, that is,
Dd = BM and so the random variable Z takes values in the set

KM :=
{

z ∈ (Rd)Z− |‖zt‖2 ≤M for all t ∈ Z−
}
. (57)

Proposition 9 Let N, d ∈ N+ and let Θ ⊂MN ×MN,d × RN . Define the classes of linear
reservoir maps as

FRC := {FA,C,ζ | (A,C, ζ) ∈ Θ}
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and let HRC be a class of reservoir functionals of the type defined in (32), associated to
reservoir systems with linear reservoir maps and readouts. Additionally, define

λAmax := sup
(A,C,ζ)∈Θ

|||A|||2, (58)

λCmax := sup
(A,C,ζ)∈Θ

|||C|||2, (59)

λζmax := sup
(A,C,ζ)∈Θ

‖ζ‖2. (60)

If for the class FRC it holds that

0 < λAmax < 1, λCmax <∞, λζmax <∞, (61)

then Assumptions 4-6 are satisfied and the Rademacher complexity of the associated class
of reservoir functionals satisfies

Rk(HRC) ≤ CLRC√
k
, (62)

for any k ∈ N+, where

CLRC =
Lh

1− λAmax

(
λCmaxE

[
‖Z0‖22

]1/2
+ λζmax

)
+ Lh,0, (63)

and with Z the input process.

Remark 10 Due to the uniform boundedness of the inputs, the constant E
[
‖Z0‖22

]1/2
in

(63) is bounded by the value M that defines the set KM in which the inputs take values.

Nevertheless, E
[
‖Z0‖22

]1/2
can obviously be much smaller than M .

Echo State Networks (ESN)

The following proposition provides an estimate for the Rademacher complexity of hypothesis
classes constructed using echo state networks. We recall that in this case we either work
with arbitrary inputs and a bounded activation function σ or with a possibly unbounded
activation function σ and uniformly bounded inputs Z (see Section 2.3) by some constant
M > 0, that is, Dd = BM .

Proposition 11 Let N, d ∈ N+, let Θ ⊂ MN ×MN,d × RN be a subset, and let FRC be a
family of echo state reservoir systems defined as

FRC := {F σ,A,C,ζ | (A,C, ζ) ∈ Θ}

and let HRC be a class of reservoir functionals of the type defined in (32), associated to
reservoir systems with linear reservoir maps and readouts. Suppose that the class FRC is
such that for any F σ,A,C,ζ ∈ FRC one necessarily has that −F σ,A,C,ζ(−·, ·) ∈ FRC .2 Define

λAmax :=Lσ

N∑
l=1

sup
(A,C,ζ)∈Θ

‖Al,·‖∞,

2. This is satisfied for example if σ is odd and (A,C, ζ) ∈ Θ⇔ (A,−C,−ζ) ∈ Θ.
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λCmax :=Lσ

N∑
l=1

sup
(A,C,ζ)∈Θ

‖Cl,·‖2,

λζmax :=Lσ

N∑
l=1

sup
(A,C,ζ)∈Θ

|ζl|.

If for class FRC it holds that

0 < λAmax < 1, λCmax <∞, λζmax <∞,

then Assumptions 4-6 are satisfied and the Rademacher complexity of the associated class
of reservoir functionals satisfies

Rk(HRC) ≤ CESN√
k
, for any k ∈ N+, (64)

where

CESN =
Lh

1− λAmax

(
λCmaxE

[
‖Z0‖22

]1/2
+ λζmax

)
+ Lh,0, (65)

and with Z the input process.

Remark 12 Notice that by (62)-(63) and by (64)-(65) the Rademacher complexities of
the hypothesis classes formed by reservoir systems with linear reservoir maps and linear
readouts or by echo state networks are finite whenever the second moment of the input
process is finite, which is not directly implied by any of the assumptions 1-3 and hence
needs to be separately assumed.

State Affine Systems (SAS)

In the following proposition we provide an estimate for the Rademacher complexity of
hypothesis classes constructed using state affine systems. In this case we also work with
uniformly bounded inputs (see Section 2.3) in a set of the type KM as in (57) with M = 1.

Proposition 13 Let Θ ⊂ MN,N [z] ×MN,1[z], and define the class of SAS reservoir maps
as

FRC := {F p,q | (p, q) ∈ Θ}.

Assume that there is a finite set Imax ⊂ Nd such that for any P (z) =
∑
α∈Nd Aαzα with

P = p or P = q, (p, q) ∈ Θ one has Aα = 0 for α /∈ Imax and define |Imax| := card(Imax),

λSAS := sup
(p,q)∈Θ

|||p|||,

cSAS := sup
(p,q)∈Θ

|||q|||,
(66)

where the norm |||·||| was introduced in (9). Let HRC be the hypothesis class of reservoir
systems with linear readouts associated to FRC as in (32). Then, if for the class FRC it
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holds that λSAS < 1/|Imax| and cSAS <∞, then Assumptions 4-6 are satisfied and for any
k ∈ N+ it holds that

Rk(HRC) ≤ CSAS√
k

with

CSAS = Lh
cSAS |Imax|

1− |Imax|λSAS
+ Lh,0. (67)

4.3 High-probability risk bounds for reservoir systems

We now use the previous results and the three assumptions 1-3 in conjunction with different
concentration inequalities to produce three families of high-probability bounds for ∆n :=
supH∈H |R̂n(H)−R(H)| of different strength for reservoir systems, which prove in passing
the (weak) universal risk-consistency of ERM for reservoir functionals. High-probability
finite-sample generalization RC bounds of this type were not available in the literature
previously.

Theorem 14 Let HRC be a hypothesis class of reservoir functionals of the type specified in
(32) associated to a class FRC of reservoir maps that satisfies Assumptions 4-6 and assume
that the Rademacher complexity of HRC satisfies (48). Suppose that both the input Z and
the target Y processes have a causal Bernoulli shift structure as in (23) and that they take
values in (Rd)Z− and (Rm)Z−, d,m ∈ N+, respectively.

(i) Suppose that Assumption 1 is satisfied and that, additionally, for I = y, z the strictly
decreasing weighting sequences wI : N −→ (0, 1] are such that the associated decay

ratios DwI := supi∈N
wIi+1

wIi
< 1. Let λmax := max(r,Dwy , Dwz).

(a) Assume that the innovations are bounded, that is, there exists M > 0 such that
‖ξt‖2 ≤ M for all t ∈ Z−. Then there exist constants C0, C1, C2, C3, Cbd > 0
such that for all n ∈ N+ satisfying log(n) < n log(λ−1

max) and for all δ ∈ (0, 1),
the following bound holds

P

(
sup

H∈HRC
|R̂n(H)−R(H)| ≤ (1− rn)C0 + C1

n
+
C2log(n)

n
+
C3

√
log(n)√
n

+
Cbd

√
log(4

δ )
√

2n

)
≥ 1− δ,

(68)

where the constant C0 is explicitly given in (39), C1, C2 are given in (51), C3 in
(52), and Cbd in (93).

(b) Assume that for Φ(x) = xp, p > 1 or Φ(x) = exp(x)− 1 the innovations possess
Φ2-moments, that is, for any u > 0, E[Φ(u‖ξ0‖2)2] < ∞. Then there exist con-
stants C0, C1, C2, C3 > 0 such that for all n ∈ N+ satisfying log(n) < n log(λ−1

max)
and for all δ ∈ (0, 1) it holds that

P

(
sup

H∈HRC
|R̂n(H)−R(H)| ≤ (1− rn)C0 + C1

n
+
C2log(n)

n
+
C3

√
log(n)√
n

+BΦ(n, δ)

)
≥ 1− δ,

(69)
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where BΦ(n, δ) is given in (112). The constants are explicitly given: C0 in (39),
C1, C2 are given in (51), and C3 in (52).

(ii) Suppose that Assumption 2 is satisfied and let λmax := max(r, λy, λz) with λy, λz as
in (26). Then there exist constants C0, C1, C2, C3,abs > 0 such that for all n ∈ N+

satisfying log(n) < n log(λ−1
max) and for all δ ∈ (0, 1) it holds that

P

(
sup

H∈HRC
|R̂n(H)−R(H)| ≤ (1− rn)C0

n
+

2

δ

(
C1

n
+
C2log(n)

n
+
C3,abs

√
log(n)√
n

))
≥ 1− δ.

(70)
The constants are explicitly given: C0 in (39), C1, C2 are given in (51), and C3,abs in
(52) with CI as in (26).

(iii) Suppose that Assumption 3 is satisfied. Denote α = min(αy, αz) with αy, αz as in (30).
Then there exist constants C0, C1,abs, C2 > 0 such that for all n ∈ N+, δ ∈ (0, 1),

P

(
sup

H∈HRC
|R̂n(H)−R(H)| ≤ (1− rn)C0

n
+

2

δ

(
C1,absn

− 1
2+α−1 + C2n

− 2
2+α−1

))
≥ 1−δ.

(71)
The constants are explicitly given: C0 in (39), C1,abs is given in (54) and C2 in (53)
together with (55)-(56).

In order to obtain explicit high-probability risk bounds for particular families of reservoir
systems, one can use the bounds that we obtained for the Rademacher complexities of
various families in Section 4.2. For example, let FRC be a family of state affine systems
that satisfies the assumptions of Proposition 13; in that case one takes the value CRC
appearing in various constants above (for example in C3 given in (52)) as CRC = CSAS
with CSAS given in (67). The same applies to other families: for echo state networks one
takes CRC = CESN with CESN given in (65). For the family of reservoir systems with linear
reservoir map one takes CRC = CLRC , with CLRC given in (63).

Remark 15 The result in part (ii) requires Assumption 2 which, as we saw in Remark
4, is implied by Assumption 1 with geometric weighting sequences, that is, wzs = λsz and
wys = λsy, for some λz, λy ∈ (0, 1). Therefore, both (68) and (70) provide bounds in this
case. We also emphasize that the result in part (iii) allows the treatment of long-memory
processes as inputs (see, for instance Example 4).

