
Journal of Machine Learning Research 22 (2021) 1-6 Submitted 5/20; Revised 2/21; Published 6/21

The ensmallen library for flexible numerical optimization

Ryan R. Curtin ryan@ratml.org — RelationalAI, Atlanta, GA, USA

Marcus Edel Free University of Berlin, Germany

Rahul Ganesh Prabhu Birla Institute of Technology and Science Pilani, India

Suryoday Basak University of Texas at Arlington, USA

Zhihao Lou Epsilon, Chicago, IL, USA

Conrad Sanderson Data61/CSIRO, Australia, and Griffith University, Australia

Editor: Antti Honkela

Abstract

We overview the ensmallen numerical optimization library, which provides a flexible
C++ framework for mathematical optimization of user-supplied objective functions. Many
types of objective functions are supported, including general, differentiable, separable, con-
strained, and categorical. A diverse set of pre-built optimizers is provided, including Quasi-
Newton optimizers and many variants of Stochastic Gradient Descent. The underlying
framework facilitates the implementation of new optimizers. Optimization of an objective
function typically requires supplying only one or two C++ functions. Custom behavior
can be easily specified via callback functions. Empirical comparisons show that ensmallen
outperforms other frameworks while providing more functionality. The library is available
at https://ensmallen.org and is distributed under the permissive BSD license.

Keywords: Numerical optimization, mathematical optimization, function minimization.

1. Introduction

The problem of numerical optimization is generally expressed as argminx f(x) where f(x) is
a given objective function and x is typically a vector or matrix. Such optimization problems
are fundamental and ubiquitous in the computational sciences (Nocedal and Wright, 2006).
Many frameworks or libraries for specific machine learning approaches have an integrated
optimization component for distinct and limited use cases, such as TensorFlow (Abadi et al.,
2016), PyTorch (Paszke et al., 2019) and LibSVM (Chang and Lin, 2011). There are also
many general numerical optimization toolkits aimed at supporting a wider range of use
cases, including SciPy (Virtanen et al., 2020), opt++ (Meza, 1994), and OR-Tools (Perron
and Furnon, 2019) among many others. However, such toolkits still have limitations in
several areas, including: (i) types of supported objective functions, (ii) selection of available
optimizers, (iii) support for custom behavior via callback functions, (iv) support for various
underlying element and matrix types used by objective functions, and (v) extensibility, to
facilitate adding more optimizers.

These shortcomings have motivated us to create the ensmallen library, which explicitly
supports numerous types of user-defined objective functions, including general, differen-
tiable, separable, categorical, and constrained objective functions, as well as semidefinite
programs. Custom behavior during optimization can be specified via callback functions,
for purposes such as printing progress, early stopping, inspection and modification of an

©2021 Ryan R. Curtin, Marcus Edel, Rahul Ganesh Prabhu, Suryoday Basak, Zhihao Lou, Conrad Sanderson.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-416.html.

https://ensmallen.org
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-416.html


Curtin, Edel, Prabhu, Basak, Lou, and Sanderson

optimizer’s state, and debugging of new optimizers. A large set of pre-built optimizers is
provided; at the time of writing, 46 optimizers are available. This includes simulated an-
nealing (Kirkpatrick et al., 1983), several Quasi-Newton optimizers (Liu and Nocedal, 1989;
Mokhtari et al., 2018), and many variants of Stochastic Gradient Descent (Ruder, 2016).

The user interface to the optimizers is intuitive and matches the ease of use of popular
optimization toolkits mentioned above; for more details, see the online documentation at
https://ensmallen.org/docs.html. Typically, a user only needs to implement one or two
C++ functions, and then they can use any optimizer matching the type of their objective.

Importantly, the ease-of-use does not come at the cost of efficiency; instead, ensmallen
uses C++ template metaprogramming techniques (hidden from the user) to provide ac-
celerations and simplifications where possible. The use of various underlying element and
matrix types is supported, including single- and double-precision floating point, integer val-
ues, and sparse data. Lastly, ensmallen provides an extensible framework to easily allow
the implementation of new optimization techniques.

2. Functionality

The task of optimizing an objective function with ensmallen is straightforward. The type
of objective function defines the implementation requirements. Each type has a minimal
set of methods that must be implemented; typically between one and four methods. Apart
from the requirement of an implementation of f(x), characteristics of f(x) can be exploited
through additional functions. For example, if f(x) is differentiable, an implementation
of f ′(x) can be used to accelerate the optimization process. Then, one of the pre-built
differentiable function optimizers, such as L-BFGS (Liu and Nocedal, 1989), can be used.

Whenever possible, ensmallen will automatically infer methods that are not provided.
For example, given a separable objective function f(x) =

∑
i fi(x) where an implementation

of fi(x) is provided (as well as the number of such separable objectives), an implementa-
tion of f(x) can be automatically inferred. This is done at compile-time, and so there is
no additional runtime overhead compared to a manual implementation. C++ template
metaprogramming techniques (Abrahams and Gurtovoy, 2004; Alexandrescu, 2001) are in-
ternally used to automatically produce efficient code during compilation.

