
Journal of Machine Learning Research 23 (2022) 1-61 Submitted 1/21; Revised 5/22; Published 8/22

Simple and Optimal Stochastic Gradient Methods for Nonsmooth
Nonconvex Optimization∗

Zhize Li ZHIZELI@CMU.EDU
Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Jian Li LIJIAN83@MAIL.TSINGHUA.EDU.CN

Institute for Interdisciplinary Information Sciences
Tsinghua University
Beijing 100084, China

Editor: Ambuj Tewari

Abstract

We propose and analyze several stochastic gradient algorithms for finding stationary points or local
minimum in nonconvex, possibly with nonsmooth regularizer, finite-sum and online optimization
problems. First, we propose a simple proximal stochastic gradient algorithm based on variance
reduction called ProxSVRG+. We provide a clean and tight analysis of ProxSVRG+, which shows
that it outperforms the deterministic proximal gradient descent (ProxGD) for a wide range of mini-
batch sizes, hence solves an open problem proposed in Reddi et al. (2016b). Also, ProxSVRG+
uses much less proximal oracle calls than ProxSVRG (Reddi et al., 2016b) and extends to the on-
line setting by avoiding full gradient computations. Then, we further propose an optimal algorithm,
called SSRGD, based on SARAH (Nguyen et al., 2017) and show that SSRGD further improves
the gradient complexity of ProxSVRG+ and achieves the the optimal upper bound, matching the
known lower bound of (Fang et al., 2018; Li et al., 2021). Moreover, we show that both ProxSVRG+
and SSRGD enjoy automatic adaptation with local structure of the objective function such as the
Polyak-Łojasiewicz (PL) condition for nonconvex functions in the finite-sum case, i.e., we prove
that both of them can automatically switch to faster global linear convergence without any restart
performed in prior work ProxSVRG (Reddi et al., 2016b). Finally, we focus on the more challeng-
ing problem of finding an (ε, δ)-local minimum instead of just finding an ε-approximate (first-order)
stationary point (which may be some bad unstable saddle points). We show that SSRGD can find
an (ε, δ)-local minimum by simply adding some random perturbations. Our algorithm is almost as
simple as its counterpart for finding stationary points, and achieves similar optimal rates.

Keywords: nonconvex optimization, optimal algorithm, proximal gradient descent, variance re-
duction, local minimum

∗. Some preliminary results of this paper appear in two conference papers NeurIPS’18 (Li and Li, 2018) and
NeurIPS’19 (Li, 2019). This paper further simplifies some of the proofs, improves the bounds and extends various
results to more general settings. The detailed differences between the present paper and the preliminary conference
papers are summarized in Section 2.4.

c©2022 Zhize Li and Jian Li.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v23/21-0028.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0028.html

LI AND LI

1. Introduction

Nonconvex optimization is ubiquitous in machine learning problems, especially in training deep
neural networks. In this paper, we consider the nonsmooth (composite) nonconvex optimization
problems of the form

min
x∈Rd

{Φ(x) := f(x) + h(x)} , (1)

where f : Rd → R is a differentiable and possibly nonconvex function, while h : Rd → R is
nonsmooth but convex (e.g., `1 norm ‖x‖1 or indicator function IC(x) for some convex set C). In
particular, we are interested in functions of f having the finite-sum form

f(x) :=
1

n

n∑
i=1

fi(x), (2)

where functions fis are also possibly nonconvex. The finite-sum form captures the standard em-
pirical risk minimization problems and thus is fundamental to many machine learning problems,
ranging from convex optimization (fis are convex functions) such as logistic regression, SVM to
highly nonconvex problem such as optimizing deep neural networks. Moreover, if the number of
data samples n is very large or even infinite, e.g., in the online/streaming case, then function f
usually is modeled via the online form

f(x) := Eζ∼D[F (x, ζ)]. (3)

For notational convenience, we adopt the notation of the finite-sum form (2) in the descriptions and
algorithms in the rest of this paper. However, our results apply to the online form (3) as well by
letting fi(x) := F (x, ζi) and treating n as a very large number or even infinite.

There is a large body of literature for solving the standard problem (1) with finite-sum form
(2) or online form (3). The convex setting (i.e., fis are convex) are well-understood (see e.g., Xiao
and Zhang, 2014; Lin et al., 2015; Lan and Zhou, 2015; Woodworth and Srebro, 2016; Lan and
Zhou, 2018; Allen-Zhu, 2017; Lan et al., 2019; Li, 2021). Due to the increasing popularity of deep
learning, the nonconvex case has attracted significant attention in recent years. In search of the
optimal algorithms, a large family of variance-reduced methods plays an important role. In par-
ticular, SVRG (Johnson and Zhang, 2013), SAGA (Schmidt et al., 2013; Defazio et al., 2014) and
SARAH (Nguyen et al., 2017) are representative variance-reduced methods which were originally
designed to solve convex optimization problems. They were extended to solve nonconvex problems
in subsequent works, such as SCSG (Lei and Jordan, 2017; Lei et al., 2017), SVRG+ (Li and Li,
2018), L-SVRG (Kovalev et al., 2019), SNVRG (Zhou et al., 2018b), SPIDER (Fang et al., 2018),
SpiderBoost (Wang et al., 2019), SSRGD (Li, 2019), PAGE (Li et al., 2021). Particularly, Li and
Richtárik (2020) provided a unified analysis for a large family of stochastic gradient methods in
nonconvex optimization such as SGD, SGD with arbitrary sampling, SGD with compressed gradi-
ent, variance-reduced methods such as SVRG and SAGA, and their distributed variants. There are
also many advanced variants in the distributed/federated settings such as (Karimireddy et al., 2020;
Li et al., 2020; Zhao et al., 2021b; Li and Richtárik, 2021a; Gorbunov et al., 2021; Richtárik et al.,
2021; Fatkhullin et al., 2021; Li and Richtárik, 2021b; Zhao et al., 2021a; Richtárik et al., 2022; Li
et al., 2022a; Zhao et al., 2022; Li et al., 2022b).

While much prior work focused on the smooth convex/nonconvex case (i.e., h(x) ≡ 0 in (1)),
relatively less work studied the more general nonsmooth nonconvex case. Here we briefly survey

2

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

previous work that are directly related to our work. Ghadimi et al. (2016) analyzed the determin-
istic proximal gradient method (i.e., computing the full-gradient in every iteration) for this nons-
mooth nonconvex setting. Here we denote it as ProxGD. Ghadimi et al. (2016) also considered the
stochastic variant (here we denote it as ProxSGD). However, ProxSGD requires the minibatch size
being a very large number (i.e., b = O(σ2/ε2)) for showing the convergence. Later, Reddi et al.
(2016b) provided two algorithms called ProxSVRG and ProxSAGA, which are based on SVRG
(Johnson and Zhang, 2013) and SAGA (Defazio et al., 2014). However, their convergence results
(using constant or moderate size minibatches) are still worse than the deterministic ProxGD in
terms of proximal oracle complexity (see Definition 2 for the formal definition). Note that their al-
gorithms (i.e., ProxSVRG/SAGA) outperform the ProxGD only if they use a quite large minibatch
size b = O(n2/3), where n is the number of training samples. Note that from the perspectives of
both computational efficiency and statistical generalization, always computing full-gradient (GD or
ProxGD) may not be desirable for large-scale machine learning problems. A reasonable minibatch
size is desirable in practice, since the computation of minibatch stochastic gradients can be much
cheaper and also implemented in parallel. In fact, practitioners typically use moderate minibatch
sizes, often ranging from something like 16 or 32 to a few hundreds (sometimes to a few thousands).
Hence, it is important to study the convergence in moderate and constant minibatch size regime. In
light of this consideration, Reddi et al. (2016b) presented an important open problem of developing
stochastic methods with provably better performance than ProxGD with constant minibatch size. In
this paper, we provide algorithms for solving this open problem and also achieving optimal results.
See Table 1 and 2 for more related works and their detailed convergence results.

Besides, we show that better convergence can be achieved if the objective/loss function satisfies
the Polyak-Łojasiewicz (PL) condition (Assumption 4). Note that under the PL condition, one
can obtain a faster linear convergence O(· log 1

ε) rather than the sublinear convergence O(· 1
ε2

). In
many cases, although the objective function is globally nonconvex, some local regions (e.g., large
gradient regions) may satisfy the PL condition. Thus, we also prove that our algorithms can achieve
faster linear convergence rates under the PL condition. In particular, the parameter settings of our
algorithm remain the same for the finite-sum case, i.e., our algorithms can automatically switch to
the faster linear convergence rate in these regions where the PL condition is satisfied.

For nonconvex problems, the point with zero gradient ∇f(x) = 0 can be a local minimum, a
local maximum or a saddle point. To avoid stucking in bad saddle points (or local maxima), we want
to further find a local minimum, i.e.,∇f(x) = 0 and∇2f(x) � 0 (this is a sufficient condition for x
being a local minimum). We note that although finding the global minimum for nonconvex problems
is NP-hard in general, it is known that for some special nonconvex problems all local minima are
also global minima, such as matrix sensing (Bhojanapalli et al., 2016), matrix completion (Ge et al.,
2016), and some special neural networks (Ge et al., 2017). In our paper, we also consider the goal of
finding an approximate (ε, δ)-local minimum (i.e., ‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −δ) instead
of just finding the ε-approximate first-order solution (i.e., ‖∇f(x)‖ ≤ ε). For this purpose, Xu et al.
(2018) and Allen-Zhu and Li (2018) independently proposed generic reductions Neon/Neon2, that
can be combined with algorithms that finds ε-approximate (first-order) solutions in order to find an
(ε, δ)-local minimum. However, algorithms obtained via such reduction are quite complicated and
rarely used in practice. In particular, the reduction needs to extract negative curvature directions
from the Hessian to escape saddle points by using a negative curvature search subroutine: given a
point x, find an approximate eigenvector corresponding to the smallest eigenvalue of∇2f(x). This
also makes the analysis more complicated. In practice, standard stochastic gradient algorithms can

3

LI AND LI

often work well in nonconvex setting (they can escape bad saddle points) without a negative cur-
vature search subroutine. Intuitively, the saddle points are not very stable, and some stochasticity
can escape such saddle points. This raises the following natural theoretical question “Is there any
simple modification to the standard first-order gradient method, that can achieve second-order op-
timality guarantee (local minimum)?”. For gradient descent (GD), Jin et al. (2017) showed that a
simple perturbation step (by injecting Gaussian noises) is enough to escape saddle points for finding
an (ε, δ)-local minimum, and this is necessary (Du et al., 2017). Jin et al. (2018) showed that an
accelerated GD version can achieve faster convergence rate. Note that both (Jin et al., 2017, 2018)
require computing the full gradients. Ge et al. (2015), Daneshmand et al. (2018), Jin et al. (2019),
and Fang et al. (2019) analyzed stochastic gradients can also find approximate local minimum if
some Gaussian noises are injected.1 Recently, Ge et al. (2019) showed that a simple perturbation
step is also enough to find an (ε, δ)-local minimum for SVRG algorithm (Johnson and Zhang, 2013;
Li and Li, 2018). Moreover, Ge et al. (2019) also developed a stabilized trick to further improve
the dependency of Hessian Lipschitz parameter. See also Table 5 for the convergence rates of the
aforementioned works.

In the next section, we present our contributions and provide more discussions and details of
related work.

2. Our Contributions

In this section, we review previous related work and present our contributions. Concretely, in Sec-
tion 2.1, we compare the convergence results of our ProxSVRG+ and SSRGD with previous work,
and show that SSRGD further improves on ProxSVRG+ and achieves the optimal convergence re-
sults. In Section 2.2, we present the convergence results of ProxSVRG+ and SSRGD under the
PL condition. In this PL setting, SSRGD achieves new state-of-the-art results. Note that both
ProxSVRG+ and SSRGD can automatically switch to the faster global linear convergence in the
finite-sum case under the PL condition. In Section 2.3, we further present the convergence results
of SSRGD for finding an approximate local minimum which is a more challenging guarantee com-
pared with just finding an approximate first-order stationary point.

2.1 Nonsmooth nonconvex optimization

We list the convergence results of ProxGD, ProxSGD, ProxSVRG/SAGA, ProxSVRG+ and SSRGD
in Table 1. Our goal in this section is to find an ε-approximate solution of (1) (see Definition 1). The
convergence results are stated in terms of the number of stochastic first-order oracle (SFO) calls and
proximal oracle (PO) calls (see Definition 2). Although the algorithm of ProxSVRG+ is the same
as in the conference version (Li and Li, 2018), our convergence analysis is notably different. In this
paper, we further simplify our original proofs of ProxSVRG+ provided in Li and Li (2018), which
allows for using larger step size and also leads to better constant in the convergence results.

The original version of SSRGD (Simple Stochastic Recursive Gradient Descent) in Li (2019)
was designed to solve the smooth nonconvex problems (i.e., h(x) ≡ 0 in (1)). In this paper, we
extend it to solve the nonsmooth nonconvex problems (1). Compared with the SFO complexity of
ProxSVRG+, SSRGD improves the factor

√
b to b, e.g., O(n

ε2
√
b

+ b
ε2

) to O(n
ε2b

+ b
ε2

) in the finite-

1. Daneshmand et al. (2018) and Fang et al. (2019) also show that the plain SGD can find approximate local minimum
under certain assumptions.

4

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

minibatch b

SFO

1
ε10/3

n
ε2

n2/3 n

ProxGD

1

ProxSVRG/SAGA

1
ε2

1
ε4/3

SSRGD

1
ε4

n2/3

ε2

SCSG

(Asp. 3)

(Asp. 3)
(b ≤ n2/3)

ProxSVRG+

ProxSGD
(b ≥ 1/ε2,Asp. 3)

√
n1

ε

√
n
ε2

1
ε3

SSRGD

ProxSVRG+
(Asp. 3)

ProxSVRG+ with and without Asp. 3
SSRGD with and without Asp. 3and

share the line.purple

Figure 1: SFO complexity w.r.t. minibatch b. 2

minibatch b

PO

1
ε2

n
ε2

n2/3 n

ProxSVRG+
ProxSGD(b ≥ σ2/ε2)
ProxGD

1

ProxSVRG/SAGA(b ≤ n2/3)

SSRGD

Figure 2: PO complexity w.r.t. minibatch b.

Table 1: SFO and PO complexity for finding an ε-approximate solution of problem (1)

Algorithms
Stochastic first-order

oracle (SFO)
Proximal oracle

(PO) Assumptions

ProxGD
(Ghadimi et al., 2016) O(nε2) O(1

ε2)
Asp 1

(finite-sum)
ProxSGD

(Ghadimi et al., 2016) O(bε2), where b ≥ σ2

ε2
O(1

ε2)
Asp 2, 3

(finite-sum or online 3)
ProxSVRG/SAGA

(Reddi et al., 2016b)
O
(

n
ε2

√
b

+ n
)
,

where b ≤ n2/3
O
(

n
b3/2ε2

) Asp 2
(finite-sum)

SCSG (Lei et al., 2017)
(smooth case h(x) ≡ 0 in (1)) O

(
b1/3B2/3

ε2 +B
)

4 NA 5 Asp 2, 3
(finite-sum or online 3)

ProxSVRG+
(this paper, Theorem 5) O

(
n

ε2
√
b

+ b
ε2 + n

)
O(1

ε2)
Asp 2

(finite-sum)
ProxSVRG+

(this paper, Theorem 5) O
(

B
ε2

√
b

+ b
ε2 +B

)
4 O(1

ε2)
Asp 2, 3

(finite-sum or online 3)
SSRGD

(this paper, Theorem 6) O
(
n
ε2b + b

ε2 + n
)

O(1
ε2)

Asp 2
(finite-sum)

SSRGD
(this paper, Theorem 6) O

(
B
ε2b + b

ε2 +B
)

4 O(1
ε2)

Asp 2, 3
(finite-sum or online 3)

sum case, where b is the minibatch size (See Table 1). Although SSRGD yields better convergence
results than ProxSVRG+, in our opinion, the analysis of ProxSVRG+ is quite simple and clean,
and useful for understanding the analysis of SSRGD. Hence, we choose to present the details of
ProxSVRG+ as well.

2. In this figure, we assume that σ2/ε2 ≤ n, i.e.,B := min{n, σ2/ε2} = σ2/ε2. Otherwise there is no difference from
the finite-sum case if B = n. We also omit σ for simplicity of presentation.

3. Note that we refer to the finite-sum problem (2) with large or infinite n as the online problem (3), as discussed in
Section 1. In the online problem, computing the full gradient may be very expensive or simply impossible (e.g., if n
is infinite), so the bounded variance assumption of stochastic gradient (Assumption 3) is needed.

4. B := min{n, σ2/ε2}.
5. SCSG (Lei et al., 2017) only considered the smooth case, i.e., h(x) ≡ 0 in problem (1). The proximal oracle is

required only for the nonsmooth setting.

5

LI AND LI

Table 2: SFO and PO complexity of recent algorithms for solving problem (1) 6

Algorithms
Stochastic first-order

oracle (SFO)
Proximal oracle

(PO) Assumptions

SNVRG (Zhou et al., 2018b) Õ(n+
√
n
ε2) 7 NA

Asp 2
(finite-sum)

SPIDER (Fang et al., 2018) O(n+
√
n
ε2) 7 NA

Asp 2
(finite-sum)

SpiderBoost (Wang et al., 2019) O(n+
√
n
ε2) 7 O(1

ε2)
Asp 2

(finite-sum)

ProxSARAH (Pham et al., 2019) O(n+
√
n
ε2)

O(
√
n

bε2),
where b ≤

√
n

Asp 2
(finite-sum)

PAGE (Li et al., 2021) O(n+
√
n+b
ε2) NA

Asp 2
(finite-sum)

SSRGD (this paper, Theorem 6) O(n+
√
n
ε2) O(1

ε2)
Asp 2

(finite-sum)

Lower bound (Fang et al., 2018) Ω(
√
n
ε2),

where n ≤ O(1
ε4)

NA
Asp 2

(finite-sum)

Lower bound (Li et al., 2021) Ω(n+
√
n
ε2) NA

Asp 2
(finite-sum)

We highlight the following results yielded by ProxSVRG+ and SSRGD:

1) Reddi et al. (2016b) proposed the following open question: developing stochastic methods with
provably better performance than ProxGD with constant minibatch size b. Note that #PO of
ProxSVRG (Reddi et al., 2016b) is n/b2/3 times larger than ProxGD. Our ProxSVRG+ is

√
b

(resp.
√
bn/B in the online case) times faster than ProxGD in terms of #SFO when b ≤ n2/3

(resp. b ≤ B2/3), and n/b times faster than ProxGD when b > n2/3 (resp. b > B2/3), where
B := min{n, σ2

ε2
}. SSRGD is b (resp. bn/B in the online case) times faster than ProxGD in

terms of #SFO when b ≤ n1/2 (resp. b ≤ B1/2), and n/b times faster than ProxGD when
b > n1/2 (resp. b > B1/2). Note that the number of proximal oracle (PO) calls for ProxGD,
ProxSVRG+ and SSRGD are the same, i.e., #PO = O(1/ε2). Hence, both results answers the
open question posed by Reddi et al. (2016b). Also see Figure 1 and 2 for an overview.

2) For the online case (which needs an extra bounded variance Assumption 3 since the full gradient
may not be available), ProxSVRG+ and SSRGD generalize and improve the result achieved by
SCSG (Lei et al., 2017) for the smooth nonconvex case (h(x) ≡ 0 in form (1)) to this nonsmooth
setting. We note that ProxSVRG+ is also more straightforward than SCSG and the proof is
also simpler. Also note that SCSG (Lei et al., 2017) achieves its best convergence result with
minibatch size b = 1 (see Figure 1), while ProxSVRG+ and SSRGD achieves their best results
with moderate minibatch sizes and thus can also enjoy speed up with parallelism/vectorization.

6. Similar results hold for these recent algorithms and our SSRGD by replacing n with B := min{n, σ
2

ε2
} in finite-

sum or online setting (under Asp 2 and 3) similar to Table 1. Note that SSRGD also matches the lower bound
Ω(B +

√
B
ε2

) (Li et al., 2021) in the online setting (i.e., it achieves optimal results in both finite-sum and online
settings).

7. They only analyzed a fixed choice of minibatch size b.

6

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Table 3: SFO and PO complexity of algorithms under PL condition for solving problem (1)

Algorithms
Stochastic first-order

oracle (SFO)
Proximal oracle

(PO) Assumptions

ProxGD
(Karimi et al., 2016) O(nκ log 1

ε) O(κ log 1
ε)

Asp 1, 4
(finite-sum)

ProxSVRG/SAGA
(Reddi et al., 2016b)

O
(
nκ√
b

log 1
ε + n log 1

ε

)
,

where b ≤ n2/3
O
(
nκ
b3/2

log 1
ε

) Asp 2, 4
(finite-sum)

SCSG (Lei et al., 2017)
(smooth case h(x) ≡ 0 in (1)) O

(
b1/3B2/3κ log 1

ε

)
8 NA 9 Asp 2, 3, 4

(finite-sum or online)
ProxSVRG+

(this paper, Theorem 7) O
(
nκ√
b

log 1
ε + bκ log 1

ε

)
O(κ log 1

ε)
Asp 2, 4

(finite-sum)
ProxSVRG+

(this paper, Theorem 7) O
(
Bκ√
b

log 1
ε + bκ log 1

ε

)
8 O(κ log 1

ε)
Asp 2, 3, 4

(finite-sum or online)
SSRGD

(this paper, Theorem 8) O
(
nκ
b log 1

ε + bκ log 1
ε

)
O(κ log 1

ε)
Asp 2, 4

(finite-sum)
SSRGD

(this paper, Theorem 8) O
(
Bκ
b log 1

ε + bκ log 1
ε

)
8 O(κ log 1

ε)
Asp 2, 3, 4

(finite-sum or online)

3) By choosing the best minibatch size b =
√
n (b =

√
B in online case), SSRGD achieves the

optimal results in both finite-sum and online settings, which match the lower bounds given in
(Fang et al., 2018; Li et al., 2021). Note that the optimal SFO complexityO(n+

√
n
ε2

) have already
been achieved by several recent works such as SNVRG (Zhou et al., 2018a), SPIDER (Fang
et al., 2018), SpiderBoost (Wang et al., 2019), ProxSARAH (Pham et al., 2019) and PAGE (Li
et al., 2021). We highlight some differences between SSRGD and previous results. For SNVRG,
SPIDER and PAGE, they only considered the smooth case (h(x) ≡ 0 in form (1)). SpiderBoost
only analyzed a fixed choice of minibtach size b and ProxSARAH requires much more #PO calls
if minibatch size b is small. SSRGD provides the results for all minibatch size b ∈ [1, n] and the
number of #PO calls is always the same as ProxGD. We also note that ProxSARAH with γt ≡ 1
(Algorithm 1 in (Pham et al., 2019)) is the same as SSRGD. However, the convergence analysis
in Pham et al. (2019) (Theorem 6 in their paper) requires γt ≡ γ = 1

L
√
ωm

(where ω = 3(n−b)
2b(n−1)),

hence does not cover the case that γt ≡ 1. Our main technical contribution is a simple and clean
analysis (arguably simpler than that in the previous optimal algorithms) that is inspired by our
analysis of ProxSVRG+. See Table 2 for these recent results. Note that these results were not
stated in terms of minibatch size b, so we use a separate table for them.

