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Abstract

This paper presents a unified framework for supervised learning and inference procedures
using the divide-and-conquer approach for high-dimensional correlated outcomes. We pro-
pose a general class of estimators that can be implemented in a fully distributed and paral-
lelized computational scheme. Modeling, computational and theoretical challenges related
to high-dimensional correlated outcomes are overcome by dividing data at both outcome
and subject levels, estimating the parameter of interest from blocks of data using a broad
class of supervised learning procedures, and combining block estimators in a closed-form
meta-estimator asymptotically equivalent to estimates obtained by Hansen (1982)’s gener-
alized method of moments (GMM) that does not require the entire data to be reloaded on
a common server. We provide rigorous theoretical justifications for the use of distributed
estimators with correlated outcomes by studying the asymptotic behaviour of the com-
bined estimator with fixed and diverging number of data divisions. Simulations illustrate
the finite sample performance of the proposed method, and we provide an R package for
ease of implementation.

Keywords: Divide-and-conquer, Generalized method of moments, Estimating functions,
Parallel computing, Scalable computing

1. Introduction

Although the divide-and-conquer paradigm has been widely used in statistics and computer
science, its application with correlated data has been little investigated in the literature. We
provide a theoretical justification, with theoretical guarantees, for divide-and-conquer meth-
ods with correlated data through a general unified estimating function theory framework.
In particular, in this paper we focus on the large sample properties of a class of distributed
and integrated estimators for supervised learning and inference with high-dimensional cor-
related outcomes. We consider N independent observations {yi,Xi}Ni=1 where both the
sample size N and the dimension M of the response vector yi may be so big that a di-
rect analysis of the data using conventional methodology is computationally intensive, or
even prohibitive. Such data may arise, for example, from imaging measurements of brain
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activity or from genomic data. Denote by f(Y i;Xi,θ,Γi) the M -variate joint parametric
distribution of Y i conditioned on Xi, where θ is the parameter of interest and Γi contains
parameters, such as for high-order dependencies, that may be difficult to model or handle
computationally.
Statistical inference with big data can be extremely challenging due to the high volume and
high variety of these data, as noted recently by Secchi (2018). In the statistics literature,
methodological efforts to date have primarily focused on high-dimensional covariates (i.e.
high-dimensional Xi) with univariate responses (corresponding to M = 1); see Johnstone
and Titterington (2009) for an overview of the difficulties and methods in linear regression,
and the citations therein for references to the extensive publications in this field. By con-
trast, little work has focused on high-dimensional correlated outcomes (corresponding to
large M), which pose an entirely new and different set of methodological challenges stem-
ming from a high-dimensional likelihood. The divide-and-combine paradigm holds promise
in overcoming these challenges; see Mackey et al. (2011) and Zhang et al. (2015b) for early
examples of the power of divide-and-combine algorithms. Some recent divide-and-combine
methods for independent outcomes can be found in Singh et al. (2005), Lin and Zeng (2010),
Lin and Xi (2011), Chen and Xie (2014), and Liu et al. (2015), among others.
More recently, Hector and Song (2020) proposed a Distributed and Integrated Method of
Moments (DIMM), a divide-and-combine strategy for supervised learning and inference in
a regression setting with high-dimensional correlated outcomes Y . DIMM splits the M
elements of Y into blocks of low-dimensional response subvectors, analyzes these blocks
in a distributed and parallelized computational scheme using pairwise composite likelihood
(CL), and combines block-specific results using a closed-form meta-estimator in a similar
spirit to Hansen (1982)’s seminal generalized method of moments (GMM). DIMM overcomes
computational challenges associated with high-dimensional outcomes by running block anal-
yses in parallel and combining block-specific results via a computationally and statistically
efficient closed-form meta-estimator. DIMM is easily implemented using MapReduce in the
Hadoop framework (Khezr and Navimipour (2017)), where blocks of data are loaded only
once and in parallel. DIMM presents a useful and natural extension of the classical GMM
framework, which easily accounts for inter-block dependencies. DIMM also improves on
the classical meta-estimation where results from blocks are routinely assumed to be inde-
pendent. DIMM is still challenged, however, when estimating a homogeneous parameter
in the presence of heterogeneous parameters. Additionally, it is also challenged computa-
tionally when the sample size N is large; the strategy of dividing high-dimensional vectors
of correlated outcomes into blocks is insufficient to address the excessive computational
demand, since the sample size remains large in the block analyses. Thus, another division
at the subject level is inevitable to mitigate the computational burden arising from matrix
inversions and iterative calculations in the block analyses.
This paper proposes a new doubly divided procedure to learn and perform inference for
a homogeneous parameter of interest in the presence of heterogeneous parameters with a
general class of supervised learning procedures. The double division at the response and
subject levels further speeds up computations in comparison to DIMM and results in a
double division of the data, visualized in Table 1: a division of the response Y , and a
random division of subjects into independent subject groups, resulting in blocks of data
with a smaller sample of low-dimensional response subvectors. We consider a general class
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of supervised learning procedures to analyze these blocks separately and in parallel that is
substantially. Then we establish a GMM-type combination procedure that yields a meta-
estimator of heterogeneous and homogeneous parameters. This proposed estimator is sub-
stantially more general than the DIMM estimator in Hector and Song (2020), which only
considered pairwise composite likelihood estimation of homogeneous mean parameters, and
thus appealing in many practical settings where analyzing data with both large M and N
is challenging. We achieve a doubly divided learning and inference procedure implemented
in a distributed and parallelized computational scheme. The proposed class of supervised
learning procedures is very general, including many important estimation methods as special
cases, such as Fisher’s maximum likelihood, Wedderburn (1974)’s quasi-likelihood, Liang
and Zeger (1986)’s generalized estimating equations, Huber (1964)’s M-estimation for ro-
bust inference, with possible extensions to semi-parametric and non-parametric models. We
also provide a rigorous, well-defined and broad theoretical framework for the justification
of divide-and-conquer schemes when the number of data divisions diverges, which was not
considered in Hector and Song (2020).

Block
Group

Subject 1 . . . Subject n1 . . . . . . Subject 1 . . . Subject nK

1 y11,11 . . . yn11,11 . . . . . . y11,1K . . . ynK1,1K
...

...
...

...
...

...
...

...
...

m1 y1m1,11 . . . yn1m1,11 . . . . . . y1m1,1K . . . ynKm1,1K
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

1 y11,J1 . . . yn11,J1 . . . . . . y11,JK . . . ynK1,JK
...

...
...

...
...

...
...

...
...

mJ y1mJ ,J1 . . . yn1mJ ,J1 . . . . . . y11,JK . . . ynKmJ ,JK

Table 1: Double division of outcome data on both the dimension of responses (into blocks)
and sample size (into groups).

The proposed Doubly Distributed and Integrated Method of Moments (DDIMM) not only
provides a unified framework of various supervised learning procedures of parameters with
heterogeneity under the divide-and-combine paradigm, but provides key theoretical guar-
antees for statistical inference, such as consistency and asymptotic normality, while offering
significant computational gains when response dimension M and sample size N are large.
These are useful and innovative contributions to the arsenal of tools for high-dimensional
correlated data analysis, and to the collection of divide-and-combine algorithms, which have
so far concentrated on independently sampled data. In this paper, we focus on the theo-
retical aspects of doubly distributed learning and inference, including a goodness-of-fit test
based on a χ2 statistic. We also study consistency and asymptotic normality of the proposed
estimator as the number of data divisions diverges. This includes theoretical justifications
for distributed inference when the dimension of the response and the number of response
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divisions diverges, which allows the analysis of highly dense outcome data.
The rest of the paper is organized as follows. Section 2 describes the DDIMM, with ex-
amples introduced in Section 3. Section 4 discusses large sample properties of the pro-
posed DDIMM. Section 5 presents the main contribution of the paper, a closed-form meta-
estimator and its implementation in a parallel and scalable computational scheme. Section
6 illustrates the DDIMM’s finite sample performance with simulations. Section 7 concludes
with a discussion. Additional proofs and simulation results are deferred to the Appendices
and Supplemental Material. An R package is available in the Supplemental Material.

2. Formulation

We begin with some notation. Let ‖·‖ be the `2-norm for a D-dimensional vector a and a
D1 ×D2-dimensional matrix A defined by, respectively:

‖a‖ =

(
D∑
d=1

a2
d

)1/2

for a = [ad]
D
d=1 ∈ RD,

‖A‖ =

(
D1∑
d1=1

D2∑
d2=1

A2
d1d2

)1/2

for A = [Ad1d2 ]D1,D2

d1,d2=1 ∈ RD1×D2 .

We define the stacking operator S(·) for matrices {Ajk}J,Kj=1,k=1, Ajk ∈ RD
jk
1 ×D2 , as

S
(
Ajk,Aj′k′

)
=
(
AT
jk AT

j′k′
)T ∈ R(Djk

1 +Dj′k′
1 )×D2 ,

SJ (Ajk) =
(
AT

1k . . . AT
Jk

)T ∈ RD
k
1×D2 ,

SJK (Ajk) =
(
AT

11 . . . AT
J1 . . . AT

1K . . . AT
JK

)T ∈ RD1×D2 ,

where Dk
1 =

∑J
j=1D

jk
1 , D1 =

∑K
k=1D

k
1 . Consider the collection of samples {yi,Xi}Ni=1,

where Xi ∈ RM×q is fixed, Y i ∈ RM , q,M ∈ N. The number of covariates q is considered
fixed in this paper. Let θ, ζ take values in parameter spaces Θ ⊆ Rp, Ξ ⊆ Rd, both compact
subsets of p- and d-dimensional Euclidean space respectively. Let p, d ∈ N, and consider
θ to be the parameter of interest, and ζ to be a potentially large vector of parameters
of secondary interest. Let θ0 ∈ Θ, ζ0 ∈ Ξ be the true values of θ and ζ respectively.
Consider a class P = {Pθ,ζ} of parametric models with associated estimating functions Ψ
of parameter θ (e.g. Ψ can be the derivative of some objective function). Suppose we want
to learn the parameter θ by finding the root of Ψ(θ;y, ζ) = 0, which is computationally
intensive or even prohibitive due to the large dimension M of y, the large sample size N , or
the large dimension d of ζ. We focus on a divide-and-combine approach utilizing modern
distributed computing platforms to alleviate the computational and modeling challenges
posed by analyzing the whole data.

2.1. Double Data Split Procedure

First, for each subject i, DDIMM divides the M -dimensional response yi and its associated
covariates into J blocks, denoted by:

yi =
(
yTi,1 . . . yTi,J

)T
and Xi =

(
XT

i,1 . . . XT
i,J

)T
, i = 1, . . . , N.
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Division into blocks is not restricted to the order of data entry: responses may be grouped
according to pre-specified block memberships, according to, say, substantive scientific knowl-
edge, such as functional regions of the brain. In this paper, with no loss of generality, we use
the order of data entry in the data division procedure. Further, DDIMM randomly splits
the N independent subjects to form K disjoint subject groups

{
yi,jk,Xi,jk

}nk

i=1
. Then each

group has sample size nk, k = 1, . . . ,K, with
∑K

k=1 nk = N . Refer to Table 1 for notation
detail. For ease of exposition, we henceforth use the term “group” to refer to the division
along subjects, and “block” to refer to the division along responses. We also use the term
“block” to refer to the division along both responses and subjects.
We call

{
yi,jk,Xi,jk

}nk

i=1
block (j, k), j = 1, . . . , J and k = 1, . . . ,K. Within block (j, k),

let mj be the dimension of the sub-response, yi,jk = (yi1,jk, . . . , yimj ,jk)
T ∈ Rmj , and

Xi,jk ∈ Rmj×q the associated covariate matrix, with
∑J

j=1mj = M . For each block

j ∈ {1, . . . , J}, we have K independent subject groups
{
yi,jk

}nk,K

i=1,k=1
. In contrast, each

group k ∈ {1, . . . ,K} has nk subjects and for each subject i ∈ {1, . . . , nk}, the J response
blocks

{
yi,jk

}mj

j=1
are dependent.

