Journal of Machine Learning Research 23 (2022) 1-42 Submitted 2/21; Revised 10/22; Published 11/22

Joint Continuous and Discrete Model Selection via
Submodularity

Jonathan Bunton J.BUNTON@UCLA.EDU
Paulo Tabuada TABUADA@QEE.UCLA.EDU
Department of Electrical € Computer Engineering

University of California, Los Angeles

420 Westwood Plaza, Box 951594

Los Angeles, CA 90095-1554, USA

Editor: Andreas Krause

Abstract

In model selection problems for machine learning, the desire for a well-performing model
with meaningful structure is typically expressed through a regularized optimization prob-
lem. In many scenarios, however, the meaningful structure is specified in some discrete
space, leading to difficult nonconvex optimization problems. In this paper, we connect
the model selection problem with structure-promoting regularizers to submodular function
minimization with continuous and discrete arguments. In particular, we leverage the theory
of submodular functions to identify a class of these problems that can be solved exactly and
efficiently with an agnostic combination of discrete and continuous optimization routines.
We show how simple continuous or discrete constraints can also be handled for certain
problem classes, and extend these ideas to a robust optimization framework. We also show
how some problems outside of this class can be embedded into the class, further extending
the class of problems our framework can accommodate. Finally, we numerically validate
our theoretical results with several proof-of-concept examples with synthetic and real-world
data, comparing against state-of-the-art algorithms.

Keywords: Submodularity, submodular function minimization, mixed continuous dis-
crete optimization, convex optimization, sparsity

1. Introduction

In many machine learning tasks, we require a model that not only performs a specified
task well, but also has some meaningful structure. Models with meaningful structure can,
for example, be easier to understand and implement. The desire for both accuracy and
meaningful structure is usually expressed in a regularized optimization problem:

migiegize f(x) 4+ Ag(x). (1)

In this problem, x is a choice of model parameters from a parameter space X, f: X - R
is a function that describes the misfit of the model with the selected parameters to the
given task (e.g., empirical risk), g : X — R is a function that expresses the deviation of
our selected model parameters from some desired structure, and A € R is a tradeoff
parameter.
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Problem (1) becomes difficult when the desired model structure is an inherently discrete
property, but the model parameters are continuous values x from a continuum X. A prime
example of this issue arises in feature selection for sparse regression, where we seek a linear
predictor x* € X C R” such that:

x* € argmin ||Ax — bH% + Al|x]|o, (2)
xeX

for some A € R™™ and b € R™, with ||x||2 the standard Euclidean norm on R, and
|Ix||o the £y pseudo-norm that counts the number of nonzero entries in the predictor x. The
desired structure, in this case, is a sparse predictor x € X. Sparsity, however, only depends
on the combinatorial choice of zero entries in the model parameters x, whereas the model
also requires a choice of continuous values for x € X.

Problems with this mixed dependence on both continuous and discrete properties of the
model parameters such as (2) are notoriously difficult, and even NP-Hard in general (Rauhut,
2010). A typical workaround is to replace the function describing model structure, g in prob-
lem (1), with a continuous relaxation that is more amenable to optimization. One of the
more celebrated instances of this approach is the relaxation of the ¢y pseudo-norm in (2) to
the convex ¢; norm ||x||1, which instead sums the absolute values of the vector x. While this
relaxation still encourages the intended structure, the minimizer for the relaxed problem
does not necessarily correspond to the minimizer for the initially specified problem (Bach
et al., 2012). Moreover, the well-known conditions for sparse recovery in regression prob-
lems, such as Restricted Isometry Properties (Candes and Tao, 2005), Null Space Properties
(Rauhut, 2010), and Irrepresentability Conditions (Zhao and Yu, 2006), are not applicable
to more general discrete functions g.

In contrast, in this work we identify conditions that allow us to directly solve the originally
posed regularized model-fitting problem (1) exactly and efficiently. To derive our new
conditions, we leverage submodularity, a property of functions that defines a boundary
between easy and hard optimization problems. Our approach stands in stark contrast to
existing methods, which either focus on submodularity in purely one domain (Bach, 2019)
or relies on restricted isometry or strong convexity constants that are NP-Hard to compute
(Elenberg et al., 2018; El Halabi and Jegelka, 2020).

Traditionally, submodularity is defined for functions on bounded discrete sets, where arbi-
trary function minimization is NP-Hard. When a function is submodular, however, it can
be minimized exactly in polynomial time (Schrijver, 2003). The definition of submodularity
extends to continuous functions as well, and recently the associated optimization guaran-
tees have also been extended (Bach, 2019; Bian et al., 2017). In particular, if a continuous
function is submodular, it can also be minimized exactly in polynomial time.

The natural next question—which is addressed in this work—to ask is if submodularity still
defines a boundary between easy and hard mized optimization problems such as (1), where
the function f in (1) is continuous, but the function g has a discrete co-domain. Our work
explores this boundary and identifies sufficient conditions, based on the submodularity of
both functions, under which the exact solution of problem (1) can be efficiently computed.
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Exploiting submodularity in these mixed scenarios is not a new idea, given its utility in
discrete optimization problems. Notable uses include establishing approximation guarantees
for greedy algorithms applied to sparsity-constrained optimization (Elenberg et al., 2018),
or in producing tight convex relaxations for set-function descriptions of desired sparsity
patterns (Bach et al., 2012).

As highlighted above, Bach (2019) shows that if a continuous function is submodular, it can
be discretized into a discrete submodular function, which can then be minimized exactly in
polynomial time. However, this discretization is only valid for compact subsets of continuous
spaces and necessarily introduces discretization error into the produced solution.

In a line of work similar to this one, authors in El Halabi and Jegelka (2020) propose convert-
ing the mixed problem to a purely discrete one without discretizing. They then advocate
using a specific submodular set function minimization algorithm for solving the discrete
problem, and give approximation guarantees under the assumption that the functions are
nearly submodular. Our proposed approach is similar, but our work instead focuses on
finding conditions under which an arbitrary choice (of potentially more efficient) algorithms
produce exact results, which leads to their choice as a special case.

The sufficient conditions we require may be violated in practice. Traditionally, violations
of submodularity are handled by suitably relaxing the definition with an additive or multi-
plicative constant and propagating the constant through a particular algorithm (El Halabi
and Jegelka, 2020; Elenberg et al., 2018). Alternatively, in this work we find a sub-class of
optimization problems that we can always lift into problems that satisfy our assumptions.
Moreover, we prove that the solution of the lifted problem gives a near-optimal solution
to the original. Our lifting approach stands in stark contrast to existing methods, as it
is algorithm-independent with a guarantee that is easy to compute rather than tied to a
specific algorithm and dependent on constants that are NP-Hard to compute (El Halabi
and Jegelka, 2020; Elenberg et al., 2018).

We make several technical contributions, namely:

(i) We identify new sufficient conditions, based on submodularity, under which the reg-
ularized model selection problem (1) can be solved efficiently and exactly;

(ii) We extend this theory to accommodate simple continuous and discrete constraints on
the model parameter for some problem classes;

(iii) We highlight the utility of exact solutions for robust optimization scenarios;
(iv) We show that problems violating our sufficient conditions can be lifted to problems
that do satisfy them, and whose solutions correspond to optimal or near-optimal

solutions of the original problem;

(v) We numerically validate the correctness of our theory with examples from sparse
regression and retail price optimization.
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2. Submodular Functions on Lattices

In this work, we consider optimization problems defined on two sets: an uncountably infinite
set, typically R™ or a subset thereof referred to as a continuous set, and a countable set,
typically finite and referred to as a discrete set. Because we would like to efficiently solve
optimization problems defined on both continuous and discrete sets, we study a structure
that can allow efficient optimization in both cases: submodularity.

Submodularity is typically defined as a property of set functions, which are functions that
map any subset of a finite set V to a real number, ie., f : 2¥ — R. More generally,
however, submodularity is a property of functions on lattices which can be continuous or
discrete sets.

Let X be a set equipped with a partial order of its elements, denoted by <. For any two
elements x,x’ € X we define their least upper bound, or join, as:

xYx =inf{lyeX : x<y, ¥ <y}l (3)
Dually, we define their greatest lower bound, or meet, as:

xAx' =sup{yeX : y<x, y<x'}. (4)

If for any two elements x,x’ € X, their join, x Y x/, and their meet, x A X/, exist and are in
X, then the set X and its order define a lattice. We write the lattice and its partial order
together as (X, <), but will often write just X when the order is clear from context. If a
subset S C X is such that for any two of its elements x,x’ € S, both their join, x Y x’, and
their meet, x A X', are in S, the subset S is called a sublattice of X (Davey and Priestley,
2002).

As an example, consider a finite set of elements V. Then its power set, 2" (the set of all its
possible subsets), forms a lattice when ordered by set inclusion, C. Under this order, the
join of any two elements X, X’ C V is their set union, X U X’ C V', and dually, their meet
is their set intersection X N X' C V.

We can also endow continuous sets with partial orders that define lattices. Recent work has
brought attention to R™ equipped with the partial order <, defined as:

x=xx & x;<x; foralli=1,2,...,n, (5)
where < denotes the usual order on R.

Under this order, the join and meet operation for any two elements x,x’ € R" are element-
wise maximum and minimum, respectively, meaning:

(x ¥ x'); = max{x;,x}}, for all i =1,2,...,n, (6)

(x AX'); = min{x;,x;}, for all i =1,2,...,n. (7)

Given a lattice X, consider a function f : X — R. The function f is submodular on the
lattice X when the following inequality holds for all x,x’ € X

Fx)+ f(x) > flxYx) + f(xAX). (8)
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The function f is monotone when it satisfies:

x=x = f(x) < f(x). (9)

When working with the lattice (2V, C), the submodular inequality (8) becomes:
fl(A)+ f(B)> f(AUB)+ f(ANnB) forall A/BCV. (10)
Similarly, the monotonicity implication (9) becomes:
ACB = f(A) < f(B). (11)

Minimizing or maximizing an arbitrary set function is NP-Hard in general. If the set func-
tion is submodular, however, it can be exactly minimized and approximately maximized (up
to a constant-factor approximation ratio) in polynomial time (Schrijver, 2003; Nemhauser
et al., 1978). The computational tractability of submodular optimization for set functions
has a variety of applications in countless fields such as sparse regression, summarization,
and sensor placement (Elenberg et al., 2018; Lin and Bilmes, 2011; Krause et al., 2006).