2.2 PL setting

Note that under the PL condition (Assumption 4), one can obtain the faster linear convergence rates
O(· log 1

ε) (see Theorem 7 and 8) rather than the sublinear convergence ratesO(· 1
ε2

) (see Theorem 5
and 6).

Now we summarize the convergence results of prior work, ProxSVRG+ and SSRGD under PL
condition (Assumption 4) in Table 3. The convergence result of these algorithms are very similar

8. B := min{n, σ
2

µε
}.

9. SCSG (Lei et al., 2017) also only considered the smooth case (i.e., h(x) ≡ 0 in problem (1)) in the PL setting. The
proximal oracle is only required for the nonsmooth setting.

7

LI AND LI

Table 4: SFO and PO complexity of recent algorithms under PL condition for solving problem (1)

Algorithms
Stochastic first-order

oracle (SFO)
Proximal oracle

(PO) Assumptions

SNVRG
(Zhou et al., 2018b) O

((
(n+

√
nκ) log3 n

)
log 1

ε

)
NA 10 Asp 2, 4

(finite-sum)
SNVRG

(Zhou et al., 2018b) O
((

(B +
√
Bκ) log3B

)
log 1

ε

)
11 NA 10 Asp 2, 3, 4

(finite-sum or online)
Prox-SpiderBoost-PL
(Wang et al., 2019) O

(
(n+ κ2) log 1

ε

)
O(κ log 1

ε)
Asp 2, 4

(finite-sum)
PAGE

(Li et al., 2021) O
(
(n+

√
nκ) log 1

ε

)
NA 10 Asp 2, 4

(finite-sum)
PAGE

(Li et al., 2021) O
(
(B +

√
Bκ) log 1

ε

)
11 NA 10 Asp 2, 3, 4

(finite-sum or online)
SSRGD

(this paper, Theorem 8) O
(
(n+

√
nκ) log 1

ε

)
O(κ log 1

ε)
Asp 2, 4

(finite-sum)
SSRGD

(this paper, Theorem 8) O
(
(B +

√
Bκ) log 1

ε

)
11 O(κ log 1

ε)
Asp 2, 3, 4

(finite-sum or online)

to Table 1 by replacing 1
ε2

with κ log 1
ε . Similarly, under PL condition, ProxSVRG+ also improves

ProxSVRG by using less PO calls and extends the choice of minibatch size to all b ∈ [1, n]. SSRGD
further improves ProxSVRG+ by a factor of

√
b, e.g., from O(nκ√

b
log 1

ε + bκ log 1
ε) to O(nκb log 1

ε +

bκ log 1
ε) in the finite-sum case (See Table 3). In particular, the best result for SSRGD is Õ(

√
nκ)

while the best results for ProxSVRG and ProxSVRG+ are Õ(n2/3κ). For the online case, the best
result for SSRGD is Õ(

√
Bκ) while the best results for SCSG and ProxSVRG+ are Õ(B2/3κ),

where B := min{n, σ2

µε}. See Table 3 for more details.
By choosing the best minibatch size, SSRGD achieves new state-of-the-art results in the PL

setting. See Table 4 for convergence results of SSRGD (with best minibatch b) and some prior
results. Note that we are mainly interested in the case where the condition number κ >

√
n.

Hence, one can see that SSRGD is better than Prox-SpiderBoost-PL (Wang et al., 2019) in term
of the number of SFO calls. If the condition number κ ≤

√
n, the SFO complexity of both Prox-

SpiderBoost-PL and SSRGD can be bounded by O(n log 1
ε).

Note that we do not combine Table 3 and 4 since all prior results in Table 4 were not stated in
terms of the minibatch size b. Hence, we use a separate table to list the best results they achieved.
We emphasize that our analysis of SSRGD in this PL setting is new and its convergence result also
improves over all prior results (see Table 3 and 4).

2.3 Finding local minimum

Now, we consider the problem of finding the approximate (ε, δ)-local minimum (i.e., ‖∇f(x̂)‖ ≤ ε
and λmin(∇2f(x̂)) ≥ −δ) in nonconvex optimization problems. We compare our solution with
several other recent theoretical results on finding approximate local minimum. This includes those
that adopt Neon/Neon2 (Xu et al., 2018; Allen-Zhu and Li, 2018) (which involve some negative

10. ‘NA’ in the PO column means that these algorithms only considered the smooth case (i.e., h(x) ≡ 0 in problem (1))
in the PL setting. The proximal oracle is only required for the nonsmooth setting.

11. B := min{n, σ
2

µε
}.

8

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Table 5: Gradient complexity of algorithms for nonconvex finite-sum problem (2) under Asp 5

Algorithms
Stochastic gradient

complexity
Guarantee NC 12

PGD (Jin et al., 2017) Õ(nε2 + n
δ4) (ε, δ)-local min No

PAGD (Jin et al., 2018) Õ(n
ε1.75 + n

δ3.5) (ε, δ)-local min No

Neon2+FastCubic/CDHS

(Agarwal et al., 2016; Carmon et al., 2016)
Õ(n

ε1.5 + n3/4

ε1.75 + n3/4

δ3.5 + n
δ3) (ε, δ)-local min Needed

Neon2+SVRG (Allen-Zhu and Li, 2018) Õ(n
2/3

ε2 + n3/4

δ3.5 + n
δ3) (ε, δ)-local min Needed

Neon2+SNVRG (Zhou et al., 2018a) Õ(n
1/2

ε2 + n3/4

δ3.5 + n
δ3) (ε, δ)-local min Needed

Neon2+SPIDER (Fang et al., 2018) Õ(n
1/2

ε2 + n1/2

εδ2 + 1
εδ3 + 1

δ5) (ε, δ)-local min Needed

Stabilized SVRG (Ge et al., 2019) Õ(n
2/3

ε2 + n2/3

δ4 + n
δ3) (ε, δ)-local min No

SSRGD (this paper, Theorem 9) Õ(n
1/2

ε2 + n1/2

δ4 + n
δ3) (ε, δ)-local min No

curvature searching procedure), such as (Agarwal et al., 2016; Carmon et al., 2016; Allen-Zhu
and Li, 2018; Zhou et al., 2018a; Fang et al., 2018) and those by adding simple pertubations to
fairly standard gradient methods, such as PGD (Jin et al., 2017), PAGD (Jin et al., 2018), CNC-
SGD (Daneshmand et al., 2018) and Stabilized SVRG (Ge et al., 2019).

We show that our SSRGD can find an (ε, δ)-local minimum and further improve the convergence
result of Stabilized SVRG (Ge et al., 2019) from n2/3/ε2 to n1/2/ε2 (see Table 5). Similar to Ge
et al. (2019), SSRGD for finding a local minimum is as simple as its counterpart for finding a first-
order stationary point. This is done by just adding a random perturbation in each superepoch, and it
does not require a negative curvature (NC) search subroutine (such as Neon/Neon2) or computing
Hessian-vector products (such as FastCubic/CDHS). Thus SSRGD (only uses stochastic gradients
and random perturbations) can be easily applied in practice. We note that the convergence rate
of SSRGD can be better than Neon2+SPIDER (Fang et al., 2018) if δ is very small (i.e., higher
accuracy for second-order guarantee λmin(∇2f(x̂)) ≥ −δ). Also Neon2+SPIDER (Fang et al.,
2018) requires a negative curvature (NC) search subroutine (such as Neon/Neon2) and thus is more
complicated than SSRGD. Our convergence analysis is also arguably simpler. The previous results
and our new results are summarized in Table 5 (finite-sum case) and 6 (online case). Also note that
the first term of the convergence result of SSRGD (i.e.,

√
n
ε2

or 1
ε3

) matches the corresponding result
for finding the first-order optimal solution (See previous Table 1 or Figure 1) and hence is optimal.

Finally, if we further assume that f has L3-Lipschitz continuous third-order derivative (i.e.,
Assumption 7), we show that better convergence rate can be achieved, by replacing the super epoch
part of SSRGD (Algorithm 3) by a negative-curvature search step (e.g., Neon2 (Allen-Zhu and Li,
2018))). Currently, the best known result under this setting is achieved in Zhou et al. (2018a), which
also uses a negative-curvature search procedure. Our approach is similar to theirs and we obtain the
same convergence rate (see Table 7).

12. Negative Curvature search subroutine.

9

LI AND LI

Table 6: Gradient complexity of algorithms for nonconvex online problem (3) under Asp 5 and 6

Algorithms
Stochastic gradient

complexity
Guarantee NC 12

Noisy SGD (Ge et al., 2015) poly(d, 1ε ,
1
δ) (ε, δ)-local min No

CNC-SGD (Daneshmand et al., 2018) Õ(1
ε4 + 1

δ10) (ε, δ)-local min No

Perturbed SGD (Jin et al., 2019) Õ(1
ε4 + 1

δ8) (ε, δ)-local min No

SGD with averaging (Fang et al., 2019) Õ(1
ε3.5 + 1

δ7) (ε, δ)-local min No

Neon2+SCSG (Allen-Zhu and Li, 2018) Õ(1
ε10/3

+ 1
ε2δ3 + 1

δ5) (ε, δ)-local min Needed

Neon2+Natasha2 (Allen-Zhu, 2018) Õ(1
ε3.25 + 1

ε3δ + 1
δ5) (ε, δ)-local min Needed

Neon2+SNVRG (Zhou et al., 2018a) Õ(1
ε3 + 1

ε2δ3 + 1
δ5) (ε, δ)-local min Needed

Neon2+SPIDER (Fang et al., 2018) Õ(1
ε3 + 1

ε2δ2 + 1
δ5) (ε, δ)-local min Needed

SSRGD (this paper, Theorem 9) Õ(1
ε3 + 1

ε2δ3 + 1
εδ4) (ε, δ)-local min No

Table 7: Gradient complexity for nonconvex online problem (3) under Asp 5, 6 and 7

Algorithms
Stochastic gradient

complexity
Guarantee NC 12

FLASH (Yu et al., 2017) Õ(1
ε10/3

+ 1
ε2δ2 + 1

δ4) (ε, δ)-local min Needed

SNVRG (Zhou et al., 2018a) Õ(1
ε3 + 1

ε2δ2 + 1
δ4) (ε, δ)-local min Needed

SSRGD (this paper, Theorem 10) Õ(1
ε3 + 1

ε2δ2 + 1
δ4) (ε, δ)-local min Needed

2.4 Comparison with the preliminary conference papers

The present paper significantly extends the preliminary two conference papers (Li and Li, 2018; Li,
2019). The major differences between the present paper and the conference papers are summarized
as follows. (1) We further simplify the proof of ProxSVRG+ in (Li and Li, 2018). See the proof of
Theorem 5 in Appendix A. (2) We extend the original SSRGD in (Li, 2019), which can only handle
smooth functions, to a proximal version that can handle nonsmooth functions as well. See Algo-
rithm 2 and Theorem 6. (3) We show SSRGD can achieve linear convergence rate if PL condition
is satisfied. Moreover, SSRGD obtains new state-of-the-art results in this classical PL setting. This
part is not published elsewhere. See Theorem 8. (4) We provide more details and intuitions in the
analysis of SSRGD for escaping saddle point. See the proof of Theorem 9 in Appendix D. (5) We
briefly note that SSRGD, when combined with Neon2, can achieve better convergence rate under
an additional third order smoothness assumption (Assumption 7). See Theorem 10. This result is
not published elsewhere.

2.5 Organization

The remaining paper is organized as follows. Section 3 introduces the notations, standard assump-
tions and definitions in nonconvex optimization. Section 4 presents the ProxSVRG+ algorithm and
its convergence results. Section 5 present the SSRGD algorithm and its convergence results. Then,

10

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Section 6 present the results of ProxSVRG+ and SSRGD in the PL setting, where faster linear con-
vergence can be obtained. Finally, we show how to find an approximate local minimum instead of
first-order stationary point via SSRGD and present the corresponding convergence results in Sec-
tion 7. All proofs are deferred to the appendix.

3. Preliminaries

Let [n] denote the set {1, 2, · · · , n} and ‖ · ‖ the Euclidean norm for a vector or the spectral norm
for a matrix. Let 〈u, v〉 denote the inner product of two vectors u and v. Let λmin(A) denote the
smallest eigenvalue of a symmetric matrix A. Let Bx(r) denote a Euclidean ball with center x and
radius r. We useO(·) and Ω(·) to hide the absolute constant, and Õ(·) to hide the logarithmic factor.

We assume that the nonsmooth function h(x) in problem (1) is well structured such that the
following proximal operator on h can be computed efficiently:

proxηh(x) := arg min
y∈Rd

(
h(y) +

1

2η
‖y − x‖2

)
. (4)

For convex problems, one typically uses the optimality gap Φ(x)−Φ(x∗) as the convergence crite-
rion for problem (1) (see e.g., (Nesterov, 2004)). But for general nonconvex problems, one typically
uses the gradient norm as the convergence criterion. E.g., for smooth nonconvex problems (i.e.,
h(x) ≡ 0), Ghadimi and Lan (2013), Reddi et al. (2016a) and Lei et al. (2017) used ‖∇f(x)‖ to
measure the convergence. In order to analyze the convergence results for nonsmooth nonconvex
problems, following with Ghadimi et al. (2016); Reddi et al. (2016b), we use the gradient mapping:

Gη(x) :=
1

η

(
x− proxηh

(
x− η∇f(x)

))
. (5)

Note that if h(x) is a constant function (in particular, zero), this gradient mapping reduces to the
ordinary gradient: Gη(x) = ∇Φ(x) = ∇f(x). Thus we use the norm of the gradient mapping
Gη(x) as the convergence criterion for problem (1) in the same way as in Ghadimi et al. (2016);
Reddi et al. (2016b).

Definition 1 x̂ is called an ε-approximate solution for problem (1) if E[‖Gη(x̂)‖] ≤ ε. In particular,
if h(x) ≡ 0 in (1), this is equivalent to E[‖∇f(x̂)‖] ≤ ε.

Note that Gη(x) has been already normalized by the step-size η, i.e., it is independent of different
algorithms. Let x+ := proxηh

(
x − η∇f(x)

)
. Then one can see that Gη(x) := 1

η

(
x − x+

)
=

∇f(x) + ∂h(x+). Moreover, if Gη(x∗) = 0, then x∗ indeed is a first-order stationary point for
problem (1), i.e., ∂Φ(x∗) = 0.

To measure the efficiency of a stochastic algorithm for solving problem (1), we use the following
SFO and PO oracle complexities.

Definition 2 1. Stochastic first-order oracle (SFO): given a point x, SFO outputs a stochastic
gradient∇fi(x) (i.e., gradient of one component/data in (2)) such that Ei[∇fi(x)] = ∇f(x).

2. Proximal oracle (PO): given a point x, PO outputs the result of the proximal projection
proxηh(x) (see (4)).

11

LI AND LI

Moreover, in order to prove convergence results, we usually need the following standard smooth-
ness assumptions. Besides, for stochastic/online problems (3), we also usually need the extra
bounded variance assumption. These assumptions are very standard in the optimization literature
(see e.g., Nesterov, 2004; Ghadimi et al., 2016; Lei et al., 2017; Li and Li, 2018; Allen-Zhu, 2018;
Zhou et al., 2018b; Fang et al., 2018; Pham et al., 2019; Li and Richtárik, 2020).

Assumption 1 (L-smoothness) A function f : Rd → R is L-smooth if

∃L > 0, such that ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd. (6)

Assumption 2 (Average L-smoothness) A function f(x) := 1
n

∑n
i=1 fi(x) is average L-smooth if

∃L > 0, such that Ei[‖∇fi(x)−∇fi(y)‖2] ≤ L2‖x− y‖2, ∀x, y ∈ Rd. (7)

It is not hard to see that Assumption 2 implies Assumption 1.

Assumption 3 (Bounded variance) The stochastic gradient has bounded variance if

∃σ > 0, such that Ei[‖∇fi(x)−∇f(x)‖2] ≤ σ2, ∀x ∈ Rd. (8)

PL setting: We also prove faster linear convergence rates for nonconvex functions under the Polyak-
Łojasiewicz (PL) condition (Polyak, 1963), i.e., ‖∇f(x)‖2 ≥ 2µ(f(x)− f∗). Similar to Definition
1, due to the nonsmooth term h(x) in problem (1), we use the gradient mapping Gη(x) (see (5)) to
define a more general form of PL condition as follows:

Assumption 4 (PL condition) A function Φ : Rd → R satisfies PL condition 13 if

∃µ > 0, such that ‖Gη(x)‖2 ≥ 2µ(Φ(x)− Φ∗), ∀x ∈ Rd (9)

(‖∇f(x)‖2 ≥ 2µ(f(x)− f∗) if h(x) ≡ 0 in (1)).

When Assumption 4 holds, we say that it is the PL setting. In the PL setting, we can show linear
convergence to the global minimum. Here, we directly use the optimality gap Φ(x) − Φ∗ as the
convergence criterion (see e.g., Reddi et al., 2016b; Lei et al., 2017; Li and Li, 2018; Zhou et al.,
2018b), i.e., we use the following Definition 3 in place of Definition 1 for the PL setting.

Definition 3 x̂ is called an ε-approximate solution for problem (1) under PL condition (Assumption
4) if E[Φ(x̂)− Φ∗] ≤ ε.

Local minima: Finally, we define the approximate local minimum. Note that in this setting, we do
not consider the nonsmooth term, i.e., h(x) ≡ 0 in (1). Otherwise the second-order guarantee in
Definition 4 is not well-defined for the nonsmooth term.

Definition 4 x̂ is called an (ε, δ)-local minimum for a twice-differentiable function f if

‖∇f(x̂)‖ ≤ ε and λmin(∇2f(x̂)) ≥ −δ. (10)

13. It is worth noting that the PL condition does not imply convexity of the function. For example, f(x) = x2 + 3 sin2 x
is a nonconvex function but f satisfies PL condition with µ = 1/32.

12

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

For finding an approximate local minimum instead of finding an approximate first-order stationary
point, we usually need the extra smoothness assumption for the Hessians of fis.

Assumption 5 (Gradient and Hessian Lipschitz) A function fi : Rd → R has an L-Lipschitz
continuous gradient if

∃L > 0, such that ‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd, (11)

and has a ρ-Lipschitz continuous Hessian if

∃ρ > 0, such that ‖∇2fi(x)−∇2fi(y)‖ ≤ ρ‖x− y‖, ∀x, y ∈ Rd. (12)

Definition 4 and Assumption 5 are also standard in the literature for finding local minima (see e.g.,
Ge et al., 2015; Jin et al., 2017; Xu et al., 2018; Allen-Zhu and Li, 2018; Zhou et al., 2018a; Fang
et al., 2018; Ge et al., 2019; Li, 2019).

For achieving a high probability result of finding the (ε, δ)-local minimum in the online case
(i.e., Case 2 in Theorem 9), we need a slightly stronger version of bounded variance Assumption 6
in place of Assumption 3.

Assumption 6 (Bounded Variance) ∃σ > 0, such that ‖∇fi(x)−∇f(x)‖2 ≤ σ2, ∀i, x.

We want to point out that Assumption 6 can be relaxed such that ‖∇fi(x) − ∇f(x)‖ has sub-
Gaussian tail. Then it is sufficient for us to get a high probability bound by using Hoeffding bound
on these sub-Gaussian variables. Again, Assumption 6 (or the relaxed sub-Gaussian version) is also
standard in the online case for finding approximate local minima (see e.g., Allen-Zhu and Li, 2018;
Zhou et al., 2018a; Fang et al., 2018; Jin et al., 2019; Fang et al., 2019; Li, 2019).

If we further assume that f has L3-Lipschitz continuous third-order derivative, it is possible to
achieve even better convergence rate.

Assumption 7 (Third-order Derivative Lipschitz) A function f : Rd → R has an L3-Lipschitz
continuous third-order derivative if

∃L3 > 0, such that ‖∇3f(x)−∇3f(y)‖F ≤ L3‖x− y‖, ∀x, y ∈ Rd. (13)

We note such smoothness assumption has already been used in other previous works such as
(Anandkumar and Ge, 2016; Carmon et al., 2017; Yu et al., 2017) for escaping higher order saddle
points or for achieving better results.

4. ProxSVRG+

In this section, we propose a proximal stochastic gradient algorithm called ProxSVRG+ (Li and Li,
2018). The details of ProxSVRG+ are described in Algorithm 1. We call B the batch size and b the
minibatch size.

We note that our algorithm is similar to nonconvex ProxSVRG (Reddi et al., 2016b) and convex
Prox-SVRG (Xiao and Zhang, 2014). Prox-SVRG (Xiao and Zhang, 2014) only focused on convex
problems, while nonconvex ProxSVRG (Reddi et al., 2016b) analyzed nonconvex problems. The
major difference of our ProxSVRG+ from Prox-SVRG and nonconvex ProxSVRG is that we avoid
the computation of the full gradient at the beginning of each epoch, i.e., B may not equal to n
(see Line 4 of Algorithm 1) while Prox-SVRG and nonconvex ProxSVRG used B = n. Our

13

LI AND LI

Algorithm 1: ProxSVRG+

1 Input: initial point x0, batch size B, minibatch size b, epoch length m, step size η
2 x̃0 = x0

3 for s = 0, 1, 2, . . . do
4 gs = 1

B

∑
j∈IB ∇fj(x̃

s) 14

5 for k = 1, 2, . . . ,m do
6 t = sm+ k
7 vt−1 = 1

b

∑
i∈Ib

(
∇fi(xt−1)−∇fi(x̃s)

)
+ gs

8 xt = proxηh(xt−1 − ηvt−1)

9 end
10 x̃s+1 = x(s+1)m

11 end

contribution mainly lies in the analysis, which is tighter. Note that even if we choose B = n, our
analysis is stronger than ProxSVRG (Reddi et al., 2016b) (see Table 1). Also, our ProxSVRG+
shows that the “stochastically controlled” trick of SCSG (Lei et al., 2017) (i.e., the epoch length
is a geometrically distributed random variable) is not really necessary for achieving the desired
convergence bound.15 As a result, our ProxSVRG+ generalizes the result of SCSG to the more
general nonsmooth nonconvex setting and yields simpler analysis.

4.1 Convergence results of ProxSVRG+

Now, we present the main convergence results for ProxSVRG+.

Theorem 5 Let the step size η ≤ 1
(1+2m/

√
b)L

, where b denotes the minibatch size (Line 7 of Al-
gorithm 1) and m denotes the epoch length (Line 5 of Algorithm 1). Then Algorithm 1 can find an
ε-approximate solution for problem (1), i.e., E[‖Gη(x̂)‖] ≤ ε (see Definition 1). We distinguish the
following two cases:

1. (Finite-sum) Suppose Assumption 2 holds. Let batch size B = n and m =
√
b. Then the

number of SFO calls is at most

B + 12L(Φ(x0)− Φ∗)
(B

ε2
√
b

+
b

ε2

)
= n+O

(n

ε2
√
b

+
b

ε2

)
.16

14. If B = n, ProxSVRG+ is almost the same as ProxSVRG (Reddi et al., 2016b) (i.e., gs = 1
n

∑n
j=1∇fj(x̃

s−1) =

∇f(x̃s−1)) except some detailed parameter settings (e.g., step size, epoch length).
15. A similar observation was also made in Natasha1.5 (Allen-Zhu, 2018). However, Natasha1.5 divides each epoch

into multiple sub-epochs and randomly chooses the iteration point at the end of each sub-epoch. In our ProxSVRG+
(Algorithm 1), the epoch length is deterministic and it directly uses the point in the last iteration at the end of each
epoch.