4.4 High-probability risk bounds for randomly generated reservoir systems

We now show that the results in Theorem 14 can be reformulated for echo state networks
whose parameters A, C, and ζ have been randomly generated. This statement is a theoreti-
cal justification of the good empirical properties of this standard modus operandi in reservoir
computing. Even though results of this type could be formulated for all the reservoir fam-
ilies introduced in Section 2.3 and all the different settings considered in Theorem 14, we
restrict our study in the next proposition to echo state networks and part (ii).
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Proposition 16 (Random reservoirs) Let A,C, ζ be independent random variables with
values in MN , MN,d, and in RN , respectively. Consider now echo state networks that have
those random values as parameters and whose activation function σ is odd, that is, consider
the random class of reservoir maps defined as

FRC := {F σ,ρAA,ρCC,ρζζ | (ρA, ρC , ρζ) ∈ (− a

λA
,
a

λA
)× [−c, c]× [−s, s]}

for some a ∈ (0, 1), c, s > 0 and with

λA =Lσ

(
N∑
l=1

‖Al,·‖∞

)
.

Suppose also that the input process Z and the target process Y are independent of the param-
eter random variables A,C, ζ and that Assumption 2 is satisfied. Let λmax := max(r, λy, λz)
with λy, λz as in (26). Then there exist constants C0, C1, C2, C3,abs > 0 such that for all
n ∈ N+ satisfying log(n) < n log(λ−1

max) and for all δ ∈ (0, 1) it holds that

P

(
sup

H∈HRC

|R̂n(H)−R(H)| ≤ (1− rn)C0

n
+

2

δ

(
C1

n
+
C2log(n)

n
+
C3,abs

√
log(n)√
n

))
≥ 1−δ,

(72)
where HRC is the hypothesis class of reservoir functionals associated to FRC and with linear
readouts as in (32). The constants are explicitly given. More specifically, C0 is given in
(39), C1, C2 are given in (51), C3,abs in (52) with CI as in (26). Additionally, the constant
CRC appearing in (52) is given by

CRC =
Lh

1− a
(E[λC]E[‖Z0‖22]1/2 + E[λζ ]) + Lh,0, (73)

where

λC = cLσ

(
N∑
l=1

‖Cl,·‖2

)
, λζ = sLσ

(
N∑
l=1

‖ζl‖2

)
.

5. Appendices

These appendices contain preliminary results and the proofs of all the main results of the
paper.

5.1 Preliminary results

The following Lemma shows that the supremum appearing for instance in (68) is indeed a
random variable. More precisely, supH∈HRC |R̂n(H)−R(H)| is a measurable mapping from
(Ω,A) to R equipped with its Borel sigma-algebra. An analogous argument can be used in
the case of the other suprema, for instance the supremum in (40), considered in the paper.

Lemma 17 Let HRC be the reservoir hypothesis class introduced in (31) or in (32) and let
R and R̂n be the statistical and empirical risk introduced in (13) and (16), respectively. Then,

sup
H∈HRC

|R̂n(H)−R(H)|

is a random variable.
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Proof For any H ∈ HRC set ∆(H) := |R̂n(H)−R(H)|. Then, for any H, H̄ ∈ HRC

∆(H)−∆(H̄) ≤ |∆(H)−∆(H̄)| ≤ |R̂n(H)−R(H)− R̂n(H̄) +R(H̄)|

≤ |R̂n(H)− R̂n(H̄)|+ |R(H)−R(H̄)|

≤ LL
n

n−1∑
i=0

‖H(Z−n+1
−i )− H̄(Z−n+1

−i )‖2 + LLE[‖H(Z)− H̄(Z)‖2]

≤ 2LL sup
z∈(Dd)Z−

‖H(z)− H̄(z)‖2, (74)

where we used the (reverse) triangle inequality and the Lipschitz property (35) of the loss
function. Further, by using the definition (31) of HRC , Assumption 6 on the boundedness of
the functionals associated to reservoir maps, and again the triangle inequality, one obtains

sup
H∈HRC

∆(H) = sup
H∈HRC

|R̂n(H)−R(H)| ≤ ∆(0) + 4LL[LhMF + Lh,0]

and so (34) yields that supH∈HRC |R̂n(H)−R(H)| is finite, P-a.s.

It remains to prove the measurability. The separability assumption imposed on FRC
guarantees the existence of a countable subset {Fj}j∈N+ ⊂ FRC which is dense with respect
to the supremum norm. Let also {hk}k∈N+ ⊂ FO be a countable dense subset of readouts
that by hypothesis exists. This can be used to construct a countable dense subset of HRC .
Indeed, for any H ∈ HRC , H = h(HF ), one may choose indices (jl, kl)l∈N+ such that
‖Fjl−F‖∞ → 0 and ‖hkl−h‖∞ → 0 as l→∞. Consequently, using the triangle inequality
and an argument as in part (iii) of Theorem 3.1 in Grigoryeva and Ortega (2018b), one
obtains for any z ∈ (Dd)

Z− that

‖H(z)− hkl(H
Fjl (z))‖2 ≤ ‖h− hkl‖∞ + Lh‖HF (z)−HFjl (z)‖2

≤ ‖h− hkl‖∞ +
1

1− r
‖Fjl − F‖∞.

Combining this with (74) and setting Hl = hkl(H
Fjl ) one obtains that

lim
l→∞
|∆(H)−∆(Hl)| ≤ lim

l→∞
2LL

(
‖h− hkl‖∞ +

1

1− r
‖Fjl − F‖∞

)
= 0.

In particular this shows that for any H ∈ HRC , ∆(H) ≤ supj,k∈N+ ∆(hk(H
Fj )). Taking the

supremum over H ∈ HRC thus shows that

sup
H∈HRC

|R̂n(H)−R(H)| = sup
j,k∈N+

∆(hk(H
Fj ))

is measurable, as it is the supremum of a countable collection of random variables.
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5.2 Proof of Proposition 1

Consider the map

F : (BS)Z− × (Dd)
Z− −→ (BS)Z−

(x, z) 7−→ (F(x, z))t := F (xt−1, zt), t ∈ Z−,

and endow (Dd)
Z− and (BS)Z− with the relative topologies induced by the product topolo-

gies in (Rd)Z− and (RN )Z− , respectively. Notice that F can be written as

F =
∏
t∈Z−

Ft with Ft := F ◦ pt ◦
(
T1 × id(Dd)Z−

)
: (BS)Z− × (Dd)

Z− −→ BS ,

where pt yields the canonical projection of any sequence onto its t-th component. It is easy
to see that the maps pt and T1 are continuous with respect to the product topologies and
hence F is a Cartesian product of continuous functions, which is always continuous in the
product topology.

We now recall that, by the compactness of BS , we have that (BS)Z− ⊂ `∞,w− (RN ) and
that by Corollary 2.7 in Grigoryeva and Ortega (2018b), the product topology on (BS)Z−

coincides with the norm topology induced by `∞,w− (RN ), for any weighting sequence w, that
we choose in the sequel satisfying the inequality rLw < 1.

We now show that F is a contraction in the first entry with constant rLw < 1. Indeed,
for any x1,x2 ∈ (BS)Z− and any z ∈ (Dd)

Z− , we have∥∥F(x1, z)−F(x2, z)
∥∥
∞,w = sup

t∈Z−

{∥∥F (x1
t−1, zt)− F (x2

t−1, zt)
∥∥

2
w−t

}
≤ sup

t∈Z−

{∥∥x1
t−1 − x2

t−1

∥∥
2
rw−t

}
,

where we used that F is a contraction in the first entry. Now,

sup
t∈Z−

{∥∥x1
t−1 − x2

t−1

∥∥
2
rw−t

}
= r sup

t∈Z−

{∥∥x1
t−1 − x2

t−1

∥∥
2
w−(t−1)

w−t
w−(t−1)

}
≤ rLw

∥∥x1 − x2
∥∥
∞,w ,

which shows that F is a family of contractions with constant rLw < 1 that is continuously
parametrized by the elements in (Dd)

Z− . In view of these facts and given that the product
topology in (Dd)

Z− ⊂ (Rd)Z− is metrizable (see Munkres, 2014, Theorem 20.5) and that
(BS)Z− ⊂ (RN )Z− is compact by Tychonoff’s Theorem (see Munkres, 2014, Theorem 37.3)
in the product topology and hence complete, Theorem 6.4.1 in Sternberg (2010) implies the
existence of a unique fixed point of F(·, z) for each z ∈ (Dd)

Z− , which establishes the ESP.
Moreover, that result also shows the continuity of the associated filter UF : (Dd)

Z− −→
((BS)Z− , ‖·‖∞,w). �

5.3 Proof of Proposition 5

In order to proceed with the proof of this proposition, we first need the following lemma.

Lemma 18 For any F ∈ FRC and any z, z ∈ (Dd)
Z− the following holds for all i ∈ N+:

‖HF (z)−HF (z)‖2 ≤ 2riMF + LR

i−1∑
j=0

rj‖z−j − z−j‖2. (75)

33



Gonon, Grigoryeva, and Ortega

Proof of Lemma 18. Let z, z ∈ (Dd)
Z− and denote by x the solution to (3) and by x

the solution to (3) with z replaced by z. Then the triangle inequality and Assumption 4 on
F ∈ FRC yield

‖HF (z)−HF (z)‖2 = ‖x0 − x0‖2
≤ ‖F (x−1, z0)− F (x−1, z0)‖2 + ‖F (x−1, z0)− F (x−1, z0)‖2
≤ LR‖z0 − z0‖2 + r‖x−1 − x−1‖2.