To implement a new optimizer, the user only needs to implement a class with an
Optimize() method taking an external implementation of f(x) (and other functions specific
to the class of objective function). As such, ensmallen is easily extensible.

When an optimizer (either pre-built or new) is used with a user-provided objective func-
tion, the requirements for that optimizer are checked (e.g., presence of an implementation
of f ′(x)), resulting in user-friendly error messages at compile-time if there are any issues.
For example, as L-BFGS is suited for differentiable functions, a compile-time error will be
printed if an attempt is made to use it with non-differentiable (general) functions.

3. Example Usage & Empirical Comparison

For an example implementation and comparison, let us first consider linear regression. In
this problem, predictors X ∈ Rd×n and associated responses y ∈ Rn are given. We wish

2

https://ensmallen.org/docs.html


The ensmallen library for flexible numerical optimization

#include <ensmallen.hpp>

struct LinearRegressionFn

{

LinearRegressionFn(const arma::mat& in_X, const arma::vec& in_Y) : X(in_X), y(in_Y) {}

double Evaluate(const arma::mat& phi)

{ const arma::vec tmp = X.t() * phi - y; return arma::dot(tmp, tmp); }

void Gradient(const arma::mat& phi, arma::mat& grad)

{ grad = 2 * X * (X.t() * phi - y); }

const arma::mat& X; const arma::vec& y;

};

int main()

{

arma::mat X; arma::vec y;

// ... set the contents of X and y here ...

arma::mat phi_star(X.n_rows, 1, arma::fill::randu); // initial point (uniform random)

LinearRegressionFn f(X, y);

ens::L_BFGS optimizer; // create an optimizer object with default parameters

optimizer.Optimize(f, phi_star); // after here, phi_star contains the optimized parameters

}

Figure 1: Example implementation of an objective function class for linear regression and
usage of the L-BFGS optimizer. The optimizer can be easily changed by re-
placing ens::L BFGS with another optimizer, such as ens::GradientDescent, or
ens::SA which implements simulated annealing (Kirkpatrick et al., 1983).

to find the best linear model Φ ∈ Rd, which translates to finding Φ∗ = argminΦ f(Φ) for
f(Φ) = ‖X>Φ− y‖2. This gives the gradient f ′(Φ) = 2X(X>Φ− y).

To find Φ∗ using a differentiable optimizer, we simply need to provide implementations
of f(Φ) and f ′(Φ). For a differentiable function, ensmallen requires only two methods:
Evaluate() and Gradient(). The pre-built L-BFGS optimizer can then be used to find Φ∗.
Figure 1 shows an example implementation. Via the use of the Armadillo library (Sander-
son and Curtin, 2016), the linear algebra expressions to implement the objective function
and its gradient are compact and closely match natural mathematical notation. Armadillo
efficiently translates the expressions into standard BLAS and LAPACK function calls (An-
derson et al., 1999), allowing easy exploitation of high-performance implementations such as
the multi-threaded OpenBLAS (Xianyi et al., 2020) and Intel MKL (Intel, 2020) libraries.

Table 1 compares the performance of ensmallen against other frameworks for the linear
regression problem on various dataset sizes. We compare against SciPy, Optim.jl (Mo-
gensen and Riseth, 2018), and the bfgsmin() function from GNU Octave (Eaton et al.,
2018). We also compare against the automatic differentiation implementations of PyTorch,
TensorFlow, and the Python library Autograd (Maclaurin et al., 2015). In each framework,
the provided L-BFGS optimizer is limited to 10 iterations. Highly noisy random data with
a slight linear pattern is used. The runtimes are the average of 5 runs. The experiments
were performed on an AMD Ryzen 7 2700X with 64GB RAM, with g++ 10.2.0, Julia 1.5.2,
Python 3.8.5, and Octave 6.1.0. For fairness, all tools used the CPU only.

3



Curtin, Edel, Prabhu, Basak, Lou, and Sanderson

Next, we consider the common machine learning problem of logistic regression using two-
class versions of various real datasets from the UCI dataset repository (Lichman, 2013). The
setup of our experiments is the same as for the previous example; results are in Table 2.

Both simulations show that ensmallen achieves the lowest runtimes, sometimes by
large margins. This is due to multiple factors, including the efficiency of the optimizer
implementations in ensmallen, template metaprogramming optimizations in Armadillo and
ensmallen, and minimal overhead and dependencies compared to the competitors.

4. Conclusion

The ensmallen numerical optimization provides a flexible framework for optimization of
user-supplied objective functions in C++. Unlike other frameworks, ensmallen supports
many types of objective functions, provides a diverse set of pre-built optimizers, supports
custom behavior via callback functions, and handles various element and matrix types used
by objective functions. The underlying framework facilitates the implementation of new
optimization techniques, which can be contributed for inclusion into the library.

The library has been successfully used by open source projects such as the mlpack
machine learning toolkit (Curtin et al., 2018). The library uses the permissive BSD li-
cense (St. Laurent, 2008), with the development done in an open and collaborative manner.
The source code and documentation are freely available at https://ensmallen.org.