When working with the lattice (R™, <), a function f : R™ — R is submodular when:
f(x)+ f(x) > f(max{x,x'}) + f(min{x,x'}) for all x,x" € R", (12)

where the maximum and minimum operations are performed element-wise, as expressed in
(6) and (7). When f is twice differentiable, submodularity on R" is equivalent (see Topkis
1998; Bach 2019) to the condition:

0’ f
8xi8xj

<0 forall i#j. (13)

Perhaps surprisingly, the guarantees associated with submodular set function optimization
extend to functions that are submodular on R™. In particular, submodular functions on R"
can be minimized over a bounded sublattice in polynomial time (see Bach 2019), and can
be approximately maximized with constant-factor approximation ratios (Bian et al., 2016,
2017).

3. Problem Formulation

In this section, we bridge continuous and discrete submodular function minimization in one
unified problem statement. We do this by drawing inspiration from the field of structured
sparsity, where the choice of zero entries in real-valued decision variables is viewed as a
coupled discrete and continuous problem (Bach, 2013, 2011).

To highlight the connection with structured sparsity problems, for n € Z~(, we denote by
[n] the set {1,2,...,n}, and by 2[" the set of all possible subsets of [n]. Define the map
supp : R — 2l ag:

supp (x) = {i € [n] | x; # 0}. (14)
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In words, supp returns the set of indices where the vector x is nonzero. Consider arbitrary
functions f : R” — R and ¢ : 2" — R. Problems of the form:

minimize f(x) + g(supp (x)), (15)

often arise in structured sparse optimization, where the preferences in discrete selections
(the zero entries of x) are expressed through the function g. As a special case, if we let
f(x) = ||Dx — b||3 with D € R™*" and b € R™ and define g(A) = |A| as the cardinality of
the set A, (15) becomes:

minimize ||Dx — bl|3 + ||x]|o, (CS)
x€eR”?

where || - |0 denotes the ¢y pseudo-norm. The problem (CS) is a form of the well-studied
compressed sensing problem, which is NP-Hard in general (Rauhut, 2010).

Generalizing the idea of making continuous decisions through the choice of x in (15), and
discrete decisions through the choice of the zero entries of x, we consider two lattices, (X, <)
and (),C), related by amap n: X — ). Welet f : X — R be a function describing the
cost of assignments of variables in X, and similarly let g : ) — R describe the associated
cost of choices in Y. Then, we seek the optimal point x* € X in the problem:

minimize f(x) + g(n(x)). (P)

Although we will eventually let X describe continuous choices and ) describe associated
discrete ones, our theoretical results do not rely on the cardinality of the lattices X and ).

Intuitively, problem (P) asks for the element x € X which incurs minimum cost in X,
as measured by f(x), and in ), as measured by g(n(x)). Given that the special case of
(CS) is already hard in general, with no additional structure on f, g and n, this problem is
hopelessly difficult. To provide the necessary structure, we make the following assumptions.

Assumptions 1 Consider the lattices (X, =) and (V,C) and the mapsn : X — Y, [ :
X =R, and g: Y — R. We make the following assumptions:

1. The functions f and g are submodular on the lattices X and Y, respectively,

2. The function g is monotone on ),

3. For allx,x' € X:

n(x Y x)Enx)un(x’), nxix)Cyx)nnx’).
Remark 1 If the map n : X — Y satisfies Assumption 3, it is an order-preserving join-
homomorphism, meaning it maintains the order and joins of elements in X. (Prop. 2.19
in Davey and Priestley 2002) Explicitly, Assumption 3 is equivalent to the condition that
for any x,x' € X:
x 2x' = n(x) En(x),
n(x Y x') = n(x)Un(x’).

Despite this equivalence, we leave Assumption 3 as written above for clarity in future proofs.
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We highlighted the lattices (R™, <) and (2[", C), but for the map supp : R* — 2["l to satisfy
Assumption 3, we must restrict the domain of f to only only the first orthant, (R%,, <).
As mentioned by Bian et al. (2017), this issue can often be resolved by considering an
appropriate orthant conic lattice, which views R™ as a product of n copies of R and selects
a different order for each copy. Alternatively, any least-squares problem such as (CS) can
be lifted to a non-negative least-squares problem, allowing us to satisfy Assumption 3 with
the map supp, but potentially no longer satisfying Assumption 1 (see Appendix A).

Assumption 1, which requires f and g to be submodular can be restrictive in practice.
To mitigate this, in Section 7 we show how some specific problem instances that do not
satisfy Assumption 1-in particular when f is quadratic—can be lifted to a new optimization
problem that satisfies all the required assumptions. We then derive conditions under which
solving the new, lifted problem still provides a solution to the original problem that violated
Assumption 1. In contrast, the more typical way of handling non-submodular f involves
relaxing the definition of submodularity (8) to include an additive or multiplicative constant
and propagating it through a chosen algorithm to give near-optimality guarantees. El Halabi
and Jegelka (2020); Elenberg et al. (2018) Our suggested lifting, however, sidesteps the need
for a particular algorithm while still providing optimality or near-optimality guarantees.

4. Solving an Equivalent Problem

In this section, we outline our approach for solving the problem (P) by defining a related
optimization problem on a single lattice. We then prove that this related problem is a
submodular function minimization problem, and that by solving it we recover a solution to
(P). Finally, we highlight some conditions under which solving this related problem is a
polynomial time operation.

4.1 The Equivalent Submodular Minimization Problem

As expressed above, the problem (P) asks for the a choice of x € X and associated n(x) € ).
Our key observation is that we could instead ask for a choice of y € J and best associated
x € X, leading to the problem:

minimi i .
nimize g(y) + min f(x)
n(x)=y

In the special case of (CS) explored earlier, this equivalent problem becomes:

minimize |S|+ min ||Ax — b|3.
Se2ln] x€RY,
supp(x)=5

While this new problem is clearly the same as (CS), the innermost minimization is over the
set of x € RY; such that supp (x) = 5, or equivalently, x; # 0 for all i € S, and x; = 0
for all 7 ¢ S. This feasible set is not a closed subset of R, and thus the corresponding
minimizer of this innermost problem may not exist (Borwein and Lewis, 2006).
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With this issue in mind, we instead consider a slight relaxation of the above problem:

minimize ¢(y) + H(y), (P-R)
yEY

where we have defined the function H : Y — R as:

H(y)= min f(x). (16)
n(x)Cy

In the special case of (CS), this relaxation produces the problem:

minimize |S|+ min |[|Ax — b3, (CS-R)
Se2ln] x€RY,
supp(x)CS

where the innermost minimization is instead over the set of x € Rgo such that x; = 0 for
all i ¢ S, which is a closed subset of RY,.

We now prove that under Assumptions 1-3, the relaxed problem (P-R) is a submodular
minimization problem, and that by solving it we can recover the corresponding minimizer
for (P). As established above, minimizing functions on finitely presentable distributive
lattices is efficient when the functions are submodular, so we show that the relaxed problem
(P-R) is a submodular function minimization problem on ).

Theorem 2 Under Assumptions 1-3, the function g+ H : Y — R is submodular on Y, and
therefore the relaxed problem (P-R) is a submodular function minimization problem over ).
Moreover, let y* € Y be the minimizer for the problem (P-R), and let x* € X be such that:

x* € argmin f(x).
xXeEX
n(x)Ey*

Then x* is a minimizer for the problem (P).
To prove this result, we require a few technical lemmas.

Lemma 3 Let (X, <) and (), C) be lattices with the map n : X — Y satisfying Assumption
3. Then the set:

D={(xy)eXxY|n(x)Cy}, (17)

is a sublattice of the product lattice, X x Y.

Proof On the product lattice, the join of any two elements (x,y), (x’,y’) € D is denoted
by Vp, and defined as:

(x,y) Vo (x,y') = (x Y x',y Uy’).
Then, we note that for this same (x,y), (x',y’) € D:

n(x ¥ x") En(x)Un(x) Cy Uy,
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where we first used Assumption 3, then the fact that (x,y),(x',y’) € D. Therefore, the
pair (x Y x',yUy’) is also in D.

Because (x,y) and (x/,y’) were arbitrary, this holds for all of D. A dual analysis follows
for the meet operation. |

The sublattice D is useful as the only pairs of (x,y) € X x ) considered in the problem
(P-R) are those that are in D. The following theorem then uses this sublattice to prove that
H is submodular. The result is a simple application of an established theorem in literature,
but we include its proof here for completeness.

Theorem 4 (Application of Theorem 2.7.6 in Topkis 1998) Let f : X - R, g: Y — R,
andn : X — Y be maps satisfying Assumptions 1 and 3. Then the function g+ H : Y — R,
with H defined as in (16), is submodular on Y.

Proof To prove this statement, we take two points y,y’ € J and compare the values of the
function g + H, verifying the submodular inequality (8). We note that for any y,y’ € ),
there are corresponding z,z’ € X such that:

zeagmin fx) = H(y)=f(z),
xeX
n(X§Ey
z € argmin f(x) = H(y')=f(2).
xeX
n(X)EEy’

By definition, (z,y) and (z’,y’) are both in the subset D as defined in (17). Then, it follows:

9(y) + H(y) +9(¥') + HY') = 9(y) + f(2) + 9(¥') + f(2)
> g(yuy') +9(yny') + f(zY2) + f(z12),
where we first used (18) and then the submodularity of f and g.

