
Journal of Machine Learning Research 22 (2021) 1-38 Submitted 7/20; Revised 1/21; Published 2/21

Communication-Efficient Distributed Covariance Sketch, with
Application to Distributed PCA

Zengfeng Huang HUANGZF@FUDAN.EDU.CN
School of Data Science
Fudan University
Shanghai, China

Xuemin Lin LXUE@CSE.UNSW.EDU.AU
School of Computer Science and Engineering
The University of New South Wales
Sydney, Australia

Wenjie Zhang ZHANGW@CSE.UNSW.EDU.AU
School of Computer Science and Engineering
The University of New South Wales
Sydney, Australia

Ying Zhang YING.ZHANG@UTS.EDU.AU

School of Computer Science
University of Technology, Sydney
Sydney, Australia

Editor: Michael Mahoney

Abstract
A sketch of a large data set captures vital properties of the original data while typically occupying
much less space. In this paper, we consider the problem of computing a sketch of a massive data
matrix A ∈ Rn×d that is distributed across s machines. Our goal is to output a matrix B ∈ R`×d

which is significantly smaller than but still approximates A well in terms of covariance error, i.e.,
‖ATA−BTB‖2. Such a matrix B is called a covariance sketch of A. We are mainly focused on
minimizing the communication cost, which is arguably the most valuable resource in distributed
computations. We show that there is a nontrivial gap between deterministic and randomized
communication complexity for computing a covariance sketch. More specifically, we first prove an
almost tight deterministic communication lower bound, then provide a new randomized algorithm
with communication cost smaller than the deterministic lower bound. Based on a well-known
connection between covariance sketch and approximate principle component analysis, we obtain
better communication bounds for the distributed PCA problem. Moreover, we also give an improved
distributed PCA algorithm for sparse input matrices, which uses our distributed sketching algorithm
as a key building block.
Keywords: Matrix Sketching, PCA, Distributed Streaming, Low Rank Approximation, Communi-
cation Complexity

1. Introduction

Sketching techniques have now become popular algorithmic tools for processing big data. For many
applications in machine learning, the underlying data sets are represented as large-scale matrices.

c©2021 Zengfeng Huang, Xuemin Lin, Wenjie Zhang, Ying Zhang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v22/20-705.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-705.html


HUANG, LIN, ZHANG, ZHANG.

To analyze such large data matrices, exact computations are often infeasible and unnecessary;
thus, randomized and approximate methods are widely used. The “sketch-and-solve” framework,
i.e. computing a sketch matrix first and then executing expensive computations (e.g., Singular
Value Decomposition (SVD) and regression) on the sketch matrix, has been successfully used to
approximately solve many important linear algebraic problems (e.g. Sarlos (2006); Clarkson and
Woodruff (2013); Nelson and Nguyên (2013); Boutsidis and Woodruff (2014)).

Traditionally, a sketch is computed using a streaming algorithm which makes one pass over
the data using limited working space. However, modern massive data is often distributed across a
shared-nothing cluster with a large number of machines. In these systems, the communication cost
and the number of computation rounds become the most critical complexity parameters. The key
to extending the sketch-and-solve framework to the distributed setting is to design communication-
and round-efficient algorithms for computing matrix sketches with required error guarantees. In this
paper, we study communication-efficient distributed algorithms for computing covariance sketches,
which is an important type of matrix sketch with a broad spectrum of applications.

Covariance sketch. Given a matrix A ∈ Rn×d, a covariance sketch of A is another much smaller
matrix B ∈ R`×d such that the covariance error ‖ATA − BTB‖2 is small, where ‖A‖2 denotes
the spectral norm of A. Equivalently, the Euclidean norm ‖Ax‖2 for all x ∈ Rd is approximately
preserved by ‖Bx‖2. Covariance sketch has a wide range of applications including low-rank
approximation, PCA, clustering, anomaly detection, online learning, etc. (Drineas et al., 2006b;
Ghashami and Phillips, 2014; Cohen et al., 2017; Karnin and Liberty, 2015; Luo et al., 2016; Yoo
et al., 2016; Luo et al., 2018; Sharan et al., 2018). Due to its importance, computing a covariance
sketch has been extensively studied in various computational models e.g., Drineas et al. (2006a);
Liberty (2013); Ghashami et al. (2014b); Wei et al. (2016); Desai et al. (2016); Huang (2019); Luo
et al. (2019). In this paper, we study the problem of computing a covariance sketch in the distributed
model and its applications to distributed PCA and low-rank matrix approximations.

Distributed models. We assume that the rows of the input matrix are initially partitioned into s parts,
each of which is held by a distributed machine (with no replication of data). We do not make any
assumption on how the data is partitioned; the partition can be arbitrary or even adversarial. The
s machines can communicate with each other through an inter-connected communication network.
The communication is point-to-point, and we call this the message passing model. The broadcast
model (aka. the blackboard model in communication complexity community) is also widely studied,
in which each message can be seen by all machines. All algorithms proposed in this work only
need a small constant number of rounds (mostly one or two rounds), so the focus of this paper is to
characterize the communication complexity, i.e., the amount of data exchanged. Apparently, the more
powerful broadcast model may achieve lower communication costs, but for all the problem studied
in this paper, broadcast doesn’t seem to have an advantage. In particular, all the state-of-the-art
algorithms only require point-to-point communication and their communication costs cannot be
improved (up to a constant) even if broadcast is allowed. Moreover, our deterministic communication
lower bound holds for the broadcast model (and also holds against protocols using any number of
rounds), which is matched by our message passing algorithm, and thus, the two communication
model are provably equivalent for deterministic algorithms. In our model, there is one special
machine which acts as the central coordinator. For simplicity, we assume that the s machines only
communicates with the coordinator. This is often called the coordinator model and one can simulate

2



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

arbitrary message-passing protocols within a constant factor in communication together with an
additive O(log(mn))-bit overhead per message (Phillips et al., 2016).

We exhibit new algorithms for distributed covariance sketch with improved communication costs.
For instance, assume there are s = d machines and we want to compute a covariance sketch with
error ‖A‖2F /d, where ‖A‖2F is the Frobenius norm of A (the sum of squares of the entries of A). The
deterministic algorithm of Liberty (2013) has cost O(d3), and the cost of using random sampling
is also O(d3) Drineas et al. (2006a), which is the same as the cost of the trivial algorithm (that
sends all data to the coordinator). On the other hand, our new randomized algorithm can achieve the
same covariance error with communication cost Õ(d2.5). Furthermore, we show that Ω(d3) is the
lower bound for any deterministic algorithms, and thus separate the randomized and deterministic
communication complexity.

In our algorithms (except for the distributed PCA algorithm for sparse matrices), each machine
only needs to make one pass over the data with limited working space. The algorithms follows the
same framework: each machine i first independently computes a local sketch Bi using a streaming
algorithm, then all machines run a distributed algorithm on top the local sketches without further
access to the original data. Therefore, they are still efficient even when the local input does not
fit into the main memory or is received in a streaming fashion. This is essentially the same as the
distributed streaming model (Gibbons and Tirthapura, 2001, 2002). where each machine processes a
stream of items with bounded memory, and when a query is requested, the central server, who can
communicate with the machines, needs to output the answer over the union of the streams. We call
algorithms work in this model distributed streaming algorithms, in comparison to distributed batch
algorithms if each machine needs to access local data multiple times.

1.1 Preliminaries and Notation

Before formally define our problems, we first provide some basic notation that will be repeatedly
used and preliminaries on matrices. We always use s for the number of machines, n for the number
rows, and d for the dimension of each row. For a d-dimensional vector x, ‖x‖ is the `2 norm of x.
We use xi to denote the ith entry of x, and Diag(x) ∈ Rd×d is a diagonal matrix such that the i-th
diagonal entry is xi. Let A ∈ Rn×d be a matrix of dimension n× d with d ≤ n. We use Ai to denote
the i-th row of A, and ai,j for the (i, j)-th entry of A. rows(A) is the number of rows in A.

We write the (reduced) singular value decomposition of A as (U,Σ, V ) = SVD(A), where
A = UΣV T , U ∈ Rn×d and V ∈ Rd×d are orthonormal matrices, and Σ ∈ Rd×d is a diagonal
matrix with nonnegative diagonal values. The diagonal entries of Σ are singular values of A sorted in
non-decreasing order; the columns of U and V are called left and right singular vectors respectively.
The computation time of standard SVD algorithms is O(nd2). We use ‖A‖2 or ‖A‖ to denote the
Spectral Norm of A, which is the largest singular value of A, and ‖A‖F for the Frobenius Norm,

which is
√∑

i,j a
2
i,j . For a real symmetric matrix X ∈ Rd×d, let λi(X) be the i-th largest eigenvalue

of X . We can also characterize the spectral norm of X as

‖X‖2 = max(|λ1|, |λd|) = max
y:‖y‖=1

|yTXy|.

Hence,

‖ATA−BTB‖2 = max
x:‖x‖=1

|xT (ATA−BTB)x| = max
x:‖x‖=1

∣∣‖Ax‖22 − ‖Bx‖22∣∣ .
3



HUANG, LIN, ZHANG, ZHANG.

Let σi(A) be the i-th singular values of A in non-decreasing order. We have σ2i (A) = λi(A
TA). It

is well-known that

‖A‖2F = trace(ATA) =
∑
i

λi(A
TA) =

∑
i

σ2i (A).

For k ≤ rank(A), we will use [A]k to denote the best rank k approximation of A, i.e.,

[A]k = arg minC:rank(C)≤k‖A− C‖F .

We define [A]0 = 0, the all-zero matrix. Given another matrix B with the same number of columns
as A, we will use πkB(A) to denote the right projection of A on the top-k right singular vectors of
B, i.e. πkB(A) = AV V T , where the columns of V are the top-k right singular vectors of B. We use
[A;B] to denote the matrix formed by concatenating the rows of A and B.

1.2 Problem Definitions

Given a matrix A ∈ Rn×d, we want to compute a much smaller matrix B ∈ R`×d, which approxi-
mates A well. We are interested in covariance sketch and its application to PCA.

Definition 1 The covariance error of B with respect to A is defined as ‖ATA − BTB‖2. For
notational convenience, we will also use coverr(A,B) to denote this.

A different but related error measure is so called projection error or low rank approximation
error (Ghashami and Phillips, 2014).

Definition 2 The k-projection error of B with respect to A is defined as ‖A − πkB(A)‖2F , where
πkB(A) is the rank-k matrix resulting from project each row of A onto the subspace spanned by the
top-k right singular vectors of B.

These two error measures are related by the following lemma from (Ghashami and Phillips,
2014). For completeness, we provide a proof in Appendix A.

Lemma 3 (Ghashami and Phillips 2014)

‖A− πkB(A)‖2F ≤ ‖A− [A]k‖2F + 2k · ‖ATA−BTB‖2.

It is well-known that if we randomly sample O(1/ε2) rows from A with replacement according
to probability proportional to the squared norm of each row, and rescale sampled rows appropriately,
the resulting matrix has covariance error at most ε‖A‖2F with constant probability (Drineas et al.,
2006b). Since many matrices of interest in practice can be well approximated by a matrix with
a relatively lower rank, ‖A − [A]k‖2F could be much smaller than ‖A‖2F , where [A]k is the best
rank-k approximation of A. Hence an error bound in terms of ‖A − [A]k‖2F can potentially be
much stronger. In addition, a covariance error of ε‖A − [A]k‖2F /2k directly implies a relative
error low rank approximation by Lemma 3. It was also shown that a sketch with the above error
guarantee is a projection-cost-preserving sketch, which preserves the distance of the matrix’s rows to
any k-dimensional subspace (see e.g. Musco and Musco 2020), and can be used to approximately
solve a number of low-rank optimization problems e.g., k-means clustering, constrained low rank
approximation, etc. Therefore, our main focus is to obtain matrix sketches with covariance error
ε‖A− [A]k‖2F /k.

4



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Definition 4 We call B an (ε, k)-sketch of A if

‖ATA−BTB‖2 ≤ ε‖A− [A]k‖2F /k.

By abusing notation slightly, we say B is an (ε, 0)-sketch if

coverr(A,B) ≤ ε‖A‖2F .

Note that, without further restrictions, an (ε, k)-sketch B may have Frobenius norm much
larger than the original matrix. For technical reasons, we will always want the Frobenius norm
of the sketch matrix B to be bounded: ‖B‖2F ≤ ‖A‖2F + O(‖A − [A]k‖2F ). However, this is
typically not a restriction, since our sketch matrix will have rank at most O(k/ε); and one can
easily check that any (ε, k)-sketch of A with rank bounded by O(k/ε) has Frobenius norm at most
‖A‖2F +O(‖A− [A]k‖2F ).