16. In case the number of SFO calls is less than B (i.e., if the total number of epochs S < 1), we may add an explicit
term B to the number of SFO calls since the algorithm uses B SFO calls at the beginning of the first epoch s = 0 at
Line 4 of Algorithm 1. In this situation, ProxSVRG+ (Algorithm 1) terminates within the first epoch s = 0, and the
first term B is dominating.

14

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

2. (Finite-sum or online) Suppose Assumptions 2 and 3 hold. Let batch size B = min{n, 2σ2

ε2
}

and m =
√
b. Then the number of SFO calls is at most

B + 12L(Φ(x0)− Φ∗)
(B

ε2
√
b

+
b

ε2

)
= min

{
n,

2σ2

ε2

}
+O

(
min

{
n,
σ2

ε2

} 1

ε2
√
b

+
b

ε2

)
.

In both cases, the number of PO calls equals to the total number of iterations T = Sm, which is at
most

12L(Φ(x0)− Φ∗)

ε2
= O

(
1

ε2

)
.

Remark: For simplicity of presentation and better comparison with previous bounds, the bounds in
Theorem 5 are stated under condition m =

√
b. In fact, our convergence analysis allows for more

general values of m and b, and the bounds would depend on both m and b. Please see the proof of
Theorem 5 for the details.

The proof for Theorem 5 is notably different from that of ProxSVRG (Reddi et al., 2016b).
Reddi et al. (2016b) used a Lyapunov function Rst = Φ(xt) + ct‖xt − x̃s‖2 and showed that it
decreases by the accumulated gradient mapping

∑sm+m−1
t=sm ‖Gη(xt)‖2 in epoch s (i.e., Rs(s+1)m ≤

Rssm −
∑(s+1)m−1

t=sm ‖Gη(xt)‖2). In our proof, we directly show that Φ(xt) decreases by the accu-
mulated gradient mapping (i.e., Φ(x(s+1)m) ≤ Φ(xsm)−

∑(s+1)m−1
t=sm ‖Gη(xt)‖2) using a different

analysis. This is made possible by tightening the inequalities using Young’s inequality and the re-
lation between the variance of stochastic gradient estimator and the inner product of the gradient
difference and point difference. Also, our convergence result holds for any minibatch size b ∈ [1, n]
unlike ProxSVRG which requires b ≤ n2/3. Moreover, our ProxSVRG+ uses much less proximal
oracle calls than ProxSVRG (see Table 1).

For the online/stochastic Case 2, we avoid the computation of the full gradient at the beginning
of each epoch, i.e., B may be less than n. Then, we use the similar idea in SCSG (Lei et al., 2017)
to bound the variance term, but we do not need the “stochastically controlled” trick of SCSG (as we
discussed before) to achieve the desired convergence bound which yields a much simpler analysis
for our ProxSVRG+.

We defer the proof of Theorem 5 to Appendix A. We want to mention that the proof in this
paper simplifies our previous proof provided in (Li and Li, 2018) and allows for a larger step size
and leads to a better constant in the convergence result (i.e., 12 vs. 36).

5. SSRGD

Now, we present our new SSRGD algorithm to solve the nonsmooth nonconvex problems (1). The
orginal version of SSRGD in (Li, 2019) was designed to solve the smooth nonconvex problems
(i.e., h(x) ≡ 0 in (1)) and to find the approximate local minima by escaping saddle points. The new
SSRGD algorithm in this paper can be seen as a proximal version of the original SSRGD algorithm.

In this section, we first focus on finding an ε-approximate solution. Hence, we ignore the super
epoch part (Line 3–5 and Line 11 of Algorithm 2) which is used for escaping saddle points, and
add the proximal operator (Line 9 of Algorithm 2) for dealing with this nonsmooth setting. Line
3–5 and Line 11 will be useful in the next Section 7 when we aim to find an (ε, δ)-local minimum
(see Definition 4). Here, we show that SSRGD (Algorithm 2) achieves the optimal convergence

15

LI AND LI

Algorithm 2: SSRGD

1 Input: initial point x0, batch size B, minibatch size b, epoch length m, step size η
2 for s = 0, 1, 2, . . . do
3 if ‖∇f(xsm)‖ ≤ ε and not currently in a super epoch then
4 xsm ← xsm + ξ, where ξ uniformly ∼ B0(r), start a super epoch

// we use super epoch to avoid adding the perturbation steps too often near a saddle point
5 end
6 vsm ← 1

B

∑
j∈IB ∇fj(xsm)

7 for k = 1, 2, . . . ,m do
8 t← sm+ k
9 xt ← proxηh(xt−1 − ηvt−1)

10 vt ← 1
b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+ vt−1

11 if meet stop condition then stop super epoch
12 end
13 end

results for finding the ε-approximate (first-order) solution for the nonsmooth nonconvex problems
(1). The main update step (Line 10) adopts the recursive formula which was originally proposed
in (Nguyen et al., 2017), and also used in several previous papers on nonconvex problems such as
SPIDER (Fang et al., 2018), SpiderBoost (Wang et al., 2019), ProxSARAH (Pham et al., 2019).
Our main contribution in this section is a simple and clean analysis that is inspired by our analysis
of ProxSVRG+.

5.1 Convergence results of SSRGD

Now, we present the main theorem for SSRGD which can lead to the optimal convergence results.

Theorem 6 Let the step size η ≤ 1

(1+
√

(m−1)/b)L
, where b denotes the minibatch size (Line 10 of

Algorithm 2) and m denotes the epoch length (Line 7 of Algorithm 2). Then Algorithm 2 can find
an ε-approximate solution for problem (1), i.e., E[‖Gη(x̂)‖] ≤ ε (see Definition 1). We distinguish
the following two cases:

1. (Finite-sum) Suppose Assumption 2 holds. We let batch size B = n and m = b. Then the
number of SFO calls is at most

B + 8L(Φ(x0)− Φ∗)
(B
ε2b

+
b

ε2

)
= n+O

(n

ε2b
+

b

ε2

)
.

2. (Finite-sum or online) Suppose Assumptions 2 and 3 hold. We let batch sizeB = min{n, 2σ2

ε2
}

and m = b. Then the number of SFO calls is at most

B + 8L(Φ(x0)− Φ∗)
(B
ε2b

+
b

ε2

)
= min

{
n,

2σ2

ε2

}
+O

(
min

{
n,
σ2

ε2

} 1

ε2b
+

b

ε2

)
.

In both cases, the number of PO calls equals to the total number of iterations T = Sm, which is at
most

8L(Φ(x0)− Φ∗)

ε2
= O

(
1

ε2

)
.

16

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Remark: Similar to Theorem 5, our analysis allows for more general value of m and b. Compared
with the convergence results of ProxSVRG+ (Theorem 5), SSRGD improves the factor

√
b to b, i.e.,

O(B
ε2
√
b

+ b
ε2

) in Theorem 5 to O(B
ε2b

+ b
ε2

) in Theorem 6. In particular, in the finite-sum Case 1, the

best result for ProxSVRG+ is n2/3

ε2
where minibatch b = n2/3, while the best result for SSRGD is

√
n
ε2

where minibatch b =
√
n. Moreover, SSRGD can achieve the optimal upper bounds, matching

lower bounds Ω(n +
√
n
ε2

) for the finite-sum case and Ω(B +
√
B
ε2

) for the online case, shown in
(Fang et al., 2018; Li et al., 2021). We defer the proof of Theorem 6 to Appendix B.

6. Faster Linear Convergence under PL Condition

In this section, we show that better convergence can be achieved if the objective function Φ(x)
satisfies the PL condition (Assumption 4).

∃µ > 0, such that ‖Gη(x)‖2 ≥ 2µ(Φ(x)− Φ∗), ∀x ∈ Rd.

Karimi et al. (2016) showed that PL condition is weaker than many conditions (e.g., strong convexity
(SC), restricted strong convexity (RSC) and weak strong convexity (WSC) (Necoara et al., 2015)).
Also, if Φ is convex, PL condition is equivalent to the error bounds (EB) and quadratic growth (QG)
condition (Luo and Tseng, 1993; Anitescu, 2000).

Note that under the PL condition, one can obtain a faster linear convergence O(· log 1
ε) (see

Theorem 7 and 8) rather than the sublinear convergence O(· 1
ε2

) (see Theorem 5 and 6). See Tables
3–4 for an overview of convergence results in this PL setting. In many cases, although the objective
function is globally nonconvex, some local regions (e.g., large gradient regions) may satisfy the
PL condition. We prove that ProxSVRG+ (Algorithm 1) and SSRGD (Algorithm 2) with same
parameter settings for the finite-sum case can automatically switch to the faster linear convergence
rate in these regions where PL condition is satisfied. Also note that under the PL condition, we
can use the optimality gap Φ(x) − Φ∗ as the convergence criterion (see Definition 3) instead of
‖Gη(x)‖ (see Definition 1). Besides, we can directly use the final iteration xSm as the output point
in this PL setting instead of the randomly chosen one x̂. Similar to (Reddi et al., 2016b; Li and
Li, 2018), we mainly consider the case where the condition number κ ≥

√
n in the following

subsections. Note that if κ <
√
n, the SFO complexity of both ProxSVRG+ and SSRGD can be

bounded by O(n log 1
ε), i.e., independent with κ. The detailed proofs of Theorem 7–8 are deferred

to Appendix C.

6.1 ProxSVRG+ under PL Condition

Similar to Theorem 5, we provide the convergence result of ProxSVRG+ (Algorithm 1) under PL
condition in the following theorem.

Theorem 7 Let the step size η ≤ 1
(1+2m/

√
b)L

, where b denotes the minibatch size (Line 7 of Algo-
rithm 1) and m denotes the epoch length (Line 5 of Algorithm 1). Then the final iteration point xSm
in Algorithm 1 satisfies E[Φ(xSm)−Φ∗] ≤ ε under PL condition. We distinguish the following two
cases:

17

LI AND LI

1. (Finite-sum) Suppose Assumptions 2 and 4 hold. We let batch size B = n and m =
√
b. Then

the number of SFO calls can be bounded by(B√
b

+ b
)3L

µ
log

2(Φ(x0)− Φ∗)

ε
= O

((n√
b

+ b
)
κ log

1

ε

)
.

2. (Finite-sum or online) Suppose Assumptions 2, 3 and 4 hold. We let batch sizeB = min{n, σ2

µε}
m =

√
b. Then the number of SFO calls can be bounded by

(B√
b

+ b
)3L

µ
log

2(Φ(x0)− Φ∗)

ε
= O

((min{n, σ2

µε}√
b

+ b
)
κ log

1

ε

)
.

In both cases, the number of PO calls equals to the total number of iterations T = Sm which is
bounded by

3L

µ
log

2(Φ(x0)− Φ∗)

ε
= O

(
κ log

1

ε

)
,

where κ := L
µ .

Remark: From the above theorem, we can see that under the PL condition, ProxSVRG+ (Algo-
rithm 1) can achieve a faster linear convergence O(· log 1

ε) rather than the sublinear convergence
O(· 1

ε2
) (see Theorem 5). We would like to mention that Theorem 7 uses exactly the same parameter

setting as in Theorem 5 for the finite-sum case. Hence, ProxSVRG+ can automatically switch to this
faster linear convergence rate instead of the previous sublinear convergence as long as the objective
function Φ(x) satisfies the PL condition in these regions.

6.2 SSRGD under PL Condition

Similar to Theorem 6, we provide the convergence result of SSRGD (Algorithm 2) under PL con-
dition in the following theorem.

Theorem 8 Let the step size η ≤ 1

(1+
√

(m−1)/b)L
, where b denotes the minibatch size (Line 10 of

Algorithm 2) and m denotes the epoch length (Line 7 of Algorithm 2). Then the final iteration point
xSm in Algorithm 2 satisfies E[Φ(xSm)−Φ∗] ≤ ε under PL condition. We distinguish the following
two cases:

1. (Finite-sum) Suppose Assumptions 2 and 4 hold. We let batch size B = n and m = b. Then
the number of SFO calls can be bounded by(B

b
+ b
)2L

µ
log

2(Φ(x0)− Φ∗)

ε
= O

((n
b

+ b
)
κ log

1

ε

)
.

2. (Finite-sum or online) Suppose Assumptions 2, 3 and 4 hold. We let batch sizeB = min{n, σ2

µε}
and m = b. Then the number of SFO calls can be bounded by

(B
b

+ b
)2L

µ
log

2(Φ(x0)− Φ∗)

ε
= O

((min{n, σ2

µε}
b

+ b
)
κ log

1

ε

)
.

18

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

In both cases, the number of PO calls equals to the total number of iterations T = Sm which is
bounded by

2L

µ
log

2(Φ(x0)− Φ∗)

ε
= O

(
κ log

1

ε

)
,

where κ := L
µ .

Remark: Similarly, under the PL condition, SSRGD (Algorithm 2) also achieves a faster linear
convergence O(· log 1

ε) rather than the previous sublinear convergence O(· 1
ε2

) (see previous Theo-
rem 6). Theorem 8 also uses the same parameter setting as in Theorem 6 for the finite-sum case and
hence SSRGD can also switch to this faster linear convergence rate when PL condition is satisfied
as ProxSVRG+. Compared with the convergence results of ProxSVRG+ (Theorem 7), SSRGD im-
proves the factor

√
b to b, i.e., O((B√

b
+ b)κ log 1

ε) in Theorem 7 to O((Bb + b)κ log 1
ε) in Theorem

8. In particular, the best result for ProxSVRG+ is O(n2/3κ log 1
ε) where minibatch b = n2/3, while

the best result for SSRGD is O(
√
nκ log 1

ε) where minibatch b =
√
n.

7. Finding Approximate Local Minima

In this section, we show that our SSRGD algorithm (Li, 2019) can further find the approximate
local minima. SSRGD (Algorithm 2) in Section 5 is just to finding an ε-approximate (first-order)
solution (see Definition 1) not the (ε, δ)-local minimum (see Definition 4), we ignored the super
epoch part. In this section, we present the details of the algorithm which can be found in Algo-
rithm 3. In particular, our algorithm is either in a normal epoch (super epoch = 0) or in a super
epoch (super epoch = 1). We call each inner loop (m iterations) a normal epoch (Line 10–19 of
Algorithm 3), i.e., iterations from t = sm + 1 to t = sm + m consist of the epoch s. A super
epoch may contains multiple normal epochs. We enter a super epoch if we are currently in a normal
epoch and vsm has a small norm (i.e., near a saddle point) (Line 4 of Algorithm 3). When we enter
a super epoch, we add a random perturbation to the current point x̃ (Line 7 of Algorithm 3). We exit
a super epoch if the function value decrease significantly (f(x̃)− f(xt) ≥ fthres) or the number of
iterations exceeds a threshold (t− tinit ≥ tthres). We exit a normal epoch (not in a super epoch) by
stopping at a uniformly randomly chosen iteration out of m iterations (Line 17 of Algorithm 3).

7.1 Convergence results of SSRGD for finding approximate local minima

Now, we present the main theorem for SSRGD (Algorithm 3) for finding approximate local minima
which corresponds to the convergence results listed in Table 5 and 6. We would like to point out
that in this local minima setting, we consider the smooth nonconvex case Φ(x) = f(x) in problem
(1), i.e., the nonsmooth term h(x) ≡ 0. Otherwise the second-order guarantee in the definition
of (ε, δ)-local minimum (Definition 4) is not well-defined for the nonsmooth term. Also note that
our SSRGD for finding an (ε, δ)-local minimum is as simple as its counterpart for finding an ε-
approximate first-order solution (‖∇f(x)‖ ≤ ε) just by adding a random perturbation sometimes,
without requiring a negative curvature search subroutine (such as Neon/Neon2) which is typically
required by other algorithms. Thus our SSRGD can be simply applied in practice for finding ap-
proximate local minimum, and also it leads to simpler convergence analysis.

19

LI AND LI

Algorithm 3: SSRGD (full version for finding approximate local minima)

1 Input: initial point x0, batch size B, minibatch size b, epoch length m, step size η,
perturbation radius r, threshold function value fthres, super epoch length tthres

2 super epoch← 0
3 for s = 0, 1, 2, . . . do
4 if super epoch = 0 and ‖vsm‖ ≤ ε then
5 super epoch← 1
6 x̃← xsm, tinit ← sm
7 xsm ← x̃+ ξ, where ξ uniformly ∼ B0(r)

// we use super epoch to avoid adding the perturbation steps too often near a saddle point
8 end
9 vsm ← 1

B

∑
j∈IB ∇fj(xsm)

10 for k = 1, 2, . . . ,m do
11 t← sm+ k
12 xt ← xt−1 − ηvt−1

13 vt ← 1
b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+ vt−1

14 if super epoch = 1 and (f(x̃)− f(xt) ≥ fthres or t− tinit ≥ tthres) then
15 super epoch← 0; break
16 else if super epoch = 0 then
17 break with probability 1

m−k+1
// we stop this epoch by randomly choosing a point as the starting point of the next epoch

18 end
19 end
20 x(s+1)m ← xt
21 end

Theorem 9 Suppose f satisfies Assumption 5, i.e., f has an L-Lipshitz gradient and a ρ-Lipschitz
Hessian. Let step size η = Õ(1

L), epoch length m = b =
√
B, where B, b denote the batch and

minibatch size. Moreover, let perturbation radius r = Õ
(

min(δ
3

ρ2ε
, δ

3/2

ρ
√
L

)
)
, threshold function value

fthres = Õ(δ
3

ρ2
) and super epoch length tthres = Õ(1

ηδ). Denote ∆0 := f(x0)− f∗, where x0 is the
initial point and f∗ is the optimal value of f . Then Algorithm 3 reaches to an (ε, δ)-local minimum
at least once with high probability 1− ζ. We distinguish the following two cases:

1. (Finite-sum) Let batch size B = n. Then the number of stochastic gradient computations is
at most

Õ
(L∆0

√
n

ε2
+
Lρ2∆0

√
n

δ4
+
ρ2∆0n

δ3

)
.

2. (Online) We further assume Assumptions 6 holds. Let batch size B = Õ(σ
2

ε2
). Then the

number of stochastic gradient computations is at most

Õ
(L∆0σ

ε3
+
Lρ2∆0σ

εδ4
+
ρ2∆0σ

2

ε2δ3

)
.

20

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Remark: Note that we can also write Case 2 of Theorem 9 as

Õ(
L∆0

√
min{n, σ2

ε2
}

ε2
+
Lρ2∆0

√
min{n, σ2

ε2
}

δ4
+
ρ2∆0 min{n, σ2

ε2
}

δ3
)

by letting B = min{n, Õ(σ
2

ε2
)} in a similar way to Case 2 of Theorem 5 and Theorem 6. Due to the

second-order guarantee, the proofs of the finite-sum case and the online case have more difference
than previous first-order guarantee methods, so we split the proof of Theorem 9 into two parts, one
for case B = n and one for B 6= n (see Appendix D for more details). Also note that if we ignore δ
(second-order guarantee λmin(∇2f(x̂)) ≥ −δ), e.g., δ = ∞, then the convergence result provided
in Theorem 9 (i.e.,

√
n
ε2

or 1
ε3

) matches its corresponding result with first-order guarantee in Theorem
6 (which is optimal for finding the ε-approximate first-order solution ‖∇f(x̂)‖ ≤ ε).

Finally, we show that better convergence rate can be achieved if we further assume that f hasL3-
Lipschitz continuous third-order derivative (i.e., Assumption 7). This can be achieved by replacing
the super epoch part of Algorithm 3 by a negative-curvature search step (e.g., Neon2 (Allen-Zhu
and Li, 2018)). Our convergence result matches the best known result by Zhou et al. (2018a), which
also uses a negative-curvature search procedure. In particular, we obtain the following theorem.

Theorem 10 (Online case under third-order Lipschitz) Suppose that Assumptions 5, 6 and 7 hold.
Let step size η = Õ(1

L) and batch size B = Õ(σ
2

ε2
), epoch length m = b =

√
B, where B, b denote

the batch and minibatch size. Denote ∆0 := f(x0) − f∗, where x0 is the initial point and f∗ is
the optimal value of f . If we replace the super epoch part of Algorithm 3 by a negative-curvature
search step (e.g., Neon2 (Allen-Zhu and Li, 2018)), then it reaches to an (ε, δ)-local minimum at
least once with high probability 1− ζ. The number of stochastic gradient computations is at most

Õ
(L∆0σ

ε3
+
L3∆0σ

2

ε2δ2
+
L3L

2∆0

δ4

)
.

Acknowledgements

The authors would like to thank Rong Ge, Chi Jin, Cong Fang for useful discussions and clarifi-
cations of their results, and anonymous reviewers for many helpful and constructive suggestions.
The research is supported in part by the National Natural Science Foundation of China Grant
62161146004, Turing AI Institute of Nanjing and Xi’an Institute for Interdisciplinary Information
Core Technology.

Appendix A. Missing Proofs for Section 4 ProxSVRG+

In this section, we provide the analysis for ProxSVRG+. Our new proof simplifies our original proof
in Li and Li (2018). Before proving Theorem 5, we need a useful lemma for the proximal operator.
Here we use the following lemma in Lan et al. (2019), instead of the previous Lemma 1 in Li and
Li (2018).

Lemma 11 (Lan et al., 2019) Let x+ := proxηh(x− ηv). We have

h(x+) ≤ h(z) + 〈v, z − x+〉+
1

2η
‖z − x‖2 − 1

2η
‖x+ − x‖2 − 1

2η
‖z − x+‖2, ∀z ∈ Rd. (14)

21

LI AND LI

Proof of Theorem 5. Let xt := proxηh(xt−1 − ηvt−1) and x̄t := proxηh
(
xt−1 − η∇f(xt−1)

)
. By

letting x+ = xt, x = xt−1, v = vt−1 and z = x̄t in (14), we have

h(xt) ≤ h(x̄t) + 〈vt−1, x̄t − xt〉+
1

2η
‖x̄t − xt−1‖2 −

1

2η
‖xt − xt−1‖2 −

1

2η
‖x̄t − xt‖2. (15)

Besides, by letting x+ = x̄t, x = xt−1, v = ∇f(xt−1) and z = x = xt−1 in (14), we have

h(x̄t) ≤ h(xt−1) + 〈∇f(xt−1), xt−1 − x̄t〉 −
1

2η
‖x̄t − xt−1‖2 −

1

2η
‖xt−1 − x̄t‖2. (16)

Moreover, in view of L-smoothness of f , we have

f(xt) ≤ f(xt−1) + 〈∇f(xt−1), xt − xt−1〉+
L

2
‖xt − xt−1‖2. (17)

We add (15)–(17) to obtain (recall that Φ(x) := f(x) + h(x))

Φ(xt) ≤ Φ(xt−1)− 1

2η
‖xt−1 − x̄t‖2 − (

1

2η
− L

2
)‖xt − xt−1‖2

+ 〈vt−1 −∇f(xt−1), x̄t − xt〉 −
1

2η
‖x̄t − xt‖2

≤ Φ(xt−1)− 1

2η
‖xt−1 − x̄t‖2 − (

1

2η
− L

2
)‖xt − xt−1‖2 +

η

2
‖vt−1 −∇f(xt−1)‖2 (18)

= Φ(xt−1)− η

2
‖Gη(xt−1)‖2 − (

1

2η
− L

2
)‖xt − xt−1‖2 +

η

2
‖vt−1 −∇f(xt−1)‖2, (19)

where (18) uses Young’s inequality, and (19) uses the definition of gradient mapping Gη(xt−1) (see
(5)) and recall x̄t := proxηh

(
xt−1 − η∇f(xt−1)

)
.