(18)

By Lemma 3, D is a sublattice of X x ), and so the pairs (z Y z’,y Uy’) and (z A 2,y My’)
are also in D, meaning:

n(zYyz)Cyuy',

n(zAz)Cyny'.

Therefore z Y z’' and x A x" are feasible points in the minimization defining H(y Uy’) and
H(yny’), respectively, in (16). We then have, as desired:

g(y) + H(y) +9(y )+ Hy') > glyUy’) + glyn1y') + f(z Y 2') + f(z L Z)
>g(yuy') +glyny’) + min f(x)+ min f(x)
n(x)Cyuy’ n(x)Cyny’
=g(yuy')+ H(yuy') +g(yny') + Hiyny').
m

Because g + H is submodular on Y, solving (P-R), is an instance of submodular function
minimization. What remains is to show that solving this relaxed problem allows us to also
solve to the original problem, (P).
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Lemma 5 Let y* € Y be a minimizer for the relaxed problem (P-R), and let x* € X be
such that:

x" € argmin f(x).
xeX
n(x)Cy”
If g satisfies Assumption 2, then X* is a minimizer for the problem (P).

Proof To prove this lemma, we consider an optimal z* € X for problem (P) and verify
that the proposed minimizer, x* € X', has the same cost.

We first note that by the optimality of z* in problem (P):
f(z") +9(n(z")) < f(x*) + g(n(x7)). (19)

Additionally, we have:

f(z*)+g(n(z*)) > min  f(x)+ g(n(z")) (minimizing, as z* is feasible)

xeX
269 Cn(s")
= H(n(z")) + g(n(z")) (definition of H)
> H(y") +g(y") (optimality of y* in P-R)
= f(x")+9(y") (definition of x*).

This sequence of inequalities implies:

f(z") +g(n(z")) = f(x*) + g(y7). (20)

Note that because ¢ is monotone, g(y*) > g(n(x*)). Using this fact, we can lower bound
the right-hand side of (20):

f(@) +9(n(z%) = f(x*) +9(y") = f(X7) + 9(n(x7))-

By the optimality of z*, we see that x* must also be optimal for the problem (P). |

This series of results gives rise to Theorem 2, which provides sufficient conditions under
which we can transform problem (P), an optimization problem on two lattices, into problem
(P-R), a submodular function minimization problem on a single lattice.

Proof (Theorem 2)

Under Assumptions 1 and 3, Theorem 4 states that the function ¢ + H : ) — R is sub-
modular on the lattice ). Therefore, solving (P-R) is a submodular function minimization
problem over ), and the first part of the theorem is proved.

Under Assumption 2, by Lemma 5, given the minimizer y* of (P-R), the point x* € X
defined by:

x" € argmin f(x),
xXEX
n(x)Ey~

is a minimizer in the original problem (P). [ |

10
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4.2 Solving (P-R) in Polynomial Time

Despite the submodular structure of the functions, we can only truly solve (P-R) in poly-
nomial time if ) is a finitely presentable distributive lattice and we have an oracle for
evaluating the functions g and H, which we formally state next.

Corollary 6 Let f : X — R be a submodular function on (X, =), let (Y,C) be a finitely
presentable distributive or diamond modular lattice with g : Y — R a monotone submodular
function, and let n : X — Y satisfy Assumption 3. If we have access to an evaluation
oracle for g+ H, then problem (P) can be solved in a polynomial number of operations and
a polynomial number of calls to the oracle.

Proof Assumptions 1, 2, and 3 are satisfied, by X, ), and the functions 7, f, and g. By
Theorem 2, therefore, we can solve the problem (P) by instead minimizing g + H over ),
i.e., solving problem (P-R). Problem (P-R) is a submodular function minimization problem
over a a finitely presentable distributive or diamond modular lattice, which established
algorithms can solve in a polynomial number of operations and oracle calls to g+ H (Fujishige
et al., 2022; Schrijver, 2003). |

With Corollary 6 in hand, we need to construct the required oracle for H : ) — R that
only requires a polynomial number of operations. Once we have an oracle for H (assuming
another oracle or polynomial algorithm for evaluating g), solving (P) clearly only requires
a polynomial number of operations.

We are particularly interested in joint continuous and discrete optimization, such as when
the relevant lattices are (X, =) = (R%y,C) and (), =) = (2", C) connected by the map

supp : RY) — 27l as expressed in (14). In this case, evaluating H requires solving the
optimization problem:

L 01
minimize f(x), (21)
supp(x)CA

for any A e 207,

As discussed above, when X is the product of bounded intervals, we can rely on the con-
tinuous submodular minimization algorithms developed by Bach (2019). These algorithms,
however, introduce discretization error, limiting the accuracy of the evaluations of H. More-
over, the simple example of (21) is a continuous submodular minimization problem, but the
set R>q is not a bounded sublattice and thus the algorithms of Bach (2019) do not directly
apply. Continuous submodularity alone appears limited in this way, so we pursue other
problem structures leading to algorithms for efficient and arbitrarily accurate solutions of
(21).

Note that for any A € 2", the feasible set for the sub-problem (21) is a convex subset of
RZ%,. If the function f : R%, — R is convex, under appropriate regularity conditions, we
can use any generic convex optimization routine to solve the associated sparsity-constrained
problem (21). For example, in the compressed sensing scenario shown in (CS-R), evaluating
H amounts to solving a simple reduced least-squares problem. More generally, we need
f+ X = R to be convex and submodular, and the set of x € X such that n(x) Cy to be a

11
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compact, convex subset for every y € ), alongside sufficient regularity conditions, such as
constraint qualifications or the existence of separation oracles (Borwein and Lewis, 2006;
Schrijver, 2003).

We have already assumed that f is submodular (in this case, on R%;), but submodular
functions are neither a subset nor a superset of convex functions, SO we may also require
that f is convex. For example, any separable convex function f satisfies this assumption,
as do convex quadratic functions with non-positive off-diagonal entries, or functions on R"
that can be identified as the Lovéasz extension of submodular set functions.

Our theory is completely agnostic to the choice of algorithms for both evaluating H and
solving the discrete optimization problem (P-R). In particular, if we assume f is convex,
evaluate it through convex optimization, and use projected subgradient descent on the
Lovasz extension of g + H as the algorithm for solving the set function minimization, we
recover exactly the approach proposed by El Halabi and Jegelka (2020).

Convexity of f is not the only additional assumption on f that leads to tractable evalu-
ations of H without resorting to continuous submodular minimization algorithms. As an
alternative, we could consider a nonconvex quadratic form for f : R%, — R:

f(x) =x"Qx+p'x, (22)
with Q € R™™ and p € R™. The assumption that this quadratic function is submodular
on RY is equivalent to the condition:

0% f
8x16xj

= Qij < 0, for all ¢ 75 ]

Moreover, for a given A € 2" our sub-problem instance (21) is a constrained, nonconvex
quadratic program:
minimize x7Qx +2p’x
xeR”
subject to x>0 (23)
X; = 0, 1 ¢ A.

Researchers Kim and Kojima (2003) have established that nonconvex quadratic programs
satisfying submodularity admit tight semidefinite program relaxations. In particular, we
have the following theorem:

Theorem 7 (Theorem 3.1 in Kim and Kojima 2003) Let Q € R™™ have nonpositive off-
diagonal entries. Let tr : R™"™ — R denote the trace of a matriz, diag : R™*" — R"
denote the diagonal entries of the matriz, and let > indicate the positive semidefiniteness
of a symmetric matriz. Further, for any A € 21", let Zac denote the rows and columns of
Z with indices not in the set A. Consider the semi-definite program:

minimize tr (QZ) +2p’z
z€R"

VASS
subject to tr(Zge) <0
diag (Z) > 0
1 2T
—
[z Z] ~ 0,

12



CONTINUOUS AND DISCRETE MODEL SELECTION

Given the solution (Z*,z*) to this SDP, the vector x! = \/Z;

5 0= 1,...,n is a minimizer

for the non-convex quadratic program (23).

Because semi-definite programs satisfying appropriate constraint qualifications can be solved
in polynomial time, we could use this relaxation to evaluate H for any subset A € 2. This
approach produces the required oracle for Corollary 6, but only requires that quadratic
functions f of the form (22) satisfy submodularity.

5. Constrained Optimization

In this and the following sections, we extend our framework both theoretically and algorith-
mically for the specific case of the lattices (R%,, <) and (2", ©), connected by the support

map supp : RY) — olnl,

In many problems, we may be interested in optimization over a feasible strict subset
C C RY,. Unfortunately, submodular function minimization and maximization subject
to constraints is NP-Hard in general (Fujishige and Isotani, 2011). This difficulty arises
because arbitrary subsets of a lattice rarely define sublattices.

One simple class of problems whose feasible sets are not sublattices are problems with budget
constraints:
minimize  f(x) + g(supp (x))
x€R%0 (24)
subject to Y i Wi(x;) < B,

with W; : R>o — R strictly increasing functions for ¢ = 1,2,...,n and B € Ry a “budget”.

When confronted with constrained optimization problems such as (24), one common ap-
proach is to add a Lagrange multiplier u € R>( and instead solve the unconstrained problem:

n
minimize f(x) + g(supp (x)) + 4 > Wilxi). (25)
> i=1
For the correct choice of € R>, solving the regularized problem (25) can be equivalent
to solving the constrained problem (24) (Nagano et al., 2011; Staib and Jegelka, 2019).
Because (24) is non-convex, identifying when this approach is valid requires some careful
detail. When possible, however, determining the p that renders the two problems equivalent
is typically a difficult task.

Our work in this section relies on the following result that relates parameterized families of
submodular set function minimization problems to a single convex optimization problem.