Principle component analysis. In this problem, the goal is to find a low-dimensional subspace that
captures as much of the variance of a data set as possible. The following approximate version of
PCA with Frobenius norm error is widely studied and has applications to distributed k-means and
other problems (see e.g. Liang et al. 2014; Boutsidis et al. 2016).

Definition 5 In the (approximate) PCA problem, given A ∈ Rn×d, an integer k ≤ rank(A), and
0 < ε < 1, the goal is to output a d× k orthonormal matrix V such that

‖A−AV V T ‖2F ≤ (1 + ε)‖A− [A]k‖2F . (1)

The columns of V are also known as (1 + ε)-approximate top-k principle components (PCs).

Here, the matrix V can also be viewed as a type of matrix sketch. By Lemma 3, the top k right
singular vectors of any (ε/2, k)-sketch of A satisfy (1). On the other hand, a set of approximate
PCs does not directly give good covariance error (although it has low projection error by definition),
which is required for many applications (Karnin and Liberty, 2015; Luo et al., 2016; Sharan et al.,
2018). The distributed PCA problem studied by Boutsidis et al. (2016) requires all machines to get
the same answer, while we only require the coordinator to output the answer. Note the coordinator
can broadcast the output to all machines using O(skd) communication cost, which is typically
dominated by the cost of computing the answer.

Real number vs word/bit complexity. Matrix sketches typically consist of real numbers, e.g. singular
vectors of certain matrices, and the approximation errors are often analyzed assuming infinite
precision. It could be quite nontrivial to bound the number of bits needed to encode each real
number (Clarkson and Woodruff, 2009; Boutsidis et al., 2016). It may not be an serious concern
for practical usage, but is still an important theoretical question, since one can always encode the
entire input into a single real number if maximum wordsize is not specified. In this paper, we provide
word/bit complexity for communication costs assuming that each machine word has O(log(nd/ε))
bits and each entry of the input matrix can be represented by a single machine word. W.l.o.g. we
assume the entries in the input are integers of magnitude at most poly(nd/ε).

5



HUANG, LIN, ZHANG, ZHANG.

1.3 Previous Results

Liberty (Liberty, 2013) adapts a well-known algorithm for finding frequent items, the MG algo-
rithm (Misra and Gries, 1982), to sketching matrices, which is called Frequent Directions (FD).
It computes an (ε, k)-sketch containing only O(k/ε) rows in one pass, which is deterministic and
directly applicable to the distributed setting: each machine computes a local (ε, k)-sketch indepen-
dently using FD and sends it to the coordinator; the coordinator combines these local sketches and
compute an (ε, k)-sketch of the combined sketch matrix. It is shown that the result is an (ε, k)-sketch
of the input matrix. The communication cost is thus O(skd/ε) real numbers.1

An alternative approach is to use random sampling. The matrix formed by a random sample of
O(1/ε2) rescaled rows fromA has covariance error at most ε‖A‖2F with constant probability (Drineas
et al., 2006a). Random sampling can be implemented in the distributed model with communication
cost O(s + d/ε2). However, it has a quadratic dependence on 1/ε and only gives a weaker error
bound.

For the distributed PCA problem, one can apply simultaneous power iteration or its improvements
(Musco and Musco, 2015), however, the communication cost is suboptimal and such methods also
require super constant number of rounds. The current best algorithms are from Boutsidis et al. (2016).
See section 1.4 for more details on the communication bounds.

1.4 Our Contributions

In this paper, we give distributed streaming algorithms for computing covariance sketch with
improved communication cost, and prove a tight deterministic lower bound in the blackboard model.
We also improve the communication cost for the distributed PCA problem.

As currently there is no bound on maximum wordsize required by the original FD algorithm
of Liberty (2013), the communication cost is only in terms of real numbers. We show how to modify
it so that the communication cost is O(skd/ε) words.2 Note this communication cost is simply s
times the size of a single sketch (recall s is the number of machines). Since the sketch size O(kd/ε)
was shown to be optimal by Woodruff (2014) (up to a log factor) for an (ε, k)-sketch, it may seem
difficult to reduce this communication cost. Indeed, we show that this is optimal for deterministic
algorithms by proving a deterministic communication lower bound of O(skd/ε) bits.

On the other hand, we propose a new randomized algorithm, which is the first algorithm with
communication cost o(s)×sketch size. In particular, for (ε, k)-sketch, our communication cost is
O
(
sdk +

√
sdk
ε ·
√

log d
)

words, while the optimal sketch size is Θ(dk/ε) (Woodruff, 2014). We
achieve this by giving a new algorithm, call singular value sampling, which further compresses the
local (ε, k)-sketches computed by FD. This new algorithm is applied on top of FD sketches and the
machines do not need to access the original data in this step, and thus the combined algorithm is a
distributed streaming algorithm. The results are summarized in Table 1.

Directly applying our (ε, k)-sketch algorithm to the PCA problem (by Lemma 3), the cost is
also O(sdk) + Õ(

√
sdk/ε) words. Boutsidis et al. (2016) gave an algorithm with communication

cost O
(
sdk + sk

ε2
·min{d, k/ε2}

)
words in the distributed model, which is the first algorithm that

beats the O(sdk/ε) bound of Kannan et al. (2014) when d is larger than k/ε3. They also proved
an Ω(sdk) low bound if all machine are required to know the answer. Note that our result is also

1. Currently there is no word complexity analysis on FD.
2. Our technique only works for communication cost; the space usage of each machine is still in real numbers.

6



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

ε‖A‖2F ε‖A− [A]k‖2F /k
Liberty (2013); Ghashami and Phillips (2014) O

(
sd
ε

)∗
O
(
skd
ε

)∗
Sampling (Drineas et al., 2006a) O

(
s+ d

ε2

)
New O

(√
sd
ε ·
√

log d
)

O
(
sdk +

√
skd
ε ·
√

log d
)

Deterministic LB Ω
(
sd
ε

)
Ω
(
skd
ε

)
Table 1: Communication costs for covariance sketches. ε‖A‖2F and ε‖A− [A]k‖2F /k are two target

error bounds considered in the literature. ∗ indicates the communication cost is in real
numbers; the costs of our algorithms are in words and the lower bounds are in terms of bits.

Boutsidis et al. (2016) O
(
skd+ sk2

ε4

)
New O

(
skd+

√
s log d·k2
ε3

)
Boutsidis et al. (2016) O

(
skφ
ε + sk2

ε4

)
New O

(
skφ
ε + sk2

ε +

√
s log(k/ε)·k2

ε2

)
Table 2: Communication costs for distributed PCA (i.e., for computing (1 + ε)-approximate top-k

principle components). The communication costs are in words. φ is the row sparsity of the
input matrix.

o(sdk/ε) (ignoring the
√

log d factor). When s ≥ Ω̃( 1
ε2

), our cost is O(skd) which is optimal in this
setting3. But for smaller s, the cost is dominated by the Õ(

√
sdk/ε) term. We then show how to

improve this to Õ(
√
sk/ε ·min{d, k/ε2}) by using the algorithm of Boutsidis et al. (2016).

In the row-partition model, Boutsidis et al. (2016) also show that it is possible to bypass
the Θ(skd) communication bound if each row of the input matrix has low sparsity (number of
nonzero entries). In particular, they provided a distributed PCA algorithm with communication cost
O
(
skφ
ε + sk2

ε4

)
words, where φ is the maximum row sparsity. When the dimension d is very large

and φ� d, the cost of this algorithm could be significantly smaller. Based on our new distributed
covariance sketch algorithm, we give an improved communication bound in this setting as well. We

show that there is a distributed algorithm with communication cost O
(
skφ
ε + sk2

ε +

√
s log(k/ε)·k2

ε2

)
words. The improvement is significant when φ is small. Our new algorithm uses the adaptive sampling
technique from Boutsidis et al. (2016) and it is unclear whether it has a one-pass implementation.
Therefore, those improved algorithms for sparse matrices are currently not distributed streaming
algorithms. The communication bounds for distributed PCA are summarized in Table 2.

1.5 Other Related Work

The problem of computing covariance matrix sketch was widely studied in the row-wise update
streaming model (Liberty, 2013; Ghashami and Phillips, 2014; Ghashami et al., 2016; Wei et al.,

3. Broadcasting the answer only needs O(skd) communication.

7



HUANG, LIN, ZHANG, ZHANG.

2016). Optimal space lower bounds was proved in Woodruff (2014). In the distributed setting, there
was no improvement in communication cost since Liberty (2013). Ghashami et al. (2014b); Zhang
et al. (2017) studied the problem in the distributed monitoring model. This model is similar to the
distributed streaming model but the coordinator needs to track the answer continuously, which is a
stronger requirement. It is an interesting question whether our techniques can be used to improve the
communication costs of their algorithms. The approximate distributed PCA problem was studied
in Feldman et al. (2013); Kannan et al. (2014); Liang et al. (2014, 2016); Bhojanapalli et al. (2015);
Boutsidis et al. (2016). PCA is closely related to the Euclidean k-means problem; its distributed
version is studied in Balcan et al. (2013); Ding et al. (2016). Zhang et al. (2015) investigated the
distributed generalized matrix rank problem. Motivated by distributed Newton’s method, Derezinski
and Mahoney (2019); Dereziński et al. (2020) considered the problem of computing an estimate of
the inverse Hessian multiplied by the gradient and the Hessian in many machine learning applications
is the covariance matrix. The main difficulty is that the sum of the inverses does not equal the
inverse of the sum. However, they considered the setting where each single machine has access
to a subsampled version of the loss function, while our model doesn’t make any assumptions on
the data distribution. Wang et al. (2018) also studied approximate newton method for distributed
optimization and show that if each machine locally holds a random sample of the training data and
the data is incoherent, the sum of the local inverse Hessians is very close to the inverse of the global
Hessian. Distributed matrix computations were recently studied for serverless systems (Gupta et al.,
2019, 2020), where the main challenge is to make algorithms resilient against stragglers, i.e., a
subset of much slower machines which can be a result of limited availability of shared resources,
hardware failure, network latency (Dean and Barroso, 2013). Streaming numerical linear algebra
problems were studied in Clarkson and Woodruff (2009). The communication complexity of boolean
matrix multiplication in the two-party model was studied in Van Gucht et al. (2015). Li et al. (2014)
proved multi-party communication lower bounds for several linear algebraic problems in the message
passing model.

2. Deterministic Matrix Sketching

In this section, we investigate the deterministic communication complexity of computing a covariance
sketch in the distributed model. Recall that each machine i gets a local input matrix A(i) ∈ Rni×d;
and the entire input matrix is A = [A(1); · · · ;A(s)] with n =

∑
i ni rows.

Frequent Directions. We will use the Frequent Directions (FD) algorithm by Liberty (2013), denoted
as FD. Ghashami and Phillips (2014) gave an improved analysis, which is summarized in the
following theorem.

Theorem 6 (Liberty (2013); Ghashami and Phillips (2014)) Given A ∈ Rn×d, FD(A, ε, k) pro-
cesses A in one pass using O(dk/ε) working space. It maintains a sketch matrix B ∈ RO(k/ε)×d

such that
‖ATA−BTB‖2 ≤ ε‖A− [A]k‖2F /k.

The original FD algorithm of Liberty (2013) is deterministic and has running time O(ndk/ε) to
process an n× d matrix. We note that the working space of FD is in terms of real numbers rather
than words; it is still unclear how one can obtain a space bound in terms of words/bits (Boutsidis
et al., 2016; Cohen et al., 2017).

8



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

One nice property of FD is that it is mergeable (Agarwal et al., 2013). Informally speaking, let
B = FD(A, ε, k) and B′ = FD(A′, ε, k) for any A and A′ with the same number of columns, then it
was shown that C ′ = FD([B;B′], ε, k) has covariance error no larger than C = FD([A;A′], ε, k).
By induction, the number of sketches to be merged can be arbitrary. This mergeable property
makes FD directly applicable to the distributed model, i.e., each machine sketches its local matrix
independently, and sends the covariance sketch to the coordinator; the coordinator simply combines
the sketches running another FD algorithm. Therefore, the algorithm is deterministic and works in
the distributed streaming model. Note that the total communication cost is O(skd/ε) real numbers.
We will show how to improve the communication cost to O(skd/ε) words in section 4, and here we
summarize our deterministic upper bound as follows.

Theorem 7 There is a deterministic algorithm in the distributed streaming model which computes a
sketch matrix with covariance error at most ε‖A− [A]k‖2F /k. The communication cost is O(sdk/ε)
words, and the space usage of each machine is O(kd/ε) real numbers.

2.1 Deterministic Lower Bound

In this section we will prove communication lower bound in the s-party number-in-hand model with
a shared blackboard. We first provide some preliminaries on multi-party communication complexity.