By iterating this estimate one obtains

‖HF (z)−HF (z)‖2 ≤ ri‖x−i − x−i‖2 + LR

i−1∑
j=0

rj‖z−j − z−j‖2,

from which the claim follows by Assumption 6. H
We now proceed to prove Proposition 5. Let Z̃ := Z−n+1

0 and write for any H ∈ HRC

|R̂n(H)− R̂∞n (H)| =

∣∣∣∣∣ 1n
n−1∑
i=0

L(H(Z−n+1
−i ),Y−i)− L(H(Z−∞−i ),Y−i)

∣∣∣∣∣
≤ 1

n

n−1∑
i=0

LL‖h(HF (Z̃−∞−i ))− h(HF (Z−∞−i ))‖2

≤ 1

n

n−1∑
i=0

LLLh(2rn−iMF + LR

n−i−1∑
j=0

rj‖Z̃−j−i − Z−j−i‖2)

=
2LLLhMF

n

n−1∑
i=0

rn−i

=
1− rn

n

2rLLLhMF
1− r

=
1− rn

n
C0.

In these derivations, the first inequality follows from the triangle inequality and the Lips-
chitz continuity of the loss function (35), the second one is a consequence of the Lipschitz
continuity of the readout map and of (75) in Lemma 18, which finally yield the claim with
the choice of constant C0 in (39). �

5.4 Proof of Proposition 6

In order to simplify the notation, for any i ∈ N we define an (Rd)Z− × Rm-valued ran-
dom variable V−i as V−i := (Z−∞−i ,Y−i) and denote its associated loss by LH(V−i) :=
L(H(Z−∞−i ),Y−i). We start by using the assumptions on the Lipschitz-continuity of both
the loss function (35) and of the reservoir readout map and hence for any i ∈ N and
H ∈ HRC write
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|LH(V−i)| ≤ |LH(V−i)− L(0,Y−i)|+ |L(0,Y−i)|
≤ LL‖H(Z−∞−i )‖2 + |L(0,Y−i)|
≤ LL‖h(HF (Z−∞−i ))− h(0)‖2 + LL‖h(0)‖2 + |L(0,Y−i)|
≤ LLLhMF + |L(0,Y−i)|+ Lh,0LL.

We continue by decomposing n = kτ+(n−kτ) with k = bn
τ
c. For the last (n−kτ) elements

one estimates

E

[
sup

H∈HRC

n−1∑
i=kτ

{E [LH(V−i)]− LH(V−i)}

]
≤ 2(n− kτ)(LLLhMF + E [|L(0,Y0)|] + Lh,0LL)

= 2M(n− kτ)

with M as in (44). Subsequently using the definitions of the generalization error (13) and
the idealized empirical risk (17) one obtains

E

[
sup

H∈HRC

{
R(H)− R̂∞n (H)

}]

= E

[
sup

H∈HRC
E[L(H(Z),Y0)]−

{
1

n

n−1∑
i=0

L(H(Z−∞−i ),Y−i)

}]

= E

[
sup

H∈HRC

1

n

n−1∑
i=0

{E[LH(V−i)]− LH(V−i)}

]

≤ 1

n
E

[
sup

H∈HRC

kτ−1∑
i=0

{E[LH(V−i)]− LH(V−i)}

]
+

2M(n− kτ)

n

=
1

n
E

 sup
H∈HRC

k−1∑
j=0

τ−1∑
i=0

{
E
[
LH(V−(τj+i))

]
− LH(V−(τj+i))

}+
2M(n− kτ)

n

≤ τ

n
E

 sup
H∈HRC

k−1∑
j=0

{E[LH(V−τj)]− LH(V−τj)}

+
2M(n− kτ)

n
. (76)

In order to obtain a bound for the first summand in the last expression, we introduce

ghost samples and use tools that hinge on the independence between them. Let ξ
(j)

=

(ξ
y,(j)
t , ξ

z,(j)
t )t∈Z− , j = 0, . . . , k− 1 denote independent copies of ξ. Next, for I = y, z define

ξI,(j) by setting ξ
I,(j)
i = ξIi for i = −τ(j + 1) + 1, . . . , 0 and ξ

I,(j)
i = ξ

I,(j)
i for i ≤ −τ(j + 1).

Additionally, let Z
(j)
t := Gz(. . . , ξ

z,(j)
t−1 , ξ

z,(j)
t ) and Y

(j)
t := Gy(. . . , ξ

y,(j)
t−1 , ξ

y,(j)
t ) for t ∈ Z− and

define the (Rd)Z− ×Rm-valued random variables U(j) := (Z
−∞,(j)
−τj ,Y

(j)
−τj), j = 0, . . . , k − 1.
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Then one has

Z
(j)
t−τj = Gz(. . . , ξ

z,(j)
t−τj−1, ξ

z,(j)
t−τj)

=

{
Gz(. . . , ξ

z,(j)
−τj−τ , ξ

z
−τj−τ+1, . . . , ξ

z
t−τj), t = −τ + 1, . . . , 0,

Gz(. . . , ξ
z,(j)
t−τj−1, ξ

z,(j)
t−τj), t ≤ −τ

and so, for any j = 0, . . . , k − 1, the random variable U(j) is measurable with respect to

the σ-algebra generated by (ξ−τj+t)t=−τ+1,...,0 and ξ
(j)

. The assumption of independence
between the ghost samples implies that U(0), . . . ,U(k−1) are also independent and identically
distributed with the same distribution as V0 = (Z,Y0) introduced above. Hence one can
rewrite the first summand of the right hand side of the last inequality in (76) as

E

 sup
H∈HRC

k−1∑
j=0

{E[LH(V−τj)]− LH(V−τj)}


≤ E

 sup
H∈HRC

k−1∑
j=0

{
E[LH(V−τj)]− LH(U(j))

}+ E

 sup
H∈HRC

k−1∑
j=0

{
LH(U(j))− LH(V−τj)

}
= E

 sup
H∈HRC

k−1∑
j=0

{
E[LH(U(j))]− LH(U(j))

}+ E

 sup
H∈HRC

k−1∑
j=0

{
LH(U(j))− LH(V−τj)

} .
(77)

We now analyze these two terms separately. For the second term, we first note that for any
H ∈ HRC it holds that∣∣∣LH(V−τj)− LH(U(j))

∣∣∣ =
∣∣∣L(H(Z−∞−τj),Y−τj)− L(H(Z

−∞,(j)
−τj ),Y

(j)
−τj)

∣∣∣
≤ LL

(
‖H(Z−∞−τj)−H(Z

−∞,(j)
−τj )‖2 + ‖Y−τj −Y

(j)
−τj‖2

)
. (78)

Next, we use the Lipschitz-continuity of the readout maps (see (31)) together with the
estimate (75) in Lemma 18 and compute

sup
H∈HRC

‖H(Z−∞−τj)−H(Z
−∞,(j)
−τj )‖2 ≤ 2rτMFLh + LRLh

τ−1∑
l=0

rl‖Z−l−τj − Z
(j)
−l−τj‖2. (79)

Combining (79) with (78) we now estimate the second term in (77) by

E

 sup
H∈HRC

k−1∑
j=0

{
LH(U(j))− LH(V−τj)

}
≤ LL

k−1∑
j=0

(
2rτMFLh + E[‖Y−τj −Y

(j)
−τj‖2] + LRLh

τ−1∑
l=0

rlE[‖Z−l−τj − Z
(j)
−l−τj‖2]

)
= kaτ (80)
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with aτ as in (45).
In order to estimate the first term in (77), one relies on techniques which are common

in the case of independent and identically distributed random variables. Here we start by
introducing real Rademacher random variables ε0, . . . , εk−1 (see for example Hytönen et al.,
2016, Definition 3.2.9), which are independent of all the other random variables considered
so far. In what follows we need to use the structure for the loss function introduced in (33)
as well as the other hypotheses on it that we spelled out in Section 3.2. The fact that the
loss functions are a sum of representing functions fi : R −→ R, implies that their evaluation
on the hypothesis class HRC can be expressed through the evaluation of each representing
function on the sets HRCi , i ∈ {1, . . . ,m}, defined by

HRCi := {H̃ : (Dd)
Z− × Rm → R | H̃(x,y) := (H(x))i − yi, H ∈ HRC}.

Using independence and a symmetrization trick by Giné and Zinn (1984) (see for example
Ledoux and Talagrand (1991, Lemma 6.3) or the proof of Bartlett and Mendelson (2003,
Theorem 8)) one writes

1

k
E

 sup
H∈HRC

k−1∑
j=0

{
E[LH(U(j))]− LH(U(j))

} ≤ 2

k
E

 sup
H∈HRC

k−1∑
j=0

εjLH(U(j))


≤ 2

k

m∑
i=1

E

 sup
H̃∈HRCi

k−1∑
j=0

εj(fi ◦ H̃)(U(j))

 .
(81)

Applying the contraction principle for Rademacher random variables (see Ben-David and
Shalev-Shwartz (2014, Lemma 26.9) and also Ledoux and Talagrand (1991, Theorem 4.12))
to the last expression one obtains

1

k
E

 sup
H∈HRC

k−1∑
j=0

{
E[LH(U(j))]− LH(U(j))

}
≤ 2LL√

mk

m∑
i=1

E

 sup
H̃∈HRCi

k−1∑
j=0

εjH̃(U(j))


=

2LL√
mk

m∑
i=1

E

 sup
H∈HRC

k−1∑
j=0

εj

(
H(Z

−∞,(j)
−τj )−Y

(j)
−τj

)
i


≤ 2LL√

mk

m∑
i=1

E

 sup
H∈HRC

∥∥∥∥∥∥
k−1∑
j=0

εjH(Z
−∞,(j)
−τj )

∥∥∥∥∥∥
2

+ E

− k−1∑
j=0

εj(Y
(j)
−τj)i


≤ 2
√
mLL
k

E

 sup
H∈HRC

∥∥∥∥∥∥
k−1∑
j=0

εjH(Z
−∞,(j)
−τj )