Now, we bound the variance term in (19) as follows, where the expectations are over Ib and IB:

E
[
‖vt−1 −∇f(xt−1)‖2

]
= E

[∥∥∥1

b

∑
i∈Ib

(
∇fi(xt−1)−∇fi(x̃s)

)
−
(
∇f(xt−1)− gs

)∥∥∥2]
= E

[∥∥∥1

b

∑
i∈Ib

(
∇fi(xt−1)−∇fi(x̃s)

)
−
(
∇f(xt−1)− 1

B

∑
j∈IB

∇fj(x̃s)
)∥∥∥2]

= E
[∥∥∥1

b

∑
i∈Ib

((
∇fi(xt−1)−∇fi(x̃s)

)
−
(
∇f(xt−1)−∇f(x̃s)

))
+

1

B

∑
j∈IB

(
∇fj(x̃s)−∇f(x̃s)

)∥∥∥2]
= E

[∥∥∥1

b

∑
i∈Ib

((
∇fi(xt−1)−∇fi(x̃s)

)
−
(
∇f(xt−1)−∇f(x̃s)

))∥∥∥2]
+ E

[∥∥∥ 1

B

∑
j∈IB

(
∇fj(x̃s)−∇f(x̃s)

)∥∥∥2]
(20)

=
1

b2
E
[∑
i∈Ib

∥∥∥((∇fi(xt−1)−∇fi(x̃s)
)
−
(
∇f(xt−1)−∇f(x̃s)

))∥∥∥2]

22

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

+ E
[∥∥∥ 1

B

∑
j∈IB

(
∇fj(x̃s)−∇f(x̃s)

)∥∥∥2]
(21)

≤ 1

b2
E
[∑
i∈Ib

∥∥∇fi(xt−1)−∇fi(x̃s)
∥∥2
]

+ E
[∥∥∥ 1

B

∑
j∈IB

(
∇fj(x̃s)−∇f(x̃s)

)∥∥∥2]
(22)

≤ L2

b
E[‖xt−1 − x̃s‖2] +

I{B < n}σ2

B
, (23)

where (20) holds due to the independence of Ib and IB , (21) holds since E[‖x1 + x2 + · · · +
xk‖2] =

∑k
i=1 E[‖xi‖2] if x1, x2, . . . , xk are independent and of mean zero, (22) uses the fact that

E[‖x − Ex‖2] ≤ E[‖x‖2], for any random variable x, and the last inequality (23) holds due to the
average L-smoothness Assumption 2 and bounded variance Assumption 3. Note that the second
term I{B<n}σ2

B in (23) can be deleted (i.e., Assumption 3 is not needed) if we choose B = n.
Now, we plug (23) into (19) to obtain

E[Φ(xt)]

≤ E
[
Φ(xt−1)− η

2
‖Gη(xt−1)‖2 − (

1

2η
− L

2
)‖xt − xt−1‖2 +

ηL2

2b
‖xt−1 − x̃s‖2 +

I{B < n}ησ2

2B

]
≤ E

[
Φ(xt−1)− η

2
‖Gη(xt−1)‖2 − (

1

2η
− L

2
)

1

αt + 1
‖xt − x̃s‖2 + (

1

2η
− L

2
)

1

αt
‖xt−1 − x̃s‖2

+
ηL2

2b
‖xt−1 − x̃s‖2 +

I{B < n}ησ2

2B

]
, (24)

where (24) uses Young’s inequality ‖xt − x̃s‖2 ≤ (1 + αt)‖xt − xt−1‖2 +
(
1 + 1

αt

)
‖xt−1 − x̃s‖2,

i.e., −‖xt − xt−1‖2 ≤ − 1
αt+1‖xt − x̃

s‖2 + 1
αt
‖xt−1 − x̃s‖2. Also let step size η ≤ 1/L (so that

1
2η −

L
2 ≥ 0).

Adding (24) for all iteration in epoch s, i.e., t = sm+ 1 to t = sm+m, we get

E[Φ(x(s+1)m)]

≤ E
[
Φ(xsm)−

sm+m∑
t=sm+1

η

2
‖Gη(xt−1)‖2 −

sm+m∑
t=sm+1

(
1

2η
− L

2
)

1

αt + 1
‖xt − x̃s‖2

+

sm+m∑
t=sm+1

(
(

1

2η
− L

2
)

1

αt
+
ηL2

2b

)
‖xt−1 − x̃s‖2 +

sm+m∑
t=sm+1

I{B < n}ησ2

2B

]
≤ E

[
Φ(xsm)−

sm+m∑
t=sm+1

η

2
‖Gη(xt−1)‖2 −

sm+m−1∑
t=sm+1

(
1

2η
− L

2
)

1

αt + 1
‖xt − x̃s‖2

+

sm+m∑
t=sm+2

(
(

1

2η
− L

2
)

1

αt
+
ηL2

2b

)
‖xt−1 − x̃s‖2 +

sm+m∑
t=sm+1

I{B < n}ησ2

2B

]
(25)

= E
[
Φ(xsm)−

sm+m∑
t=sm+1

η

2
‖Gη(xt−1)‖2 +

sm+m∑
t=sm+1

I{B < n}ησ2

2B

−
sm+m−1∑
t=sm+1

(
(

1

2η
− L

2
)

1

αt + 1
− (

1

2η
− L

2
)

1

αt+1
− ηL2

2b

)
‖xt − x̃s‖2

]

23

LI AND LI

≤ E
[
Φ(xsm)−

sm+m∑
t=sm+1

η

2
‖Gη(xt−1)‖2 +

sm+m∑
t=sm+1

I{B < n}ησ2

2B

]
(26)

where (25) holds since ‖ · ‖2 is always non-negative and x̃s = xsm, and (26) holds by choosing
αt and η such that (1

2η −
L
2) 1

αt+1 − (1
2η −

L
2) 1

αt+1
− ηL2

2b ≥ 0 for sm + 1 ≤ t ≤ sm + m − 1.
Concretely, if we choose αt = 2(t%m)− 1 and η ≤ 1

L , then for any sm + 1 ≤ t ≤ sm + m− 1,
we have that

(
1

2η
− L

2
)

1

αt + 1
− (

1

2η
− L

2
)

1

αt+1
− ηL2

2b
≥ 1− ηL

2η
(

1

2(m− 1)
− 1

2m− 1
)− ηL2

2b
≥ 0.

Note that the last inequality is quadratic in η. We can verify that choosing η ≤ 1
(1+2m/

√
b)L

suffices
to make the inequality hold.

Now, we sum up (26) for all epochs 0 ≤ s ≤ S − 1 as follows:

E[Φ(xSm)− Φ∗] ≤ E
[
Φ(x0)− Φ∗ −

S−1∑
s=0

sm+m∑
t=sm+1

η

2
‖Gη(xt−1)‖2 +

S−1∑
s=0

sm+m∑
t=sm+1

I{B < n}ησ2

2B

]
E[‖Gη(x̂)‖2] ≤

2
(
Φ(x0)− Φ∗

)
Smη

+
I{B < n}σ2

B
(27)

≤ ε2

2
+
ε2

2
= ε2. (28)

Note that E[‖Gη(x̂)‖] ≤
√

E[‖Gη(x̂)‖2] ≤ ε. The first inequality in (28) holds by randomly choose
x̂ from {xt−1}t∈[Sm], and the second in (28) holds by choosing Sm ≥ 4(Φ(x0)−Φ∗)

ε2η
and B ≥

min{n, 2σ2

ε2
}.

Now, we can see that the total number of iterations is

T = Sm =
4(Φ(x0)− Φ∗

)
ε2η

.

Choosing η = 1
(1+2m/

√
b)L

, we can see that the number of PO calls equals to

T = Sm =
4(Φ(x0)− Φ∗

)
ε2η

=
4(Φ(x0)− Φ∗

)
(1 + 2m/

√
b)L

ε2
.

The number of SFO calls equals to

SB + Smb =
4L(Φ(x0)− Φ∗)(1 + 2m/

√
b)

ε2
(B
m

+ b
)
.

If we choose m =
√
b (then η ≤ 1

(1+2m/
√
b)L

= 1
3L), the total number of PO calls equals

to T = Sm = 12L(Φ(x0)−Φ∗)
ε2

. The number of SFO calls is 12L(Φ(x0) − Φ∗)
(

n
ε2
√
b

+ b
ε2

)
if

B = n (In this case, the second term in (27) is 0 and thus Assumption 3 is not needed), and
12L(Φ(x0)− Φ∗)

(
B

ε2
√
b

+ b
ε2

)
if B ≥ min{n, 2σ2

ε2
}.

In case the number of SFO calls is less than B (i.e., if the total number of epochs S < 1), we
may add an explicit term B to the SFO result since the algorithm at least uses B SFO calls in the
first epoch s = 0 at Line 4 of Algorithm 1. In this situation, ProxSVRG+ (Algorithm 1) terminates
within the first epoch s = 0. �

24

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Appendix B. Missing Proofs for Section 5 SSRGD

Now, we provide the detailed proofs for Theorem 6.
Proof of Theorem 6. First, according to the update step xt := proxηh(xt−1− ηvt−1), we recall the
key inequality (19):

Φ(xt) ≤ Φ(xt−1)− η

2
‖Gη(xt−1)‖2 − (

1

2η
− L

2
)‖xt − xt−1‖2 +

η

2
‖vt−1 −∇f(xt−1)‖2. (29)

Now, we bound the variance term in (29) as follows:

E[‖vt−1 −∇f(xt−1)‖2]

= E
[∥∥∥1

b

∑
i∈Ib

(
∇fi(xt−1)−∇fi(xt−2)

)
+ vt−2 −∇f(xt−1)

∥∥∥2]
= E

[∥∥∥1

b

∑
i∈Ib

((
∇fi(xt−1)−∇fi(xt−2)

)
−
(
∇f(xt−1)−∇f(xt−2)

))
+ vt−2 −∇f(xt−2)

∥∥∥2]
= E

[∥∥∥1

b

∑
i∈Ib

((
∇fi(xt−1)−∇fi(xt−2)

)
−
(
∇f(xt−1)−∇f(xt−2)

))∥∥∥2]
+ E[‖vt−2 −∇f(xt−2)‖2] (30)

=
1

b2
E
[∑
i∈Ib

∥∥∥(∇fi(xt−1)−∇fi(xt−2)
)
−
(
∇f(xt−1)−∇f(xt−2)

)∥∥∥2]
+ E[‖vt−2 −∇f(xt−2)‖2] (31)

≤ 1

b2
E
[∑
i∈Ib

∥∥∥∇fi(xt−1)−∇fi(xt−2)
∥∥∥2]

+ E[‖vt−2 −∇f(xt−2)‖2] (32)

≤ L2

b
E[‖xt−1 − xt−2‖2] + E[‖vt−2 −∇f(xt−2)‖2], (33)

where (30) and (31) use the law of total expectation and E[‖y1 + y2 + · · ·+ yk‖2] =
∑k

i=1 E[‖yi‖2]
if y1, y2, . . . , yk are independent and of mean zero, (32) uses the fact E[‖x−Ex‖2] ≤ E[‖x‖2], and
(33) holds due to the average L-smoothness Assumption 2.

Note that for E[‖vt−2 −∇f(xt−2)‖2] in (33), we can reuse the same computation above. Thus
we can sum up (33) from the beginning of this epoch sm to the point t− 1,

E[‖vt−1 −∇f(xt−1)‖2] ≤ L2

b

t−1∑
j=sm+1

E[‖xj − xj−1‖2] + E[‖vsm −∇f(xsm)‖2] (34)

≤ L2

b

t−1∑
j=sm+1

E[‖xj − xj−1‖2] +
I{B < n}σ2

B
, (35)

Now, we take expectations for (29) and then sum it up from the beginning of this epoch s, i.e.,
iterations from sm+ 1 to t, by plugging the variance (35) into them to get:

E[Φ(xt)] ≤ E[Φ(xsm)]− η

2

t∑
j=sm+1

E[‖Gη(xj−1)‖2]−
(1

2η
− L

2

) t∑
j=sm+1

E[‖xj − xj−1‖2]

25

LI AND LI

+
ηL2

2b

t−1∑
k=sm+1

k∑
j=sm+1

E[‖xj − xj−1‖2] +
η

2

t∑
j=sm+1

I{B < n}σ2

B

≤ E[Φ(xsm)]− η

2

t∑
j=sm+1

E[‖Gη(xj−1)‖2]−
(1

2η
− L

2

) t∑
j=sm+1

E[‖xj − xj−1‖2]

+
ηL2(t− 1− sm)

2b

t∑
j=sm+1

E[‖xj − xj−1‖2] +
η

2

t∑
j=sm+1

I{B < n}σ2

B

≤ E[Φ(xsm)]− η

2

t∑
j=sm+1

E[‖Gη(xj−1)‖2] +
η

2

t∑
j=sm+1

I{B < n}σ2

B

−
((1

2η
− L

2

)
− ηL2(m− 1)

2b

) t∑
j=sm+1

E[‖xj − xj−1‖2] (36)

≤ E[Φ(xsm)]− η

2

t∑
j=sm+1

E[‖Gη(xj−1)‖2] +
η

2

t∑
j=sm+1

I{B < n}σ2

B
, (37)

where (36) holds due to here t ≤ sm+m in epoch s, (37) holds if the step size η ≤ 1

(1+
√

(m−1)/b)L
.

Now, we sum up (37) for all epochs 0 ≤ s ≤ S − 1 to finish the proof as follows:

E[Φ(xSm)− Φ∗] ≤ E
[
Φ(x0)− Φ∗ − η

2

S−1∑
s=0

sm+m∑
t=sm+1

‖Gη(xt−1)‖2 +
η

2

S−1∑
s=0

sm+m∑
t=sm+1

I{B < n}σ2

B

]
E[‖Gη(x̂)‖2] ≤

2
(
Φ(x0)− Φ∗

)
Smη

+
I{B < n}σ2

B
(38)

≤ ε2

2
+
ε2

2
= ε2. (39)

Note that E[‖Gη(x̂)‖] ≤
√

E[‖Gη(x̂)‖2] ≤ ε. The inequality (38) holds by randomly choose x̂ from
{xt−1}t∈[Sm], and (39) holds by choosing Sm ≥ 4(Φ(x0)−Φ∗)

ε2η
and B ≥ min{n, 2σ2

ε2
}.

By choosing η = 1

(1+
√

(m−1)/b)L
, the total number of iterations is

T = Sm =
4(Φ(x0)− Φ∗

)
ε2η

=
4(Φ(x0)− Φ∗

)
(1 +

√
(m− 1)/b)L

ε2
,

which is also the number of PO calls. The number of SFO calls is

SB + Smb = 4L(Φ(x0)− Φ∗)(1 +
√

(m− 1)/b)

(
B

ε2m
+

b

ε2

)
.

If we choose m = b (then η ≤ 1

(1+
√

(m−1)/b)L
= 1

2L), the total number of PO calls is T =

8L(Φ(x0)−Φ∗)
ε2

. The number of SFO calls equals to Sn + Smb = 8L(Φ(x0) − Φ∗)
(
n
ε2b

+ b
ε2

)
if

B = n (i.e., the second term in (38) is 0 and thus Assumption 3 is not needed), or equals to
SB + Smb = 8L(Φ(x0)− Φ∗)

(
B
ε2b

+ b
ε2

)
if B ≥ min{n, 2σ2

ε2
}.

26

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

In case the number of SFO calls is less than B (i.e., if the total number of epochs S < 1), we
may add an explicit term B to the SFO result since the algorithm at least uses B SFO calls in the
first epoch s = 0 at Line 6 of Algorithm 2. In this situation, SSRGD (Algorithm 2) terminates
within the first epoch s = 0. �

Appendix C. Missing Proofs for Section 6 PL Condition

Now we provide the proofs for ProxSVRG+ (Theorem 7) and SSRGD (Theorem 8) under PL con-
dition.

C.1 Proof for ProxSVRG+ under PL condition

Proof of Theorem 7. First, we recall a key inequality (24) from the proof of Theorem 5, i.e.,

E[Φ(xt)] ≤ E
[
Φ(xt−1)− η

2
‖Gη(xt−1)‖2 − (

1

2η
− L

2
)

1

αt + 1
‖xt − x̃s‖2

+
(

(
1

2η
− L

2
)

1

αt
+
ηL2

2b

)
‖xt−1 − x̃s‖2 +

I{B < n}ησ2

2B

]
.

Then we plug the PL inequality (9), i.e., ‖Gη(x)‖2 ≥ 2µ(Φ(x)− Φ∗) into it to obtain

E[Φ(xt)− Φ∗] ≤ E
[
(1− µη)(Φ(xt−1)− Φ∗)− (

1

2η
− L

2
)

1

αt + 1
‖xt − x̃s‖2

+
(

(
1

2η
− L

2
)

1

αt
+
ηL2

2b

)
‖xt−1 − x̃s‖2 +

I{B < n}ησ2

2B

]
.

Now, we reorder it as follows:

E
[
Φ(xt)− Φ∗ + (

1

2η
− L

2
)

1

αt + 1
‖xt − x̃s‖2

]
≤ E

[
(1− µη)(Φ(xt−1)− Φ∗) +

(
(

1

2η
− L

2
)

1

αt
+
ηL2

2b

)
‖xt−1 − x̃s‖2 +

I{B < n}ησ2

2B

]
≤ E

[
(1− µη)

(
(Φ(xt−1)− Φ∗) +

(1
2η −

L
2) 1

αt
+ ηL2

2b

1− µη
‖xt−1 − x̃s‖2

)
+
I{B < n}ησ2

2B

]
≤ E

[
(1− µη)

(
(Φ(xt−1)− Φ∗) + (

1

2η
− L

2
)

1

αt−1 + 1
‖xt−1 − x̃s‖2

)
+
I{B < n}ησ2

2B

]
, (40)

where (40) holds by choosing αts and η to satisfy (1
2η −

L
2) 1

αt
+ ηL2

2b ≤ (1
2η −

L
2) 1−µη

αt−1+1 . Similar
to the proof of Theorem 5, we can choose αt = 2(t%m)− 1 and η ≤ 1

(1+2m/
√
b)L

.
Telescoping (40) for all iterations sm+ 1 ≤ t ≤ sm+m in epoch s, we have

E[Φ(x(s+1)m)− Φ∗]

≤ E
[
Φ(x(s+1)m)− Φ∗ + (

1

2η
− L

2
)

1

α(s+1)m + 1
‖x(s+1)m − x̃s‖2

]
≤ E

[
(1− µη)m

(
(Φ(xsm)− Φ∗) + (

1

2η
− L

2
)

1

αsm + 1
‖xsm − x̃s‖2

)
27

LI AND LI

+
I{B < n}ησ2

2B

m−1∑
j=0

(1− µη)j
]

= E
[
(1− µη)m(Φ(xsm)− Φ∗) +

I{B < n}ησ2

2B

(1− (1− µη)m)

µη

]
, (41)

where the last equation (41) holds due to x̃s = xsm (see Line 10 of Algorithm 1).
Similarly, we telescope (41) for all epochs 0 ≤ s ≤ S − 1 to finish the proof:

E[Φ(xSm)− Φ∗]

≤ E
[
(1− µη)Sm(Φ(x0)− Φ∗) +

I{B < n}ησ2

2B

(1− (1− µη)m)

µη

(1− (1− µη)Sm)

1− (1− µη)m

]
≤ (1− µη)Sm(Φ(x0)− Φ∗) +

I{B < n}σ2

2µB
(42)

≤ ε

2
+
ε

2
= ε, (43)

where (43) holds by choosing Sm ≥ 1
µη log 2(Φ(x0)−Φ∗)

ε and B ≥ min{n, σ2

µε}.
In the following, for simple presentation, we choose m =

√
b (then η ≤ 1

(1+2m/
√
b)L

= 1
3L).

Note that there is no constraint for m and b in our convergence proof. The total number of iterations
is

T = Sm =
1

µη
log

2(Φ(x0)− Φ∗)

ε
=

3L

µ
log

2(Φ(x0)− Φ∗)

ε
.

The number of PO calls equals to T = Sm = 3L
µ log 2(Φ(x0)−Φ∗)

ε . The proof is finished since

the number of SFO calls equals to Sn + Smb =
(
n√
b

+ b
)

3L
µ log 2(Φ(x0)−Φ∗)

ε if B = n (i.e.,
the second term in (42) is 0 and thus Assumption 3 is not needed), or equals to SB + Smb =(
B√
b

+ b
)

3L
µ log 2(Φ(x0)−Φ∗)

ε if B ≥ min{n, σ2

µε}. �

C.2 Proof for SSRGD under PL condition

Proof of Theorem 8. Similar to the proof of Theorem 7, we first recall a key inequality from the
proof of Theorem 6 which combines (29) and (35), i.e.,

E[Φ(xt)] ≤ E
[
Φ(xt−1)− η

2
‖Gη(xt−1)‖2 − (

1

2η
− L

2
)‖xt − xt−1‖2

+
ηL2

2b

t−1∑
j=sm+1

‖xj − xj−1‖2 +
I{B < n}ησ2

2B

]
.

Then we plug the PL inequality (9), i.e., ‖Gη(x)‖2 ≥ 2µ(Φ(x)− Φ∗) into it to obtain

E[Φ(xt)− Φ∗] ≤ E
[
(1− µη)(Φ(xt−1)− Φ∗)− (

1

2η
− L

2
)‖xt − xt−1‖2

+
ηL2

2b

t−1∑
j=sm+1

‖xj − xj−1‖2 +
I{B < n}ησ2

2B

]
. (44)

28

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

We sum it up ((44)× 1
(1−µη)k

for iteration t = sm+ k) for all iterations in epoch s, i.e., t = sm+ k

where k from 1 to m:

E
[Φ(x(s+1)m)− Φ∗

(1− µη)m

]
≤ E

[
Φ(xsm)− Φ∗ − (

1

2η
− L

2
)
m∑
k=1

1

(1− µη)k
‖xsm+k − xsm+k−1‖2

+
ηL2

2b

m∑
k=1

(1

(1− µη)k

k−1∑
j=1

‖xsm+j − xsm+j−1‖2
)

+
I{B < n}ησ2

2B

m∑
k=1

1

(1− µη)k

]
. (45)

Then we deduce it as follows:

E
[
Φ(x(s+1)m)− Φ∗

]
≤ E

[
(1− µη)m(Φ(xsm)− Φ∗)− (

1

2η
− L

2
)
m∑
k=1

(1− µη)m

(1− µη)k
‖xsm+k − xsm+k−1‖2

+
ηL2

2b

m∑
k=1

((1− µη)m

(1− µη)k

k−1∑
j=1

‖xsm+j − xsm+j−1‖2
)

+
I{B < n}ησ2

2B

m∑
k=1

(1− µη)m

(1− µη)k

]
= E

[
(1− µη)m(Φ(xsm)− Φ∗)− (

1

2η
− L

2
)
m∑
k=1

(1− µη)m

(1− µη)k
‖xsm+k − xsm+k−1‖2

+
ηL2

2b

m∑
k=1

(m∑
j=k+1

(1− µη)m

(1− µη)j

)
‖xsm+k − xsm+k−1‖2

+
I{B < n}ησ2

2B

m∑
k=1

(1− µη)m

(1− µη)k

]
≤ E

[
(1− µη)m(Φ(xsm)− Φ∗)− (

1

2η
− L

2
)

m∑
k=1

(1− µη)m

(1− µη)k
‖xsm+k − xsm+k−1‖2

+
ηL2(m− 1)

2b

m∑
k=1

‖xsm+k − xsm+k−1‖2 +
I{B < n}ησ2

2B

m∑
k=1

(1− µη)m

(1− µη)k

]
(46)

≤ E
[
(1− µη)m(Φ(xsm)− Φ∗) +

I{B < n}ησ2

2B

m∑
k=1

(1− µη)m

(1− µη)k

]
(47)

≤ E
[
(1− µη)m(Φ(xsm)− Φ∗) +

I{B < n}ησ2

2B

(1− (1− µη)m)

µη

]
, (48)

where (46) uses the fact
∑m−2

i=0 (1 − µη)i ≤
∑m−2

i=0 1 = m − 1 (here µη ≤ 1 due to µ ≤ L and
η ≤ 1

L), and (47) holds by choosing appropriate η to cancel the point distance terms ‖xsm+k −
xsm+k−1‖2. Similar to the proof of Theorem 6, we can choose η ≤ 1

(1+
√

(m−1)/b)L
.