2.1.1 RECTANGLE PROPERTY OF COMMUNICATION COMPLEXITY IN THE BLACKBOARD MODEL

Let Π be any deterministic protocol in this model for some problem f , and let π be a particular
transcript of Π (concatenation of all messages). Define ρ to be the subset of all possible inputs for f ,
which generate the same transcript π under protocol Π. It is well-known (Kushilevitz and Nisan, 1997)
that ρ is a combinatorial rectangle. Formally, ρ is a Cartesian product ρ = B1 ×B2 × · · · ×Bs,
where Bi is a subset of all possible inputs for player i. For a deterministic protocol, each input
always generates the same transcript, therefore Π partitions the set of all possible inputs into a set of
combinatorial rectangles P = {ρ1, ρ2, · · · , ρh}, each of which corresponds to a unique transcript.
In particular, the protocol cannot distinguish those inputs in each ρj—in other words any correct
protocol Π should produce a rectangle partition such that all inputs in any rectangle share a common
correct output. Since the transcript corresponds to each rectangle is unique, the maximum length
among all transcripts (i.e. the communication cost) is at least log |P |.

2.1.2 PROOF OF THE LOWER BOUND

In this section, we show a deterministic lower bound of Ω(sd/ε) bits for (ε, 0)-sketch, i.e. with
covariance error ε‖A‖2F . Note that this directly implies a lower bound of Ω(skd/ε) bits for (ε, k)-
sketch. Put t = σ

ε for some constant σ ≤ 1 to be determined later. In our lower bound proof, each
machine i gets a t× d matrix A(i) ∈ {−1,+1}t×d, and thus the total number of possible inputs is
2std and all input matrices have Frobenius norm exactly std. Our goal is to show that if the size of
a combinatorial rectangle ρ is larger than 2(1−β)std for some absolute constant β, then there must
be two input matrices A,A′ in ρ such that ‖ATA−A′TA′‖2 is too large, which means they cannot
share the same answer. Therefore, the rectangle partition produced by any correct determnisitic
protocol cannot contain a rectangle of size above 2(1−β)std, which implies the communication cost is
at least Ω(βstd) = Ω(sd/ε).

9



HUANG, LIN, ZHANG, ZHANG.

Lemma 8 There exists a constant β < 1/2, such that, for any rectangle ρ of size larger than
2(1−β)std, we can find A,A′ ∈ ρ satisfying

‖ATA−A′TA′‖2 ≥ Ω(sd)− st.

Proof We write ρ = B1 × B2 · · · × Bs, where Bi ⊆ {−1,+1}t×d for each i, and define U =
{i | |Bi| ≥ 2(1−2β)td}. We have the following simple property.

Claim 1 If |ρ| ≥ 2(1−β)td, then |U | ≥ s/2.

Proof U is the same as {i | log |Bi| ≥ (1− 2β)td}. By our assumption, we have

s∑
i=1

log |Bi| = log |ρ| ≥ (1− β)std.

Using the fact that log |Bi| ≤ td for all i and an averaging argument, we conclude that |U | ≥ s/2.

Note that each Bi is a subset of {−1,+1}t×d; we define Bi,j to be the projection of Bi onto the jth
row, i.e.,

Bi,j = {b | b is the jth row of some matrix in Bi}.

It is not hard to verify that

|Bi| ≤
t∏

j=1

|Bi,j |,

and thus there exists j with |Bi,j | ≥ 2(1−2β)d, provided that |Bi| ≥ 2(1−2β)td. For each i ∈ U , we
fix such a ji, and for simplicity we write Qi = Bi,ji . The following lemma is proved by Huang and
Yi (2017).

Lemma 9 (Huang and Yi (2017)) Assume x is distributed uniformly in {−1,+1}d,L ⊆ {−1,+1}d
and |L| ≥ 2(1−α)d for a sufficient small constant α, then we have

Prx[max
y∈L

xT y ≥ 0.2d] ≥ 3/4.

Applying the above lemma we prove the follow result.

Claim 2 Let ` = |U |. We have

Ex

[∑
i∈U

max
y(i)∈Qi

(xT y(i))2

]
= Ω(`d2).

Proof We have |Qi| ≥ 2(1−2β)d for each i ∈ U , therefore, by setting β small enough, we can apply
Lemma 9 on each Qi and get

Prx

[
max
y(i)∈Qi

xT y(i) ≥ 0.2d

]
≥ 3/4.

It follows that

Ex[max
y∈Qi

(xT y(i))2] ≥ Prx

[
max
y(i)∈Qi

xT y(i) ≥ 0.2d

]
· Ω(d2) = Ω(d2).

10



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Hence,

Ex

[∑
i∈U

max
y(i)∈Qi

(xT y(i))2

]
=
∑
i∈U

Ex

[
max
y(i)∈Qi

(xT y(i))2
]

= ` · Ω(d2),

which completes the proof.

Obviously, for any x
max

M(i)∈Bi

‖M (i)x‖2 ≥ max
y(i)∈Qi

(xT y(i))2.

By Claim 2 and the fact |U | ≥ s/2, it holds

Ex

[
s∑
i=1

max
M(i)∈Bi

‖M (i)x‖2
]

= Ω(sd2). (2)

Let W (i) be any matrix in B(i) for i = 1, · · · , s. According to standard calculation, it can be shown
that

Ex
[
‖W (i)x‖2

]
= td.

Therefore, we have

Ex

[
s∑
i=1

‖W (i)x‖2
]

= std.

Combined with (2), we get

Ex

[
s∑
i=1

(
max

M(i)∈Bi

‖M (i)x‖2 − ‖W (i)x‖2
)]

= Ω(sd2)− std.

Then there exists a vector x∗ ∈ {−1,+1}d and matrices M (i) ∈ Bi, for i = 1, · · · , s, such that

s∑
i=1

‖M (i)x∗‖2 −
s∑
i=1

‖W (i)x∗‖2 = Ω(sd2)− std. (3)

We set A = [M (1); · · · ;M (s)] and A′ = [W (1); · · · ;W (i)], and obviously A,A′ ∈ ρ. From (3), we
have

‖ATA−A′TA′‖2 = max
x∈Rd

∣∣‖Ax‖2 − ‖A′x‖2∣∣
‖x‖2

≥
∣∣∑s

i=1 ‖M (i)x∗‖2 −
∑s

i=1 ‖W (i)x∗‖2
∣∣

‖x∗‖22
= Ω(sd)− st,

which proves the lemma.

Now we are ready to prove our main theorem for deterministic complexity.

Theorem 10 Let A ∈ {−1,+1}n×d be the input matrix which is row-partitioned across s machines.
If 1/ε ≤ d, then the deterministic communication complexity of computing a (ε, 0)-sketch matrix X
is Ω(sd/ε) bits.

11



HUANG, LIN, ZHANG, ZHANG.

Proof In our hard instance, each machine gets a matrix A(i) ∈ {−1,+1}t×d where t = σ/ε for a
sufficiently small constant σ, and thus n = st.4 As a result, ε‖A‖2F = σsd, which is the maximum
covariance error of X allowed. Let us consider any correct deterministic protocol Π, which partitions
the set of all possible inputs into combinatorial rectangles P = {ρ1, ρ2, · · · , ρh}.

Assume, for some i, |ρi| ≥ 2(1−β)td, then by Lemma 8, there exist A and A′ in ρi such that
‖ATA−A′TA′‖2 = Ω(sd)−st. By our assumption, t ≤ σd, and thus ‖ATA−A′TA′‖2 > 2ε‖A‖2F
for sufficiently small σ. Let X be the output corresponding to ρi. We have

‖ATA−XTX‖2 + ‖A′TA′ −XTX‖2 ≥‖ATA−A′TA′‖2
>2ε‖A‖2F .

It implies that the error of X is too large for either A or A′, which contradicts the correctness, so
|ρi| < 2(1−β)std for all i. Since the number of all possible inputs is 2std, we have |P | ≥ 2βstd, thus
the communication cost of Π is at least log |P | = Ω(std) = Ω(sd/ε) bits.

Since the problem can be trivially solved with O(sd2) words of communication, our bound is also
tight for the case when 1/ε ≥ d.

Corollary 11 If k/ε ≤ d, the deterministic communication complexity of computing an (ε, k)-sketch
matrix is lower bounded by Ω(skd/ε) bits.

Proof The covariance error allowed for an (ε, k)-sketch is at most ε‖A− [A]k‖2F /k ≤ ε‖A‖2F /k,
meaning an (ε, k)-sketch is also an (ε/k, 0)-sketch. So, Theorem 10 implies a lower bound of
Ω(skd/ε) bits for (ε, k)-sketch.

3. Randomized Algorithms

The key step that enables us to bypass the deterministic lower bound is a better randomized algorithm
which computes a sketch with covariance error ε‖A‖2F /k for any input matrix A. For this problem,
the deterministic lower bound is Ω(skd/ε), however, we give a new randomized algorithm with
communication cost O(

√
skd
ε ·
√

log d).
We first present our communication-efficient algorithm in distributed model with covariance

error α‖A‖2F . Then show how to use this algorithm as a subroutine to get an efficient algorithm with
stronger error bound.

3.1 Covariance Error α‖A‖2F
As we have shown, this problem can be solve deterministically with O(sd/α) communication. An
alternative approach is to use random sampling (Drineas et al., 2006a; Oliveira, 2010; Drineas et al.,
2011). Sampling can be adapted to the distributed setting, however the communication cost is
O(d/α2), which has an undesirable quadratic dependence on 1/α.

Our new approach has Õ(
√
sd/α) communication cost, which is o(s) times the optimal sketch

size for (α, 0)-sketch (which is Θ(d/α) Woodruff (2014)). In this section, we give an algorithm with
cost in terms of real numbers, then will discuss how to improve this to word complexity in section 4.

4. Note that, for general n, we can append 0 rows at the end of each A(i), which will not affect the proof.

12



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Our approach also performs random sampling, but we sample the rows of an “aggregated” form of
the input matrix.

3.1.1 OUR ALGORITHM

The core procedure is the singular-value-sampling algorithm (SVS), which is presented in Algo-
rithm 1. In this algorithm, given an input matrix A, we first compute its SVD A = UΣV T , and
then sample each right singular vector vj with probability depending on the corresponding (squared)
singular value σ2j . We use a function g() to characterize the sampling distribution, i.e., g(σ2j ) is
the probability to sample jth singular vector. If it is sampled, we rescale vj by σj√

g(σ2
j )

. In our

distributed algorithm, each machine i runs SVS on the input matrix A(i), and then sends the output
to the coordinator (Algorithm 2). The coordinator computes the final sketch matrix using FD with
working space O(d/α) (Algorithm 3).

Note that, in our algorithm, each machine also performs row sampling. The differences between
our algorithms and the row sampling algorithms from Drineas et al. (2006a); Oliveira (2010); Drineas
et al. (2011) for covariance sketches are as follows. (1) We sample the rows of the “aggregated”
form of the input matrix instead of the original. Let UΣV T be the singular value decomposition
of A. We view agg(A) := ΣV T as the “aggregated” form of A. (2) Our sampling scheme is
different—in previous works, each row of the sketch matrix is an i.i.d. sample from the original
matrix (with replacement) and rescaled, but we use independent Bernoulli sampling. Although this
seems insignificant, it is actually crucial to our analysis. It is not clear whether a similar bound holds
if we use i.i.d. sampling instead.

Algorithm 1 SVS(A, g): A ∈ Rn×d; g is the sampling function.
1: Set B empty
2: Compute (U,Σ, V ) = SVD(A)
3: Set xj = 1 with probability g(σ2j ), and xj = 0 with probability 1− g(σ2j )

4: Let wj = σj/
√
g(σ2j )

5: Append vTj rescaled by xjwj (i.e., xj · wj · V T
j ) to B, where vj is the j-th right singular vector

6: Remove zero rows in B
7: Output B

Algorithm 2 Algorithm for machine i. Input: A(i) ∈ Rni×d and sampling function g.

1: B(i) = SVS(A(i), g)
2: Send B(i) to the coordinator

Algorithm 3 Algorithm on coordinator. Input: B(i), i = 1 · · · s.
1: B′ = FD([B(1); · · ·B(s)], α, 0)
2: Return B′

Let B = [B(1), · · · , B(s)]. For technical reasons, we also want the Frobenius norm of the sketch
matrix B to be bounded: ‖B‖2F ≤ O(1) · ‖A‖2F . It is quite standard to bound the norm of B for our

13



HUANG, LIN, ZHANG, ZHANG.

algorithm (see Appendix B), so we will focus on bounding the covariance error ‖ATA−BTB‖2.
We first prove a theorem for a general sampling function g, then discuss how to pick a good sampling
function in the next section.