∥∥∥∥∥∥
2

 = 2
√
mLLRk(HRC), (82)

with the Rademacher complexity defined as in (40). Note that the last term in the fourth line
is equal to zero due to the independence and the fact that the expectation of Rademacher
random variables is zero.
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We now come back to the estimate of the expected maximum difference between the
in-class statistical risk and the idealized empirical risk and rewrite the expression (76) using
(77), (80), and (82)

E

[
sup

H∈HRC

{
R(H)− R̂∞n (H)

}]
≤ τ

n

{
2k
√
mLLRk(HRC) + kaτ

}
+

2M(n− kτ)

n
,

which then yields (41) as required.
It remains to prove (42). To do so, notice that the triangle inequality and the same

arguments used in (76), (77), (80) and (81) may be applied in the presence of absolute
values to obtain

E

[
sup

H∈HRC

∣∣∣R̂∞n (H)−R(H)
∣∣∣] ≤ kτ

n
aτ +

2τ

n

m∑
i=1

E

 sup
H̃∈HRCi

∣∣∣∣∣∣
k−1∑
j=0

εj(fi ◦ H̃)(U(j))

∣∣∣∣∣∣


+
2M(n− kτ)

n
. (83)

Applying again the contraction principle for Rademacher random variables (Bartlett and
Mendelson, 2003, Theorem 12.4), one estimates, for any i = 1, . . . ,m,

1

k

m∑
i=1

E

 sup
H̃∈HRCi

∣∣∣∣∣∣
k−1∑
j=0

εj(fi ◦ H̃)(U(j))

∣∣∣∣∣∣


≤ 2LL√
mk

m∑
i=1

E

 sup
H̃∈HRCi

∣∣∣∣∣∣
k−1∑
j=0

εjH̃(U(j))

∣∣∣∣∣∣


≤ 2LL√
mk

m∑
i=1

E

 sup
H∈HRC

∣∣∣∣∣∣
k−1∑
j=0

εj(H(Z
−∞,(j)
−τj ))i

∣∣∣∣∣∣
+ E

∣∣∣∣∣∣
k−1∑
j=0

εj(Y
(j)
−τj)i

∣∣∣∣∣∣


≤ 2LL√
mk

mE

 sup
H∈HRC

∥∥∥∥∥∥
k−1∑
j=0

εjH(Z
−∞,(j)
−τj )

∥∥∥∥∥∥
2

+
m∑
i=1

E

∣∣∣∣∣∣
k−1∑
j=0

εj(Y
(j)
−τj)i

∣∣∣∣∣∣
21/2


≤ 2LL√

mk

mkRk(HRC) +
m∑
i=1

E

∣∣∣∣∣∣
k−1∑
j=0

εj(Y
(j)
−τj)i

∣∣∣∣∣∣
21/2



(84)

with the Rademacher complexity defined as in (40). Finally, using the independence of

the Rademacher sequence and the ghost samples (Y
(j)

)j=0,...,k−1 as well as the stationarity
properties of the latter, one has

m∑
i=1

E

∣∣∣∣∣∣
k−1∑
j=0

εj(Y
(j)
−τj)i

∣∣∣∣∣∣
21/2

=

m∑
i=1

k−1∑
j=0

E
[
(Y

(j)
−τj)

2
i

]1/2

≤
√
k
√
mE

[
‖Y0‖22

]1/2
.

The combination of this inequality with (83) and (84) yields (42), as required. �
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5.5 Proof of Corollary 8

Proof of part (i) We start by noticing that under Assumption 1, the weak dependence
coefficients θI defined in (46) for I = y, z and τ ∈ N+ can be estimated as

θI(τ) = E[‖GI(. . . , ξI−1, ξ
I
0)−GI(. . . , ξ̃I−τ−1, ξ̃

I
−τ , ξ

I
−τ+1, . . . , ξ

I
0)‖2]

≤ E

LI ∞∑
j=τ

wIj ‖ξI−j − ξ̃I−j‖2


≤ 2LIE[‖ξI0‖2]

∞∑
j=τ

wIj ≤ 2LIE[‖ξI0‖2]
∞∑
j=τ

(DwI )
j = 2LIE[‖ξI0‖2]

(DwI )
τ

1−DwI
,

where we used that by hypothesis DwI < 1. Consequently, if we set CI :=
2LIE[‖ξI0‖2]

1−DwI
,

condition (26) does hold for all τ ∈ N+. We now define c0 := 2LLLhMF , c1 := LLLRCzLh,
and c2 := LLCy and with the notation λmax := max(r,Dwy , Dwz) ∈ (0, 1) write (45) for any
τ ∈ N+ as

aτ ≤ c0r
τ + c1

τ−1∑
l=0

rl(Dwz)
τ−l + c2(Dwy)

τ ≤ λτmax(c0 + τc1 + c2). (85)

Next, let τ ∈ N+ with τ < n and set k = bn/τc. Inserting assumption (48) in (41) and then
using that n/τ − 1 ≤ k ≤ n/τ , one obtains

E

[
sup

H∈HRC

{
R(H)− R̂∞n (H)

}]
≤ kτ

n
aτ +

BCRC
√
kτ

n
+

2M(n− kτ)

n

≤ aτ +
BCRC

√
τ√

n
+

2Mτ

n
.

(86)

Our goal now is to choose the length of the block τ depending on λmax. Recall that by
hypothesis log(n) < n log(λ−1

max), which means that in order to be able to apply the blocking
technique for a given value λmax ∈ (0, 1) the number of observations n ∈ N+ should be
sufficiently large. In this situation one can choose τ = blog(n)/ log(λ−1

max)c, which is then
guaranteed to satisfy τ < n. Notice that then λτ+1

max ≤ 1/n and consequently (49) follows
from (85) and (86) with the appropriate choice of constants as given in (51)-(52). Finally,
the last term in (50) follows by noticing that

4τ
√
kLLE

[
‖Y0‖22

]1/2
n

≤
4
√
τLLE

[
‖Y0‖22

]1/2
√
n

, (87)

and hence one gets (50) as required.

Proof of part (ii) Recall that by Assumption 2 for I = y, z there exist λI ∈ (0, 1) and
CI > 0 such that, for all τ ∈ N+, it holds that

θI(τ) ≤ CIλτI .
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Mimicking the proof of part (i) with λmax := max (r, λy, λz) yields the claim.

Proof of part (iii) By our choice of γα it holds that τ/4 + γα ≥ log(τ)αz/ log(r−1) for all
τ ∈ N+. One has rl/2(τ−l)−αz ≤ 2αzτ−αz for l ≤ τ/2 and rl/2(τ−l)−αz ≤ rτ/4 ≤ r−γατ−αz ,
for τ/2 ≤ l ≤ τ − 1. Setting Cα = max(2αz , r−γα)(1−

√
r)−1 one has for all τ ∈ N+ that

τ−1∑
l=0

rl(τ − l)−αz ≤
∞∑
l=0

rl/2 max(2αz , r−γα)τ−αz = Cατ
−αz .

Defining c0, c1, and c2 as in the proof of part (i), applying (30) and inserting the above
estimate thus allows us to bound (45) for any τ ∈ N+ by

aτ ≤ c0r
τ + c1

τ−1∑
l=0

rl(τ − l)−αz + c2τ
−αy ≤ τ−α

(
r−γαc0 + Cαc1 + c2

)
.

Furthermore, (86) remains valid and so choosing τ = nβ yields

E

[
sup

H∈HRC

{
R(H)− R̂∞n (H)

}]
≤ (r−γαc0 + Cαc1 + c2)

nαβ
+

BCRC
n1/2−β/2 +

2M

n1−β .

Taking β = 1
2(α + 1

2)−1 yields 1/2 − β/2 = α
2 (α + 1

2)−1 and hence the desired result. The
last term in (42) can be bounded by proceeding analogously to part (i) and noticing that
(87) remains valid, which concludes the proof. �

5.6 Proof of Proposition 9 (Reservoir systems with linear reservoir and
readout maps)

The condition (61) together with Proposition 1 ensure that the ESP property of the reservoir
systems in the hypothesis class is guaranteed and that for any z ∈ KM we have that
HA,C,ζ(z) =

∑∞
i=0A

i(Cz−i + ζ). Using the definition of Rademacher complexity, one
estimates

E

 sup
H∈HRC

∥∥∥∥∥∥
k−1∑
j=0

εjH(Z̃(j))

∥∥∥∥∥∥
2



= E

 sup
(A,C,ζ)∈Θ

W :|||W |||2≤Lh
a:‖a‖2≤Lh,0

∥∥∥∥∥∥
k−1∑
j=0

εj(WHA,C,ζ(Z̃(j)) + a)

∥∥∥∥∥∥
2



≤ E

 sup
(A,C,ζ)∈Θ

W :|||W |||2≤Lh

∥∥∥∥∥∥
k−1∑
j=0

εjWHA,C,ζ(Z̃(j))

∥∥∥∥∥∥
2

+ E

 sup
a:‖a‖2≤Lh,0

∥∥∥∥∥∥
k−1∑
j=0

εja

∥∥∥∥∥∥
2



≤ sup
W :|||W |||2≤Lh

|||W |||2E

 sup
(A,C,ζ)∈Θ

∥∥∥∥∥∥
k−1∑
j=0

εjH
A,C,ζ(Z̃(j))

∥∥∥∥∥∥
2

+ E

 sup
a:‖a‖2≤Lh,0

∥∥∥∥∥∥
k−1∑
j=0

εja

∥∥∥∥∥∥
2
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≤ Lh
∞∑
l=0

sup
(A,C,ζ)∈Θ

∣∣∣∣∣∣∣∣∣Al∣∣∣∣∣∣∣∣∣
2
E

 sup
(A,C,ζ)∈Θ

∥∥∥∥∥∥
k−1∑
j=0

εj(CZ̃
(j)
−l + ζ)

