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Abstract
Latent structural learning has attracted more attention in recent years. But most related
works only focuses on pure continuous or pure discrete data. In this paper, we consider
mixed latent tree models for mixed data mining. We address the latent structural learning
and parameter estimation for those mixed models. For structural learning, we propose a
consistent bottom-up algorithm, and give a finite sample bound guarantee for the exact
structural recovery. For parameter estimation, we suggest a moment estimator by exploiting
matrix decomposition, and prove asymptotic normality of the estimator. Experiments on
the simulated and real data support that our method is valid for mining the hierarchical
structure and latent information.
Keywords: Information distance, Latent variables, Mixed latent tree, Parameter estima-
tion, Structural learning

1. Introduction

Latent variable models are important tools for probabilistic modeling, and have been widely
applied to various domains, such as speech analysis and bioinformatics. As one of classical
latent variable models, the latent class model can effectively deal with clustering analysis
problems (Goodman, 1974; Lazarsfeld and Henry, 1968). The latent class model has a simple
assumption that all observed variables are conditionally independent given the latent class
variable. But this assumption can’t catch the potential complex mechanism behind observed
variables. For further extension, Zhang (2004) first investigated the latent tree model, in
which all leaf nodes are observed variables and all internal nodes are latent variables. The
latent tree model addresses the local dependence problem with a principled manner. It
can capture a hierarchical generating mechanism for observed variables, and provide more
illuminating explanations on the variable groups compared to the latent class model.

The learning and application of latent tree models developed a lot over the past decades.
The original work (Zhang, 2004) proposed a scoring-based algorithm for structural learning.
Some further works (Chen et al., 2012; Liu et al., 2015) extended the scoring-based learning
algorithm, and suggested the multidimensional clustering for the multiple partitions of data.
Besides the multidimensional clustering, the model also has applications in computer vision,
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probabilistic inference, and hierarchical topic detection. Wang and Li (2013) proposed a
more flexible and effective human pose estimation in computer vision based on latent tree
models. This method can combine two parts which are unlimited to the physical connections
in the human body. Furthermore, it effectively exploits the interactions between combined
parts and single parts. Wang et al. (2008) applied the latent tree model to the approximate
inference of the Bayesian network. They learned a latent tree model from data which is
sampled from a Bayesian network, and made inference with the latent tree model instead
of the original Bayesian network. It achieved good approximation accuracy at low online
computational cost. Chen et al. (2016) used the latent tree models to handle hierarchical
topic detection. Bottom-level variables are observed binary variables that represent whether
the words appear in the document, and high-level variables are latent binary variables that
give soft partitions of the documents and furthermore represent topics. The latent tree
model can discover substantially better topics and topic hierarchies.

In this paper, we mainly focus on learning latent tree models from samples. The learning
of models includes two aspects. One is structural learning and the other is parameter esti-
mation. The scoring-based algorithms (Zhang, 2004; Chen et al., 2016) search the optimal
structure by hill-climbing with a scoring metric such as AIC (Akaike, 1974) or BIC (Schwarz,
1978). And the distance-based algorithms (Choi et al., 2011; Wang et al., 2017) can recon-
struct the latent structure with an additive information distance. They are usually faster
than the scoring-based ones and have theoretical guarantees for the structural learning. Once
the latent structure is given, the matrix decomposition (Chang, 1996; Wang et al., 2017) and
tensor decomposition (Anandkumar et al., 2014) are efficient for the parameter estimation
of discrete latent tree models. Moreover, Song et al. (2011) proposed a method based on
the kernel embedding of distributions for latent tree models with continuous non-Gaussian
observation.

Though above algorithms contribute a lot to learning latent tree models, they can only
handle pure discrete or continuous data. Typical multivariate problems may contain both
continuous and discrete variables in the population survey data, biological and biomedical
data, etc. In the graphical model setting, Lee and Hastie (2014) proposed a pseudo-likelihood
method for handling mixed Gaussian and multinomial data. Fan et al. (2017) assumed that
the observed binary data are obtained by dichotomizing a latent continuous variable, and
proposed a semi-parametric model for modelling mixed continuous and binary data. To our
best knowledge, there are no existing works on learning the hierarchical tree structure with
latent variables for mixed data.

In this paper, we address the latent hierarchical information mining for mixed data, and
contribute three points for this mining. Firstly, we introduce a mixed latent tree model for
modeling mixed data, and define an information distance between discrete and continuous
variables. Secondly, we propose a bottom-up structural learning algorithm basing on this
information distance. This structural learning algorithm has the probabilistic approximate
consistency. Thirdly, we suggest a moment method for parameter estimation by exploiting
matrix decomposition. Those moment estimators are asymptotically normal.

The rest of this paper is organized as follows. In Section 2, some notions on latent tree
model are reviewed and some assumptions used in this paper are given. In Section 3, we
define a new information distance and give a finite sample bound required for the exact
structural recovery. In Section 4, we propose a parameter estimation method and prove its
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asymptotic normality for mixed latent tree models. The simulation studies and the real data
analysis are conducted in Section 5.

2. Preliminaries

Let G = (W,E) be a simple graph, where W is the set of nodes and E is the set of edges.
An edge between node u and node v is denoted by (u, v), and we call that u is adjacent to v.
If edge (vj−1, vj) ∈ E for any j = 1, · · · , k, the set of distinct nodes [v0, v1, · · · , vk] is referred
to as a length-k path from v0 to vk in G. Furthermore, a path [v0, v1, · · · , vk] is referred to
as a cycle in G if v0 = vk. We call G a connected graph if for any nodes u, v ∈W, there is
a path [v0 = u, · · · , vk = v] in G. Let A,B be two disjoint node subsets. We call that A,B
are separated by a node subset S if for any nodes u ∈ A, v ∈ B, every path in G from u to
v contains a node in S. A connected simple acyclic graph is called a tree and denoted as T .
A pair of leaves {u, v} is a sibling pair on T if nodes u and v in T are adjacent to a same
node. The number of nodes on the longest path of a tree T is referred to as the diameter of
the tree and we denote it as diam(T ).

Let XW = {Xv}v∈W be a random vector where W corresponds to a set of nodes, and let
X

(1)
W , . . . , X

(n)
W denote i.i.d. samples of size n. A family of probability distribution over G is

referred to as a graphical model (Lauritzen, 1996), if it satisfies the conditional independence:
XA,XB are conditionally independent given XS when two disjoint node subsets A,B are
separated by a node subset S in G . Let T = (W,E) be a tree. If the leaves of T are all
observed variables and the internal nodes are latent variables, the graphical model T on T
is referred to as a latent tree model (Zhang, 2004). Furthermore, the graphical model T
is called the mixed latent tree model, if the tree T contains both discrete and continuous
variables. In this paper, we mainly discuss one mixed case that latent variables are binary,
and observed variables are binary or conditional Gaussian given its adjacent variable.

We denote the set of observed nodes in W as V(with m = |V|), and the set of latent
nodes in W as H. Hence W = V∪H. Furthermore, we denote the set of continuous nodes
in V as Vc, and the set of discrete nodes in V as Vd. Hence V = Vc ∪Vd. We refer to u, v
as bifurcation nodes of w if nodes u, v are observed and the path from u to v contains w.

If we choose a node on tree T as the root, we can obtain a directed tree
−→
T = (W,

−→
E ) by

assigning the edge direction from the root to the leaves. The element u→ v in
−→
E represents

a directed edge from u to v. Node u is called as a parent of node v and node v is called as
a child of node u. We denote all child nodes of u as ch(u) and denote the parent node of
v as pa(v). An ordered set of distinct nodes L = [v0, v1, · · · , vk] is a length-k directed path
from v0 to vk in

−→
T if the directed edge vj−1 → vj ∈

−→
E for all j = 1, · · · , k. If there exists a

directed path in
−→
T from u to an observed node v, we say v is a bifurcation node of u in

−→
T .

Here we consider three assumptions to characterize the relationship between variables.

(A1) The correlation coefficient of any two variables is nonzero.
(A2) Each latent variable has three neighbors at least.
(A3) Any two variables connected by an edge on the tree are not completely dependent.

These assumptions are routinely used in the graphical model setting because they can provide
a guarantee for the identifiability of the graphical tree model. If Assumption (A1) is violated,
our learning model may be disconnected, thus the model is not a graphical tree model. This
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assumption can be relaxed when we consider a graphical forest model with several connected
components. Assumptions (A2) and (A3) ensure that a latent tree does not include a
redundant latent node (Choi et al., 2011). If (A2) or (A3) is violated, there may exist a
redundant latent variable in the tree model. This can further cause the non-identifiability
of the model.

3. Structural Learning for Mixed Latent Tree Models

In this section, we first define an information distance between binary and continuous vari-
ables. And then we propose a bottom-up structural learning algorithm basing on this infor-
mation distance. Finally, we give a finite sample bound for the exact structural recovery of
this learning algorithm.

3.1 Information Distance

In this subsection, we define the information distance between two variables, and prove
that the distance has an additivity along paths on mixed latent trees. This additivity is
an important tool for designing a structural learning algorithm of latent tree models. The
learning algorithm will be suggested in the next subsection.

Let T = (W,E) be a tree and T be a mixed latent tree model on T . For variable Xu

and Xv where u, v ∈W, we define the information distance between them:

duv := − log(|ρuv|), (1)

where ρuv = Cov(Xu,Xv)√
Var(Xu)·Var(Xv)

is the correlation coefficient of variables Xu and Xv.

The correlation coefficient relies on the covariance of two random variables. By the
double expectation formula, the covariance may be further decomposed into a product of
several quantities in term of the conditional independence on the graphical tree model.
For some specific distributions, the correlation coefficient ρuv could be presented as the
product of two correlation coefficients ρuh and ρhv when variables Xu and Xv are conditional
independent given variable Xh. Thus the information distance (1) has the additivity on the
graphical tree model for an appropriate distribution. For binary variable Xu and Xv, the
form (1) is equivalent to the information distance (Chang, 1996)

duv := − log

(
| det(Puv)|√

det(Puu) det(Pvv)

)
,

where Puv is the joint probability matrix (P (Xu = a,Xv = b))a,b=0,1 of Xu and Xv. For
Gaussian variables Xu and Xv, the form in (1) is also the information distance (Choi et al.,
2011). In this paper, we mainly consider that variables are binary or conditional Gaussian.

According to the Assumptions (A1) and (A3), we know that the correlation coefficient
0 < |ρuv| < 1 and further the information distance 0 < duv < +∞ for any u, v ∈W. The
following theorem establishes that the information distance is additive along paths. The
proof can be found in the Appendix.
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Theorem 1 Let T = (W,E) be a tree and T be a mixed latent tree model on T . If node
set [v0 = u, v1, · · · , vk = v] is a path from u to v on T , we obtain that:

duv =

k−1∑
l=0

dvlvl+1
.

The proof of Theorem 1 mainly employs conditional independence in the tree model
and the restriction that latent variables are binary. So the additivity of the information
distance does not rely on the specific distributions of observed variables. The structural
learning algorithm in the next subsection could also apply to mixed data from multinomial
distributions or conditional non-Gaussian distributions.