Theorem 8 (Proposition 8.4 in Bach 2015) Let h : 2"l 5 R be a submodular set function,
and hy : R™ — R its Lovasz extension (which is therefore convex). If, for some € > 0,
Vit R>c = R is a strictly increasing function on its domain for all i = 1,2,...,n, then the
minimizer u* € R, of the convex optimization problem:

e+u;

minimize hL(u)—i-Z/ Yi(p)dp, (26)
i=1"¢

uERgO
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is such that the set A* = {i € [n] : uf > u} is the minimizer with smallest cardinality for
the submodular set function minimization problem:

minimize h(A) + Z Yi(p (27)
Aealr] i€A

for any p € R>.

In the following subsections we identify classes of problems that allow the regularized prob-
lem (25) to be expressed in the form given by (27). Theorem 8 then provides a single convex
optimization problem we can solve to recover the solution to (25) for all possible values of the
regularization strength p. In prior work, this same theory was applied to purely discrete
submodular minimization problems (Fujishige and Isotani, 2011), and purely continuous
submodular minimization problems (Staib and Jegelka, 2019), but our work lies between
these two extremes.

5.1 Support Knapsack Constraints

We first consider a knapsack constraint, meaning the function W has the form:

W)= > w,

Jjé€supp(x)

for some w € RZ. The regularized problem (25) in this case is:

minimize f(x) + g(supp (x)) + p Z W;.
x€RY,
Jj€Esupp(x)

Because W is a set function in this case, the relaxed problem (P-R) becomes:

minimize g(A) + H(A) + Y v;(n), (28)

Ae2ln] jea
where we have defined ¢;(u) = pw; for each j =1,2,...,n. Because w; > 0 for all j, these

functions are strictly increasing, and we have a problem in the form (27). By Theorem 8,
we can solve the convex optimization problem:

minimize gr(u) + Hy(u ZWJ u?,
then appropriately threshold the solution to recover the solution to (28) for all possible
values of € R>.. Because 1); is finite and strictly increasing on all of R, we can simply
select € = 0.

Given the solutions to the regularized problem A* specified by Theorem 8, we select the set
A" with smallest @ € R such that the constraint W (x) < B is satisfied. Note however, that
we only recover the solution for any given B € R if the elements of u* are unique (Bach,
2013). Otherwise, we only recover the solutions for a few particular values of B. If these
elements are unique, however, we can use the result of Theorem 2 to compute the minimizer
in the original optimization problem over RZY,. Moreover, by the same argument as in
(Nagano et al., 2011), this solution corresponds to the solution of the original constrained
problem.

14
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5.2 Continuous Budget Constraints

As shown above, the Lovasz extension lets us handle problems with discrete budget con-
straints, so a natural next step is to consider continuous budget constraints, meaning con-
tinuous functions W : R%; — R, such that:

= Z Wi(xi)v
i=1

with each W; : R>9 — R a strictly increasing function. With this particular W, the
regularized optimization problem (25) with Lagrange multiplier i € R>¢ becomes:

m}l{gﬁgpze f(x) + g(supp (x)) + p Z Wi(x;).

To recover the problem form (27) specified by Theorem 8, we further assume that f :
RZ, — R is separable, i.e., f(x) = ;") fi(x;). In this case, the relaxed optimization
problem (P-R) is:

minimize )+ H;(n 29
inimize g(A ZEZA (29)

where we defined H; : R~g — R as the function:

Hif) = min fi(2) + pWile), i=1,2,...n, (30)

and assumed (without loss of generality) that W;(0) = f;(0) = 0.

To apply Theorem 8, we need H; : Ryg — R to be strictly increasing on its domain. We
verify this property in the following proposition, whose proof we detail in Appendix B.

Proposition 9 The function H; : R>g — R<q defined in (30) is monotone in p for all
i = 1,2..,n. It is strictly increasing for all u € [0,c|], where ¢ € R>q is the smallest
constant such that H;(c) = 0. In addition, H; is constant and zero on the interval [c, oo].

Because the only point at which H; is not strictly increasing occurs when its value is exactly
zero (implying that allowing the element x; to be nonzero provides no decrease in continuous
cost), the desired result from Theorem 8 still holds with only a minor modification, the
details of which we also defer to Appendix B.

It then follows from Theorem 8 that by solving the single convex optimization problem:

n e+u;
minimize gz (u )—l—Z/ H;(p)dp, (31)
ucRy, 1 Je

we can recover the solution to a family of regularized optimization problems (29). As before,
we select the set A" with the largest © € R>, such that the budget constraint W(x) < B is
satisfied. As discussed above, we only recover the solution for all B € R> if the elements
of u* are all unique. Within each choice of support, simple convex duality—which we can
apply when f; and W; are convex functions-guarantees the existence of a p € R>q that
renders the constrained problem and the regularized problem equivalent.

15
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6. Robust Optimization

Joint continuous and discrete optimization problems can easily arise as sub-problems in
larger contexts. For example, in robust optimization, we seek to solve an optimization
problem while remaining resilient to worst-case problem instances.

6.1 Motivating Example from Multiple Domain Learning

Recent work by Qian et al. (2019) highlighted the concept of multiple domain learning,
where a single machine learning model is trained on sets of data from K different domains.
By training against worst-case distributions of the data in these domains, they show that
the resulting machine learning model often achieves lower generalization and worst-case
testing errors.

In particular, let the training data for a learning model be S = {51, 59, ..., Sk} with S; the
data from domain 7. We also let f; : W — R for i = 1,2, ..., K be the empirical risk of the
model on the data from each domain ¢, given parameters in some convex subset W C R".
The proposed robust optimization problem is then:

K

minimize max Z i i (W

wew peC < lpsz( ),
1=

with C = {p € Rgo | Zfil pi < 1}, the simplex. If we additionally reward the use of data
from domain 7 (or equivalently, penalize the worst-case distribution of data for including
domain 7), then we form the robust continuous and discrete optimization problem:

K
minimize Irl)leé%( ; pifi(w) — g(supp (p)),

with ¢ : 251 -5 R a monotone submodular set function. By considering a penalty on the
set of nonzero entries of the worst-case distribution, we encode some prioritization of which
domains are more or less relevant to us in our application. Then by Theorem 8, we can
solve the inner maximization problem (with an appropriate change of signs) by adding a
Lagrange multiplier 1 and solving a related convex problem.

6.2 General Results
More generally, robust optimization problems can often be expressed as a min-max saddle

point optimization problem of a function ¢ : X x Y — R:

maximize min q(x,y). 32
imize min g(x.y) (3)

This problem is interpreted as maximizing the function ¢(x,y) with respect to our available

parameters x € X C R", under the worst case choice of additional problem parameters
y € Y CR™ (Ben-Tal et al., 2009).
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Given some appropriate structure for the function ¢, the min-max problem (32) is surpris-
ingly tractable. If we define Q) : X — R as:

Q(x) = Iyneig q(x,y),

we can express the saddle-point problem (32) as:

maximize Q(x). (33)

xeX

If the function ¢(x,y) is concave in x for any fixed y € ), then the function @ is also
concave in x (Borwein and Lewis, 2006). Moreover, we can compute a subgradient of @ at
any xg € X as:

VxQ(x0) = Vxq(x0,y"),
y* € argmin ¢(Xg,y).
yeY
In other words, efficiently solving the minimization problem defining ) for an xy € X also
gives a subgradient of (). Because () is concave in x, even a straightforward algorithm such
as projected subgradient ascent in the problem (33) will converge to a global optimum.

In this work, we showed that minimization problems in the form of (15) with functions
satisfying Assumptions 1-3 can be solved efficiently. Suppose then, that the function ¢ :
X x Y is of the form:

q(x,y) = f(x,y) +g(n(y))

with f : X x Y — R concave in x for any fixed y and also convex and submodular on
Y C R, in y for any fixed x. If n: Y — L satisfies Assumption 3, g : £ — R is monotone
and submodular, and we assume the set of y € ) such that 7(y)C ¢ is a convex subset for
any ¢ € L, then the robust optimization problem (32) becomes:

maximize min f(x,y)+ g(n(y)). (34)
xER"™ yey

For a given xg € R”, we view the selection of y € ) as a worst-case, or “adversarial” choice of
parameters for the function f. The penalty on 7(y) suggests that the adversarial parameters
are selected while considering some preferred structure, such as sparsity. Submodularity
here, implies that this adversary pays diminishing prices as it increases the number of
parameters it uses.

In addition, () becomes:

Q(x) = min f(x,y)+g9(n(y)),

yey

which is still the minimum of a family of concave functions, and therefore amenable to
subgradient ascent methods as discussed above. A subgradient of ) can easily be computed
as:

va(XO) = VXQ(Xan*) = fo(Xan*)a

y" € argmin f(xo0,y) + g(n(y)).
yey

We collect these ideas into the following theorem.
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Theorem 10 Consider the robust optimization problem (34). Assume f: X xY — R is
concave in x € X for any fited'y € Y, and also conver and submodular in'y € Y for any
fizxed x € X. Letn:Y — L satisfy Assumption 3, g : L — R be a monotone submodular
function and assume that for a given £ € L, the set of y € Y such that n(y)C ¢ is a convex
subset of Y. Moreover, let Y be a finitely presentable distributive lattice. For any € € Ry,
let T € Z~o be of order O(E%), meaning as T tends to infinity, there exists a constant

M € Ryg such that T < EMQ Then T iterations of projected subgradient ascent using step
lengths n; = ﬁ produces, in polynomial time, iterates x( e x fori=1,2,....,T such that

L5T QD) < Q(x*) +e.

The computational complexity of this approach may be high, as projected subgradient
ascent can be slow in practice. However, each sub-problem instance involves a mixed con-
tinuous and discrete optimization problem, so this complexity is warranted.

7. Relaxing Submodularity

For the results of Theorem 2 and therefore Corollary 6 and its extensions to apply, Assump-
tions 1-3 must be met. There are, however, situations where these assumptions may not
hold. For example, consider again a quadratic form for f: RS, — R:

f(x) =x"Qx +p'x, (35)

and a monotone and submodular set function ¢ : 2" — R. Then the general lattice
optimization problem (P) becomes:

minimize ((x) := x’ Qx + p’x + g(supp (x)). (36)

XGRZO
The assumption that f is submodular on (R, <) is equivalent to:

0’ f
aXi 8Xj

= Qij < 0, for all ¢ 7& j

Moreover, for Corollary 6 to apply, we also need the matrix Q to be positive semidefinite.
These two assumptions are unlikely to both be met by quadratic forms resulting from real
data.