Theorem 12 Let A(i) be the input of the i-th machine, and B(i) be matrix sent by machine i. Let A
and B be the concatenation of A(i)’s and B(i)’s respectively. We define

M = max
i,j

σ2i,j
g(σ2i,j)

, and κ2 =

s∑
i=1

max
j

σ4i,j · (1− g(σ2i,j))

g(σ2i,j)
,

where σi,j is the jth largest singular value of A(i), then the following inequality holds:

Pr[‖BTB −ATA‖2 ≥ t] ≤ 2d · exp

(
−t2/2

κ2 +Mt/3

)
.

Before giving the proof, we first briefly summarize the main idea behind the proof.

Main idea. Previous row sampling approaches sample t rows from A using i.i.d. sampling, so, in
the analysis, BTB can be treated as the sum of t i.i.d. random matrices of rank 1. To bound the
covariance error, Oliveira (2010); Drineas et al. (2011) used a matrix concentration inequality, while
Drineas et al. (2006a) used a variance argument. On the other hand, in our analysis, we will view
BTB as the sum of s random matrices with potentially high rank, i.e.,

∑s
i=1B

(i)TB(i). Since we
sample the rows of the “aggregated” matrix (with orthogonal rows) using Bernoulli sampling, each
resulting random matrix B(i) has orthogonal rows, which is important to our analysis. However, the
random matrices with high rank and are not i.i.d. now, so we cannot apply the same inequality used
in Oliveira (2010); Drineas et al. (2011). Instead, we use Matrix Bernstein Inequality (see Tropp
(2012)).

The main theorem follows from the following three claims, which are properties about the output
matrix of the SVS sampling algorithm. Let x = [x1, · · · , xd] be a random vector, where xj is defined
in Algorithm 1. More precisely, xj’s are Bernoulli random variables:

xj =

{
1 the jth singular vector is sampled
0 otherwise.

Clearly, the distribution of x2j is the same as xj , which take value 1 with probability g(σ2j ), where σj
is the jth largest singular value of A. Let w ∈ Rd be a vector, with wj defined in Algorithm 1, i.e.
wj =

σj√
g(σ2

j )
.

Claim 3 If A and B be the input and output of Algorithm 1 respectively, then E[BTB] = ATA.

Proof Let vj be the jth column of V . We have ATA =
∑d

j=1 σ
2
j vjv

T
j . By definition, B =

Diag(x)Diag(w)V T , then we have

BTB = V · Diag(x)2Diag(w)2 · V T =
d∑
j=1

x2jw
2
j vjv

T
j (4)

14



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Therefore,

E[BTB] = E[
d∑
j=1

x2jw
2
j vjv

T
j ] =

d∑
j=1

E[x2j ]w
2
j vjv

T
j =

d∑
j=1

σ2j vjv
T
j = ATA,

which means BTB is an unbiased estimator of ATA.

Claim 4 If A and B are the input and output of Algorithm 1 respectively, then we have

λmax(BTB −ATA) ≤ max
j

σ2j
g(σ2j )

.

Proof By (4), it follows that

BTB −ATA =
d∑
j=1

(x2jw
2
j − σ2j )vjvTj = V DV T , (5)

where D is a diagonal matrix with Dj,j = x2jw
2
j − σ2j . Since V is orthonormal, V DV T is the

eigen-decomposition of BTB −ATA, and thus

λmax(BTB −ATA) = max
j

(x2jw
2
j − σ2j ) ≤ maxw2

j = max
j

σ2j
g(σ2j )

,

which proves the claim.

Claim 5 If A and B are the input and output of Algorithm 1 respectively, then we have

‖E[(BTB −ATA)2]‖2 = max
j

σ4j · (1− g(σ2j ))

g(σ2j )
.

Proof From (5), we have

(BTB −ATA)2 = V D2V T =

d∑
j=1

(x2jw
2
j − σ2j )2 · vjvTj .

By definition, E[x2jw
2
j ] = σ2j , and thus

E[(x2jw
2
j − σ2j )2] = E[(x2jw

2
j − E[x2jw

2
j ])

2]

= Var[x2jw
2
j ] = w4

j · Var[x2j ]

=
σ4j

g2(σ2j )
· g(σ2j )(1− g(σ2j ))

= σ4j ·
1− g(σ2j )

g(σ2j )
.

15



HUANG, LIN, ZHANG, ZHANG.

Here we use the fact that the variance of a Bernoulli random variable with parameter p is p(1− p).
So we have

E[(BTB −ATA)2] =

d∑
j=1

E[(x2jw
2
j − σ2j )2] · vjvTj

=
d∑
j=1

σ4j ·
1− g(σ2j )

g(σ2)
· vjvTj

= V D′V T ,

where D′ is a diagonal matrix with D′j,j = σ4j ·
1−g(σ2

j )

g(σ2
j )

for all j. Therefore, V D′V T is the eigen-

decomposition of E[(BTB −ATA)2], and the diagonals of D′ are the eigenvalues. Since g(σ2j ) ≤ 1,
the eigenvalues are all non-negative. It follows that

‖E[(BTB −ATA)2]‖2 = max
j
|D′j,j | = max

j

σ4j · (1− g(σ2j ))

g(σ2)
,

which completes the proof.

Now we are ready to prove the main theorem.
Proof (of Theorem 12) To prove this theorem, we will use the following Matrix Bernstein Inequality,
which can be found in e.g., (Tropp, 2012) (Theorem 6.1).

Lemma 13 (Matrix Bernstein) Consider a finite sequence {Xk} of independent, random, self-
adjoint (or Hermitian) matrices with dimension d. Assume that

E[Xk] = 0 and λmax(Xk) ≤ R

almost surely for all k. Define σ2 := ‖
∑

k E[X2
k ]‖2. Then the following inequality holds for all

t ≥ 0.

Pr[λmax(
∑
k

Xk) ≥ t] ≤ d · exp

(
−t2/2

σ2 +Rt/3

)
.

To use the Matrix Bernstein Inequality, we define

Xi = B(i)TB(i) −A(i)TA(i).

By Claim 3, E[Xi] = 0 for all i. By Claim 4, λmax(Xi) = maxj
σ2
i,j

g(σ2
i,j)

for all i, which will always

be bounded in our case, and thus we just set R = maxi λmax(Xi), that is

R = max
i
λmax(Xi) = max

i,j

σ2i,j
g(σ2i,j)

= M.

The last equality is by definition of M in the statement of Theorem 12. Using Claim 5, we can bound
σ2:

σ2 = ‖
∑
i

E[X2
i ]‖ ≤

∑
i

‖E[X2
i ]‖ Triangle inequality

=
∑
i

max
j

σ4i,j · (1− g(σ2i,j))

g(σ2i,j)
Claim 5.

= κ2 By definition of κ2

16



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Now we can directly use Lemma 13 and prove that

Pr[λmax(BTB −ATA) ≥ t] ≤ d · exp

(
−t2/2

κ2 +Mt/3

)
.

To establish the theorem, we still need to show

Pr[λmax(ATA−BTB) ≥ t] ≤ d · exp

(
−t2/2

κ2 +Mt/3

)
,

but this inequality can be proved in exactly the same way, which we omit.

3.1.2 SAMPLING FUNCTIONS

Next we discuss which sampling functions to use. For our application, we need to set t = α‖A‖2F in
Theorem 12. Observe that, given any g, the total communication cost is d ·

∑
i,j g(σ2i,j) in expectation.

The most natural choice is a linear function, i.e., g(x) = ax for some a. We present the analysis of
linear functions in Appendix C.

Theorem 14 (Linear) If we set

g(x) = min{
√
s

α‖A‖2F
log(d/δ) · x, 1},

then with probability 1− δ

‖BTB −ATA‖2 ≤ 3α‖A‖2F , and ‖B‖F ≤ 2‖A‖F .

The communication cost is O(
√
sd
α · log d

δ ).

However, due to technical reasons, the above linear function is suboptimal. We show that a less
intuitive quadratic function gives a better bound on the communication cost.

Theorem 15 (Quadratic) If we set

g(x) =

{
min{ s

α2‖A‖4F
log(d/δ) · x2, 1} if x ≥ α‖A‖2F

s

0 otherwise
,

then with probability 1− δ,

‖BTB −ATA‖ ≤ 4α‖A‖, and ‖B‖F ≤ 2‖A‖F .

The communication cost is O(
√
sd
α ·

√
log d

δ ).

Proof We observe that σ
4·(1−g(σ2))
g(σ2)

≤ σ4

g(σ2)
. If we use a quadratic function, i.e., g(x) = bx2, the

above inequality is bounded by 1/b. So we have

κ2 ≤
∑
i

1

b
=
s

b
. (6)

17



HUANG, LIN, ZHANG, ZHANG.

Since we set b = Õ
(

s
α2‖A‖4F

)
, it holds that κ2 ≤ Õ

(
α2‖A‖4F

)
. However, now

M = max
i,j

σ2i,j
g(σ2i,j)

= Õ

(
max
i,j

α2‖A‖4F
s · σ2i,j

)
,

which could be arbitrarily small when σi,j is very close to zero. Therefore, in order to make this
sampling function work, we need to drop all the small singular values. This is the reason why we set
g(x) = 0 for x ≤ α‖A‖2F

s .

For the i-th machine, given A(i), we define a new matrix Ā(i) as follows. We write its SVD as
A(i) = (U,Σ, V ), and define a diagonal matrix Σ̄:

Σ̄j,j =

{
σj if σj ≥

√
α‖A‖F√

s

0 otherwise.

Let Ā(i) = Σ̄V T . It holds that

‖A(i)TA(i) − Ā(i)T Ā(i)‖2 = ‖V (Σ2 − Σ̄2)V T ‖2 ≤
α‖A‖2F
s

.

Let Ā be the concatenation of Ā(i)’s, we have

‖ATA− ĀT Ā‖2 ≤
s∑
i=1

‖A(i)TA(i) − Ā(i)T Ā(i)‖2 ≤
s∑
i=1

α‖A‖2F
s

= α‖A‖2F . (7)

This is the error resulting from dropping all the small singular values. By triangle inequality, it is now
sufficient to bound ‖ĀT Ā−BTB‖2 ≤ α‖A‖2F . Here B is the output for A, but B essentially has the
same distribution as the output of the algorithm being applied on Ā. So, to bound ‖ĀT Ā−BTB‖2,
we can use Theorem 12 on Ā which has the property that all the squared singular values are larger
than α‖A‖2F

s . We set t = α‖A‖2F , and it is easy to verify that

Mt/3 ≤ t

3
·max
i,j

σ2i,j
g(σ2i,j)

=
t

3
·max
i,j

α2‖A‖4F
s · σ2i,j · log d

δ

≤ t

3
· α‖A‖2F / log

d

δ
=
α2‖A‖4F
3 log d

δ

. (8)

Since κ2 ≤ s/b = α2‖A‖4F /log d
δ (Eqn. (6)). By Theorem 12 with t = α‖A‖2F , we get

Pr
[
‖BTB − ĀT Ā‖ ≥ α‖A‖2F

]
≤ δ.

By triangle inequality and Eqn. (7), we have

‖BTB −ATA‖ ≤ ‖BTB − ĀT Ā‖+ ‖ATA− ĀT Ā‖ ≤ 2α‖A‖2F

with probability at least 1− δ.
Since x ≤

√
x for all 0 ≤ x ≤ 1, we have

g(σ2i,j) ≤ min{
sσ4i,j

α2‖A‖4F
· log

d

δ
, 1} ≤ min{

√
sσ2i,j

α‖A‖2F
·
√

log
d

δ
, 1}

18



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Then the communication cost is

d ·
∑
i,j

g(σ2i,j) ≤ d ·
∑
i,j

√
sσ2i,j

α‖A‖2F
·
√

log
d

δ
=

√
sd

α
·
√

log
d

δ
,

which completes the proof.

3.2 Covariance Error ε‖A− [A]k‖2F /k via Adaptive Sampling

We will first present a randomized algorithm with communication cost O(skd+
√
skd
ε ·
√

log d) in
terms of real numbers, then discuss how to obtain bit/word complexity.

In the deterministic algorithm, each machine i invokes FD to compute a local sketch B(i) in
one pass, i.e. B(i) = FD(A(i), ε, k) (Theorem 6), then sends B(i) to the coordinator. To save
communication, we will further compress each B(i) computed by FD. It was shown that not only
B(i) has small covariance error, the Frobenius norm of B(i) is also smaller than the Frobenius norm
of A(i) Liberty (2013). From this property, it is not difficult prove the following lemma.

Lemma 16 Assume B = FD(A, ε, k), then

‖B − [B]k‖2F ≤ (1 + ε)‖A− [A]k‖2F .