3.2 Structural Learning Algorithm for Mixed Latent Tree Models

From Theorem 1, the information distance (1) has the additivity in the mixed latent tree
model. Our structural learning method is from the bottom-up SLLT algorithm (Wang et al.,
2017). This algorithm itself does not rely on the type of data. It only requires information
distances as its inputs for recovering latent trees. This algorithm can output the mixed
latent tree correctly within the time O(diam(T )m3) if the true information distances are
available, where m is the number of observed variables.

In the following, we illustrate the SLLT algorithm in detail by using the mixed latent
tree T shown in Figure 1, where v1, · · · , v12 are observed variables and h1, · · · , h8 are latent
variables. We refer to V = {v1, · · · , v12} and H = {h1, · · · , h8} as the observed variable set
and the latent variable set respectively, and let W = V ∪H. We use node symbols •, ◦,
� to represent a latent variable, a discrete observed variable, a continuous observed vari-
able respectively. The SLLT algorithm uses the information distances among the observed
variable set V of T to reconstruct the unknown latent tree structure.

(a) The mixed latent tree structure (b) The process of structural learning

Figure 1: Example of structural learning.

For any three observed variables vi, vj and vk, we compute all the information dis-
tance differences Φvivjvk = dvivk − dvjvk . When Φv1v2v3 = Φv1v2v4 = · · · = Φv1v2v12 , then
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Algorithm 1: Structural Learning for Latent Trees (SLLT )
Input : Observed variables V and information distances duv for any u, v ∈ V;
Output: A tree structure T ;

1. A← V. D← φ. For any u ∈ V, D(u)← φ;
2. If |A| > 3, compute Φv1v2v3 = dv1v3 − dv2v3 for any three variables v1, v2, v3 ∈ A;

1◦. For any v1, v2 ∈ A,
if Φv1v2z is constant for any z ∈ A\{v1, v2}, then
{v1, v2} are a sibling pair in T .

2◦. Denote maximal sibling groups by {Πl}Ll=1,

A← A\
L
∪
l=1

Πl.

3◦. For any l = 1, · · · , L,
add a new latent variable hl and connect hl to every node in Πl.
A← A ∪ {hl}, D(hl)← ∪

u∈Πl

{u}, D← D∪( ∪
u∈Πl

{u}).

3. While |A| > 3,

1◦. For any v ∈ A ∩V and u ∈ A\V,
Z← V\(D(u) ∪ {v}) and choose bifurcation variables v1, v2 of u in D.

If Φvv1z is constant and Φvv1z 6= Φvv1v2 for any z ∈ Z, then {v, u} is a sibling pair in T (W\D).
2◦. For any two variables u,w ∈ A\V,

Z← V\(D(u) ∪D(w)) and choose bifurcation variables v1, v2 of u and v3, v4 of w in D.
If Φv1v3z = Φv1v3v4 and Φv3v1z 6= Φv3v1v2 for any z ∈ Z, then u is a remaining child of w in
T (W\D).

For any two variables u,w ∈ A\V,
if neither u nor w is a remaining child,

Z← V\(D(u) ∪D(w)) and choose bifurcation variables v1, v2 of u and v3, v4 of w in D.
If Φv1v3z is constant and Φv1v3z 6= Φv1v3v4 , Φv3v1z 6= Φv3v1v2 for any z ∈ Z, then {u,w} is a
sibling pair in T (W\D).

3◦. Denote the remaining child relations and maximal sibling groups by {Πl}Ll=1.

A← A\
L
∪
l=1

Πl.

4◦. For any l = 1, · · · , L,
if Πl = {u,w} and u is remaining child of w, then connect u and w.

A← A ∪ {w}, D(w)← D(w) ∪D(u) ∪ {u} and D← D ∪ {u}.
if Πl is a sibling group, then add a new latent variable hl and connect hl to every node in Πl.

A← A ∪ {hl}, D(hl)← ∪
u∈Πl

(D(u) ∪ {u}) and D← D ∪ ( ∪
u∈Πl

{u}).

4. If |A| = 2, connect the two remaining variables in A;
5. Return the structure generated;
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{v1, v2} is a sibling pair in T . Similarly, we obtain that {v1, v3}, {v2, v3}, {v4, v5}, {v6, v7},
{v8, v9}, {v10, v11} are also sibling pairs in T . Thus {v1, v2, v3}, {v4, v5}, {v6, v7}, {v8, v9},
{v10, v11} are five maximal sibling groups, and five latent variables h5, h2, h6, h7, h8 are
detected as their parent variables respectively. Then we have D1 = {v1, · · · , v11} and
A1 = {h2, h5, h6, h7, h8, v12}, where the subscripts of D and A are used to indicate the
iterative step. We construct a subtree T (W\D1) by discarding all variables in D1 from T ,
and A1 contains all of the leaf variables {h5, h6, h7, h8, v12} of T (W\D1).

We can recover local structures among observed variables at step 2 of the SLLT al-
gorithm. At step 3, we reconstruct the structures with latent variables. Firstly, we find
out the observed-latent sibling pairs in A1. For v12, h8 ∈ A1, we choose the observed
variables v10, v11 as bifurcation variables of h8 in D1. Since Φv12v10v is constant and
Φv12v10v 6= Φv12v10v11 for v = v1, v2, · · · , v9, we have that {v12, h8} is a sibling pair in
T (W\D1). Secondly, we find out the remaining-child relationship in A1. For {h2, h5}
in A1, we choose {v4, v5} as bifurcation variables of h2 and {v1, v2} as bifurcation variables
of h5. Since Φv1v4v = Φv1v4v5 and Φv4v1v 6= Φv4v1v2 for v = v6, · · · , v12, we find that h5 is a
remaining child variable of h2. Thirdly, we judge the latent-latent sibling pair relationship
in A1. For {h6, h7} in A1, we choose {v6, v7} as bifurcation variables of h6 and {v8, v9} as
bifurcation variables of h7. Since Φv6v8v is constant and Φv6v8v 6= Φv6v8v9 , Φv8v6v 6= Φv8v6v7

for v = v1, · · · , v5, v10, v11, v12, we have that {h6, h7} is a sibling pair in T (W\D1). Thus,
{h6, h7} and {h8, v12} are two maximal sibling groups, and two latent variables h3, h4 are
added as their parent variables respectively. Then, we have D2 = {v1, · · · , v12, h5, · · · , h8}
and A2 = {h2, h3, h4}. Similarly, A2 contains all the leaf variables {h2, h3, h4} in the subtree
T (W\D2). Finally, we obtain that {h2, h3, h4} forms a sibling group through similar steps.
Then we add a latent variable h1 as its parent variable and the algorithm ends.

3.3 Finite Sample Bound for the Structural Learning Algorithm

In this subsection, we give a finite sample bound for the exact structural recovery of this
learning algorithm. To apply the SLLT algorithm to data, we replace the correlation coef-
ficient ρuv with its sample version

ρ̂uv =

n∑
k=1

(
X

(k)
u − X̄u

)(
X

(k)
v − X̄v

)
√

n∑
k=1

(
X

(k)
u − X̄u

)2
√

n∑
k=1

(
X

(k)
v − X̄v

)2

for nodes u, v ∈ V. Furthermore, we compute the sample information distances d̂uv =
− log |ρ̂uv|, and put them into the SLLT algorithm.

In the algorithm, we identify the relations between variables by checking whether the in-
formation distance difference Φuvw is equal to some constant or not. However, in the sample-
based SLLT algorithm, Φ̂uvw and Φ̂uvz are almost impossible to be exactly equal even if the
true differences are equal due to the error of estimate. Since |Φ̂uvw − Φ̂uvz| → |Φuvw −Φuvz|
when n → ∞, we determine the equality of Φuvw and Φuvz if |Φ̂uvw − Φ̂uvz| < ε, where
ε is a prescribed positive threshold. Moreover, we define a lower bound notation φmin :=
min {|Φuvw − Φuvz| : Φuvw 6= Φuvz, u, v, w, z ∈ V} and take a threshold ε 6 min{1

2φmin, 1}.
If the difference |(Φ̂uvw − Φ̂uvz)− (Φuvw − Φuvz)| < ε when the sample size n is sufficiently
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large, we obtain that Φuvw = Φuvz if and only if |Φ̂uvw − Φ̂uvz| < ε. Therefore, if the event
{|(Φ̂uvw − Φ̂uvz)− (Φuvw −Φuvz)| < ε for any u, v, w, z ∈ V} occurs with a high probability
when the sample size n is sufficiently large, we can learn the true latent tree structure from
the sample-based SLLT algorithm with a high probability.

The consistency of the sample-based SLLT algorithm is built on the tail probability
inequality on the sample covariance

Suv =
1

n

n∑
l=1

(X(l)
u −Xu)(X(l)

v −Xv),

where u, v are two leaf nodes on the latent tree. We need the following notations:

µ = max
{
|E
(
Xv|Xpa(v) = x

)
| : v ∈ Vc, x = 0, 1

}
,

σ2 = max
{

Var
(
Xv|Xpa(i) = x

)
: v ∈ Vc, x = 0, 1

}
,

c = C ·max{σ4, σ2µ2, µ4, σ2, µ2, 1},

where the constant C does not depend on nodes on the tree.

Theorem 2 The inequality

P

(∣∣∣Suv − Cov(Xu, Xv)
∣∣∣ >√c(t+ log 48)

n

)
6 e−t (2)

holds for any two leaf nodes u, v in T and any t > 0.

The consistency of the SLLT algorithm relies on two intrinsic parameters φmin :=
min {|Φuvw − Φuvz| : Φuvw 6= Φuvz, u, v, w, z ∈ V} and cmin := minu,v∈V |Cov(Xu, Xv)| where
V is the set of observed nodes. The following theorem shows the relationship between the
sample size and the intrinsic parameters of the model when the true latent tree structure is
learned.

Theorem 3 Let η ∈ (0, 1). The SLLT algorithm can return the true mixed latent tree with
a probability of at least 1−η, if the sample size n is sufficiently large such that the inequality√

c(log(48m2)− log η)

n
<
cmin min{1

2φmin, 1}
16

, (3)

holds.

Theorem 3 is obtained from Theorem 2, and it provides a lower bound

256 · c(log(48m2)− log η)

c2
min min{1

4φ
2
min, 1}

of the sample size n for recovering the true structure with a probability of at least 1 − η.
Intrinsic parameters φmin and cmin depend on the number m of observed nodes and the
true joint distributions. When the number m is large, intrinsic parameters may be small.
Furthermore, a large sample size is required for recovering mixed latent tree structures with
a high probability.
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4. Parameter Estimation for Mixed Latent Tree Models

In this section, we consider the parameter estimation for the mixed latent tree model T with
its tree structure T given. We choose a latent variable r as the root and further construct a
directed tree

−→
T from the tree T and the root r. Model parameters (Chen et al., 2017) in the

latent tree model consist of a marginal distribution for the root Xr, and all the conditional
distributions for variables given their parents on the directed tree

−→
T . In Subsections 4.1

and 4.2, we first assume that the expectation µu := EXu is zero for any continuous variable
u ∈ Vc. Under this assumption, we propose a moment method to estimate all the model
parameters along the directed tree

−→
T by using matrix decomposition. Finally, we also

discuss the parameter estimates for non-zero expectation continuous variables.
First, we introduce some notations. For a latent node h ∈ H, let

ph := P (Xh = 1),

µv|Xh=xh := E(Xv|Xh = xh) for a continuous observed node v,

µ
(2)
v|Xh=xh

:= E(X2
v |Xh = xh) for a continuous observed node v,

pv|Xh=xh := P (Xv = 1|Xh = xh) for a discrete observed node v,

where xh = 0, 1. In particular, if node h is a parent of node v on the tree
−→
T , we simplify

the notations µv|Xh=xh , µ
(2)
v|Xh=xh

, pv|Xh=xh by µv|xh , µ
(2)
v|xh , pv|xh respectively.