Typically, violations of submodularity are handled by suitably relaxing the definition of
submodularity with an additive or multiplicative constant (Elenberg et al., 2018; Das and
Kempe, 2018). This constant is then propagated through the particular algorithm choice,
providing a similarly relaxed optimality guarantee (El Halabi and Jegelka, 2020).

Alternatively, our work focuses on finding exact solutions to these joint problems in an
algorithm-agnostic and efficient way. In this spirit, we show in this section how quadratic
problems such as (36) can be embedded in another optimization problem satisfying Assump-
tions 1-3. We then prove conditions under which the solutions to this lifted optimization
problem—which can be efficiently found, since Assumptions 1-3 are now satisfied—correspond
to an exact solution of the original quadratic problem (36).
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7.1 Lifting Non-submodular Quadratics

Given the quadratic form for f as in (35), we can decompose the matrix Q € R™*" into its
submodular and non-submodular parts additively:

Q=Q +QF, (37)
Qi—j:{Qija i=jorQ <0, Q;;:{Qij, i# jand Q;; > 0

. (38)
0, otherwise,

0, otherwise.

Then, we define a new, lifted quadratic function f : RYy x Ry — R as:

e =3 3] & FI01 3 B

The lifted function f also has some nice properties that we can use to our advantage.

Lemma 11 The function f : R%y x RY, — R defined in (39) is such that for all (z,w) €
R%, x RY,:

f(va) = f(W,Z), (40)

and for all x € RY:

fx,x) = f(x). (41)

We can similarly lift the function ¢ : 2/ — R to the function g : 2" x 2"} — R, defined
simply as:

§(5.7) = J (9(5) + 9(T)) . (42)
The lifted function g satisfies the same symmetry and embedding properties as the lifted
function f.
Lemma 12 The function § defined in (42) is such that for all (S,T) € 2[" x 2"
9(5,T) = g(T. 5), (43)
and for all A € 21"
G(A, 4) = g(4). (44)

With the lifted functions f and § in hand, we define a lifted version of the original quadratic
optimization problem (36):
minimize  {(z,w) := f(z,w) + § (supp (z) , supp (w)) . (45)
(z,w)ER’ZLOXRgo
If we were to solve this lifted problem and find a solution on the diagonal, i.e., a solution
(z*,w*) such that z* = w*, we immediately recover the solution to the original quadratic
problem (36).
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Lemma 13 If the solution to the lifted problem (45), denoted (z*,w*) € RYy x RY, is such
that z* = w*, then the point X* = z* = w* is an optimal solution to the original quadratic
problem (36).

Proof By Lemmas 11 and 12, we know that:
U(z*, w*) = 0(z*) = {(w").
Further, by the optimality of (z*, w*) and by shrinking the feasible set, we have:

U(z*,w*) =0(z") < min fl(z,w) < min {(z,w)= min /(x).

Z,WGR%O z,weRgo XGREO
Z=W
Therefore, the points z* and w* are also minimizers of the original problem (36). |

By Lemma 13, the solution to our initial quadratic problem is embedded in the new lifted
problem (45). To use this result, however, we need two key ingredients: the ability to solve
the lifted problem exactly and efficiently, and a way to easily produce solutions on the
diagonal.

7.2 Efficiently solving the lifted problem

The lifted quadratic problem (45) has a nearly identical form to the original problem (36),
but now satisfies Assumptions 1-3, as we prove next. As a result, we can use the approach
outlined in Section 4.2 to solve the lifted problem.

To discuss Assumption 1 and submodularity, we define a partial order and lattice on the
lifted space RY X R so that we can discuss submodularity. In particular, we consider the
partial order <, defined as:

(z,w) <(z',w') & z=z and w = w', (46)

where < denotes the partial order on R™ previously defined in (5). In words, we order the
first part of each pair of vectors in the typical fashion, but reverse the order for the second
part. This choice of partial order also defines the join and meet operations:

(z, W)V (z,w)=(zY2Z,wAiw) (47)
(z,W)A(z, W) = (z L2, wY W), (48)

where Y and A are the join and meet operations on (R", <) defined in (6) and (7).

By construction, then, the lifted quadratic function f is submodular on this lattice. More-
over, since it is a quadratic form, simple conditions guarantee its convexity. We pursue
convexity here to leverage faster exact algorithms for solving the problem, rather than the
more general approach for continuous submodular minimization. Applying the continu-
ous submodular minimization algorithm to this lifted problem while using arbitrarily fine
discretization may be of future independent interest.

Lemma 14 The function f:R"™ = R™ defined in (39) is submodular on the lattice (R x
R", <). Further, f is convez if and only if both Q and QT — Q™ are positive semidefinite.
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Proof We first note that the lattice (R” x R", <) is an orthant conic lattice, as defined by

Bian et al. (2017). Therefore, by Proposition 2 of Bian et al. (2017), f is submodular on
this lattice if and only if:

0’ f
<0 49
8Xiaxj - ( )
forall 7, =1,2,...,nor¢,j=n+1,n+2,..,2n with ¢ # j and:
o2 f
>0 50
({')Xz‘axj - ( )

foralli=1,2,...nand j =n+1,n4+2,...,2n. For our lifted function f, its Hessian matrix
is exactly:

ax2 QT Q
By their construction, the matrices Q™ and Q™ satisfy both (49) and (50), and f is sub-
modular on (R"” x R", <).

Pf _ [Q‘ QT .

For convexity, we note that the Hessian matrix must be positive semidefinite. By the matrix
similarity:

T I Qf Q][I 1] [QT-Q" 0

211 I]]|Q° Q+||-I 1| 0 QT +Q |’

this holds only when Q = Q™ + Q™ and Q™ — Q™ are positive semidefinite. [ |

Similarly, we define a lattice in the lifted discrete space 2" x 2" using the partial order €
defined as:

(S,T) e (5,1") &SCcSandTDOT.
The join and meet operations on (2["] x 2, €), denoted by U and m respectively, are:
(S, TYu (S, T)=(Su s, TnNT)
(S, T)ym (S, T")=(Sn S, TUT).

We can then easily establish that the lifted function g is submodular on the lifted discrete
lattice.

Lemma 15 If the function g : 2" — R is monotone and submodular, then the lifted
function g defined in (42) is submodular on the lattice (2[”} X 2[”],@). Moreover, it is
monotone and submodular on the product lattice, (2[”] x 2], Q).

Proof Take aset (S,T) € 2" x 2" and another set (S’,T") € 2/" x 2", Then by definition,
we have:
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where the inequality follows from the submodularity of g, with U and m the join and meet
operations associated with the partial order € on 2" x 2["1. By grouping terms differently,
we also see that g is also monotone and submodular on the more typical product lattice

(27 x 2lnl ©). -
Because § is monotone on the product lattice and h is submodular on (R x Ry, <),
Lemma 5 applies, and we can define the parameterized function h: 2l x olnl s R

h(S,T)= min f(z,w), (51)
YWER>o
supp(z)CS
supp(w)CT
and then the solution to:
minimize  §(S,T) + (S, T) (52)
S,Te2ln] x2[n]

corresponds to a solution of the lifted problem (45).

Finally, note that Assumptions 1 and 3 are satisfied by f , g, the lattices (2[”] x 2l €) and
(RYy x Ry, <), and the mapping supp : RY; x R — 2[nl x o[l Therefore, we have the
following direct corollary of Theorem 2.

Corollary 16 The function ke 200 x 27 s submodular on the lattice (2["} x 20 €).

Finally, if the non-submodular contribution to the quadratic form is not too large, partic-
ularly if QT — Q™ is positive semidefinite, then by Lemma 14 f is also convex. Under this
assumption, Corollary 6 applies, so we can solve the lifted optimization problem exactly in
polynomial time.

Corollary 17 Under the same assumptions as Corollary 6, if Q and QT — Q™ are both
positive semidefinite matrices and g : 2"} — R is monotone and submodular, then the lifted
quadratic optimization problem (45) can be solved exactly in polynomial time.

7.3 Guarantees

Corollary 17 in the previous subsection showed that a quadratic problem that does not
satisfy Assumptions 1-3 can be lifted to another quadratic problem that does. Moreover,
under mild assumptions on the problem data, the lifted problem can be solved exactly in
polynomial time. The question then arises: is this lifted problem’s solution useful?

Lemma 13 stated that if we are lucky enough to compute a minimizer to the lifted problem
on the diagonal, then it is also necessarily a minimizer of the original quadratic problem.
If we are unlucky, however, we would like to still to construct a minimizer of the original
problem using the solution we found. The following result shows that this is indeed possible.

Lemma 18 Let (z*,w*) € RY, x RY, be a solution to the lifted quadratic optimization
problem (45). If:

(z* = wH'Q (z* — w*) <0, (53)
then both (z*,2*) and (W*,w*) are also minimizers of the lifted problem. By extension, z*

and w* are minimizers of the original quadratic problem (36).
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Proof By Proposition 25 (in the appendix), we have that:
U(z*,2%) + L(w*, w*) = 20(z", w*) + (z* — w*)TQ (2" —w").
Re-arranging, and applying the optimality of (z*, w*), it follows that:

(Z* o W*)TQ—(Z* . w*) _ E(Z*, Z*) _ g(Z*,W*) +Z(W*,W*) o g(Z*,W*) > 0.