Further details, such as internal use of template metaprogramming for automatic gen-
eration of efficient code, automatic function inference, clean error reporting, and various
approaches for obtaining efficiency are all discussed in the accompanying technical re-
port (Curtin et al., 2020).

Framework d: 100, n: 1k d: 100, n: 10k d: 100, n: 100k d: 1k, n: 100k

ensmallen 0.0016s 0.0067s 0.1460s 1.4011s
Optim.jl 0.0069s 0.0117s 0.1672s 1.3985s
SciPy 0.0028s 0.0110s 0.2247s 1.8461s
Autograd 0.0073s 0.0163s 0.2416s 1.8733s
PyTorch 0.0469s 0.0986s 0.5670s 5.6041s
TensorFlow 0.1876s 0.2306s 0.6925s 6.6764s
bfgsmin() 1.9773s 18.0515s 123.437s 9710.6750s

Table 1: Runtimes for optimizing linear regression parameters on various dataset sizes,
where n is the number of samples, and d is the dimensionality of each sample.

Framework MNIST covertype pokerhand font isolet
60k × 784 407k × 55 700k × 10 832k × 407 7.8k × 617

ensmallen 0.6546s 0.9038s 0.5186s 6.1678s 0.0510s
Optim.jl 1.4231s 1.2067s 0.6754s 10.9051s 0.1214s
SciPy 0.8101s 1.1388s 1.0231s 7.5838s 0.07519s
Autograd 0.8012s 1.4241s 2.6005s 7.1224s 0.0876s
PyTorch 6.5710s 8.8340s 3.2404s 59.0194s 0.8172s
TensorFlow 9.3662s 5.4231s 2.6005s 70.1122s 0.7563s
bfgsmin() 539.1358s 43.9067s 8.2561s 2358.1680s 48.8020s

Table 2: Runtimes for training a logistic regression model on real data with L-BFGS.

4

https://ensmallen.org


The ensmallen library for flexible numerical optimization

References

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems.
arXiv:1603.04467, 2016.

David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. Addison-Wesley Professional, 2004.

Andrei Alexandrescu. Modern C++ design: generic programming and design patterns ap-
plied. Addison-Wesley, 2001.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
SIAM, 1999.

Chih-Chung Chang and Chih-Jen Lin. LibSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2(3):27, 2011.

Ryan R. Curtin, Marcus Edel, Mikhail Lozhnikov, Yannis Mentekidis, Sumedh Ghaisas,
and Shangtong Zhang. mlpack 3: a fast, flexible machine learning library. Journal of
Open Source Software, 3(26):726, 2018.

Ryan R. Curtin, Marcus Edel, Rahul Ganesh Prabhu, Suryoday Basak, Zhihao Lou, and
Conrad Sanderson. Flexible numerical optimization with ensmallen. arXiv:2003.04103,
2020.

John W. Eaton, David Bateman, Søren Hauberg, and Rik Wehbring. GNU Octave version
4.4.0 manual: a high-level interactive language for numerical computations, 2018.

Intel. Math Kernel Library (MKL), 2020. URL https://software.intel.com/mkl.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated an-
nealing. Science, 220(4598):671–680, 1983.

M. Lichman. UCI Machine Learning Repository, 2013. http://archive.ics.uci.edu/ml.

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1-3):503–528, 1989.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless gradients
in NumPy. In AutoML Workshop at ICML, 2015.

Juan C. Meza. OPT++: An object-oriented class library for nonlinear optimization. Tech-
nical report, Sandia National Labs., Livermore, CA (United States), 1994.

Patrick Kofod Mogensen and Asbjørn Nilsen Riseth. Optim: A mathematical optimization
package for Julia. Journal of Open Source Software, 3(24):615, 2018.

Aryan Mokhtari, Mark Eisen, and Alejandro Ribeiro. IQN: An incremental quasi-Newton
method with local superlinear convergence rate. SIAM Journal on Optimization, 28(2):
1670–1698, 2018.

5

https://software.intel.com/mkl
http://archive.ics.uci.edu/ml


Curtin, Edel, Prabhu, Basak, Lou, and Sanderson

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer, 2nd edition, 2006.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
et al. PyTorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pages 8024–8035, 2019.

Laurent Perron and Vincent Furnon. OR-tools, 2019. URL https://developers.google.

com/optimization/.

Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv:1609.04747, 2016.

Conrad Sanderson and Ryan R. Curtin. Armadillo: a template-based C++ library for linear
algebra. Journal of Open Source Software, 1(2):26, 2016.

Andrew St. Laurent. Understanding Open Source and Free Software Licensing. O’Reilly
Media, 2008.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, et al.
SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods,
17:261–272, 2020.

Zhang Xianyi, Wang Qian, and Werner Saar. OpenBLAS, 2020. URL http://www.

openblas.net.

6

https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://www.openblas.net
http://www.openblas.net

	Introduction
	Functionality
	Example Usage & Empirical Comparison
	Conclusion