4.1 Parameter Representation for Mixed Latent Tree Models

Motivated by Chang (1996), we study a local structure consisting of three observed nodes
u, v, w ∈ V and a latent node h ∈ H. u and v are bifurcation nodes of h. v and w are
also bifurcation nodes of h. Figure 2 illustrates this local structure, which implies that
observed variables Xu, Xv, Xw are conditionally independent given the latent variable Xh.
Unlike Chang’s work (Chang, 1996) only considering discrete variables, we allow variables
Xu, Xv, Xw to be continuous. So there are eight cases of three observed variables depending
on whether the variable is binary or continuous. In the following, we first provide the
parameter representation of models in the case that Xu, Xv, Xw are all continuous. And
then we show the general representation in other cases.

Figure 2: A local structure of three observed nodes and one latent node.

If nodes u, v, w ∈ Vc, the moment EX lu
u X

lv
v Xw can be decomposed into

EX lu
u X

lv
v Xw =

(
µ

(lu)
u|Xh=0 µ

(lu)
u|Xh=1

)( (1− ph)µw|Xh=0 0

0 ph µw|Xh=1

)(
µ

(lv)
v|Xh=0

µ
(lv)
v|Xh=1

)
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for exponents lu, lv ∈ {1, 2}, since Xu, Xv, Xw are conditionally independent given Xh. We

denoteEuvw, Γu|h, and Γv|h as matrices
(

EXuXvXw EXuX
2
vXw

EX2
uXvXw EX2

uX
2
vXw

)
,

(
µu|Xh=0 µu|Xh=1

µ
(2)
u|Xh=0 µ

(2)
u|Xh=1

)
,

and

(
µv|Xh=0 µv|Xh=1

µ
(2)
v|Xh=0 µ

(2)
v|Xh=1

)
, respectively. We further have that

Euvw = Γu|h

(
(1− ph)µw|Xh=0 0

0 ph µw|Xh=1

)
ΓTv|h. (4)

Denote Euv as
(

EXuXv EXuX
2
v

EX2
uXv EX2

uX
2
v

)
. We also have that

Euv = Γu|h ·
(

1− ph 0
0 ph

)
· ΓTv|h. (5)

By Assumption (A1), the matrix Euv is invertible since continuous variables have zero
means. Thus

Auvw := EuvwE
−1
uv = Γu|h ·

(
µw|Xh=0 0

0 µw|Xh=1

)
· Γ−1

u|h.

This eigen-decomposition of matrix Auvw, determined by the joint distribution of observed
variables (Xu, Xv, Xw), forms the representation of model parameters. Specifically, con-
ditional means µw|Xh=0, µw|Xh=1 are eigenvalues of matrix Auvw. Columns of conditional
moment matrix Γu|h are eigenvectors of matrix Auvw. To compute Γu|h from the eigenvector
space of matrix Auvw, we still need two other restrictions:

EXw = (1− ph) · µw|Xh=0 + ph · µw|Xh=1, (6)

and (
EXu

EX2
u

)
= Γu|h ·

(
1− ph
ph

)
. (7)

Combining equations (4), (5), (6) and (7), we can compute the conditional expectation
matrix Γu|h and the marginal probability ph = P (Xh = 1) using the moments of observed
variables. Particularly, if node h is the root r, we can actually obtain the marginal probability
of the root.

In above discussion, we show that in the case that Xu, Xv, Xw are all continuous, model
parameters can be obtained by solving the moment equations (4), (5), (6) and (7). In the
following part, we handle the general case that allows observed variables binary. For any
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w ∈ V, let

Euvw :=



(
EXuXvXw EXuX

2
vXw

EX2
uXvXw EX2

uX
2
vXw

)
, for u, v ∈ Vc;

(
EXu(1−Xv)Xw EXuXvXw

EX2
u(1−Xv)Xw EX2

uXvXw

)
, for u ∈ Vc and v ∈ Vd;

(
E(1−Xu)XvXw E(1−Xu)X2

vXw

EXuXvXw EXuX
2
vXw

)
, for u ∈ Vd and v ∈ Vc;

(
E(1−Xu)(1−Xv)Xw E(1−Xu)XvXw

EXu(1−Xv)Xw EXuXvXw

)
, for u, v ∈ Vd,

Euv :=



(
EXuXv EXuX

2
v

EX2
uXv EX2

uX
2
v

)
, for u, v ∈ Vc;

(
EXu(1−Xv) EXuXv

EX2
u(1−Xv) EX2

uXv

)
, for u ∈ Vc and v ∈ Vd;

(
E(1−Xu)Xv E(1−Xu)X2

v

EXuXv EXuX
2
v

)
, for u ∈ Vd and v ∈ Vc;

(
E(1−Xu)(1−Xv) E(1−Xu)Xv

EXu(1−Xv) EXuXv

)
, for u, v ∈ Vd,

and also let Auvw denote the matrix EuvwE−1
uv . Let

Γu|h :=


(
µu|Xh=0 µu|Xh=1

µ
(2)
u|Xh=0 µ

(2)
u|Xh=1

)
, u ∈ Vc;(

1− pu|Xh=0 1− pu|Xh=1

pu|Xh=0 pu|Xh=1

)
, u ∈W\(Vc ∪ {r}),

Λw|h :=


(
µw|Xh=0 0

0 µw|Xh=1

)
, w ∈ Vc;(

pw|Xh=0 0

0 pw|Xh=1

)
, w ∈ Vd.

Similar to the case that Xu, Xv, Xw are all continuous, the eigen-decomposition

Auvw = Γu|h · Λw|h · Γ−1
u|h (8)

holds for any three observed nodes u, v, w ∈ V. If node u ∈ Vc, the matrix Γu|h can be
computed by a similar way in the case that Xu, Xv, Xw are all continuous. If node u ∈ Vd,
we can also obtain the matrix Γu|h by replacing the restriction equations (6) and (7) with a
natural restriction 1TΓu|h = (1, 1) (Wang et al., 2017). So for any observed node u ∈ V, we
can obtain the matrix Γu|h using the eigen-decomposition. If node h is just a parent of node
u on the tree

−→
T , the matrix Γu|h is exactly model parameters of conditional distribution for

variable Xu given its parent variable Xh.

11
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4.2 Parameter Estimation Algorithm for Mixed Latent Tree Models

Beyond the local structure shown in Figure 2, we consider a little more complex structure
shown in Figure 3 (a) of four observed nodes and two latent nodes. Let node h2 be the root
of the tree. Nodes u, v1 are two bifurcation nodes of h1, and nodes v2, w are two bifurcation
nodes of h2. By the separation in Figure 3 (b), variables Xu, Xv1 , Xw are conditionally
independent given Xh1 , and variables Xu, Xv2 , Xw are conditionally independent given Xh2 .
Hence parameter matrices Γu|h1

and Γu|h2
can be computed as discussed in Subsection 4.1.

Furthermore, we get the parameter matrix

Γh1|h2
= Γ−1

u|h1
· Γu|h2

(9)

related to two latent variables.

(a) (b)

Figure 3: A local structure of four observed nodes and two latent nodes.

As discussed above, we can compute all the model parameters by using the joint distri-
butions of three observed variables. Then we further suggest the PEMT algorithm for the
parameter estimation of mixed latent tree models. According to Assumption (A2), every
latent variable h has three neighbors at least. If |C| = 2 in step 8 of the PEMT algorithm,
there exists an observed variable c ∈ V such that the path from h to c on T does not contain
any child of h. To guarantee that the column states of all Γu1|h,Γu2|h, · · · are matched for
h, we need to record the label states of u1 and u2 from h and perform the corresponding
matrix decomposition in equation (8) according to the label states. Furthermore, since the
parameter matrix Γu|h1

is invertible, we can compute the parameter matrix Γh1|h2
related

to two latent variables by the equation (9).
Our parameter estimation algorithm can reduce to the PELT algorithm (Wang et al.,

2017) if the data is pure binary. Specifically, the matrices

Euvw =

(
E(1−Xu)(1−Xv)Xw E(1−Xu)XvXw

EXu(1−Xv)Xw EXuXvXw

)
=

(
Pr(Xu = 0, Xv = 0, Xw = 1) Pr(Xu = 0, Xv = 1, Xw = 1)
Pr(Xu = 1, Xv = 0, Xw = 1) Pr(Xu = 1, Xv = 1, Xw = 1)

)
,

and

Euv =

(
E(1−Xu)(1−Xv) E(1−Xu)Xv

EXu(1−Xv) EXuXv

)
=

(
Pr(Xu = 0, Xv = 0) Pr(Xu = 0, Xv = 1)
Pr(Xu = 1, Xv = 0) Pr(Xu = 1, Xv = 1)

)
.
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Algorithm 2: Parameter Estimation for Mixed Latent Trees (PEMT )
Input : A latent tree with a root, the first order moments EXu for u ∈ V, the

second order moments EX2
u for u ∈ Vc and the moment matrices Euvw

and Euv for u, v, w ∈ V.
Output: All conditional probability matrices on edges in T .

1: Construct a directed tree
−→
T and compute the matrices Auvw for u, v, w ∈ V.

2: for h ∈ H do
3: find all child variables ch(h) of h in T ;
4: for z ∈ ch(h) do
5: find a directed bifurcation variable u of z.
6: end for
7: Collect the set C of all the bifurcation variables {u1, u2, · · · } of all child variables

ch(h) of h.
8: if |C| = 2 then
9: find an observed variable c ∈ V such that the path from h to c on T does not

contain any child of h.
10: end if
11: Compute Γu1|h,Γu2|h, · · · and ph by matrix decomposition in equation (8).
12: end for
13: for h2 ∈ H and h1 ∈ ch(h2) do
14: if h1 ∈ H then
15: choose a common directed bifurcation variable u of h1 and h2, and compute

parameter matrix Γh1|h2
by equation (9) ;

16: end if
17: end for
18: Return the parameters pr and Γu|pa(u), Γh|pa(h) for u ∈ V, h ∈ H\{r}.

By direct computation, the matrix EuvwE−1
uv has the spectral decomposition form used in the

PELT algorithm. For the sample-based version of the PELT , the work (Wang et al., 2017)
lacks of the asymptotic normality guarantee for the algorithm’s output. For the PEMT ,
we provide the asymptotic normality in the following Theorem 4, which is also applied to
the PELT for handling pure binary data.