Proof Let vi be i-th right singular vector of B. We have

‖B − [B]k‖2F = ‖B‖2F −
k∑
i=1

‖Bvi‖2

≤ ‖B‖2F −
k∑
i=1

‖Avi‖2 + k‖ATA−BTB‖2

≤ ‖A‖2F −
k∑
i=1

‖Avi‖2 + ε‖A− [A]k‖2F

≤ ‖A− [A]k‖2F + ε‖A− [A]k‖2F .

The last inequality holds because

k∑
i=1

‖Avi‖2 ≤
k∑
i=1

‖Aui‖2,

where ui is the i-th right singular vector of A, and ‖A− [A]k‖2F = ‖A‖2F −
∑k

i=1 ‖Aui‖2.

The following lemma directly follows from singular value decomposition.

Lemma 17 For any matrix B ∈ Rn×d, there exist two matrices T ∈ Rk×d and R ∈ R(d−k)×d such
that

BTB = T TT +RTR,

and ‖R‖2F = ‖B − [B]k‖2F .

19



HUANG, LIN, ZHANG, ZHANG.

Proof Let B = UΣV T be the singular value decomposition of B. Clearly,

BTB = V Σ2V T =
d∑
i=1

σ2i viv
T
i .

Let T be the matrix consists of the top-k rows of the matrix ΣV T and let R contain the rest d− k
rows. It is well-known that ‖B − [B]k‖2F =

∑d
i=k+1 σ

2
i = ‖R‖2F . Hence, T and R satisfy the

requirements of the lemma.

For convenience, we use (T,R) = Decomp(B, k) to denote this decomposition.

Algorithm 4 Algorithm on machine i. Input: A(i) ∈ Rni×d and sampling function g.

1: B(i) = FD(A(i), ε, k)
2: (T (i), R(i)) = Decomp(B(i), k)
3: W (i) = SVS(R(i), g)
4: Send Q(i) = [T (i);W (i)] to the coordinator

Algorithm 5 Algorithm on coordinator. Input: Q(i) = [T (i);W (i)], i = 1 · · · s.
1: B = FD([Q(1); · · ·Q(s)], ε, k)
2: Return B

In our algorithm (see Algorithm 4), each machine i computes

(T (i), R(i)) = Decomp(B(i), k).

Let B = [B(1); · · · ;B(s)], and we define T and R similarly. By the mergeability of FD, it holds that
‖ATA−BTB‖2 ≤ ε‖A− [A]k‖2F /k. From Lemma 17, we have

‖ATA− T TT −RTR‖2 ≤ ε‖A− [A]k‖2F /k, and ‖R‖2F =
s∑
i=1

‖R(i)‖2F =
s∑
i=1

‖B(i) − [B(i)]k‖2F .

Then by Lemma 16, we get

‖R‖2F ≤ (1 + ε)

s∑
i=1

‖A(i) − [A(i)]k‖2F . (9)

Let [A]
(i)
k be the ith block of [A]k corresponding to the rows in A(i). We observe∑

i

‖A(i) − [A(i)]k‖2F ≤
∑
i

‖A(i) − [A]
(i)
k ‖

2
F = ‖A− [A]k‖2F , (10)

since [A]
(i)
k has rank at most k, and [A(i)]k is the best rank k approximation for A(i). Combine (9)

and (10), we get
‖R‖2F ≤ (1 + ε)‖A− [A]k‖2F . (11)

20



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Now, each machine i applies the SVS algorithm on R(i), and outputs W (i) = SVS(R(i)). Let
W = [W (1); · · · ;W (s)]. From Theorem 15, we have

‖W TW −RTR‖2 ≤ ε‖R‖2F /k ≤ (ε+ ε2)‖A− [A]k‖2F /k,

and the number of rows in W is O(
√
skd
ε ·
√

log d). Then each machine i sends Q(i) = [T (i);W (i)]
to the coordinator. Define Q similarly, and we have

‖ATA−QTQ‖2 = ‖ATA− T TT −W TW‖
= ‖ATA− T TT −RTR+RTR−W TW‖
≤ ‖ATA−BTB‖2 + ‖W TW −RTR‖2
≤ ε‖A− [A]k‖2F /k + 2ε‖A− [A]k‖2F /k
≤ 3ε · ‖A− [A]k‖2F /k

which means Q is an (3ε, k)-sketch of A. The total communication cost of this algorithm is
O(sdk +

√
skd
ε ·
√

log d). Since ‖W‖2F = O(1) · ‖R‖2F = O(1) · ‖A− [A]k‖2F from Theorem 15,
we also have ‖Q‖2F = ‖A‖2F +O(‖A− [A]k‖2F ).

Theorem 18 There is a distributed streaming algorithm which computes an (ε, k)-sketch Q with

probability 1 − δ. The communication cost is O(sdk +
√
skd
ε ·

√
log d

δ ), and space used by each

machine is O(kd/ε). Moreover, ‖Q‖2F = ‖A‖2F +O(‖A− [A]k‖2F ).

Note that the size of Q is not optimal, but we can apply another FD on Q. Assume Q′ =
FD(Q, ε, k), we have ‖QTQ−Q′TQ′‖2 ≤ ε‖Q− [Q]k‖2F /k, and thus the covariance error of Q′

(w.r.t. A) depends on ‖Q− [Q]k‖2F . However, since ‖Q‖2F = ‖A‖2F +O(‖A− [A]k‖2F ), using the
same argument as in the proof of Lemma 16, it can be shown that ‖Q− [Q]k‖2F = O(‖A− [A]k‖2F ).
As a result, it holds that

‖ATA−Q′TQ′‖2 ≤ O(ε) · ‖A− [A]k‖2F /k.

After adjusting ε by a constant factor in the beginning, Q′ is an (ε, k)-sketch of A with optimal
sketch size.

4. Bit Complexity for Communication Costs

So far, the communication cost of our algorithms are in real numbers. In this section, we discuss how
to obtain word/bit complexity. Similar to Boutsidis et al. (2016), our main idea is to conduct a case
analysis based on the rank of A.

Case 1: rank(A) ≤ 2k. In this case, each A(i) also has rank at most 2k. Then we can find at most
2k rows of A(i) which span the row space of A(i). Let Q be the matrix consists of such a set of rows.
We use the standard notation Q+ to denote the Moore-Penrose pseudoinverse of Q. It is known that
the d× d matrix Q+Q is the orthogonal projector which projects any d-dimensional vector x onto
the row space of Q (thus onto the row space of A(i)). Hence, if x belongs to the row space of A(i),
Q+Qx = x. In particular, we have Q+QA(i)T = A(i)T .

21



HUANG, LIN, ZHANG, ZHANG.

Based on the above observation, each machine i runs the following algorithm. Machine i first
deterministically selects any maximal set of linearly independent rows from A(i), denoted as Q, then
sends both Q and QA(i)TA(i)QT to the coordinator. Given Q, the coordinator can compute Q+, and
then computes Q+QA(i)TA(i)QTQT+, which is exactly A(i)TA(i). In other words, the coordinator
can recover ATA exactly. For the communication cost, Q takes at most 2kd words, since Q consists
of rows chosen from A. On the other hand, it is easy to verify that each entry of QA(i)TA(i)QT

needs at most O(log(nd/ε)) bits, and thus takes O(k2) words to represent. Since k ≤ d, the total
communication cost is O(skd) words.

Algorithm 6 One-pass algorithm on machine i for case 1. Input: A(i) ∈ Rni×d.

1: Initialize Q(i) = {A(i)
1 }, V = { A

(i)
1

‖A(i)
1 ‖2
}, Z = ‖A(i)

1 ‖22
2: for t = 2 to ni do
3: if the t-th row A

(i)
t is not in the span of Q(i) then

4: Insert A(i)
t into Q(i)

5: Compute an unit vector u which is orthogonal to V but in the span of Q(i) (Gram–Schmidt)
6: U = V [V ;u]T

7: Insert u into V I V is an orthonormal basis of Q(i)

8: Z = UTZU I Z = V A
(i)T
1:t−1A

(i)
1:t−1V

T

9: Z = Z + V A
(i)T
t A

(i)
t V

T I Z = V A
(i)T
1:t A

(i)
1:tV

T (here A(i)
t is treated as a row vector)

10: end if
11: end for
12: Send C(i) = Q(i)V TZV Q(i)T and Q(i) to the coordinator

Naively, it requires two passes on each machine: one pass for computing Q and one pass
for QA(i)TA(i)QT . We next describe how to implement the algorithm in one pass using O(kd)
space. See Algorithm 6 for the details. We maintain a maximal set of linearly independent rows
Q along the way, and also maintain an orthonormal basis of Q, denoted as V , on the side. Q and
V are also viewed as row matrices whose rows consists of the vectors in Q and V respectively.
The matrix Z = V A(i)TA(i)V T can be maintained in the streaming model using O(k2) space (in
real numbers)5: when a new row u is added to V , compute U = V [V ;u]T (with O(k2) space,
since the number of rows in V will never exceed 2k) and then update Z as Z = UTZU and then
Z = Z + V A

(i)T
t A

(i)
t V

T . In the end, we compute QV TZV QT (using O(kd) space), which is
QA(i)TA(i)QT . Here we have used the fact that aV TV = a when a is a row vector in the row
space of V . See Algorithm 6 for more details. After receiving C(i) = QA(i)TA(i)QT and Q
from all machines, the coordinator now can compute ATA exactly. But, naively, it takes O(d2)
working space. Therefore, we directly compute the low rank factorization of ATA instead, i.e.,
compute B ∈ R2k×d such that BTB = ATA using FD. Details is presented in Algorithm 7.
For the correctness, denote B(i) =

(
C(i)

)1/2 (
Q(i)+

)T
=
(
QA(i)TA(i)QT

)1/2 (
Q(i)+

)T
; then

one can easily verify that B(i)TB(i) = A(i)TA(i). The coordinator computes B using FD, i.e.,
B = FD

(
[B(1), · · · , B(s)], 1, 2k

)
, so the space and time complexity are O(kd) and O(sk2d). Since

the rank of [B(1), · · · , B(s)] is at most 2k, the covariance error of B is ‖B − [B]2k‖2F = 0, and thus
BTB =

∑s
i=1B

(i)TB(i) = ATA.

5. Note V may contain exponentially small entries Boutsidis et al. (2016), so we cannot send Z directly.

22



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Algorithm 7 Algorithm on coordinator for case 1. Input: C(i), Q(i), i = 1, · · · s
1: Initialize B = 0
2: for i = 1 to s do
3: Compute Q(i)+ and D(i) =

(
C(i)

)1/2
4: B = FD

(
[B;D(i)

(
Q(i)+

)T
], 1, 2k

)
5: end for
6: Return B

Case 2: rank(A) > 2k. In this case, each machine i first computes a matrix Q(i) as in Section 3 such
that Q = [Q(1); · · · ;Q(s)] is an (ε, k)-sketch of A. Note that Q may contain entries exponentially
small in k/ε (Boutsidis et al., 2016), which leads to an extra k/ε factor in communication cost. We
use the following result which gives a lower bound on the singular values of a matrix with integer
entries of bounded magnitude.

Lemma 19 (Lemma 4.1 of Clarkson and Woodruff 2009) If an n×dmatrixA has integer entries
bounded in magnitude by γ, and has rank ρ, then the k-th largest singular value of A satisfies

σ2k ≥ (ndγ2)−k/(ρ−k).

Since we assume each entry of the input matrix A is an integer with magnitude bounded by
poly(nd/ε) and rank(A) > 2k, we get from the above lemma

‖A− [A]k‖2F ≥ σ2k+1 ≥ (nd/ε)−b (12)

for some constant b > 0. Observe that each entry of Q is upper bounded by poly(nd/ε), since
otherwise the covariance error of Q must be too large. Therefore, if we round each entry of Q to
a sufficiently small additive poly−1(nd/ε) precision, and let Q̃ be the matrix after rounding, then
‖QTQ− Q̃T Q̃‖2 ≤ poly−1(nd/ε) ≤ O(ε) · ‖A− [A]k‖2F . Now, each entry of Q̃ is representable
with O(log(nd/ε)) bits, and thus the communication cost is O(skd) + Õ(

√
skd/ε) words. The

deterministic case is the same; just replace each Q(i) in the above argument with an (ε, k)-sketch
computed by the deterministic FD.

5. Distributed PCA

In this section, we show how to use our distributed sketching algorithm to obtain improved commu-
nication bounds for distributed PCA. All algorithms in this section will be randomized with success
probability at least 0.9.