∥∥∥∥∥∥
2

+ E

 sup
a:‖a‖2≤Lh,0

∥∥∥∥∥∥
k−1∑
j=0

εja

∥∥∥∥∥∥
2


≤ Lh

∞∑
l=0

sup
(A,C,ζ)∈Θ

∣∣∣∣∣∣∣∣∣Al∣∣∣∣∣∣∣∣∣
2

(
sup

(A,C,ζ)∈Θ
|||C|||2E

∥∥∥∥∥∥
k−1∑
j=0

εjZ̃
(j)
−l

∥∥∥∥∥∥
2

+ sup
(A,C,ζ)∈Θ

‖ζ‖2E

∣∣∣∣∣∣
k−1∑
j=0

εj

∣∣∣∣∣∣
)

+ E

 sup
a:‖a‖2≤Lh,0

∥∥∥∥∥∥
k−1∑
j=0

εja

∥∥∥∥∥∥
2


≤ Lh

∞∑
l=0

(λAmax)l

λCmaxE
∥∥∥∥∥∥

k−1∑
j=0

εjZ̃
(j)
0

∥∥∥∥∥∥
2

+ λζmaxE

∣∣∣∣∣∣
k−1∑
j=0

εj

∣∣∣∣∣∣
+ E

 sup
a:‖a‖2≤Lh,0

∥∥∥∥∥∥
k−1∑
j=0

εja

∥∥∥∥∥∥
2

 ,
(88)

where we used stationarity, the fact that |||W |||2 ≤ Lh for all readout maps from the class
H ∈ HRC , and constants as in (58)-(60). For the first summand in this expression we have

E

∥∥∥∥∥∥
k−1∑
j=0

εjZ̃
(j)
0

∥∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥∥
k−1∑
j=0

εjZ̃
(j)
0

∥∥∥∥∥∥
2

2

 =

k−1∑
j=0

E
[∥∥∥Z̃(j)

0

∥∥∥2

2

]
E[ε2

j ] = kE
[
‖Z0‖22

]
,

where in the first step we used the Jensen inequality, the next equality is obtained using
the independence of the ghost samples and the Rademacher sequence and also the fact that
E[εj′εj ] = 0 when j 6= j′ for Rademacher variables. The second summand in (88) is bounded
using the inequality by Khintchine (1923)

E

∣∣∣∣∣∣
k−1∑
j=0

εj

∣∣∣∣∣∣
 ≤ √k.

We bound the third term as the first one and obtain

E

 sup
a:‖a‖2≤Lh,0

∥∥∥∥∥∥
k−1∑
j=0

εja

∥∥∥∥∥∥
2

2

≤ kL2
h,0, (89)

where we took into account that ‖a‖2 ≤ Lh,0 for all readout maps from the class H ∈ HRC .
Finally, (88) can be rewritten as

E

 sup
H∈HRC

∥∥∥∥∥∥
k−1∑
j=0

εjH(Z̃(j))

∥∥∥∥∥∥
2

 ≤ √k Lh ∞∑
l=0

(λAmax)l
(
λCmaxE

[
‖Z0‖22

]1/2
+ λζmax

)
+
√
kLh,0

=
√
k

(
Lh

1− λAmax

(
λCmaxE

[
‖Z0‖22

]1/2
+ λζmax

)
+ Lh,0

)
,

where we used that λAmax ∈ (0, 1). Finally, the choice of constants which satisfy conditions
(61) yields (62), as required. �
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5.7 Proof of Proposition 11 (Echo State Networks)

Firstly, note that for any x ∈ DN , it holds that ‖x‖2 ≤ ‖x‖1 =
∑N

i=1 |xi| and hence one
can write

E

 sup
H∈HRC

∥∥∥∥∥∥
k−1∑
j=0

εjH(Z̃(j))

∥∥∥∥∥∥
2

 = E

 sup
F∈FRC

W :|||W |||2≤Lh
a:‖a‖2≤Lh,0

∥∥∥∥∥∥
k−1∑
j=0

εj(WHF (Z̃(j)) + a)

∥∥∥∥∥∥
2



≤ E

 sup
F∈FRC

W :|||W |||2≤Lh
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k−1∑
j=0

εjWHF (Z̃(j))
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2

+ E

 sup
a:‖a‖2≤Lh,0

∥∥∥∥∥∥
k−1∑
j=0

εja

∥∥∥∥∥∥
2



≤ Lh
N∑
l=1

E

 sup
(A,C,ζ)∈Θ

∣∣∣∣∣∣
k−1∑
j=0

εjH
σ,A,C,ζ
l (Z̃(j))

∣∣∣∣∣∣
+
√
kLh,0,

where we used the same arguments as in (89). Using the assumed symmetry of the family
FRC in the first step and the contraction principle in the second step one may estimate

N∑
l=1

E

 sup
(A,C,ζ)∈Θ

∣∣∣∣∣∣
k−1∑
j=0

εjH
σ,A,C,ζ
l (Z̃(j))

∣∣∣∣∣∣


=
N∑
l=1

E

 sup
(A,C,ζ)∈Θ

k−1∑
j=0

εjH
σ,A,C,ζ
l (Z̃(j))


≤ Lσ

N∑
l=1

E

 sup
(A,C,ζ)∈Θ

k−1∑
j=0

εj(Al,·H
σ,A,C,ζ(Z̃

−∞,(j)
−1 ) + Cl,·Z̃

(j)
0 + ζl)


≤ Lσ

N∑
l=1

sup
(A,C,ζ)∈Θ

‖Al,·‖∞E

 sup
(A,C,ζ)∈Θ
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εjH
σ,A,C,ζ(Z̃
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1


+ Lσ

N∑
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sup
(A,C,ζ)∈Θ

‖Cl,·‖2E
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k−1∑
j=0

εjZ̃
(j)
0
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2

+ Lσ

N∑
l=1

E

 sup
(A,C,ζ)∈Θ

k−1∑
j=0

εjζl

 .
Since λAmax ∈ (0, 1) by assumption and using that our hypotheses ensure that Assumption 6
is satisfied, one may iterate the above inequality to obtain

N∑
l=1

E

 sup
(A,C,ζ)∈Θ

∣∣∣∣∣∣
k−1∑
j=0

εjH
σ,A,C,ζ
l (Z̃(j))

∣∣∣∣∣∣
 ≤ ∞∑

l=0

(λAmax)l

λCmaxE
∥∥∥∥∥∥

k−1∑
j=0

εjZ̃
j
0
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2

+ λζmaxE

∣∣∣∣∣∣
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εj
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 .

(90)
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For the first summand in this expression we obtain

E

∥∥∥∥∥∥
k−1∑
j=0

εjZ̃
(j)
0
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2

2

≤ E
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k−1∑
j=0

εjZ̃
(j)
0
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2

2

 =
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j=0

E
[∥∥∥Z̃(j)

0

∥∥∥2

2

]
E[ε2

j ] = kE
[
‖Z0‖22

]
,

where in the first step we used Jensen’s inequality, the next equality is obtained using the
independence of the ghost samples and the Rademacher sequence and also the fact that
E[εj′εj ] = 0 for j 6= j′ for Rademacher variables. The last step trivially follows again from
the definition of ghost samples and the definition of Rademacher variables.

The second summand in (90) is bounded using Khintchine’s inequality (Khintchine,
1923)

E

∣∣∣∣∣∣
k−1∑
j=0

εj

∣∣∣∣∣∣
 ≤ √k

and hence in (90) we obtain

N∑
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E

 sup
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εjH
σ,A,C,ζ
l (Z̃(j))

∣∣∣∣∣∣
 ≤ √k ∞∑
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(λAmax)l
(
λCmaxE

[
‖Z0‖22

]1/2
+ λζmax

)

=

√
k

1− λAmax

(
λCmaxE

[
‖Z0‖22

]1/2
+ λζmax

)
,

which finally gives

E

 sup
H∈HRC

∥∥∥∥∥∥
k−1∑
j=0

εjH(Z̃(j))

∥∥∥∥∥∥
2

 ≤ √k( Lh
1− λAmax

(
λCmaxE

[
‖Z0‖22

]1/2
+ λζmax

)
+ Lh,0

)

which with the choice of constant in (65) gives (64) as required. �

5.8 Proof of Proposition 13 (State-Affine Systems)

Let (p, q) ∈ Θ. Then, the conditions on the quantities λSAS and cSAS introduced in (66)
imply that

Mp = max
z∈B‖·‖(0,M)

{|||p(z)|||2} < 1 (91)

and so F p,q is a contraction on the first entry. Thus, Proposition 1 implies that the system
(3) has the echo state property. Moreover, by Grigoryeva and Ortega (2018a, Proposi-
tion 14), for any z ∈ KM , we have that

Hp,q(z) =
∞∑
i=0

p(z0)p(z−1) · · · p(z−i+1)q(z−i).