>0 >0

Next, by assumption, (z* — w*)TQ~(z* — w*) < 0, and therefore:
Uz*,2") — U(z*, w*) + {(w*, w*) — {(z", w*) = 0.
If we again re-arrange and apply the optimality of (z*, w*), we find:
0 < U(z*,2%) — U(z", w*) = U(z*, w") — {(w*,w*) <0,
and therefore we have:
Uz, 2") = i(z", w*) = I(w", w"),
and by Lemma 13 the points z* and w* are both minimizers of the original quadratic

problem (36). [ ]

Note then that for any minimizer (z*, w*) of the lifted problem (45), by the submodularity of
f and g and the definition of the lattice (RZ, x R%,, <), we can also construct the minimizer
(z* Y w*,z* A w*) and its counterpart, (z* A w*,z* Y w*). If any of these minimizers satisfy
the criteria of Lemma 18, then we immediately recover an optimal solution of the original
quadratic problem.

The conditions required by Lemma 18 are in fact not only sufficient, but necessary. In
particular, any two solutions that are on the diagonal must satisfy them. We defer its proof
to the appendix because of its similarity to the proof of Lemma 18.

Lemma 19 If (z*,z*) and (W*,w™) are minimizers of the lifted problem (45), then:

(z* —wH)TQ (z" —w*) <0.

Lemmas 18 and 19 show that the easily verified quadratic form condition on the solutions
to the lifted problem are both necessary and sufficient. In practice, we can simply solve the
lifted problem and then check if the condition holds.

What might happen if the conditions of Lemma 18 are not satisfied, but we use its suggested
minimizer anyways? It turns out that these solutions are still nearly optimal, with the
distance from optimality measured using the same necessary and sufficient condition in
Lemmas 18 and 19.

Lemma 20 Let x* € RY, be a minimizer of the original quadratic problem (36), and
(z",w") € R%y x RL be a minimizer of the lifted quadratic problem (45). Then:

min{f(z*), {(w*)} < U(x*) + (2" —w*)TQ (2" — w").
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Proof Again applying Proposition 25, we have:
U(z*,2") + O(w*, w*) = 20(z", w*) + (z" — w*)TQ (z* — w").
“)

Then, applying the optimality of (z*, w*), we upper bound the right hand side:

U(z*,2") +I(w", w*) =

If we divide by two note that the minimum is less than the average, we have:
Uz, w*) < 20(x*,x*) + (z* —w)TQ (2" — w")
= min{l(z",2), 1w, ')} < 06¢ ) + (" — W) Q (" — w)
Then, by Lemmas 11 and 12, this implies the result:
min{i(s",2°), Fw", w*)} = min{0(s), £(w")} < £x) + (a" W) Q (5 —w").

This series of results suggests the following approach for quadratic problems that violate
Assumption 1: lift the problem to a higher-dimensional one satisfying all the required
assumptions, solve the new lifted problem, then check if the conditions for Lemma 18 are
satisfied. If so, then construct the associated minimizer of the original problem. If the
conditions are not satisfied, the value we computed immediately gives an additive bound
on the suboptimality of the result.

8. Examples and Computational Evaluation

In this section, we illustrate the proposed theoretical results on several numerical examples
involving optimization on the lattices RY, and 2"l We compare against two state-of-the-
art techniques: a direct application of the continuous submodular function minimization
algorithms outlined by Bach (2019), and the projected subgradient descent method proposed
in El Halabi and Jegelka (2020).

The algorithms for continuous submodular function minimization operate by discretizing the
domain RY into k discrete points in each dimension, converting the continuous optimization
problem into a submodular minimization problem over a bounded integer lattice. In our
examples, we consider the domain [0,1]" C R%, and set the discretization level to k£ = 51
unless otherwise specified. The algorithms for continuous submodular function minimization
then solve an equivalent convex optimization problem (defined using a generalized Lovéasz
extension for the integer lattice) using projected subgradient or Frank-Wolfe techniques.
In our implementation, we use the Pairwise Frank-Wolfe algorithm to solve this convex
problem, with all relevant results plotted in blue and labeled Cont Submodular.

The projected subgradient method is known to provide approximation guarantees even
in the non-submodular case (El Halabi and Jegelka, 2020), but as shown in Section 4.2,
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amounts to a specific choice of algorithms in our theory. The algorithm operates by solving
an equivalent convex optimization problem—in particular, minimizing the Lovasz extension
of g+ H over [0, 1]"—using projected subgradient descent. To implement this approach, we
use IBM’s CPLEX 12.8 constrained quadratic program solver in MATLAB to evaluate the
function H (as expressed in (16)) and use Polyak’s rule for updating the step size. The
relevant results are plotted in red, and labeled PGD + CPLEX in figures.

Our approach is agnostic to the choice of convex optimization and submodular set function
minimization routines, so we also use CPLEX to evaluate H. To highlight the utility of an
algorithm-agnostic approach, we also implement an active-set method for fast non-negative
quadratic programming to evaluate H (Bro and De Jong, 1997). For the submodular
set function minimization algorithm, we use the minimum-norm point algorithm from Fu-
jishige and Isotani (2011) as implemented in MATLAB by Krause (2010), coupled with the
semi-gradient lattice pruning strategy proposed by Iyer et al. (2013) which has quadratic
complexity and drastically reduces the problem size. Our results are plotted in black, and
labeled MNP + CPLEX and MNP + FNNQ@P in figures.

The various methods are given identical cost functions to minimize, and are run until either
convergence to suboptimality below 10~* or a maximum of 100 iterations. The experiments
were all run on a laptop with an AMD Ryzen 9 4900HS CPU and 16GB of RAM.

8.1 Regularized Sparse Regression

We first examine a regularized sparse regression problem, similar in spirit to (CS). Consider
some x € R, D € R™*" b € R™, and define the function f : RYy) — R as:

f(x) = [|Dx - b]3. (54)

Then define the monotone submodular set function ¢ : 2" — R as:
Al(n —1) +max(A) —min(A) + |A]],
g(A)_{[( ) + max(A) — min(A) + |4] (55)

A0,
o A=,

with A € R>p, and max(A) and min(A) denoting the largest and smallest index element,
respectively, in the set of indices A. This choice of g in the sparse regression problem (P)

places a high penalty on large sets of nonzero entries in the vector x € R%, that are far
apart in index.

We generate a series of random problem instances with m = n satisfying the assumption of
submodularity on RY, and also the convexity condition of Corollary 6. Let chol : R7*7 —

R™™ denote a Cholesky decomposition of a positive semidefinite matrix, and construct the
matrix D in (54) as:

1
D = chol (2(0 +cCT) + nI) . Cij ~unif(—1,0), for all 4,5 =1,2,...,n.

This construction guarantees that the function f in (54) is both convex and submodular on
£, satisfying the conditions for Corollary 6. For the parameter b € R™, we use the signal
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in the top plot of Figure 1, and we set the regularization strength to A = 0.05 so that both
the functions f and g play nontrivial roles in the combined objective function.

We plot the results from each algorithm in Figure 1. Because the minimizer of the optimiza-
tion problem is a representation of b using structured sparse columns of D, we show the the
reconstructed vector Dx produced by each algorithm in the second, third, and fourth plots
of Figure 1. Because there is no reliance on discretization, both the projected subgradient
descent and minimum-norm point algorithms produce a much smoother result, as expected.

In the bottom left plot of Figure 1, we show the cost achieved over iterations of each
algorithm. The minimum-norm point converges almost immediately to the globally optimal
cost, while the projected subgradient descent method takes longer to achieve the same cost.
In contrast, the discretization error associated with the continuous submodular function
minimization approach prevents it from ever achieving the true optimal cost, by a small
amount.

Finally, over a small window of problem sizes, we show the running times of each algorithm
in the bottom right plot of Figure 1. Interestingly, our approach presents a compromise
between the slow optimality of the projected subgradient descent method and the fast
but inexact continuous submodular function minimization algorithm. Moreover, when we
take advantage of the extra problem structure to use specialized algorithms, we achieve
comparable running times to the continuous submodular minimization algorithm.

8.2 Signal Denoising

We next study a simple denoising example, where we consider a signal x € R%,, which is
corrupted by some additive disturbance w € R”, with w ~ A(0,0.1I). We would like to
recover the signal x from the noisy measurements y = x + w, under the assumption that
the true signal x is smooth (meaning variations between adjacent entries ought to be small),
and that the meaningful content arrived in a small number of contiguous sets of entries.

We can express the desire to match the noisy signal y with a smooth one with the convex
and submodular function f : R™ — R defined as:

n—1
£ = gl =yl 13 (i = i) (56)
=1

The first term promotes matching the slightly corrupted signal, while the quadratic penalty
on adjacent entries of x € RS, promotes smoothness.

Similarly, we can express the knowledge of a small and contiguous set of nonzero entries in
the vector x with the monotone submodular set function ¢ : 2"} — R defined by:

9(A) = A(|A] + #int(A)) , (57)
where A € R>q, and the function #int(A) counts the number of sets of contiguous indices

in the set A. This set function is smallest on subsets with a small number of entries that
are adjacent in index.
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Figure 1: Results from the sparse regression problem simulations. The reconstructed sig-
nal representations using columns of D created by each algorithm are shown in
the second, third, and fourth plot. Note the solutions produced by projected
subgradient and the minimum-norm point algorithm are identical. We plot the
cost function value over each algorithm’s iterations in the bottom left, while in
the bottom right we compare the running times of the algorithms over a small

window of problem dimensions.
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For experiments, we use the signal x € RZ, shown in the top plot of Figure 2, with the
noise-corrupted measurements x + w = y € R” with an example shown in dotted orange.
We then let = 0.8 in (56) and A = 0.05 in (57) so that the overall problem’s cost function
has nontrivial contributions from both the smoothness-promoting function and the sparsity-
inducing regularizer. In this case, for the continuous submodular algorithm we discretize

the compact set [0, 1] C R™ into k = 51 distinct values per index.