For obtaining a sample-based PEMT algorithm, we replace the moments by their sample
moments. For the basic structure in Figure 2, we take the case that u, v, w ∈ Vc as an
example. Moments Euvw, Euv EXu,EX

2
u, and EXw are replaced by their sample moments

Êuvw, Êuv, X̄u, X2
u, and X̄w respectively, where

Êuvw =

(
1
n

∑n
l=1X

(l)
u X

(l)
v X

(l)
w

1
n

∑n
l=1X

(l)
u (X

(l)
v )2X

(l)
w

1
n

∑n
l=1(X

(l)
u )2X

(l)
v X

(l)
w

1
n

∑n
l=1(X

(l)
u )2(X

(l)
v )2X

(l)
w

)
,

Êuv =

(
1
n

∑n
l=1X

(l)
u X

(l)
v

1
n

∑n
l=1X

(l)
u (X

(l)
v )2

1
n

∑n
l=1(X

(l)
u )2X

(l)
v

1
n

∑n
l=1(X

(l)
u )2(X

(l)
v )2

)
,
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X̄u =
1

n

n∑
l=1

X(l)
u , X2

u =
1

n

n∑
l=1

(X(l)
u )2, X̄w =

1

n

n∑
l=1

X(l)
w .

By further solving equations (4), (5), (6) and (7), we obtain a moment estimator Γ̂u|h of
the true parameter matrix Γu|h. From the property of moment estimators in van der Vaart
(2000), we have the following theorem illustrating that our estimator converges to the true
one in the meaning of asymptotic normality. The detailed proof is put into the Appendix.

Theorem 4 Assume that the expectation EXu is zero for any continuous node u ∈ Vc. In
the sample-based PEMT algorithm, the moment estimators p̂r, Γ̂u|pa(u) and Γ̂h|pa(h) satisfy
√
n(p̂r − pr),

√
n(Γ̂u|pa(u) − Γu|pa(u)) and

√
n(Γ̂h|pa(h) − Γh|pa(h)) are asymptotically normal,

where n is the sample size, r is the root node and u ∈ V, h ∈ H\{r}.

Note that Theorem 4 requires a zero-expectation assumption. For node u ∈ Vc, the zero
expectation of variable Xu guarantees the non-singularity of the conditional moment matrix
Γu|h and the diagonal matrix Λw|h. So it also ensures that the eigen-decomposition (8) for
matrix Auvw is valid. Theoretically, we can replace non-zero mean continuous variables with
zero mean continuous variables. Specifically, for a continuous node u ∈ Vc, let X̃u = Xu−µu
where µu = EXu. Variable X̃u has a zero expectation. Moreover, the conditional distribution
X̃u|Xpa(u) = x ∼ N

(
µ̃u|x, σ̃

2
u|x

)
, where the parameters µ̃u|x = µu|x − µu and σ̃2

u|x = σ2
u|x.

So there is an one-to-one map between the parameters for Xu and those for X̃u, if the
expectation µu is known. By replacing all the continuous variables with their centralized
variables, we obtain new matrices Ẽuvw, Ẽuv and Ãuvw for any observed nodes u, v, w ∈ V.
By the similar eigen-decomposition in Subsection 4.1, we can obtain µ̃u|0, µ̃u|1, µ̃

(2)
u|0, µ̃

(2)
u|1 for

any node u ∈ Vc. We can further compute the original model parameters µu|0, µu|1, σ2
u|0, σ

2
u|1

by equations:

µu|x = µ̃u|x + µu, σ
2
u|x = σ̃2

u|x = µ̃
(2)
u|x − µ̃

2
u|x, and µ

(2)
u|x = σ2

u|x + µ2
u|x, (10)

where x = 0, 1.
In the numerical computation, we also suggest to centralize all the continuous variables

before using the PEMT algorithm. For any node u ∈ Vc, let X̃(l)
u = X

(l)
u − X̄u and

replace the original observation X
(l)
u with X̃

(l)
u where l = 1, · · · , n. We can obtain the

parameter estimation {ˆ̃µu|0, ˆ̃µu|1, ˆ̃µ
(2)

u|0,
ˆ̃µ

(2)

u|1, u ∈ Vc} by the sample-based PEMT algorithm.
Furthermore, the original parameters can be computed using equations in (10).

5. Numerical Experiment

In this section, we performed numerical experiments on both simulated and real data sets.
In Subsection 5.1, we show the consistency of the SLLT algorithm and the PEMT algo-
rithm on the simulated data, which was generated from four mixed latent tree structures.
For parameter estimation, we compared the PEMT algorithm with the conventional EM
algorithm. For structural learning, we further performed a simulated experiment for high-
dimensional data with one thousand observed variables. In Subsection 5.2, we apply our
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algorithm to a Forest Cover Type dataset for mining the hierarchical structure and latent
information. All of the experiments were performed using R on a desktop with an Intel Core
i5-3470 CPU 3.2 GHz and 16 GB RAM.

5.1 Simulation Study

We generated data sets from four mixed latent tree models shown in Figure 4. We use node
symbols •, ◦, � to represent a latent variable, a discrete observed variable, a continuous
observed variable respectively. Models 1, 3 and 4 have similar structures, but the ratios of
the number of continuous variables to the number of observed variables set V are different.
And the structure of model 1 is similar to that of model 2, where we restricted every latent
variable to have three observed neighbors. The model parameters were generated randomly
such that |pu|0−pu|1| > 0.3 for u ∈ Vd and |µu|0−µu|1| > 0.5 for u ∈ Vc, which ensure that
the information distances are limited.

(a) model 1 (b) model 2

(c) model 3 (d) model 4

Figure 4: Four mixed latent tree models used in the simulation study.

As shown in Subsection 3.2, we determine the basic sibling pair by using a prescribed
threshold ε > 0. Particularly, if the difference |Φ̂uvw − Φ̂uvz| < ε for w, z ∈ V\{u, v},
we judge that {u, v} is a sibling pair. According to Wang et al. (2017), since a longer
distance estimate is less accurate for a given number of samples, not all estimated distances
can be used for structural learning reliably. We only considered the possible sibling pair
{u, v} whose estimated distances d̂uv, d̂uw, d̂vw are controlled by two thresholds τ1, τ2. In
particular, for each pair of nodes {u, v} satisfied d̂uv < τ1, the estimated difference Φ̂uvw

was computed only for node w ∈ Kuv = {w ∈ V\{u, v}
∣∣max{d̂uw, d̂vw} < τ2}. Furthermore,

if the difference |Φ̂uvw− Φ̂uvz| < ε for any w, z ∈ Kuv and d̂uv < τ1, we consider {u, v} to be
a sibling pair. When we increase the threshold ε, it is apparent that the number of observed
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nodes belonging to the same sibling group tends to increase, while the number of individual
nodes tends to decrease. So a larger ε makes it easier to obtain a tree structure. In the
structural learning simulation, we started the value of the threshold ε from 0.1 and let it
increase with the step size 0.1 until the SLLT algorithm obtained a tree. We set τ1 = 3 and
τ2 = 5.

To assess the consistency of the SLLT algorithm and the PEMT algorithm, we varied
the sample size among 10k, 30k, 60k, 100k, 300k, 600k, 1000k. For each sample size, we did
500 experiments with randomly generated parameters in four mixed latent tree models. The
SLLT algorithm may fail in one experiment if it does not find the real latent tree structure.
The performance of the SLLT was evaluated by its failure rate. For the PEMT algorithm,
its performance was assessed by the average estimate error in 500 experiments. Figure 5
shows that the failure rate and the estimation error decreased as the sample size increased.

0.2

0.4

0.6

0.8

1.0

10k 30k 60k 100k 300k 600k 1000k
Sample Size

Fa
ilu

re
 R

at
e

Model1
Model2
Model3
Model4

(a) The SLLT algorithm

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10k 30k 60k 100k 300k 600k 1000k
Sample Size

E
st

im
at

io
n 

E
rr

or

Model1
Model2
Model3
Model4

(b) The PEMT algorithm

Figure 5: The consistency of algorithms.

As shown in Figure 5 (a), the SLLT algorithm performed much better with model
3 than model 4, which indicates that the structure of continuous variables is better to
be recovered than that of discrete ones. The SLLT algorithm worked better with model
1 than model 2, since the additional nodes in model 2 relative to model 1 increase the
probability of misjudgment. Similarly, as shown in Figure 5 (b), the PEMT algorithm had
a better performance on the model 3 than the model 1. Moreover, the algorithm performed
better with model 1 than model 4. As the proportion of the continuous parts increased
in the observed variables, the performance of the algorithm could get better. The PEMT
algorithm performed best with model 2, since the additional leaves in model 2 relative to
model 1 can enhance the parameter estimation accuracy (Wang et al., 2017).

We also compared the performance of the EM algorithm and the PEMT algorithm
using those mixed latent tree models. We varied the sample size among 10k, 30k, 60k, 100k.
Given a group of model parameters, we generated 100 random datasets for each sample
size and each of the four structures in Figure 4, where node symbols •, ◦, � represent a
latent variable, a discrete observed variable, a continuous observed variable respectively.
We ran the EM with random initialization and 100 iterations. In Table 1, we list the
average estimation accuracy and the average time costs for both algorithms. The estimation
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accuracy is measured by the mean absolute error (MAE) and the mean squared error (MSE).
The MSEs are listed in the brackets of Table 1.

Table 1: Estimation Accuracy

Model Sample Size Estimation Accuracy (×10−2) Time Costs (seconds)
EM PEMT EM PEMT

1

10k 3.38542(0.45116) 5.96665(1.79734) 245.27 1.48
30k 3.18377(0.43035) 3.74196(0.79397) 706.07 1.50
60k 3.12205(0.43014) 2.78707(0.439) 1380.06 1.54
100k 3.09361(0.42536) 2.01234(0.20053) 2328.86 1.61

2

10k 0.71304(0.01021) 1.93799(0.21545) 379.61 1.75
30k 0.41582(0.00354) 1.14539(0.03704) 1103.09 1.80
60k 0.30062(0.00183) 0.79623(0.01761) 2187.71 1.88
100k 0.23239(0.00114) 0.62655(0.01071) 3701.19 1.97

3

10k 1.72369(0.17865) 5.34733(1.54988) 379.64 1.46
30k 1.49627(0.17578) 3.18196(0.43873) 1098.84 1.49
60k 1.42979(0.1789) 2.23121(0.19593) 2193.00 1.54
100k 1.38426(0.17731) 1.6833(0.11438) 3664.98 1.60

4

10k 6.93965(1.06076) 6.73677(1.4187) 86.61 1.47
30k 6.81237(1.05467) 4.37126(0.67131) 225.16 1.50
60k 6.77787(1.04613) 3.39273(0.40884) 443.07 1.54
100k 6.77533(1.04971) 2.58861(0.24045) 742.43 1.61

As the sample size went up, the estimation accuracy of the PEMT improved quickly
with a little increasing time cost, while the time cost of the EM increased rapidly with a
slow accuracy improvement for some models. Specifically, the EM algorithm had a slow
improvement on the MSE for models 1, 3, and 4 as the sample size increased. So the EM
failed to provide the maximum likelihood estimates in some experiments for models 1, 3,
and 4 since the asymptotic variance of the maximum likelihood estimate depends on the
reciprocal of the sample size. The PEMT algorithm performed better than the EM with
models 1 and 4 when the sample size is large enough. For model 2, the EM outperformed
the PEMT , and both algorithms had a low MAE and a low MSE. The reason may lie in
that compared to models 1, 3, and 4, more observed variables in model 2 can provide more
information from data for the parameter estimation. If the sample size is equal to 100k,
the MAE and the MSE of the PEMT algorithm were 0.62655 × 10−2 and 0.01071 × 10−2

respectively. The execution speed was much faster with the PEMT algorithm, and the EM
algorithm had huge time costs with a large sample size because the EM algorithm updates
the statistics based on every sample and numerous iterations of all the samples are required.