Next, write p(z) =
∑
α∈Imax zαBα and q(z) =

∑
α∈Imax zαCα. Again, by the conditions on

the quantities λSAS and cSAS introduced in (66) one has that the image of Hp,q is bounded
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and so, combining this with (91) one obtains∥∥ k−1∑
j=0

εjH
p,q(Z̃(j))

∥∥
2

≤
∞∑
i=0

∥∥∥∥∥∥
k−1∑
j=0

εjp(Z̃
(j)
0 ) · · · p(Z̃(j)

−i+1)q(Z̃
(j)
−i )

∥∥∥∥∥∥
2

≤
∞∑
i=0

∑
α∈Imax

∥∥∥∥∥∥Bα
k−1∑
j=0

εj(Z̃
(j)
0 )αp(Z̃

(j)
−1) · · · p(Z̃(j)

−i+1)q(Z̃
(j)
−i )

∥∥∥∥∥∥
2

≤
∞∑
i=0

∑
α1∈Imax

· · ·
∑

αi∈Imax

|||Bα1 |||2 · · · |||Bαi |||2

∥∥∥∥∥∥
k−1∑
j=0

εj(Z̃
(j)
0 )α

1 · · · (Z̃(j)
−i+1)α

i
q(Z̃

(j)
−i )

∥∥∥∥∥∥
2

≤
∞∑
i=0

∑
α1∈Imax

· · ·
∑

αi∈Imax

|||Bα1 |||2 · · · |||Bαi |||2
∑

α∈Imax

‖Cα‖2

∣∣∣∣∣∣
k−1∑
j=0

εj(Z̃
(j)
0 )α

1 · · · (Z̃(j)
−i+1)α

i
(Z̃

(j)
−i )

α

∣∣∣∣∣∣ .
Therefore, by this expression and using the same type of arguments for linear readout as in
the example of echo state networks one obtains

E

 sup
H∈HRC

∥∥∥∥∥∥
k−1∑
j=0

εjH(Z̃j)

∥∥∥∥∥∥
2



= E

 sup
F∈FRC

W :|||W |||2≤Lh
a:‖a‖2≤Lh,0

∥∥∥∥∥∥
k−1∑
j=0

εj(WHF (Z̃(j)) + a)

∥∥∥∥∥∥
2


≤ Lh

∞∑
i=0

∑
α1∈Imax

· · ·
∑

αi∈Imax

(λSAS)icSAS
∑

α∈Imax

E

∣∣∣∣∣∣
k−1∑
j=0

εj(Z̃
(j)
0 )α

1 · · · (Z̃(j)
−i+1)α

i
(Z̃

(j)
−i )

α

∣∣∣∣∣∣
+
√
kLh,0

≤ Lh
∞∑
i=0

∑
α1∈Imax

· · ·
∑

αi∈Imax

(λSAS)icSAS
∑

α∈Imax

E

∣∣∣∣∣∣
k−1∑
j=0

εj(Z̃
(j)
0 )α

1 · · · (Z̃(j)
−i+1)α

i
(Z̃

(j)
−i )

α

∣∣∣∣∣∣
21/2

+
√
kLh,0

=
√
kLh

∞∑
i=0

∑
α1∈Imax

· · ·
∑

αi∈Imax

(λSAS)icSAS
∑

α∈Imax

E
[∣∣∣(Z0)α

1 · · · (Z−i+1)α
i
(Z−i)

α
∣∣∣2]1/2

+
√
kLh,0

≤
√
k

(
Lh

cSAS |Imax|
1− |Imax|λSAS

+ Lh,0

)
. �

5.9 Proof of Theorem 14

We start by working out two concentration inequalities that are needed in the proof. These
are contained in the two propositions 19 and 20 and are used in part (i) of the theorem in
relation with the use of Assumption 1.
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5.9.1 (Exponential) concentration inequalities

Proposition 19 Define Γn := supH∈HRC{R(H)−R̂∞n (H)}. Suppose that Assumptions 4-6
hold, that Assumption 1 is satisfied, and that the Bernoulli shifts innovations are bounded,
that is, there exists M > 0 such that for I = y, z and for all t ∈ Z−, ‖ξIt ‖2 ≤ M . Then
there exists Cbd > 0 such that for any η > 0, n ∈ N+ it holds that

P (|Γn − E[Γn]| ≥ η) ≤ 2 exp

(
−2nη2

C2
bd

)
. (92)

The constant Cbd is explicitly given by

Cbd = 2LL

(
Lh

1− r
(
MFr + LRMLz‖wz‖1

)
+MLy‖wy‖1

)
. (93)

Proof. The main idea of the proof is to exploit the Bernoulli shift structure and apply
McDiarmid’s inequality (Boucheron et al., 2013, see for example), which out of the bound
of differences of functions constructed in a particular manner yields the bound in (92). In
order to ease the notation, we first define Y := (BM × BM ) ⊂ (Rqy × Rqz). Consider now
a function φ : Yn−1 × YZ− → R, which is defined for ui = (uy−i,u

z
−i) ∈ Y, i = 0, . . . , n − 2

and un−1 = (uy−n+1+t,u
z
−n+1+t)t∈Z− ∈ YZ− by

φ(u0, . . . ,un−2,un−1) = sup
H∈HRC

{
R(H)− 1

n

n−1∑
i=0

L(H(Gz(uz,−∞−i )), Gy(uy,−∞−i ))

}
.

Fix k ∈ {0, . . . , n− 1} and let ũ be an identical copy of the sequence u so that only the
k-th entry in ũ is different from u, that is ũ−i = u−i for all i 6= k. We now estimate the
difference of the function φ : Yn−1 × YZ− → R evaluated at u and ũ as follows:

φ(u0, . . . ,un−1)− φ(ũ0, . . . , ũn−1)

≤ sup
H∈HRC

inf
H̃∈HRC

1

n

n−1∑
i=0

{
L(H̃(Gz(ũz,−∞−i )), Gy(ũy,−∞−i ))− L(H(Gz(uz,−∞−i )), Gy(uy,−∞−i ))

}
−R(H̃) +R(H)

≤ sup
H∈HRC

1

n

n−1∑
i=0

{
L(H(Gz(ũz,−∞−i )), Gy(ũy,−∞−i ))− L(H(Gz(uz,−∞−i )), Gy(uy,−∞−i ))

}
= sup

H∈HRC

1

n

k∑
i=0

{
L(H(Gz(ũz,−∞−i )), Gy(ũy,−∞−i ))− L(H(Gz(uz,−∞−i )), Gy(uy,−∞−i ))

}
≤ sup

H∈HRC

1

n

k∑
i=0

{
LL(‖H(Gz(ũz,−∞−i ))−H(Gz(uz,−∞−i ))‖2 + ‖Gy(ũy,−∞−i )−Gy(uy,−∞−i )‖2)

}
,

(94)

where in the last inequality we used that by assumption the loss function L is LL-Lipschitz.
For the first summand under the supremum in (94) we use the bound (75) and hence write
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k∑
i=0

‖H(Gz(ũz,−∞−i ))−H(Gz(uz,−∞−i ))‖2

≤
k∑
i=0

Lh(2rk+1−iMF + LR

k−i∑
j=0

rj‖Gz(ũz,−∞−j−i )−G
z(uz,−∞−j−i )‖2)

≤ Lh

2MFr
1− rk+1

1− r
+ LR

k∑
i=0

k∑
j=i

rj−i‖Gz(ũz,−∞−j )−Gz(uz,−∞−j )‖2)

 . (95)

Notice that the second summand under the supremum in (94) and the second summand in
(95) can be bounded using that (24) holds by Assumption 1 and that by hypothesis both
ũ and u satisfy ‖uIt ‖2 ≤M and ‖ũIt ‖2 ≤M for any t ∈ Z−. More specifically, for I = y, z
and any i ∈ {0, . . . , k} one obtains

‖GI(ũI,−∞−i )−GI(uI,−∞−i )‖2 ≤ LI
∞∑
l=0

wIl ‖uI−l−i − ũI−l−i‖2

= LIw
I
k−i‖uI−k − ũI−k‖2 ≤ 2LIw

I
k−iM,

where we used that ũ−l−i = u−l−i, for all l+ i 6= k, l ∈ N. Combining this expression with
(95) we estimate (94) as

φ(u0, . . . ,un−1)− φ(ũ0, . . . , ũn−1)

≤ sup
H∈HRC

1

n

k∑
i=0

{
LL(‖H(Gz(ũz,−∞−i ))−H(Gz(uz,−∞−i ))‖2 + ‖Gy(ũy,−∞−i )−Gy(uy,−∞−i )‖2)

}

≤ 2

n
LL

LhMFr1− rk+1

1− r
+ LhLRMLz

k∑
i=0

k∑
j=i

rj−iwzk−j +MLy

k∑
i=0

wyk−i


=

2

n
LL

LhMFr1− rk+1

1− r
+ LhLRMLz

k∑
i=0

k−i∑
j=0

rjwzk−i−j +MLy

k∑
i=0

wyi


≤ 2

n
LL

LhMF r

1− r
+ LhLRMLz

( ∞∑
i=0

ri

) ∞∑
j=0

wzj

+MLy

∞∑
i=0

wyi


=

2

n
LL

(
Lh

1− r
(
MFr + LRMLz‖wz‖1

)
+MLy‖wy‖1

)
=
Cbd
n
,

with the constant Cbd as in (93). We now use this bound of differences in McDiarmid’s
inequality and simply notice that Γn = φ(ξ0, . . . , ξ−n+2, ξ

−∞
−n+1) in the statement, which

immediately yields (92), as required. �
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Proposition 20 Define Γn := supH∈HRC{R(H)− R̂∞n (H)}. Suppose that Assumptions 4-
6 hold and that Assumption 1 is satisfied. Let Φ: [0,∞)→ [0,∞) be a convex and increasing
function that satisfies Φ(0) = 0. Furthermore, assume that maxI∈{y,z} E

[
Φ(2CmomI ‖ξI0‖2)

]
<

∞ where

Cmomz = LL
LhLR
1− r

Lz‖wz‖1, (96)

Cmomy = LLLy‖wy‖1, (97)

and denote

ϕ(M) :=
∑

I∈{y,z}

E
[
Φ(2CmomI ‖ξI0‖2)1{‖ξI0‖2>M}

]
. (98)

Then, there exists a constant C0 > 0 such that for any η > 0, n ∈ N+, M > 0 satisfying∑
I∈{y,z}

CmomI E[‖ξI0‖21{‖ξI0‖2>M}] <
η

9
(99)

one has

P (|Γn − E[Γn]| ≥ η) ≤ 2 exp

(
−2nη2

9(C0 + 2M(Cmomz + Cmomy ))2

)
+

1

2

ϕ(M)

Φ(η/3)
.

The constant C0 is explicitly given by (39).

Proof. Let M > 0 and for any t ∈ Z−, I = y, z denote by ξI,Mt the Bernoulli shift

innovations whose Euclidean norm is bounded above by M , that is, ξI,Mt := ξIt 1{‖ξIt ‖2≤M}
.