The primary task is to solve Ψ(θ;y, ζ) = 0 to learn parameter θ ina supervised way over
the entire data. Given the above double data split scheme, this task becomes a divide-and-
combine procedure: the first step is to solve the following system of block-specific estimating
equations: for j ∈ {1, . . . , J}, k ∈ {1, . . . ,K},

Ψjk(θ;yjk, ζjk) = 0, (1)

Gjk(ζjk;yjk,θ) = 0, (2)

where Gjk is an estimating function used to learn parameters ζjk (e.g. correlation pa-

rameters) that are allowed to be heterogeneous across blocks such that ζ = SJK
(
ζjk
)
.

The true values (θ0, ζjk0) of (θ, ζjk) are the values such that Eθ0,ζjk0S(Ψjk(θ0;yjk, ζjk0),

Gjk(ζjk0;yjk,θ0)) = 0. Parameters ζjk0 take values in parameter space Ξjk ⊂ Rdjk for

some djk > 0 such that ζ0 = SJK
(
ζjk0

)
, Ξ = ⨉J,Kj=1,k=1 Ξjk, d =

∑K
k=1

∑J
j=1 djk. Let

ζk0 = SJ
(
ζjk0

)
and ζk = SJ

(
ζjk
)
. This is a similar approach to GEE2, proposed by Zhao

and Prentice (1990), with details also in Liang et al. (1992), where unbiased estimating equa-
tions for the nuisance parameters are added in order to guarantee consistency. In this way,
we impose homogeneity of the parameter of interest θ across blocks but allow heterogeneity
of the parameters of secondary interest. We assume that the class of parametric models P
yields block-specific estimating functions satisfying the following regularity assumptions:

(A.1) (i) Ψjk and Gjk are unbiased; that is, for all θ ∈ Θ, ζjk ∈ Ξjk, Eθ,ζjkS(Ψjk(θ;Y jk,
ζjk),Gjk(ζjk;Y jk,θ)) = 0.

(ii) Eθ0,ζjk0S
(
Ψjk(θ;Y jk, ζjk),Gjk(ζjk;yjk,θ)

)
has a unique zero at (θ0, ζjk0).

(iii) Ψjk and Gjk are additive: for some kernel inference functions ψjk and gjk, they
take the form(

Ψjk(θ;yjk, ζjk)

Gjk(ζjk;yjk,θ)

)
=

1

nk

nk∑
i=1

(
ψjk(θ;yi,jk, ζjk)

gjk(ζjk;yi,jk,θ)

)
.
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We define Ψjk and Gjk as being “weakly regular” based on the above conditions (A.1)
(i)-(iii) in which the defining properties of a regular inference function are applied to its
mean; see Song (2007) Chapter 3.5 for a definition of regular inference functions. Additional
conditions on the class P will be described throughout the paper where appropriate. Within
block (j, k), denote by θ̂jk and ζ̂jk the joint solution to Equations 1 and 2, estimators of θ

and ζjk respectively. For notation purposes, let θ̂list = SJK(θ̂jk), ζ̂k = SJ(ζ̂jk), and ζ̂list =

SJK(ζ̂jk). Due to the homogeneity of θ, the next step is integration of the block-specific

estimators θ̂jk. By contrast, ζ̂jk remain heterogeneous and potentially high-dimensional.
In the rest of the paper, for convenience of notation, we suppress the dependence of Ψjk,
Gjk, ψjk and gjk on yjk and yi,jk:

Ψjk(θ; ζjk) = Ψjk(θ;yjk, ζjk), Gjk(ζjk;θ) = Gjk(ζjk;yjk,θ),

ψi,jk(θ; ζjk) = ψjk(θ;yi,jk, ζjk), gi,jk(ζjk;θ) = gjk(ζjk;yi,jk,θ).

2.2. Integration

Integrating block estimates θ̂jk into an estimator of θ, denoted by θ̂c, will yield a more effi-
cient estimate of θ. In the integration step, our intuition is to treat each system of equations
S
(
Ψjk(θ; ζjk),Gjk(ζjk;θ)

)
= 0 as a “moment condition” on θ contributed by block (j, k),

j = 1, . . . , J , k = 1, . . . ,K. Technically, we want to derive an estimator θ̂c of θ that satisfies
all JK moment conditions that effectively makes use of the JK estimates of θ obtained
from Equations 1 and 2. To address the issue that θ is over-identified by the JK moment
conditions, we invoke Hansen (1982)’s seminal generalized method of moments (GMM) to
combine the moment conditions that arise from each block. Another significant advantage
of GMM is that it allows us to incorporate between-block dependencies, which cannot be
easily done in classical meta-estimation. To this end, define the subject group indicator
δi(k) = 1(subject i is in blocks (j, k) for some k ∈ {1, . . . ,K} and for all j = 1, . . . , J) for
i = 1, . . . , N , k = 1, . . . ,K. For subject i, let

ψi(θ; ζ) = SJK
(
δi(k)ψi,jk(θ; ζjk)

)
, gi(ζ;θ) = SJK

(
δi(k)gi,jk(ζjk;θ)

)
,

where clearly only one SJ
(
δi(k)ψTi,jk(θ; ζjk)

)
is non-zero. Let a⊗2 denote the outer prod-

uct of a vector a with itself, namely a⊗2 = aaT . Then we can define ΨN (θ; ζ) =
(1/N)

∑N
i=1ψi(θ; ζ). It is easy to show that

ΨN (θ; ζ) =
1

N
SJK

(
nk∑
i=1

ψi,jk(θ; ζjk)

)
=

1

N
SJK

(
nkΨjk(θ; ζjk)

)
.

Similarly, define GN (ζ;θ) = (1/N)
∑N

i=1 gi(ζ;θ) = (1/N)SJK
(
nkGjk(ζjk;θ)

)
. Since Ψjk

and Gjk satisfy assumptions (A.1) for each j and k, ΨN and GN are additive, unbiased,
and Eθ0,ζ0S (ΨN (θ; ζ),GN (ζ;θ)) has a unique zero at (θ0, ζ0). For convenience, we denote

TN (θ, ζ) =

(
ΨN (θ; ζ)
GN (ζ;θ)

)
, τ i(θ, ζ) =

(
ψi(θ; ζ)
gi(ζ;θ)

)
. (3)

We assume that the class P yields ψ, g satisfying the following conditions:
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(A.2) (i) Both ψjk and gjk are Lipschitz continuous in θ and ζ, namely for j ∈ {1, . . . , J},
k ∈ {1, . . . ,K}, and some constants cjk, bjk > 0, for all

(
θ1, ζjk1

)
,
(
θ2, ζjk2

)
in

a neighbourhood of (θ0, ζjk0),∥∥ψi,jk(θ1; ζjk1)−ψi,jk(θ2; ζjk2)
∥∥ ≤ cjk ∥∥(θ1, ζjk1)− (θ2, ζjk2)

∥∥ ,∥∥gi,jk(ζjk1;θ1)− gi,jk(ζjk2;θ2)
∥∥ ≤ bjk ∥∥(θ1, ζjk1)− (θ2, ζjk2)

∥∥ .
(ii) The sensitivity matrix −∇θ,ζEθ,ζτ i(θ, ζ) is continuous in a compact neighbour-

hood N(θ0, ζ0) of (θ0, ζ0), and positive definite;

(iii) The variability matrix Eθ0,ζ0
(
τ i(θ, ζ)⊗2

)
is finite and positive-definite.

Note that TN (θ, ζ) = 0 has no unique solution because its dimension is bigger than the
dimension of θ. To overcome this issue, we follow Hansen’s GMM for over-identified pa-
rameters. Let W be the weight matrix in the GMM Equation 4. Classical GMM theory
states that any positive semi-definite matrix W can be used to guarantee consistency and
asymptotic normality of the resulting estimator, and that an optimal choice of W , corre-
sponding to the inverse covariance of the estimating function TN in Equation 3, leads to
an efficient GMM estimator. In our setting, a possible formulation for a GMM estimator
of (θ, ζ) is

(θ̂c, ζ̂c) = arg min
θ,ζ

QN (θ, ζ|W ), where (4)

QN (θ, ζ|W ) = T TN (θ, ζ)WTN (θ, ζ).

In Equation 4, the weight matrix W is a positive semi-definite (JKp + d) × (JKp + d)
matrix. The heterogeneity of ζ allowed by the use of GN can lead to theoretical and
computational challenges due to the high-dimensionality of the parameter, a problem from
which GEE2 also suffers. See Chan et al. (1998) and Carey et al. (1993) for a discussion
on the computational burden of inverting large matrices in GEE2. Note that block-specific
estimators ζ̂list are consistent; the only possible improvement from re-learning ζ in an
iterative procedure between θ̂c and ζ̂c is a gain in efficiency. This is not necessary since ζ
are parameters of secondary interest and their efficiency is in general not of interest. We
will derive a closed-form meta-estimator of θ that avoids re-learning of ζ in Section 5.
Following the work of Hansen (1982), we define a particular instance of the estimator in
Equation 4 by specifying W as the inverse sample covariance of TN . We will show in
Section 4 that this choice of W is optimal for the efficiency of the resulting estimator. Let
V̂ N be the sample covariance of TN (θ0, ζ0):

V̂ N =
1

N

N∑
i=1

(
τ i(θ̂list, ζ̂list)

)⊗2
=

1

N

N∑
i=1

(
ψi(θ̂list; ζ̂list)

gi(ζ̂list; θ̂list)

)⊗2

, (5)

where ψi(θ̂list; ζ̂list) = SJK
(
δi(k)ψi,jk(θ̂jk; ζ̂jk)

)
. Letting W = V̂

−1

N yields the following

optimal GMM estimator:

(θ̂opt, ζ̂opt) = arg min
θ,ζ

T TN (θ, ζ)V̂
−1

N TN (θ, ζ). (6)
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We assume thatW and V̂ N are nonsingular; see Han and Song (2011) for optimal weighting
matrix with QIF when the sample covariance is ill-defined. Before presenting large-sample
properties of (θ̂c, ζ̂c) and (θ̂opt, ζ̂opt) in Section 4, we demonstrate in Section 3 the flexibility
of our framework through several important supervised learning methods.

3. Examples

We now present five examples to illustrate the flexibility of the unifying framework consid-
ered in this paper.

3.1. Likelihood-Based Methods

Consider the multidimensional regression model h(µi,jk) = Xi,jk( θ
T βTjk )T , where µi,jk

= E(Y i,jk|Xi,jk,θ,βjk) is the mean vector of Y i,jk given Xi,jk, βjk, and the p-dimensional
parameter θ (p ≤ q the number of covariates, which may include an intercept), and h is a
known component-wise link function. Let ζjk be parameters of the second-order moments
of Y i,jk, such as dispersion parameters, and parameters in βjk (which may be empty). If the
full likelihood of Y i,jk is computationally tractable, Ψjk and Gjk correspond to the score

functions, and θ̂jk and ζ̂jk may be given by the maximum likelihood estimates (MLEs).
DDIMM can be applied straightforwardly by following the procedure in Section 2.
If the full likelihood is computationally intractable or difficult to construct, one can instead
use pseudo-likelihoods such as the pairwise composite likelihood. The pairwise composite
likelihood, originally proposed by Lindsay (1988) and detailed in Varin et al. (2011), provides
the following forms of the equations for Equations 1 and 2:

Ψjk(θ; ζjk) =
1

nk

nk∑
i=1

mj−1∑
r=1

mj∑
t=r+1

∇θ log fj(yir,jk; yit,jk;θ, ζjk,Xi,jk),

Gjk(ζjk;θ) =
1

nk

nk∑
i=1

mj−1∑
r=1

mj∑
t=r+1

∇ζjk log fj(yir,jk; yit,jk;θ, ζjk,Xi,jk),

for some bivariate marginal fj which can be chosen according to the nature of the response
data. As long as the bivariate marginals fj are correctly specified, the composite score func-
tions Ψjk and Gjk satisfy the regularity conditions in (A.1). Hence the DDIMM can be
used to overcome the computational challenges related to the MLE and pairwise composite
likelihood. We refer readers to Chapter 6 of Song (2007) and Chapter 3 of Joe (2014) for
details on constructing multivariate distributions using Gaussian and vine copulas respec-
tively, but note that direct computation of the MLE is computationally very challenging
when mj ≥ 4. Examples of applications of Gaussian copulas can be found in Song et al.
(2009), Bodnar et al. (2010), Bai et al. (2014), and in the importance sampling algorithm
proposed in Masarotto and Varin (2012), among others.