We show the resulting denoised signals in the second, third, and fourth plots in Figure
2, with the running time comparison over a small window of problem dimensions in the
bottom right. The discretization of the domain in the continuous submodular function
minimization approach produces artifacts in the reconstructed signal, whereas the result of
the projected subgradient and minimum-norm point algorithms are smoother with smaller
sets of nonzero entries. We see once more that our proposed minimum-norm point algorithm
poses a compromise between speed and accuracy, providing guaranteed global optimality
without the high running time of projected subgradient descent. Moreover, when we use
more specialized algorithms for each sub-problem, we achieve competitive performance with
the continuous submodular minimization algorithm.

We also compare the objective value achieved during the iterations of each algorithm for a
single instance in the bottom left plot of Figure 2 with n = 100. Again, the minimum-norm
point algorithm converges almost immediately to the minimum alongside the projected
subgradient method, while the continuous submodular function minimization approach’s
discretization error prevents it from achieving full global optimality.

8.3 Price optimization with start-up costs

In price optimization problems, we are asked to determine prices for a set of products that
maximizes the expected profit while considering any inter-product demand effects caused by
these prices (Ito and Fujimaki, 2016, 2017). Usually this process relies on a simple predictive
model for the relationship between the price of an item and its demand, which we can
easily derive with a regression technique. Given a predictive model of the pricing-demand
relationship and a characterization of our cost for each product, we want to determine the
optimal pricing strategy that maximizes our profit.

Let ¢; € R>p and p; € R>g denote the cost and retail price per unit, respectively, of each
item of each item ¢ = 1,2, ...,n. Let the function d : RY; — RY, be the predictive demand
model, meaning that given a set of prices p it estimates the number of sales (or demand)
of the products. The estimated total profit of a pricing p can then be described by the

function:
n

f(p) =) (pi — ci)d(p)i- (58)
i=1
Without loss of generality, we assume there is a minimum loss we are willing to accept for
each item, meaning there is a lower bound p € R, and that if p; = p,, we will not sell
product 1.

While the expression for profit (58) includes the cost of each item, it does not account for
any start-up costs associated with providing them. In particular, to provide an item, we
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Figure 2: Results of the denoising problem simulations. The true signal and its noisy coun-
terpart are shown in the top plot. The second, third, and fourth plots show the
denoised signals produced by each of the three algorithms. Note that the results
from the minimum-norm point algorithm and the projected subgradient descent
method are identical. The bottom left plot shows the objective value across iter-
ations for n = 100, and bottom right shows the running times of each algorithm
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may have to order it from a supplier and have it shipped to our facilities, paying various
logistical fees to do so. We pay these fees regardless of the quantity of products, meaning
they are a function purely of which items we choose to stock. Moreover, in many cases
these logistical costs are lumped together between items, such as when sourcing multiple
products from the same supplier.

More mathematically, assume we have k € Z~( groups of products with shared start-up
costs, with each group represented as a subset G; C [n], each with some start-up cost w;.
Then the total incurred start-up costs of a subset of provided products S can be expressed
with a set function ¢ : 2" — R:

g($)= >, wi (59)
ke[n]
SNG#0

We apply this set function to the set of products we choose to sell, supp (p — E) C [n]. In
this work, without loss of generality we let p = 0, which implies that an item priced at
Pi = P, €arns no reward and also has no impact on the demand of the other products. By
carefully defining the demand model d and costs ¢, we can enforce this property for any
desired minimum price p.

The true underlying demand model d is unknown in practice. In a small time window,
however, we can use historical data to build a local linear approximation for it, d : RY, —
RY -

d(p) =Bp +a,

with 8 € R"*" and a € R". The entries 3;; describe the impact that the price of product ¢
has on the demand for product j, sometimes referred to as the elasticity of demands(Ito and
Fujimaki, 2016, 2017). Using this model, the estimated expected profit (58) is a quadratic
function:
n
fp)=> (pi—c)d(p)i=p" Bp+p (a—B"c)-c"a.
i=1

Combining the expected profits with the start-up costs, we are faced with the optimization
problem:

minipmize —pTBp—pl(a—pB"c)+cl a+g (supp (P—p)) (60)
subject to p > p.

We create this scenario with real retail sales data collected from a UK-based online retail
store available in the UCI Machine Learning Repository (Dua and Graff, 2017; Chen et al.,
2012). We use this data to estimate the matrix 8 € R™*™ and vector a € R™ with simple
ridge regression. To make the pricing problem (60) well-posed, we also enforce a weak
diagonal dominance constraint on 3. In addition to making the problem well-posed, this
constraint enforces the intuition that the most relevant factor in each product’s demand is
its own prices.
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Figure 3: Results of the price optimization problem simulations. We show the running
times of each algorithm for various problem sizes (left) and the achieved cost
across iterations of the algorithms for a problem of size n = 20 (right). The
dotted line below indicates the guaranteed lower bound on the optimal solution
provided by our lift.

Even with a diagonal dominance constraint, the cross-terms 3;; with ¢ # j can easily be
either positive or negative, depending on the demand and price relationships of the products.
As a result, we cannot directly apply our parameterization method. We can, however, use
the quadratic structure of (60) and follow the results of Section 7 to lift the pricing problem
into a new quadratic problem amenable to our parameterization approach.

We compare our parameterization approach to solving (60) against the projected subgra-
dient descent method applied directly to the original quadratic program for 100 iterations.
This algorithm gives near-optimality guarantees, but explicitly computing the associated
bound is NP-Hard. Alternatively, our quadratic lifting approach gives an easily computable
additive suboptimality guarantee in Lemma 20 at the cost of solving a larger problem in-
stance. This trade-off is highlighted in the plot of running times across varying problem
sizes and the achieved cost across over iterations of each algorithm for an instance of n = 20
in Fig. 3.

We could also, in principle, use the continuous submodular minimization algorithm to solve
the lifted quadratic problem. However, this approach will still suffer inaccuracy from the
discretization step, and further, runs slower than the other algorithms that take advantage
of the quadratic problem structure.

8.4 Discretization Error Dependence

In this section, we explore the relationship between the continuous submodular function
minimization algorithm’s discretization error and its running time. To this end, we ran
instances of the sparse regression example with the modified range function penalty, using
a discretization resolution in each dimension ranging from k = 50 to k& = 400.

The minimum cost achieved at each discretization level k is shown in the left plot of Figure
4. Similarly, the associated running times of the algorithm are shown in the right-hand plot
of Figure 4. Interestingly, near the value of k = 250, the achieved cost becomes effectively
optimal, but the running time increases by an order of magnitude.
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Figure 4: Results highlighting the role of the discretization resolution k£ on the continuous
submodular algorithm’s optimality (left) and running times (right) in an instance
of the sparse regression problem with n = 100.

To give a coarse estimate on the origin of higher running times for projected subgradient
descent and the minimum-norm point algorithms, we note that the computational cost of
each iteration is dominated by the cost of computing the Lovasz extension of H. This com-
putation has time complexity O(nlogn + nFEQO), where EO is the complexity of evaluating
H. If H is evaluated through convex optimization, many generic interior-point methods
have time complexity that is approximately FO = O(n3). Therefore, each iteration of
the minimum-norm point algorithm and the projected subgradient descent algorithm might
have complexity on the order of O(nlogn+n*). When using the fast non-negative quadratic
programming algorithm, however, each evaluation operation is typically much lower than
the generic O(n®). Moreover, the lattice reduction technique of Iyer et al. (2013) runs in
approximately O(n?), and reduces the problem size drastically in many problems, as seen
above.

9. Conclusions

In this work, we showed that model-fitting problems with structure-promoting regularizers
could be expressed as optimization problems defined over two connected lattices. Using
submodularity theory, we derived conditions on these functions and their domains under
which we can directly solve these problems exactly and efficiently. We focused on contin-
uous and Boolean lattices, and derived conditions under which an agnostic combination
of submodular set function minimization and convex optimization algorithms can compute
the exact solution in polynomial time.

We then extended this theory to handle optimization problems with simple continuous
or discrete budget constraints on the model parameters. We did this by naively adding
the constraint to the cost with a Lagrange multiplier, but then used submodular function
theory to solve for all possible Lagrange multiplier values with a single convex optimization
problem. We also highlighted robust or adversarial optimization scenarios, where our exact
solutions could provide subgradients to be used in globally convergent ascent methods.

Finally, we acknowledged there may be scenarios where our sufficient conditions are violated,
and sought a way to weaken them without sacrificing our algorithm-agnostic approach.
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To do so, we identified a class of quadratic programming problems that can be lifted to
problems satisfying our conditions. We then proved that the solutions of the lifted problem—
which can then be found in polynomial time using our previously developed techniques—
give provably optimal or near-optimal solutions to the original problem. Moreover, the
additive approximation bound we provide is simple to compute, unlike existing guarantees
in literature that involve constants that are NP-Hard to compute.
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Appendix A. Submodularity, Lattice Morphisms, and Least Squares

There is a massive body of work that identifies conditions under which compressed sensing
problems of the form:

mini%lize |Ax — b||3 + |supp (%) |, (61)
xeR™

for A € R™*" (with normalized unit norm columns, without loss of generality) and b € R™
can be efficiently solved by a convex relaxation of the £y pseudo-norm to the ¢; norm:

minimize ||Ax —b|3 + |||,
xeR™

with ||x[[y = >°"; |x;]. The majority of these conditions rely on the matrix A being “close
to an isometry”, or “nearly orthogonal”. In this appendix, we highlight how these near-
orthognality conditions on the matrix A can be related to the assumptions made in this
work.

Interestingly, any least-squares problem in the form of (61) can be written as a least-squares
problem over R, by considering auxiliary variables:

x=x"—-x", x",x €RL,

Using these new variables, the least squares problem (61) becomes:

2

+ |supp (x+ — xf) |.

X+
minimize H[A —A] [x_} —-b
2

xT,x~€R%,

If we assume (without loss of generality) that at most one of xj or x; are nonzero for each
i =1,2,...,n, then we can equivalently write:

. IxT1"[ATA —ATA] [x* . x*
e (] [ [ a7

x X
+ [supp (x7) | + [supp (x7) |.