29

LI AND LI

Now, we telescope (48) for all epochs 0 ≤ s ≤ S − 1 to finish the proof:

E[Φ(xSm)− Φ∗]

≤ E
[
(1− µη)Sm(Φ(x0)− Φ∗) +

I{B < n}ησ2

2B

(1− (1− µη)m)

µη

(1− (1− µη)Sm)

1− (1− µη)m

]
≤ (1− µη)Sm(Φ(x0)− Φ∗) +

I{B < n}σ2

2µB
(49)

≤ ε

2
+
ε

2
= ε, (50)

where (50) holds by choosing Sm ≥ 1
µη log 2(Φ(x0)−Φ∗)

ε and B ≥ min{n, σ2

µε}.
In the following, for simple presentation, we choose m = b (then η ≤ 1

(1+
√

(m−1)/b)L
= 1

2L).

Note that there is no constraint for m and b in our convergence proof. The total number of iterations
is

T = Sm =
1

µη
log

2(Φ(x0)− Φ∗)

ε
=

2L

µ
log

2(Φ(x0)− Φ∗)

ε
.

The number of PO calls equals to T = Sm = 2L
µ log 2(Φ(x0)−Φ∗)

ε . The proof is finished since

the number of SFO calls equals to Sn + Smb =
(
n
b + b

)
2L
µ log 2(Φ(x0)−Φ∗)

ε if B = n (i.e., the
second term in (49) is 0 and thus Assumption 3 is not needed), or equals to SB + Smb =

(
B
b +

b
)

2L
µ log 2(Φ(x0)−Φ∗)

ε if B ≥ min{n, σ2

µε}. �

Appendix D. Missing Proofs for Section 7 Local Minima

Now, we provide the detailed proofs for Theorem 9. Note that due to the second-order guarantee,
the proofs of the finite-sum case and the online case have more difference than previous first-order
guarantee methods (e.g., proof of Theorem 5 and 6). One of the reason is that for the perturbation
condition ‖vsm‖ ≤ ε in Line 4 of Algorithm 3, vsm = ∇f(xsm) for finite-sum case (B = n)
while vsm = 1

B

∑
j∈IB ∇fj(xsm) for the online case. So we need an extra high probability bound

‖∇f(xsm)‖ ≤ ε in the online case. In the following, we divide the proof of Theorem 9 into two
parts, i.e., finite-sum (Section D.2) and online (Section D.3). Before the proof, we recall some
standard concentration bounds in Section D.1.

D.1 Tools

Here, we recall some classical concentration bounds for matrices and vectors.

Proposition 12 (Bernstein Inequality (Tropp, 2012)) Consider a finite sequence {Zk} of inde-
pendent, random matrices with dimension d1 × d2. Assume that each random matrix satisfies

E[Zk] = 0 and ‖Zk‖ ≤ R almost surely.

Define

σ2 := max
{∥∥∑

k

E[ZkZ
T
k]
∥∥,∥∥∑

k

E[ZTk Zk]
∥∥}.

30

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Then, for all t ≥ 0,

P
{∥∥∑

k

Zk
∥∥ ≥ t} ≤ (d1 + d2) exp

(−t2/2
σ2 +Rt/3

)
.

In our proof, we only need its special case vector version as follows, where zk = vk − E[vk].

Proposition 13 (Bernstein Inequality (Tropp, 2012)) Consider a finite sequence {vk} of indepen-
dent, random vectors with dimension d. Assume that each random matrix satisfies

‖vk − E[vk]‖ ≤ R almost surely.

Define
σ2 :=

∑
k

E‖vk − E[vk]‖2.

Then, for all t ≥ 0,

P
{∥∥∑

k

(vk − E[vk])
∥∥ ≥ t} ≤ (d+ 1) exp

(−t2/2
σ2 +Rt/3

)
.

Moreover, we also need the following martingale concentration bounds, i.e., Azuma-Hoeffding
inequality. Now, we only state the vector version (the more general matrix version is not needed).

Proposition 14 (Azuma-Hoeffding Inequality (Hoeffding, 1963; Tropp, 2011)) Consider a mar-
tingale vector sequence {yk} with dimension d, and let {zk} denote the associated martingale dif-
ference sequence with respect to a filtration {Fk}, i.e., zk := yk − E[yk|Fk−1] = yk − yk−1 and
E[zk|Fk−1] = 0. Suppose that {zk} satisfies

‖zk‖ = ‖yk − yk−1‖ ≤ ck almost surely. (51)

Then, for all t ≥ 0,

P
{
‖yk − y0‖ ≥ t

}
≤ (d+ 1) exp

(−t2

8
∑k

i=1 c
2
i

)
.

However, the assumption that ‖zk‖ ≤ ck in (51) with probability 1 is too strict and it may fail
sometimes. Fortunately, the Azuma-Hoeffding inequality also holds with a slackness if ‖zk‖ ≤ ck
with high probability.

Proposition 15 (Azuma-Hoeffding Inequality with High Probability (Chung and Lu, 2006;
Tao and Vu, 2015)) Consider a martingale vector sequence {yk} with dimension d, and let {zk}
denote the associated martingale difference sequence with respect to a filtration {Fk}, i.e., zk :=
yk − E[yk|Fk−1] = yk − yk−1 and E[zk|Fk−1] = 0. Suppose that {zk} satisfies

‖zk‖ = ‖yk − yk−1‖ ≤ ck with high probability 1− ζk.

Then, for all t ≥ 0,

P
{
‖yk − y0‖ ≥ t

}
≤ (d+ 1) exp

(−t2

8
∑k

i=1 c
2
i

)
+

k∑
i=1

ζk.

31

LI AND LI

D.2 Proof of Theorem 9 (finite-sum)

For proving the second-order guarantee, we divide the proof into two situations. The first situation
(large gradients) is almost the same as the above arguments for first-order guarantee, where the
function value decreases significantly since the gradients are large (see (37)). For the second situ-
ation (around saddle points), we show that the function value can also decrease a lot by adding a
random perturbation. The reason is that saddle points are usually unstable and the stuck region is
relatively small in a random perturbation ball.
Large Gradients: First, we need a high probability bound for the variance term instead of the ex-
pectation one (35) (note that here B = n in the finite-sum case). Then we use it to get a high prob-
ability bound of (37) for the decrease of the function value. Recall that vk = 1

b

∑
i∈Ib

(
∇fi(xk) −

∇fi(xk−1)
)
+vk−1 (see Line 13 of Algorithm 3). We let yk := vk−∇f(xk) and zk := yk−yk−1. It

is not hard to verify that {yk} is a martingale sequence and {zk} is the associated martingale differ-
ence sequence. In order to apply the Azuma-Hoeffding inequalities to get a high probability bound,
we first need to bound the martingale difference sequence {zk}. We use the Bernstein inequality to
bound the differences as follows.

zk = yk − yk−1 = vk −∇f(xk)− (vk−1 −∇f(xk−1))

=
1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)

)
+ vk−1 −∇f(xk)− (vk−1 −∇f(xk−1))

=
1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))

)
=

1

b

∑
i∈Ib

ui, (52)

where we define ui := ∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1)) in (52). Then we have

‖ui‖ = ‖∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))‖ ≤ 2L‖xk − xk−1‖, (53)

where the last inequality holds due to the gradient Lipschitz Assumption 5. Then, consider the
variance term

E
[∑
i∈Ib

‖ui‖2
]

= bEi[‖∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))‖2]

≤ bEi[‖∇fi(xk)−∇fi(xk−1)‖2]

≤ bL2‖xk − xk−1‖2, (54)

where the first inequality uses the fact E[‖x − Ex‖2] ≤ E[‖x‖2], and the last inequality uses the
gradient Lipschitz Assumption 5. According to (53) and (54), we can bound the difference zk by
Bernstein inequality (Proposition 13) as

P
{∥∥zk∥∥ ≥ t

b

}
≤ (d+ 1) exp

(−t2/2
E[
∑

i∈Ib ‖ui‖
2] +Rt/3

)
= (d+ 1) exp

(−t2/2
bL2‖xk − xk−1‖2 + 2L‖xk − xk−1‖t/3

)
32

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

= ζk,

where the last equality holds by letting t = CL
√
b‖xk − xk−1‖, where C = O(log d

ζk
). Now, we

have a high probability bound for the difference sequence {zk}, i.e.,

‖zk‖ ≤
CL√
b
‖xk − xk−1‖ with probability 1− ζk. (55)

Now, we are ready to get a high probability bound for our original variance term (35) by using
the martingale Azuma-Hoeffding inequality. Consider in a specific epoch s, i.e, iterations t from
sm + 1 to current sm + k, where k is less than m (note that we only need to consider the current
epoch since each epoch we start with y = 0). We use a union bound for the difference sequence
{zt} by letting ζk = ζ ′/m such that

‖zt‖ ≤ ct =
CL√
b
‖xt − xt−1‖ for all t ∈ [sm+ 1, sm+ k] with probability 1− ζ ′. (56)

Define β :=
√

8
∑sm+k

t=sm+1 c
2
t log d

ζ′ = C′L√
b

√∑sm+k
t=sm+1 ‖xt − xt−1‖2, whereC ′ = O(C

√
log d

ζ′) =

O(log d
ζk

√
log d

ζ′) = O(log dm
ζ′

√
log d

ζ′) = Õ(1). According to Azuma-Hoeffding inequality

(Proposition 15) and noting that ζk = ζ ′/m, we have that

P
{∥∥ysm+k − ysm

∥∥ ≥ β} ≤ (d+ 1) exp
(−β2

8
∑sm+k

t=sm+1 c
2
t

)
+ ζ ′ = 2ζ ′.

Recall that yk := vk − ∇f(xk) and at the beginning point of this epoch ysm = 0 due to vsm =
∇f(xsm) since B = n in this finite-sum case (see Line 9 of Algorithm 3). Thus, for any t ∈
[sm+ 1, sm+m], we have that

‖vt−1 −∇f(xt−1)‖ = ‖yt−1‖ ≤ β :=
C ′L√
b

√√√√ t−1∑
j=sm+1

‖xj − xj−1‖2, (57)

holds with probability 1− 2ζ ′, where C ′ = O(log dm
ζ′

√
log d

ζ′) = Õ(1).
Now, we use this high probability version (57) instead of the expectation one (35) to obtain the

high probability bound for the decrease of the function value (see (37)). We sum up (29) from the
beginning of this epoch s, i.e., iterations from sm+ 1 to t, by plugging (57) into them to get:

f(xt) ≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
(1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
η

2

t−1∑
k=sm+1

C ′2L2
∑k

j=sm+1 ‖xj − xj−1‖2

b
(58)

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
(1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

33

LI AND LI

+
ηC ′2L2

2b

t−1∑
k=sm+1

k∑
j=sm+1

‖xj − xj−1‖2

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
(1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
ηC ′2L2(t− 1− sm)

2b

t∑
j=sm+1

‖xj − xj−1‖2

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
(1

2η
− L

2
− ηC ′2L2

2

) t∑
j=sm+1

‖xj − xj−1‖2 (59)

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2, (60)

where (59) holds if the minibatch size b ≥ m (note that here t ≤ (s + 1)m), and (60) holds if

the step size η ≤ 1
(1+C′)L , where C ′ = O(log dm

ζ′

√
log d

ζ′). Note that (58) uses (57) which holds

with probability 1− 2ζ ′. Thus by a union bound, we know that (60) holds with probability at least
1− 2mζ ′.

Note that (60) only guarantees that the function value decreases significantly only when the
summation of gradients in this epoch is large. However, in order to connect the guarantees between
first situation (large gradients) and second situation (around saddle points), we need to show guar-
antees that are related to the gradient of the starting point of each epoch (see Line 4 of Algorithm 3).
Similar to Ge et al. (2019), we achieve this by stopping the epoch at a uniformly random point (see
Line 17 of Algorithm 3).

Now we prove Lemma 16 to distinguish these two situations (large gradients and around saddle
points):

Lemma 16 (Two Situations) For any epoch s, let xt be a point uniformly sampled from this epoch
{xj}(s+1)m

j=sm+1. We choose the step size η ≤ 1
(1+C′)L (where C ′ = O(log dm

ζ′

√
log d

ζ′) = Õ(1)) and
the minibatch size b ≥ m. Then for any ε > 0, either of the following two cases happens:

1. (Small gradient, possibly around a saddle point) If at least half of points in this epoch have
gradient norm no larger than ε, then ‖∇f(xt)‖ ≤ ε holds with probability at least 1/2;

2. (Large gradient) Otherwise, we know f(xsm)− f(xt) ≥ ηmε2

8 holds with probability at least
1/5.

Moreover, f(xt) ≤ f(xsm) holds with high probability 1− 2mζ ′ no matter which case happens.

Proof of Lemma 16. There are two cases in this epoch:

1. If at least half of points in this epoch {xj}(s+1)m
j=sm+1 have gradient norm no larger than ε, then

it is easy to see that a uniformly sampled point xt has gradient norm ‖∇f(xt)‖ ≤ ε with
probability at least 1/2.

34

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

2. Otherwise, at least half of points have gradient norm larger than ε. Then, as long as the sam-
pled point xt falls into the last quarter of {xj}(s+1)m

j=sm+1, we know
∑t

j=sm+1 ‖∇f(xj−1)‖2 ≥
mε2

4 . This holds with probability at least 1/4 since xt is uniformly sampled. Then combining
with (60), i.e., f(xsm) − f(xt) ≥ η

2

∑t
j=sm+1 ‖∇f(xj−1)‖2, we can see that the function

value decreases f(xsm)−f(xt) ≥ ηmε2

8 . Note that (60) holds with high probability 1−2mζ ′

if we choose the minibatch size b ≥ m and the step size η ≤ 1
(1+C′)L . By a union bound, the

function value decrease f(xsm) − f(xt) ≥ ηmε2

8 with probability at least 1/5 (e.g., choose
ζ ′ ≤ 1/40m).

Again according to (60), f(xt) ≤ f(xsm) holds with high probability 1− 2mζ ′. �
Note that if Case 2 happens, the function value would decrease significantly in this epoch

s (corresponding to the first situation large gradients). Otherwise if Case 1 happens, we know
the starting point of the next epoch x(s+1)m = xt (i.e., Line 20 of Algorithm 3), and we know
‖∇f(x(s+1)m)‖ = ‖∇f(xt)‖ ≤ ε. In this case, we start a super epoch (corresponding to the sec-
ond situation around saddle points). Note that if λmin(∇2f(x(s+1)m)) > −δ, the point x(s+1)m is
already an (ε, δ)-local minimum.

Around Saddle Points ‖∇f(x̃)‖ ≤ ε and λmin(∇2f(x̃)) ≤ −δ: In this situation, we show that
the function value decreases significantly in a super epoch with high probability. Recall that we add
a random perturbation at the initial point x̃. To simplify the presentation, we use x0 := x̃ + ξ to
denote the starting point of the super epoch after the perturbation, where ξ uniformly ∼ B0(r) and
the perturbation radius is r (see Line 7 of Algorithm 3). We follow the two-point analysis developed
in Jin et al. (2017). The high level idea is as follows: one can divide the perturbation ball B0(r) into
two disjoint regions: (1) an escaping region which consists of all the points whose function value
decreases by at least fthres after tthres steps; (2) the rest which we call the stuck region. The key
insight in Jin et al. (2017) is that the stuck region occupies a very small proportion of the volume of
perturbation ball. In particular, they show that the stuck region looks like “thin pancake” (see Figure
1 and 2 in Jin et al. (2017)). Let e1 be the smallest eigenvector direction of Hessian H := ∇2f(x̃)
For any two points along e1 direction that are not very close, one can show at least one of them
must not be in the stuck regoin. This implies that the intersection of the line along e1 direction and
the stuck region can be at most an interval of a small length, which indicates that the pancake is
thin in the e1 direction, which can be turned into an upper bound on the volume of the stuck region
by standard calculus. Since we use a more involved update rule, our analysis is somewhat more
technical.

In particular, we consider two coupled points x0 and x′0 with w0 := x0 − x′0 = r0e1, where r0

is a scalar and e1 denotes the smallest eigenvector direction of HessianH := ∇2f(x̃). Then we get
two coupled sequences {xt} and {x′t} by running SSRGD update steps (Line 9–13 of Algorithm 3)
with the same choice of minibatches (i.e., Ib’s in Line 13 of Algorithm 3) for a super epoch. We
show that the function value decreases significantly for at least one of these two coupled sequences
(escape the saddle point), i.e.,

∃t ≤ tthres, such that max{f(x0)− f(xt), f(x′0)− f(x′t)} ≥ 2fthres. (61)

Now, we prove (61) by contradiction. Assume the contrary, f(x0) − f(xt) < 2fthres and
f(x′0) − f(x′t) < 2fthres. First, we show that if function value does not decrease a lot, then all

35

LI AND LI

iteration points are not far from the starting point with high probability. Then we show at least one
of xt and x′t should go far away from their starting point x0 and x′0 with high probability, rendering
a contradiction. We need the following two technical lemmas and their proofs are deferred to the
end of this section.

Lemma 17 (Localization) Let {xt} denote the sequence by running SSRGD update steps (Line 9–
13 of Algorithm 3) from x0. Moreover, let the step size η ≤ 1

(1+2C′)L and minibatch size b ≥ m.
With probability 1− 2tζ ′, we have

∀t ≥ 0, ‖xt − x0‖ ≤
√

4t(f(x0)− f(xt))

C ′L
, (62)

where C ′ = O(log dm
ζ′

√
log d

ζ′) = Õ(1).

Lemma 18 (Small Stuck Region) If the initial point x̃ satisfies −γ := λmin(∇2f(x̃)) ≤ −δ, then
let {xt} and {x′t} be two coupled sequences by running SSRGD update steps (Line 9–13 of Al-
gorithm 3) with the same choice of minibatches (i.e., Ib’s in Line 13 of Algorithm 3) from x0

and x′0 with w0 := x0 − x′0 = r0e1, where x0 ∈ Bx̃(r), x′0 ∈ Bx̃(r) , r0 = ζ′r√
d

and e1 de-

notes the smallest eigenvector direction of Hessian ∇2f(x̃). Moreover, let the super epoch length

tthres =
log(8δ

√
d

ρrζ′)

ηδ = Õ(1
ηδ), the step size η ≤ 1

15(1+log tthres)C′L
= Õ(1

L), minibatch size b ≥ m

and the perturbation radius r ≤ δ
C1ρ

. With probability 1− 2Tζ ′, we have

∃T ≤ tthres, max{‖xT − x0‖, ‖x′T − x′0‖} ≥
δ

C1ρ
, (63)

where C ′ = O(log dm
ζ′

√
log d

ζ′) = Õ(1) and C1 ≥ 1 + 48C ′ log(8δ
√
d

ρrζ′) = Õ(1).

Based on these two lemmas, we are ready to show that (61) holds with high probability. Without
loss of generality, we assume ‖xT−x0‖ ≥ δ

C1ρ
in (63) (note that (62) holds for both {xt} and {x′t}).

Then plugging it into (62), we obtain√
4T (f(x0)− f(xT))

C ′L
≥ δ

C1ρ

f(x0)− f(xT) ≥ C ′Lδ2

4C2
1ρ

2T

≥ C ′Lηδ3

4C2
1ρ

2 log(8δ
√
d

ρrζ′)

=
δ3

C ′1ρ
2

(64)

def
= 2fthres,

where the last inequality is due to T ≤ tthres :=
log(8δ

√
d

ρrζ′)

ηδ , (64) holds by lettingC ′1 =
4C2

1 log(8δ
√
d

ρrζ′)

C′Lη =

Õ(1), and the last equality is due to the definition of fthres := δ3

2C′1ρ
2 = Õ(δ

3

ρ2
). Thus, we have al-

ready proved that at least one of sequences {xt} and {x′t} escapes the saddle point with probability

36

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

1− 4Tζ ′ (by union bound of (62) and (63)), i.e.,

∃T ≤ tthres, max{f(x0)− f(xT), f(x′0)− f(x′T)} ≥ 2fthres, (65)

if their starting points x0 and x′0 satisfying w0 := x0 − x′0 = r0e1. Now, using the same argument
as in Jin et al. (2017), we know that in the random perturbation ball, the stuck points can only be a
short interval in each line along the e1 direction, i.e., at least one of two points in the e1 direction
would escape the saddle point if their distance is larger than r0 = ζ′r√

d
. Thus, we know that the

probability of the starting point x0 = x̃+ξ (where ξ uniformly∼ B0(r)) located in the stuck region
is less than

r0Vd−1(r)

Vd(r)
=

r0Γ(d2 + 1)
√
πrΓ(d2 + 1

2)
≤ r0√

πr

(d
2

+ 1
)1/2 ≤ r0

√
d

r
= ζ ′, (66)

where Vd(r) denotes the volume of a Euclidean ball with radius r in d dimension, and the first
inequality holds due to Gautschi’s inequality. By a union bound for (64) and (66) (x0 is not in a
stuck region), we know that

f(x0)− f(xT) ≥ 2fthres =
δ3

C ′1ρ
2

(67)

holds with probability 1− (4T + 1)ζ ′. Note that the initial point of this super epoch is x̃ before the
perturbation (see Line 7 of Algorithm 3), thus we need to show that the perturbation step x0 = x̃+ξ
(where ξ uniformly ∼ B0(r)) does not increase the function value a lot, i.e.,

f(x0) ≤ f(x̃) + 〈∇f(x̃), x0 − x̃〉+
L

2
‖x0 − x̃‖2

≤ f(x̃) + ‖∇f(x̃)‖‖x0 − x̃‖+
L

2
‖x0 − x̃‖2

≤ f(x̃) + ε · r +
L

2
r2

≤ f(x̃) +
δ3

2C ′1ρ
2

= f(x̃) + fthres, (68)

where the last inequality holds by letting the perturbation radius r ≤ min{ δ3

4C′1ρ
2ε
,
√

δ3

2C′1ρ
2L
}.