3.2. Generalized Estimating Equations

More generally, Wedderburn (1974)’s quasi-likelihood is a popular alternative method of
supervised learning that does not require a fully specified multidimensional likelihood; it
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receives a full treatment in Heyde (1997). Consider Liang and Zeger (1986)’s marginal
mean model h(µi,jk) = Xi,jk( θ

T βTjk )T for the analysis of longitudinal data, where
µi,jk = E(Y i,jk|Xi,jk,θ,βjk) is the marginal mean vector of serially correlated outcomes
Y i,jk given Xi,jk, βjk, and the p-dimensional parameter θ (p ≤ q), and h is a known
component-wise link function. In this setting, ζjk consists of parameters in βjk (which
may be empty), parameters for the variances of Yit,jk, t = 1, . . . ,mj , and a nuisance pa-
rameter αjk which fully characterizes a working correlation matrix Rjk(αjk). In the case
where βjk is empty, the generalized estimating equation (GEE) proposed by Liang and

Zeger (1986) yields the the kernel inference function ψjk(θ; ζjk) = DT
i,jkΣ

−1
i,jkri,jk in (A.1)

(iii), where Di,jk = ∇θµi,jk, ri,jk = yi,jk − µi,jk, and Σi,jk = Ai,jkRjk(αjk)Ai,jk, where

Ai,jk = diag
{

(V ar(Yit,jk))
1/2
}mj

t=1
. In GEE2, Gjk in Equation 2 is specified as another

unbiased inference function satisfying (A.1) and (A.2). DDIMM provides a procedure for
the application of distributed methods to high-dimensional longitudinal/clustered data.

3.3. M-Estimation

DDIMM can be applied to many learning methods proposed in robust statistics. In the
robust statistics literature due to Huber (1964) and, more generally, Huber (2009), an M-
estimator is defined as the root of an implicit equation of the form Ψjk(θ̂jk) =

∑nk
i=1ψjk(θ̂jk)

= 0, where ψjk(θ) = ∇θρ(θ), ρ is a suitable function that primarily aims to provide estima-

tors robust to influential data points, and θ̂jk ∈ Rp, and ζjk is empty or known; additional
details are available in Huber (2009) for the case when ζjk is unknown. In the context
of longitudinal data, Wang et al. (2005) robustify the generalized estimating equations of
Liang and Zeger (1986) by replacing the standardized residuals with Huber’s M -residuals.

3.4. Joint Mean-Variance Modeling

Following Pan and Mackenzie (2003), one can jointly model the marginal means and co-
variances of the longitudinal responses with h(µi,jk) = Xi,jk,1β, log(σ2

i,jk) = Xi,jk,2λ, and
φirt,jk = Xirt,jk,3γ for 1 ≤ t < r ≤ mj , where h is a known component-wise link function,
β ∈ Rq1 , λ ∈ Rq2 and γ ∈ Rq3 are unconstrained parameters, µi,jk = E(Y i,jk|Xi,jk,1,θ)

and Xi,jk,1 ∈ Rmj×q1 a submatrix of Xi,jk, σ
2
i,jk = S (V ar(Yir,jk))

mj

r=1 and Xi,jk,2 ∈ Rmj×q2

a submatrix of Xi,jk, and φirt,jk are specified in Zhang et al. (2015a). Estimating functions
Ψjk and Gjk in Equations 1 and 2 are given in detail in Zhang et al. (2015a). There is
some choice depending on the problem considered as to whether θ = β, θ = (λ,γ), or
θ = (β,λ,γ). In the first case, learning of variance parameters only helps improve esti-
mation efficiency. This type of framework is widely applied in biomedical studies where
the mean parameters are of primary interest. In the second case, learning of covariance
parameters is of interest and β is treated as a nuisance parameter. This is the situation
where prediction is of primary interest, such as in kriging in spatial data analysis. In the
third case, Gjk is null, and learning of variance parameters is of interest to the investigator.
This case occurs for example in the study of volatility for risk management in financial data
analysis.

9



Hector and Song

3.5. Marginal Quantile Regression for Correlated Data

Consider the marginal quantile regression model QYit,jk|Xit,jk
(τ) = Xit,jkθ, where

QYit,jk|Xit,jk
(τ) = F−1

Yit,jk|Xit,jk
(τ) = inf{yit,jk : FYit,jk|Xit,jk

(yit,jk) ≥ τ} is the τth quantile

of Yit,jk|Xit,jk, τ ∈ (0, 1), where fYit,jk|Xit,jk
(yit,jk) is the conditional distribution function

of Yit,jk given Xit,jk, t = 1, . . . ,mj . Many estimating functions Ψjk and Gjk for the
learning of θ and association parameters ζjk of Y i,jk have been proposed; see Jung (1996),
Fu and Wang (2012), Lu and Fan (2015), and Yang et al. (2017) for examples.

Each of these five examples requires additional work to fully develop a divide-and-conquer
strategy via DDIMM, including specific computational details. Here we only present the
general framework with a high-level discussion that sheds light on DDIMM’s promising
generality and flexibility, and its coverage of a wide range of supervised learning methods.
The theoretical results presented in Sections 4 and 5 are developed under a general unified
framework of estimating functions that includes the above five examples as special cases.

4. Asymptotic Properties

In this section we assume that K and J are fixed; this assumption will be relaxed in Section
5. Let nmin = mink=1,...,K nk and nmax = maxk=1,...,K nk. Suppose W

p→ w as nmin → ∞.

In this section we study the asymptotic properties of the GMM estimator (θ̂c, ζ̂c) proposed
in Equation 4 and its optimal version proposed in Equation 6. We assume throughout that
subjects are monotonically allocated to subject groups; that is, as nmin → ∞, a subject
cannot be reallocated to another group once it has been assigned to a subject group. Define
the variability matrix of τ i(θ, ζ) in Equation 3 as

v(θ, ζ) = V arθ0,ζ0 {τ i(θ, ζ)} =

(
vψ(θ, ζ) vψg(θ, ζ)
vTψg(θ, ζ) vg(θ, ζ)

)
where vψ(θ, ζ) = V arθ0,ζ0 {ψi(θ; ζ)}, vg(θ, ζ) = V arθ0,ζ0 {gi(ζ;θ)}, and vψg(θ, ζ) =
Eθ0,ζ0

{
ψi(θ; ζ)gTi (ζ;θ)

}
. Let the sensitivity matrix of τ i(θ, ζ) be

s(θ, ζ) = −∇θ,ζEθ0,ζ0τ i(θ, ζ) =

(
sθψ(θ, ζ) sζψ(θ, ζ)

sθg(θ, ζ) sζg(θ, ζ)

)
, where (7)

sθψ(θ, ζ) = SJK
(
nk
N s

θ
ψjk

(θ, ζjk)
)
, sζψ(θ, ζ) = diag

{
nk
N s

ζ
ψjk

(θ, ζjk)
}J,K
j=1,k=1

,

sθg(θ, ζ) = SJK
(
nk
N s

θ
gjk

(θ, ζjk)
)
, sζg(θ, ζ) = diag

{
nk
N s

ζ
gjk(θ, ζjk)

}J,K
j=1,k=1

sjk(θ, ζjk) =

(
sθψjk

(θ, ζjk) sζψjk
(θ, ζjk)

sθgjk(θ, ζjk) sζgjk(θ, ζjk)

)
.

Following Theorem 3.4 of Song (2007), block-specific estimates θ̂jk and ζ̂jk are consistent
given assumptions (A.1). Consistency and asymptotic normality of the GMM estimator
(θ̂c, ζ̂c) in Equation 4 have been established by Hansen (1982) and, more generally, by
Newey and McFadden (1994). To establish consistency and asymptotic normality for the
combined estimator (θ̂c, ζ̂c), we consider the following additional regularity conditions:
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(A.3) Following Newey and McFadden (1994), define

Q0(θ, ζ|W ) = Eθ,ζ
{
T TN (θ, ζ)

}
wEθ,ζ {TN (θ, ζ)} .

AssumeQ0(θ, ζ|W ) is twice-continuously differentiable in a neighbourhood of (θ0, ζ0).

(A.4) Let (θ̂c, ζ̂c) = arg min
θ,ζ

QN (θ, ζ|W ). Following Newey and McFadden (1994), assume

QN (θ̂c, ζ̂c|W ) ≤ inf
θ∈Θ,ζ∈Ξ

QN (θ, ζ|W )+εN with εN = op(1). In addition, assume that

θ0, ζ0 are interior points of Θ and Ξ respectively, and that for any δN → 0,

sup
‖(θ,ζ)−(θ0,ζ0)‖≤δN

N1/2

1+N1/2‖(θ,ζ)−(θ0,ζ0)‖

∥∥TN (θ, ζ)− TN (θ0, ζ0)− Eθ0,ζ0TN (θ, ζ)
∥∥ = op(1).

Assumption (A.4) characterizes types of “stochastic equicontinuity” of non-smooth objec-
tive functions. As outlined in Newey and McFadden (1994), it essentially requires the
convergence of TN (θ, ζ) to TN (θ0, ζ0) be uniform over any (shrinking) neighbourhood of
(θ0, ζ0) in estimating procedures, which is the standard condition widely used in the lit-
erature to relax the assumption of differentiability of objective functions. For most of the
examples in Section 3, since the estimating functions are continuously differentiable, (A.4)
holds automatically. Assumption (A.4) is mostly used for generalizability beyond contin-
uous differentiability, so that our framework allows a broader class of methods. Checking
assumption (A.4) has been extensively discussed in the literature, including some primitive
conditions given in Pollard (1985) and Andrews (1994). We refer the reader to Chapter 7
of Newey and McFadden (1994) for a complete discussion of the topic. We may empiri-
cally check (A.4) by considering (θ̂, ζ̂) a N1/2-consistent estimator of (θ0, ζ0) and choosing
(θ∗, ζ∗) in a small ball BδN centered at (θ̂, ζ̂) of radius δN = N−1. When the analytic form
of ETN (θ, ζ) is available, which is the case in most applications, we can monitor the form

N1/2
∥∥∥TN (θ∗, ζ∗)− TN (θ̂, ζ̂)− ETN (θ∗, ζ∗)

∥∥∥
1 +N1/2

∥∥∥(θ∗, ζ∗)− (θ̂, ζ̂)
∥∥∥

for a sequence of increasingly large sub-samples of subjects to empirically check how this
form evolves as N increases. This form can be computed in a distributed fashion since TN
corresponds to stacked block estimating equations. We can choose (θ̂, ζ̂) as the DDIMM
estimator, or a computationally cheaper meta-estimator such as an average of block estima-
tors. If an analytic form for ETN (θ, ζ) is not available, a bootstrap method may be used
for its estimation.
Heuristically, Theorems 1 and 2 do not require the differentiability of TN and QN . Instead,
they require the differentiability of their population versions, and that TN behaves “nicely”
in a neighbourhood of (θ0, ζ0), in the sense that higher order terms are asymptotically
ignorable. The following two theorems state the consistency and asymptotic normality of
(θ̂c, ζ̂c) given in Equation 4 under Newey and McFadden’s mild moment conditions given
in (A.3) and (A.4).