We designed an experiment on learning a latent tree structure with 1000 observed vari-
ables. A schematic diagram is shown in Figure 6 for the latent tree structure. We considered
three cases of observed variables for this structure. The first case is that observed variables
are pure discrete. The second one is that the first half of observed variables {v1, · · · , v500}
are continuous and the others are discrete. The last one is that observed variables are pure
continuous.
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Figure 6: A schematic diagram for latent tree with pure discrete observed variables.
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Figure 7: The consistency of the SLLT algorithm.

The performance of our method was assessed using the Robinson Foulds (RF) distance
(Robinson and Foulds, 1981) and the error in the number of latent variables. Figure 7
illustrates the consistency performance of the SLLT algorithm for this high-dimensional
structural recovery. In three cases, both the RF distance and the error in latent variables
decreased as the sample size increased. So our method can still work well for learning
high-dimensional mixed latent tree models when the sample size is large enough.

5.2 Real Data Analysis

In this part, we applied the SLLT algorithm to a Forest Cover Type dataset, which is
available from the University of California, Irvine (UCI) machine learning data set repository.
This dataset with 581012 samples includes ten continuous variables, forty soil types, and
seven forest cover types in the Roosevelt National Forest of northern Colorado. Since the
cover type Lodgepole pine accounts for more than 48% of the total samples, we studied the
latent hierarchical structure related to the type Lodgepole pine.
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Table 2: Observed variables and their Ids
Id Variable Id Variable
1 Elevation 30 Haplocryolls
2 Aspect 31 Haplustalfs
3 Slope 32 Haplustolls
4 Vertical distance to nearest surface water features 33 Histic Cryaquolls
5 Horizontal distance to nearest surface water features 34 Hiwan family
6 Horizontal distance to nearest roadway 35 Legault family
7 Horizontal distance to nearest wildfire ignition points 36 Leighcan family
8 Hillshade index at 9am 37 Lithic Cryorthents
9 Hillshade index at Noon 38 Matcher family
10 Hillshade index at 3pm 39 Moran family
11 Aquic Argiudolls 40 Pachic Argiustolls
12 Argicryolls 41 Pachic Haplustolls
13 Argiustolls 42 Ratake family
14 Barrett family 43 Rock land
15 Bross family 44 Rock outcrop
16 Bullwark family 45 Rogert family
17 Catamount family 46 Rubble land
18 Cathedral family 47 Scout family
19 Cerro family 48 Supervisor family
20 Cryaquepts 49 Tolby family
21 Cryaquolls 50 Troutville family
22 Cryofluvents 51 Typic Argiustolls
23 Cryohemists 52 Typic Cryaquepts
24 Cryorthents 53 Typic Cryorthents
25 Cypher family 54 Typic Haplocryolls
26 Dystrocryepts 55 Typic Haplustolls
27 Eutrocryepts 56 Water
28 Frisco family 57 Wetmore family
29 Gateview family 58 Cover Type - Lodgepole pine

The original soil types are tagged using the US Forest Service Ecological Landtype Units
(ELUs)∗, and each ELU consists of one or more basic soil components†. We replaced the
original types by those basic soil components, and considered the total 58 observed variables
shown in Table 2 after preprocessing. Those observed variables are the elevation, the aspect,
the slope, the distances (4), the hillshade indices (3), the soil components (47), and the
forest cover type. The first 10 variables are continuous. The following 47 soil components
are binary. The forest cover type is also binary depending on whether the Lodgepole pine
exists or not.

Figure 8 presents the learned mixed latent tree structure for this Forest Cover Type
dataset. The tree consists of 58 observed variables and nine latent variables. The diameter
of the tree is seven. The node set {1, 4, 5, 6, 7, 9, 13, 16, 17, 18, 20, 21, 23, 25, 26, 27, 30, 31,
33, 34, 35, 36, 37, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 58} is the largest sibling group
in the tree. From the additivity of the information distance, the cover type on Lodgepole

∗. For more details about ELU, please visit the following link:
https://archive.ics.uci.edu/ml/datasets/Covertype

†. For more details about basic soil components, please visit the following link:
https://casoilresource.lawr.ucdavis.edu/soil_web/ssurgo.php?action=list_mapunits&
areasymbol=co645
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Figure 8: Mixed latent tree structure for the Forest Cover Type dataset.

Pine is close to six continuous variables and 29 soil types. Latent node H1 synthesizes all
the information close to Lodgepole pine. Further statistical inferences on Lodgepole pine can
be done on this largest sibling group. The Aspect (node 2) and the Hillshade index at 3pm
(node 10) form a sibling pair with a latent node H2, which may be related to the solar
incident angle. Soil components {11, 19, 32, 40, 51} form another sibling group. These five
components belong to a common soil order Mollisols. Similarly, soil components {12,48}
is from a soil suborder Cryolls. Observed variables {14,45,54} are basic components in
two Ecological Landtype Units ELU3502 and ELU6731, and observed variables {15,24,38}
are components in the ELU8707. So the latent nodes for soil components may reveal the
potential background information on the soil taxonomy, and are related to the US Forest
Ecological Landtype Units.

6. Discussion and Conclusion

To provide moderate theoretical proofs on mixed latent tree learning, we mainly consider
that discrete observed variables are binary in this paper. But our algorithms also work for ob-
served variables with more than two categories. For structural learning, we have mentioned
in Subsection 3.1 that the information distance does not rely on the specific distributions of
observed variables. So the structural learning algorithm can also handle general categorical
observed variables. For parameter estimation, our strategy is to view categorical observed
variables as binary variables. Assume that a categorical observed variable X has categories
in {C1, · · · , CK}. For any fixed category Ck, variable X can be viewed as a binary variable
X(k) with two states. One is that variable X takes the category Ck and the other is that
X takes a category in the remaining set {C1, · · · , Ck−1, Ck+1, · · · , CK}. Furthermore, for
the fixed category Ck, we replace the original variable X by the binary variable X(k). This
replacement can neither change the original tree structure, nor impact the conditional inde-
pendence relations in the graphical tree model. So with this replacement, the Assumption
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(A2) also holds that each latent variable has three neighbors at least. Similarly, we can
also convert other categorical observed variables into binary variables. Thus the proposed
PEMT algorithm can estimate the parameter on the categorical variable X for the category
Ck. The parameters on variable X for other categories can be computed in a similar way.

In summary, we propose an information distance for the mixed latent tree model and
prove that the distance is additive along paths. Furthermore, we suggest a consistent bottom-
up algorithm and give a finite sample bound guarantee for the exact structural recovery. For
estimating model parameters, we study the moment estimator using matrix decomposition
and prove that this estimator is asymptotically normal. The simulations support that our
algorithms perform well when the sample size is large. In the real data application, we
show that our structural learning algorithm can detect the latent hierarchical structure of
observed variables.
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Appendix A. Proof of Theorem 1

Here we give a proof of Theorem 1.
Proof Consider a path [v0 = u, v1 = w, v2 = v] on the latent tree T between two nodes
u, v ∈W. By the conditional independence on T and the double expectation formula, we
have that

Cov(Xu, Xv) = Var(Xw)
(
E(Xu|Xw = 1)−E(Xu|Xw = 0)

)(
E(Xv|Xw = 1)−E(Xv|Xw = 0)

)
.

Similarly, we have

Cov(Xu, Xw) = Var(Xw)
(
E(Xu|Xw = 1)− E(Xu|Xw = 0)

)
,

Cov(Xv, Xw) = Var(Xw)
(
E(Xv|Xw = 1)− E(Xv|Xw = 0)

)
.

Thus
Cov(Xu, Xv) =

Cov(Xu, Xw)Cov(Xv, Xw)

Var(Xw)
,

and duv = duw + dwv.

Appendix B. Proof of Theorem 2

A random variable X with zero expectation is sub-exponential if there is a positive number
λ such that its moment function satisfies E(etX) 6 e

λ2t2

2 for any |t| 6 1
λ . Denote a sub-
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exponential distribution by subE(λ). We further have the following proposition (Boucheron
et al., 2013) for controlling the tail probability of the sample mean:

Proposition 1 If independent random variables Z1, · · · , Zn with mean zero and Zi ∼ subE(λ)
for all i, we have that

P (Z > t) ∨ P (Z < −t) 6 exp

{
−n

2

(
t2

λ2
∧ t

λ

)}
for any t > 0, where Z = 1

n

∑n
i=1 Zi.

Now we give the proof of Theorem 2.

Proof Let X,Y be two observed variables in T and denote ε =

√
c(t+log 48)

n , then the
inequality (2) is equivalent to

P
(∣∣∣SXY − Cov(X,Y )

∣∣∣ > ε
)
6 48 exp

{
−nε

2

c

}
(11)

for any ε > 0. We prove this inequality in two cases. Case I: X and Y are the same variable.
Case II: X and Y are not the same variable. Furthermore, we divide Case I into Case I.i,
variable X is continuous, and Case I.ii, X is binary. Similarly, we divide Case II into Case
II.i, both variables X and Y are continuous, and Case II.ii, X is continuous and Y is binary,
and Case II.iii, both X and Y are binary.
Case I.i:

P (|SXX −Var(X)| > ε)

= P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − EXi + EXi −X)2 − E(Xi − EXi)
2

∣∣∣∣∣ > ε

)

6 P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − EXi)
2 − E(Xi − EXi)

2

∣∣∣∣∣ > ε

2

)
+ P

(∣∣(X − EXi)
∣∣ >√ε

2

)
=: P1 + P2. (12)

Then we compute the upper bounds of P1 and P2 in the following.
Let variable U be a parent of X on the tree. Then we have X|U=u ∼ N(µX|u, σ

2
X|u) for

any u = 0, 1. Since Xi =
∑1

u=0XiI(Ui = u) and EXi =
∑1

u=0 P (Ui = u)µi|u, let

Ai,u := XiI(Ui = u)− P (Ui = u)µi|u

for u = 0, 1, hence Xi − EXi = Ai,0 +Ai,1. For any u = 0, 1, we obtain that

Ai,u = XiI(Ui = u)− µX|uI(Ui = u) + µX|uI(Ui = u)− P (Ui = u)µX|u
=: Ci,u,1 + Ci,u,2.
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Therefore

(Xi − EXi)
2 =

(
1∑

u=0

2∑
k=1

Ci,u,k

)2

= C2
i,0,1 + C2

i,1,1 + 2Ci,0,1Ci,0,2 + 2Ci,1,1Ci,1,2 + 0 + 2Ci,0,1Ci,1,2+

2Ci,1,1Ci,0,2 +
(
C2
i,0,2 + C2

i,1,2

)
+ 2Ci,0,2Ci,1,2,

E(Xi − EXi)
2 = EC2

i,0,1 + EC2
i,1,1 + 0 + 0 + 0 + 0+

0 + E
(
2C2

i,0,2 + 2C2
i,1,2

)
+ E (2Ci,0,2Ci,1,2) .