Now we combine with (67) and (68) to obtain that

f(x̃)− f(xT) = f(x̃)− f(x0) + f(x0)− f(xT) ≥ −fthres + 2fthres =
δ3

2C ′1ρ
2

(69)

holds with probability at least 1− (4T + 1)ζ ′ ≥ 1− 5tthresζ
′, where C ′1 = Õ(1).

Thus we have finished the proof for the second situation (around saddle points), i.e., we show
that the function value decreases a lot (fthres = δ3

2C′1ρ
2) in a super epoch (recall that T ≤ tthres =

log(8δ
√
d

ρrζ′)

ηδ).

Combing these two situations (large gradients and around saddle points) to prove Theorem 9:
Now, we prove the theorem by distinguishing the epochs into three types as follows:

37

LI AND LI

1. Type-1 useful epoch: If at least half of points in this epoch have gradient norm larger than ε
(Case 2 of Lemma 16);

2. Wasted epoch: If at least half of points in this epoch have gradient norm no larger than ε and
the starting point of the next epoch has gradient norm larger than ε (it means that in this epoch
one can not guarantee a significant decrease of the function value as in the large gradients
situation, and it does not lead to a super epoch (the second situation) since the starting point
of the next epoch has gradient norm larger than ε);

3. Type-2 useful super epoch: If at least half of points in this epoch have gradient norm no larger
than ε and the starting point of the next epoch (here we denote this point as x̃) has gradient
norm no larger than ε (i.e., ‖∇f(x̃)‖ ≤ ε) (Case 1 of Lemma 16), according to Line 4 of
Algorithm 3, we start a super epoch. So here we denote this epoch along with its following
super epoch as a type-2 useful super epoch.

First, it is easy to see that the probability of a wasted epoch happened is less than 1/2 due to the
random stop (see Case 1 of Lemma 16). Note for different wasted epochs, returned points are
independently sampled. Thus, with high probability 1− ζ ′, there are at most log 1

ζ′ = Õ(1) wasted
epochs happened before a type-1 useful epoch or type-2 useful super epoch. Now, we use N1 and
N2 to denote the number of type-1 useful epochs and type-2 useful super epochs that the algorithm is
needed. Also recall that the function value always does not increase with high probability 1− 2mζ ′

for any epoch (see Lemma 16).
For type-1 useful epoch, according to Case 2 of Lemma 16, we know that the function value

decreases at least ηmε2

8 with probability at least 1/5. Using a union bound, we know that with
probability 1 − 4N1/5, N1 type-1 useful epochs will decrease the function value at least ηmε

2N1

40 .
Note that the function value can decrease at most ∆0 := f(x0)−f∗ and also recall that the function
value always does not increase with high probability 1 − 2mζ ′ for any epoch (see Lemma 16). So
let ηmε

2N1

40 ≤ ∆0, we get N1 ≤ 40∆0
ηmε2

with probability at least 1 − Õ(N1mζ
′) by a union bound.

We can let ζ ′ ≤ Õ(1/N1m).
For type-2 useful super epoch, first we know that the starting point of the super epoch x̃ has gra-

dient norm ‖∇f(x̃)‖ ≤ ε. Now if λmin(∇2f(x̃)) ≥ −δ, then x̃ is already a (ε, δ)-local minimum.
Otherwise, ‖∇f(x̃)‖ ≤ ε and λmin(∇2f(x̃)) ≤ −δ, this is exactly our second situation (around
saddle points). According to (69), we know that the the function value decrease (f(x̃)− f(xT)) is
at least fthres = δ3

2C′1ρ
2 with probability at least 1 − 5tthresζ

′ ≥ 1/2 (let ζ ′ ≤ 1/10tthres), where

C ′1 = Õ(1). Similar to type-1 useful epoch, we know N2 ≤
4C′1ρ

2∆0

δ3
with probability at least

1− Õ(N2tthresζ
′) by a union bound. We can let ζ ′ ≤ Õ(1/N2tthres).

Now, we are ready to bound the number of SFO calls in Theorem 9 (finite-sum) as follows:

N1(Õ(1)n+ n+mb) +N2

(
Õ(1)n+

⌈
tthres

m

⌉
n+ tthresb

)
≤ Õ

(∆0n

ηmε2
+
ρ2∆0

δ3
(n+

√
n

ηδ
)
)

≤ Õ
(L∆0

√
n

ε2
+
Lρ2∆0

√
n

δ4
+
ρ2∆0n

δ3

)
. (70)

38

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

By a union bound of these types and set ζ = Õ(N1m+N2tthres)ζ
′ (note that ζ ′ only appears in the

log term log(1
ζ′), so it can be chosen as small as we want), we know that the SFO calls of SSRGD

can be bounded by (70) with probability 1 − ζ. This finishes the proof of Theorem 9. Now, it
remains to prove Lemma 17 and 18.

Proof of Lemma 17. First, we know the variance bound (57) holds with probability 1− 2ζ ′. Then
by a union bound, it holds with probability 1− 2tζ ′ for all 0 ≤ j ≤ t− 1. Then, according to (59),
we know for any τ ≤ t in some epoch s

f(xτ) ≤ f(xsm)− η

2

τ∑
j=sm+1

‖∇f(xj−1)‖2 −
(1

2η
− L

2
− ηC ′2L2

2

) τ∑
j=sm+1

‖xj − xj−1‖2

≤ f(xsm)−
(1

2η
− L

2
− ηC ′2L2

2

) τ∑
j=sm+1

‖xj − xj−1‖2

≤ f(xsm)− C ′L

4

τ∑
j=sm+1

‖xj − xj−1‖2, (71)

where (71) holds by setting the step size η ≤ 1
(1+2C′)L . Recall that C ′ = O(log dm

ζ′

√
log d

ζ′) =

Õ(1). Now, we sum up (71) for all epochs before iteration t,

f(xt) ≤ f(x0)− C ′L

4

t∑
j=1

‖xj − xj−1‖2.

Then, the proof is finished as

‖xt − x0‖ ≤
t∑

j=1

‖xj − xj−1‖ ≤

√√√√t
t∑

j=1

‖xj − xj−1‖2 ≤
√

4t(f(x0)− f(xt))

C ′L
.

�

Proof of Lemma 18. We prove this lemma by contradiction. Assume the contrary,

∀t ≤ T, ‖xt − x0‖ ≤
δ

C1ρ
and ‖x′t − x′0‖ ≤

δ

C1ρ
, (72)

where T :=
log(8δ

√
d

ρrζ′)

ηγ ≤ tthres :=
log(8δ

√
d

ρrζ′)

ηδ (note that γ ≥ δ due to −γ := λmin(∇2f(x̃)) ≤ −δ).
We show that the distance between these two coupled sequences wt := xt−x′t grows exponentially
if they are not very close in the e1 direction at the beginning, i.e., w0 := x0 − x′0 = r0e1. Recall
that r0 = ζ′r√

d
and e1 denotes the smallest eigenvector direction of HessianH := ∇2f(x̃). However,

‖wt‖ = ‖xt − x′t‖ ≤ ‖xt − x0‖ + ‖x0 − x̃‖ + ‖x′t − x′0‖ + ‖x′0 − x̃‖ ≤ 2r + 2 δ
C1ρ

according
to (72) and the perturbation radius r. It is not hard to see that if ‖wt‖ increases exponentially, this
inequality cannot be true for reasonably large t, rendering a contradiction.

In the following, we prove that ‖wt‖ increases exponentially by induction on t. First, we need
the expression of wt. Define ∆τ :=

∫ 1
0 (∇2f(x′τ + θ(xτ − x′τ))−H)dθ and yτ := vτ −∇f(xτ)−

39

LI AND LI

v′τ +∇f(x′τ). Recall that xt = xt−1 − ηvt−1 (see Line 12 of Algorithm 3). Hence one can easily
see that

wt = wt−1 − η(vt−1 − v′t−1)

= wt−1 − η
(
∇f(xt−1)−∇f(x′t−1) + vt−1 −∇f(xt−1)− v′t−1 +∇f(x′t−1)

)
= wt−1 − η

(∫ 1

0
∇2f(x′t−1 + θ(xt−1 − x′t−1))dθ(xt−1 − x′t−1) + yt−1

)
= wt−1 − η

(
(H+ ∆t−1)wt−1 + yt−1

)
= (I − ηH)wt−1 − η(∆t−1wt−1 + yt−1) (73)

= (I − ηH)tw0 − η
t−1∑
τ=0

(I − ηH)t−1−τ (∆τwτ + yτ). (74)

First, one can see that the first term of (74) is in the e1 direction and it increases exponentially with
respect to t, i.e., (1 + ηγ)tr0e1, where −γ := λmin(H) = λmin(∇2f(x̃)) ≤ −δ. Hence, to prove
that ‖wt‖ increases exponentially, it suffices to show that the norm of the first term of (74) dominate
that of the second term. For this purpose, we need the following bounds for ‖wt‖ and ‖yt‖, stated
in the following lemma.

Lemma 19 Supposew0 := x0−x′0 = r0e1 where r0 = ζ′r√
d

and e1 is the eigenvector corresponding

to the smallest eigenvalue of Hessian H := ∇2f(x̃). If (72) holds, then with probability 1− 2Tζ ′,
the following bounds hold for all t ≤ T :

1. 1
2(1 + ηγ)tr0 ≤ ‖wt‖ ≤ 3

2(1 + ηγ)tr0;

2. ‖yt‖ ≤ γ
4C2

(1 + ηγ)tr0.

where C2 := log(8δ
√
d

ρrζ′).

Proof of Lemma 19. We prove this lemma inductively. First, check the base case t = 0, ‖w0‖ =
‖r0e1‖ = r0 and ‖y0‖ = ‖v0 − ∇f(x0) − v′0 + ∇f(x′0)‖ = ‖∇f(x0) − ∇f(x0) − ∇f(x′0) +
∇f(x′0)‖ = 0. Now, assuming they hold for all τ ≤ t − 1, we now prove they hold for t. For the
bounds of ‖wt‖, it suffices to show that the second term of (74) is dominated by half of the first
term. Now, we first consider the first part of the second term:

‖η
t−1∑
τ=0

(I − ηH)t−1−τ (∆τwτ)‖ ≤ η
t−1∑
τ=0

(1 + ηγ)t−1−τ‖∆τ‖‖wτ‖

≤ 3

2
η(1 + ηγ)t−1r0

t−1∑
τ=0

‖∆τ‖ (75)

≤ 3

2
η(1 + ηγ)t−1r0

t−1∑
τ=0

ρDx
τ (76)

≤ 3

2
η(1 + ηγ)t−1r0tρ

(δ

C1ρ
+ r
)

(77)

40

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

≤ 3

C1
ηδt(1 + ηγ)t−1r0 (78)

≤
3 log(8δ

√
d

ρrζ′)

C1
(1 + ηγ)t−1r0 (79)

≤ 1

4
(1 + ηγ)tr0, (80)

where (75) uses the induction hypothesis for wτ with τ ≤ t − 1, (76) uses Assumption 5 and the
definitionDx

τ := max{‖xτ − x̃‖, ‖x′τ − x̃‖}, (77) follows from ‖xt− x̃‖ ≤ ‖xt−x0‖+‖x0− x̃‖ =
δ
C1ρ

+ r due to (72) and the perturbation radius r, (78) holds by letting the perturbation radius

r ≤ δ
C1ρ

, (79) holds since t ≤ T ≤ tthres := 1
ηδ log(8δ

√
d

ρrζ′), and (80) holds due to the definition of

C1 ≥ 12 log(8δ
√
d

ρrζ′).
Now, the second part can be bounded as follows:

‖η
t−1∑
τ=0

(I − ηH)t−1−τyτ‖ ≤ η
t−1∑
τ=0

(1 + ηγ)t−1−τ‖yτ‖

≤ η
t−1∑
τ=0

(1 + ηγ)t−1−τ γ

4C2
(1 + ηγ)τr0 (81)

=
ηγ

4C2
t(1 + ηγ)t−1r0

≤
log(8δ

√
d

ρrζ′)

4C2
(1 + ηγ)t−1r0 (82)

=
1

4
(1 + ηγ)tr0, (83)

where (81) uses the induction for yτ with τ ≤ t− 1, (82) holds since t ≤ T :=
2 log(8δ

√
d

ρrζ′)

ηγ , and (83)

holds due to the definition of C2 = log(8δ
√
d

ρrζ′).
Combining (80) and (83), we can see that the norm of the second term of (74) is at most one half

of that of the first term. Note that the norm of the first term of (74) is ‖(I−ηH)tw0‖ = (1+ηγ)tr0.
Thus, we have

1

2
(1 + ηγ)tr0 ≤ ‖wt‖ ≤

3

2
(1 + ηγ)tr0. (84)

Now, the remaining thing is to prove the second bound ‖yt‖ ≤ γ
4C2

(1 + ηγ)tr0, which is some-
what technical. First, we write the concrete expression of yt:

yt = vt −∇f(xt)− v′t +∇f(x′t)

=
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+ vt−1 −∇f(xt)

− 1

b

∑
i∈Ib

(
∇fi(x′t)−∇fi(x′t−1)

)
− v′t−1 +∇f(x′t) (85)

41

LI AND LI

=
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+∇f(xt−1)−∇f(xt)

− 1

b

∑
i∈Ib

(
∇fi(x′t)−∇fi(x′t−1)

)
−∇f(x′t−1) +∇f(x′t) + yt−1

=
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(x′t)−∇fi(xt−1) +∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)−∇f(xt−1) +∇f(x′t−1)

)
+ yt−1,

where (85) is due to the definition of the estimator vt (see Line 13 of Algorithm 3). We further define
the difference zt := yt − yt−1. It is not hard to verify that {yt} is a martingale sequence and {zt}
is the associated martingale difference sequence. We can apply the Azuma-Hoeffding inequality to
get an upper bound for ‖yt‖ and then we prove ‖yt‖ ≤ γ

4C2
(1 + ηγ)tr0 based on that upper bound.

In order to apply the Azuma-Hoeffding inequality for martingale sequence ‖yt‖, we first need to
bound the difference sequence {zt}.

zt = yt − yt−1 =
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(x′t)−∇fi(xt−1) +∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)−∇f(xt−1) +∇f(x′t−1)

)
=

1

b

∑
i∈Ib

ui, (86)

where we define ui :=
(
∇fi(xt)−∇fi(x′t)

)
−
(
∇fi(xt−1)−∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)

)
+(

∇f(xt−1)−∇f(x′t−1)
)

in the last equality (86). Then we have

‖ui‖ ≤
∥∥∥∫ 1

0
∇2fi(x

′
t + θ(xt − x′t))dθ(xt − x′t)−

∫ 1

0
∇2fi(x

′
t−1 + θ(xt−1 − x′t−1))dθ(xt−1 − x′t−1)

−
∫ 1

0
∇2f(x′t + θ(xt − x′t))dθ(xt − x′t) +

∫ 1

0
∇2f(x′t−1 + θ(xt−1 − x′t−1))dθ(xt−1 − x′t−1)

∥∥∥
= ‖Hiwt + ∆i

twt − (Hiwt−1 + ∆i
t−1wt−1)− (Hwt + ∆twt) + (Hwt−1 + ∆t−1wt−1)‖

≤ ‖(Hi −H)(wt − wt−1)‖+ ‖(∆i
t −∆t)wt − (∆i

t−1 −∆t−1)wt−1‖
≤ 2L‖wt − wt−1‖+ 2ρDx

t ‖wt‖+ 2ρDx
t−1‖wt−1‖, (87)

where the equality holds since we define ∆t :=
∫ 1

0 (∇2f(x′t + θ(xt − x′t)) − H)dθ and ∆i
t :=∫ 1

0 (∇2fi(x
′
t + θ(xt − x′t)) − Hi)dθ, and the last inequality holds due to the gradient and Hessian

Lipschitz Assumption 5 (recall Dx
t := max{‖xt − x̃‖, ‖x′t − x̃‖}). Then, consider the variance

term:

E
[∑
i∈Ib

‖ui‖2
]
≤ bEi[‖

(
∇fi(xt)−∇fi(x′t)

)
−
(
∇fi(xt−1)−∇fi(x′t−1)

)
‖2]

= bEi[‖Hiwt + ∆i
twt − (Hiwt−1 + ∆i

t−1wt−1)‖2]

≤ b(L‖wt − wt−1‖+ ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖)2, (88)

42

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

where the first inequality uses the fact E[‖x − Ex‖2] ≤ E[‖x‖2], and the last inequality uses the
gradient and Hessian Lipschitz Assumption 5. According to (87) and (88), we can bound the differ-
ence zk by Bernstein inequality (Proposition 13) as (where R = 2L‖wt − wt−1‖ + 2ρDx

t ‖wt‖ +
2ρDx

t−1‖wt−1‖ and σ2 = b(L‖wt − wt−1‖+ ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖)2)

P
{∥∥zt∥∥ ≥ α

b

}
≤ (d+ 1) exp

(−α2/2

σ2 +Rα/3

)
= ζk,

where the last equality holds by letting α = C
√
b(L‖wt − wt−1‖ + ρDx

t ‖wt‖ + ρDx
t−1‖wt−1‖),

where C = O(log d
ζk

).
Now, we have a high probability bound for the difference sequence {zk}, i.e.,

‖zk‖ ≤ ck =
C√
b
(L‖wt − wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖) with probability 1− ζk.

Next, we provide an upper bound for ‖yt‖ by using the martingale Azuma-Hoeffding inequality.
Note that we only need to consider the current epoch that contains the iteration t since each epoch
we start with y = 0. Let s denote the current epoch, i.e, iterations from sm+ 1 to current t, where
t is no larger than (s+ 1)m. Define

β :=

√√√√8
t∑

k=sm+1

c2
k log

d

ζ ′
=
C ′√
b

√√√√ t∑
k=sm+1

(L‖wt − wt−1‖+ ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖)2,

where C ′ = O(C
√

log d
ζ′) = O(log d

ζk

√
log d

ζ′) = Õ(1). According to Azuma-Hoeffding inequal-

ity (Proposition 15) and letting ζk = ζ ′/m, we have

P
{∥∥yt − ysm∥∥ ≥ β} ≤ (d+ 1) exp

(−β2

8
∑t

k=sm+1 c
2
k

)
+ ζ ′ = 2ζ ′.

Recall that yk := vk − ∇f(xk) − v′k +∇f(x′k) and at the beginning point of this epoch ysm = 0
due to vsm = ∇f(xsm) and v′sm = ∇f(x′sm) (note that batch size B = n in this finite-sum case).
Thus. for any t ∈ [sm+ 1, (s+ 1)m], we have

‖yt‖ = ‖yt − ysm‖ ≤ β :=
C ′√
b

√√√√ t∑
k=sm+1

(L‖wt − wt−1‖+ ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖)2 (89)

holds with high probability 1− 2ζ ′. Furthermore, by a union bound, we know that (89) holds with
probability at least 1− 2Tζ ′ for all t ≤ T .

Now, we show how to bound the right-hand-side of (89). First, we show that the last two terms
in the right-hand-side of (89) can be bounded as

ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖ ≤ ρ
(δ

C1ρ
+ r
)3

2
(1 + ηγ)tr0 + ρ

(δ

C1ρ
+ r
)3

2
(1 + ηγ)t−1r0

≤ 3ρ
(δ

C1ρ
+ r
)
(1 + ηγ)tr0

43

LI AND LI

≤ 6δ

C1
(1 + ηγ)tr0, (90)

where the first inequality follows from the induction hypothesis of ‖wt−1‖ ≤ 3
2(1 + ηγ)t−1r0 and

the bound ‖wt‖ ≤ 3
2(1 + ηγ)tr0 in (84) which we have already proved, and the last inequality holds

by letting the perturbation radius r ≤ δ
C1ρ

.
Now, we bound the first term of right-hand-side of (89). According to (73), we have

L‖wt − wt−1‖ = L‖ηHwt−1 − η(∆t−1wt−1 + yt−1)‖
≤ Lη‖Hwt−1‖+ Lη‖∆t−1wt−1 + yt−1‖
≤ Lη‖ProjS−Hwt−1‖+ Lη‖ProjS+

Hwt−1‖+ Lη‖∆t−1wt−1 + yt−1‖ (91)

≤ Lηγ‖wt−1‖+ Lη‖ProjS+
Hwt−1‖+ Lη‖∆t−1‖‖wt−1‖+ Lη‖yt−1‖

≤ (1 +
2

C1ρ
)Lηγ‖wt−1‖+ Lη‖ProjS+

Hwt−1‖+ Lη‖yt−1‖ (92)

≤ (
3

2
+

3

C1
+

1

4C2
)Lηγ(1 + ηγ)t−1r0 + Lη‖ProjS+

Hwt−1‖, (93)

where (91) holds by splitting the space into two subspace: 1) subspace S− spanned by the eigenvec-
tors of H with eigenvalues within [−γ, 0]; 2) subspace S+ spanned by the eigenvectors of H with
eigenvalues within (0, L], (92) holds from the following (94), and the last inequality (93) follows
from the induction hypothesis of ‖wt−1‖ ≤ 3

2(1 + ηγ)t−1r0 and ‖yt−1‖ ≤ γ
4C2

(1 + ηγ)t−1r0.

∀t ≤ T, ‖∆t‖ ≤ ρDx
t ≤ ρ

(δ

C1ρ
+ r
)
≤ 2δ

C1
≤ 2γ

C1
, (94)

which holds by letting the perturbation radius r ≤ δ
C1ρ

, and noting that γ ≥ δ (recall −γ :=

λmin(H) = λmin(∇2f(x̃)) ≤ −δ).
Now, we bound the second term of (93) as follows:

Lη‖ProjS+
Hwt−1‖

= Lη
∥∥− ProjS+

H(I − ηH)t−1w0 −
t−2∑
τ=0

ProjS+
ηH(I − ηH)t−2−τ (∆τwτ + yτ)

∥∥ (95)

= Lη
∥∥− t−2∑

τ=0

ProjS+
ηH(I − ηH)t−2−τ (∆τwτ + yτ)

∥∥ (96)

≤ Lη
t−2∑
τ=0

∥∥ProjS+
ηH(I − ηH)t−2−τ∥∥‖∆τwτ + yτ‖

≤ Lη
t−2∑
τ=0

1

t− 1− τ
‖∆τwτ + yτ‖ (97)

≤ Lη log t max
0≤k≤t−2

‖∆kwk + yk‖

≤ Lη log t
(2γ

C1

3

2
(1 + ηγ)t−2r0 +

γ

4C2
(1 + ηγ)t−2r0

)
(98)

=
(3

C1
log t+

1

4C2
log t

)
Lηγ(1 + ηγ)t−2r0, (99)

44

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

where the first equality (95) follows from (74), (96) holds since w0 = r0e1 is in the e1 direction,
(98) uses (94) and the induction hypothesis of ‖wk‖ ≤ 3

2(1 + ηγ)kr0 and ‖yk‖ ≤ γ
4C2

(1 + ηγ)kr0,
for all k ≤ t − 1. The inequality (97) follows from the fact maxx∈[0,1] x(1 − x)t ≤ 1

t+1 . Note
that S+ denotes the subspace spanned by the eigenvectors ofH with eigenvalues within (0, L], thus∥∥ProjS+

ηH(I − ηH)t−2−τ∥∥ ≤ maxλ∈(0,L] ηλ(1− ηλ)t−2−τ ≤ 1
t−1−τ . Also note that ηλ ≤ 1 due

to η ≤ 1
L and λ ∈ (0, L].

