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Abstract
FedLab is a lightweight open-source framework for the simulation of federated learning. The
design of FedLab focuses on federated learning algorithm effectiveness and communication
efficiency. It allows customization on server optimization, client optimization, communication
agreement, and communication compression. Also, FedLab is scalable in different deployment
scenarios with different computation and communication resources. We hope FedLab could
provide flexible APIs as well as reliable baseline implementations and relieve the burden
of implementing novel approaches for researchers in the FL community. The source code,
tutorial, and documentation can be found at https://github.com/SMILELab-FL/FedLab.
Keywords: distributed learning, federated learning, Python, PyTorch

1. Introduction

Federated learning (FL) is recently a burgeoning research area of machine learning (McMahan
et al., 2017). It aims to protect individual data privacy in distributed machine learning
applications, especially in finance (Byrd and Polychroniadou, 2020), smart healthcare, (Xu
et al., 2021; Brisimi et al., 2018) and edge computing (Jiang et al., 2019; Meng et al., 2021).
Unlike traditional data-centered distributed machine learning, participants in the FL settings
utilize localized data to train local models and then leverage aggregation strategies with
other participants to collaboratively acquire a global model without direct data-sharing.

The training scheme of most FL methods is generally composed of four steps in each
round: 1. The server selects a subset of clients and broadcasts global information (e.g., global
model parameters). 2. Each client updates the local model with a private dataset. 3. Clients
upload local information (e.g., model parameters) to the server. 4. The server updates the
global model based on collected information from clients.

We investigate recently proposed federated learning algorithms as shown in Table 1.
Most of them improve effectiveness or efficiency by changing only one or several workflow
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Method Modification of Steps PlatformStep 1 Step 2 Step 3 Step 4
FedProx (Li et al., 2020a) X X TensorFlow
q-FFL (Li et al., 2020b) X X TensorFlow
IFCA (Ghosh et al., 2020) X X X PyTorch
PowerOfChoice (Cho et al., 2020) X NA
FedDyn (Acar et al., 2021) X X PyTorch
Ditto (Li et al., 2021b) X X X X TensorFlow

Table 1: The modification of steps for recently published FL algorithms.

steps based on different motivations. This indicates that the implementations of many FL
algorithms only require modification on several components of the common workflow, without
the necessity of repetitive implementation on basic FL workflows.

To relieve the burden of implementing FL algorithms and to free researchers from the
burden of the repetitive implementation of basic FL settings, we develop a highly customizable
framework FedLab in this work. FedLab provides the necessary modules for FL simulation,
including communication, model optimization, data partition, and other functional supports.
Users can build an FL simulation environment with customized modules using FedLab in the
way of playing with LEGO bricks.

2. Framework Overview

In this section, we introduce the overview of the proposed library, including the major features,
the code usage pipelines, and a discussion of FedLab’s impacts on the FL community. For a
better understanding, the architecture of FedLab is shown in Figure 1(a), and the functional
supports are shown in Figure 1(b).
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Figure 1: Overview of the FedLab framework

2.1 Features

Communication. For best compatibility with interfaces of PyTorch (Paszke et al., 2019),
communication APIs of FedLab are built for tensor communication. We provide reliable
send/recv functions for point-to-point communication, while all details of message packaging

2



FedLab: A Flexible Federated Learning Framework

and transmission are transparent to users. Users can use communication APIs provided by
FedLab without knowing the information processing and transmission mechanism.

Communication Compression. Based on the point-to-point communication module,
the communication compression algorithms could be easily implemented. A sender could
conduct tensor compression before calling the send function. Then, the receiver could
conduct the corresponding decompression procedure. Additionally, we implement the baseline
quantification compressor (Alistarh et al., 2017) and sparsification (Shi et al., 2019) compressor
in FL, as shown in Compression Method of Figure 1(b).

Communication Agreement. The flexibility of communication management in FedLab
is given by NetworkManager module, which offers users customizable interfaces of communica-
tion agreement. Besides, we provide basic communication patterns, namely synchronous and
asynchronous FL. Meanwhile, FedLab standardizes the implementation of FL communication
agreements, and it is open to users’ customization needs. Users can define the communication
flow between the server and clients for advanced algorithm development.