In order to simplify the notation, we define

ZMt := Gz(. . . , ξz,Mt−1 , ξ
z,M
t ) = Gz((ξz,M )−∞t ), t ∈ Z−, (100)

YM
t := Gy(. . . , ξy,Mt−1 , ξ

y,M
t ) = Gy((ξy,M )−∞t ), t ∈ Z−, (101)

R̂∞,Mn (H) :=
1

n

n−1∑
i=0

L(H((ZM )−∞−i ),YM
−i), (102)

RM (H) := E[L(H(ZM ),YM
0 )] (103)

and, additionally, denote ΓMn := supH∈HRC{RM (H) − R̂∞,Mn (H)}. Firstly, the triangle
inequality yields

|Γn − E[Γn]| = |Γn − ΓMn − (E[Γn]− E[ΓMn ]) + ΓMn − E[ΓMn ]|

≤ |Γn − ΓMn |+ |E[Γn − ΓMn ]|+ |ΓMn − E[ΓMn ]|

≤ |Γn − ΓMn |+ E[|Γn − ΓMn |] + |ΓMn − E[ΓMn ]|. (104)

For the first summand in expression (104) we write∣∣∣Γn − ΓMn

∣∣∣ ≤ ∣∣∣∣∣ sup
H∈HRC

{
R(H)− R̂∞n (H)

}
− sup
H∈HRC

{
RM (H)− R̂∞,Mn (H)

}∣∣∣∣∣
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=

∣∣∣∣∣ sup
H∈HRC

inf
H̃∈HRC

({
R(H)− R̂∞n (H)

}
−
{
RM (H̃)− R̂∞,Mn (H̃)

})∣∣∣∣∣
≤

∣∣∣∣∣ sup
H∈HRC

{
R(H)− R̂∞n (H)−RM (H) + R̂∞,Mn (H)

}∣∣∣∣∣
≤ sup

H∈HRC

∣∣∣RM (H)−R(H)
∣∣∣+ sup

H∈HRC

∣∣∣R̂∞,Mn (H)− R̂∞n (H)
∣∣∣ . (105)

Using this result, we can immediately get the following bound for the second summand in
expression (104)

E
[∣∣∣Γn − ΓMn

∣∣∣] ≤ sup
H∈HRC

∣∣∣RM (H)−R(H)
∣∣∣+ E

[
sup

H∈HRC

∣∣∣R̂∞,Mn (H)− R̂∞n (H)
∣∣∣] . (106)

The first two terms in the right hand side of (104) are thus controlled by (105) and (106).
The third term in (104) is of the type required in Proposition 19, that is, the Bernoulli
shifts are defined using bounded innovations and hence the term will be controlled in what
follows using the result in Proposition 19.

The next step in our proof is to derive bounds for the terms in the right hand sides of
(105) and (106). First, we consider the estimate for the term they share, for which we write

sup
H∈HRC

|RM (H)−R(H)|

= sup
H∈HRC

|E[L(H(ZM ),YM
0 )− L(H(Z),Y0)]|

≤ sup
H∈HRC

E
[
LL(‖H(ZM )−H(Z)‖2 + ‖YM

0 −Y0‖2)
]

≤ LL(LhLR

∞∑
j=0

rjE[‖ZM−j − Z−j‖2] + E[‖YM
0 −Y0‖2])

= LL

(
LhLR
1− r

E[‖Gz(ξz,M )−Gz(ξz)‖2] + E[‖Gy(ξy)−Gy(ξy,M )‖2]

)
, (107)

where the first and the second (in)equality are obtained using the definition (103) and the
assumption that the loss function L is LL-Lipschitz, the third step follows from the estimate
(75) from Lemma 18 and the last step again uses (100)-(101) and the i.i.d. assumption on
ξ. In order to proceed, notice that since Assumption 1 holds by hypothesis, by (24) one has
for any j ∈ N, I = y, z the following estimate

‖GI((ξI)−∞−j )−GI((ξI,M )−∞−j )‖2 ≤ LI
∞∑
l=0

wIl ‖ξI−l−j − ξ
I,M
−l−j‖2

= LI

∞∑
l=0

wIl ‖ξI−l−j‖21{‖ξI−l−j‖2>M}. (108)

Combining (107) and (108) and using the i.i.d. assumption on ξ one obtains
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sup
H∈HRC

|RM (H)−R(H)|

≤ LL

(
LhLR
1− r

LzE[
∞∑
l=0

wzl ‖ξz−l‖21{‖ξz−l‖2>M}] + LyE[
∞∑
l=0

wyl ‖ξ
y
−l‖21{‖ξy−l‖2>M}]

)

= LL

(
LhLR
1− r

Lz‖wz‖1E[‖ξz0‖21{‖ξz0‖2>M}] + Ly‖wy‖1E[‖ξy0‖21{‖ξy0‖2>M}]
)

≤ Cmomz E[‖ξz0‖21{‖ξz0‖2>M}] + Cmomy E[‖ξy0‖21{‖ξy0‖2>M}]

=
∑

I∈{y,z}

CmomI E[‖ξI0‖21{‖ξI0‖2>M}] (109)

with CmomI for I = y, z defined as in (96) and (97).
Next, we analyze the second term in (105). Using the function Φ : [0,∞) −→ [0,∞) we

obtain for η > 0

Φ(η)P

(
sup

H∈HRC

∣∣∣R̂∞,Mn (H)− R̂∞n (H)
∣∣∣ ≥ η)

≤ E

[
Φ

(
sup

H∈HRC

∣∣∣R̂∞,Mn (H)− R̂∞n (H)
∣∣∣)]

≤ E
[
Φ
(LL
n

n−1∑
i=0

(
LhLR

∞∑
j=0

rj‖Gz((ξz)−∞−j−i)−G
z((ξz,M )−∞−j−i)‖2

+ ‖Gy((ξy)−∞−i )−Gy((ξy,M )−∞−i )‖2
))]

≤ 1− r
n

n−1∑
i=0

∞∑
j=0

rjE
[
Φ
(LLLhLR

1− r
‖Gz((ξz)−∞−j−i)−G

z((ξz,M )−∞−j−i)‖2

+ LL‖Gy((ξy)−∞−i )−Gy((ξy,M )−∞−i )‖2
)]

≤ 1

2
E
[
Φ
(2LLLhLR

1− r
‖Gz(ξz)−Gz(ξz,M )‖2

)]
+

1

2
E
[
Φ
(

2LL‖Gy(ξy)−Gy(ξy,M )‖2
)]

≤ 1

2
E
[
Φ
(2LLLhLR

1− r
Lz

∞∑
l=0

wzl ‖ξz−l − ξ
z,M
−l ‖2

)]
+

1

2
E
[
Φ
(

2LLLy

∞∑
l=0

wyl ‖ξ
y
−l − ξ

y,M
−l ‖2

)]
=

1

2

∑
I∈{y,z}

E
[
Φ
(2CmomI

‖wI‖1

∞∑
l=0

wIl ‖ξI−l − ξ
I,M
−l ‖2

)]

≤ 1

2

∑
I∈{y,z}

1

‖wI‖1

∞∑
l=0

wIl E
[
Φ
(

2CmomI ‖ξI−l‖21{‖ξI−l‖2>M}
)]

=
1

2
ϕ(M), (110)

where Cmomz , Cmomy , and ϕ(M) are given in (96), (97), and (98), respectively. In these
derivations we used Markov’s inequality for increasing and non-negative functions in the first

49



Gonon, Grigoryeva, and Ortega

step. The second inequality uses the definition in (102), the estimate (75) from Lemma 18,
and the fact that Φ is by hypothesis an increasing function. We subsequently used Jensen’s
inequality for discrete probability measures, the stationarity assumption and the convex-
ity of the function Φ. Finally, (108), the appropriate choice of constants and once more
Jensen’s inequality for discrete probability measures and the stationarity assumption as well
as Φ(0) = 0 yields the result.

We now notice that this result provides automatically a bound for the second term in
(106). In order to see that, one needs to take as the function Φ the identity and then by
the second and the last two lines in (110) it holds that

E

[
sup

H∈HRC

∣∣∣R̂∞,Mn (H)− R̂∞n (H)
∣∣∣] ≤ ∑

I∈{y,z}

CmomI E[‖ξI0‖21{‖ξI0‖2>M}]. (111)

We now consider again expression (104) and taking into account (105), (106), together with
the bounds for their ingredients given in (109), (110), and (111) we derive, for any η > 0
satisfying (99),

P (|Γn − E[Γn]| ≥ η)

≤ P

(
2η

9
+ sup
H∈HRC

∣∣∣R̂∞,Mn (H)− R̂∞n (H)
∣∣∣+

η

9
+ |ΓMn − E[ΓMn ]| ≥ η

)

≤ P
(
|ΓMn − E[ΓMn ]| ≥ η

3

)
+ P

(
sup

H∈HRC

∣∣∣R̂∞,Mn (H)− R̂∞n (H)
∣∣∣ ≥ η

3

)

≤ 2 exp

(
−2nη2

9C2
bd

)
+

1

2

ϕ(M)

Φ(η/3)
,

with Cbd as in (93). In the first inequality we used the hypothesis in (99) and the bounds
(109), (111). In the second inequality we used (110) and (92) in Proposition 19. Finally,
noticing that Cbd = 2M(Cmomz + Cmomy ) + C0 with C0 as in (39) and setting Cmomz and
Cmomy as in (96)-(97) immediately yields the claim. �

Corollary 21 Suppose that Assumptions 4-6 hold and that Assumption 1 is satisfied. Let
Φ: [0,∞) → [0,∞) be a convex and strictly increasing function that satisfies Φ(0) = 0.
Furthermore, assume that for all u > 0, E[Φ(u‖ξI0‖)2] < ∞ for I = y, z. Then, for any
δ ∈ (0, 1), n ∈ N+,

P (|Γn − E[Γn]| ≥ BΦ(n, δ)) ≤ δ

2
,

where

BΦ(n, δ) = 9 max

(C0 + 2Φ−1(n)(Cmomz + Cmomy ))
√

log(8
δ )