Then

P1 6 P1.1 + P1.2 + P1.3 + P1.4 + P1.5 + P1.6 + P1.7 + P1.8, (13)
P2 6 P2.1 + P2.2 + P2.3 + P2.4, (14)

where

P1.1 := P

(∣∣∣∣∣ 1n
n∑
i=1

C2
i,0,1 − EC2

i,0,1

∣∣∣∣∣ > ε

16

)
, P1.2 := P

(∣∣∣∣∣ 1n
n∑
i=1

C2
i,1,1 − EC2

i,1,1

∣∣∣∣∣ > ε

16

)
,

P1.3 := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,0,1Ci,0,2

∣∣∣∣∣ > ε

32

)
, P1.4 := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,1,1Ci,1,2

∣∣∣∣∣ > ε

32

)
,

P1.5 := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,0,1Ci,1,2

∣∣∣∣∣ > ε

32

)
, P1.6 := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,0,2Ci,1,1

∣∣∣∣∣ > ε

32

)
,

P1.7 := P

(∣∣∣∣∣ 1n
n∑
i=1

(C2
i,0,2 + C2

i,1,2)− E(C2
i,0,2 + C2

i,1,2)

∣∣∣∣∣ > ε

16

)
,

P1.8 := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,0,2Ci,1,2 − ECi,0,2Ci,1,2

∣∣∣∣∣ > ε

32

)
,

P2.1 := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,0,1

∣∣∣∣∣ > 1

4

√
ε

2

)
, P2.2 := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,1,1

∣∣∣∣∣ > 1

4

√
ε

2

)
,

P2.3 := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,0,2

∣∣∣∣∣ > 1

4

√
ε

2

)
, P2.4 := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,1,2

∣∣∣∣∣ > 1

4

√
ε

2

)
.

We only show the computation of the upper bound of P1.1, P1.3, P1.7, and the others can be
obtained similarly.

Firstly, we compute the upper bound of P1.3. Since

P1.3 6 P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µX|0
σX|0

· I(Ui = 0)

∣∣∣∣∣ > ε

32µmσm

)
,
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hence we denote the variable Xi−µX|0
σX|0

· I(Ui = 0) as Zi for any i = 1, . . . , n. Then{
EZi = 0

EetZi = (1− P (Ui = 0)) · 1 + P (Ui = 0) · e
t2

2 6 e
t2

2

,

therefore Z1, . . . , Zn
i.i.d.˜ subE(1). By Proposition 1, a constant C exists such that

P1.3 6 2 exp

{
− nε2

Cµ2
mσ

2
m

}
. (15)

Similarly, we obtain that

P1.4, P1.5, P1.6 6 2 exp

{
− nε2

Cµ2
mσ

2
m

}
,

P2.1, P2.2 6 2 exp

{
− nε

Cσ2
m

}
6 2 exp

{
− nε2

Cσ2
m

}
. (16)

Secondly, we compute the bound of P1.7. Let

Zi := C2
i,0,2 + C2

i,1,2 =

1∑
u=0

(I(Ui = u)− P (Ui = u))2µ2
X|u.

Then

Zi =

 P 2(Ui = 1)
(
µ2
X|0 + µ2

X|1

)
, for Ui = 0

P 2(Ui = 0)
(
µ2
X|0 + µ2

X|1

)
, for Ui = 1

,

and Zi ∈ [ai, bi], where bi − ai = |P (Ui = 1)− P (Ui = 0)|
(
µ2
X|0 + µ2

X|1

)
6 2µ2

m. By Ho-
effding inequality, a constant C exists such that

P1.7 = P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − EZi

∣∣∣∣∣ > ε

16

)
6 2 exp

{
− nε2

Cµ4
m

}
. (17)

Similarly, we obtain that

P1.8 6 2 exp

{
− nε2

Cµ4
m

}
,

P2.3, P2.4 6 2 exp

{
− nε2

Cµ2
m

}
. (18)

Thirdly, we compute the bound of P1.1. Since,

P1.1 = P

(∣∣∣∣∣ 1n
n∑
i=1

(
Xi − µX|0

)2
I(Ui = 0)− P (Ui = 0)σ2

X|0

∣∣∣∣∣ > ε

16

)

6 P

(∣∣∣∣∣ 1n
n∑
i=1

[(
Xi − µX|0
σX|0

)2

− 1

]
I(Ui = 0)

∣∣∣∣∣ > ε

32σ2
X|0

)
+

P

(∣∣∣∣∣ 1n
n∑
i=1

I(Ui = 0)− P (Ui = 0)

∣∣∣∣∣ > ε

32σ2
X|0

)
,
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hence let Zi =

[(
Xi−µX|0
σX|0

)2
− 1

]
I(Ui = 0). Then we have EZi = 0 and

EetZi = (1− P (Ui = 0)) + P (Ui = 0) · EetZi|Ui=0

= (1− P (Ui = 0)) + P (Ui = 0) · e−t · (1− 2t)−
1
2

6 e
1
2
·32t2 , (∀|t| < 1

3)

where the last inequality follows from the inequality 9
2 t

2 + t + 1
2 log(1 − 2t) > 0 for any

|t| < 1
3 . Therefore Z1, . . . , Zn

i.i.d.˜ subE(3). By Proposition 1 and the Hoeffding inequality,
a constant C exists such that

P

(∣∣∣∣∣ 1n
n∑
i=1

[(
Xi − µX|0
σX|0

)2

− 1

]
I(Ui = 0)

∣∣∣∣∣ > ε

32σ2
X|0

)
6 2 exp

{
− nε2

Cσ4
m

}
,

P

(∣∣∣∣∣ 1n
n∑
i=1

I(Ui = 0)− P (Ui = 0)

∣∣∣∣∣ > ε

32σ2
X|0

)
6 2 exp

{
− nε2

Cσ4
m

}
.

Furthermore,

P1.1, P1.2 6 4 exp

{
− nε2

Cσ4
m

}
. (19)

By (12), (13), (14), (15), (16), (17), (18) and (19), we obtain that

P (|SXX −Var(X)| > ε) 6 28 exp

{
−nε

2

c

}
6 48 exp

{
−nε

2

c

}
,

where c := C ·max{σ4
m, σ

2
mµ

2
m, µ

4
m, σ

2
m, µ

2
m, 1}.

Case I.ii: by the Hoeffding inequality, we obtain that

P (|SXX −Var(X)| > ε)

= P

(∣∣∣∣∣
(

1

n

n∑
i=1

X2
i −X

2

)
−
(
EX2

i − (EXi)
2
)∣∣∣∣∣ > ε

)

6 P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − EXi

∣∣∣∣∣ > ε

2

)
+ P

∣∣∣∣∣∣
(

1

n

n∑
i=1

Xi

)2

− (EXi)
2

∣∣∣∣∣∣ > ε

2


6 P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − EXi

∣∣∣∣∣ > ε

2

)
+ P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − EXi

∣∣∣∣∣ > ε

4

)

6 4 exp

{
−nε

2

8

}
6 48 exp

{
−nε

2

c

}
. (20)
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Case II.i: we divide it into case II.i.a, X,Y are not sibling pair, and case II.i.b, X,Y are
sibling pair.
Case II.i.a:

P (|SXY − Cov(X,Y )| > ε)

6P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − EX)(Yi − EY )− E(X − EX)(Y − EY )

∣∣∣∣∣ > ε

2

)
+

P
(∣∣(X − EX)(Y − EY )

∣∣ > ε

2

)
=:P1 + P2. (21)

Let U and V be parent of X and Y respectively. Then X|U=u ∼ N(µX|u, σ
2
X|u), Y |V=v ∼

N(µY |v, σ
2
Y |v), where u, v ∈ {0, 1}. Since Xi =

∑1
u=0XiI(Ui = u), EXi =

∑1
u=0 P (Ui =

u)µX|u, and the similar to Yi and EYi, hence let

Ai,u = XiI(Ui = u)− P (Ui = u)µX|u,

Bi,v = YiI(Vi = v)− P (Vi = v)µY |v.

Furthermore, let

Ai,u = XiI(Ui = u)− µX|uI(Ui = u) + µX|uI(Ui = u)− P (Ui = u)µX|u
=: Ci,u,1 + Ci,u,2,

Bi,v = YiI(Vi = v)− µY |vI(Vi = v) + µY |vI(Vi = v)− P (Vi = v)µY |v
=: Di,v,1 + Di,v,2.

Then we have

P1 6 P

(∣∣∣∣∣ 1n
n∑
i=1

1∑
u=0

1∑
v=0

2∑
k=1

2∑
l=1

(Ci,u,kDi,v,l − ECi,u,kDi,v,l)

∣∣∣∣∣ > ε

2

)

6
1∑

u=0

1∑
v=0

2∑
k=1

2∑
l=1

P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,u,kDi,v,l − ECi,u,kDi,v,l

∣∣∣∣∣ > ε

32

)
, (22)

P2 6 P

∣∣∣∣∣∣
(

1

n

n∑
i=1

1∑
u=0

2∑
k=1

Ci,u,k

) 1

n

n∑
j=1

1∑
v=0

2∑
l=1

Dj,v,l

∣∣∣∣∣∣ > ε

2


6

1∑
u=0

2∑
k=1

P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,u,k

∣∣∣∣∣ > 1

4

√
ε

2

)
+

1∑
v=0

2∑
l=1

P

∣∣∣∣∣∣ 1n
n∑
j=1

Dj,v,l

∣∣∣∣∣∣ > 1

4

√
ε

2

 . (23)

Thus, we only need to find the upper bounds of these equations:

P1,u,v,k,l := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,u,kDi,v,l − ECi,u,kDi,v,l

∣∣∣∣∣ > ε

32

)
, ∀u, v ∈ {0, 1}, ∀k, l ∈ {1, 2},

P2,u,k := P

(∣∣∣∣∣ 1n
n∑
i=1

Ci,u,k

∣∣∣∣∣ > 1

4

√
ε

2

)
, ∀u ∈ {0, 1},∀k ∈ {1, 2}.
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From the arguments in case I.i, ∀u, v ∈ {0, 1}, we have