5.1 Distributed PCA for Dense Matrices

To solve the distributed PCA problem, we can use Theorem 18 to obtain an (ε, k)-sketch Q, and
then the coordinator computes the top k right singular vectors of Q. The communication cost is
thus O(sdk +

√
sdk
ε ·
√

log d) words. When s ≥ log d
ε2

, this cost is O(skd). In the model where all
machines need to output the same answer, a lower bound of Ω(skd) bits was proved in Boutsidis
et al. (2016). Since it takes O(skd) communication for the coordinator to broadcast the answer to all
machines, our algorithm is optimal in this setting (up to a log factor).

23



HUANG, LIN, ZHANG, ZHANG.

On the other hand, when s is small, the term O(
√
sdk
ε ·
√

log d) dominates the cost. In this case,
we can further improve the communication cost when d is large using the distributed algorithm
of Boutsidis et al. (2016).

Theorem 20 (Distributed PCA of Boutsidis et al. 2016) Given anyA ∈ Rn×d which is distributed
across s machines, there is a batch algorithm for PCA with communication cost

O(sdk + min{d, kε−2} ·min{n, skε−2}).

In our covariance sketch algorithm, each machine can independently computes a matrix B(i)

(with little communication), such that B = [B(1); · · · ;B(s)] is a (ε, k)-sketch of A and the number
of rows in B is O(sk +

√
sk
ε ·
√

log d). We call B a distributed covariance sketch. To solve PCA,
we do not need to send B; we could compute the top k singular vectors of B using any distributed
algorithm. In Lemma 21, we show that only approximate singular vectors ofB are needed. Therefore,
we can run the algorithm of Boutsidis et al. (2016) on B to compute the approximate PCs of B,
which then solves the PCA problem for A. The communication cost of this combined algorithm is
O(skd) + Õ(

√
sk/ε ·min{d, k/ε2}). A standard implementation of the algorithm of Boutsidis et al.

(2016) needs to access the input multiple times; our combined algorithm is a distributed streaming
algorithm (with O(kd/ε) working space on each machine), since the algorithm of Boutsidis et al.
(2016) is only applied on top of a distributed sketch. We remark that the distributed PCA algorithm
of Boutsidis et al. (2016) works for arbitrary partition model, where each machine gets a matrix
A(i) ∈ Rn×d and A =

∑s
i=1A

(i), while our algorithm only works for row-partition models.
The key is the following lemma, the proof of which can be found in section 5.1.1.6

Lemma 21 For any ξ ≥ 0, and let B be a matrix such that ‖B‖2F ≤ ‖A‖2F +O(‖A− [A]k‖2F ) + ξ

and ‖ATA−BTB‖2 ≤ ε
2k‖A− [A]k‖2F + ξ

k . Let V ∈ Rd×k be any orthonormal matrix satisfying
‖B −BV V T ‖2F ≤ (1 + ε)‖B − [B]k‖2F , then

‖A−AV V T ‖2F ≤ (1 +O(ε)) · ‖A− [A]k‖2F +O(1) · ξ.

In this section, we only need a special case of the above lemma with ξ = 0; the more general version
will be used in the analysis for sparse matrices.

Corollary 22 Let Q be a strong (ε/2, k)-sketch of A, and we assume ‖Q‖2F = ‖A‖2F + O(‖A −
[A]k‖2F ). Let V ∈ Rd×k be any orthonormal matrix satisfying ‖Q − QV V T ‖2F ≤ (1 + ε)‖Q −
[Q]k‖2F , then

‖A−AV V T ‖2F ≤ (1 +O(ε)) · ‖A− [A]k‖2F .

This corollary can be viewed as a robust version of Lemma 3. With this result, we can apply the
standard “sketch-and-solve” framework to solve the distributed PCA problem.

1. In the “sketch” step, all machines compute a distributed (ε, k)-sketch, i.e., each machine i
output a matrix Q(i), such that Q = [Q(1); · · · ;Q(s)] is an (ε, k)-sketch of A.

2. In the “solve” step, we can apply any communication-efficient distributed PCA algorithm on
the input Q.

6. We remark that a similar result has been proved by Cohen et al. (2017) for a relevant problem. Their proof is quite
technical, so we provide a direct proof for our application here.

24



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Note that, in our algorithm for (ε, k)-sketch, if we do not require machines to send their local sketches
to the coordinator, the communication cost is negligible7, and the number of rows inQ is Õ(

√
skd/ε).

In the “solve” step, as long as the distributed PCA algorithm approximately solves the PCA problem
for Q, the output is also a valid solution for the original input A due to Corollary 22 (where we also
use the property that ‖Q‖2F = ‖A‖2F +O(‖A− [A]k‖2F ) from Theorem 18). The communication
cost of the combined algorithm is dominated by the “solve” step, while local computation cost is
dominated by the “sketch” step. Since each machine only makes one pass over its local data with
small working space for computing an (ε, k)-sketch, the above approach can convert any batch
distributed PCA algorithm to a distributed streaming algorithm.

If we use the distributed PCA algorithm from Boutsidis et al. (2016) to compute the approxi-
mate PCs for Q, we solve the PCA problem for A with communication cost O(skd +

√
sk
√
log d
ε ·

min{d, k/ε2}). The cost in Theorem 20 is in terms of words as long as the entries of the input matrix
are representable by O(log(nd/ε)) bits. As discussed in section 4, entries in Q can be rounded so
that each only takes O(log(nd/ε)) bits to represent, and thus the cost of the combined algorithm is
also in words. Using (ε, k)-sketch as a sketch for solving distributed PCA, our algorithm is faster
and more space-efficient than the algorithm of Boutsidis et al. (2016).

Theorem 23 Given A ∈ Rn×d, there is a distributed streaming algorithm which solves PCA for
A. The communication cost is O(sdk +

√
sk
√
log d
ε ·min{d, k/ε2}) words, and space used by each

machine is O(dk/ε) real numbers.

5.1.1 PROOF OF LEMMA 21

Proof By assumption, we have ‖ATA−BTB‖2 ≤ ε
2k‖A− [A]k‖2F + ξ

k , which is equivalent to

max
x:‖x‖=1

|‖Ax‖2 − ‖Bx‖2| ≤ ε

2k
‖A− [A]k‖2F +

ξ

k
. (13)

Let ui and wi be the ith right singular vector of B and A respectively. We have

‖B − [B]k‖2F = ‖B‖2F −
k∑
i=1

‖Bui‖2

≤ ‖A‖2F +O(‖A− [A]k‖2F ) + ξ −
k∑
i=1

‖Bui‖2

≤ ‖A‖2F +O(‖A− [A]k‖2F ) + ξ −
k∑
i=1

‖Bwi‖2

≤ ‖A‖2F +O(‖A− [A]k‖2F ) + ξ −
k∑
i=1

‖Awi‖2 + k
ε

2k
‖A− [A]k‖2F + k

ξ

k
by (13)

≤ O(‖A− [A]k‖2F ) + 2ξ. (14)

7. In fact, all the computations are local and parallel; the only communication needed is to synchronize the same sampling
function g.

25



HUANG, LIN, ZHANG, ZHANG.

The first equality is from Pythagorean theorem. Let vi be the ith column of V . Again by Pythagorean
theorem, we have

‖B −BV V T ‖2F = ‖B‖2F − ‖BV V T ‖2F = ‖B‖2F −
k∑
i=1

‖Bvi‖2,

and

(1 + ε)‖B − [B]k‖2F = ‖B‖2F −
k∑
i=1

‖Bui‖2 + ε‖B − [B]k‖2F .

Since ‖B −BV V T ‖2F ≤ (1 + ε)‖B − [B]k‖2F from our assumption, we have

k∑
i=1

‖Bvi‖2 ≥
k∑
i=1

‖Bui‖2 − ε‖B − [B]k‖2F ≥
k∑
i=1

‖Bui‖2 −O(ε)‖A− [A]k‖2F − 2εξ. (15)

The last inequality is from (14). Then,

‖A−AV V T ‖2F =‖A‖2F − ‖AV V T ‖2F = ‖A‖2F −
k∑
i=1

‖Avi‖2

≤‖A‖2F −
k∑
i=1

‖Bvi‖2 + k · ε
2k
‖A− [A]k‖2F + k

ξ

k

≤‖A‖2F −
k∑
i=1

‖Bui‖2 +O(ε)‖A− [A]k‖2F + (1 + 2ε)ξ (by (15))

≤‖A‖2F −
k∑
i=1

‖Bwi‖2 +O(ε)‖A− [A]k‖2F + (1 + 2ε)ξ

(as
k∑
i=1

‖Bui‖2 ≥
k∑
i=1

‖Bwi‖2)

≤‖A‖2F −
k∑
i=1

‖Awi‖2 +O(ε)‖A− [A]k‖2F + (2 + 2ε)ξ by (13)

=‖A− [A]k‖2F +O(ε)‖A− [A]k‖2F +O(1) · ξ,

where the second inequality is by (15)

5.2 Distributed PCA for Sparse Matrices

In this subsection, we assume each row of the input matrix is φ-sparse, i.e., has at most φ nonzero
entries. The key building block to bypass the skd bound in the algorithm from Boutsidis et al. (2016)
is the follow result.

26



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Lemma 24 (Boutsidis et al. 2016) There is a randomized distributed algorithm that outputs a sub-
set of rows from A, denoted as C ∈ Rr×d, such that, with probability at least 0.98, it satisfies

min
X:rank(X)≤k

‖A−XC‖2F ≤ (1 + ε)‖A− [A]k‖2F ,

The communication cost is O
(
skφ+ kφ

ε

)
words and the number of rows in C is r = O

(
k
ε

)
.

Our algorithm works as follows.

1. Apply the algorithm from Lemma 24 so that the coordinator obtains the matrix C with
r = O

(
k
ε

)
rows and O

(
kφ
ε

)
nonzero entries.

2. The coordinator sends C to all machines.

3. Each machine i computes an orthonormal basis of the row space of C (as column vectors),
denoted as U ∈ Rd×r, and then computes A′i = AiU .

4. All machines computes a distributed (ε, k)-sketch for A′ = [A′1, · · · , A′s] (but do not send the
sketches to the coordinator), denoted as B = [B1, · · · , Bs].

5. Each machine i rounds the entries in Bi down (in absolute value) to the nearest multiple of
(nd/ε)−c for a sufficient large constant c, and let B̃i be the rounded version; then sends B̃i to
the coordinator.

6. The coordinator computes top-k right singular vectors of B̃ = [B̃1, · · · , B̃s], and letQ ∈ Rr×k
be the matrix whose columns are the top-k right singular vectors of B̃. The coordinator outputs
V = UQ ∈ Rd×k.

Correctness. From the analysis in Section 4, when rank(A) ≤ 2k, there is an exact algorithm
with communication cost O(sk2) words. Therefore, we only need to consider the case when
rank(A) > 2k.

Claim 6 Assume rank(A) > 2k, then, for a large enough constant c in step 5, the covariance error
of B̃ with respect to A′ is

‖A′TA′ − B̃T B̃‖2 ≤
ε

2k
‖A′ − [A′]k‖2F +

ε

2k
‖A− [A]k‖2F .

Moreover, ‖B̃‖2F ≤ ‖A′‖2F +O
(
‖A′ − [A′]k‖2F

)
.

Proof Since U is an orthonormal matrix and the entries in A are upper bounded by poly(nd/ε),
the entries in A′ are also bounded by poly(nd/ε). From step 4, we have ‖A′TA′ − BTB‖2 ≤
ε
2k‖A

′ − [A′]k‖2F ≤ poly(nd/ε). Therefore, the entries in B must also be bounded by poly(nd/ε),
since otherwise its covariance error w.r.t. A′ must be too large. It follows that ‖BTB − B̃T B̃‖2 ≤
poly(nd/ε) · (nd/ε)−c. By (12), ‖A − [A]k‖2F ≥ (nd/ε)−b for some constant b, so if c is large
enough, it holds that ‖BTB − B̃T B̃‖2 ≤ ε

2k‖A− [A]k‖2F . Then, the first part of the lemma follows
from the triangle inequality for spectral norm. For the second part, we know from Theorem 18
that ‖B‖2F ≤ ‖A′‖2F +O

(
‖A′ − [A′]k‖2F

)
; and since we always round down the absolute values of

entries in B, ‖B̃‖2F ≤ ‖B‖2F . Then, the second part follows.

27



HUANG, LIN, ZHANG, ZHANG.

Claim 7 Let A′, Q be the matrices computed in step 3 and 6. We have

‖A′ −A′QQT ‖2F ≤ (1 + ε)‖A′ − [A′]k‖2F +O(ε) · ‖A− [A]k‖2F .