By plugging (99) into (93), we have

L‖wt − wt−1‖ ≤
(3

2
+

3(1 + log t)

C1
+

1 + log t

4C2

)
Lηγ(1 + ηγ)t−1r0. (100)

Now we can bound ‖yt‖ by plugging (90) and (100) into (89) and noting that t− sm ≤ m ≤ b:

‖yt‖ ≤ C ′
(

6δ

C1
(1 + ηγ)tr0 +

(3

2
+

3(1 + log t)

C1
+

1 + log t

4C2

)
Lηγ(1 + ηγ)t−1r0

)
≤
(6C ′

C1
+
(3

2
+

3(1 + log t)

C1
+

1 + log t

4C2

)
C ′Lη

)
γ(1 + ηγ)tr0

≤
(1

8C2
+

1

8C2

)
γ(1 + ηγ)tr0

=
1

4C2
γ(1 + ηγ)tr0, (101)

where the second inequality holds due to δ ≤ γ (recall −γ := λmin(H) = λmin(∇2f(x̃)) ≤ −δ),
and the last inequality holds by letting C1 ≥ 48C ′C2 (recall that C2 := log(8δ

√
d

ρrζ′) defined in
Lemma 19), and η ≤ 1

15(1+log t)C′L . Recall that (89) holds with probability at least 1− 2Tζ ′ for all
t ≤ T . This finishes the proof of Lemma 19. �

From the Lemma 19, one can see that ‖wt‖ ≥ 1
2(1 + ηγ)tr0 = 1

2(1 + ηγ)t ζ
′r√
d

. On the other

hand, ‖wt‖ := ‖xt−x′t‖ ≤ ‖xt−x0‖+‖x0−x̃‖+‖x′t−x′0‖+‖x′0−x̃‖ ≤ 2r+2 δ
C1ρ
≤ 4δ

C1ρ
according

to (72) and the perturbation radius r ≤ δ
C1ρ

. Hence, for any t ≥ T = 1
ηγ log(8δ

√
d

ρrζ′), we get a

contradiction to (72), i.e., ‖wt‖ ≥ 1
2(1 + ηγ)T ζ

′r√
d
≥ 4δ

ρ ≥
4δ
C1ρ

, where C1 ≥ 1 + 48C ′ log(8δ
√
d

ρrζ′) ≥

1 defined in Lemma 18. Also note that T = 1
ηγ log(8δ

√
d

ρrζ′) ≤ tthres := 1
ηδ log(8δ

√
d

ρrζ′) due to δ ≤ γ.
This contradiction finishes the proof of Lemma 18.

�

D.3 Proof of Theorem 9 (online)

The proof for the online case follows almost the same framework as in the finite-sum case in Sec-
tion D.2. Although the only difference in the algorithm is that here we compute a large batch of
stochastic gradient (vsm 6= ∇f(xsm) in Line 4 and 9 of Algorithm 3), instead of a full gradient, it
leads to many changes in the analysis. Hence, we present the full proof for the online case as well.
Again, we distinguish two situations, the large gradients case, in which the function value decreases
significantly, and the around saddle points case, in which we add a random perturbation.
Large Gradients: First, we provide a high probability bound for the variance term, and then
use it to get a high probability bound for the decrease of the function. Note that in this online
case, vsm = 1

B

∑
j∈IB ∇fj(xsm) at the beginning of each epoch instead of vsm = ∇f(xsm)

45

LI AND LI

(where B = n) in the previous finite-sum case. Thus we first need a high probability bound for
‖vsm −∇f(xsm)‖. According to Assumption 6, we have

‖∇fj(x)−∇f(x)‖ ≤ σ,∑
j∈IB

‖∇fj(x)−∇f(x)‖2 ≤ Bσ2.

By applying Bernstein inequality (Proposition 13), we get the high probability bound for ‖vsm −
∇f(xsm)‖ as follows:

P
{∥∥vsm −∇f(xsm)

∥∥ ≥ t

B

}
≤ (d+ 1) exp

(−t2/2
Bσ2 + σt/3

)
= ζ ′,

where the last equality holds by letting t = C3

√
Bσ, where C3 = O(log d

ζ′) = Õ(1). Now, we
have a high probability bound for ‖vsm −∇f(xsm)‖, i.e.,

∥∥vsm −∇f(xsm)
∥∥ ≤ C3σ√

B
with probability 1− ζ ′. (102)

Now we obtain a high probability bound for the variance term of other points beyond the starting
points. Recall that vk = 1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)

)
+vk−1 (see Line 13 of Algorithm 3), and

the martingale sequence yk := vk −∇f(xk), zk := yk − yk−1, which is the associated martingale
difference sequence, and ui := ∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1)). By (52), we know
that

zk = yk − yk−1 =
1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))

)
=

1

b

∑
i∈Ib

ui. (103)

Using the same argument as in Section D.2 (See (53),(54),(55)), one can see that ‖ui‖ ≤ 2L‖xk −
xk−1‖ and E[

∑
i∈Ib ‖ui‖

2] ≤ bL2‖xk − xk−1‖2, and then one can apply Bernstein inequality
(Proposition 13) to see that

‖zk‖ ≤ ck =
CL√
b
‖xk − xk−1‖ with probability 1− ζk, (104)

where C = O(log d
ζk

) = Õ(1).
Now, we are ready to get a high probability bound for the variance term using the martingale

Azuma-Hoeffding inequality. Consider in a specific epoch s, i.e, iterations t from sm+ 1 to current

sm+k, where k is less thanm. Let β :=
√

8
∑sm+k

t=sm+1 c
2
t log d

ζ′ = C′L√
b

√∑sm+k
t=sm+1 ‖xt − xt−1‖2,

where C ′ = O(C
√

log d
ζ′) = O(log d

ζk

√
log d

ζ′) = Õ(1). According to Azuma-Hoeffding inequal-

ity (Proposition 15) and letting ζk = ζ ′/m, we have

P
{∥∥ysm+k − ysm

∥∥ ≥ β} ≤ (d+ 1) exp
(−β2

8
∑sm+k

t=sm+1 c
2
t

)
+ ζ ′ = 2ζ ′.

46

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Recall that yk := vk − ∇f(xk) and at the beginning point of this epoch ‖ysm‖ = ‖vsm −
∇f(xsm)‖ ≤ C3σ/

√
B with probability 1 − ζ ′, where C = O(log d

ζ′) = Õ(1) (see (102)). Com-
bining with (102) and using a union bound, for any t ∈ [sm+ 1, (s+ 1)m], we have that

‖vt−1 −∇f(xt−1)‖ = ‖yt−1‖ ≤ β + ‖ysm‖ ≤
C ′L

√∑t−1
j=sm+1 ‖xj − xj−1‖2
√
b

+
C3σ√
B

(105)

holds with probability 1− 3ζ ′.
Now, we use it to obtain a high probability bound for the decrease of the function value. We

sum up (29) from the beginning of this epoch s, i.e., iterations from sm+ 1 to t, by plugging (105)
into them to get:

f(xt) ≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
(1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
η

2

t−1∑
k=sm+1

2C ′2L2
∑k

j=sm+1 ‖xj − xj−1‖2

b
+
η

2

t∑
j=sm+1

2C2
3σ

2

B
(106)

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
(1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
ηC ′2L2

b

t−1∑
k=sm+1

k∑
j=sm+1

‖xj − xj−1‖2 +
(t− sm)ηC2

3σ
2

B

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
(1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
ηC ′2L2(t− 1− sm)

b

t∑
j=sm+1

‖xj − xj−1‖2 +
(t− sm)ηC2

3σ
2

B

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
(1

2η
− L

2
− ηC ′2L2

) t∑
j=sm+1

‖xj − xj−1‖2

+
(t− sm)ηC2σ2

B
(107)

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 +
(t− sm)ηC2

3σ
2

B
, (108)

where (107) holds if the minibatch size b ≥ m (note that here t ≤ (s+ 1)m), and (108) holds if the

step size η ≤ 1
(1+2C′)L , where C ′ = O(log dm

ζ′

√
log d

ζ′). Note that (106) uses (105) which holds

with probability 1− 3ζ ′. Thus by a union bound, we know that (108) holds with probability at least
1− 3mζ ′.

Next, we show an analogue of Lemma 16 which connects the guarantees between first situation
(large gradients) and second situation (around saddle points) by relating to the gradient of the start-
ing point of each epoch (see Line 4 of Algorithm 3). This proof requires several modifications since
we use stochastic gradients for vsm.

47

LI AND LI

Lemma 20 (Two Situations) For any epoch s, let xt be a point uniformly sampled from this epoch
{xj}(s+1)m

j=sm+1 and choose the step size η ≤ 1
(1+2C′)L (where C ′ = O(log dm

ζ′

√
log d

ζ′) = Õ(1))

and the minibatch size b ≥ m. Then for any ε > 0, by letting batch size B ≥ 256C2
3σ

2

ε2
(where

C3 = O(log d
ζ′) = Õ(1)), we have two cases:

1. If at least half of points in this epoch have gradient norm no larger than ε
2 , then ‖∇f(x(s+1)m)‖ ≤

ε
2 and ‖v(s+1)m‖ ≤ ε hold with probability at least 1/3;

2. Otherwise, we know f(xsm)− f(xt) ≥ 7ηmε2

256 holds with probability at least 1/5.

Moreover, f(xt) ≤ f(xsm) +
(t−sm)ηC2

3σ
2

B holds with high probability 1 − 3mζ ′ no matter which
case happens.

Proof of Lemma 20. There are two cases in this epoch:

1. If at least half of points in this epoch {xj}(s+1)m
j=sm+1 have gradient norm no larger than ε

2 , then
it is easy to see that a uniformly sampled point xt has gradient norm ‖∇f(xt)‖ ≤ ε

2 with
probability at least 1/2.Moreover, note that the starting point of the next epoch x(s+1)m = xt
(i.e., Line 20 of Algorithm 3), thus we have ‖∇f(x(s+1)m)‖ ≤ ε

2 with probability 1/2.
According to (102), we have ‖v(s+1)m − ∇f(x(s+1)m)‖ ≤ C3σ√

B
with probability 1 − ζ ′,

where C = O(log d
ζ′) = Õ(1). By a union bound, with probability at least 1/3 (e.g., choose

ζ ′ ≤ 1/6), we have

‖v(s+1)m‖ ≤
C3σ√
B

+
ε

2
≤ ε

16
+
ε

2
≤ ε.

2. Otherwise, at least half of points have gradient norm larger than ε
2 . Then, as long as the sam-

pled point xt falls into the last quarter of {xj}(s+1)m
j=sm+1, we know

∑t
j=sm+1 ‖∇f(xj−1)‖2 ≥

mε2

16 . This holds with probability at least 1/4 since xt is uniformly sampled. Then by com-
bining with (108), we obtain that the function value decreases

f(xsm)−f(xt) ≥
η

2

t∑
j=sm+1

‖∇f(xj−1)‖2− (t− sm)ηC2
3σ

2

B
≥ ηmε2

32
− ηmε

2

256
=

7ηmε2

256
,

where the last inequality is due to B ≥ 256C2
3σ

2

ε2
. Note that (108) holds with high probability

1− 3mζ ′ if we choose the minibatch size b ≥ m and the step size η ≤ 1
(1+2C′)L . By a union

bound, the function value decrease f(xsm)−f(xt) ≥ ηmε2

64 with probability at least 1/5 (e.g.,
choose ζ ′ ≤ 1/60m).

Again according to (108), f(xt) ≤ f(xsm) +
(t−sm)ηC2

3σ
2

B holds with high probability 1− 3mζ ′. �
Note that if Case 2 happens, the function value would decrease significantly in this epoch s

(corresponding to the first situation large gradients). Otherwise if Case 1 happens, we know the
starting point of the next epoch x(s+1)m = xt (i.e., Line 20 of Algorithm 3), then we know
‖∇f(x(s+1)m)‖ ≤ ε

2 and ‖v(s+1)m‖ ≤ ε. In this case, we start a super epoch (corresponding

48

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

to the second situation around saddle points). Note that if λmin(∇2f(x(s+1)m)) > −δ, the point
x(s+1)m is already an (ε, δ)-local minimum.

Around Saddle Points ‖v(s+1)m‖ ≤ ε and λmin(∇2f(x(s+1)m)) ≤ −δ: In this situation, we show
that the function value decreases significantly in a super epoch with high probability by adding a
random perturbation at the initial point x̃ = x(s+1)m. We denote x0 := x̃+ ξ to denote the starting
point of the super epoch after the perturbation, where ξ uniformly ∼ B0(r) and the perturbation
radius is r (see Line 7 of Algorithm 3). Again, we follow the two-point analysis developed in Jin
et al. (2017). In particular, consider two coupled points x0 and x′0 with w0 := x0 − x′0 = r0e1,
where r0 is a scalar and e1 denotes the smallest eigenvector direction of HessianH := ∇2f(x̃). We
show that at least for one of these two coupled sequences {xt} and {x′t}, the function value decrease
a lot (escape the saddle point), i.e.,

∃t ≤ tthres, such that max{f(x0)− f(xt), f(x′0)− f(x′t)} ≥ 2fthres. (109)

The proof outline of (109) is the same as that in Section D.2. We assume by contradiction that
f(x0) − f(xt) < 2fthres and f(x′0) − f(x′t) < 2fthres. Similar to Lemma 17 and Lemma 18, we
need the following two technical lemmas in the online setting. Their proofs are deferred to the end
of this section.

Lemma 21 (Localization) Let {xt} denote the sequence by running SSRGD update steps (Line 9–
13 of Algorithm 3) from x0. Moreover, let the step size η ≤ 1

(1+2C′)L and minibatch size b ≥ m.
With probability 1− 3tζ ′, we have

∀t ≥ 0, ‖xt − x0‖ ≤
√

4t(f(x0)− f(xt))

C ′L
+

4t2ηC2
3σ

2

C ′LB
, (110)

where C ′ = O(log dm
ζ′

√
log d

ζ′) = Õ(1) and C3 = O(log d
ζ′) = Õ(1).

Lemma 22 (Small Stuck Region) If the initial point x̃ satisfies −γ := λmin(∇2f(x̃)) ≤ −δ,
then let {xt} and {x′t} be two coupled sequences by running SSRGD update steps (Line 9–13
of Algorithm 3) with the same choice of batches and minibatches (i.e., IB’s in Line 9 of Algo-
rithm 3 and Ib’s in Line 13 of Algorithm 3) from x0 and x′0 with w0 := x0 − x′0 = r0e1, where
x0 ∈ Bx̃(r), x′0 ∈ Bx̃(r) , r0 = ζ′r√

d
and e1 denotes the smallest eigenvector direction of Hes-

sian ∇2f(x̃). Moreover, let the super epoch length tthres =
log(8δ

√
d

ρrζ′)

ηδ = Õ(1
ηδ), the step size

η ≤ 1
30(1+log tthres)C′L

= Õ(1
L), minibatch size b ≥ m, batch size B = Õ(σ

2

ε2
) and the perturbation

radius r ≤ δ
C1ρ

. Then with probability 1− 3Tζ ′, we have

∃T ≤ tthres, max{‖xT − x0‖, ‖x′T − x′0‖} ≥
δ

C1ρ
, (111)

where where C ′ = O(log dm
ζ′

√
log d

ζ′) = Õ(1) and C1 ≥ 1 + 96C ′ log(8δ
√
d

ρrζ′) = Õ(1).

Based on these two lemmas, we are ready to show that (109) holds with high probability. With-
out loss of generality, we assume ‖xT − x0‖ ≥ δ

C1ρ
in (111) (note that (110) holds for both {xt}

49

LI AND LI

and {x′t}). Then plugging it into (110), we obtain√
4T (f(x0)− f(xT))

C ′L
+

4T 2ηC2
3σ

2

C ′LB
≥ δ

C1ρ
(112)

Hence, we can see that

f(x0)− f(xT) ≥ C ′Lδ2

4C2
1ρ

2T
− TηC2

3σ
2

B

≥ C ′Lηδ3

4C2
1ρ

2 log(8δ
√
d

ρrζ′)
−
C2

3σ
2 log(8δ

√
d

ρrζ′)

Bδ
(113)

≥ δ3

C ′1ρ
2

(114)

def
= 2fthres,

where the last equality is due to the definition of fthres := δ3

2C′1ρ
2 = Õ(δ

3

ρ2
), (113) is due to T ≤

tthres :=
log(8δ

√
d

ρrζ′)

ηδ , and (114) holds by letting C ′1 =
8C2

1 log(8δ
√
d

ρrζ′)

C′Lη = Õ(1). Recall that B = Õ(σ
2

ε2
)

and ε ≤ δ2/ρ. Thus, we have already proved that at least one of sequences {xt} and {x′t} escapes
the saddle point with probability 1− 6Tζ ′ (by union bound of (110) and (111)), i.e.,

∃T ≤ tthres, max{f(x0)− f(xT), f(x′0)− f(x′T)} ≥ 2fthres, (115)

if their starting points x0 and x′0 satisfying w0 := x0 − x′0 = r0e1.
Next, using exactly the same volume argument as in Section D.2, we obtain that

f(x̃)− f(xT) = f(x̃)− f(x0) + f(x0)− f(xT) ≥ −fthres + 2fthres =
δ3

2C ′1ρ
2

(116)

holds with probability 1 − (6T + 1)ζ ′ ≥ 1 − 7tthresζ
′, where C ′1 = Õ(1). Here we use the fact

f(x0) ≤ f(x̃) + fthres which follows from (68). Hence, we have finished the proof for the second
situation (around saddle points).

Combing these two situations (large gradients and around saddle points) to prove Theorem 9:
We distinguishing the epochs into three types, Type-1 useful epoch, Wasted epoch and Type-2 useful
super epoch in exactly the same way as in Section D.2. Recall in a Type-1 useful epoch, at least
half of points in this epoch have gradient norm larger than ε/2 (Case 2 of Lemma 20). If at least
half of points in this epoch have gradient norm no larger than ε/2 and the starting point of the next
epoch has estimated gradient norm larger than ε, we say it is a wasted epoch. In a Type-2 useful
super epoch, at least half of points in this epoch have gradient norm no larger than ε and the starting
point of the next epoch has estimated gradient norm no larger than ε (Case 1 of Lemma 20). The
argument is very similar to the one in Section D.2 as well, except some quantitative details.

First, we can see that the probability of a wasted epoch happened is less than 2/3 due to the
random stop (see Case 1 of Lemma 20). Note for different wasted epochs, returned points are
independently sampled. Thus, with high probability 1 − ζ ′, at most O(log 1

ζ′) = Õ(1) wasted

50

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

epochs would happen before a type-1 useful epoch or type-2 useful super epoch. We use N1 and
N2 to denote the number of type-1 useful epochs and type-2 useful super epochs.

For type-1 useful epoch, according to Case 2 of Lemma 20, we know that the function value
decreases at least 7ηmε2

256 with probability at least 1/5. Using a union bound, we know that with
probability 1 − 4N1/5, N1 type-1 useful epochs will decrease the function value at least 7ηmε2N1

1280 .
Note that the function value can decrease at most ∆0 := f(x0)−f∗ and also recall that the function
value can only increase at most ηmC2

3σ
2

B with high probability 1 − 3mζ ′ for any (wasted) epoch,
where C3 = O(log d

ζ′) = Õ(1) (see Lemma 20). By choosing B = Õ(σ
2

ε2
) and small enough ζ ′,

N1 type-1 useful epochs will decrease the function value at least ηmε
2N1

200 with probability at least
1 − Õ(N1mζ

′) by a union bound. We can let ζ ′ ≤ Õ(1/N1m). So let ηmε2N1

200 ≤ ∆0, we get
N1 ≤ 200∆0

ηmε2
.

For type-2 useful super epoch, first we know that the starting point of the super epoch x̃ :=
x(s+1)m has gradient norm ‖∇f(x̃)‖ ≤ ε/2 and estimated gradient norm ‖v(s+1)m‖ ≤ ε. Now if
λmin(∇2f(x̃)) ≥ −δ, then x̃ is already a (ε, δ)-local minimum. Otherwise, ‖v(s+1)m‖ ≤ ε and
λmin(∇2f(x̃)) ≤ −δ, this is exactly our second situation (around saddle points). According to
(116), we know that the the function value decrease (f(x̃)− f(xT)) is at least fthres = δ3

2C′1ρ
2 with

probability at least 1 − 7tthresζ
′ ≥ 1/2 (let ζ ′ ≤ 1/14tthres), where C ′1 = Õ(1). Similar to type-1

useful epoch, we knowN2 ≤
4C′1ρ

2∆0

δ3
with probability at least 1−Õ(N2tthresζ

′) by a union bound.
We can let ζ ′ ≤ Õ(1/N2tthres).

Now, we are ready to bound the number of SFO calls in Theorem 9 (online) as follows:

N1(Õ(1)B +B +mb) +N2(Õ(1)B +
⌈ tthres

m

⌉
B + tthresb)

≤ Õ
(∆0σ

ηε2ε
+
ρ2∆0

δ3
(
σ2

ε2
+

σ

ηδε
)
)

≤ Õ
(L∆0σ

ε3
+
ρ2∆0σ

2

ε2δ3
+
Lρ2∆0σ

εδ4

)
. (117)

By a union bound of these types and set ζ = Õ(N1m+N2tthres)ζ
′ (note that ζ ′ only appears in the

log term log(1
ζ′), so it can be chosen as small as we want), we know that the SFO calls of SSRGD

can be bounded by (117) with probability 1 − ζ. This finishes the proof of Theorem 9 (the online
case). Now, the only remaining thing is to prove Lemma 21 and 22.

Proof of Lemma 21. First, we know that the variance bound (105) holds with probability 1 − 3ζ ′.
Then by a union bound, it holds with probability 1− 3tζ ′ for all 0 ≤ j ≤ t− 1. Then, according to
(107), we know for any τ ≤ t in some epoch s

f(xτ) ≤ f(xsm)− η

2

τ∑
j=sm+1

‖∇f(xj−1)‖2 −
(1

2η
− L

2
− ηC ′2L2

) τ∑
j=sm+1

‖xj − xj−1‖2

+
(τ − sm)ηC2

3σ
2

B

≤ f(xsm)−
(1

2η
− L

2
− ηC ′2L2

) τ∑
j=sm+1

‖xj − xj−1‖2 +
(τ − sm)ηC2σ2

B

51

LI AND LI

≤ f(xsm)− C ′L

4

τ∑
j=sm+1

‖xj − xj−1‖2 +
(τ − sm)ηC2

3σ
2

B
, (118)

where the last inequality holds since the step size η ≤ 1
(1+2C′)L . Recall thatC ′ = O(log dm

ζ′

√
log d

ζ′) =

Õ(1) and C3 = O(log d
ζ′) = Õ(1). Now, we sum up (118) for all epochs before iteration t,

f(xt) ≤ f(x0)− C ′L

4

t∑
j=1

‖xj − xj−1‖2 +
tηC2σ2

B
.

Then, the proof is finished as

‖xt − x0‖ ≤
t∑

j=1

‖xj − xj−1‖ ≤

√√√√t
t∑

j=1

‖xj − xj−1‖2 ≤
√

4t(f(x0)− f(xt))

C ′L
+

4t2ηC2
3σ

2

C ′LB
.