Theorem 1 (Consistency of (θ̂c, ζ̂c)) Suppose assumptions (A.1)-(A.3) hold with

(θ̂c, ζ̂c) defined in Equation 4. Then (θ̂c, ζ̂c)
p→ (θ0, ζ0) as nmin →∞.

11
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The proof of Theorem 1 follows closely the steps given in Hansen (1982) and Newey and
McFadden (1994), and thus is omitted.

Theorem 2 (Asymptotic normality of (θ̂c, ζ̂c) Suppose assumptions (A.1)-(A.4) hold
with (θ̂c, ζ̂c) defined in Equation 4. Then as nmin →∞,

N1/2

(
θ̂c − θ0

ζ̂c − ζ0

)
d→ N

(
0, j−1(θ0, ζ0)s(θ0, ζ0)ṽ(θ0, ζ0)sT (θ0, ζ0)j−1(θ0, ζ0)

)
,

where ṽ(θ, ζ) = wv(θ, ζ)w, and where the Godambe information j(θ, ζ) of TN (θ, ζ) takes
the form j(θ, ζ) = s(θ, ζ)wsT (θ, ζ).

The proof of Theorem 2 follows easily from Theorem 7.2 in Newey and McFadden (1994)
and Theorem 1 above. We note that requiring K to be finite implies that N and nmin are
asymptotically of the same order. We will relax this assumption in Section 5. Conditions
(A.3) and (A.4) allow us to consider non-differentiable kernel inference functions in the
block (j, k) analysis, extending Hector and Song (2020)’s DIMM beyond CL kernel infer-
ence functions. We can now consider quantile regression, M-estimation, and more general
estimation functions than the score or CL score equations.
A test of the over-identifying restrictions follows from Hansen (1982) and Hector and Song
(2020). This test is useful for detecting invalid moment restrictions, which can inform our
choice of data partition and model. Formally, we show in Theorem 3 that the objective
function NQN evaluated at (θ̂c, ζ̂c) follows a χ2 distribution with (JK − 1)p degrees of
freedom. Unfortunately, it may be difficult to tell if invalid moment restrictions stem from
an inappropriate data split or incorrect model specification. Residual analysis for model
diagnostics can remove doubt in the latter case.

Theorem 3 (Test of over-identifying restrictions) Suppose assumptions (A.1)-(A.4)

hold with (θ̂c, ζ̂c) defined in Equation 4. Then as nmin →∞, NQN (θ̂c, ζ̂c|W )
d→ χ2

(JK−1)p.

The proof of Theorem 3 can be carried out with some minor changes from that of Theorem
3 in Hector and Song (2020). The GMM provides an objective function with which to do
model selection even when the block analyses do not, such as with GEE and M-estimation.
In the following, Theorem 4 and Corollary 5 show our combined GMM estimator derived
from Equation 6 is optimal in the sense defined by Hansen (1982): it has an asymptotic
covariance matrix at least as small (in terms of the Loewner ordering) as any other estimator
exploiting the same over-identifying restrictions. We refer to this property as “Hansen
optimality”.

Theorem 4 Suppose assumptions (A.1)-(A.2) hold. Then as nmin →∞, V̂ N
p→ v(θ0, ζ0),

i.e. w = v−1(θ0, ζ0).

Proof The proof uses the consistency of the block estimators and the Central Limit
Theorem, and is given in the Supplemental Material.
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Corollary 5 (Hansen optimality) Suppose assumptions (A.1)-(A.4) hold with (θ̂c, ζ̂c)
defined in Equation 4. Let j(θ, ζ) as given in Theorem 2. Then as nmin →∞,

N1/2

(
θ̂opt − θ0

ζ̂opt − ζ0

)
d→ N

(
0, j−1(θ0, ζ0)

)
.

The theoretical results given in Theorems 1-4 provide a framework for constructing asymp-
totic confidence intervals and conducting hypothesis tests, so that we can perform inference
for θ when M and/or N are very large. Using an optimal weight matrix improves sta-
tistical power so DDIMM may detect some signals that other methods may miss. Since
we consider a broad class of models P, there are no general efficiency results about the
block-specific estimator θ̂jk. When a learning method based on Ψjk has known efficiency
results and performs well enough, DDIMM generally inherits “local” efficiency to achieve
overall efficiency.

Remark 6 We discuss efficiency for selected examples in Section 3.

(i) In Example 3.1, when the score function exists and satisfies mild regularity condi-
tions, its variance is given by Fisher’s information, and is a lower bound on the variances
of estimating functions for θ and ζ. This, coupled with Hansen’s optimality, means that
using the score function for ψjk and gjk yields an efficient estimator of θ and ζ. In an un-
published dissertation, Jin (2011) studied the efficiency of the pairwise composite likelihood
under different correlation structures. Hector and Song (2020) showed empirically that the
efficiency of the pairwise composite likelihood propagates to the combined estimator.

(ii) In Example 3.2, it is known that the GEE estimator θ̂jk in Example 3.2 is semi-
parametrically efficient when the correlation structure of the response yi,jk is correctly spec-
ified. This, coupled with Hansen’s optimality, means that using GEE’s for ψjk with the
correct correlation structure of the response yi,jk yields an efficient estimator of θ.

Remark 7 The GMM estimator (θ̂opt, ζ̂opt) can be interpreted as maximizing an ex-
tension of the confidence distribution density, as discussed in Hector and Song (2020).
The confidence distribution approach is used for independent data in Xie and Singh
(2013). Briefly, we can define the confidence estimating function (CEF) as U(θ, ζ) =

Φ(N1/2V̂
−1/2

N TN (θ, ζ)), where Φ(·) is the (JKp+ d)-variate standard normal distribution
function. Clearly, U(θ, ζ) is asymptotically standard uniform at (θ0, ζ0) as long as V̂ N is
a consistent estimator of the covariance of TN . Then we can define the density of the CEF

as u(θ, ζ) = φ(N1/2V̂
−1/2

N TN (θ, ζ)). Maximizing u(θ, ζ) with respect to (θ, ζ) yields the
minimization defined in Equation 6.

By framing our estimator as a GMM estimator, the theoretical framework of DIMM es-
tablished only for CL can be extended to include a data split at the subject level and a
generalization of Ψjk and Gjk. Adding moment conditions allows the proposed method
to enjoy the power and versatility of the GMM, and the necessary theoretical results to
support its use. This divide-and-conquer strategy benefits from handling low dimensional
blocks of data and estimating equations, yielding tremendous computational gains.
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5. Distributed Estimation and Inference

Despite the computational gains offered by the divide-and-combine procedure and the GMM
estimator, iteratively finding the solution (θ̂opt, ζ̂opt) (or (θ̂c, ζ̂c)) to Equation 6 can be slow
due to the high-dimensionality of parameter ζ and the need to repeatedly evaluate Ψjk and
Gjk. To overcome this computational bottleneck, we propose a meta-estimator derived from
Equation 6 that delivers a closed-form estimator via a linear function of block estimates
(θ̂list, ζ̂list). We define the DDIMM estimator for (θ, ζ):(

θ̂DDIMM

ζ̂DDIMM

)
=

(
K∑
k=1

J∑
i=1

n2
kĈk,i

)−1 K∑
k=1

J∑
i=1

n2
kĈk,i

(
θ̂ik
ζ̂list

)
. (8)

where Ĉk,i is a function of sample variability and sensitivity matrices and block-specific

estimators θ̂jk and ζ̂jk defined in detail in Section 5.1. If we do not plan to conduct

inference for ζ, which is treated as a nuisance parameter, taking
[
Ĉ
−1
]
p:

to be rows 1 to p

of matrix (
∑K

k=1

∑J
i=1 n

2
kĈk,i)

−1 leads to the closed-form estimator of θ:

θ̂DDIMM =
[
Ĉ
−1
]
p:

K∑
k=1

J∑
i=1

n2
kĈk,i

(
θ̂
T

ik ζ̂
T

list

)T
. (9)

We briefly define sample sensitivity matrices that will appear in the main body of the paper.

Let Sθψjk
(θ, ζjk) be a n

1/2
k -consistent sample estimator of sθψjk

(θ, ζjk), and similarly define

Sζψjk
(θ, ζjk), S

θ
gjk

(θ, ζjk) and Sζgjk(θ, ζjk). Let

Sjk(θ, ζjk) =

(
Sθψjk

(θ, ζjk) Sζψjk
(θ, ζjk)

Sθgjk(θ, ζjk) Sζgjk(θ, ζjk)

)
.

Note that the uppercase S denotes the sample sensitivity matrix, and the lower-case s de-

notes the population sensitivity matrix. Let Ŝjk = Sjk(θ̂jk, ζ̂jk) and similarly define Ŝ
θ

ψjk
,

Ŝ
ζ

ψjk
, Ŝ

θ

gjk
and Ŝ

ζ

gjk
. Sensitivity formulas are summarized in Table A.1 in Appendix A.1.

The DDIMM estimator in Equation 9 can be implemented in a fully parallelized and scal-
able computational scheme, where only one pass through each block of data is required.
The block analyses are run on parallel CPUs, and return the values of summary statis-
tics {θ̂jk, ζ̂jk,ψi,jk(θ̂jk; ζ̂jk), gi,jk(ζ̂jk; θ̂jk), Ŝjk}

J,K
j,k=1 to the main computing node, which

computes θ̂DDIMM in Equation 9 in one step.

5.1. Construction of Ĉk,i

We give details on the construction of Ĉk,i. Readers may wish to omit this section on a
first reading, as these details are not necessary for an understanding of the main body of
the paper. We consider the optimal case where the GMM weighting matrix takes the form:

W = V̂
−1

N =

(
V̂ N,ψ V̂ N,ψg

V̂
T

N,ψg V̂ N,g

)−1

=

(
V̂
ψ

N V̂
ψg

N

V̂
ψg T

N V̂
g

N

)
.
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For convenience, we introduce a subsetting operation, with technical details available in

Appendix A.2: we let
[
V̂
ψ

N

]
ij:k

subset the rows for the parameters corresponding to block

(i, k) and the columns for the parameters corresponding to block (j, k) of matrix V̂
ψ

N .

Similarly define
[
V̂
g

N

]
ij:k

, and
[
V̂
ψg

N

]
ij:k

. For η ∈ {θ, ζ}, let

Â
η

k,ij =

(
Ŝ
θ T

ψjk

[
V̂
ψ

N

]
ji:k

+ Ŝ
θ T

gjk

[
V̂
ψg T

N

]
ji:k

)
Ŝ
η

ψik
+

(
Ŝ
θ T

ψjk

[
V̂
ψg

N

]
ji:k

+ Ŝ
θ T

gjk

[
V̂
g

N

]
ji:k

)
Ŝ
η

gik
,

B̂
η

k,ij =

(
Ŝ
ζ T

ψjk

[
V̂
ψ

N

]
ji:k

+ Ŝ
ζ T

gjk

[
V̂
ψg T

N

]
ji:k

)
Ŝ
η

ψik
+

(
Ŝ
ζ T

ψjk

[
V̂
ψg

N

]
ji:k

+ Ŝ
ζ T

gjk

[
V̂
g

N

]
ji:k

)
Ŝ
η

gik
.

Define Dik as the sum of the dimensions of ζ11, . . . , ζi−1k, and Dk as the sum of the

dimensions of ζ11, . . . , ζJk−1, with technical details in Appendix A.3. Let dk =
∑J

j=1 djk.
Then we can define the following,

Ĉk,i =



J∑
j=1
Â
θ

k,ij 0p×Dik

J∑
j=1
Â
ζ

k,ij 0p×(d−dik−Dik)

0Dk×(p+d)

B̂
θ

k,i1 0d1k×Dik B̂
ζ

k,i1 0d1k×(d−dik−Dik)
...