Proof As Q contains the top-k right singular vectors of B̃, it holds that ‖B̃ − B̃QQT ‖2F =
‖B̃ − [B̃]k‖2F . By Claim 6 and applying Lemma 21 with ξ = ε‖A− [A]k‖2F , we have

‖A′ −A′QQT ‖2F ≤ (1 + ε)‖A′ − [A′]k‖2F +O(ε) · ‖A− [A]k‖2F ,

which proves the claim.

The following lemma shows the correctness of the algorithm.

Lemma 25 Let V be the matrix computed in step 3 and 6. We have

‖A−AV V T ‖2F ≤ (1 +O(ε))‖A− [A]k‖2F

Proof Since UUT is an orthogonal projection, the row space of A − AUUT and AUUT −
AUQQTUT are orthogonal. Then,

‖A−AV V T ‖2F =‖A−AUQQTUT ‖ = ‖A−AUUT +AUUT −AUQQTUT ‖2F
=‖A−AUUT ‖2F + ‖AUUT −AUQQTUT ‖2F . (by Pythagorean theorem)

=‖A−AUUT ‖2F + ‖AU −AUQQT ‖2F (UT has orthonormal rows)

=‖A−AUUT ‖2F + ‖A′ −A′QQT ‖2F (note that A′ = AU )

≤‖A−AUUT ‖2F + (1 + ε)‖A′ − [A′]k‖2F +O(ε) · ‖A− [A]k‖2F (by Claim 7)

=‖A−AUUT ‖2F + ‖AU − [AU ]k‖+O(ε) · ‖A− [A]k‖2F (16)

Let Z = arg minX:rank(X)≤k‖A−XUT ‖2F . Because UT has the same row space as C, then

‖A− ZUT ‖2F = min
X:rank(X)≤k

‖A−XC‖2F ≤ (1 + ε)‖A− [A]k‖2F , (17)

where the inequality is from Lemma 24. Since rank(Z) ≤ k, we also have

‖AU − [AU ]k‖ ≤‖AU − Z‖2F = ‖AUUT − ZUT ‖2F (UT has orthonormal rows).

Then continuing from (16), we have

‖A−AV V T ‖2F ≤ ‖A−AUUT ‖2F + ‖AUUT − ZUT ‖2F +O(ε) · ‖A− [A]k‖2F
= ‖A− ZUT ‖2F +O(ε) · ‖A− [A]k‖2F (by Pythagorean theorem)

≤ (1 + ε)‖A− [A]k‖2F +O(ε) · ‖A− [A]k‖2F (by (17))

= (1 +O(ε))‖A− [A]k‖2F ,

which completes the proof.

28



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Communication cost. The communication cost of step 1 is O
(
skφ+ kφ

ε

)
words by Lemma 24 and

the cost of step 2 is O
(
skφ
ε

)
words. In step 4, since the sketches are not sent to the coordinator, the

communication cost is negligible. Note that the matrix A′ has O
(
k
ε

)
columns, so the distributed

sketch matrix B in step 4 is an O
(
sk +

√
s log(k/ε)·k

ε

)
× O

(
k
ε

)
matrix (Theorem 18). Thus, the

rounded version B̃ can be encoded using O
(
sk2

ε +

√
s log(k/ε)·k2

ε2

)
words (note that each entry in B̃

is upper bounded by poly(dn/ε) from the proof of Claim 6) and the communication cost in step 5 is

O

(
sk2

ε +

√
s log(k/ε)·k2

ε2

)
words. There is no communication in step 3 and 6.

We summarize the main result on distributed PCA for sparse matrices in the following theorem.

Theorem 26 Given A ∈ Rn×d with row sparsity φ, the above distributed algorithm correctly solves

PCA for A and the communication cost is O
(
skφ
ε + sk2

ε +

√
s log(k/ε)·k2

ε2

)
words.

We remark that the skφ
ε term in the communication is the cost needed to broadcast C to all smachines.

In the blackboard model, where each message is seen by all machines, the cost of this step isO(kφ/ε)
words. Note that the matrix U may contain exponentially small entries, and thus it is possible that
the entries in A′ are not representable by polylog(nd/ε)-bit words. So we cannot use Theorem 18
directly. Instead, we have used a more careful argument to obtain the word complexity.

6. Numerical Simulations on Synthetic Data

In this section, we evaluate of the trade-off between covariance error and communication cost on
synthetic data generated from a natural statistical model. The communication cost is measured
in terms of the total number of rows sent. All real numbers are stored as double-precision floats.
Given an input matrix, the accuracy of an approximation matrix B is measure by ‖ATA−BTB‖.
For randomized algorithms, the reported errors and costs are the average values of 10 independent
executions. For deterministic algorithms, the actual errors they incurs could be much smaller
than their worst-case guarantees; in our evaluations, we always report their actual errors in each
experimental setting. All algorithms are implemented in MATLAB.

6.1 Competing Algorithms

Deterministic Frequency Directions. Since we mostly focus on the trade-off between communication
cost and accuracy, we use the Exact Frequent Directions (eFD) algorithm, i.e., compute the SVD of
local matrices and take their top-k right singular vectors and singular values. It can be shown that
eFD is always more accurate than the more efficient Frequent Directions algorithm of Liberty (2013).

Random row sampling. In the random row sampling (RS) algorithm, each row of B is a rescaled row
of A picked independently with replacement, with probability proportional to the squares of their
Euclidean norms.

Our algorithms. We implement our SVS algorithm with both linear and quadratic sampling functions,
named L-SVS and Q-SVS respectively. From the analysis of linear sampling function, we do not
require to discard all small singular values. However we find in the experiments that this truncation

29



HUANG, LIN, ZHANG, ZHANG.

operation slightly improves the performance and makes the results more stable. Therefore, given a
target message size `, we will only keep the top 4` singular values; by a similar argument as in the
analysis for the quadratic function (Theorem 15), one can show that this truncation operation affects
the theoretical bound by at most a constant factor.

6.2 Synthetic Data

We use the same synthetic data sets as in Liberty (2013); Ghashami et al. (2014a). We generate our
data sets using the following distributions. The input matrix is A = SDU +N/ζ. The signal row
space matrix U ∈ Rt×d (t� d) contains a random t-dimensional subspace in Rd with UUT = It.
More precisely, we first generate a matrix G ∈ Rd×d such that gi,j ∼ N (0, 1) are i.i.d. standard
Gaussians. Let (Q,R) = QR(G) be the QR decomposition, and U is a first t columns of Q. D
is a diagonal matrix with di,i = 1 − (i − 1)/t, which gives linearly diminishing signal singular
values, and S ∈ Rn×t is the signal coefficients matrix, where each si,j ∼ N (0, 1). The matrix
SDU has rank t, which is the signal we wish to recover. The matrix N ∈ Rn×d is a d-dimensional
Gaussian noise added to the signal with ni,j ∼ N (0, 1), and the parameter ζ controls the level of
noise. From Vershynin (2011), we know the spectral norm of SDU dominate the spectral norm
of N when ζ is greater than some constant c1 (c1 ≈ 1 experimentally). In this case the signal is
recoverable. Moreover, when ζ ≤ c2

√
d/t for another constant close to 1, the Frobenius norm of A

is dominated by the noise. Hence, in the experiments, we typically choose c1 ≤ ζ ≤ c2
√
d/t, so

that the signal is still recoverable even though the vast majority of the energy of each row is due to
noise. The matrix A is randomly partitioned to s machines. In all of our experiments, the input on
each machine will be a matrix of size 1000× 500.

6.3 Performance Evaluation

In the first set of experiments, we evaluate the accuracy of the four algorithms on six sythetic data
sets where noise ratio ζ varies from 4 to 12 and signal dimension t is set to 30 and 40. For the ease
of comparison, the communication cost for each algorithm is tuned to be roughly 20 per machine.
Figure 1 shows that the error of each algorithm increases when the number of machines grows
from 20 to 160, this is because the input size on each machine keeps fixed and as the number of
machines increases, the Frobenius norm of the entire input A scales linearly. It is observed that our
two algorithms consistently outperform eFD and RS. Although there is slight difference between
our two algorithms, for most of the time they demonstrate similar performance. Even though we
restrict the message size to be smaller than the signal dimension, the error of our algorithm is quite
small and increases very slowly as s getting larger, especially when the noise is relatively small.
We also observe that the error of eFD grows almost linearly as the norm ‖A‖2F increases, and the
performance of eFD is surpassed by random sampling when s is relatively large

In Figure 2, we evaluate the trade-off between covariance error and communication costs. In
these set of experiments, we fix the number of machines to s = 128. The performance of all
algorithms increase with higher communication cost; it is clear that our two algorithms are the most
cost-effective ones. We observe that, even though our signals have 20− 30 dimensions, the errors
of our algorithms are already very close to optimal when each machine is only allowed to send 10
rows. On the contrary, the error of eFD becomes small only when the message size of each machine
is close to the signal dimension. For random sampling, the errors decay slowly, which confirms its
quadratic dependence on 1/ε. To achieve high accuracy, the sample size needs to be very large. So

30



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

20 40 60 80 100 120 140 160
# of machines

5

10

15

20

25

Er
ro
r (
×1

00
0)

(a) t = 30, ζ = 4

20 40 60 80 100 120 140 160
# of machines

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Er
ro
r (
×1

00
0)

(b) t = 30, ζ = 8

20 40 60 80 100 120 140 160
# of machines

2

4

6

8

10

12

14

16

Er
ro
r (
×1

00
0)

(c) t = 30, ζ = 12

20 40 60 80 100 120 140 160
# of machines

5

10

15

20

25

30

35

40

Er
ro
r (
×1

00
0)

(d) t = 40, ζ = 4

20 40 60 80 100 120 140 160
# of machines

5

10

15

20

25

30

35

Er
ro
r (
×1

00
0)

(e) t = 40, ζ = 8

20 40 60 80 100 120 140 160
# of machines

5

10

15

20

25

30

Er
ro
r (
×1

00
0)

(f) t = 40, ζ = 12

Figure 1: The number of machines s varies from 20 to 160. We tune the communication cost for
each algorithm to be roughly 20 rows per machine.

5 10 15 20 25
Average cost per machine

30

40

50

60

70

80

90

Er
ro
r (
×1

00
0)

(a) t = 20, ζ = 2

5 10 15 20 25
Average cost per machine

10

20

30

40

50

60

70

Er
ro
r (
×1

00
0)

(b) t = 20, ζ = 4

5 10 15 20 25
Average cost per machine

30

40

50

60

70

80

90

100

Er
ro
r (
×1

00
0)

(c) t = 30, ζ = 2

5 10 15 20 25
Average cost per machine

10

20

30

40

50

60

70

80
Er
ro
r (
×1

00
0)

(d) t = 30, ζ = 4

Figure 2: Error vs cost. The number of machines s is 128.

our SVS-based algorithms have a property that, to recover a signal, the number of rows sent by each
machine can be much smaller than the signal dimension. Both eFD and RS do not share this nice
property.

7. Conclusion

In this paper, we study covariance sketch and its application to PCA in the distributed model.
For covariance sketch, we give efficient one pass algorithms with improved communication costs,
and prove a tight deterministic lower bound. We also provide analyses on the bit complexity for
communication costs. We also show how to apply our distributed sketching algorithm to improve the
communication costs of distributed PCA algorithms for dense and sparse matrices.

There are still lots of questions left unanswered. The most interesting one is whether our
randomized algorithm for covariance sketch can be significantly improved. In particular, it is

31



HUANG, LIN, ZHANG, ZHANG.

still unknown whether the dependence on s can be improved further. The
√

log d factor in the
communication costs might be an artifact of the matrix concentration inequality used; with a more
suitable inequality or a more refined analysis, it might be removed. For PCA, it is unclear whether
the Ω(skd) lower bound of Boutsidis et al. (2016) still holds in the setting where only one machine
needs to know the answer; it is also interesting to determine the right order of the poly(s, k, 1/ε)
term in the cost. Another question is to determine the communication complexity of covariance
sketch in the arbitrary partition model.

Acknowledgments

This work is supported by National Natural Science Foundation of China Grant No. 61802069,
Shanghai Sailing Program Grant No. 18YF1401200, Open Project of Shanghai Institute of Optics
and Fine Mechanics, Shanghai Science and Technology Commission Grant No. 17JC1420200, and
Science and Technology Commission of Shanghai Municipality Project Grant No. 19511120700.

32



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Appendix A. Proof of Lemma 1

Lemma 27 (restatement of Lemma 3)

‖A− πkB(A)‖2F ≤ ‖A− [A]k‖2F + 2k · ‖ATA−BTB‖2.