3
√

2n
,Φ−1

(
2CΦ

δ
√
n

) , (112)

CΦ =
∑

I∈{y,z}

E
[
Φ(2CmomI ‖ξI0‖2)2

]1/2 E[Φ(‖ξI0‖2)]1/2, (113)

and C0, Cmomz , Cmomy are given by (39), (96), and (97).
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Proof. We start with the function ϕ(M) given in (98) and obtain that for any M > 0 it
holds that

ϕ(M) =
∑

I∈{y,z}

E
[
Φ(2CmomI ‖ξI0‖2)1{‖ξI0‖2>M}

]
≤

∑
I∈{y,z}

E
[
Φ(2CmomI ‖ξI0‖2)2

]1/2 E [(1{‖ξI0‖2>M})2
]1/2

=
∑

I∈{y,z}

E
[
Φ(2CmomI ‖ξI0‖2)2

]1/2 P(‖ξI0‖2 > M)1/2

≤ CΦ

Φ(M)1/2
, (114)

where the first inequality is a consequence of Hölder’s inequality, and the last step is obtained
by applying Markov’s inequality for increasing nonnegative functions and by using the
definition in (113). Furthermore, by convexity, Jensen’s inequality and since Φ(0) = 0, one
has that

Φ(
∑

I∈{y,z}

CmomI E[‖ξI0‖21{‖ξI0‖2>M}]) ≤
∑

I∈{y,z}

1

2
Φ
(

2CmomI E[‖ξI0‖21{‖ξI0‖2>M}]
)

≤ 1

2

∑
I∈{y,z}

E
[
Φ
(

2CmomI ‖ξI0‖21{‖ξI0‖2>M}
)]

=
1

2
ϕ(M). (115)

Choosing M = Φ−1(n) in (114) and setting η = BΦ(n, δ) defined in (112) one easily verifies
that

1

2

ϕ(M)

Φ(η/9)
≤ 1

2

CΦ√
nΦ(η/9)

≤ δ

4
. (116)

In particular, this also implies that ϕ(M) < Φ(η/9) and so (115) yields

Φ(
∑

I∈{y,z}

CmomI E[‖ξI0‖21{‖ξI0‖2>M}]) < Φ(η/9)

and hence ∑
I∈{y,z}

CmomI E[‖ξI0‖21{‖ξI0‖2>M}] <
η

9
.

Thus (99) is satisfied and we may apply Proposition 20 and use Φ(η/9) ≤ Φ(η/3) and (116),
which yields

P (|Γn − E[Γn]| ≥ η) ≤ 2 exp

(
−2nη2

9(C0 + 2Φ−1(n)(Cmomz + Cmomy ))2

)
+
δ

4
≤ δ

2
. �

51



Gonon, Grigoryeva, and Ortega

5.9.2 Proof of Theorem 14

Proof of part (i). In this situation, the hypotheses of part (i) of Corollary 8 are satisfied
and so the following bound holds:

E

[
sup

H∈HRC

{
R(H)− R̂∞n (H)

}]
≤ C1

n
+
C2log(n)

n
+
C3

√
log(n)√
n

. (117)

Let us denote Γn := supH∈HRC{R(H)−R̂∞n (H)}. We may then apply the triangle inequality,
insert the estimate on the difference between the empirical risk and its idealized counterpart
obtained in Proposition 5 as well as the estimate on the expected value (117) to obtain that
P-a.s.,

sup
H∈HRC

{R(H)− R̂n(H)} = sup
H∈HRC

{R(H)− R̂n(H) + R̂∞n (H)− R̂∞n (H)} − E[Γn] + E[Γn]

≤ sup
H∈HRC

{R̂∞n (H)− R̂n(H)}+ Γn − E[Γn] + E[Γn]

≤ sup
H∈HRC

|R̂∞n (H)− R̂n(H)|+ |Γn − E[Γn]|+ E[Γn]

≤ (1− rn)C0

n
+ |Γn − E[Γn]|+ C1

n
+
C2log(n)

n
+
C3

√
log(n)√
n

.

(118)

Part (a): Denote by η the upper bound that we need to prove holds with high probability,
that is,

η :=
(1− rn)C0 + C1

n
+
C2log(n)

n
+
C3

√
log(n)√
n

+
Cbd

√
log(4

δ )
√

2n
.

Combining the estimate (118) with the exponential concentration inequality Proposition 19
then yields

P

(
sup

H∈HRC
{R(H)− R̂n(H)} > η

)
≤ P

|Γn − E[Γn]| >
Cbd

√
log(4

δ )
√

2n

 ≤ δ

2
. (119)

By applying the result that we just proved to the loss function −L one obtains that

P

(
sup

H∈HRC
{R̂n(H)−R(H)} > η

)
≤ δ

2
.

Using that |x| = max(x,−x) one can thus combine the two estimates to deduce

P

(
sup

H∈HRC

∣∣∣R(H)− R̂n(H)
∣∣∣ > η

)

≤ P

({
sup

H∈HRC
{R(H)− R̂n(H)} > η

}
∪

{
sup

H∈HRC
{R̂n(H)−R(H)} > η

})
≤ δ.
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Part (b): Proceeding analogously as in part (a), denote by η the high-probability upper
bound which needs to be established, that is,

η =
(1− rn)C0 + C1

n
+
C2log(n)

n
+
C3

√
log(n)√
n

+BΦ(n, δ).

Combining (118) with Corollary 21 then yields

P

(
sup

H∈HRC
{R(H)− R̂n(H)} > η

)
≤ P (|Γn − E[Γn]| > BΦ(n, δ)) ≤ δ

2
.

The claim then follows precisely as in the proof of part (a).

Proof of part (ii). Firstly, one may use Proposition 5 to obtain P-a.s.,

sup
H∈HRC

{R(H)− R̂n(H)} ≤ sup
H∈HRC

{R̂∞n (H)− R̂n(H)}+ |Γn| ≤
(1− rn)C0

n
+ |Γn|.

(120)
Setting

η =
2

δ

(
C1

n
+
C2log(n)

n
+
C3,abs

√
log(n)√
n

)
+

(1− rn)C0

n
(121)

and applying Markov’s inequality, (120) and part (ii) of Corollary 8 then yields

P

(
sup

H∈HRC
{R(H)− R̂n(H)} > η

)
≤ P

(
|Γn| >

2

δ

(
C1

n
+
C2log(n)

n
+
C3,abs

√
log(n)√
n

))

≤ E[|Γn|]
δ

2

(
C1

n
+
C2log(n)

n
+
C3,abs

√
log(n)√
n

)−1

≤ δ

2
.

By applying what we just proved to the loss function −L the claim then follows precisely
as in the proof of part (i).

Proof of part (iii). The proof is the same as the proof of part (ii), except that instead of
choosing η as in (121) one takes

η =
(1− rn)C0

n
+

2

δ

(
C1,absn

− 1
2+α−1 + C2n

− 2
2+α−1

)
and instead of using part (ii) of Corollary 8 one applies its part (iii) to estimate E[|Γn|]. �
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5.10 Proof of Proposition 16

Denote by Θ :=
{

(ρAA, ρCC, ρζζ) | (ρA, ρC , ρζ) ∈ (− a
λA
, a
λA

)× [−c, c]× [−s, s]
}

the ran-
dom set of admissible parameters for the echo state network. Since

Lσ

(
N∑
l=1

sup
(A,C,ζ)∈Θ

‖Al,·‖∞

)
=

a

λA
Lσ

(
N∑
l=1

‖Al,·‖∞

)
= a ∈ (0, 1),

for any realization of A,C, ζ (that is, conditional on A,C, ζ) the assumptions of Propo-
sition 11 are satisfied. Thus one may argue as in the proof of part (ii) of Theorem 14 to
obtain that for any η > 0,

P

(
sup

H∈HRC

{R(H)− R̂n(H)} > (1− rn)C0

n
+ η

∣∣∣∣∣A,C, ζ
)
≤ E[|Γn| | A,C, ζ]

η

and then apply part (ii) of Corollary 8 to obtain

P

(
sup

H∈HRC

{R(H)− R̂n(H)} > (1− rn)C0

n
+ η

∣∣∣∣∣A,C, ζ
)
≤ 1

η

(
C1

n
+
C2log(n)

n
+

C3,abs

√
log(n)√
n

)
,

where the constants can be explicitly chosen using (51)-(52). In particular, C1 and C2 are
given by (51) with CI as in (26), and C3,abs can be written using (52) as

C3,abs = 2C3 +
4LLE

[
‖Y0‖22

]1/2√
log(λ−1

max)
,

with

C3 =
2
√
mLLCRC√
log(λ−1

max)

and

CRC =
Lh

1− a

(
λCE

[
‖Z0‖22

]1/2
+ λζ

)
+ Lh,0.

Taking expectations, one sees that

E[C3,abs] = C3,abs,

where C3,abs is as in (52) with CRC given by (73). Thus we obtain

P

(
sup

H∈HRC

{R(H)− R̂n(H)} > (1− rn)C0

n
+ η

)
≤ 1

η

(
C1

n
+
C2log(n)

n
+
C3,abs

√
log(n)√
n

)

and the claim follows by arguing as in the proof of part (ii) in Theorem 14 . �
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D. Ibáñez-Soria, A. Soria-Frisch, J. Garcia-Ojalvo, and G. Ruffini. Characterization of the
non-stationary nature of steady-state visual evoked potentials using echo state networks.
PLOS ONE, 2019.

H. Jaeger. Short term memory in echo state networks. Fraunhofer Institute for Autonomous
Intelligent Systems. Technical Report., 152, 2002.

H. Jaeger. The ‘echo state’ approach to analysing and training recurrent neural networks
with an erratum note. Technical report, German National Research Center for Informa-
tion Technology, 2010.

H. Jaeger and H. Haas. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication. Science, 304(5667):78–80, 2004.
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