B̂
θ

k,iJ 0dJk×Dik B̂
ζ

k,iJ 0dJk×(d−dik−Dik)

0(d−dk−Dk)×(p+d)


. (10)

5.2. Asymptotic Results for K and J Fixed

In this section we assume that K and J are fixed, which will be relaxed in Sections 5.3
and 5.4. Recall that we assume subjects are monotonically allocated to subject groups: as
nmin → ∞, a subject cannot be reallocated to another group once it has been assigned to
a subject group. Consider the following condition, which is a specification on the rate of
convergence of Newey and McFadden (1994)’s condition in (A.4):

(A.4∗) For each j = 1, . . . , J , k = 1, . . . ,K, θ̂jk = θ0 +Op(n
−1/2
k ) and ζ̂jk = ζjk0 +Op(n

−1/2
k ).

For any δnk
→∞,

sup
‖(θ,ζjk)−(θ0,ζjk0)‖≤δnk

n
1/2
k

1+n
1/2
k ‖(θ,ζjk)−(θ0,ζjk0)‖

∥∥∥T jk(θ, ζjk)− T jk(θ0, ζjk0)− Eθ0,ζjk0T jk(θ, ζjk)
∥∥∥ = Op(n

−1/2
k ).

A similar discussion to the one for (A.4) can be given for (A.4∗). Assumption (A.4∗) is
satisfied when moment conditions are continuously differentiable. Procedures for checking
(A.4∗) for non-smooth objective functions may be developed similarly to those for checking
(A.4). Some large-sample results can be established which are helpful in studying the
asymptotic behaviour of θ̂DDIMM .

Lemma 8 Suppose assumptions (A.1), (A.2) and (A.4∗) hold. Then we have consistent
estimation of information matrices:

V̂ N = v(θ0, ζ0) +Op(N
−1/2),
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Ŝjk = sjk(θ0, ζjk0) +Op(n
−1/2
k ) for each j, k, and

1

N2

K∑
k=1

J∑
i=1

n2
kĈk,i = Ŝ

T
V̂
−1

N Ŝ = j(θ0, ζ0) +Op(N
−1/2),

where Ŝ =

 S
(
nk
N Ŝ

θ

ψjk

)J,K
j=1,k=1

diag
{
nk
N Ŝ

ζ

ψjk

}J,K
j=1,k=1

S
(
nk
N Ŝ

θ

gjk

)J,K
j=1,k=1

diag
{
nk
N Ŝ

ζ

gjk

}J,K
j=1,k=1

 .

Proof A detailed proof is given in the Supplemental Material.

We show in Theorem 9 that the proposed closed-form estimator (θ̂DDIMM , ζ̂DDIMM ) in
Equation 8 is consistent and asymptotically normally distributed.

Theorem 9 Suppose assumptions (A.1), (A.2) and (A.4∗) hold. Let j(θ, ζ) as given in
Theorem 2. As nmin →∞,

N1/2

(
θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

)
d→ N

(
0, j−1(θ0, ζ0)

)
.

Proof [Proof of Theorem 9:] Here we present major steps, with all necessary details avail-
able in Appendix B.1. First, we show that θ̂DDIMM and ζ̂DDIMM are consistent. Define

λ(θ, ζ) =
1

N2

K∑
k=1

J∑
i=1

n2
kĈk,i

(
θ − θ̂ik
ζ − ζ̂list

)
. (11)

By definition, λ(θ̂DDIMM , ζ̂DDIMM ) = 0. As shown in Lemma B.1.1 in Appendix B.1,

λ(θ0, ζ0)
p→ 0 as nmin → ∞. Given that ∇θ,ζλ(θ, ζ) exists and is nonsingular, for some

(θ∗, ζ∗) between (θ̂DDIMM , ζ̂DDIMM ) and (θ0, ζ0), the first-order Taylor expansion leads
to

λ(θ̂DDIMM , ζ̂DDIMM )− λ(θ0, ζ0) = ∇θ,ζλ(θ, ζ)|θ∗,ζ∗
(
θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

)
, (12)

which converges in probability to 0 as nmin →∞. This implies that (θ̂DDIMM , ζ̂DDIMM )
p→

(θ0, ζ0) as nmin →∞.
Now we derive the distribution of (θ̂DDIMM , ζ̂DDIMM ). With a slight abuse of notation,

let θ̂list − θ0 = SJK
(
θ̂jk − θ0

)
. We show in Lemma B.1.2 in Appendix B.1 that

(
Ψjk(θ0; ζjk0)

Gjk(ζjk0;θ0)

)
= Ŝjk

(
θ̂jk − θ0

ζ̂jk − ζjk0

)
+Op(n

−1
k ). (13)

Recall the form of TN in Equation 3. By the Central Limit Theorem, N1/2TN (θ0, ζ0)
d→

N (0,v(θ0, ζ0)). Then with Ŝ defined in Lemma 8, it follows from Equation 13 that

N1/2Ŝ
(

(θ̂list − θ0)T (ζ̂list − ζ0)T
)T d→ N (0,v(θ0, ζ0)) .
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Moreover, by Lemma 8 and Slutsky’s theorem we have:

N1/2
(

(θ̂list − θ0)T (ζ̂list − ζ0)T
)T d→ N

(
0, j−1(θ0, ζ0)

)
.

Using the fact that the sum of jointly (asymptotically) Normal variables is (asymptotically)
normal, by Lemma 8 and Slutsky’s theorem again, we have

N1/2

(
θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

)
= N1/2

(
K∑
k=1

J∑
i=1

n2
kĈk,i

)−1 K∑
k=1

J∑
i=1

n2
kĈk,i

(
θ̂ik − θ0

ζ̂list − ζ0

)

is asymptotically distributed N (0, j−1(θ0, ζ0)).

This key theorem allows us to use θ̂DDIMM , which is more computationally attractive than
θ̂opt defined in Equation 6, without sacrificing any of the nice asymptotic properties for
inference. Additionally, it follows easily from Theorem 9 that, under suitable conditions,
the closed-form estimator (θ̂DDIMM , ζ̂DDIMM ) in Equation 8 has the same asymptotic
distribution as and is asymptotically equivalent to the GMM estimator θ̂opt in Equation 6.

Corollary 10 Suppose assumptions (A.1)-(A.4∗) hold with (θ̂opt, ζ̂opt) defined in Equation

6. Then (θ̂DDIMM , ζ̂DDIMM ) and (θ̂opt, ζ̂opt) are asymptotically equivalent: as nmin →∞,

N1/2

∥∥∥∥∥
(
θ̂DDIMM − θ̂opt
ζ̂DDIMM − ζ̂opt

)∥∥∥∥∥ p→ 0.

Proof A detailed proof is given in the Supplemental Material.

The computation of θ̂DDIMM in Equation 9 relies solely on block-specific estimators
(θ̂list, ζ̂list) and values of summary statistics from each block. To guarantee the appropriate
asymptotic distribution of θ̂DDIMM , we assume in condition (A.4∗) that these block-specific
estimators are N1/2 consistent estimators of the true values, which restricts the scope of
possible block-specific inference methods. For inference methods not satisfying this N1/2

consistency in condition (A.4∗), it is still possible to use θ̂opt in Equation 6.

5.3. Asymptotic Results for Diverging K with J Fixed

We show in Theorem 11 that the asymptotic distribution of (θ̂DDIMM , ζ̂DDIMM ) remains
unchanged as the number of subject groups K grows with the sample size.

Theorem 11 Suppose N δ−1/2K is bounded as nmin →∞ for a positive constant δ < 1
2 , and

assumptions (A.1), (A.2) and (A.4∗) hold. Let H ∈ Rh×(p+d) a matrix of rank r ∈ N, h ∈ N,
r ≤ h, with finite maximum singular value σ̄(H) <∞. Let j(θ, ζ) as given in Theorem 2.
Then, as nmin → ∞, we show that the limiting value jH(θ0, ζ0) of Hj−1(θ0, ζ0)HT is a
positive semi-definite and symmetric variance matrix, and that

N1/2H

(
θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

)
d→ N (0, jH(θ0, ζ0)) .
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Proof [Proof of Theorem 11] Here we present major steps, with all necessary details avail-
able in Appendix B.2. First, we know that ‖H‖ ≤ rσ̄(H). Let λ(θ, ζ) defined by Equation
11, such that λ(θ̂DDIMM , ζ̂DDIMM ) = 0. We show in Lemma B.2.1 in Appendix B.2 that

‖λ(θ0, ζ0)‖ = Op(N
−1/2−δn

1/2
max) and

∥∥∥{∇θ,ζλ(θ, ζ)}−1
∥∥∥ = Op

(
N1/2+δn−1

max

)
. From the

first-order Taylor expansion in Equation 12, we have∥∥∥∥∥H
(
θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

)∥∥∥∥∥ ≤ ‖H‖∥∥∥(∇θ,ζλ(θ, ζ)|θ∗,ζ∗
)−1
∥∥∥ ‖λ(θ0, ζ0)‖

≤ rσ̄(H)Op(n
−1/2
max ).

Then H(θ̂
T

DDIMM , ζ̂
T

DDIMM )T −H(θT0 , ζ
T
0 )T

p→ 0 as nmin →∞.

To derive the distribution of H(θ̂
T

DDIMM , ζ̂
T

DDIMM )T , first consider an arbitrary k ∈
{1, . . . ,K}. For convenience, denote

T k(θ, ζk) = S
(
SJ
(
Ψjk(θ; ζjk)

)
, SJ

(
Gjk(ζjk;θ)

))
,

τ i,k(θ, ζk) = S
(
SJ
(
ψi,jk(θ; ζjk)

)
, SJ

(
gi,jk(ζjk;θ)

))
.

By the Central Limit Theorem, n
1/2
k T k(θ0, ζk0) = n

−1/2
k

∑nk
i=1 τ i,k(θ0, ζk0)

d→
N (0,vk(θ0, ζk0)) as nk →∞, where vk(θ, ζk) = V arθ0,ζk0 {τ i,k(θ, ζk)}. Define

sk(θ, ζk) =

 SJ
(
sθψjk

(θ, ζjk)
)

diag
{
sζψjk

(θ, ζjk)
}J
j=1

SJ
(
sθgjk(θ, ζjk)

)
diag

{
sζgjk(θ, ζjk)

}J
j=1

 , and

jk(θ, ζk) = sTk (θ, ζ)v−1
k (θ, ζk)sk(θ, ζk).

By the same arguments as in the proof of Theorem 9,

n
1/2
k jk(θ0, ζk0)

 S
(
θ̂jk − θ0

)J
j=1

ζ̂k − ζk0

 d→ N
(
0, j−1

k (θ0, ζk0)
)
.

Note that the above vectors are independent for k = 1, . . . ,K. We establish in Lemma
B.2.2 in Appendix B.2 that, for some affine transformation matrices Ek, k = 1, . . . ,K, of
0’s and 1’s,

n2
k

N2

J∑
i=1

Ĉk,i

(
θ̂ik − θ0

ζ̂list − ζ0

)
=
nk
N
EkZk +Op

(
N−1

)
,

and
n2
k

N2

J∑
i=1

Ĉk,i =
nk
N
Ekjk(θ0, ζk0)ET

k +Op

(
n

1/2
k N−1

)
,

where n
1/2
k Zk

d→ N
(
0, j−1

k (θ0, ζk0)
)
. It is clear that j(θ, ζ) =

∑K
k=1(nk/N)Ekjk(θ, ζk)E

T
k .

Since Ek has finitely many 1’s, ‖Ek‖ is bounded. Since ‖jk(θ, ζk)‖ is also bounded,
‖j(θ, ζ)‖ = O(KnmaxN

−1) = O(1). j(θ0, ζ0) is positive semi-definite and symmetric,
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implying that Hj−1(θ0, ζ0)HT is also positive semi-definite and symmetric. Following
the monotone convergence theorem, we can write Hj−1(θ0, ζ0)HT → jH(θ0, ζ0), where
jH(θ0, ζ0) exists and is a proper variance matrix.
Using the fact that λ(θ̂DDIMM , ζ̂DDIMM ) = 0 and K = O(N1/2−δ), we show in Lemma
B.2.3 in Appendix B.2 that N1/2H(θ̂DDIMM − θ0, ζ̂DDIMM − ζ0) can be rewritten as

H

{
K∑
k=1

nk
N
Ekjk(θ0, ζk0)ET

k +Op

(
n1/2

maxN
−1/2−δ

)}−1

[
K∑
k=1

{(nk
N

)1/2
Ekn

1/2
k Zk

}
+Op

(
N−δ

)]
.