P1,u,v,1,1 6 2 exp

{
− nε2

Cσ4
m

}
, P1,u,v,1,2, P1,u,v,2,1 6 2 exp

{
− nε2

Cµ2
mσ

2
m

}
,

P1,u,v,2,2 6 2 exp

{
− nε2

Cµ4
m

}
, P2,u,1 6 2 exp

{
− nε2

Cσ2
m

}
, P2,u,2 6 2 exp

{
− nε2

Cµ2
m

}
. (24)

By (21), (22), (23) and (24), we have

P (|SXY − Cov(X,Y )| > ε) 6 48 exp

{
−nε

2

c

}
. (25)

Case II.i.b: since X,Y are sibling pair, hence let U be the parent of X and Y . Replace Vi
in case II.i.b with Ui, then we can obtain the desired result (11).
Case II.ii: Let U be the parent of X. Then X|U=u ∼ N(µX|u, σ

2
X|u), Y |U=u ∼ b(1, pY |u=u),

where u ∈ {0, 1}. From similar arguments, we have

P (|SXY − Cov(X,Y )| > ε) 6 48 exp

{
−nε

2

c

}
. (26)

Case II.iii: Let U be the parent of X, then X|U=u ∼ b(1, pX|u), Y |U=u ∼ b(1, pY |U=u), where
u = 0, 1. From similar arguments, we have

P (|SXY − Cov(X,Y )| > ε) 6 24 exp

{
−nε

2

C

}
6 48 exp

{
−nε

2

c

}
. (27)

In summary, for any X,Y ∈ V and t > 0, we have

P

(∣∣∣SXY − Cov(X,Y )
∣∣∣ >√c(t+ log 48)

n

)
6 e−t, (28)

where c = C ·max{σ4
m, σ

2
mµ

2
m, µ

4
m, σ

2
m, µ

2
m, 1}.

Appendix C. Proof of Theorem 3

In this section, we give the proof of Theorem 3. For an threshold ε 6 min{1
2φmin, 1} , we

only need to show that the probability of the event{∣∣∣(Φ̂uvw − Φ̂uvz

)
− (Φuvw − Φuvz)

∣∣∣ < ε,∀u, v, w, z ∈ V
}

is sufficiently large if the sample size is sufficiently large. Since∣∣∣(Φ̂uvw − Φ̂uvz

)
− (Φuvw − Φuvz)

∣∣∣
6
∣∣∣d̂uw − duw∣∣∣+

∣∣∣d̂vw − dvw∣∣∣+
∣∣∣d̂uz − duz∣∣∣+

∣∣∣d̂vz − dvz∣∣∣
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for any u, v, w, z ∈ V, we have

P
(∣∣∣(Φ̂uvw − Φ̂uvz

)
− (Φuvw − Φuvz)

∣∣∣ < ε,∀u, v, w, z ∈ V
)

>P

(∣∣∣d̂uv − duv∣∣∣ < 1

4
ε, ∀u, v ∈ V

)
.

Thus we only need to show that the probability of the event
{∣∣∣d̂uv − duv∣∣∣ < 1

4ε, ∀u, v ∈ V
}

is sufficiently large if the sample size is sufficiently large.
In the following, we show how to make

∣∣∣d̂uv − duv∣∣∣ < 1
4ε. For any u, v ∈ V, we con-

sider the information distance duv. Since duv = − log |Cov(Xu, Xv)| + 1
2 log(Var(Xu)) +

1
2 log(Var(Xv)), hence∣∣∣d̂uv − duv∣∣∣ < |log |Suv| − log |Cov(Xu, Xv)||+

1

2
|log(Suu)− log(Var(Xu))|+

1

2
|log(Svv)− log(Var(Xv))| .

We denote cmin as minu,v∈V{|Cov(Xu, Xv)|} (this allows u = v). If ∆ > 0 exists such
that ∆ < 1

2cmin and for any u, v ∈ V,
∣∣Suv − Cov(Xu, Xv)

∣∣ 6 ∆, we obtain

|Suv| > |Cov(Xu, Xv)| −
∣∣|Suv| − |Cov(Xu, Xv)|

∣∣
> |Cov(Xu, Xv)| −

∣∣Suv − Cov(Xu, Xv)
∣∣ > 1

2
cmin.

Since |Cov(Xu, Xv)|, |Suv| > 1
2cmin, then |log |Suv| − log |Cov(Xu, Xv)|| < 2

cmin
∆. Fur-

thermore, we have
∣∣∣d̂uv − duv∣∣∣ < 4∆

cmin
. Since ε 6 1, we obtain that ∆ < cminε

16 implies ∆ <
1
2cmin. Thus if an appropriate ∆ exists such that ∆ < cminε

16 and
∣∣Suv − Cov(Xu, Xv)

∣∣ 6 ∆

for any u, v ∈ V, then
∣∣∣d̂uv − duv∣∣∣ < 1

4ε.

Next, we show how to select ∆ such that P
(⋂

u,v

{∣∣Suv − Cov(Xu, Xv)
∣∣ 6 ∆

})
is suf-

ficiently large and ∆ < cminε
16 . If we show these successfully, the proof of Theorem 3 is

completed. According to Theorem 2, for any u, v ∈ V and any t > 0, we have

P

(∣∣∣Suv − Cov(Xu, Xv)
∣∣∣ >√c(t+ log 48)

n

)
6 e−t.

Thus, for any t > 0, we have

P

(⋂
u,v

{∣∣∣Suv − Cov(Xu, Xv)
∣∣∣ 6√c(t+ log 48)

n

})

= 1− P

(⋃
u,v

{∣∣∣Suv − Cov(Xu, Xv)
∣∣∣ >√c(t+ log 48)

n

})

> 1−
∑
u,v

P

(∣∣∣Suv − Cov(Xu, Xv)
∣∣∣ >√c(t+ log 48)

n

)
> 1−m2 · e−t =: 1− η,
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where η ∈ (0, 1). Therefore, η = m2 · e−t and let t be − log η
m2 . Hence, we obtain

P

(
min
u,v

{∣∣Suv − Cov(Xu, Xv)
∣∣ 6√c(log(48m2)− log η)

n

})
> 1− η.

Thus we select ∆ =

√
c(log(48m2)−log η)

n . For any η, if the sample size n is large enough such
that ∆ < cminε

16 , the algorithm returns the true latent tree structure with a probability of
at least 1− η. Furthermore, if 16∆

cmin
< min{1

2φmin, 1}, there exists an appropriate threshold
ε 6 min{1

2φmin, 1}. So we get the conclusion.

Appendix D. Proof of Theorem 4

Take the case that u, v, w ∈ Vc in Figure 2 as an example, and denote θuvw as the parameter
vector

(ph, µu|Xh=0, µu|Xh=1, µ
(2)
u|Xh=0, µ

(2)
u|Xh=1, µv|Xh=0, µv|Xh=1, µ

(2)
v|Xh=0, µ

(2)
v|Xh=1,

µw|Xh=0, µw|Xh=1)T ,

and denote f = (fl)
11
l=1 as a function of random vector Xuvw := (Xu, Xv, Xw):

f1(xuvw) = xw, f2(xuvw) = xu, f3(xuvw) = x2
u, f4(xuvw) = xuxv, f5(xuvw) = xux

2
v,

f6(xuvw) = x2
uxv, f7(xuvw) = x2

ux
2
v, f8(xuvw) = xuxvxw, f9(xuvw) = xux

2
vxw,

f10(xuvw) = x2
uxvxw, f11(xuvw) = x2

ux
2
vxw.

It is obvious that EXw = Ef1(Xuvw),EXu = Ef2(Xuvw),EX2
u = Ef3(Xuvw),

Euv =

(
Ef4(Xuvw) Ef5(Xuvw)
Ef6(Xuvw) Ef7(Xuvw)

)
and Euvw =

(
Ef8(Xuvw) Ef9(Xuvw)
Ef10(Xuvw) Ef11(Xuvw)

)
.

Furthermore, we denote e = (el)
11
l=1 as a function of the parameter vector θuvw:

e1(θuvw) = (1− ph) · µw|Xh=0 + ph · µw|Xh=1,

e2(θuvw) = (1− ph) · µu|Xh=0 + ph · µu|Xh=1,

e3(θuvw) = (1− ph) · µ(2)
u|Xh=0 + ph · µ

(2)
u|Xh=1,

e4(θuvw) = (1− ph) · µu|Xh=0 · µv|Xh=0 + ph · µu|Xh=1 · µv|Xh=1,

e5(θuvw) = (1− ph) · µu|Xh=0 · µ
(2)
v|Xh=0 + ph · µu|Xh=1 · µ

(2)
v|Xh=1,

e6(θuvw) = (1− ph) · µ(2)
u|Xh=0 · µv|Xh=0 + ph · µ

(2)
u|Xh=1 · µv|Xh=1,

e7(θuvw) = (1− ph) · µ(2)
u|Xh=0 · µ

(2)
v|Xh=0 + ph · µ

(2)
u|Xh=1 · µ

(2)
v|Xh=1,

e8(θuvw) = (1− ph) · µu|Xh=0 · µv|Xh=0 · µw|Xh=0 + ph · µu|Xh=1 · µv|Xh=1 · µw|Xh=1,

e9(θuvw) = (1− ph) · µu|Xh=0 · µ
(2)
v|Xh=0 · µw|Xh=0 + ph · µu|Xh=1 · µ

(2)
v|Xh=1 · µw|Xh=1,

e10(θuvw) = (1− ph) · µ(2)
u|Xh=0 · µv|Xh=0 · µw|Xh=0 + ph · µ

(2)
u|Xh=1 · µv|Xh=1 · µw|Xh=1,

e11(θuvw) = (1− ph) · µ(2)
u|Xh=0 · µ

(2)
v|Xh=0 · µw|Xh=0 + ph · µ

(2)
u|Xh=1 · µ

(2)
v|Xh=1 · µw|Xh=1.
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Then our eigen-decomposition methods are equivalent to solve the equations

e(θuvw) = Eθuvwf(Xuvw). (29)

By using the sample moment 1
n

∑n
l=1 f(X

(l)
uvw) to replace the right side of the equations (29),

we obtain the moment estimation equations

e(θuvw) =
1

n

n∑
l=1

f(X(l)
uvw). (30)

The solution of the equations (30) is the moment estimation θ̂uvw for θuvw.
Before proving Theorem 4, we need the following proposition which states the asymptotic

normality of the moment estimation (van der Vaart, 2000).

Proposition 2 Suppose that e(θ) = Pθf is one-to-one on an open set Θ ⊂ Rk and continu-
ously differentiable at θ0 with nonsingular derivative e′θ0. Moreover, assume that Pθ0‖f‖2 <
∞. Then moment estimators θ̂n exist with probability tending to one and satisfy

√
n(θ̂n − θ0)

θ0 N
(

0, e′−1
θ0
Pθ0ff

T (e′−1
θ0

)T
)
.

Now we give the proof of Theorem 4.
Proof We prove this theorem on the two cases: case I, the asymptotic normality of esti-
mators for observed variables, and case II, the asymptotic normality of estimators for latent
variables.
Case I: as discussed above, we know that Θuvw = {θuvw : µw|Xh=0 > µw|Xh=1} is an open
set.