Federated Optimization. Trainer/ServerHandler in FedLab takes charge of FL
optimization procedure on client/server respectively. Trainer manages local datasets and
performs PyTorch training process; ServerHandler works as a computation backend of the
server, taking charge of the model aggregation. To demonstrate the usage of Trainer, FedLab
provides SGDClientTrainer as a standard implementation of Trainer for users, and it can
be used as the default Trainer in many tasks. Additionally, FedLab provides reproduction
of different algorithms for uses, as shown in the FL Algorithm part in Figure 1(b).

Data Partition & Datasets. The non-IID of data is a key challenge of FL, while
realistic Non-IID datasets are not always accessible to researchers. Researchers tend to
manually create Non-IID data partitions in the experiment environment (Caldas et al., 2018).
For users’ convenience, FedLab offers DataPartitioner for FL data partition. A series of
data partition schemes for both IID and Non-IID from different data distribution settings
(Yurochkin et al., 2019; Acar et al., 2021; Caldas et al., 2018; Li et al., 2021a) are already
provided, including more than 12 data partition schemes for 15 datasets, as shown in Data
Partition and Dataset of Figure 1(b).

Scalability. To meet the requirements of simulation for different scales and simulation
acceleration, we design three simulation schemes: Standalone, Cross-process, and Hierarchical.
Standalone uses SerialClientTrainer, allowing one single process to simulate multiple
clients sequentially with limited computing resources. Cross-process allows larger-scale
FL simulation with multiple processes parallelly across computers in the same LAN. Each
computer could simulate an arbitrary number of clients’ calculation tasks depending on
hardware resources. Hierarchical provides a communication module Scheduler, which
enables processes in different Local Area Networks (LANs) to communicate with the global
server in the Wide Area Network (WAN).

2.2 Pipelines

Building an FL system with FedLab includes two parts. The first part is the definition of
a communication agreement. The prototypes of synchronous and asynchronous communi-
cation patterns have been implemented for users already. With effortless modification on
NetworkManager of client/server, users can fulfill the requirements of specific communication
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agreements. The second part is ServerHandler/Trainer, which represents the FL optimiza-
tion procedure on the server/client. The flexibility of FedLab is embodied in practical usages
that the user can customize only one or two target components in FL workflow while relying
on defaults for the remaining parts. Code examples are shown in Listing 1.

1 # ==== Server Example
2 smodel = AlexNet()
3 shandler = ServerHandler(smodel) # Optimization part
4 snetwork = DistNetwork((server_ip, server_port), world_size, server_rank) # Configuration
5 smanager = ServerManager(handler, network) # Communication part
6 smanager.run()
7
8 # ==== Client Example
9 cmodel = AlexNet()

10 ctrainer = Trainer(cmodel, train_loader, optimizer, criterion) # Optimization part
11 cnetwork = DistNetwork((server_ip, server_port), world_size, client_rank) # Configuration
12 cmanager = ClientManager(trainer, network) # Communication part
13 cmanager.run()

Listing 1: Code examples for server and client

2.3 Impacts

The impacts of FedLab on the FL community can be broadly summarized as follows:
Flexible FL Framework. Via the flexible APIs and highly customized modules in

FedLab, researchers can easily verify their research ideas with simulation acceleration and
implementation flexibility.

Comprehensive Learning Materials. Through the provided comprehensive demos
and tutorials for FL learners, FedLab could support the development of the FL community
by helping both beginners and experts.

Integrated Baseline Algorithms and Benchmarks. Researchers can easily conduct
intensive comparison experiments based on benchmark datasets and baseline algorithms
integrated in FedLab.

For the most benefits of the machine learning community, FedLab is built on the most
popular ML framework PyTorch (according to a study on HuggingFace and PageswithCode
1), instead of other existing parameter-server frameworks (Chen et al., 2015; Abadi et al.,
2016; Jiang et al., 2018). Moreover, a number of federated learning models (Zhang et al.,
2022b,a; Sultana, 2022) have been built upon FedLab.

3. Conclusion and Future Work

In this paper, we introduce a flexible and lightweight FL framework FedLab. FedLab provides
necessary FL modules, reproduction of FL methods for use, as well as detailed documentation
with tutorials online. Thus, FedLab can make it painless for researchers to verify their ideas
in any stage of FL. Future work directions include providing more FL algorithms and utility
experiment toolkits in FedLab.

1. https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
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