Since Op(n
1/2
maxN−1/2−δ) = op(1) and Op(N

−δ) = op(1), it follows as in the proof of Theorem
9 that as nmin →∞,

N1/2H

(
θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

)
d→ N (0, jH(θ0, ζ0)) .

Theorem 11 suggests that we can tune our choice of K and nmin to attain the desired
trade-off between inference and computational speed: smaller K and larger nmin will slow
computations but improve estimation and asymptotic normality, whereas larger K and
smaller nmin will speed computations but worsen estimation and asymptotic normality. In
practice, increasing K decreases the estimated variance. This can be understood intuitively

by noting that, when nmin is large enough to yield n
1/2
k -consistent block estimators, we are

averaging more estimators in the integration step for (θ̂DDIMM , ζ̂DDIMM ), which decreases
the estimated variance. This is illustrated numerically in Section 6. In practice, the choice
of K may be driven by practical considerations such as the number of available CPU’s for
parallelization and the sample sizes N and nmin, as well as modeling considerations for the
heterogeneous structure ζ = (ζjk)

J,K
j,k=1. As long as nmin remains reasonably large enough

to yield n
1/2
k -consistent block estimators, the choice of K should be driven by the modeling

considerations, since gains in estimation efficiency are obtained when the local structures
in the outcome are appropriately specified for each subject group. Some preliminary anal-
yses are recommended in practice in order to appropriately specify local structures in the
outcome.

5.4. Asymptotic Results for Diverging K and J

In general, asymptotics for diverging J become very complicated and even analytically
intractable depending on how, and to what extent, the dependence structure evolves as the
dimension M of Y goes to infinity (M → ∞). Cox and Reid (2004) propose constructing
a pseudolikelihood from marginal densities when the full joint distribution is difficult to
construct, and discuss asymptotics for increasing response dimensionality. To make the
problem of diverging M tractable, we consider the following regularity conditions:

(A.5) Stationarity: for each M∗ ∈ N and each (M∗ + 1)-dimensional measurable
set B a subset of the sample space of Y , the distribution of Y i satisfies
P {(Yi,r, . . . , Yi,r+M∗) ∈ B} = P {(Yi,0, . . . , Yi,M∗) ∈ B} for every r ∈ N.
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(A.6) LetCk,i be the version of Ĉk,i in Equation 10 evaluated at the true values θ0, ζjk0. For

k = 1, . . . ,K, i = 1, . . . , J , (
∑K

l=1

∑J
j=1 n

2
lC l,j)

−1n2
kCk,i = Op(N

−δ1) for a constant
0 ≤ δ1 ≤ 1/2. This can be thought of as a type of Lindeberg condition.

(A.7) Conditions required for asymptotically normal distribution and efficiency of the GMM
estimator (θ̂opt, ζ̂opt); see Theorem 5.4 in Donald et al. (2003) and the spanning condi-
tion in Newey (2004). See Newey (2004) for related work on semiparametric efficiency
of the GMM estimator as the number of moment conditions goes to infinity.

Remark 12 Condition (A.5) is typical for consistency and asymptotic normality of the
GMM estimator (θ̂opt, ζ̂opt), following Hansen (1982) and Newey (2004). It is a typical
condition for the application of the central limit theorem to stochastic processes, i.e. to
infinite dimensional random vectors. Additionally, in order to make statements about con-
vergence in probability, (A.5) is required to ensure a valid joint probability distribution as
the dimension M increases.

Remark 13 Condition (A.6) ensures the covariance of the outcome Y i is appropriately
controlled as M →∞. Alternative conditions may be considered, such as α-mixing (Bradley
(1985)), ρ-mixing (Peligrad (1986)), or φ-mixing (Peligrad (1986)), but this is beyond the
scope of this paper. Condition (A.6) can be simplified for the case where nk = n for all
k = 1, . . . ,K. Then (A.6) becomes (

∑K
l=1

∑J
j=1C l,j)

−1Ck,i = Op(N
−δ1).

In Theorem 14 we show the consistency and asymptotic normality of the DDIMM estimator
as K and J diverge to ∞.

Theorem 14 Suppose N−δ2nmin and N δ3−1/2KJ are bounded as nmin →∞ for constants
0 ≤ δ2 ≤ 1 and 0 < δ3 < 1/2 such that δ3 + δ1 + δ2/2 > 1. Suppose assumptions (A.1),
(A.2), and (A.4∗)-(A.7) hold. Let H ∈ Rh×(p+d) a matrix of rank r ∈ N, h ∈ N, r ≤ h, with
finite maximum singular value σ̄(H) <∞. Let jH(θ, ζ) as given in Theorem 11. Then as
nmin →∞,

N1/2H

(
θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

)
d→ N (0, jH(θ0, ζ0)) .

Proof Write

H

(
θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

)
= H

(
θ̂DDIMM − θ̂opt
ζ̂DDIMM − ζ̂opt

)
+H

(
θ̂opt − θ0

ζ̂opt − ζ0

)
.

To show the asymptotic distribution of the left-hand side, it is sufficient to show that

H(θ̂
T

DDIMM − θ̂
T

opt, ζ̂
T

DDIMM − ζ̂
T

opt)
T = op(N

−1/2).

Given the assumptions of the theorem, we have the asymptotic distribution of (θ̂opt, ζ̂opt,ik)

and (θ̂ik, ζ̂ik): both are consistent estimators of θ0, ζik0 and asymptotically normally dis-

tributed with rates N−1/2 and n
−1/2
k respectively. Then for each k ∈ {1, . . . ,K},(

θ̂opt − θ̂ik
ζ̂opt,ik − ζ̂ik

)
=

(
θ̂opt − θ0

ζ̂opt,ik − ζik0

)
−

(
θ̂ik − θ0

ζ̂ik − ζik0

)
= Op(n

−1/2
k ).
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Defining Ĉ
∗
k,i a subset of Ĉk,i in Appendix A.4, we can rewrite (θ̂

T

DDIMM− θ̂
T

opt, ζ̂
T

DDIMM−
ζ̂
T

opt)
T as follows:(

K∑
k=1

J∑
i=1

n2
kĈk,i

)−1{ K∑
k=1

J∑
i=1

[
n2
kĈk,i

(
θ̂ik − θ̂opt
ζ̂list − ζ̂opt

)]}

=

K∑
k=1

J∑
i=1

 K∑
l=1

J∑
j=1

n2
l Ĉ l,j

−1

n2
kĈ
∗
k,i

(
θ̂ik − θ̂opt
ζ̂ik − ζ̂opt,ik

)
=

K∑
k=1

J∑
i=1

[
Op(N

−δ1)Op(n
−1/2
k )

]
= Op(KJN

−δ1n
−1/2
min )

=Op(N
1/2−δ3N−δ1N−δ2/2) = Op(N

1/2−δ3−δ1−δ2/2) = op(N
−1/2).

Theorem 14 guarantees the desirable inferential properties of the estimator of interest
θ̂DDIMM as J grows with dimension M . Our procedure only requires the specification
of local structures for subsets of the data and aggregates these to form a full, possibly com-
plex, model that can better approximate the true structure than a whole data approach
without data splitting. When ζ consists of second-order moment parameters, this better
model of the true covariance structure leads to improved efficiency, as discussed in Fitz-
maurice et al. (1993). The choice of J is typically fixed a priori given prior knowledge
of local structures in the outcome, for example from substantive biological knowledge. If
substantive knowledge is lacking, J should be chosen to allow for precise modeling of local
structures, which may be learned using data-driven techniques in preliminary analyses to
develop adaptive models of local structures.

6. Simulations

In this section we consider four sets of simulations to examine the performance of the closed-
form estimator θ̂DDIMM . Three sets consider the linear regression setting µi = Xiθ, where
µi = E(Y i|Xi,θ) and Y i ∼ N (Xiθ,Σ). One set considers the logistic regression setting
log{µir/(1−µir)} = Xirθ with µir = E(Yir|Xir,θ), r = 1, . . . ,M , where Y i is a M -variate
correlated Bernoulli random vector. In all settings, covariates consist of an intercept and
two independently simulated M -dimensional multivariate normal variables. Simulations are
conducted using R software on a standard Linux cluster.
The first set of simulations illustrates the finite sample performance and properties in The-
orem 9 of θ̂DDIMM under the linear regression setting with fixed sample size N , varying
number of subject groups K, varying dimensions M of Y , and fixed number of response
blocks J . We specify Σ = S ⊗A with nested correlation structure, where ⊗ denotes the
Kronecker product, A is an AR(1) covariance matrix with standard deviation σ = 4 and
correlation ρ = 0.8, and S is a randomly simulated J × J positive-definite matrix. The
true value of θ is set to θ0 = (0.3, 0.6, 0.8)T . We consider varying dimensions M of Y with
fixed J = 5, and a fixed sample size N = 5, 000 with varying K = 1, 2, 5. We consider two
supervised learning procedures: the pairwise composite likelihood using our own package,
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and the GEE using R package geepack and our own package (see Supplemental Material).
With each procedure, we fit the model with an AR(1) working block correlation structure.
Results for the GEE are in Figure 1; results for the pairwise composite likelihood (CL)
are in the Supplemental Material. We see that the mean asymptotic standard error (ASE)
of θ̂DDIMM approximates the empirical standard error (ESE) for all models, with slight
variations due to the type of covariates simulated. This means the covariance formula in
Theorem 9 is correct. Additionally, θ̂DDIMM appears consistent since root mean squared
error (RMSE), ASE and ESE are approximately equal. Moreover, we notice the ASE of
θ̂DDIMM decreases as the response dimension M increases. This makes intuitive sense, since
an increase in M corresponds to an increase in overall number of observations, resulting
in increased power. We also see a decrease in the ASE as the number of groups increases.
This is due to the heterogeneity of block covariance parameters. Lastly, we observe from
Table 2 that the mean CPU time is very fast for the GEE, and decreases substantially as
the number of subject groups increases.
The second set of simulations investigates the performance and properties of θ̂DDIMM un-
der the linear regression setting with fixed sample size N = 12, 000, response dimension
M = 500 of Y i and response blocks J = 6. To illustrate the effect of data splitting
when the correlation of the outcome does not vary with K, we consider homogeneous
outcome covariance, i.e. ζjk is absent. We consider varying number of subjects groups
K = 1, . . . , 6, 24, 30, 40, 60, 120 with nk = nmin for all k = 1, . . . ,K to illustrate (i) the gain
in efficiency from splitting data at the subject level when nmin is large enough (as discussed
in Section 5.3), and (ii) the loss of desirable inferential performance when nmin becomes
too small to yield good block estimators θ̂jk. Responses are simulated from a Multivariate
Normal distribution with AR(1) covariance structure, with standard deviation σ = 4 and
correlation ρ = 0.8: there are no heterogeneous parameters, so that the gain in efficiency
observed is due only to the data splitting procedure and not to additional variability in
the outcome. The true value of θ is set to θ0 = (1,−2, 3)T . We learn mean and covari-
ance parameters using GEE with an AR(1) working block correlation structure. We see
from Table 3 that ASE and ESE are approximately equal for small values of K, but that
as K grows large and nmin grows small, ASE underestimates the true standard error of
θ̂DDIMM . This is because the standard error calculation assumes the block estimators are
asymptotically normally distributed, an assumption that is violated as nmin becomes small,
resulting in undercoverage of the 95% confidence interval (COV) and inflation of Type-I
error (ERR). We also observe in Table 3 that mean CPU time (CPU) has a U shape, with
shortest computing time for K = 6. This suggests that the computing burden is reduced
when K and nmin are moderately sized, so that the GEE block analysis and inversion of
covariance matrices V̂ N and Ĉk,i are relatively fast. In this particular simulation setting,
a good strategy based on the number of covariates and block correlation modeling appears
to be a choice of K such that nmin ≈ 2, 000 to ensure good block estimators and shortest
computing time.
The third set of simulations illustrates the performance and properties in Theorem 14 of
θ̂DDIMM under the linear regression setting with growing sample size N and response di-
mension M of Y i, and varying number of subjects groups K and response blocks J . We
consider diverging sample size N and response dimension M , and diverging number of
subject groups K and response blocks J . We consider two settings: in Setting I, we let the
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Figure 1: Plot of simulation metrics for first set of simulations with GEE, averaged over
1,000 simulations.