�

Proof of Lemma 22. We prove this lemma by contradiction. Assume the contrary,

∀t ≤ T, ‖xt − x0‖ ≤
δ

C1ρ
and ‖x′t − x′0‖ ≤

δ

C1ρ
, (119)

where T :=
log(8δ

√
d

ρrζ′)

ηγ ≤ tthres :=
log(8δ

√
d

ρrζ′)

ηδ (note that γ ≥ δ due to −γ := λmin(∇2f(x̃)) ≤
−δ). We will show that the distance between these two coupled sequences wt := xt − x′t grows
exponentially since they have a gap in the e1 direction at the beginning, i.e., w0 := x0 − x′0 =

r0e1, where r0 = ζ′r√
d

and e1 denotes the smallest eigenvector direction of Hessian H := ∇2f(x̃).

However, ‖wt‖ = ‖xt−x′t‖ ≤ ‖xt−x0‖+‖x0− x̃‖+‖x′t−x′0‖+‖x′0− x̃‖ ≤ 2r+2 δ
C1ρ

according
to (119) and the perturbation radius r. It is not hard to see that if ‖wt‖ increases exponentially, this
inequality cannot be true for reasonably large t, rendering a contradiction.

In the following, we prove the exponential increase of ‖wt‖ by induction. First, recall the
expression of wt in (73) and (74):

wt = (I − ηH)wt−1 − η(∆t−1wt−1 + yt−1) (120)

= (I − ηH)tw0 − η
t−1∑
τ=0

(I − ηH)t−1−τ (∆τwτ + yτ), (121)

where ∆τ :=
∫ 1

0 (∇2f(x′τ + θ(xτ − x′τ))−H)dθ and yτ := vτ −∇f(xτ)− v′τ +∇f(x′τ).
Again, to show the exponential increase of ‖wt‖, it is sufficient to show that the first term of

(121) dominates the second term. To this end, we show the following bound, which is almost the
same as Lemma 19, except that the succeed probability changes to 1− 3Tζ ′.

Lemma 23 Supposew0 := x0−x′0 = r0e1 where r0 = ζ′r√
d

and e1 is the eigenvector corresponding

to the smallest eigenvalue of HessianH := ∇2f(x̃). If (119) holds, then with probability 1− 3Tζ ′,
the following bounds hold for all t ≤ T :

52

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

1. 1
2(1 + ηγ)tr0 ≤ ‖wt‖ ≤ 3

2(1 + ηγ)tr0;

2. ‖yt‖ ≤ γ
4C2

(1 + ηγ)tr0.

where C2 := log(8δ
√
d

ρrζ′).

Proof of Lemma 23. First, check the base case t = 0, ‖w0‖ = ‖r0e1‖ = r0 holds for Bound
1. However, the base case of Bound 2 requires more work. Here, we use Bernstein inequality
(Proposition 13) to show that ‖y0‖ = ‖v0−∇f(x0)− v′0 +∇f(x′0)‖ ≤ ηγLr0. According to Line
9 of Algorithm 3, we know that v0 = 1

B

∑
j∈IB ∇fj(x0) and v′0 = 1

B

∑
j∈IB ∇fj(x

′
0) (recall that

these two coupled sequence {xt} and {x′t} use the same choice of batches and minibatches (i.e.,
same IB’s and Ib’s). Now, we have

y0 = v0 −∇f(x0)− v′0 +∇f(x′0)

=
1

B

∑
j∈IB

∇fj(x0)−∇f(x0)− 1

B

∑
j∈IB

∇fj(x′0) +∇f(x′0)

=
1

B

∑
j∈IB

(
∇fj(x0)−∇fj(x′0)− (∇f(x0)−∇f(x′0))

)
. (122)

We first bound the norm of each individual term of (122):

‖∇fj(x0)−∇fj(x′0)− (∇f(x0)−∇f(x′0))‖ ≤ 2L‖x0 − x′0‖ = 2L‖w0‖ = 2Lr0, (123)

where the inequality holds due to the gradient Lipschitz Assumption 5. Then, consider the corre-
sponding variance:

E
[∑
j∈IB

‖∇fj(x0)−∇fj(x′0)− (∇f(x0)−∇f(x′0))‖2
]

≤ BEj [‖∇fj(x0)−∇fj(x′0)‖2] ≤ BL2‖x0 − x′0‖2 = BL2‖w0‖2 = BL2r2
0, (124)

where the first inequality uses the fact E[‖x − Ex‖2] ≤ E[‖x‖2], and the last inequality uses the
gradient Lipschitz Assumption 5. According to (123) and (124), we can bound ‖y0‖ by Bernstein
inequality (Proposition 13) as

P
{∥∥y0

∥∥ ≥ α

B

}
≤ (d+ 1) exp

(−α2/2

σ2 +Rα/3

)
= (d+ 1) exp

(−α2/2

BL2r2
0 + 2Lr0α/3

)
= ζ ′,

where the last equality holds by letting α = C3L
√
Br0, whereC3 = O(log d

ζ′). By further choosing

B = Õ(σ
2

ε2
), we can see that the base case

‖y0‖ ≤
C3Lr0√

B
≤ γ

8C2
r0, (125)

53

LI AND LI

holds with probability 1− ζ ′.
Now, we proceed to the induction step: Assuming Bound 1 and Bound 2 hold for all τ ≤ t− 1,

we now prove they hold for t. For Bound 1, same arguments as in Lemma 19 can show that the
second term of (121) is dominated by half of the first term. We do not repeat the proof which are
exactly the same. Note that the first term of (121) is ‖(I − ηH)tw0‖ = (1 + ηγ)tr0. Thus, we have
the first bound:

1

2
(1 + ηγ)tr0 ≤ ‖wt‖ ≤

3

2
(1 + ηγ)tr0 (126)

Now, we proceed to the second bound ‖yt‖ ≤ γ
4C2

(1 + ηγ)tr0. Define

β :=

√√√√8
t∑

k=sm+1

c2
k log

d

ζ ′
=
C ′√
b

√√√√ t∑
k=sm+1

(L‖wt − wt−1‖+ ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖)2,

where C ′ = O(C
√

log d
ζ′) = O(log d

ζk

√
log d

ζ′) = Õ(1) and ζk = ζ ′/m. The same proof as in
Lemma 19 show that

P
{∥∥yt − ysm∥∥ ≥ β} ≤ (d+ 1) exp

(−β2

8
∑t

k=sm+1 c
2
k

)
+ ζ ′ = 2ζ ′. (127)

Recall that yk := vk −∇f(xk)− v′k +∇f(x′k) and at the beginning point of this epoch ysm =
‖vsm−∇f(xsm)−v′sm+∇f(x′sm)‖ ≤ γ

8C2
r0 with probability 1− ζ ′ (see (125)). Combining with

(127) and using a union bound, for any t ∈ [sm+ 1, (s+ 1)m], we have that

‖yt‖ ≤ β + ‖ysm‖ ≤
C ′√
b

√√√√ t∑
k=sm+1

(L‖wt − wt−1‖+ ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖)2 +
γ

8C2
r0

(128)

holds with probability 1 − 3ζ ′. Furthermore, by a union bound, we know that (128) holds with
probability at least 1− 3Tζ ′ for all t ≤ T .

Now, we bound the right-hand-side of (128) to finish the proof. The proof will be the same as
in Lemma 19. The last two terms inside the square root can be bounded as in (90):

ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖ ≤
6δ

C1
(1 + ηγ)tr0, (129)

The first term in the square root can also be bounded in the same way as in (91)–(100):

L‖wt − wt−1‖ ≤
(3

2
+

3(1 + log t)

C1
+

1 + log t

4C2

)
Lηγ(1 + ηγ)t−1r0. (130)

By plugging (129) and (130) into (128), we have

‖yt‖ ≤ C ′
(

6δ

C1
(1 + ηγ)tr0 +

(3

2
+

3(1 + log t)

C1
+

1 + log t

4C2

)
Lηγ(1 + ηγ)t−1r0

)
+

γ

8C2
r0

54

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

≤
(6C ′

C1
+
(3

2
+

3(1 + log t)

C1
+

1 + log t

4C2

)
C ′Lη

)
γ(1 + ηγ)tr0 +

γ

8C2
r0

≤
(1

16C2
+

1

16C2

)
γ(1 + ηγ)tr0 +

γ

8C2
r0

=
1

4C2
γ(1 + ηγ)tr0, (131)

where the second inequality holds due to δ ≤ γ (recall −γ := λmin(H) = λmin(∇2f(x̃)) ≤ −δ),
and the last inequality holds by letting C1 ≥ 1 + 96C ′C2 (recall that C2 := log(8δ

√
d

ρrζ′) defined in
Lemma 23), and η ≤ 1

30(1+log t)C′L . Recall that (128) holds with probability at least 1 − 3Tζ ′ for
all t ≤ T . This finishes the proof of Lemma 23. �

From the Lemma 23, one can see that ‖wt‖ ≥ 1
2(1 + ηγ)tr0 = 1

2(1 + ηγ)t ζ
′r√
d

. On the other

hand, ‖wt‖ := ‖xt−x′t‖ ≤ ‖xt−x0‖+‖x0−x̃‖+‖x′t−x′0‖+‖x′0−x̃‖ ≤ 2r+2 δ
C1ρ
≤ 4δ

C1ρ
according

to (119) and the perturbation radius r ≤ δ
C1ρ

. Hence, for any t ≥ T = 1
ηγ log(8δ

√
d

ρrζ′), we get a

contradiction to (119), i.e., ‖wt‖ ≥ 1
2(1 + ηγ)T ζ

′r√
d
≥ 4δ

ρ ≥
4δ
C1ρ

, whereC1 ≥ 1+96C ′ log(8δ
√
d

ρrζ′) ≥

1 defined in Lemma 22. Also note that T = 1
ηγ log(8δ

√
d

ρrζ′) ≤ tthres := 1
ηδ log(8δ

√
d

ρrζ′) due to δ ≤ γ.
This contradiction finishes the proof of Lemma 22. �

D.4 Proof of Theorem 10 (Under third-order Lipschitzness assumption)

Proof of Theorem 10. The proof is similar to the proof for the online case of Theorem 9 provided
in Section D.3. Again, we distinguish two situations, the large gradients case, in which the function
value decreases significantly, and the around saddle points case. The proof for the first case (large
gradients) is exactly same as in the first case in Section D.3 (i.e., Lemma 20).

The difference is in the second case (around saddle points). In previous Section D.3, we add a
random perturbation at the starting point of the super epoch. Concretely, we show that the function
value decreases a lot in this super epoch with high probability (see (116)), i.e.,

∃T ≤ tthres, f(x̃)− f(xT) ≥ fthres =
δ3

2C ′1ρ
2

(132)

holds with probability at least 1 − 7tthresζ
′, where C ′1 = Õ(1). Recall that the super epoch length

tthres := 1
ηδ log(8δ

√
d

ρrζ′) = Õ(1
ηδ) (see Lemma 22) and x̃ is the starting point of this super epoch.

However, for Theorem 10 which further assumes the L3-Lipschitz of third-order derivative (i.e.,
Assumption 7), one can show that the function value decreases by a larger amount (improving a
factor of δ), i.e., 3δ2

8L3
in (133) instead of δ3

2C′1ρ
2 in (132). Finally we can see that the result of

Theorem 10 indeed improves the previous online case of Theorem 9 by a factor of δ. Now we
formalize the proof of Theorem 10 in this second case (around saddle points). Here we directly
reuse the function value decrease lemma provided in Yu et al. (2017). Note that here we can remove
the expectation in Lemma 4.6 of Yu et al. (2017) by choosing y = arg miny∈{y−,y+} f(y).

Lemma 24 (Lemma 4.6 in (Yu et al., 2017)) Suppose that Assumptions 5, 6 and 7 hold. If the
start point x̃ satisfies λmin(∇2f(x̃)) ≤ −δ. Then one can apply a negative curvature search step
for finding a direction to decrease the function value. In particular, Neon2online (Allen-Zhu and Li,

55

LI AND LI

2018) can return a point y such that

f(x̃)− f(y) ≥ 3δ2

8L3
(133)

holds with probability 1 − ζ ′ and the total number of stochastic gradient computations is at most
T = O(L

2

δ2
log2 d

ζ′) = Õ(L
2

δ2
).

Now, we are ready to combine these two situations (large gradients and around saddle points)
to prove Theorem 10. The arguments are similar to that in Section D.3. The only difference is that
here we replace super epoch step by the negative curvature search step (i.e., replace (132) by (133))
in the around saddle points situation. Concretely, i) for large gradients situation, N1 type-1 useful
epochs will decrease the function value at least ηmε2N1

200 with probability at least 1 − Õ(N1mζ
′)

by a union bound. We can let ζ ′ ≤ Õ(1/N1m). So let ηmε2N1

200 ≤ ∆0, we get N1 ≤ 200∆0
ηmε2

. ii)
for around saddle points situation, according to (133), we know that the the function value decrease
(f(x̃)−f(y)) is 3δ2

8L3
with probability at least 1−ζ ′. Similar to the large gradients situation, we know

N2 ≤ 16L3∆0
3δ2

with probability at least 1 − Õ(N2ζ
′) by a union bound. We can let ζ ′ ≤ Õ(1/N2).

Now, we bound the number of SFO calls in Theorem 10 (online case under third-order Lipschitz)
as follows:

N1(Õ(1)B +B +mb) +N2(Õ(1)B + T) ≤ Õ
(L∆0σ

ε3
+
L3∆0σ

2

ε2δ2
+
L3L

2∆0

δ4

)
. (134)

By a union bound of these types and set ζ = Õ(N1m+N2)ζ ′ (note that ζ ′ only appears in the log
term log(1

ζ′), so it can be chosen as small as we want), we know that the SFO calls can be bounded
by (134) with probability 1− ζ. �

References

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approxi-
mate local minima for nonconvex optimization in linear time. arXiv preprint arXiv:1611.01146,
2016.

Zeyuan Allen-Zhu. Katyusha: the first direct acceleration of stochastic gradient methods. In Sym-
posium on Theory of Computing, pages 1200–1205. ACM, 2017.

Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than SGD. In Advances in Neural
Information Processing Systems, pages 2680–2691, 2018.

Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. In Ad-
vances in Neural Information Processing Systems, pages 3720–3730, 2018.

Animashree Anandkumar and Rong Ge. Efficient approaches for escaping higher order saddle
points in non-convex optimization. In Conference on learning theory, pages 81–102, 2016.

Mihai Anitescu. Degenerate nonlinear programming with a quadratic growth condition. SIAM
Journal on Optimization, 10(4):1116–1135, 2000.

56

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search for
low rank matrix recovery. In Advances in Neural Information Processing Systems, pages 3873–
3881, 2016.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for non-
convex optimization. arXiv preprint arXiv:1611.00756, 2016.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. “convex until proven guilty”:
Dimension-free acceleration of gradient descent on non-convex functions. In International Con-
ference on Machine Learning, pages 654–663. PMLR, 2017.

Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey. In-
ternet Mathematics, 3(1):79–127, 2006.

Hadi Daneshmand, Jonas Kohler, Aurelien Lucchi, and Thomas Hofmann. Escaping saddles with
stochastic gradients. In International Conference on Machine Learning, pages 1155–1164, 2018.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural Infor-
mation Processing Systems, pages 1646–1654, 2014.

Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos. Gradient
descent can take exponential time to escape saddle points. In Advances in Neural Information
Processing Systems, pages 1067–1077, 2017.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. In Advances in Neural Infor-
mation Processing Systems, pages 687–697, 2018.

Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex sgd escaping from saddle
points. In Conference on Learning Theory, pages 1192–1234, 2019.

Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. EF21 with
bells & whistles: Practical algorithmic extensions of modern error feedback. arXiv preprint
arXiv:2110.03294, 2021.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points — online stochastic
gradient for tensor decomposition. In Conference on Learning Theory, pages 797–842, 2015.

Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In
Advances in Neural Information Processing Systems, pages 2973–2981, 2016.

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape
design. arXiv preprint arXiv:1711.00501, 2017.

Rong Ge, Zhize Li, Weiyao Wang, and Xiang Wang. Stabilized SVRG: Simple variance reduction
for nonconvex optimization. In Conference on learning theory, pages 1394–1448. PMLR, 2019.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

57

LI AND LI

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation meth-
ods for nonconvex stochastic composite optimization. Mathematical Programming, 155(1-2):
267–305, 2016.

Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
convex distributed learning with compression. In International Conference on Machine Learning,
pages 3788–3798. PMLR, 2021.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In International Conference on Machine Learning, pages 1724–1732,
2017.

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes sad-
dle points faster than gradient descent. In Conference On Learning Theory, pages 1042–1085.
PMLR, 2018.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. Stochastic gradient
descent escapes saddle points efficiently. arXiv preprint arXiv:1902.04811, 2019.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning.
In International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t jump through hoops and remove those
loops: SVRG and Katyusha are better without the outer loop. arXiv preprint arXiv:1901.08689,
2019.

Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. arXiv preprint
arXiv:1507.02000, 2015.

Guanghui Lan and Yi Zhou. Random gradient extrapolation for distributed and stochastic optimiza-
tion. SIAM Journal on Optimization, 28(4):2753–2782, 2018.

Guanghui Lan, Zhize Li, and Yi Zhou. A unified variance-reduced accelerated gradient method
for convex optimization. In Advances in Neural Information Processing Systems, pages 10462–
10472, 2019.

Lihua Lei and Michael Jordan. Less than a single pass: Stochastically controlled stochastic gradient.
In Artificial Intelligence and Statistics, pages 148–156, 2017.

58

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization via
SCSG methods. In Advances in Neural Information Processing Systems, pages 2345–2355, 2017.

Boyue Li, Zhize Li, and Yuejie Chi. DESTRESS: Computation-optimal and communication-
efficient decentralized nonconvex finite-sum optimization. SIAM Journal on Mathematics of
Data Science, 4(3):1031–1051, 2022a.

Zhize Li. SSRGD: Simple stochastic recursive gradient descent for escaping saddle points. In
Advances in Neural Information Processing Systems, pages 1523–1533, 2019.

Zhize Li. ANITA: An optimal loopless accelerated variance-reduced gradient method. arXiv
preprint arXiv:2103.11333, 2021.

Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. In Advances in Neural Information Processing Systems, pages 5569–5579, 2018.

Zhize Li and Peter Richtárik. A unified analysis of stochastic gradient methods for nonconvex
federated optimization. arXiv preprint arXiv:2006.07013, 2020.

Zhize Li and Peter Richtárik. CANITA: Faster rates for distributed convex optimization with com-
munication compression. In Advances in Neural Information Processing Systems, pages 13770–
13781, 2021a.

Zhize Li and Peter Richtárik. ZeroSARAH: Efficient nonconvex finite-sum optimization with zero
full gradient computation. arXiv preprint arXiv:2103.01447, 2021b.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradi-
ent descent in distributed and federated optimization. In International Conference on Machine
Learning, pages 5895–5904. PMLR, 2020.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal prob-
abilistic gradient estimator for nonconvex optimization. In International Conference on Machine
Learning, pages 6286–6295. PMLR, 2021.

Zhize Li, Haoyu Zhao, Boyue Li, and Yuejie Chi. SoteriaFL: A unified framework for private
federated learning with communication compression. arXiv preprint arXiv:2206.09888, 2022b.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization.
In Advances in Neural Information Processing Systems, pages 3384–3392, 2015.

Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible descent methods:
a general approach. Annals of Operations Research, 46(1):157–178, 1993.

Ion Necoara, Yurii Nesterov, and Francois Glineur. Linear convergence of first order methods for
non-strongly convex optimization. arXiv preprint arXiv:1504.06298, 2015.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, 2004.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method for
machine learning problems using stochastic recursive gradient. In International Conference on
Machine Learning, pages 2613–2621, 2017.

59

LI AND LI

Nhan H Pham, Lam M Nguyen, Dzung T Phan, and Quoc Tran-Dinh. ProxSARAH: An effi-
cient algorithmic framework for stochastic composite nonconvex optimization. arXiv preprint
arXiv:1902.05679, 2019.

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In International Conference on Machine Learning, pages
314–323, 2016a.

Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alexander J Smola. Proximal stochastic methods
for nonsmooth nonconvex finite-sum optimization. In Advances in Neural Information Process-
ing Systems, pages 1145–1153, 2016b.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better, and
practically faster error feedback. In Advances in Neural Information Processing Systems, pages
4384–4396, 2021.

Peter Richtárik, Igor Sokolov, Elnur Gasanov, Ilyas Fatkhullin, Zhize Li, and Eduard Gorbunov.
3PC: Three point compressors for communication-efficient distributed training and a better theory
for lazy aggregation. In International Conference on Machine Learning, pages 18596–18648.
PMLR, 2022.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. arXiv preprint arXiv:1309.2388, 2013.

Terence Tao and Van Vu. Random matrices: Universality of local spectral statistics of non-hermitian
matrices. The Annals of Probability, 43(2):782–874, 2015.

Joel A Tropp. User-friendly tail bounds for matrix martingales. Technical report, CALIFORNIA
INST OF TECH PASADENA, 2011.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational
mathematics, 12(4):389–434, 2012.

Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. SpiderBoost and momentum:
Faster variance reduction algorithms. In Advances in Neural Information Processing Systems,
pages 2406–2416, 2019.

Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.
In Advances in Neural Information Processing Systems, pages 3639–3647, 2016.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduc-
tion. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Yi Xu, Jing Rong, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle
points in almost linear time. In Advances in Neural Information Processing Systems, pages 5535–
5545, 2018.

60

NONSMOOTH NONCONVEX OPTIMIZATION AND ESCAPING SADDLE POINTS

Yaodong Yu, Pan Xu, and Quanquan Gu. Third-order smoothness helps: Even faster stochastic
optimization algorithms for finding local minima. arXiv preprint arXiv:1712.06585, 2017.

Haoyu Zhao, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. Faster rates for compressed
federated learning with client-variance reduction. arXiv preprint arXiv:2112.13097, 2021a.

Haoyu Zhao, Zhize Li, and Peter Richtárik. FedPAGE: A fast local stochastic gradient method for
communication-efficient federated learning. arXiv preprint arXiv:2108.04755, 2021b.

Haoyu Zhao, Boyue Li, Zhize Li, Peter Richtárik, and Yuejie Chi. BEER: Fast O(1/T) rate
for decentralized nonconvex optimization with communication compression. arXiv preprint
arXiv:2201.13320, 2022.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Finding local minima via stochastic nested variance
reduction. arXiv preprint arXiv:1806.08782, 2018a.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
optimization. In Advances in Neural Information Processing Systems, pages 3921–3932, 2018b.

61

	Introduction
	Our Contributions
	Nonsmooth nonconvex optimization
	PL setting
	Finding local minimum
	Comparison with the preliminary conference papers
	Organization

	Preliminaries
	ProxSVRG+
	Convergence results of ProxSVRG+

	SSRGD
	Convergence results of SSRGD

	Faster Linear Convergence under PL Condition
	ProxSVRG+ under PL Condition
	SSRGD under PL Condition

	Finding Approximate Local Minima
	Convergence results of SSRGD for finding approximate local minima

	Missing Proofs for Section 4 ProxSVRG+
	Missing Proofs for Section 5 SSRGD
	Missing Proofs for Section 6 PL Condition
	Proof for ProxSVRG+ under PL condition
	Proof for SSRGD under PL condition

	Missing Proofs for Section 7 Local Minima
	Tools
	Proof of Theorem 9 (finite-sum)
	Proof of Theorem 9 (online)
	Proof of Theorem 10 (Under third-order Lipschitzness assumption)