In this lifted problem, Assumption 1 states that the cost function must be submodular on
RY, x RY,. For our lifted problem’s cost function, this assumption is equivalent to the
condition:
(ATA), <0, forall i
—(ATA) <0, forall 4,3j.

ij
This set of conditions in turn implies that (ATA)“ > 0 for all 4, which is always satisfied,
but also that (ATA) =0 for all 7 # j.

(]
By this analysis, any arbitrary least-squares problem with a monotone subset penalty can
be converted to a nonnegative least-squares problem satisfying Assumptions 1-3 and the
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required convexity for Theorem 2 if A is orthogonal. The nearness of the matrix A to
satisfying this condition is often measured with the notion of its coherence:

max (ATA) o
i#] K

which is commonly used to identify well-structured instances of least-squares problems
(Rauhut, 2010).

Appendix B. Continuous Budget Constraints

In this appendix, we prove the relevant results for continuous budget constraints. We let
fi : R>p — R and W; : R>p — R be continuous functions such that f;(0) = W;(0) = 0 for
all = 1,2,...,n. We further assume that each W; is strictly increasing for each 7. Then
define the function H; : R>y — R<o:

Hi(a) = 1;[12161 fi(z) + aW;(z). (62)

We first note that H; is monotone in «.

Proposition 21 The function H; : R>o — R<o is monotone in o for all v = 1,2,...,n.
It is strictly increasing for all o € [0, ¢], where ¢ € R>q is the smallest constant such that
Hi(c) = 0. Additionally, H; is constant and zero on the interval [c, 0o].

Proof Consider o, 5 € R>g, with o < 3, and define the points z% € R>¢ and z° € R>q as:

z® € argmin f;(z) + aW;(z),
z>0

2 € argmin f;(z) + fWi(z).
z>0

Note that for any o € R>(, because z = 0 is a feasible point in the minimization defined in
(62):

Hi(a) = m>igl fi(z) + aW;(z)
< fi(0) + aW;(0) = 0,
thus H; is bounded above by zero. Moreover, observe that by optimality of z*:
Hi(a) = fi(z*) + aW;(z%) < fi(z) + aW;(z), for all z>0.
Moreover, because W;(0) = 0 and W; is increasing, W;(z) > 0. Then, because a < f3:
Hi() = fi(2®) + aWi(z)
< fZ(Z) + CMWZ‘ (Z)
< fi(z) + pW;(z), for all z> 0.

This inequality is strict when o < § and W;(z%) # 0, or equivalently H;(«) < 0. In
particular, because z° > 0:

H(a) < fi(z") + sWi(z") = Hi(B),
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with strict inequality when H;(«) < 0. Therefore H; is monotone and strictly increasing for
all a € R>q such that H;(«) < 0. Because it is also bounded above by zero, monotonicity
implies that once H;(c) = 0 for some ¢ € R>, it is zero for all 8 > c. [ |

Let g : 2"l — R be a monotone submodular set function, and consider a family of optimiza-
tion problems parameterized by p € R>q:

minimize )+ H;(p 63
inimize g(A ZEZA (63)

Given Proposition 21, we know that H;(0) < 0 for all i = 1,2, ..., n. If there exists an i € [n]
such that H;(0) = 0, Proposition 21 further states that H;(«) is also zero for all a > 0.
Moreover, because g is monotone, we know:

A) + ZHi(a) =g(4) + Z H;(a)
icA i€eA\{j}
>g(A\{H+ > Hi(a)

i€A\{j}

In words, because g is monotone and H;(«) is zero for all o, we can always reduce the cost
of a subset by removing i. Equivalently, we can simply remove i from the ground set of
elements.

We then follow the analysis in Bach (2013), generalizing as needed to accommodate for the
non-strict monotonicity of H;.

Proposition 22 (Proposition 8.2 in Bach 2015) Let A® and AP be minimal (i.e., smallest
in size) minimizers for (63) with respective parameters a and 3, with o < 3. Then AP C A,

Proof By the optimality of A% and A%, we have:

+ > Hi(a) <g(A"UA®) + > Hia) (64)

i€A iCA*UAP
+ Y H(B) <gAn AP+ Y H(B (65)
i€ AB i€ANAB

If we sum these inequalities and apply the submodularity of g, we have:

gAUAP) 4 gA A+ Y H)+ Y H(B)

i€EACUAP i€ACNAP
> g(A%) +g(A%) + >~ Hi(a) + Y Hi(B)
i€AN i€ AP
> g(A"UAP) + g(A* N A%) + > Hi(o)+ > Hi(B).  (66)

1€A™ iC AP
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Subtracting equations (64) and (65) from (66), we have:

Y. Hil)+ Y Hi(B)= Y Hi(a)+ Y Hi(p)

iEAUAP i€ANAB I€A ic AP
= Z [Hi(8) — Hi(a)] <0. (67)
icAB\ Ae

By Proposition 21, as a < 3, each H;(3) — H;(«) in the summation (67) is strictly positive,
or Hi(a) = H;(B) = 0. But if H;(a) = H;(8) =0, as g is monotone, we may remove 4 from
both A% and A” and decrease the cost in (63), contradicting the minimality of A® and A°.

By this argument, the left-hand side of inequality (67) is the sum of strictly positive terms.
However, it is bounded above by zero, so it must therefore be the empty summation, i.e.,
AP\ A% = (), and therefore A% C A®. [ |

We now identify a related convex optimization problem:

n

e+u;
minimize g (u) + Z/ Hi(a)do. (68)

ucR?
20 i=1

A classical result in submodular function theory establishes that the Lovasz extension gy, is
convex if and only if g is submodular (Lovész, 1983). Moreover, [ T H(a)da is convex if
and only if H; is monotone in «, which is true by Proposition 21. Therefore, problem (68)
is a convex optimization problem.

We now establish a relationship between the parameterized family of set function minimiza-
tion problems (63) and the convex optimization problem (68).

Proposition 23 (Proposition 8.3 in Bach 2015) Given the (minimal) solutions A% to the
set function minimization problem (63) for all values of the parameter o > €, define the
vector u* € RY defined by:

u; =sup ({a € R>o | i € A*}).

Then the vector u* is the minimizer of the convex optimization problem (68).
Proof For a > 0 small enough (as, without loss of generality, H;(0) < 0 for all i), we have
Hi(a) <0 for all i = 1,2,...,n. Because g is monotone, for this a, the optimal A% is equal

to {1,2,...,n}, and thus u is well defined for all i = 1,2, ..., n.

For simplicity, we use the notation {u > u} to denote the set:
{u>ut={ie{1,2,...,n} | u; > pu},
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for any u € R™ and g € R. Then for any p > 0, we have:

n

e+u;
o)+ Y [ il = gulu+10) — eg({1,2.0m)) +
i=1"¢

n

3 / ™ Hi()da

i=1
e—‘,—uZ

:/O g{u+1e > pu}) d,u+Z/ a)da —eg({1,2,...,n})

:/:”

where we used the indicator function defined as:

g({u+1e=p}) + Z H{ui—i—eZ,u}Hi(,u)] du, (69)
=1

: )L uitex>np
{us*+e>p} 0, otherwise.

In the right-hand side of (69), every p > € in the integral defines a set function minimization
for which the optimal subset is A¥*. Because we constructed u* as the minimizer to each
of these optimal subsets, the value at u* must be lower than all other u, leading to the

inequality:
gfu+1e> u}) + > Lpggpes g Hj(w) | du

n e+u;‘ 0o
o)+ Y [ e < [
i=1 € i=1
=gr(u +2/ p)dp,

for all other u € RY,, and therefore u* is optimal for (68). |

Proposition 23 establishes the relationship between the parameterized family of optimization
problems (63) and the convex optimization problem (68). We state the next theorem
without proof, as it requires no special modifications for our conditions.

Proposition 24 (Proposition 8.4 in Bach 2013) If u* is the minimizer for the convex
optimization problem (68), then for all y > €, the minimal minimizer of the corresponding
set function minimization in (63) is:

AP = {ie (1,2, ...} |ul > u).

This sequence of propositions ultimately abuses the interpretation of the Lovasz extension
as an integral, and states that optimizing over the integral itself (the convex problem) and
optimizing over the integrated functions for all integration variables (the set functions) is
equivalent.

A noteworthy addendum is that in the definition of H;, we could equivalently perform scalar
minimization over a closed subset of R>(, and the analysis would still follow through. This
alteration would result in effectively “capping” the H; functions from below, which retains
the monotonicity properties necessary for the proofs.
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Appendix C. A useful symmetry property

The lifted quadratic cost function ¢ : REj x Ry, — R satisfies a convenient property that
we abuse to prove several results. We prove it here.

Proposition 25 Let { be defined as in (45). Then for any (z,w) € REy x RY,, we have:

Uz, 2) + l(w,w) = 20(z,w) + (z — w)TQ (z — w). (70)

Proof We proceed by directly computing:
U(z,2) + {(w,w) = f(2) + g(supp (z)) + f(w) + g(supp (w))
=2'QTz+2"'Q z+2p+w Qtw+w Q w+wlp
+ g(supp (z)) + g(supp (w)).
Then, adding and subtracting the missing cross term, we have:
U(z,2) +l(w,w) =2 QTz+w ' Qtw+2z"p+w'p+g(supp (2)) + g(supp (W))
+2'Qz+w/Qw
=2z,w)+2'Q z-22"Q w+wlQ w
— 20z, W) + (2 - W) Q" (2~ W)
|

We also provide a proof that the condition on the minimizers of the lifted problem is not
only sufficient, but necessary.

Lemma 26 If (z*,z*) and (W*,w™) are minimizers of the lifted problem (45), then:

(z* —wH)TQ (z" —w*) <0.

Proof Note that by the submodularity of /, if (z*,2*) and (w*, w*) are minimizers of the
lifted problem (45), then so are their join (z* Y w*,z* A w*) and meet (z* A w*,z* Y w*).
Then, working through the proof of Lemma 18 backwards proves the result. |
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