23



Hector and Song

Response dimension
Number of subject groups
K=1 K=2 K=5

M=200 44 23 10
M=500 344 153 63

M=1,000 1680 876 364

Table 2: Mean CPU time in seconds for each setting in first set of simulations with the GEE
block analysis, averaged over 1,000 simulations. Mean CPU time is computed as
the maximum CPU time taken over parallelized block analyses added to the CPU
time taken by the rest of the procedure.

K nk ASE×10−4 ESE×10−4 COV LEN×10−4 ERR CPU

1 12000 2.42 2.43 0.96 8.90 0.04 30
2 6000 2.42 2.44 0.96 8.90 0.04 27
3 4000 2.41 2.44 0.96 8.90 0.04 26
4 3000 2.41 2.46 0.96 8.90 0.04 26
5 2400 2.41 2.45 0.96 8.90 0.04 26
6 2000 2.40 2.45 0.96 8.90 0.04 25
12 1000 2.38 2.45 0.95 8.80 0.05 26
24 500 2.34 2.51 0.95 8.60 0.05 26
30 400 2.32 2.53 0.95 8.60 0.05 27
40 300 2.29 2.57 0.94 8.40 0.06 27
60 200 2.22 2.67 0.92 8.20 0.08 28
120 100 2.00 3.01 0.85 7.40 0.15 30

Table 3: ASE, ESE, mean 95% confidence interval coverage (COV), mean 95% confidence
interval length (LEN), Type-I error (ERR) and mean CPU time (CPU) in minutes
for second set of simulations with GEE with N = 12, 000, M = 500 and J = 6
and homogeneous outcome covariance parameters, averaged over 500 simulations,
taking the median over the intercept and two covariates. Mean CPU time is
computed as the maximum CPU time taken over parallelized block analyses added
to the CPU time taken by the rest of the procedure.

sample size N = 5, 000 with number of response groups K = 1, and let response dimension
M = 4, 500 with number of response blocks J = 6; in Setting II, we let the sample size
N = 10, 000 with number of response groups K = 2, and let response dimension M = 9, 000
with number of response blocks J = 12. Responses are simulated from a Multivariate
Normal distribution with AR(1) covariance structure, with standard deviation σ = 6 and
correlation ρ = 0.8. This means there are no heterogeneous block parameters, so we expect
a slightly less efficient estimator since there is less variability in the outcome. The true
value of θ is set to θ0 = (0.3, 0.6, 0.8)T . We learn mean and covariance parameters using
GEE with an AR(1) working block correlation structure. Mean bias (BIAS), RMSE, ESE
and ASE of θ̂DDIMM are in Table 4. We observe that RMSE, ESE and ASE are very close,

24



Doubly Distributed Learning and Inference

indicating appropriate estimation of θ̂DDIMM and its covariance in Theorem 14. We also
confirm DDIMM’s ability to handle large sample size N and response dimension M .

Setting Measure Intercept X1 X2

I: K = 1, J = 6 RMSE/BIAS 3.90/−1.80 0.64/0.09 0.60/−0.41
ESE/ASE 3.90/3.78 0.64/0.59 0.60/0.59

II: K = 2, J = 12 RMSE/BIAS 1.86/−1.09 0.28/−0.03 0.28/−0.16
ESE/ASE 1.86/1.70 0.28/0.27 0.28/0.27

Table 4: RMSE×10−3, BIAS×10−4, ESE×10−3, ASE×10−3 for each setting and each co-
variate in the third set of simulations, averaged over 500 simulations.

The fourth set of simulations illustrates the finite sample performance and properties in
Theorem 14 of θ̂DDIMM under the logistic regression setting with fixed sample size N =
10, 000 and fixed number of subject groups K = 2, varying dimensions M of Y i and varying
number of response blocks J . We consider three settings: in Setting I, we let M = 500
with number of response blocks J = 3; in Setting II, we let M = 1, 000 with J = 6; in
Setting III, we let M = 2, 000 with J = 12. Y i is simulated using the SimCorMultRes R
package (Touloumis, 2016) with block AR(1) correlation structures with varying variance
and correlation parameters. The true value of θ is set to θ0 = (−0.3, 0.4, 0.2)T . We
learn mean and covariance parameters using GEE with an AR(1) working block correlation
structure. BIAS, RMSE, ESE and ASE of θ̂DDIMM are listed in Table 5. We again observe
that RMSE, ESE and ASE are very close, indicating appropriate estimation of θ̂DDIMM and
the asymptotic variances in Theorem 14. ASE for the Intercept appears more variable than
for X1 and X2, which is likely due to low variability in this predictor rendering parameter
estimation more difficult. We also confirm DDIMM’s ability to handle binomial distributed
outcome data. Lastly, mean CPU times of 24, 21 and 22 minutes are observed for Settings
I, II and III respectively. On a smaller scale, we observe a similar U shaped pattern to the
computing time in Table 3, with smaller computing time for moderately sized values of J .

7. Discussion

We have presented the large sample theory as a theoretical guarantee for a Doubly Dis-
tributed and Integrated Method of Moments (DDIMM) that incorporates a broad class of
supervised learning procedures into a doubly distributed and parallelizable computational
scheme for the efficient analysis of large samples of high-dimensional correlated responses
in the MapReduce framework. Theoretical challenges related to combining correlated esti-
mators were addressed in the proofs, including the asymptotic properties of the proposed
closed-form estimator with fixed and diverging numbers of subject groups and response
blocks.
The GMM approach to deriving the combined estimator (θ̂c, ζ̂c) proposed in Equation 4
requires only weak regularity of the estimating equations Ψjk and Gjk. These assumptions
are satisfied by a broad range of learning procedures. The closed-form estimator proposed in

Equation 9, on the other hand, requires local n
1/2
k -consistent estimators in individual blocks
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Setting Measure Intercept X1 X2

I: J = 3, M = 500 RMSE/BIAS 1.53/−3.92 0.56/1.70 0.45/1.92
ESE/ASE 1.53/1.55 0.56/0.56 0.45/0.44

II: J = 6, M = 1000 RMSE/BIAS 1.14/3.68 0.39/−1.14 0.32/−0.35
ESE/ASE 1.14/1.19 0.39/0.41 0.32/0.32

III: J = 12, M = 2000 RMSE/BIAS 0.93/−0.57 0.30/0.90 0.23/1.14
ESE/ASE 0.93/0.87 0.30/0.29 0.23/0.23

Table 5: RMSE×10−3, BIAS×10−5, ESE×10−3, ASE×10−3 for each setting and each co-
variate in the fourth set of simulations, averaged over 1,000 simulations.

of size nk, which is easily satisfied if Ψjk and Gjk are regular (see Song (2007) Chapter 3.5
for a definition of regular inference functions). This restricts the class of possible learning
procedures, but still includes many analyses of interest.
A detailed discussion of the limitations and trade-offs of the single split DIMM with CL
block analyses is featured in Hector and Song (2020). As mentioned in Section 5, the
DDIMM introduces additional flexibility in trading off between computational speed and
inference: the number of subject groups K and the smallest block size nmin can be chosen
by the investigator to attain the desired speed and efficiency.
Particular applications of DDIMM to time series data are immediately obvious. Similarly,
we envision potential application to nation-wide hospital daily visit numbers of, for example,
asthma patients, over the course of the last decade. One could split the response (hospital
daily intake/daily stock price) into J years and into K groups (of hospitals/stocks), analyze
blocks separately and in parallel using GEE, and combine results using DDIMM. Finally,
extensions of our work to stochastic process modeling are accessible, with more challenging
work involving regularization of θ also of interest.
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Appendix A. Technical details

A.1. Summary of sensitivity matrix formulas

Sensitivity matrices are summarized in Table A.1.

A.2. Subsetting operation on variability matrices

Operation
[
V̂
ψ

N

]
ij:k

extracts a submatrix of V̂
ψ

N consisting of rows {(i− 1) + (k − 1)J} p+1

to {i+ (k − 1)J} p and columns {j − 1 + (k − 1)J} p + 1 to {j + (k − 1)J} p. Operation
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sensitivity of w.r.t.* population sample plug-in sample

ψi,jk θ sθψjk
(θ, ζjk) Sθψjk

(θ, ζjk) Ŝ
θ

ψjk
= Sθψjk

(θ̂jk, ζ̂jk)

ψi,jk ζjk sζψjk
(θ, ζjk) Sζψjk

(θ, ζjk) Ŝ
ζ

ψjk
= Sζψjk

(θ̂jk, ζ̂jk)

gi,jk θ sθgjk(θ, ζjk) Sθgjk(θ, ζjk) Ŝ
θ

gjk
= Sθgjk(θ̂jk, ζ̂jk)

gi,jk ζjk sζgjk(θ, ζjk) Sζgjk(θ, ζjk) Ŝ
ζ

gjk
= Sζgjk(θ̂jk, ζ̂jk)

S
(
ψi,jk, gi,jk

)
(θ, ζjk) sjk(θ, ζjk) Sjk(θ, ζjk) Ŝjk = Sjk(θ̂jk, ζ̂jk)

Table A.1: Summary of sensitivity formulas. *“w.r.t.” shorthand for “with respect to”.[
V̂
g

N

]
ij:k

extracts a submatrix of V̂
g

N consisting of rows 1 +Dik to dik +Dik and columns

1 +Djk to djk +Djk. Operation
[
V̂
ψg

N

]
ij:k

extracts a submatrix of V̂
ψg

N consisting of rows

{(i− 1) + (k − 1)J} p+ 1 to {i+ (k − 1)J} p and columns 1 +Djk to djk +Djk, where djk
is the dimension of ζjk and Djk is defined in Section 5.1.

A.3. Cumulative sum of dimensions of ζ

Recall that we define Dik as the sum of the dimensions of ζ11, . . . , ζi−1k, and Dk as the

sum of the dimensions of ζ11, . . . , ζJk−1. Specifically, let Dik =
∑k−1

l=1

∑J
j=1 djl +

∑i−1
j=1 djk

for i, k > 1, D1k =
∑k−1

l=1

∑J
j=1 djl for k > 1, and D11 = 0. Let Dk =

∑k−1
l=1 dl for k > 1

and D1 = 0.

A.4. Definition of Ĉ
∗
k,i

Let k ∈ {1, . . . ,K} and i ∈ {1, . . . , J}. Recall the definitions of Â
θ

k,ij , Â
ζ

k,ij , B̂
θ

k,ij and B̂
ζ

k,ij

in Section 5.1. Define

Ĉ
∗
k,i =



J∑
j=1
Â
θ

k,ij

J∑
j=1
Â
ζ

k,ij

0Dik×(p+d)

B̂
θ

k,i1 B̂
ζ

k,i1
...

B̂
θ

k,iJ B̂
ζ

k,iJ

0(d−dik−Dik)×(p+d)


.

Appendix B. Additional proofs

B.1. Proof of Theorem 9:

The following lemmas complete the proof of Theorem 9 given in the paper, under the
assumed conditions.