Proof For any x with ‖x‖ = 1, we have∣∣ ‖Ax‖2 − ‖Bx‖2 ∣∣ =
∣∣ xT (ATA−BTB)x

∣∣ ≤ ‖ATA−BTB‖2

Let ui and wi be the ith right singular vector of B and A respectively

‖A− πkB(A)‖2F = ‖A‖2F − ‖πkB(A)‖2F

= ‖A‖2F −
k∑
i=1

‖Aui‖2

≤ ‖A‖2F −
k∑
i=1

‖Bui‖2 + k · ‖ATA−BTB‖2

≤ ‖A‖2F −
k∑
i=1

‖Bwi‖2 + k · ‖ATA−BTB‖2

≤ ‖A‖2F −
k∑
i=1

‖Awi‖2 + 2k · ‖ATA−BTB‖2

= ‖A− [A]k‖2F + 2k · ‖ATA−BTB‖2.

Appendix B. Bounding ‖B‖F
Theorem 28 Assume the same setting as in Theorem 12, and define

M = max
i,j

σ2i,j
g(σ2i,j)

and τ2 =
∑
i,j

σ4i,j · (1− g(σ2i,j))

g(σ2i,j)
,

then the following inequality holds:

Pr[‖B‖2F ≥ ‖A‖2F + t] ≤ exp

(
−t2/2

τ2 +Mt/3

)
.

The proof of this theorem is actually a special case of the proof of Theorem 12; here we only
need to bound the sum of squared singular values, so we apply the usual Bernstein Inequality (see
e.g. Dubhashi and Panconesi (2009)) for scalar random variables.

33



HUANG, LIN, ZHANG, ZHANG.

Appendix C. Linear function (Proof of Theorem 5)

From Theorem 12 and 28, we want to bound M,κ2 and τ2. It is easy to bound M if we pick a linear
function, i.e., g(x) = βx for some β. Since g(x) is a probability, it also must be bounded by 1, and
thus we will set g(x) = min{βx, 1}. Then the communication cost is

d
∑
i,j

g(σ2i,j) ≤ βd
∑
i,j

σ2i,j = βd
∑
i,j

‖A(i)‖2F = βd‖A‖2F .

For any σ, we have

σ4 · (1− g(σ2))

g(σ2)
=

σ2

β
− σ4 ≤ σ2

β
− σ4 − 1

4β2
+

1

4β2

= −
(

1

2β
− σ2

)2

+
1

4β2

≤ 1

4β2
.

So it follows that
κ2 ≤

∑
i

1/4β2 = s/4β2.

We also have

τ2 =
∑
i,j

σ4i,j · (1− g(σ2i,j))

g(σ2i,j)
≤
∑
i,j

σ2i,j
β

=
‖A‖2F
β

.

To achieve the desired error bound, we set β =
√
s

α‖A‖2F
· log d

δ , and set t = α‖A‖2F in Theorem 12.

We have M ≤ 1/β, and thus

κ2 +Mt/3 ≤ α2‖A‖4F /(4 · log
d

δ
) + α2‖A‖4F /(3

√
s· log

d

δ
),

which is at most α2‖A‖4F /(2 log(d/δ)). From Theorem 12 with t = α‖A‖2F , the probability
Pr[‖BTB −ATA‖ ≥ α‖A‖2F ] is smaller than

d · exp

(
−α2‖A‖4F /2

α2‖A‖4F /(2 log(d/δ))

)
≤ d · exp

(
− log

d

δ

)
= δ.

To bound ‖B‖F , we set t = ‖A‖2F in Theorem 28, and have

τ2 +Mt/3 ≤
α‖A‖4F

(
√
s · log d

δ )
+

α‖A‖4F
(3
√
s · log d

δ )

≤ ‖A‖4F / log
d

δ
.

By Theorem 28 with t = ‖A‖2F , we have

Pr[‖B‖2F ≥ 2‖A‖2F ] ≤ δ/d.

The communication cost is at most O(
√
sd
α · log d

δ ).

34



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

References

Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips, Zhewei Wei, and Ke Yi.
Mergeable summaries. ACM Transactions on Database Systems (TODS), 38(4):26, 2013.

Maria-Florina F Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means and k-median
clustering on general topologies. In Advances in Neural Information Processing Systems, 2013.

Srinadh Bhojanapalli, Prateek Jain, and Sujay Sanghavi. Tighter low-rank approximation via
sampling the leveraged element. In Proceedings of SODA. SIAM, 2015.

Christos Boutsidis and David P Woodruff. Optimal cur matrix decompositions. In Proceedings of
STOC. ACM, 2014.

Christos Boutsidis, D Woodruff, and Peilin Zhong. Optimal principal component analysis in
distributed and streaming models. Proceedings of STOC, 2016.

Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the streaming model. In
Proceedings of STOC. ACM, 2009.

Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input sparsity
time. In Proceedings of STOC, 2013.

Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approxi-
mation via ridge leverage score sampling. In Proceedings of SODA. SIAM, 2017.

Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM, 56(2):74–80,
2013.

Michal Derezinski and Michael W Mahoney. Distributed estimation of the inverse hessian by
determinantal averaging. In Advances in Neural Information Processing Systems, pages 11405–
11415, 2019.

Michał Dereziński, Burak Bartan, Mert Pilanci, and Michael W Mahoney. Debiasing distributed
second order optimization with surrogate sketching and scaled regularization. arXiv preprint
arXiv:2007.01327, 2020.

Amey Desai, Mina Ghashami, and Jeff M Phillips. Improved practical matrix sketching with
guarantees. IEEE Transactions on Knowledge and Data Engineering, 28(7):1678–1690, 2016.

Hu Ding, Yu Liu, Lingxiao Huang, and Jian Li. K-means clustering with distributed dimensions. In
International Conference on Machine Learning (ICML), 2016.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i:
Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2006a.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices ii:
Computing a low-rank approximation to a matrix. SIAM Journal on Computing, 36(1):158–183,
2006b.

35



HUANG, LIN, ZHANG, ZHANG.

Petros Drineas, Michael W Mahoney, S Muthukrishnan, and Tamás Sarlós. Faster least squares
approximation. Numerische Mathematik, 117(2):219–249, 2011.

Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-size
coresets for k-means, pca and projective clustering. In Proceedings of SODA. SIAM, 2013.

Mina Ghashami and Jeff M Phillips. Relative errors for deterministic low-rank matrix approximations.
In SODA. SIAM, 2014.

Mina Ghashami, Amey Desai, and Jeff M Phillips. Improved practical matrix sketching with
guarantees. In European Symposium on Algorithms. Springer, 2014a.

Mina Ghashami, Jeff M Phillips, and Feifei Li. Continuous matrix approximation on distributed data.
Proceedings of the VLDB Endowment, 7(10):809–820, 2014b.

Mina Ghashami, Edo Liberty, and Jeff M Phillips. Efficient frequent directions algorithm for
sparse matrices. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016.

Phillip B Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of data streams.
In Proceedings of SPAA. ACM, 2001.

Phillip B Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding windows. In
Proceedings of SPAA. ACM, 2002.

Vipul Gupta, Swanand Kadhe, Thomas Courtade, Michael W Mahoney, and Kannan Ramchan-
dran. Oversketched newton: Fast convex optimization for serverless systems. arXiv preprint
arXiv:1903.08857, 2019.

Vipul Gupta, Dominic Carrano, Yaoqing Yang, Vaishaal Shankar, Thomas Courtade, and Kannan
Ramchandran. Serverless straggler mitigation using local error-correcting codes. arXiv preprint
arXiv:2001.07490, 2020.

Zengfeng Huang. Near optimal frequent directions for sketching dense and sparse matrices. Journal
of Machine Learning Research, 20(56):1–23, 2019.

Zengfeng Huang and Ke Yi. The communication complexity of distributed epsilon-approximations.
SIAM Journal on Computing, 46(4):1370–1394, 2017.

Ravi Kannan, Santosh Vempala, and David P Woodruff. Principal component analysis and higher
correlations for distributed data. In Proceedings of the Annual Conference on Computational
Learning Theory (COLT), 2014.

Zohar Karnin and Edo Liberty. Online pca with spectral bounds. In Proceedings of the 28th Annual
Conference on Computational Learning Theory (COLT), 2015.

Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, 1997.

36



COMMUNICATION-EFFICIENT DISTRIBUTED COVARIANCE SKETCH

Yi Li, Xiaoming Sun, Chengu Wang, and David P Woodruff. On the communication complexity
of linear algebraic problems in the message passing model. In International Symposium on
Distributed Computing. Springer, 2014.

Yingyu Liang, Maria-Florina F Balcan, Vandana Kanchanapally, and David Woodruff. Improved
distributed principal component analysis. In Advances in neural information processing systems,
2014.

Yingyu Liang, Bo Xie, David Woodruff, Le Song, and Maria-Florina Balcan. Communication
efficient distributed kernel principal component analysis. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2016.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 2013.

Haipeng Luo, Alekh Agarwal, Nicolo Cesa-Bianchi, and John Langford. Efficient second order
online learning by sketching. In Advances in Neural Information Processing Systems, 2016.

Luo Luo, Wenpeng Zhang, Zhihua Zhang, Wenwu Zhu, Tong Zhang, and Jian Pei. Sketched follow-
the-regularized-leader for online factorization machine. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2018.

Luo Luo, Cheng Chen, Zhihua Zhang, Wu-Jun Li, and Tong Zhang. Robust frequent directions with
application in online learning. Journal of Machine Learning Research, 20(45):1–41, 2019.

Jayadev Misra and David Gries. Finding repeated elements. Science of computer programming, 2(2):
143–152, 1982.

Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster
approximate singular value decomposition. In Advances in neural information processing systems,
2015.

Cameron Musco and Christopher Musco. Projection-cost-preserving sketches: Proof strategies and
constructions. arXiv preprint arXiv:2004.08434, 2020.

John Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In annual symposium on foundations of computer science (FOCS). IEEE,
2013.

Roberto Imbuzeiro Oliveira. Sums of random hermitian matrices and an inequality by rudelson.
Electron. Commun. Probab, 15(203-212):26, 2010.

Jeff M Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty commu-
nication complexity, made easy. SIAM Journal on Computing, 45(1):174–196, 2016.

Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In
annual symposium on foundations of computer science (FOCS), 2006.

Vatsal Sharan, Parikshit Gopalan, and Udi Wieder. Efficient anomaly detection via matrix sketching.
In Advances in neural information processing systems, 2018.

37



HUANG, LIN, ZHANG, ZHANG.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational
Mathematics, 12(4):389–434, 2012.

Dirk Van Gucht, Ryan Williams, David P Woodruff, and Qin Zhang. The communication complexity
of distributed set-joins with applications to matrix multiplication. In Proceedings of PODS. ACM,
2015.

Roman Vershynin. Spectral norm of products of random and deterministic matrices. Probability
theory and related fields, 150(3-4):471–509, 2011.

Shusen Wang, Fred Roosta, Peng Xu, and Michael W Mahoney. Giant: Globally improved approxi-
mate newton method for distributed optimization. In Advances in Neural Information Processing
Systems, pages 2332–2342, 2018.

Zhewei Wei, Xuancheng Liu, Feifei Li, Shuo Shang, Xiaoyong Du, and Ji-Rong Wen. Matrix
sketching over sliding windows. Proceedings of SIGMOD, 2016.

David Woodruff. Low rank approximation lower bounds in row-update streams. In Advances in
neural information processing systems, 2014.

Shinjae Yoo, Hao Huang, and Shiva Prasad Kasiviswanathan. Streaming spectral clustering. IEEE
32nd International Conference on Data Engineering (ICDE), 2016.

Haida Zhang, Zengfeng Huang, Zhewei Wei, Wenjie Zhang, and Xuemin Lin. Tracking matrix
approximation over distributed sliding windows. In IEEE 33rd International Conference on Data
Engineering (ICDE), 2017.

Yuchen Zhang, Martin Wainwright, and Michael Jordan. Distributed estimation of generalized matrix
rank: Efficient algorithms and lower bounds. In International Conference on Machine Learning
(ICML), 2015.

38


	Introduction
	Preliminaries and Notation
	Problem Definitions
	Previous Results
	Our Contributions
	Other Related Work

	Deterministic Matrix Sketching
	Deterministic Lower Bound
	Rectangle property of communication complexity in the blackboard model
	Proof of the lower bound


	Randomized Algorithms
	Covariance Error "026B30D  A "026B30D F2
	Our algorithm
	Sampling functions

	Covariance Error "026B30D  A- [A]k "026B30D F2/k via Adaptive Sampling

	Bit Complexity for Communication Costs
	Distributed PCA
	Distributed PCA for Dense Matrices
	Proof of Lemma 21

	Distributed PCA for Sparse Matrices

	Numerical Simulations on Synthetic Data
	Competing Algorithms
	Synthetic Data
	Performance Evaluation

	Conclusion
	Proof of Lemma 1
	Bounding "026B30D  B "026B30D F
	Linear function (Proof of Theorem 5)