For any u, v ∈ V, w ∈ Vc, since µw|Xh=0 > µw|Xh=1, we obtain the unique parameters
µw|Xh=0, µw|Xh=1 by the first step of eigen-decomposition. Then, we obtain the unique
parameters ph,Γu|h by the second and third step of eigen-decomposition. Furthermore,
according to the equation

Euv = Γu|h

(
1− ph 0

0 ph

)
ΓTv|h,

and the matrix Euv and the parameters ph,Γu|h are all unique, we obtain the unique pa-
rameters Γv|h. Thus e(θuvw) is an one-to-one on Θuvw for any u, v ∈ V, w ∈ Vc. Similarly,
e(θuvw) is an one-to-one on Θuvw for u, v ∈ V, w ∈ Vd.

And e(θuvw) is continuously differentiable at θ0. According to the proposition 2, we only
need to prove that the Jacobi matrix of e(θuvw) at θ0 is nonsingular.

For any u, v, w ∈ Vc, we have

det

(
∂e(θuvw)

∂θTuvw

)
= (1− p1)5p5

1(µu|Xh=0µ
(2)
u|Xh=1 − µu|Xh=1µ

(2)
u|Xh=0)3(µv|Xh=0µ

(2)
v|Xh=1 − µv|Xh=1µ

(2)
v|Xh=0)2

· (µw|Xh=1 − µw|Xh=0)3

= (1− ph)2p2
h det 3(Γu|h) det 2(Γv|h)Cov3(Xw, Xh).
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Thus, for any w ∈ V,

det

(
∂e(θuvw)

∂θTuvw

)
=



(1− ph)2p2
h det3(Γu|h) det2(Γv|h)Cov3(Xw, Xh), u, v ∈ Vc;

(1− ph)ph det2(Γu|h) det2(Γv|h)Cov3(Xw, Xh), u ∈ Vc, v ∈ Vd;

(1− ph)ph det2(Γu|h) det2(Γv|h)Cov3(Xw, Xh), u ∈ Vd, v ∈ Vc;

(1− ph)ph det2(Γu|h) det2(Γv|h)Cov2(Xw, Xh), u, v ∈ Vd.

Since Assumption (A1) holds and continuous variables have mean zero, we have

det

(
∂e(θuvw)

∂θTuvw

)
6= 0, ∀u, v, w ∈ V.

In the following, we prove E‖f‖2 < +∞. We only need to find an upper boundM < +∞
such that Ef2

l (Xuvw) 6M for any l.
For any u ∈ Vc and h ∈ H, the conditional moment E(X l

u|Xh = xh) with xh = 0, 1 and
l = 2, 4 satisfies

E(X l
u|Xh = xh) =

1∑
xpa(u)=0

P
(
Xpa(u) = xpa(u)|Xh = xh

)
E
(
X l
u|Xpa(u) = xpa(u)

)
.

Since Xu|Xpa(u) = xpa(u) ∼ N(µu|xpa(i)
, σ2

u|xpa(u)
) for xpa(u) = 0, 1, we have

E(X2
u|Xh = xh) =

1∑
xpa(u)=0

P
(
Xpa(u) = xpa(u)|Xh = xh

) (
σ2
u|xpa(u)

+ µ2
u|xpa(u)

)
6 σ2

m + µ2
m,

E(X4
u|Xh = xh) =

1∑
xpa(u)=0

P
(
Xpa(u) = xpa(u)|Xh = xh

)
·
(

3σ4
u|xpa(u)

+

6σ2
u|xpa(u)

µ2
u|xpa(u)

+ µ4
u|xpa(u)

)
6 3σ4

m + 6σ2
mµ

2
m + µ4

m,

where µm = max{|µu|Xh=0|, |µu|Xh=1|,∀u ∈ Vc} and σ2
m = max{σ2

u|Xh=0, σ
2
u|Xh=1, ∀u ∈

Vc}.
For any u ∈ Vd and h ∈ H, the conditional moment E(X l

u|Xh = xh) with xh = 0, 1 and
l = 2, 4 satisfies

E(X l
u|Xh = xh) = P (Xu = 1|Xh = xh) 6 1.

Let C = max{1, σ2
m + µ2

m, 3σ
4
m + 6σ2

mµ
2
m + µ4

m} < +∞. Thus, for any fl, we have

Ef2
l (X) =

1∑
xh=0

P (Xh = xh)E(X lu
u |Xh = xh)E(X lv

v |Xh = xh)E(X lw
w |Xh = xh)

6 C3 < +∞,
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where lu, lv = 0, 2, 4 and lw = 2, 4. So, we have E‖f‖2 < +∞.
From the proposition 2, we have

√
n(θ̂uvw − θ0)

L−→ N(0, e′−1(θ0)Ef(Xuvw)fT (Xuvw)(e′−1(θ0))T ).

Thus, p̂h, µ̂u|Xh=0, µ̂u|Xh=1, µ̂
(2)
u|Xh=0, µ̂

(2)
u|Xh=1 for u ∈ Vc (or p̂u|Xh=0, p̂u|Xh=1 for u ∈ Vd)

are all asymptotically normal.
Case II: firstly, we consider the estimating equations for the parameter of the latent variables.

As shown in Figure 3, for any observed variables u, v1, v2, w ∈ V and any latent variables
h1, h2 ∈ H, let θuv1v2w denote all the model parameters which appear in the decomposition
method. As shown in Figure 3 (b), the parameter θuv1v2w consists of θuv1w and θuv2w. Since
we estimate the parameters θuv1w and θuv2w separately when we estimate the parameter
θuv1v2w, we treat them all as free parameters. Thus, all the parameters in θuv1v2w are free.

Take the case where u, v1, v2, w ∈ Vc as an example,

θuv1v2w = (θTuv1w, θ
T
uv2w)T

= (ph1 , µu|Xh1
=0, µu|Xh1

=1, µ
(2)
u|Xh1

=0, µ
(2)
u|Xh1

=1, µv1|Xh1
=0, µv1|Xh1

=1, µ
(2)
v1|Xh1

=0,

µ
(2)
v1|Xh1

=1, µw|Xh1
=0, µw|Xh1

=1, ph2 , µu|Xh2
=0, µu|Xh2

=1, µ
(2)
u|Xh2

=0, µ
(2)
u|Xh2

=1,

µv2|Xh2
=0, µv2|Xh2

=1, µ
(2)
v2|Xh2

=0, µ
(2)
v2|Xh2

=1, µw|Xh2
=0, µw|Xh2

=1)T ,

where µw|Xh1
=0 > µw|Xh1

=1 and µw|Xh2
=0 > µw|Xh2

=1.
Furthermore, the estimating equations of the parameter θuv1v2w consist of the estimating

equations of the parameters θuv1w and θuv2w (similar to equation (30)). Thus, we can obtain
estimating equations of the parameter θuv1v2w:

1

n

n∑
l=1

F (X(l)
uv1v2w) :=

 1
n

∑n
l=1 f

(
X

(l)
uv1w

)
1
n

∑n
l=1 f

(
X

(l)
uv2w

) 
=

(
Ef (Xuv1w)
Ef (Xuv2w)

)
=

(
e(θuv1w)
e(θuv2w)

)
=: g(θuv1v2w),

where f(·), e(·) are defined in the Subsection 4.2. The solution of the above equations is
the moment estimation θ̂uv1v2w obtained from the PEMT algorithm for θuv1v2w. By the
multiple center limit theorem, we have

√
n

(
1

n

n∑
l=1

F (X(l)
uv1v2w)− E(F (Xuv1v2w))

)
L−→ N(0,Cov(F (Xuv1v2w))).

As discussed above, we know that Θuv1v2w = {θuv1v2w : µw|Xh1
=0 > µw|Xh1

=1, µw|Xh2
=0 >

µw|Xh2
=1} is an open set.

For any u, v1, v2, w ∈ V, similar to Case I, we have

det

(
∂g(θuv1v2w)

∂θuv1v2w

)
= det

(
∂e(θuv1w)

∂θuv1w

)
· det

(
∂e(θuv2w)

∂θuv2w

)
6= 0.
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Similar to Case I, we have E‖f‖2 <∞.
Thus, from proposition D.1, we have

√
n(θ̂uv1v2w − θ0)

L−→ N(0, g′−1(θ0)Ef(Xuv1v2w)fT (Xuv1v2w)(g′−1(θ0))T ).

Let θu|h1h2
denote

(µu|Xh1
=0, µu|Xh1

=1, µ
(2)
u|Xh1

=0, µ
(2)
u|Xh1

=1, µu|Xh2
=0, µu|Xh2

=1, µ
(2)
u|Xh2

=0, µ
(2)
u|Xh2

=1)T

for u ∈ Vc and
(pu|Xh1

=0, pu|Xh1
=1, pu|Xh2

=0, pu|Xh1
=1)T

for u ∈ Vd.
Then, we have

√
n(θ̂u|h1h2

− θu|h1h2
)

L−→ N(0,Σ),

where Σ is corresponding submatrix of the matrix g′−1(θuv1v2w) ·Ef(Xuv1v2w)fT (Xuv1v2w) ·
(g′−1(θuv1v2w))T .

In the following, we consider the asymptotic normality of the estimation of parameters
ph1|Xh2

=0, ph1|Xh2
=1. Take the case that u ∈ Vc as an example. Since

Γh1|h2
= Γ−1

u|h1
· Γu|h2

=
1

det(Γu|h1
)

 µ
(2)
u|Xh1

=1 −µu|Xh1
=1

−µ(2)
u|Xh1

=0 µu|Xh1
=0

( µu|Xh2
=0 µu|Xh2

=1

µ
(2)
u|Xh2

=0 µ
(2)
u|Xh2

=1

)
,

we have

(
ph1|Xh2

=0

ph1|Xh2
=1

)
=


µu|Xh1

=0·µ
(2)
u|Xh2

=0
−µ(2)

u|Xh1
=0
·µu|Xh2

=0

det(Γu|h1
)

µu|Xh1
=0·µ

(2)
u|Xh2

=1
−µ(2)

u|Xh1
=0
·µu|Xh2

=1

det(Γu|h1
)

 =: ϕ(θu|h1h2
).

Thus, ϕ(θ̂u|h1h2
) is the parameter estimations (p̂h1|Xh2

=0, p̂h1|Xh2
=1)T obtained from sample

PEMT algorithm. According to Assumption (A1) and µu = 0, we have det(Γu|h1
) 6= 0 and

µu|Xh=x 6= 0 for h = h1, h2 and x = 0, 1. Furthermore, the function ϕ(·) is Continuously
differentiable. Thus, by the multiple delta theorem, we have

√
n

((
p̂h1|Xh2

=0

p̂h1|Xh2
=1

)
−

(
ph1|Xh2

=0

ph1|Xh2
=1

))
L−→ N

0,

(
∂ϕ(θu|h1h2

)

∂θTu|h1h2

)
Σ

(
∂ϕ(θu|h1h2

)

∂θTu|h1h2

)T .

Then, p̂h1|Xh2
=0, p̂h1|Xh2

=1 are all asymptotically normal.
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