Lemma B.1.1 Define λ(θ, ζ) as in Equation 11 in the proof of Theorem 9. Then

λ(θ0, ζ0)
p→ 0 as nmin →∞.
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Proof Using Lemma 8,

λ(θ0, ζ0) =
1

N2

K∑
k=1

J∑
i=1

n2
kĈk,i

(
θ0 − θ̂ik
ζ0 − ζ̂list

)
= Op

(
n
−1/2
min

){
j(θ0, ζ0) +Op

(
N−1/2

)}
= Op

(
n
−1/2
min

)
+Op

(
n
−1/2
min N−1/2

)
p→ 0 as nmin →∞.

Lemma B.1.2 The following relationship holds:(
Ψjk(θ0; ζjk0)

Gjk(ζjk0;θ0)

)
= Ŝjk

(
θ̂jk − θ0

ζ̂jk − ζjk0

)
+Op(n

−1
k ).

Proof Let j ∈ {1, . . . , J}, k ∈ {1, . . . ,K} fixed. For convenience, denote

T jk(θ, ζjk) =

(
Ψjk(θ; ζjk)

Gjk(ζjk;θ)

)
, τ i,jk(θ, ζjk) =

(
ψi,jk(θ; ζjk)

gi,jk(ζjk;θ)

)
.

By first-order Taylor expansion,

Eθ,ζjk

{
τ i,jk(θ̂jk, ζ̂jk)

}
= Eθ,ζjk

{
τ i,jk(θ0, ζjk0)

}
+

∇θEθ,ζjk
{
τ i,jk(θ, ζjk)

}
|θ∗,ζ∗jk

(
θ̂jk − θ0

ζ̂jk − ζjk0

)
, (14)

where (θ∗, ζ∗jk) lies between (θ0, ζjk0) and (θ̂jk, ζ̂jk). By condition (A.4∗),

T jk(θ̂jk, ζ̂jk)− T jk(θ0, ζjk0)− Eθ,ζjk
{
τ i,jk(θ̂jk, ζ̂jk)

}
= Op(n

−1/2
k )

1 + n
1/2
k Op(n

−1/2
k )

n
1/2
k

= Op(n
−1
k ). (15)

In other words, the norm of the difference between T jk(θ0, ζjk0) and T jk(θ̂jk, ζ̂jk) −
Eθ,ζjk{τ i,jk(θ̂jk, ζ̂jk)} goes to 0 at a rate faster than n−1

k . Adding Equations 14 and 15, we
have

−T jk(θ0, ζjk0) = T jk(θ̂jk, ζ̂jk)− T jk(θ0, ζjk0)− Eθ,ζjkτ i,jk(θ0, ζjk0)

= ∇θEθ,ζjkτ i,jk(θ, ζjk)|θ∗,ζ∗jk

(
θ̂jk − θ0

ζ̂jk − ζjk0

)
+Op(n

−1
k )

= −sjk(θ∗, ζ∗jk)

(
θ̂jk − θ0

ζ̂jk − ζjk0

)
+Op(n

−1
k ).
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Rearranging yields

T jk(θ0, ζjk0) = sjk(θ
∗, ζ∗jk)

(
θ̂jk − θ0

ζ̂jk − ζjk0

)
+Op(n

−1
k ). (16)

Finally, note that Ŝjk = sjk(θ0, ζjk0)+Op(n
−1/2
k ) = sjk(θ

∗, ζ∗jk)+Op(n
−1/2
k ). Then plugging

this into Equation 16, we have:

T jk(θ0, ζjk0) =
(
Ŝjk +Op(n

−1/2
k )

)( θ̂jk − θ0

ζ̂jk − ζjk0

)
+Op(n

−1
k )

= Ŝjk

(
θ̂jk − θ0

ζ̂jk − ζjk0

)
+Op(n

−1
k ).

B.2. Proof of Theorem 11

The following lemmas complete the proof of Theorem 11 given in the paper, under the
assumed conditions.

Lemma B.2.1 Define λ(θ, ζ) as in Equation 11 in the proof of Theorem 9. Then

‖λ(θ0, ζ0)‖ = Op(N
−1/2−δn

1/2
max) and

∥∥∥{∇θ,ζλ(θ, ζ)}−1
∥∥∥ = Op

(
N1/2+δn−1

max

)
.

Proof Due to the independence between subject groups, V̂
ψ

N , V̂
ψg

N and V̂
g

N are all block

diagonal: V̂
ψ

N = diag
{
V̂
ψ

k

}K
k=1

, V̂
ψg

N = diag
{
V̂
ψg

k

}K
k=1

, and V̂
g

N = diag
{
V̂
g

k

}K
k=1

. By

the independence of subject groups, let

v−1(θ, ζ) =

(
vψ(θ, ζ) vψg(θ, ζ)
vψg T (θ, ζ) vg(θ, ζ)

)

=

 diag
{
N
nk
vψk (θ, ζ)

}K
k=1

diag
{
N
nk
vψgk (θ, ζ)

}K
k=1

diag
{
N
nk
vψg T
k (θ, ζ)

}K
k=1

diag
{
N
nk
vgk(θ, ζ)

}K
k=1

 .

Similar to the proof of Lemma 8, it can easily be shown that for each k = 1, . . . ,K,

V̂
ψ

k = (N/nk)v
ψ
k (θ0, ζ0) + Op(N

−1/2), V̂
ψg

k = (N/nk)v
ψg
k (θ0, ζ0) + Op(N

−1/2), and

V̂
g

k = (N/nk)v
g
k(θ0, ζ0) + Op(N

−1/2). Consider an arbitrary k ∈ {1, . . . ,K}. Let

(N/nk)
[
vψk (θ0, ζ0)

]
ji

=
[
vψ(θ0, ζ0)

]
ji:k

, and similarly define
[
vψgk (θ0, ζ0)

]
ji

and[
vgk(θ0, ζ0)

]
ji

. Then Â
θ

k,ij = (N/nk){aθk,ij +Op(n
−1/2
k )}, where aθk,ij is defined as{

sθ T
ψjk

(θ0, ζjk0)
[
vψk (θ0, ζ0)

]
ji

+ sθ T
gjk

(θ0, ζjk0)
[
vψg T
k (θ0, ζ0)

]
ji

}
sθψik

(θ0, ζ0)+{
sθ T
ψjk

(θ0, ζjk0)
[
vψgk (θ0, ζ0)

]
ji

+ sθ T
gjk

(θ0, ζjk0)
[
vgk(θ0, ζ0)

]
ji

}
sθgik(θ0, ζ0).
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We can show similar results for Â
ζ

k,ij , B̂
θ

k,ij and B̂
ζ

k,ij . Then we can rewrite

‖λ(θ0, ζ0)‖ ≤
K∑
k=1

Op(n
1/2
k N−1) = Op(Kn

1/2
maxN

−1) = Op(N
−1/2−δn1/2

max), and

‖∇θ,ζλ(θ, ζ)‖ ≤ 1

N2

K∑
k=1

J∑
i=1

n2
k

∥∥∥Ĉk,i

∥∥∥
≤ Op

(
N−1/2−δn1/2

max

)
+O

(
N−1/2−δnmax

)
= Op

(
N−1/2−δnmax

)
.

Since ∇θ,ζλ(θ, ζ) is symmetric positive-definite, the above provides a bound on its

eigenvalues. Therefore,
∥∥∥{∇θ,ζλ(θ, ζ)}−1

∥∥∥ = Op
(
N1/2+δn−1

max

)
.

Lemma B.2.2 For some matrices Ek, k = 1, . . . ,K, of 0’s and 1’s, the following asymp-
totic properties hold:

n2
k

N2

J∑
i=1

Ĉk,i

(
θ̂ik − θ0

ζ̂list − ζ0

)
=
nk
N
EkZk +Op

(
N−1

)
,

and
n2
k

N2

J∑
i=1

Ĉk,i =
nk
N
Ekjk(θ0, ζk0)ET

k +Op

(
n

1/2
k N−1

)
,

where n
1/2
k Zk

d→ N
(
0, j−1

k (θ0, ζk0)
)
.

Proof Recall that Ĉk,i(θ̂
T

ik − θT0 , ζ̂
T

list − ζT0 )T = Ĉ
∗
k,i(θ̂

T

ik − θT0 , ζ̂
T

ik − ζTik0)T . Let[
v−1
k (θ, ζk)

]
ij

subset the rows for the parameters corresponding to block (i, k) and the

columns for the parameters corresponding to block (j, k) of matrix v−1
k (θ, ζk). Define

jjik(θ, ζjk, ζik) = sjk(θ, ζjk)
[
v−1
k (θ, ζk)

]
ji
sik(θ, ζik), and

[
j−1
k (θ0, ζk0)

]
i

the submatrix of

j−1
k (θ0, ζk0) corresponding to parameters in block (i, k), such that

n
1/2
k


J∑
j=1

jjik(θ0, ζjk0, ζik0)


(

θ̂ik − θ0

ζ̂ik − ζik0

)
d→ N

(
0,
[
j−1
k (θ0, ζk0)

]
i

)
.

Then using the results in the proof of Lemma B.2.1, let Ek and Ek,i matrices of 0’s and
1’s such that

n2
k

N2

J∑
i=1

Ĉk,i =
nk
N
Ek

{
jk(θ0, ζk0) +Op

(
n
−1/2
k

)}
ET
k

=
nk
N
Ekjk(θ0, ζk0)ET

k +Op

(
n

1/2
k N−1

)
, and

n2
k

N2

J∑
i=1

Ĉk,i

(
θ̂ik − θ0

ζ̂list − ζ0

)
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=
nk
N
Ek

J∑
i=1

Ek,i


J∑
j=1

jjik(θ0, ζjk0, ζik0) +Op

(
n
−1/2
k

)
(

θ̂ik − θ0

ζ̂ik − ζik0

)

=
nk
N
Ek

J∑
i=1

Ek,i

J∑
j=1

jjik(θ0, ζjk0, ζik0)

(
θ̂ik − θ0

ζ̂ik − ζik0

)
+Op

(
N−1

)
.

To obtain the desired result, define

Zk =

J∑
i=1

Ek,i

J∑
j=1

jjik(θ0, ζjk0, ζik0)

(
θ̂ik − θ0

ζ̂ik − ζik0

)
.

Lemma B.2.3 N1/2H
(
θ̂
T

DDIMM − θT0 , ζ̂
T

DDIMM − ζT0
)

can be rewritten as

H

{
K∑
k=1

nk
N
Ekjk(θ0, ζk0)ET

k +Op

(
n1/2

maxN
−1/2−δ

)}−1 [ K∑
k=1

{(nk
N

)1/2
Ekn

1/2
k Zk

}
+Op

(
N−δ

)]
.

Proof

N1/2H

(
θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

)

= N1/2H

(
K∑
k=1

J∑
i=1

n2
k

N2
Ĉk,i

)−1 K∑
k=1

J∑
i=1

n2
k

N2
Ĉk,i

(
θ̂ik − θ0

ζ̂list − ζ0

)

= H

[
K∑
k=1

{nk
N
Ekjk(θ0, ζk0)ET

k +Op(n
1/2
k N−1)

}]−1

·

K∑
k=1

{
nk
N1/2

Ek

J∑
i=1

Ek,ijik(θ0, ζjk0, ζik0)

(
θ̂ik − θ0

ζ̂ik − ζik0

)
+Op(N

−1/2)

}

= H

{
K∑
k=1

nk
N
Ekjk(θ0, ζk0)ET

k +Op

(
Kn1/2

maxN
−1
)}−1

·[
K∑
k=1

{
nk
N1/2

Ek

J∑
i=1

Ek,ijik(θ0, ζjk0, ζik0)

(
θ̂ik − θ0

ζ̂ik − ζik0

)}
+Op

(
KN−1/2

)]

= H

{
K∑
k=1

nk
N
Ekjk(θ0, ζk0)ET

k +Op

(
n1/2

maxN
−1/2−δ

)}−1

·[
K∑
k=1

{(nk
N

)1/2
Ekn

1/2
k Zk

}
+Op

(
N−δ

)]
.
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